1
|
Kim EN, Jeong GS. Inhibitory Effect of Periodontitis through C/EBP and 11β-Hydroxysteroid Dehydrogenase Type 1 Regulation of Betulin Isolated from the Bark of Betula platyphylla. Pharmaceutics 2022; 14:pharmaceutics14091868. [PMID: 36145616 PMCID: PMC9502078 DOI: 10.3390/pharmaceutics14091868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 12/05/2022] Open
Abstract
Periodontitis is an infectious inflammatory disease of the tissues around the tooth that destroys connective tissue and is characterized by loss of periodontal ligaments and alveolar bone. Currently, surgical methods for the treatment of periodontitis have limitations and new treatment strategies are needed. Therefore, this study evaluated the efficacy of the compound betulin isolated from bark of Betula platyphylla on the inhibition of periodontitis in vitro and in vivo periodontitis induction models. In the study, betulin inhibited pro-inflammatory mediators, such as tumor necrosis factor, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2, in human periodontal ligament cells stimulated with Porphyromonas gingivalis lipopolysaccharide (PG-LPS). In addition, it showed an anti-inflammatory effect by down-regulating 11β-hydroxysteroid dehydrogenase type 1 and transcription factor C/EBP β produced by PG-LPS. Moreover, PG-LPS inhibited the osteogenic induction of human periodontal ligament cells. The protein and mRNA levels of osteogenic markers, such as inhibited osteopontin (OPN) and runt-related transcription factor 2 (RUNX2), were regulated by betulin. In addition, the efficacy of betulin was demonstrated in a typical in vivo model of periodontitis induced by PG-LPS, and the results showed through hematoxylin & eosin staining and micro-computed tomography that the administration of betulin alleviated alveolar bone loss and periodontal inflammation caused by PG-LPS. Therefore, this study proved the efficacy of the compound betulin isolated from B. platyphylla in the inhibition of periodontitis and alveolar bone loss, two important strategies for the treatment of periodontitis, suggesting the potential as a new treatment for periodontitis.
Collapse
|
2
|
van der Sluis RJ, Hoekstra M. Glucocorticoids are active players and therapeutic targets in atherosclerotic cardiovascular disease. Mol Cell Endocrinol 2020; 504:110728. [PMID: 31968221 DOI: 10.1016/j.mce.2020.110728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Adrenal-derived glucocorticoids mediate the physiological response to stress. Chronic disturbances in glucocorticoid homeostasis, i.e. in Addison's and Cushing's disease patients, predispose to the development of atherosclerotic cardiovascular disease. Here we review preclinical and clinical findings regarding the relation between changes in plasma glucocorticoid levels and the atherosclerosis extent. It appears that, although the altered glucocorticoid function can in most cases be restored in the different patient groups, current therapies do not necessarily reverse the associated risk for atherosclerotic cardiovascular disease. In our opinion much attention should therefore be given to the development of a Cushing's disease mouse model that can (1) effectively replicate the effect of hypercortisolemia on atherosclerosis outcome observed in humans and (2) be used to investigate, in a preclinical setting, the relative impact on atherosclerosis susceptibility of already available (e.g. metyrapone) and potentially novel (i.e. SR-BI activity modulators) therapeutic agents that target the adrenal glucocorticoid output.
Collapse
Affiliation(s)
- Ronald J van der Sluis
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands.
| |
Collapse
|
3
|
Wooton-Kee CR, Robertson M, Zhou Y, Dong B, Sun Z, Kim KH, Liu H, Xu Y, Putluri N, Saha P, Coarfa C, Moore DD, Nuotio-Antar AM. Metabolic dysregulation in the Atp7b-/- Wilson's disease mouse model. Proc Natl Acad Sci U S A 2020; 117:2076-2083. [PMID: 31924743 PMCID: PMC6994990 DOI: 10.1073/pnas.1914267117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inactivating mutations in the copper transporter Atp7b result in Wilson's disease. The Atp7b-/- mouse develops hallmarks of Wilson's disease. The activity of several nuclear receptors decreased in Atp7b-/- mice, and nuclear receptors are critical for maintaining metabolic homeostasis. Therefore, we anticipated that Atp7b-/- mice would exhibit altered progression of diet-induced obesity, fatty liver, and insulin resistance. Following 10 wk on a chow or Western-type diet (40% kcal fat), parameters of glucose and lipid homeostasis were measured. Hepatic metabolites were measured by liquid chromatography-mass spectrometry and correlated with transcriptomic data. Atp7b-/- mice fed a chow diet presented with blunted body-weight gain over time, had lower fat mass, and were more glucose tolerant than wild type (WT) littermate controls. On the Western diet, Atp7b-/- mice exhibited reduced body weight, adiposity, and hepatic steatosis compared with WT controls. Atp7b-/- mice fed either diet were more insulin sensitive than WT controls; however, fasted Atp7b-/- mice exhibited hypoglycemia after administration of insulin due to an impaired glucose counterregulatory response, as evidenced by reduced hepatic glucose production. Coupling gene expression with metabolomic analyses, we observed striking changes in hepatic metabolic profiles in Atp7b-/- mice, including increases in glycolytic intermediates and components of the tricarboxylic acid cycle. In addition, the active phosphorylated form of AMP kinase was significantly increased in Atp7b-/- mice relative to WT controls. Alterations in hepatic metabolic profiles and nuclear receptor signaling were associated with improved glucose tolerance and insulin sensitivity as well as with impaired fasting glucose production in Atp7b-/- mice.
Collapse
Affiliation(s)
- Clavia Ruth Wooton-Kee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030;
| | - Matthew Robertson
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Ying Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Zhen Sun
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Hailan Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Yong Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Pradip Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Cristian Coarfa
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030;
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
4
|
Chen Y, Lu W, Jin Z, Yu J, Shi B. Carbenoxolone ameliorates hepatic lipid metabolism and inflammation in obese mice induced by high fat diet via regulating the JAK2/STAT3 signaling pathway. Int Immunopharmacol 2019; 74:105498. [DOI: 10.1016/j.intimp.2019.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/11/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
|
5
|
Mori RC, Poças da Silva T, Campello RS, Machado UF. Carbenoxolone enhances peripheral insulin sensitivity and GLUT4 expression in skeletal muscle of obese rats: Potential participation of UBC9 protein. Life Sci 2019; 229:157-165. [PMID: 31077719 DOI: 10.1016/j.lfs.2019.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 01/06/2023]
Abstract
AIM This study investigates the insulin sensitizer effect of carbenoxolone (CBX) and potentially involved peripheral mechanisms. MAIN METHODS Taking glucose transporter 4 (GLUT4) as a marker of glucose disposal, we investigated the CBX effects on whole-body insulin sensitivity and solute carrier 2a4 (Slc2a4)/GLUT4 expression in visceral (VAT) and subcutaneous (SAT) adipose tissues and soleus muscle of monosodium glutamate (MSG)-induced obese rats. Sterol regulatory element binding protein (SREBP1), an enhancer of Slc2a4 expression was analyzed through mRNA content and SREBP1-binding to Slc2a4 promoter. Finally, the small ubiquitin-modifier conjugating enzyme 9 (UBC9), whose low content indicates accelerated GLUT4 degradation was analyzed in soleus. KEY FINDINGS Hypercorticosteronemia, hyperinsulinemia and low glucose decay rate in the insulin tolerance test of obese rats were restored by CBX (P < 0.05). Slc2a4/GLUT4 increased in SAT (P < 0.05) and decreased in VAT (P < 0.01) of obese rats. In soleus, obesity increased Slc2a4 but decreased GLUT4 (P < 0.01), possibly by accelerating GLUT4 degradation, as suggested by decreased UBC9 (P < 0.01). CBX restored both UBC9 and GLUT4 contents. SREBP1 did not participate in the Slc2a4 transcriptional regulation. SIGNIFICANCE The insulin sensitizer effect of CBX involves the increase of GLUT4 expression in soleus, indicating an increased glucose disposal in skeletal muscle. This observation reinforces the skeletal muscle as the main site of insulin-induced glucose uptake and sheds new light on the metabolic effects of 11βHSD1 inhibitors, since most of the studies so far have focused on its effects on liver and adipose tissues.
Collapse
Affiliation(s)
- Rosana Cristina Mori
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil.
| | - Thaís Poças da Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Raquel Saldanha Campello
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
6
|
Chen TC, Lee RA, Tsai SL, Kanamaluru D, Gray NE, Yiv N, Cheang RT, Tan JH, Lee JY, Fitch MD, Hellerstein MK, Wang JC. An ANGPTL4-ceramide-protein kinase Cζ axis mediates chronic glucocorticoid exposure-induced hepatic steatosis and hypertriglyceridemia in mice. J Biol Chem 2019; 294:9213-9224. [PMID: 31053639 DOI: 10.1074/jbc.ra118.006259] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 05/01/2019] [Indexed: 01/01/2023] Open
Abstract
Chronic or excess glucocorticoid exposure causes lipid disorders such as hypertriglyceridemia and hepatic steatosis. Angptl4 (angiopoietin-like 4), a primary target gene of the glucocorticoid receptor in hepatocytes and adipocytes, is required for hypertriglyceridemia and hepatic steatosis induced by the synthetic glucocorticoid dexamethasone. Angptl4 has also been shown to be required for dexamethasone-induced hepatic ceramide production. Here, we further examined the role of ceramide-mediated signaling in hepatic dyslipidemia caused by chronic glucocorticoid exposure. Using a stable isotope-labeling technique, we found that dexamethasone treatment induced the rate of hepatic de novo lipogenesis and triglyceride synthesis. These dexamethasone responses were compromised in Angptl4-null mice (Angptl4-/-). Treating mice with myriocin, an inhibitor of the rate-controlling enzyme of de novo ceramide synthesis, serine palmitoyltransferase long-chain base subunit 1 (SPTLC1)/SPTLC2, decreased dexamethasone-induced plasma and liver triglyceride levels in WT but not Angptl4-/- mice. We noted similar results in mice infected with adeno-associated virus-expressing small hairpin RNAs targeting Sptlc2. Protein phosphatase 2 phosphatase activator (PP2A) and protein kinase Cζ (PKCζ) are two known downstream effectors of ceramides. We found here that mice treated with an inhibitor of PKCζ, 2-acetyl-1,3-cyclopentanedione (ACPD), had lower levels of dexamethasone-induced triglyceride accumulation in plasma and liver. However, small hairpin RNA-mediated targeting of the catalytic PP2A subunit (Ppp2ca) had no effect on dexamethasone responses on plasma and liver triglyceride levels. Overall, our results indicate that chronic dexamethasone treatment induces an ANGPTL4-ceramide-PKCζ axis that activates hepatic de novo lipogenesis and triglyceride synthesis, resulting in lipid disorders.
Collapse
Affiliation(s)
- Tzu-Chieh Chen
- From the Department of Nutritional Sciences & Toxicology.,the Metabolic Biology Graduate Program, and
| | - Rebecca A Lee
- From the Department of Nutritional Sciences & Toxicology.,the Endocrinology Graduate Program, University of California-Berkeley, Berkeley, California 94720-3104
| | - Sam L Tsai
- From the Department of Nutritional Sciences & Toxicology
| | | | - Nora E Gray
- From the Department of Nutritional Sciences & Toxicology.,the Metabolic Biology Graduate Program, and
| | - Nicholas Yiv
- From the Department of Nutritional Sciences & Toxicology
| | | | - Jenna H Tan
- From the Department of Nutritional Sciences & Toxicology
| | - Justin Y Lee
- From the Department of Nutritional Sciences & Toxicology
| | - Mark D Fitch
- From the Department of Nutritional Sciences & Toxicology
| | | | - Jen-Chywan Wang
- From the Department of Nutritional Sciences & Toxicology, .,the Metabolic Biology Graduate Program, and.,the Endocrinology Graduate Program, University of California-Berkeley, Berkeley, California 94720-3104
| |
Collapse
|
7
|
Natural products in licorice for the therapy of liver diseases: Progress and future opportunities. Pharmacol Res 2019; 144:210-226. [PMID: 31022523 DOI: 10.1016/j.phrs.2019.04.025] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/16/2022]
Abstract
Liver diseases related complications represent a significant source of morbidity and mortality worldwide, creating a substantial economic burden. Oxidative stress, excessive inflammation, and dysregulated energy metabolism significantly contributed to liver diseases. Therefore, discovery of novel therapeutic drugs for the treatment of liver diseases are urgently required. Licorice is one of the most commonly used herbal drugs in Traditional Chinese Medicine for the treatment of liver diseases and drug-induced liver injury (DILI). Various bioactive components have been isolated and identified from the licorice, including glycyrrhizin, glycyrrhetinic acid, liquiritigenin, Isoliquiritigenin, licochalcone A, and glycycoumarin. Emerging evidence suggested that these natural products relieved liver diseases and prevented DILI through multi-targeting therapeutic mechanisms, including anti-steatosis, anti-oxidative stress, anti-inflammation, immunoregulation, anti-fibrosis, anti-cancer, and drug-drug interactions. In the current review, we summarized the recent progress in the research of hepatoprotective and toxic effects of different licorice-derived bioactive ingredients and also highlighted the potency of these compounds as promising therapeutic options for the treatment of liver diseases and DILI. We also outlined the networks of underlying molecular signaling pathways. Further pharmacology and toxicology research will contribute to the development of natural products in licorice and their derivatives as medicines with alluring prospect in the clinical application.
Collapse
|
8
|
Sharma H, Kumar P, Deshmukh RR, Bishayee A, Kumar S. Pentacyclic triterpenes: New tools to fight metabolic syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:166-177. [PMID: 30466975 DOI: 10.1016/j.phymed.2018.09.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/25/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Metabolic syndrome is a combination of dysregulated cardiometabolic risk factors characterized by dyslipidemia, impaired glucose tolerance, insulin resistance, inflammation, obesity as well as hypertension. These factors are tied to the increased risk for type-II diabetes and cardiovascular diseases including myocardial infarction in patients with metabolic syndrome. PURPOSE To review the proposed molecular mechanisms of pentacyclic triterpenes for their potential use in the metabolic syndrome. METHODS PubMed, Science Direct, and Google Scholar database were searched from commencement to April 2018. Following keywords were searched in the databases with varying combinations: "metabolic syndrome", "pentacyclic triterpenes", "transcription factors", "protein kinase", "lipogenesis", "adipogenesis", "lipolysis", "fatty acids", "gluconeogenesis", "cardiovascular", "mitochondria", "oxidative stress", "pancreas", "hepatic cells", "skeletal muscle", "3T3-L1", "C2C12", "obesity", "inflammation", "insulin resistance", "glucose uptake", "clinical studies" and "bioavailability". RESULTS Pentacyclic triterpenes, such as asiatic acid, ursolic acid, oleanolic acid, 18β-glycyrrhetinic acid, α,β-amyrin, celastrol, carbenoxolone, corosolic acid, maslinic acid, bardoxolone methyl and lupeol downregulate several metabolic syndrome components by regulating transcription factors, protein kinases and enzyme involved in the adipogenesis, lipolysis, fatty acid oxidation, insulin resistance, mitochondria biogenesis, gluconeogenesis, oxidative stress and inflammation. CONCLUSION In vitro and in vivo studies suggests that pentacyclic triterpenes effectively downregulate various factors related to metabolic syndrome. These phytochemicals may serve as promising candidates for clinical trials for the management of metabolic syndrome.
Collapse
Affiliation(s)
- Hitender Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136 119 Haryana, India
| | - Pushpander Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136 119 Haryana, India
| | - Rahul R Deshmukh
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Sunil Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136 119 Haryana, India.
| |
Collapse
|
9
|
Infante M, Armani A, Mammi C, Fabbri A, Caprio M. Impact of Adrenal Steroids on Regulation of Adipose Tissue. Compr Physiol 2017; 7:1425-1447. [PMID: 28915330 DOI: 10.1002/cphy.c160037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Corticosteroids are secreted by the adrenal glands and control the functions of adipose tissue via the activation of mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). In turn, adipocytes release a large variety of adipokines into the bloodstream, regulating the function of several organs and tissues, including the adrenal glands, hereby controlling corticosteroid production. In adipose tissue, the activation of the MR by glucocorticoids (GC) and aldosterone affects important processes such as adipocyte differentiation, oxidative stress, autophagic flux, adipokine expression as well as local production of GC through upregulation of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Notably, the proinflammatory responses induced by the MR are counteracted by activation of the GR, whose activity inhibits the expression of inflammatory adipokines. Both GR and MR are deeply involved in adipogenesis and adipose expansion; hence pharmacological blockade of these two receptors has proven effective against adipose tissue dysfunction in experimental models of obesity and metabolic syndrome (MetS), suggesting a potential use for MR and GR antagonists in these clinical settings. Importantly, obesity and Cushing's syndrome (CS) share metabolic similarities and are characterized by high levels of circulating corticosteroids, which in turn are able to deeply affect adipose tissue. In addition, pharmacological approaches aimed at reducing aldosterone and GC levels, by means of the inhibition of CYP11B2 (aldosterone synthase) or 11β-HSD1, represent alternative strategies to counter the detrimental effects of excessive levels of corticosteroids, which are often observed in obesity and, more general, in MetS. © 2017 American Physiological Society. Compr Physiol 7:1425-1447, 2017.
Collapse
Affiliation(s)
- Marco Infante
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, CTO A. Alesini Hospital, ASL Roma 2, University Tor Vergata, Rome, Italy
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Andrea Fabbri
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, CTO A. Alesini Hospital, ASL Roma 2, University Tor Vergata, Rome, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
10
|
Nakata T, Umeda M, Masuzaki H, Sawai H. The expression of 11β-hydroxysteroid dehydrogenase type 1 is increased in experimental periodontitis in rats. BMC Oral Health 2016; 16:108. [PMID: 27716163 PMCID: PMC5048409 DOI: 10.1186/s12903-016-0303-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/22/2016] [Indexed: 11/13/2022] Open
Abstract
Background The involvement of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive glucocorticoids into active glucocorticoids intracellularly, in metabolic diseases and chronic inflammatory diseases has been elucidated. We recently reported that an increase in 11β-HSD1 expression was associated with chronic periodontitis in humans irrespective of obesity. To further clarify the role of 11β-HSD1 in chronic periodontitis, the expression of 11β-HSD1 was investigated in experimental periodontitis model in rats. Methods Experimental periodontitis was induced by silk ligature of left maxillary second molars of 7-week-old male Wistar rats, and periodontal tissues were collected at day 3. The expression of 11β-HSD1, 11β-HSD2, and TNFα mRNA was examined using real time reverse transcription-polymerase chain reaction. The expression of TNFα was used as an indicator of inflammation. Thus, the rats in which the levels of TNFα mRNA were increased in the ligature-induced periodontitis compared with the control were analysed. Results The findings demonstrated that the expression of 11β-HSD1 mRNA was significantly increased in experimental periodontitis compared with the control. The increase in the levels of 11β-HSD1 mRNA in the ligature-induced periodontitis compared with the control was positively correlated with that of TNFα mRNA. On the other hand, the expression of 11β-HSD2 mRNA, which inactivates glucocorticoids, was slightly decreased in experimental periodontitis. Therefore, the ratio of 11β-HSD1 versus 11β-HSD2 mRNA was significantly higher in experimental periodontitis than in the control. Conclusions These results suggest that the increased expression of 11β-HSD1, which would result in the increased levels of intracellular glucocorticoids, may play a role in the pathophysiology of experimental periodontitis.
Collapse
Affiliation(s)
- Takaya Nakata
- Department of Periodontology, Graduate School of Dentistry, Osaka Dental University, Hirakata, Osaka, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Hirakata, Osaka, Japan
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, Graduate School of Internal Medicine, University of the Ryukyus, Nakagami-gun, Okinawa, Japan
| | - Hirofumi Sawai
- Department of Internal Medicine, Osaka Dental University, Hirakata, Osaka, Japan.
| |
Collapse
|
11
|
Markey KA, Uldall M, Botfield H, Cato LD, Miah MAL, Hassan-Smith G, Jensen RH, Gonzalez AM, Sinclair AJ. Idiopathic intracranial hypertension, hormones, and 11β-hydroxysteroid dehydrogenases. J Pain Res 2016; 9:223-32. [PMID: 27186074 PMCID: PMC4847593 DOI: 10.2147/jpr.s80824] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Idiopathic intracranial hypertension (IIH) results in raised intracranial pressure (ICP) leading to papilledema, visual dysfunction, and headaches. Obese females of reproductive age are predominantly affected, but the underlying pathological mechanisms behind IIH remain unknown. This review provides an overview of pathogenic factors that could result in IIH with particular focus on hormones and the impact of obesity, including its role in neuroendocrine signaling and driving inflammation. Despite occurring almost exclusively in obese women, there have been a few studies evaluating the mechanisms by which hormones and adipokines exert their effects on ICP regulation in IIH. Research involving 11β-hydroxysteroid dehydrogenase type 1, a modulator of glucocorticoids, suggests a potential role in IIH. Improved understanding of the complex interplay between adipose signaling factors such as adipokines, steroid hormones, and ICP regulation may be key to the understanding and future management of IIH.
Collapse
Affiliation(s)
- Keira A Markey
- Neurometabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Maria Uldall
- Danish Headache Center, Clinic of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Hannah Botfield
- Neurometabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Liam D Cato
- Neurometabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Mohammed A L Miah
- Neurometabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Ghaniah Hassan-Smith
- Neurometabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Rigmor H Jensen
- Danish Headache Center, Clinic of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Ana M Gonzalez
- Neurometabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Alexandra J Sinclair
- Neurometabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Sanna PP, Kawamura T, Chen J, Koob GF, Roberts AJ, Vendruscolo LF, Repunte-Canonigo V. 11β-hydroxysteroid dehydrogenase inhibition as a new potential therapeutic target for alcohol abuse. Transl Psychiatry 2016; 6:e760. [PMID: 26978742 PMCID: PMC4872439 DOI: 10.1038/tp.2016.13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/18/2015] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
The identification of new and more effective treatments for alcohol abuse remains a priority. Alcohol intake activates glucocorticoids, which have a key role in alcohol's reinforcing properties. Glucocorticoid effects are modulated in part by the activity of 11β-hydroxysteroid dehydrogenases (11β-HSD) acting as pre-receptors. Here, we tested the effects on alcohol intake of the 11β-HSD inhibitor carbenoxolone (CBX, 18β-glycyrrhetinic acid 3β-O-hemisuccinate), which has been extensively used in the clinic for the treatment of gastritis and peptic ulcer and is active on both 11β-HSD1 and 11β-HSD2 isoforms. We observed that CBX reduces both baseline and excessive drinking in rats and mice. The CBX diastereomer 18α-glycyrrhetinic acid 3β-O-hemisuccinate (αCBX), which we found to be selective for 11β-HSD2, was also effective in reducing alcohol drinking in mice. Thus, 11β-HSD inhibitors may be a promising new class of candidate alcohol abuse medications, and existing 11β-HSD inhibitor drugs may be potentially re-purposed for alcohol abuse treatment.
Collapse
Affiliation(s)
- P P Sanna
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - T Kawamura
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - J Chen
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - G F Koob
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - A J Roberts
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - L F Vendruscolo
- Intramural Research Program, National Institute on Drug Abuse-National Institutes of Health, Baltimore, MD, USA
| | - V Repunte-Canonigo
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
13
|
Meadows A, Lee JH, Wu CS, Wei Q, Pradhan G, Yafi M, Lu HC, Sun Y. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity. Int J Obes (Lond) 2016; 40:417-24. [PMID: 26447738 DOI: 10.1038/ijo.2015.209] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/02/2015] [Accepted: 09/21/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND/OBJECTIVES Cannabinoid receptor 1 (CB1) is the best-characterized cannabinoid receptor, and CB1 antagonists are used in clinical trials to treat obesity. Because of the wide range of CB1 functions, the side effects of CB1 antagonists pose serious concerns. G-protein-coupled receptor 55 (GPR55) is an atypical cannabinoid receptor, and its pharmacology and functions are distinct from CB1. GPR55 regulates neuropathic pain, gut, bone, immune functions and motor coordination. GPR55 is expressed in various brain regions and peripheral tissues. However, the roles of GPR55 in energy and glucose homeostasis are unknown. Here we have investigated the roles of GPR55 in energy balance and insulin sensitivity using GPR55-null mice (GPR55(-/-)). METHODS Body composition of the mice was measured by EchoMRI. Food intake, feeding behavior, energy expenditure and physical activity of GPR55(-/-) mice were determined by indirect calorimetry. Muscle function was assessed by forced treadmill running test. Insulin sensitivity was evaluated by glucose and insulin tolerance tests. Adipose inflammation was assessed by flow cytometry analysis of adipose tissue macrophages. The expression of inflammatory markers in adipose tissues and orexigenic/anorexigenic peptides in the hypothalamus was also analyzed by real-time PCR. RESULTS GPR55(-/-) mice had normal total energy intake and feeding pattern (i.e., no changes in meal size, meal number or feeding frequency). Intriguingly, whereas adult GPR55(-/-) mice only showed a modest increase in overall body weight, they exhibited significantly increased fat mass and insulin resistance. The spontaneous locomotor activity of GPR55(-/-) mice was dramatically decreased, whereas resting metabolic rate and non-shivering thermogenesis were unchanged. Moreover, GPR55(-/-) mice exhibited significantly decreased voluntary physical activity, showing reduced running distance on the running wheels, whereas muscle function appeared to be normal. CONCLUSIONS GPR55 has an important role in energy homeostasis. GPR55 ablation increases adiposity and insulin resistance by selectively decreasing physical activity, but not by altering feeding behavior as CB1.
Collapse
Affiliation(s)
- A Meadows
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Endocrinology, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, USA
| | - J H Lee
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - C-S Wu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Q Wei
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - G Pradhan
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - M Yafi
- Division of Pediatric Endocrinology, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, USA
| | - H-C Lu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Y Sun
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Chen G, Wang R, Chen H, Wu L, Ge RS, Wang Y. Gossypol ameliorates liver fibrosis in diabetic rats induced by high-fat diet and streptozocin. Life Sci 2016; 149:58-64. [PMID: 26883980 DOI: 10.1016/j.lfs.2016.02.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/07/2016] [Accepted: 02/10/2016] [Indexed: 02/06/2023]
Abstract
11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) inhibitors have been shown to treat type 2 diabetes (T2D). Since gossypol is an 11β-HSD1 inhibitor, the objective of the present study was to treat T2D and T2D-related liver fibrosis in rat model using low-dose gossypol. T2D was induced by feeding with high fat diet plus injection of streptozocin (30mg/kg). Diabetic rats were treated with either vehicle control or racemic gossypol with a dose of 15mg/kg/day for 4weeks followed by 15mg/kg/week for additional 8weeks. Blood glucose, cholesterol, LDL, and triglycerides were measured. Messenger mRNA levels of glucocorticoid receptor (Nr3c1), phosphoenolpyruvate carboxykinase (Pck1), glucose-6-phosphatase (G6pc), collagen I (Col1a1), collagen III (Col3a1), fibronectin (Fn1), tissue inhibitor of metalloproteinase 1 (Timp1), and 2 (Timp2) were measured. T2D rats had higher serum glucose, cholesterol, LDL, and triglyceride levels compared to control. Liver Nr3c1, Col1a1, Col3a1, Fn1, Timp1, and Timp2 were increased in T2D rats. T2D liver showed significant fibrosis with the increases of α-smooth muscle actin and fibronectin. After gossypol treatment, serum glucose level was lowered by 64%. Liver fibrosis was significantly ameliorated. Nr3c1, Col1a1, Col3a1, Fn1, Timp1, Timp2, Pck1 as well as G6pc levels were significantly reduced. In conclusion, low dose gossypol is effective for the treatment of T2D and T2D-related fibrosis.
Collapse
Affiliation(s)
- Guorong Chen
- Institute of Cancer Research, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PR China
| | - Rongrong Wang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Hanbin Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Liang Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
| | - Yili Wang
- Institute of Cancer Research, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PR China.
| |
Collapse
|
15
|
Nakata T, Fujita A, Umeda M, Yoshida H, Inami K, Masuzaki H, Sawai H. The increased ratio of 11β-hydroxysteroid dehydrogenase type 1 versus 11β-hydroxysteroid dehydrogenase type 2 in chronic periodontitis irrespective of obesity. SPRINGERPLUS 2016; 5:40. [PMID: 26835222 PMCID: PMC4715141 DOI: 10.1186/s40064-016-1679-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/06/2016] [Indexed: 01/19/2023]
Abstract
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive cortisone to active cortisol, has been reported to play an important role in metabolic diseases as well as chronic inflammatory diseases. The involvement of 11β-HSD1 in chronic periodontitis was investigated in the present study. The relationship between the levels of 11β-HSD1, chronic periodontitis, and body mass index (BMI) was analyzed. The expression of 11β-HSD1 mRNA was significantly higher in the chronic periodontitis group than in the control group. Since the expression of 11β-HSD2, which converts active cortisol to inactive cortisone, was slightly lower in the chronic periodontitis group than in the controls, the ratio of 11β-HSD1 versus 11β-HSD2 was significantly higher in the chronic periodontitis group than in the controls. A correlation was not observed between BMI and the level of 11β-HSD1 or between BMI and the ratio of 11β-HSD1 versus 11β-HSD2. These results suggested that an increase in the ratio of 11β-HSD1 versus 11β-HSD2 was associated with chronic periodontitis irrespective of obesity.
Collapse
Affiliation(s)
- Takaya Nakata
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121 Japan
| | - Atsuko Fujita
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121 Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121 Japan
| | - Hiroaki Yoshida
- First Department of Oral and Maxillofacial Surgery, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121 Japan
| | - Kaoru Inami
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121 Japan
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, 1 Senbaru, Nishiharacho, Nakagamigun, Okinawa 903-0213 Japan
| | - Hirofumi Sawai
- Department of Internal Medicine, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121 Japan
| |
Collapse
|
16
|
Nuotio-Antar AM, Poungvarin N, Li M, Schupp M, Mohammad M, Gerard S, Zou F, Chan L. FABP4-Cre Mediated Expression of Constitutively Active ChREBP Protects Against Obesity, Fatty Liver, and Insulin Resistance. Endocrinology 2015; 156:4020-32. [PMID: 26248218 PMCID: PMC4606753 DOI: 10.1210/en.2015-1210] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Carbohydrate response element binding protein (ChREBP) regulates cellular glucose and lipid homeostasis. Although ChREBP is highly expressed in many key metabolic tissues, the role of ChREBP in most of those tissues and the consequent effects on whole-body glucose and lipid metabolism are not well understood. Therefore, we generated a transgenic mouse that overexpresses a constitutively active ChREBP isoform under the control of the fatty acid binding protein 4-Cre-driven promoter (FaChOX). Weight gain was blunted in male, but not female, FaChOX mice when placed on either a normal chow diet or an obesogenic Western diet. Respiratory exchange ratios were increased in Western diet-fed FaChOX mice, indicating a shift in whole-body substrate use favoring carbohydrate metabolism. Western diet-fed FaChOX mice showed improved insulin sensitivity and glucose tolerance in comparison with controls. Hepatic triglyceride content was reduced in Western diet-fed FaChOX mice in comparison with controls, suggesting protection from fatty liver. Epididymal adipose tissue exhibited differential expression of genes involved in differentiation, browning, metabolism, lipid homeostasis, and inflammation between Western diet-fed FaChOX mice and controls. Our findings support a role for ChREBP in modulating adipocyte differentiation and adipose tissue metabolism and inflammation as well as consequent risks for obesity and insulin resistance.
Collapse
Affiliation(s)
- Alli M Nuotio-Antar
- Diabetes and Endocrinology Research Center (A.M.N.-A., N.P., M.L., L.C.), Department of Medicine, and Children's Nutrition Research Center (A.M.N.-A., M.M., S.G., F.Z.), Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; and Charité University School of Medicine (M.S.), Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Naravat Poungvarin
- Diabetes and Endocrinology Research Center (A.M.N.-A., N.P., M.L., L.C.), Department of Medicine, and Children's Nutrition Research Center (A.M.N.-A., M.M., S.G., F.Z.), Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; and Charité University School of Medicine (M.S.), Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Ming Li
- Diabetes and Endocrinology Research Center (A.M.N.-A., N.P., M.L., L.C.), Department of Medicine, and Children's Nutrition Research Center (A.M.N.-A., M.M., S.G., F.Z.), Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; and Charité University School of Medicine (M.S.), Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Michael Schupp
- Diabetes and Endocrinology Research Center (A.M.N.-A., N.P., M.L., L.C.), Department of Medicine, and Children's Nutrition Research Center (A.M.N.-A., M.M., S.G., F.Z.), Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; and Charité University School of Medicine (M.S.), Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Mahmoud Mohammad
- Diabetes and Endocrinology Research Center (A.M.N.-A., N.P., M.L., L.C.), Department of Medicine, and Children's Nutrition Research Center (A.M.N.-A., M.M., S.G., F.Z.), Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; and Charité University School of Medicine (M.S.), Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Sarah Gerard
- Diabetes and Endocrinology Research Center (A.M.N.-A., N.P., M.L., L.C.), Department of Medicine, and Children's Nutrition Research Center (A.M.N.-A., M.M., S.G., F.Z.), Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; and Charité University School of Medicine (M.S.), Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Fang Zou
- Diabetes and Endocrinology Research Center (A.M.N.-A., N.P., M.L., L.C.), Department of Medicine, and Children's Nutrition Research Center (A.M.N.-A., M.M., S.G., F.Z.), Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; and Charité University School of Medicine (M.S.), Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| | - Lawrence Chan
- Diabetes and Endocrinology Research Center (A.M.N.-A., N.P., M.L., L.C.), Department of Medicine, and Children's Nutrition Research Center (A.M.N.-A., M.M., S.G., F.Z.), Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; and Charité University School of Medicine (M.S.), Institute of Pharmacology, Center for Cardiovascular Research, 10115 Berlin, Germany
| |
Collapse
|
17
|
Liu Z, Liu Y, Zhao B, Du L, Xia Z, Chen X, Luo T. The gap junction blocker carbenoxolone enhances propofol and sevoflurane-induced loss of consciousness. Neural Regen Res 2015; 7:492-5. [PMID: 25745433 PMCID: PMC4348993 DOI: 10.3969/j.issn.1673-5374.2012.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 02/02/2012] [Indexed: 11/18/2022] Open
Abstract
General anesthetics induce loss of consciousness by inhibiting ascending arousal pathways, and they interfere with gap junction electrical coupling. The present study aimed to determine whether inhibition of gap junction-mediated signaling could influence general anesthetic-induced loss of consciousness. The general anesthetics sevoflurane and propofol were used. Intracerebroventricular administration of carbenoxolone, a gap junction blocker, significantly decreased the time to loss of the righting reflex (P < 0.05), but prolonged the time to recovery of the reflex (P < 0.05). Moreover, intracerebroventricular administration of carbenoxolone increased the sensitivity to sevoflurane, with a leftward shift of the loss of righting reflex dose-response curve, and decreased the 50% effective concentration of sevoflurane. These results suggest that the gap junction blocker carbenoxolone enhances propofol and sevoflurane-mediated general anesthesia.
Collapse
Affiliation(s)
- Zhigang Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yongfang Liu
- Department of Anesthesiology, Wuhan First Hospital, Wuhan 430022, Hubei Province, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Li Du
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Xiangdong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Tao Luo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
18
|
Tykarska E, Gdaniec M. Solid-state supramolecular architecture of carbenoxolone – comparative studies with glycyrrhetinic and glycyrrhizic acids. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2015; 71:25-33. [PMID: 25643713 DOI: 10.1107/s2052520614026419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
Carbenoxolone (CBXH2), a pharmaceutically relevant derivative of glycyrrhetinic acid, was studied by X-ray crystallography. The crystal structures of its unsolvated form, propionic acid and dimethoxyethane solvates and a solvated cocrystal of the free acid with its monobasic sodium salt CBXH2·CBXHNa·(butan-2-one)2·2H2O reveal that the recurring motif of supramolecular architecture in all crystal forms is a one-dimensional ribbon with closely packed triterpene fragments. It does not result from strong specific interactions but solely from van der Waals interactions. The ribbons are further arranged into diverse layer-type aggregates with a hydrophobic interior (triterpene skeletons) and hydrophilic surfaces covered with carboxylic/carboxylate groups. Solvent molecules included at the interface between the layers influence hydrogen-bonding interactions between the carbenoxolone molecules and organization of the ribbons within the layer. Comparison of crystal structures of carbenoxolone, glycyrrhizic acid and its aglycone-glycyrrhetinic acid have shown the impact of the size and hydrophilic character of the substituent at the triterpene C3 atom on the supramolecular architecture of these three closely related molecules.
Collapse
Affiliation(s)
- Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Maria Gdaniec
- Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| |
Collapse
|
19
|
Woods C, Tomlinson JW. The Dehydrogenase Hypothesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [DOI: 10.1007/978-1-4939-2895-8_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Anderson A, Walker BR. 11β-HSD1 inhibitors for the treatment of type 2 diabetes and cardiovascular disease. Drugs 2014; 73:1385-93. [PMID: 23990334 DOI: 10.1007/s40265-013-0112-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Inhibition of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) has been proposed as a novel therapeutic target for the treatment of type 2 diabetes mellitus. Over 170 new compounds targeting 11β-HSD1 have been developed. This article reviews the current published literature on compounds that have reached phase II clinical trials in patients with type 2 diabetes, and summarises the preclinical evidence that such agents may be useful for associated conditions, including peripheral vascular disease, coronary artery disease and cognitive decline. In clinical trials, 11β-HSD1 inhibitors have been well tolerated and have improved glycaemic control, lipid profile and blood pressure, and induced modest weight loss. The magnitude of the effects are small relative to other agents, so that further development of 11β-HSD1 inhibitors for the primary therapeutic indication of type 2 diabetes has stalled. Ongoing programmes are focused on additional benefits for cognitive function and other cardiovascular risk factors.
Collapse
Affiliation(s)
- Anna Anderson
- University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | | |
Collapse
|
21
|
Park SB, Jung WH, Kang NS, Park JS, Bae GH, Kim HY, Rhee SD, Kang SK, Ahn JH, Jeong HG, Kim KY. Anti-diabetic and anti-inflammatory effect of a novel selective 11β-HSD1 inhibitor in the diet-induced obese mice. Eur J Pharmacol 2013; 721:70-9. [DOI: 10.1016/j.ejphar.2013.09.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 11/29/2022]
|
22
|
Hoekstra M, Frodermann V, van den Aardweg T, van der Sluis RJ, Kuiper J. Leukocytosis and enhanced susceptibility to endotoxemia but not atherosclerosis in adrenalectomized APOE knockout mice. PLoS One 2013; 8:e80441. [PMID: 24265824 PMCID: PMC3827228 DOI: 10.1371/journal.pone.0080441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022] Open
Abstract
Hyperlipidemic apolipoprotein E (APOE) knockout mice show an enhanced level of adrenal-derived anti-inflammatory glucocorticoids. Here we determined in APOE knockout mice the impact of total removal of adrenal function through adrenalectomy (ADX) on two inflammation-associated pathologies, endotoxemia and atherosclerosis. ADX mice exhibited 91% decreased corticosterone levels (P<0.001), leukocytosis (WBC count: 10.0 ± 0.4 x 10E9/L vs 6.5 ± 0.5 x 10E9/L; P<0.001) and an increased spleen weight (P<0.01). FACS analysis on blood leukocytes revealed increased B-lymphocyte numbers (55 ± 2% vs 46 ± 1%; P<0.01). T-cell populations in blood appeared to be more immature (CD62L+: 26 ± 2% vs 19 ± 1% for CD4+ T-cells, P<0.001 and 58 ± 7% vs 47 ± 4% for CD8+ T-cells, P<0.05), which coincided with immature CD4/CD8 double positive thymocyte enrichment. Exposure to lipopolysaccharide failed to increase corticosterone levels in ADX mice and was associated with a 3-fold higher (P<0.05) TNF-alpha response. In contrast, the development of initial fatty streak lesions and progression to advanced collagen-containing atherosclerotic lesions was unaffected. Plasma cholesterol levels were decreased by 35% (P<0.001) in ADX mice. This could be attributed to a decrease in pro-atherogenic very-low-density lipoproteins (VLDL) as a result of a diminished hepatic VLDL secretion rate (-24%; P<0.05). In conclusion, our studies show that adrenalectomy induces leukocytosis and enhances the susceptibility for endotoxemia in APOE knockout mice. The adrenalectomy-associated rise in white blood cells, however, does not alter atherosclerotic lesion development probably due to the parallel decrease in plasma levels of pro-atherogenic lipoproteins.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
- * E-mail:
| | - Vanessa Frodermann
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Tim van den Aardweg
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Ronald J. van der Sluis
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| |
Collapse
|
23
|
Chapman K, Holmes M, Seckl J. 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 2013; 93:1139-206. [PMID: 23899562 DOI: 10.1152/physrev.00020.2012] [Citation(s) in RCA: 568] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid action on target tissues is determined by the density of "nuclear" receptors and intracellular metabolism by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD) which catalyze interconversion of active cortisol and corticosterone with inert cortisone and 11-dehydrocorticosterone. 11β-HSD type 1, a predominant reductase in most intact cells, catalyzes the regeneration of active glucocorticoids, thus amplifying cellular action. 11β-HSD1 is widely expressed in liver, adipose tissue, muscle, pancreatic islets, adult brain, inflammatory cells, and gonads. 11β-HSD1 is selectively elevated in adipose tissue in obesity where it contributes to metabolic complications. Similarly, 11β-HSD1 is elevated in the ageing brain where it exacerbates glucocorticoid-associated cognitive decline. Deficiency or selective inhibition of 11β-HSD1 improves multiple metabolic syndrome parameters in rodent models and human clinical trials and similarly improves cognitive function with ageing. The efficacy of inhibitors in human therapy remains unclear. 11β-HSD2 is a high-affinity dehydrogenase that inactivates glucocorticoids. In the distal nephron, 11β-HSD2 ensures that only aldosterone is an agonist at mineralocorticoid receptors (MR). 11β-HSD2 inhibition or genetic deficiency causes apparent mineralocorticoid excess and hypertension due to inappropriate glucocorticoid activation of renal MR. The placenta and fetus also highly express 11β-HSD2 which, by inactivating glucocorticoids, prevents premature maturation of fetal tissues and consequent developmental "programming." The role of 11β-HSD2 as a marker of programming is being explored. The 11β-HSDs thus illuminate the emerging biology of intracrine control, afford important insights into human pathogenesis, and offer new tissue-restricted therapeutic avenues.
Collapse
Affiliation(s)
- Karen Chapman
- Endocrinology Unit, Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
24
|
Modulation of 11β-hydroxysteroid dehydrogenase as a strategy to reduce vascular inflammation. Curr Atheroscler Rep 2013; 15:320. [PMID: 23512604 PMCID: PMC3631116 DOI: 10.1007/s11883-013-0320-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease in which initial vascular damage leads to extensive macrophage and lymphocyte infiltration. Although acutely glucocorticoids suppress inflammation, chronic glucocorticoid excess worsens atherosclerosis, possibly by exacerbating systemic cardiovascular risk factors. However, glucocorticoid action within the lesion may reduce neointimal proliferation and inflammation. Glucocorticoid levels within cells do not necessarily reflect circulating levels due to pre-receptor metabolism by 11β-hydroxysteroid dehydrogenases (11β-HSDs). 11β-HSD2 converts active glucocorticoids into inert 11-keto forms. 11β-HSD1 catalyses the reverse reaction, regenerating active glucocorticoids. 11β-HSD2-deficiency/inhibition causes hypertension, whereas deficiency/inhibition of 11β-HSD1 generates a cardioprotective lipid profile and improves glycemic control. Importantly, 11β-HSD1-deficiency/inhibition is atheroprotective, whereas 11β-HSD2-deficiency accelerates atherosclerosis. These effects are largely independent of systemic risk factors, reflecting modulation of glucocorticoid action and inflammation within the vasculature. Here, we consider whether evidence linking the 11β-HSDs to vascular inflammation suggests these isozymes are potential therapeutic targets in vascular injury and atherosclerosis.
Collapse
|
25
|
Lipson VV, Shirobokova MG, Petrova ON. 11β-Hydroxysteroid dehydrogenase type 1, a target for development of oral antidiabetic drugs (Review). Pharm Chem J 2013. [DOI: 10.1007/s11094-013-0900-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Mohan CG, Viswanatha GL, Savinay G, Rajendra CE, Halemani PD. 1,2,3,4,6 Penta-O-galloyl-β-d-glucose, a bioactivity guided isolated compound from Mangifera indica inhibits 11β-HSD-1 and ameliorates high fat diet-induced diabetes in C57BL/6 mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:417-426. [PMID: 23353053 DOI: 10.1016/j.phymed.2012.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/01/2012] [Accepted: 12/25/2012] [Indexed: 06/01/2023]
Abstract
Methanolic leaf extract of Mangifera indica (MEMI) was subjected to bioactivity guided fractionation in order to identify the active antidiabetic constituent. 32 fractions were evaluated for possible 11β-HSD-1 inhibition activity under in vitro conditions. The EA-7/8-9/10-4 fraction was evolved as a most potent fraction among all the fractions and it was identified as well known gallotannin compound 1,2,3,4,6 penta-O-galloyl-β-d-glucose (PGG) by spectral analysis. Based on these results the PGG was further evaluated in ex vivo 11β-HSD-1 inhibition assay and high fat diet (HFD)-induced diabetes in male C57BL/6 mice. Single dose (10, 25, 50 and 100mg/kg) of PGG and carbenoxolone (CBX) have dose dependently inhibited the 11β-HSD-1 activity in liver and adipose tissue. Furthermore, HFD appraisal to male C57BL/6 mice caused severe hyperglycemia, hypertriglyceridemia, elevated levels of plasma corticosterone and insulin, increased liver and white adipose mass with increase in body weight was observed compare to normal control. Also, oral glucose tolerance was significantly impaired compare to normal control. Interestingly, post-treatment with PGG for 21 days had alleviated the HFD-induced biochemical alterations and improved oral glucose tolerance compare to HFD-control. In conclusion, the PGG isolated from MEMI inhibits 11β-HSD-1 activity and ameliorates HFD-induced diabetes in male C57BL/6 mice.
Collapse
Affiliation(s)
- C G Mohan
- Department of Pharmacognosy, Government College of Pharmacy, Bangalore, India.
| | | | | | | | | |
Collapse
|
27
|
García RA, Search DJ, Lupisella JA, Ostrowski J, Guan B, Chen J, Yang WP, Truong A, He A, Zhang R, Yan M, Hellings SE, Gargalovic PS, Ryan CS, Watson LM, Langish RA, Shipkova PA, Carson NL, Taylor JR, Yang R, Psaltis GC, Harrity TW, Robl JA, Gordon DA. 11β-hydroxysteroid dehydrogenase type 1 gene knockout attenuates atherosclerosis and in vivo foam cell formation in hyperlipidemic apoE⁻/⁻ mice. PLoS One 2013; 8:e53192. [PMID: 23383297 PMCID: PMC3562192 DOI: 10.1371/journal.pone.0053192] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/29/2012] [Indexed: 11/22/2022] Open
Abstract
Background Chronic glucocorticoid excess has been linked to increased atherosclerosis and general cardiovascular risk in humans. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) increases active glucocorticoid levels within tissues by catalyzing the conversion of cortisone to cortisol. Pharmacological inhibition of 11βHSD1 has been shown to reduce atherosclerosis in murine models. However, the cellular and molecular details for this effect have not been elucidated. Methodology/Principal Findings To examine the role of 11βHSD1 in atherogenesis, 11βHSD1 knockout mice were created on the pro-atherogenic apoE−/− background. Following 14 weeks of Western diet, aortic cholesterol levels were reduced 50% in 11βHSD1−/−/apoE−/− mice vs. 11βHSD1+/+/apoE−/− mice without changes in plasma cholesterol. Aortic 7-ketocholesterol content was reduced 40% in 11βHSD1−/−/apoE−/− mice vs. control. In the aortic root, plaque size, necrotic core area and macrophage content were reduced ∼30% in 11βHSD1−/−/apoE−/− mice. Bone marrow transplantation from 11βHSD1−/−/apoE−/− mice into apoE−/− recipients reduced plaque area 39–46% in the thoracic aorta. In vivo foam cell formation was evaluated in thioglycollate-elicited peritoneal macrophages from 11βHSD1+/+/apoE−/− and 11βHSD1−/−/apoE−/− mice fed a Western diet for ∼5 weeks. Foam cell cholesterol levels were reduced 48% in 11βHSD1−/−/apoE−/− mice vs. control. Microarray profiling of peritoneal macrophages revealed differential expression of genes involved in inflammation, stress response and energy metabolism. Several toll-like receptors (TLRs) were downregulated in 11βHSD1−/−/apoE−/− mice including TLR 1, 3 and 4. Cytokine release from 11βHSD1−/−/apoE−/−-derived peritoneal foam cells was attenuated following challenge with oxidized LDL. Conclusions These findings suggest that 11βHSD1 inhibition may have the potential to limit plaque development at the vessel wall and regulate foam cell formation independent of changes in plasma lipids. The diminished cytokine response to oxidized LDL stimulation is consistent with the reduction in TLR expression and suggests involvement of 11βHSD1 in modulating binding of pro-atherogenic TLR ligands.
Collapse
Affiliation(s)
- Ricardo A. García
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Debra J. Search
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - John A. Lupisella
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Jacek Ostrowski
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Bo Guan
- Applied Genomics, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Jian Chen
- Applied Genomics, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Wen-Pin Yang
- Applied Genomics, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Amy Truong
- Applied Genomics, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Aiqing He
- Applied Genomics, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Rongan Zhang
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Mujing Yan
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Samuel E. Hellings
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Peter S. Gargalovic
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Carol S. Ryan
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Linda M. Watson
- Pharmaceutical Compound Optimization: Discovery Toxicology, Bristol-Myers Squibb Company, Lawrenceville, New Jersey, United States of America
| | - Robert A. Langish
- Pharmaceutical Compound Optimization: Discovery Analytical Sciences, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Petia A. Shipkova
- Pharmaceutical Compound Optimization: Discovery Analytical Sciences, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Nancy L. Carson
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Joseph R. Taylor
- Metabolic Diseases, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Richard Yang
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - George C. Psaltis
- Veterinary Sciences, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Thomas W. Harrity
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Jeffrey A. Robl
- Discovery Chemistry, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - David A. Gordon
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
28
|
Anagnostis P, Katsiki N, Adamidou F, Athyros VG, Karagiannis A, Kita M, Mikhailidis DP. 11beta-Hydroxysteroid dehydrogenase type 1 inhibitors: novel agents for the treatment of metabolic syndrome and obesity-related disorders? Metabolism 2013; 62:21-33. [PMID: 22652056 DOI: 10.1016/j.metabol.2012.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/30/2012] [Accepted: 05/01/2012] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Metabolic syndrome (MetS) and Cushing's syndrome share common features. It has been proposed that increased glucocorticoid activity at peripheral tissues may play a role in the pathogenesis of MetS and obesity-related disorders. It is well-known that intracellular cortisol concentrations are determined not only by plasma levels but also by the activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) which catalyzes the conversion of inactive cortisone to active cortisol, especially in the liver and adipose tissue. Another isoenzyme exists, the 11β-hydroxysteroid dehydrogenase type 2, which acts in the opposite direction inactivating cortisol to cortisone in the kidney. This review considers the significance of the 11β-HSD1 inhibition in the treatment of several features of MetS and provides current data about the development of 11β-HSD1 inhibitors, as new agents for this purpose. MATERIALS/METHODS Using PubMed, we searched for publications during the last 20years regarding the development of 11β-HSD1 inhibitors. RESULTS Emerging data from animal and human studies indicate an association of 11β-HSD1 over-expression with obesity and disorders in glucose and lipid metabolism. This has led to the hypothesis that selective inhibition of 11β-HSD1 could be used to treat MetS and diabetes. Indeed, natural products and older agents such as thiazolidinediones and fibrates seem to exert an inhibitory effect on 11β-HSD1, ameliorating the cardiometabolic profile. In view of this concept, novel compounds, such as adamantyltriazoles, arylsulfonamidothiazoles, anilinothiazolones, BVT2733, INCB-13739, MK-0916 and MK-0736, are currently under investigation and the preliminary findings from both experimental and human studies show a favourable effect on glucose and lipid metabolism, weight reduction and adipokine levels. CONCLUSIONS Many compounds inhibiting 11β-ΗSD1 are under development and preliminary data about their impact on glucose metabolism and obesity-related disorders are encouraging.
Collapse
Affiliation(s)
- Panagiotis Anagnostis
- Department of Endocrinology, Hippokration Hospital, 49 Konstantinoupoleos Str, Thessaloniki, 54 642, Greece.
| | | | | | | | | | | | | |
Collapse
|
29
|
Prasad Sakamuri SSV, Sukapaka M, Prathipati VK, Nemani H, Putcha UK, Pothana S, Koppala SR, Ponday LRK, Acharya V, Veetill GN, Ayyalasomayajula V. Carbenoxolone treatment ameliorated metabolic syndrome in WNIN/Ob obese rats, but induced severe fat loss and glucose intolerance in lean rats. PLoS One 2012; 7:e50216. [PMID: 23284633 PMCID: PMC3524236 DOI: 10.1371/journal.pone.0050216] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 10/22/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates local glucocorticoid action in tissues by catalysing conversion of inactive glucocorticoids to active glucocorticoids. 11β-HSD1 inhibition ameliorates obesity and associated co-morbidities. Here, we tested the effect of 11β-HSD inhibitor, carbenoxolone (CBX) on obesity and associated comorbidities in obese rats of WNIN/Ob strain, a new animal model for genetic obesity. METHODOLOGY/PRINCIPAL FINDINGS Subcutaneous injection of CBX (50 mg/kg body weight) or volume-matched vehicle was given once daily for four weeks to three month-old WNIN/Ob lean and obese rats (n = 6 for each phenotype and for each treatment). Body composition, plasma lipids and hormones were assayed. Hepatic steatosis, adipose tissue morphology, inflammation and fibrosis were also studied. Insulin resistance and glucose intolerance were determined along with tissue glycogen content. Gene expressions were determined in liver and adipose tissue. CBX significantly inhibited 11β-HSD1 activity in liver and adipose tissue of WNIN/Ob lean and obese rats. CBX significantly decreased body fat percentage, hypertriglyceridemia, hypercholesterolemia, insulin resistance in obese rats. CBX ameliorated hepatic steatosis, adipocyte hypertrophy, adipose tissue inflammation and fibrosis in obese rats. Tissue glycogen content was significantly decreased by CBX in liver and adipose tissue of obese rats. Severe fat loss and glucose- intolerance were observed in lean rats after CBX treatment. CONCLUSIONS/SIGNIFICANCE We conclude that 11β-HSD1 inhibition by CBX decreases obesity and associated co-morbidities in WNIN/Ob obese rats. Our study supports the hypothesis that inhibition of 11β-HSD1 is a key strategy to treat metabolic syndrome. Severe fat loss and glucose -intolerance by CBX treatment in lean rats suggest that chronic 11β-HSD1 inhibition may lead to insulin resistance in normal conditions.
Collapse
Affiliation(s)
- Siva Sankara Vara Prasad Sakamuri
- Department of Biochemistry, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Mahesh Sukapaka
- Department of Animal Physiology, National Centre for Laboratory Animal Sciences, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Vijay Kumar Prathipati
- Department of Biochemistry, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Harishankar Nemani
- Department of Animal Physiology, National Centre for Laboratory Animal Sciences, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Uday Kumar Putcha
- Department of Pathology, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania PO, Hyderabd, Andhra Pradesh, India
| | - Shailaja Pothana
- Department of Animal Physiology, National Centre for Laboratory Animal Sciences, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Swarupa Rani Koppala
- Department of Biochemistry, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Lakshmi Raj Kumar Ponday
- Department of Biochemistry, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Vani Acharya
- Department of Biochemistry, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Giridharan Nappan Veetill
- Department of Animal Physiology, National Centre for Laboratory Animal Sciences, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| | - Vajreswari Ayyalasomayajula
- Department of Biochemistry, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
30
|
Dal Rhee S, Kim CH, Seon Park J, Hoon Jung W, Bum Park S, Youn Kim H, Hwan Bae G, Jan Kim T, Young Kim K. Carbenoxolone prevents the development of fatty liver in C57BL/6-Lep ob/ob mice via the inhibition of sterol regulatory element binding protein-1c activity and apoptosis. Eur J Pharmacol 2012; 691:9-18. [DOI: 10.1016/j.ejphar.2012.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
|
31
|
Park JS, Rhee SD, Jung WH, Kang NS, Kim HY, Kang SK, Ahn JH, Kim KY. Anti-diabetic and anti-adipogenic effects of a novel selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor in the diet-induced obese mice. Eur J Pharmacol 2012; 691:19-27. [PMID: 22760069 DOI: 10.1016/j.ejphar.2012.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 01/22/2023]
Abstract
Glucocorticoid excess (Cushing's syndrome) causes metabolic syndrome such as visceral obesity, insulin resistance, diabetes mellitus, dyslipidaemia and hypertension. The selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) have considerable potential for treating type 2 diabetes mellitus and metabolic syndrome. In the present study, we investigated the anti-diabetic and anti-adipogenic effects of 4-(2-(1,1-dioxido-6-(2,4,6-trichlorophenyl)-1,2,6-thiadiazinan-2-yl)acetamido)adamantane-1-carboxamide (KR-67183), a novel selective 11β-HSD1 inhibitor; we also investigated the underlying molecular mechanisms in the cortisone-induced 3T3-L1 adipogenesis model system and diet-induced obese (DIO) mice. KR-67183 concentration-dependently inhibited 11β-HSD1 activity in human and mouse 11β-HSD1 over-expressed cells and in the ex vivo assay of C57BL/6 mice. In the study with DIO mice, the administration of KR-67183 (20 and 50mg/kg/day, orally for 28 days) improved the glucose tolerance and insulin sensitivity with suppressed 11β-HSD1 activity in the liver and fat. However, KR-67183 showed no change in the adrenal gland weight/body weight ratio and plasma corticosterone concentration in DIO mice. Further, KR-67183 suppressed adipocyte differentiation on cortisone-induced adipogenesis in 3T3-L1 cells is associated with the suppression of the cortisone-induced mRNA levels of FABP4, PPARγ2 and GLUT4, and 11β-HSD1 activity. Taken together, it is suggested that a selective 11β-HSD1 inhibitor, KR-67183, may provide a new therapeutic window in the prevention and treatment without toxicity in type 2 diabetes with obesity.
Collapse
Affiliation(s)
- Ji Seon Park
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Li G, Hernandez-Ono A, Crooke RM, Graham MJ, Ginsberg HN. Antisense reduction of 11β-hydroxysteroid dehydrogenase type 1 enhances energy expenditure and insulin sensitivity independent of food intake in C57BL/6J mice on a Western-type diet. Metabolism 2012; 61:823-35. [PMID: 22209663 PMCID: PMC3319522 DOI: 10.1016/j.metabol.2011.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/11/2011] [Accepted: 11/11/2011] [Indexed: 01/16/2023]
Abstract
We recently reported that inhibition of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) by antisense oligonucleotide (ASO) improved hepatic lipid metabolism independent of food intake. In that study, 11β-HSD1 ASO-treated mice lost weight compared with food-matched control ASO-treated mice, suggesting treatment-mediated increased energy expenditure. We have now examined the effects of 11β-HSD1 ASO treatment on adipose tissue metabolism, insulin sensitivity, and whole-body energy expenditure. We used an ASO to knock down 11β-HSD1 in C57BL/6J mice consuming a Western-type diet (WTD). The 11β-HSD1 ASO-treated mice consumed less food, so food-matched control ASO-treated mice were also evaluated. We characterized body composition, gene expression of individual adipose depots, and measures of energy metabolism. We also investigated glucose/insulin tolerance as well as acute insulin signaling in several tissues. Knockdown of 11β-HSD1 protected against WTD-induced obesity by reducing epididymal, mesenteric, and subcutaneous white adipose tissue while activating thermogenesis in brown adipose tissue. The latter was confirmed by demonstrating increased energy expenditure in 11β-HSD1 ASO-treated mice. The 11β-HSD1 ASO treatment also protected against WTD-induced glucose intolerance and insulin resistance; this protection was associated with smaller cells and fewer macrophages in epididymal white adipose tissue as well as enhanced in vivo insulin signaling. Our results indicate that ASO-mediated inhibition of 11β-HSD1 can protect against several WTD-induced metabolic abnormalities. These effects are, at least in part, mediated by increases in the oxidative capacity of brown adipose tissue.
Collapse
Affiliation(s)
- Guoping Li
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | - Rosanne M. Crooke
- Isis Pharmaceuticals, Inc., 1896 Rutherford Road, Carlsbad, CA 92008-7326, USA
| | - Mark J. Graham
- Isis Pharmaceuticals, Inc., 1896 Rutherford Road, Carlsbad, CA 92008-7326, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Corresponding Author: Henry N. Ginsberg, MD, Department of Medicine, PH 10-305, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY, 10032 , Phone: (212) 305-9562, Fax: (212) 305-3213
| |
Collapse
|
33
|
Wang JC, Gray NE, Kuo T, Harris CA. Regulation of triglyceride metabolism by glucocorticoid receptor. Cell Biosci 2012; 2:19. [PMID: 22640645 PMCID: PMC3419133 DOI: 10.1186/2045-3701-2-19] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/28/2012] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids are steroid hormones that play critical and complex roles in the regulation of triglyceride (TG) homeostasis. Depending on physiological states, glucocorticoids can modulate both TG synthesis and hydrolysis. More intriguingly, glucocorticoids can concurrently affect these two processes in adipocytes. The metabolic effects of glucocorticoids are conferred by intracellular glucocorticoid receptors (GR). GR is a transcription factor that, upon binding to glucocorticoids, regulates the transcriptional rate of specific genes. These GR primary target genes further initiate the physiological and pathological responses of glucocorticoids. In this article, we overview glucocorticoid-regulated genes, especially those potential GR primary target genes, involved in glucocorticoid-regulated TG metabolism. We also discuss transcriptional regulators that could act with GR to participate in these processes. This knowledge is not only important for the fundamental understanding of steroid hormone actions, but also are essential for future therapeutic interventions against metabolic diseases associated with aberrant glucocorticoid signaling, such as insulin resistance, dyslipidemia, central obesity and hepatic steatosis.
Collapse
Affiliation(s)
- Jen-Chywan Wang
- Department of Nutritional Science & Toxicology, University of California at Berkeley, Berkeley, CA, 94720, USA.
| | | | | | | |
Collapse
|
34
|
Czegle I, Csala M, Mandl J, Benedetti A, Karádi I, Bánhegyi G. G6PT-H6PDH-11βHSD1 triad in the liver and its implication in the pathomechanism of the metabolic syndrome. World J Hepatol 2012; 4:129-38. [PMID: 22567185 PMCID: PMC3345537 DOI: 10.4254/wjh.v4.i4.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 11/16/2011] [Accepted: 04/24/2012] [Indexed: 02/06/2023] Open
Abstract
The metabolic syndrome, one of the most common clinical conditions in recent times, represents a combination of cardiometabolic risk determinants, including central obesity, glucose intolerance, insulin resistance, dyslipidemia, non-alcoholic fatty liver disease and hypertension. Prevalence of the metabolic syndrome is rapidly increasing worldwide as a consequence of common overnutrition and consequent obesity. Although a unifying picture of the pathomechanism is still missing, the key role of the pre-receptor glucocorticoid activation has emerged recently. Local glucocorticoid activation is catalyzed by a triad composed of glucose-6-phosphate-transporter, hexose-6-phosphate dehydrogenase and 11β-hydroxysteroid dehydrogenase type 1 in the endoplasmic reticulum. The elements of this system can be found in various cell types, including adipocytes and hepatocytes. While the contribution of glucocorticoid activation in adipose tissue to the pathomechanism of the metabolic syndrome has been well established, the relative importance of the hepatic process is less understood. This review summarizes the available data on the role of the hepatic triad and its role in the metabolic syndrome, by confronting experimental findings with clinical observations.
Collapse
Affiliation(s)
- Ibolya Czegle
- Ibolya Czegle, István Karádi, 3rd Department of Internal Medicine, Semmelweis University, 1125 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
35
|
van der Sluis RJ, van Puijvelde GH, Van Berkel TJ, Hoekstra M. Adrenalectomy stimulates the formation of initial atherosclerotic lesions: Reversal by adrenal transplantation. Atherosclerosis 2012; 221:76-83. [DOI: 10.1016/j.atherosclerosis.2011.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/12/2011] [Accepted: 12/16/2011] [Indexed: 01/26/2023]
|
36
|
Abstract
Ghrelin is the only known circulating orexigenic hormone that increases food intake and promotes adiposity, and these physiological functions of ghrelin are mediated through its receptor growth hormone secretagogue receptor (GHS-R). Ghrelin/GHS-R signaling plays a crucial role in energy homeostasis. Old GHS-R null mice exhibit a healthy phenotype-lean and insulin sensitive. Interestingly, the GHS-R null mice have increased energy expenditure, yet exhibit no difference in food intake or locomotor activity compared to wild-type mice. We have found that GHS-R is expressed in brown adipose tissue (BAT) of old mice. Ablation of GHS-R attenuates age-associated decline in thermogenesis, exhibiting a higher core body temperature. Indeed, the BAT of old GHS-R null mice reveals enhanced thermogenic capacity, which is consistent with the gene expression profile of increases in glucose/lipid uptake, lipogenesis, and lipolysis in BAT. The data collectively suggest that ghrelin/GHS-R signaling has important roles in thermogenesis. The recent discovery that BAT also regulates energy homeostasis in adult humans makes the BAT a new antiobesity target. Understanding the roles and molecular mechanisms of ghrelin/GHS-R in thermogenesis is of great significance. GHS-R antagonists might be a novel means of combating obesity by shifting adiposity balance from obesogenesis to thermogenesis.
Collapse
Affiliation(s)
- Ligen Lin
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
37
|
Dhanesha N, Joharapurkar A, Shah G, Kshirsagar S, Dhote V, Sharma A, Jain M. Inhibition of 11β-hydroxysteroid dehydrogenase 1 by carbenoxolone affects glucose homeostasis and obesity in db/db mice. Clin Exp Pharmacol Physiol 2011; 39:69-77. [DOI: 10.1111/j.1440-1681.2011.05640.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Lin L, Saha PK, Ma X, Henshaw IO, Shao L, Chang BHJ, Buras ED, Tong Q, Chan L, McGuinness OP, Sun Y. Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues. Aging Cell 2011; 10:996-1010. [PMID: 21895961 DOI: 10.1111/j.1474-9726.2011.00740.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show that ablation of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) improves insulin sensitivity during aging. Compared to wild-type (WT) mice, old Ghsr(-/-) mice have reduced fat and preserve a healthier lipid profile. Old Ghsr(-/-) mice also exhibit elevated energy expenditure and resting metabolic rate, yet have similar food intake and locomotor activity. While GHS-R expression in white and brown adipose tissues was below the detectable level in the young mice, GHS-R expression was readily detectable in visceral white fat and interscapular brown fat of the old mice. Gene expression profiles reveal that Ghsr ablation reduced glucose/lipid uptake and lipogenesis in white adipose tissues but increased thermogenic capacity in brown adipose tissues. Ghsr ablation prevents age-associated decline in thermogenic gene expression of uncoupling protein 1 (UCP1). Cell culture studies in brown adipocytes further demonstrate that ghrelin suppresses the expression of adipogenic and thermogenic genes, while GHS-R antagonist abolishes ghrelin's effects and increases UCP1 expression. Hence, GHS-R plays an important role in thermogenic impairment during aging. Ghsr ablation improves aging-associated obesity and insulin resistance by reducing adiposity and increasing thermogenesis. Growth hormone secretagogue receptor antagonists may be a new means of combating obesity by shifting the energy balance from obesogenesis to thermogenesis.
Collapse
MESH Headings
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/metabolism
- Adiposity/genetics
- Aging/genetics
- Animals
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/prevention & control
- Eating/physiology
- Energy Metabolism/physiology
- Gene Expression Regulation
- Ghrelin/genetics
- Ghrelin/metabolism
- Humans
- Insulin Resistance/genetics
- Ion Channels/genetics
- Ion Channels/metabolism
- Lipid Metabolism/genetics
- Male
- Mice
- Mice, Knockout
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Obesity/complications
- Obesity/genetics
- Obesity/metabolism
- Obesity/prevention & control
- Receptors, Ghrelin/antagonists & inhibitors
- Receptors, Ghrelin/deficiency
- Receptors, Ghrelin/genetics
- Signal Transduction/genetics
- Thermogenesis/physiology
- Uncoupling Protein 1
Collapse
Affiliation(s)
- Ligen Lin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vitamin A decreases pre-receptor amplification of glucocorticoids in obesity: study on the effect of vitamin A on 11beta-hydroxysteroid dehydrogenase type 1 activity in liver and visceral fat of WNIN/Ob obese rats. Nutr J 2011; 10:70. [PMID: 21696642 PMCID: PMC3142207 DOI: 10.1186/1475-2891-10-70] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 06/23/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of inactive glucocorticoids to active glucocorticoids and its inhibition ameliorates obesity and metabolic syndrome. So far, no studies have reported the effect of dietary vitamin A on 11β-HSD1 activity in visceral fat and liver under normal and obese conditions. Here, we studied the effect of chronic feeding of vitamin A-enriched diet (129 mg/kg diet) on 11β-HSD1 activity in liver and visceral fat of WNIN/Ob lean and obese rats. METHODS Male, 5-month-old, lean and obese rats of WNIN/Ob strain (n = 16 for each phenotype) were divided into two subgroups consisting of 8 rats of each phenotype. Control groups received stock diet containing 2.6 mg vitamin A/kg diet, where as experimental groups received diet containing 129 mg vitamin A/Kg diet for 20 weeks. Food and water were provided ad libitum. At the end of the experiment, tissues were collected and 11β-HSD1 activity was assayed in liver and visceral fat. RESULTS Vitamin A supplementation significantly decreased body weight, visceral fat mass and 11β-HSD1 activity in visceral fat of WNIN/Ob obese rats. Hepatic 11β-HSD1 activity and gene expression were significantly reduced by vitamin A supplementation in both the phenotypes. CCAAT/enhancer binding protein α (C/EBPα), the main transcription factor essential for the expression of 11β-HSD1, decreased in liver of vitamin A fed-obese rats, but not in lean rats. Liver × receptor α (LXRα), a nuclear transcription factor which is known to downregulate 11β-HSD1 gene expression was significantly increased by vitamin A supplementation in both the phenotypes. CONCLUSIONS This study suggests that chronic consumption of vitamin A-enriched diet decreases 11β-HSD1 activity in liver and visceral fat of WNIN/Ob obese rats. Decreased 11β-HSD1 activity by vitamin A may result in decreased levels of active glucocorticoids in adipose tissue and possibly contribute to visceral fat loss in these obese rats. Studying the role of various nutrients on the regulation of 11β-HSD1 activity and expression will help in the evolving of dietary approaches to treat obesity and insulin resistance.
Collapse
|
40
|
Ma X, Lin L, Qin G, Lu X, Fiorotto M, Dixit VD, Sun Y. Ablations of ghrelin and ghrelin receptor exhibit differential metabolic phenotypes and thermogenic capacity during aging. PLoS One 2011; 6:e16391. [PMID: 21298106 PMCID: PMC3027652 DOI: 10.1371/journal.pone.0016391] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 12/14/2010] [Indexed: 12/16/2022] Open
Abstract
Background Obesity is a hallmark of aging in many Western societies, and is a precursor to numerous serious age-related diseases. Ghrelin (Ghrl), via its receptor (growth hormone secretagogue receptor, GHS-R), is shown to stimulate GH secretion and appetite. Surprisingly, our previous studies showed that Ghrl-/- mice have impaired thermoregulatory responses to cold and fasting stresses, while Ghsr-/- mice are adaptive. Methodology/Principal Findings To elucidate the mechanism, we analyzed the complete metabolic profiles of younger (3–4 months) and older (10–12 months) Ghrl-/- and Ghsr-/- mice. Food intake and locomotor activity were comparable for both null mice and their wild-type (WT) counterparts, regardless of age. There was also no difference in body composition between younger null mice and their WT counterparts. As the WT mice aged, as expected, the fat/lean ratio increased and energy expenditure (EE) decreased. Remarkably, however, older Ghsr-/- mice exhibited reduced fat/lean ratio and increased EE when compared to older WT mice, thus retaining a youthful lean and high EE phenotype; in comparison, there was no significant difference with EE in Ghrl-/- mice. In line with the EE data, the thermogenic regulator, uncoupling protein 1 (UCP1), was significantly up-regulated in brown adipose tissue (BAT) of Ghsr-/- mice, but not in Ghrl-/- mice. Conclusions Our data therefore suggest that GHS-R ablation activates adaptive thermogenic function(s) in BAT and increases EE, thereby enabling the retention of a lean phenotype. This is the first direct evidence that the ghrelin signaling pathway regulates fat-burning BAT to affect energy balance during aging. This regulation is likely mediated through an as-yet-unidentified new ligand of GHS-R.
Collapse
Affiliation(s)
- Xiaojun Ma
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ligen Lin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinping Lu
- Digestive Disease Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marta Fiorotto
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vishwa D. Dixit
- Laboratory of Neuroendocrine-Immunology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Yuxiang Sun
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
Glucocorticoid action is mediated by glucocorticoid receptor (GR), which upon cortisol binding is activated and regulates the transcriptional expression of target genes and downstream physiological functions. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of inactive cortisone to active cortisol. Since cortisol is also produced through biosynthesis in the adrenal glands, the total cortisol level in a given tissue is determined by both the circulating cortisol concentration and the local 11β-HSD1 activity. 11β-HSD1 is expressed in liver, adipose, brain, and placenta. Since it contributes to the local cortisol levels in these tissues, 11β-HSD1 plays a critical role in glucocorticoid action. The metabolic symptoms caused by glucocorticoid excess in Cushing's syndrome overlap with the characteristics of the metabolic syndrome, suggesting that increased glucocorticoid activity may play a role in the etiology of the metabolic syndrome. Consistent with this notion, elevated adipose expression of 11β-HSD1 induced metabolic syndrome-like phenotypes in mice. Thus, 11β-HSD1 is a proposed therapeutic target to normalize glucocorticoid excess in a tissue-specific manner and mitigate obesity and insulin resistance. Selective inhibitors of 11β-HSD1 are under development for the treatment of type 2 diabetes and other components of the metabolic syndrome.
Collapse
Affiliation(s)
- Minghan Wang
- Department of Metabolic Disorders, Amgen Inc., One Amgen Center Drive, Mail Stop 29-1-A, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
42
|
Feng Y, Huang SL, Dou W, Zhang S, Chen JH, Shen Y, Shen JH, Leng Y. Emodin, a natural product, selectively inhibits 11beta-hydroxysteroid dehydrogenase type 1 and ameliorates metabolic disorder in diet-induced obese mice. Br J Pharmacol 2010; 161:113-26. [PMID: 20718744 DOI: 10.1111/j.1476-5381.2010.00826.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is an attractive therapeutic target of type 2 diabetes and metabolic syndrome. Emodin, a natural product and active ingredient of various Chinese herbs, has been demonstrated to possess multiple biological activities. Here, we investigated the effects of emodin on 11beta-HSD1 and its ability to ameliorate metabolic disorders in diet-induced obese (DIO) mice. EXPERIMENTAL APPROACH Scintillation proximity assay was performed to evaluate inhibition of emodin against recombinant human and mouse 11beta-HSDs. The ability of emodin to inhibit prednisone- or dexamethasone-induced insulin resistance was investigated in C57BL/6J mice and its effect on metabolic abnormalities was observed in DIO mice. KEY RESULTS Emodin is a potent and selective 11beta-HSD1 inhibitor with the IC(50) of 186 and 86 nM for human and mouse 11beta-HSD1, respectively. Single oral administration of emodin inhibited 11beta-HSD1 activity of liver and fat significantly in mice. Emodin reversed prednisone-induced insulin resistance in mice, whereas it did not affect dexamethasone-induced insulin resistance, which confirmed its inhibitory effect on 11beta-HSD1 in vivo. In DIO mice, oral administration of emodin improved insulin sensitivity and lipid metabolism, and lowered blood glucose and hepatic PEPCK, and glucose-6-phosphatase mRNA. CONCLUSIONS AND IMPLICATIONS This study demonstrated a new role for emodin as a potent and selective inhibitor of 11beta-HSD1 and its beneficial effects on metabolic disorders in DIO mice. This highlights the potential value of analogues of emodin as a new class of compounds for the treatment of metabolic syndrome or type 2 diabetes.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Feng Y, Huang SL, Dou W, Zhang S, Chen JH, Shen Y, Shen JH, Leng Y. Emodin, a natural product, selectively inhibits 11beta-hydroxysteroid dehydrogenase type 1 and ameliorates metabolic disorder in diet-induced obese mice. Br J Pharmacol 2010. [PMID: 20718744 DOI: 10.1111/j.1476-5381.2012.00826.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is an attractive therapeutic target of type 2 diabetes and metabolic syndrome. Emodin, a natural product and active ingredient of various Chinese herbs, has been demonstrated to possess multiple biological activities. Here, we investigated the effects of emodin on 11beta-HSD1 and its ability to ameliorate metabolic disorders in diet-induced obese (DIO) mice. EXPERIMENTAL APPROACH Scintillation proximity assay was performed to evaluate inhibition of emodin against recombinant human and mouse 11beta-HSDs. The ability of emodin to inhibit prednisone- or dexamethasone-induced insulin resistance was investigated in C57BL/6J mice and its effect on metabolic abnormalities was observed in DIO mice. KEY RESULTS Emodin is a potent and selective 11beta-HSD1 inhibitor with the IC(50) of 186 and 86 nM for human and mouse 11beta-HSD1, respectively. Single oral administration of emodin inhibited 11beta-HSD1 activity of liver and fat significantly in mice. Emodin reversed prednisone-induced insulin resistance in mice, whereas it did not affect dexamethasone-induced insulin resistance, which confirmed its inhibitory effect on 11beta-HSD1 in vivo. In DIO mice, oral administration of emodin improved insulin sensitivity and lipid metabolism, and lowered blood glucose and hepatic PEPCK, and glucose-6-phosphatase mRNA. CONCLUSIONS AND IMPLICATIONS This study demonstrated a new role for emodin as a potent and selective inhibitor of 11beta-HSD1 and its beneficial effects on metabolic disorders in DIO mice. This highlights the potential value of analogues of emodin as a new class of compounds for the treatment of metabolic syndrome or type 2 diabetes.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Yu CY, Mayba O, Lee JV, Tran J, Harris C, Speed TP, Wang JC. Genome-wide analysis of glucocorticoid receptor binding regions in adipocytes reveal gene network involved in triglyceride homeostasis. PLoS One 2010; 5:e15188. [PMID: 21187916 PMCID: PMC3004788 DOI: 10.1371/journal.pone.0015188] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/28/2010] [Indexed: 01/19/2023] Open
Abstract
Glucocorticoids play important roles in the regulation of distinct aspects of adipocyte biology. Excess glucocorticoids in adipocytes are associated with metabolic disorders, including central obesity, insulin resistance and dyslipidemia. To understand the mechanisms underlying the glucocorticoid action in adipocytes, we used chromatin immunoprecipitation sequencing to isolate genome-wide glucocorticoid receptor (GR) binding regions (GBRs) in 3T3-L1 adipocytes. Furthermore, gene expression analyses were used to identify genes that were regulated by glucocorticoids. Overall, 274 glucocorticoid-regulated genes contain or locate nearby GBR. We found that many GBRs were located in or nearby genes involved in triglyceride (TG) synthesis (Scd-1, 2, 3, GPAT3, GPAT4, Agpat2, Lpin1), lipolysis (Lipe, Mgll), lipid transport (Cd36, Lrp-1, Vldlr, Slc27a2) and storage (S3-12). Gene expression analysis showed that except for Scd-3, the other 13 genes were induced in mouse inguinal fat upon 4-day glucocorticoid treatment. Reporter gene assays showed that except Agpat2, the other 12 glucocorticoid-regulated genes contain at least one GBR that can mediate hormone response. In agreement with the fact that glucocorticoids activated genes in both TG biosynthetic and lipolytic pathways, we confirmed that 4-day glucocorticoid treatment increased TG synthesis and lipolysis concomitantly in inguinal fat. Notably, we found that 9 of these 12 genes were induced in transgenic mice that have constant elevated plasma glucocorticoid levels. These results suggested that a similar mechanism was used to regulate TG homeostasis during chronic glucocorticoid treatment. In summary, our studies have identified molecular components in a glucocorticoid-controlled gene network involved in the regulation of TG homeostasis in adipocytes. Understanding the regulation of this gene network should provide important insight for future therapeutic developments for metabolic diseases.
Collapse
Affiliation(s)
- Chi-Yi Yu
- Department of Nutritional Science & Toxicology, University of California, Berkeley, California, United States of America
| | - Oleg Mayba
- Department of Statistics, University of California, Berkeley, California, United States of America
| | - Joyce V. Lee
- Department of Nutritional Science & Toxicology, University of California, Berkeley, California, United States of America
| | - Joanna Tran
- Department of Nutritional Science & Toxicology, University of California, Berkeley, California, United States of America
| | - Charlie Harris
- Department of Medicine, Gladstone Institute of Cardiovascular Disease, Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Terence P. Speed
- Department of Statistics, University of California, Berkeley, California, United States of America
| | - Jen-Chywan Wang
- Department of Nutritional Science & Toxicology, University of California, Berkeley, California, United States of America
- Department of Medicine, Gladstone Institute of Cardiovascular Disease, Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Kennedy AJ, Ellacott KLJ, King VL, Hasty AH. Mouse models of the metabolic syndrome. Dis Model Mech 2010; 3:156-66. [PMID: 20212084 DOI: 10.1242/dmm.003467] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The metabolic syndrome (MetS) is characterized by obesity concomitant with other metabolic abnormalities such as hypertriglyceridemia, reduced high-density lipoprotein levels, elevated blood pressure and raised fasting glucose levels. The precise definition of MetS, the relationships of its metabolic features, and what initiates it, are debated. However, obesity is on the rise worldwide, and its association with these metabolic symptoms increases the risk for diabetes and cardiovascular disease (among many other diseases). Research needs to determine the mechanisms by which obesity and MetS increase the risk of disease. In light of this growing epidemic, it is imperative to develop animal models of MetS. These models will help determine the pathophysiological basis for MetS and how MetS increases the risk for other diseases. Among the various animal models available to study MetS, mice are the most commonly used for several reasons. First, there are several spontaneously occurring obese mouse strains that have been used for decades and that are very well characterized. Second, high-fat feeding studies require only months to induce MetS. Third, it is relatively easy to study the effects of single genes by developing transgenic or gene knockouts to determine the influence of a gene on MetS. For these reasons, this review will focus on the benefits and caveats of the most common mouse models of MetS. It is our hope that the reader will be able to use this review as a guide for the selection of mouse models for their own studies.
Collapse
Affiliation(s)
- Arion J Kennedy
- Department of Molecular Physiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
46
|
Morton NM. Obesity and corticosteroids: 11beta-hydroxysteroid type 1 as a cause and therapeutic target in metabolic disease. Mol Cell Endocrinol 2010; 316:154-64. [PMID: 19804814 DOI: 10.1016/j.mce.2009.09.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 09/16/2009] [Accepted: 09/28/2009] [Indexed: 12/11/2022]
Abstract
The metabolic abnormalities found associated with high blood glucocorticoid levels (e.g. rare Cushing's syndrome) include insulin-resistance, visceral obesity, hypertension, dyslipidaemia and an increased risk of cardiovascular diseases. The same constellation of abnormalities is found in the highly prevalent idiopathic obesity/insulin-resistance (metabolic)-syndrome. It is now apparent that tissue-specific changes in cortisol metabolism explain these parallels rather than altered blood cortisol levels. Primary among these changes is increased intracellular glucocorticoid reactivation, catalysed by the enzyme 11beta-hydroxysteroid dehydrogenase type (HSD)-1 in obese adipose tissue. Liver, skeletal muscle, endocrine pancreas, blood vessels and leukocytes express 11beta-HSD1 and their potential role in metabolic disease is discussed. The weight of evidence, much of it gained from animal models, suggests that therapeutic inhibition of 11beta-HSD1 will be beneficial in most cellular contexts, with clinical trials supportive of this concept.
Collapse
Affiliation(s)
- Nicholas Michael Morton
- Molecular Metabolism Group after University of Edinburgh, Centre for Cardiovascular Sciences, Edinburgh, United Kingdom.
| |
Collapse
|
47
|
Baudrand R, Carvajal CA, Riquelme A, Morales M, Solis N, Pizarro M, Escalona A, Boza C, Pérez G, Domínguez A, Arrese M, Fardella CE. Overexpression of 11beta-hydroxysteroid dehydrogenase type 1 in hepatic and visceral adipose tissue is associated with metabolic disorders in morbidly obese patients. Obes Surg 2009; 20:77-83. [PMID: 19690925 DOI: 10.1007/s11695-009-9937-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 07/31/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND The enzyme 11-beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes intracellular glucocorticoid reactivation by conversion of cortisone to cortisol in different tissues and have been implicated in several metabolic disorders associated with obesity. The aim of this study was to evaluate the 11beta-HSD1 expression in liver, visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) in morbidly obese patients undergoing bariatric surgery and its correlations with clinical, anthropometric, and biochemical variables. METHODS A prospective study was conducted over a 27-month period. Hepatic, VAT, and SAT samples were obtained at the time of surgery. 11beta-HSD1 and 18S gene expression was measured using real-time quantitative reverse transcriptase-polymerase chain reaction. RESULTS Forty nine patients met the inclusion criteria [mean age: 42.2 +/- 10 years, body mass index (BMI): 42 +/- 6 kg/m(2), 71% women and 63% with metabolic syndrome (MS)]. 11beta-HSD1 mRNA levels were higher in liver than fat tissue (p < 0.001), being higher in SAT than in VAT (p < 0.001) without gender-specific differences. Hepatic expression of 11beta-HSD1 correlated positively with SAT and VAT, alanine aminotransferase (ALT), and serum glucose and was inversely associated with BMI. 11beta-HSD1 mRNA in VAT correlated positively with insulinemia, ALT, and LDL cholesterol. There were no associations between 11beta-HSD1 mRNA in SAT and the variables analyzed. CONCLUSIONS 11beta-HSD1 expression is higher in liver in comparison to adipose tissue in obese patients. The observed correlations between hepatic and VAT 11beta-HSD1 expression with dyslipidemia and insulin resistance suggest that this enzyme might have a pathogenic role in obesity and related metabolic disorders.
Collapse
Affiliation(s)
- René Baudrand
- Department of Endocrinology, Faculty Of Medicine, Pontificia Universidad Católica De Chile, Lira 85, 5 Masculine Piso, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lloyd DJ, Helmering J, Cordover D, Bowsman M, Chen M, Hale C, Fordstrom P, Zhou M, Wang M, Kaufman SA, Véniant MM. Antidiabetic effects of 11beta-HSD1 inhibition in a mouse model of combined diabetes, dyslipidaemia and atherosclerosis. Diabetes Obes Metab 2009; 11:688-99. [PMID: 19527482 DOI: 10.1111/j.1463-1326.2009.01034.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM 11 beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is considered to contribute to the aetiology of the metabolic syndrome, and specific inhibitors have begun to emerge as treatments for insulin resistance and other facets of the syndrome, including atherosclerosis. Given the role of glucocorticoids and 11beta-HSD1 in the anti-inflammatory response and the involvement of inflammation in the development of atherosclerosis, 11beta-HSD1 inhibition may exacerbate atherosclerosis. Our aim was to investigate in vivo the effects of a specific 11beta-HSD1 inhibitor (2922) on atherosclerosis while assessing glucose homeostasis. METHODS We conducted a 12-week study administering 2922 (at three doses, 3, 10 and 100 mg/kg body weight) in Ldlr 3KO (Ldlr(-/-)Apob(100/100)Lep(ob/ob)) mice, a genetic model of obesity, insulin resistance, dyslipidaemia and atherosclerosis. Rosiglitazone and simvastatin were used to test the responsiveness of our model in both types of therapy. RESULTS 2922 was effective in reducing 11beta-HSD1 activity in inguinal adipose tissue (>90% for 100 mg/kg) and was efficacious in improving glucose homeostasis at doses > or =10 mg/kg. Plasma insulin, blood glucose, glucose tolerance and homeostatic model assessment indices were all improved in mice treated with 2922 (100 mg/kg) compared with control animals. Despite an improvement in these parameters, no differences were observed in body weight, adipose or lean tissue masses in the 2922-treated mice. Interestingly, circulating lipids, proinflammatory cytokines and atherosclerosis were unaltered in response to 2922, although a small reduction in LDL cholesterol was detected. CONCLUSIONS Importantly, 11beta-HSD1 inhibition leads to improved glucose metabolism and does not result in a worsening of atherosclerotic lesion area, yet retained antidiabetic potential in the face of multiple severe metabolic aberrations. This study reinforces the potential use of 11beta-HSD1 inhibitors in patients with the metabolic syndrome without negatively impacting atherosclerosis.
Collapse
Affiliation(s)
- D J Lloyd
- Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA 91320, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hadoke PWF, Iqbal J, Walker BR. Therapeutic manipulation of glucocorticoid metabolism in cardiovascular disease. Br J Pharmacol 2009; 156:689-712. [PMID: 19239478 DOI: 10.1111/j.1476-5381.2008.00047.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The therapeutic potential for manipulation of glucocorticoid metabolism in cardiovascular disease was revolutionized by the recognition that access of glucocorticoids to their receptors is regulated in a tissue-specific manner by the isozymes of 11beta-hydroxysteroid dehydrogenase. Selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 have been shown recently to ameliorate cardiovascular risk factors and inhibit the development of atherosclerosis. This article addresses the possibility that inhibition of 11beta-hydroxsteroid dehydrogenase type 1 activity in cells of the cardiovascular system contributes to this beneficial action. The link between glucocorticoids and cardiovascular disease is complex as glucocorticoid excess is linked with increased cardiovascular events but glucocorticoid administration can reduce atherogenesis and restenosis in animal models. There is considerable evidence that glucocorticoids can interact directly with cells of the cardiovascular system to alter their function and structure and the inflammatory response to injury. These actions may be regulated by glucocorticoid and/or mineralocorticoid receptors but are also dependent on the 11beta-hydroxysteroid dehydrogenases which may be expressed in cardiac, vascular (endothelial, smooth muscle) and inflammatory (macrophages, neutrophils) cells. The activity of 11beta-hydroxysteroid dehydrogenases in these cells is dependent upon differentiation state, the action of pro-inflammaotory cytokines and the influence of endogenous inhibitors (oxysterols, bile acids). Further investigations are required to clarify the link between glucocorticoid excess and cardiovascular events and to determine the mechanism through which glucocorticoid treatment inhibits atherosclerosis/restenosis. This will provide greater insights into the potential benefit of selective 11beta-hydroxysteroid dehydrogenase inhibitors in treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Patrick W F Hadoke
- Centre for Cardiovascular Sciences, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.
| | | | | |
Collapse
|
50
|
Phillips LK, Prins JB. The link between abdominal obesity and the metabolic syndrome. Curr Hypertens Rep 2008; 10:156-64. [PMID: 18474184 DOI: 10.1007/s11906-008-0029-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The clustering of cardiovascular risk factors associated with abdominal obesity is well established. Although currently lacking a universal definition, the metabolic syndrome describes a constellation of metabolic abnormalities, including abdominal obesity, and was originally introduced to characterize a population at high cardiovascular risk. Adipose tissue is a dynamic endocrine organ that secretes several inflammatory and immune mediators known as adipokines. Dysregulation of adipokine secretion, free fatty acid toxicity, and the site-specific differences in abdominal (visceral) versus subcutaneous fat support abdominal obesity as a causal factor mediating the insulin resistance, increased risk of diabetes, and cardiovascular disease in the metabolic syndrome.
Collapse
Affiliation(s)
- Liza K Phillips
- Diamantina Institute for Cancer, Immunology, and Metabolic Medicine, University of Queensland, Princess Alexandra Hospital, Ipswich Road, Woolloongabba 4102, Queensland, Australia
| | | |
Collapse
|