1
|
Kusewitt DF, Sharma G, Woods CD, Rosas E, Hathaway HJ, Prossnitz ER. GPER expression prevents estrogen-induced urinary retention in obese mice. J Steroid Biochem Mol Biol 2024; 244:106607. [PMID: 39197539 PMCID: PMC11444091 DOI: 10.1016/j.jsbmb.2024.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Long-term administration of exogenous estrogen is known to cause urinary retention and marked, often fatal, bladder distention in both male and female mice. Estrogen-treated mice have increased bladder pressure and decreased urine flow, suggesting that urinary retention in estrogen-treated mice is due to infravesicular obstruction to urine outflow. Thus, the condition is commonly referred to as bladder outlet obstruction (BOO). Obesity can also lead to urinary retention. As the effects of estrogen are mediated by multiple receptors, including estrogen receptors ERα and ERβ and the G protein-coupled estrogen receptor (GPER), we sought to determine whether GPER plays a role in estrogen-induced BOO, particularly in the context of obesity. Wild type and GPER knockout (KO) mice fed a high-fat diet were ovariectomized or left ovary-intact (sham surgery) and supplemented with slow-release estrogen or vehicle-only pellets. Supplementing both GPER KO and wild type obese mice with estrogen for 8 weeks resulted in weight loss, splenic enlargement, and thymic atrophy, as expected. However, estrogen-treated obese GPER KO mice developed abdominal distension, debilitation, and ulceration of the skin surrounding the urogenital opening. At necropsy, these mice had prominently distended bladders and hydronephrosis. In contrast, estrogen-treated obese wild type mice only rarely displayed these signs. Our results suggest that, under conditions of obesity, estrogen induces BOO as a result of ERα-driven pathways and that GPER expression is protective against BOO.
Collapse
Affiliation(s)
- Donna F Kusewitt
- Department of Pathology, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| | - Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Christine D Woods
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Emmanuel Rosas
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Helen J Hathaway
- Department of Cell Biology & Physiology, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA; Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| |
Collapse
|
2
|
Feng Y, Wang H, Xu S, Huang J, Pei Q, Wang Z. The detection of Gper1 as an important gene promoting jawbone regeneration in the context of estrogen deficiency. Bone 2024; 180:116990. [PMID: 38141748 DOI: 10.1016/j.bone.2023.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Numerous studies have demonstrated that estrogen deficiency inhibit the proliferation and differentiation of pre-osteoblasts in skeleton by affecting osteogenic signaling, lead to decreased bone mass and impaired regeneration. To explore the mechanisms maintaining bone regeneration under estrogen deficiency, we randomly selected 1102 clinical cases, in which female patients aged between 18 and 75 have underwent tooth extraction in Stomatological Hospital of Tongji University, there is little difference in the healing effect of extraction defects, suggesting that to some extent, the regeneration of jawbone is insensitive to the decreased estrogen level. To illuminate the mechanisms promoting jawbone regeneration under estrogen deficiency, a tooth extraction defect model was established in the maxilla of female rats who underwent ovariectomy (OVX) or sham surgery, and jawbone marrow stromal cells (BMSCs) were isolated for single-cell sequencing. Further quantitative PCR, RNA interference, alizarin red staining, immunohistochemistry and western blotting experiments demonstrated that in the context of ovariectomy, maxillary defects promoted G protein-coupled estrogen receptor 1 (Gper1) expression, stimulate downstream cAMP/PKA/pCREB signaling, and facilitate cell proliferation, and thus provided sufficient progenitors for osteogenesis and enhanced the regeneration capacity of the jawbone. Correspondingly, the heterozygous deletion of the Gper1 gene attenuated the phosphorylation of CREB, led to decreased cell proliferation, and impaired the restoration of maxillary defects. This study demonstrates the importance of Gper1 in maintaining jawbone regeneration, especially in the context of estrogen deficiency.
Collapse
Affiliation(s)
- Yuan Feng
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Haicheng Wang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Shuyu Xu
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Jie Huang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Qingguo Pei
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Zuolin Wang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China.
| |
Collapse
|
3
|
Wong KY, Kong TH, Poon CCW, Yu W, Zhou L, Wong MS. Icariin, a phytoestrogen, exerts rapid estrogenic actions through crosstalk of estrogen receptors in osteoblasts. Phytother Res 2023; 37:4706-4721. [PMID: 37421324 DOI: 10.1002/ptr.7939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Icariin, a flavonoid glycoside derived from Epimedium brevicornum Maxim, exerts bone protective effects via estrogen receptors (ERs). This study aimed to investigate the role of ER-α66, ER-α36, and GPER in bone metabolism in osteoblasts following treatment with icariin. Human osteoblastic MG-63 cells and osteoblast-specific ER-α66 knockout mice were employed. The ERs crosstalk in the estrogenic action of icariin was evaluated in ER-α66-negative human embryonic kidney HEK293 cells. Icariin, like E2, regulated ER-α36 and GPER protein expression in osteoblasts by downregulating them and upregulating ER-α66. ER-α36 and GPER suppressed the actions of icariin and E2 in bone metabolism. However, the in vivo administration of E2 (2 mg/kg/day) or icariin (300 mg/kg/day) restored bone conditions in KO osteoblasts. ER-α36 and GPER expression increased significantly and rapidly activated and translocated in KO osteoblasts after treatment with E2 or icariin. ER-α36 overexpression in KO osteoblasts further promoted the OPG/RANKL ratio induced by E2 or icariin treatment. This study showed icariin and E2 elicit rapid estrogenic responses in bone through recruiting ER-α66, ER-α36, and GPER. Notably, in osteoblasts lacking ER-α66, ER-α36, and GPER mediate the estrogenic effects of icariin and E2, while in intact osteoblasts, ER-α36 and GPER act as negative regulators of ER-α66.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Tsz-Hung Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Christina Chui-Wa Poon
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Wenxuan Yu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Liping Zhou
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Man-Sau Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, People's Republic of China
| |
Collapse
|
4
|
Patel J, Chen S, Katzmeyer T, Pei YA, Pei M. Sex-dependent variation in cartilage adaptation: from degeneration to regeneration. Biol Sex Differ 2023; 14:17. [PMID: 37024929 PMCID: PMC10077643 DOI: 10.1186/s13293-023-00500-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Despite acknowledgement in the scientific community of sex-based differences in cartilage biology, the implications for study design remain unclear, with many studies continuing to arbitrarily assign demographics. Clinically, it has been well-established that males and females differ in cartilage degeneration, and accumulating evidence points to the importance of sex differences in the field of cartilage repair. However, a comprehensive review of the mechanisms behind this trend and the influence of sex on cartilage regeneration has not yet been presented. This paper aims to summarize current findings regarding sex-dependent variation in knee anatomy, sex hormones' effect on cartilage, and cartilaginous degeneration and regeneration, with a focus on stem cell therapies. Findings suggest that the stem cells themselves, as well as their surrounding microenvironment, contribute to sex-based differences. Accordingly, this paper underscores the contribution of both stem cell donor and recipient sex to sex-related differences in treatment efficacy. Cartilage regeneration is a field that needs more research to optimize strategies for better clinical results; taking sex into account could be a big factor in developing more effective and personalized treatments. The compilation of this information emphasizes the importance of investing further research in sex differences in cartilage biology.
Collapse
Affiliation(s)
- Jhanvee Patel
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Song Chen
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Torey Katzmeyer
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Yixuan Amy Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
5
|
Nelson JM, Compton SD, Farahzad MM, Winfrey OK, Rosen MW. The relationship between estrogen and subsequent growth restriction among adolescents with heavy menstrual bleeding at menarche. J Pediatr Endocrinol Metab 2023; 36:255-260. [PMID: 36727420 DOI: 10.1515/jpem-2022-0536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/15/2023] [Indexed: 02/03/2023]
Abstract
OBJECTIVES We sought to evaluate the impact of estrogen-containing treatment for heavy menstrual bleeding (HMB) on subsequent height compared to progesterone-only or non-hormonal treatment when initiated at menarche. METHODS We performed a retrospective chart review of adolescent females aged 10-15 years who presented to an institution-affiliated outpatient, inpatient, or emergency setting for management of HMB within three months of menarche. Growth records over a 2 year period starting at menarche were recorded, and comparisons made among patients treated with 1) estrogen, 2) progesterone, and 3) non-hormonal methods (controls). Groups were compared using bivariate analysis with Chi-square or Fisher's exact test and linear regression. RESULTS In an analysis of 80 patients at 24 months, the mean increase in height from menarche was 6.4 cm among controls (n=54), 7.2 cm among the progesterone-only group (n=10), and 3.8 cm among the estrogen group (n=16). The estrogen group's increase in height was significantly lower than the control group's, by a mean of 1.8 cm (p=0.04). Change in height did not differ significantly between the progesterone and control groups (p=0.87). Additionally, for every year younger at menarche, there was 1 fewer cm of growth (change in height) at 24 months after menarche (p<0.002). CONCLUSIONS Estrogen-containing treatment for HMB initiated within three months of menarche was associated with reduced growth at 24 months compared to progesterone-only or non-hormonal methods. The clinical applicability of the estrogen group's 1.8 cm absolute reduction in height may have considerable significance for those who are shorter at baseline.
Collapse
Affiliation(s)
- Jessie M Nelson
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sarah D Compton
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mina M Farahzad
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Olivia K Winfrey
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Monica W Rosen
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Torres Irizarry VC, Jiang Y, He Y, Xu P. Hypothalamic Estrogen Signaling and Adipose Tissue Metabolism in Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:898139. [PMID: 35757435 PMCID: PMC9218066 DOI: 10.3389/fendo.2022.898139] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity has become a global epidemic, and it is a major risk factor for other metabolic disorders such as type 2 diabetes and cardiometabolic disease. Accumulating evidence indicates that there is sex-specific metabolic protection and disease susceptibility. For instance, in both clinical and experimental studies, males are more likely to develop obesity, insulin resistance, and diabetes. In line with this, males tend to have more visceral white adipose tissue (WAT) and less brown adipose tissue (BAT) thermogenic activity, both leading to an increased incidence of metabolic disorders. This female-specific fat distribution is partially mediated by sex hormone estrogens. Specifically, hypothalamic estrogen signaling plays a vital role in regulating WAT distribution, WAT beiging, and BAT thermogenesis. These regulatory effects on adipose tissue metabolism are primarily mediated by the activation of estrogen receptor alpha (ERα) in neurons, which interacts with hormones and adipokines such as leptin, ghrelin, and insulin. This review discusses the contribution of adipose tissue dysfunction to obesity and the role of hypothalamic estrogen signaling in preventing metabolic diseases with a particular focus on the VMH, the central regulator of energy expenditure and glucose homeostasis.
Collapse
Affiliation(s)
- Valeria C. Torres Irizarry
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
| | - Yuwei Jiang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Delcour C, Khawaja N, Gonzalez-Duque S, Lebon S, Talbi A, Drira L, Chevenne D, Ajlouni K, de Roux N. Estrogen Receptor α Inactivation in 2 Sisters: Different Phenotypic Severities for the Same Pathogenic Variant. J Clin Endocrinol Metab 2022; 107:e2553-e2562. [PMID: 35134944 DOI: 10.1210/clinem/dgac065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Estrogens play an essential role in reproduction. Their action is mediated by nuclear α and β receptors (ER) and by membrane receptors. Only 3 females and 2 males, from 3 families, with a loss of ERα function have been reported to date. OBJECTIVE We describe here a new family, in which 2 sisters display endocrine and ovarian defects of different severities despite carrying the same homozygous rare variant of ESR1. METHODS A 36-year-old woman from a consanguineous Jordanian family presented with primary amenorrhea and no breast development, with high plasma levels of 17β-estradiol (E2), follicle-stimulating hormone and luteinizing hormone, and enlarged multifollicular ovaries, strongly suggesting estrogen resistance. Her 18-year-old sister did not enter puberty and had moderately high levels of E2, high plasma gonadotropin levels, and normal ovaries. RESULTS Genetic analysis identified a homozygous variant of ESR1 leading to the replacement of a highly conserved glutamic acid with a valine (ERα-E385V). The transient expression of ERα-E385V in HEK293A and MDA-MB231 cells revealed highly impaired ERE-dependent transcriptional activation by E2. The analysis of the KISS1 promoter activity revealed that the E385V substitution induced a ligand independent activation of ERα. Immunofluorescence analysis showed that less ERα-E385V than ERα-WT was translocated into the nucleus in the presence of E2. CONCLUSION These 2 new cases are remarkable given the difference in the severity of their ovarian and hormonal phenotypes. This phenotypic discrepancy may be due to a mechanism partially compensating for the ERα loss of function.
Collapse
Affiliation(s)
- Clémence Delcour
- Université de Paris, INSERM UMR 1141 NeuroDiderot, 75019 Paris, France
| | - Nahla Khawaja
- National Center for Diabetes, Endocrinology and Genetics, Amman 11942, Jordan
| | - Sergio Gonzalez-Duque
- Biochemistry-Hormonology Laboratory, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Sophie Lebon
- Université de Paris, INSERM UMR 1141 NeuroDiderot, 75019 Paris, France
| | - Abir Talbi
- Biochemistry-Hormonology Laboratory, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Leila Drira
- Biochemistry-Hormonology Laboratory, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Didier Chevenne
- Biochemistry-Hormonology Laboratory, AP-HP, Robert Debré Hospital, 75019 Paris, France
| | - Kamel Ajlouni
- National Center for Diabetes, Endocrinology and Genetics, Amman 11942, Jordan
| | - Nicolas de Roux
- Université de Paris, INSERM UMR 1141 NeuroDiderot, 75019 Paris, France
- Biochemistry-Hormonology Laboratory, AP-HP, Robert Debré Hospital, 75019 Paris, France
| |
Collapse
|
8
|
Chou YS, Chuang SC, Chen CH, Ho ML, Chang JK. G-Protein-Coupled Estrogen Receptor-1 Positively Regulates the Growth Plate Chondrocyte Proliferation in Female Pubertal Mice. Front Cell Dev Biol 2021; 9:710664. [PMID: 34490260 PMCID: PMC8417792 DOI: 10.3389/fcell.2021.710664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Estrogen enhances long bone longitudinal growth during early puberty. Growth plate chondrocytes are the main cells that contribute to long bone elongation. The role of G-protein-coupled estrogen receptor-1 (GPER-1) in regulating growth plate chondrocyte function remains unclear. In the present study, we generated chondrocyte-specific GPER-1 knockout (CKO) mice to investigate the effect of GPER-1 in growth plate chondrocytes. In control mice, GPER-1 was highly expressed in the growth plates of 4- and 8-week-old mice, with a gradual decline through 12 to 16 weeks. In CKO mice, the GPER-1 expression in growth plate chondrocytes was significantly lower than that in the control mice (80% decrease). The CKO mice also showed a decrease in body length (crown-rump length), body weight, and the length of tibias and femurs at 8 weeks. More importantly, the cell number and thickness of the proliferative zone of the growth plate, as well as the thickness of primary spongiosa and length of metaphysis plus diaphysis in tibias of CKO mice, were significantly decreased compared with those of the control mice. Furthermore, there was also a considerable reduction in the number of proliferating cell nuclear antigens and Ki67-stained proliferating chondrocytes in the tibia growth plate in the CKO mice. The chondrocyte proliferation mediated by GPER-1 was further demonstrated via treatment with a GPER-1 antagonist in cultured epiphyseal cartilage. This study demonstrates that GPER-1 positively regulates chondrocyte proliferation at the growth plate during early puberty and contributes to the longitudinal growth of long bones.
Collapse
Affiliation(s)
- Ya-Shuan Chou
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopaedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Je-Ken Chang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopaedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Wu XJ, Williams MJ, Kew KA, Converse A, Thomas P, Zhu Y. Reduced Vitellogenesis and Female Fertility in Gper Knockout Zebrafish. Front Endocrinol (Lausanne) 2021; 12:637691. [PMID: 33790865 PMCID: PMC8006473 DOI: 10.3389/fendo.2021.637691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
The role G-protein coupled estrogen receptor (GPER) plays in vertebrate reproduction remains controversial. To investigate GPER's reproductive role, we generated a gper zebrafish mutant line (gper-/- ) using TALENs. Gper mutant females exhibited reduced fertility with a 40.85% decrease in embryo production which was associated with a significant decrease in the number of Stage V (730-750 μm) ovulated oocytes. Correspondingly, the number of early vitellogenic follicles (Stage III, 400-450 µm) in gper-/- ovaries was greater than that in wildtypes (wt), suggesting that subsequent follicle development was retarded in the gper-/- fish. Moreover, plasma vitellogenin levels were decreased in gper-/- females, and epidermal growth factor receptor (Egfr) expression was lower in Stage III vitellogenic oocytes than in wt counterparts. However, hepatic nuclear estrogen receptor levels were not altered, and estrogen levels were elevated in ovarian follicles. These results suggest that Gper is involved in the control of ovarian follicle development via regulation of vitellogenesis and Egfr expression in zebrafish.
Collapse
Affiliation(s)
- Xin-Jun Wu
- Department of Biology, East Carolina University, Greenville, NC, United States
| | | | - Kimberly Ann Kew
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Aubrey Converse
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
- *Correspondence: Yong Zhu, ; Peter Thomas,
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC, United States
- *Correspondence: Yong Zhu, ; Peter Thomas,
| |
Collapse
|
10
|
Sen A, Kaul A, Kaul R. Estrogen receptors in human bladder cells regulate innate cytokine responses to differentially modulate uropathogenic E. coli colonization. Immunobiology 2020; 226:152020. [PMID: 33246308 DOI: 10.1016/j.imbio.2020.152020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/19/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
The bladder epithelial cells elicit robust innate immune responses against urinary tract infections (UTIs) for preventing the bacterial colonization. Physiological fluctuations in circulating estrogen levels in women increase the susceptibility to UTI pathogenesis, often resulting in adverse health outcomes. Dr adhesin bearing Escherichia coli (Dr E. coli) cause recurrent UTIs in menopausal women and acute pyelonephritis in pregnant women. Dr E. coli bind to epithelial cells via host innate immune receptor CD55, under hormonal influence. The role of estrogens or estrogen receptors (ERs) in regulating the innate immune responses in the bladder are poorly understood. In the current study, we investigated the role of ERα, ERβ and GPR30 in modulating the innate immune responses against Dr E. coli induced UTI using human bladder epithelial carcinoma 5637 cells (HBEC). Both ERα and ERβ agonist treatment in bladder cells induced a protection against Dr E. coli invasion via upregulation of TNFα and downregulation of CD55 and IL10, and these effects were reversed by action of ERα and ERβ antagoinsts. In contrast, the agonist-mediated activation of GPR30 led to an increased bacterial colonization due to suppression of innate immune factors in the bladder cells, and these effects were reversed by the antagonist-mediated suppression of GPR30. Further, siRNA-mediated ERα knockdown in the bladder cells reversed the protection against bacterial invasion observed in the ERα positive bladder cells, by modulating the gene expression of TNFα, CD55 and IL10, thus confirming the protective role of ERα. We demonstrate for the first time a protective role of nuclear ERs, ERα and ERβ but not of membrane ER, GPR30 against Dr E. coli invasion in HBEC 5637 cells. These findings have many clinical implications and suggest that ERs may serve as potential drug targets towards developing novel therapeutics for regulating local innate immunity and treating UTIs.
Collapse
Affiliation(s)
- Ayantika Sen
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA; Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Anil Kaul
- Health Care Administration, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA
| | - Rashmi Kaul
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA.
| |
Collapse
|
11
|
Zhao B, Xiong Y, Zhang Y, Jia L, Zhang W, Xu X. Rutin promotes osteogenic differentiation of periodontal ligament stem cells through the GPR30-mediated PI3K/AKT/mTOR signaling pathway. Exp Biol Med (Maywood) 2020; 245:552-561. [PMID: 32036685 DOI: 10.1177/1535370220903463] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rutin is one of the flavonoids found in fruits and vegetables. Recent reports have revealed that rutin is a major player in proliferation and bone development. However, data on how rutin regulates the proliferation of periodontal ligament stem cells (PDLSCs), as well as the differentiation of osteogenic cells are scanty. Here, our findings showed that rutin enhanced PDLSCs proliferation, increased ALP activity, and matrix mineralization. Moreover, rutin significantly promoted the expression of osteogenic genes and elevated phosphorylated AKT and mTOR. Treatment with LY294002 reversed these effects by inhibiting PI3K. We also found that the expression levels of GPR30 were increased by rutin. Interestingly, this upregulation was not altered after the addition of LY294002. In addition, G15, a selective antagonist of GPR30, could reduce the beneficial effects induced by rutin and interfere with the modulation of PI3K/AKT/mTOR signal transduction. Collectively, our findings revealed that rutin increased proliferation and osteogenic differentiation of PDLSCs through GPR30-mediated PI3K/AKT/mTOR signal transduction. Therefore, it could be deduced that rutin as a certain flavonoid possesses therapeutic value for periodontal bone regeneration and tissue engineering. Impact statement In our study, the effects and mechanisms of rutin on the osteogenic differentiation and proliferation of PDLSCs were investigated. Our findings might provide basic knowledge and guidance to understand and use rutin in the bioengineering of the periodontal tissues and regeneration of bones. The following is a short description of the main findings: rutin promotes the osteogenic differentiation and proliferation of PDLSCs; PI3K/AKT/mTOR signal pathway mediates the effects of rutin on PDLSCs; rutin activates PI3K/AKT/mTOR signal pathway via GPR30.
Collapse
Affiliation(s)
- Bin Zhao
- School of Stomatology, Shandong University, Jinan 250012, P.R. China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, P.R. China
| | - Yixuan Xiong
- School of Stomatology, Shandong University, Jinan 250012, P.R. China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, P.R. China
| | - Yunpeng Zhang
- School of Stomatology, Shandong University, Jinan 250012, P.R. China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, P.R. China.,Department of Oral Implantology, the Affiliated Stomatology Hospital of Kunming Medical University, Kunming 100191, P.R. China
| | - Linglu Jia
- School of Stomatology, Shandong University, Jinan 250012, P.R. China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, P.R. China
| | - Wenjing Zhang
- School of Stomatology, Shandong University, Jinan 250012, P.R. China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, P.R. China
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan 250012, P.R. China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, P.R. China
| |
Collapse
|
12
|
Notas G, Kampa M, Castanas E. G Protein-Coupled Estrogen Receptor in Immune Cells and Its Role in Immune-Related Diseases. Front Endocrinol (Lausanne) 2020; 11:579420. [PMID: 33133022 PMCID: PMC7564022 DOI: 10.3389/fendo.2020.579420] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022] Open
Abstract
G protein-coupled estrogen receptor 1 (GPER1), is a functional estrogen receptor involved in estrogen related actions on several systems including processes of the nervous, reproductive, metabolic, cardiovascular, and immune system. Regarding the latter, GPER is expressed in peripheral B and T lymphocytes as well as in monocytes, eosinophils, and neutrophils. Several studies have implicated GPER in immune-mediated diseases like multiple sclerosis, Parkinson's disease, and atherosclerosis-related inflammation, while a recent report suggests that its deletion could be responsible for a form of familial immunodeficiency. It has also been suggested that it is a key regulator of immune-mediated events in breast, pancreatic, prostate, and hepatocellular cancer as well as in melanoma. GPER has been also reported to interact with classic ER-alpha or its splice variants in order to modify immune functions. This review aims to present current knowledge relating GPER to immune functions, the cellular and signaling pathways involved, as well as the potential clinical implications of GPER modulation in immune-related diseases.
Collapse
|
13
|
Imam Aliagan A, Madungwe NB, Tombo N, Feng Y, Bopassa JC. Chronic GPER1 Activation Protects Against Oxidative Stress-Induced Cardiomyoblast Death via Preservation of Mitochondrial Integrity and Deactivation of Mammalian Sterile-20-Like Kinase/Yes-Associated Protein Pathway. Front Endocrinol (Lausanne) 2020; 11:579161. [PMID: 33193095 PMCID: PMC7604496 DOI: 10.3389/fendo.2020.579161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction: Estrogen (17β-estradiol, E2) is well-known to induce cardioprotective effects against ischemia/reperfusion (I/R) injury. We recently reported that acute application of E2 at the onset of reperfusion in vivo induces cardioprotective effects against I/R injury via activation of its non-steroidal receptor, G protein-coupled estrogen receptor 1 (GPER1). Here, we investigated the impact and mechanism underlying chronic GPER1 activation in cultured H9c2 rat cardiomyoblasts. Methods: H9c2 rat cardiomyoblasts were cultured and pretreated with the cytotoxic agent H2O2 for 24 h and incubated in the presence of vehicle (control), GPER1 agonists E2 and G1, or GPER1 agonists supplemented with G15 (GPER1 antagonist) for 48 or 96 h. After treatment, cells were collected to measure the rate of cell death and viability using flow cytometry and Calcein AM assay or MTT assay, respectively. The resistance to opening of the mitochondrial permeability transition pore (mPTP), the mitochondrial membrane potential, and ATP production was assessed using fluorescence microscopy, and the mitochondrial structural integrity was observed with electron microscopy. The levels of the phosphorylation of mammalian sterile-20-like kinase (MST1) and yes-associated protein (YAP) were assessed by Western blot analysis in whole-cell lysate, while the expression levels of mitochondrial biogenesis genes, YAP target genes, and proapoptotic genes were measured by qRT-PCR. Results: We found that after H2O2 treatment, chronic E2/G1 treatment decreased cell death effect was associated with the prevention of the S phase of the cell cycle arrest compared to control. In the mitochondria, chronic E2/G1 activation treatment preserved the cristae morphology, and increased resistance to opening of mPTP, but with little change to mitochondrial fusion/fission. Additionally, chronic E2/G1 treatment predominantly reduced phosphorylation of MST1 and YAP, as well as increased MST1 and YAP protein levels. E2 treatment also upregulated the expression levels of TGF-β and PGC-1α mRNAs and downregulated PUMA and Bim mRNAs. Except for ATP production, all the E2 or G1 effects were prevented by the cotreatment with the GPER1 antagonist, G15. Conclusion: Together, these results indicate that chronic GPER1 activation with its agonists E2 or G1 treatment protects H9c2 cardiomyoblasts against oxidative stress-induced cell death and increases cell viability by preserving mitochondrial structure and function as well as delaying the opening of mPTP. These chronic GPER1 effects are associated with the deactivation of the non-canonical MST1/YAP mechanism that leads to genetic upregulation of cell growth genes (CTGF, CYR61, PGC-1α, and ANKRD1), and downregulation of proapoptotic genes (PUMA and Bim).
Collapse
Affiliation(s)
- Abdulhafiz Imam Aliagan
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ngonidzashe B. Madungwe
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, United States
| | - Nathalie Tombo
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yansheng Feng
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jean C. Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- *Correspondence: Jean C. Bopassa
| |
Collapse
|
14
|
Iravani M, Lagerquist MK, Karimian E, Chagin AS, Ohlsson C, Sävendahl L. Effects of the selective GPER1 agonist G1 on bone growth. Endocr Connect 2019; 8:1302-1309. [PMID: 31434056 PMCID: PMC6765336 DOI: 10.1530/ec-19-0274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022]
Abstract
Estrogens may affect bone growth locally or systemically via the known estrogen receptors ESR1, ESR2 and G protein-coupled estrogen receptor 1 (GPER1). Mouse and human growth plate chondrocytes have been demonstrated to express GPER1 and ablation of this receptor increased bone length in mice. Therefore, GPER1 is an attractive target for therapeutic modulation of bone growth, which has never been explored. To investigate the effects of activated GPER1 on the growth plate, we locally exposed mouse metatarsal bones to different concentrations of the selective GPER1 agonist G1 for 14 days ex vivo. The results showed that none of the concentrations of G1 had any direct effect on metatarsal bone growth when compared to control. To evaluate if GPER1 stimulation may systemically modulate bone growth, ovariectomized C57BL/6 mice were treated with G1 or β-estradiol (E2). Similarly, G1 did not influence tibia and femur growth in treated mice. As expected, E2 treatment suppressed bone growth in vivo. We conclude that ligand stimulation of GPER1 does not influence bone growth in mice.
Collapse
Affiliation(s)
- Maryam Iravani
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
- Correspondence should be addressed to M Iravani:
| | - Marie K Lagerquist
- Center of Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elham Karimian
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russian Federation
| | - Claes Ohlsson
- Center of Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lars Sävendahl
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
15
|
Cheng L, Poulsen SB, Wu Q, Esteva-Font C, Olesen ETB, Peng L, Olde B, Leeb-Lundberg LMF, Pisitkun T, Rieg T, Dimke H, Fenton RA. Rapid Aldosterone-Mediated Signaling in the DCT Increases Activity of the Thiazide-Sensitive NaCl Cotransporter. J Am Soc Nephrol 2019; 30:1454-1470. [PMID: 31253651 DOI: 10.1681/asn.2018101025] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The NaCl cotransporter NCC in the kidney distal convoluted tubule (DCT) regulates urinary NaCl excretion and BP. Aldosterone increases NaCl reabsorption via NCC over the long-term by altering gene expression. But the acute effects of aldosterone in the DCT are less well understood. METHODS Proteomics, bioinformatics, and cell biology approaches were combined with animal models and gene-targeted mice. RESULTS Aldosterone significantly increases NCC activity within minutes in vivo or ex vivo. These effects were independent of transcription and translation, but were absent in the presence of high potassium. In vitro, aldosterone rapidly increased intracellular cAMP and inositol phosphate accumulation, and altered phosphorylation of various kinases/kinase substrates within the MAPK/ERK, PI3K/AKT, and cAMP/PKA pathways. Inhibiting GPR30, a membrane-associated receptor, limited aldosterone's effects on NCC activity ex vivo, and NCC phosphorylation was reduced in GPR30 knockout mice. Phosphoproteomics, network analysis, and in vitro studies determined that aldosterone activates EGFR-dependent signaling. The EGFR immunolocalized to the DCT and EGFR tyrosine kinase inhibition decreased NCC activity ex vivo and in vivo. CONCLUSIONS Aldosterone acutely activates NCC to modulate renal NaCl excretion.
Collapse
Affiliation(s)
- Lei Cheng
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Qi Wu
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Emma T B Olesen
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Li Peng
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Björn Olde
- Unit of Drug Target Discovery, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - L M Fredrik Leeb-Lundberg
- Unit of Drug Target Discovery, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Trairak Pisitkun
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; and.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Robert A Fenton
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark;
| |
Collapse
|
16
|
Yang F, Lin ZW, Huang TY, Chen TT, Cui J, Li MY, Hua YQ. Ligustilide, a major bioactive component of Angelica sinensis, promotes bone formation via the GPR30/EGFR pathway. Sci Rep 2019; 9:6991. [PMID: 31061445 PMCID: PMC6502875 DOI: 10.1038/s41598-019-43518-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
Angelica sinensis (Oliv.) Diels is a widely-used traditional Chinese herbal medicine in treating osteoporosis. Ligustilide (LIG) is the main component of A. sinensis and is considered to be the most effective biologically active ingredient in this plant. LIG has been found to have multiple pharmacological activities, such as anti-atherosclerosis, neuroprotection, anticancer, anti-inflammatory and analgesic. However, little is known regarding its anti-osteoporotic effects. The aims of this study were to investigate any protective effect of LIG on bone formation. The results showed that LIG significantly ameliorated inhibition of bone formation in zebrafish caused by prednisolone. LIG promoted osteoblast differentiation, including that of the pre-osteoblastic cell line MC3T3-E1 and bone marrow mesenchymal stem cells. LIG greatly improved the viability of MC3T3-E1 cells exposed to H2O2, attenuated H2O2-induced apoptosis and increased the expression of Bcl-2. Furthermore, LIG treatment lead to marked activation of phosphorylated EGFR and ERK1/2. These effects could be obviously inhibited by blocking GPR30 signaling with the specific inhibitor G15. Collectively, the results reveal that GPR30 is a positive switch for LIG to increase bone formation via regulation of EGFR, and these results provide evidence for the potential of LIG to treat osteoporosis.
Collapse
Affiliation(s)
- F Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Z W Lin
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - T Y Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - T T Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - J Cui
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - M Y Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Y Q Hua
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China.
| |
Collapse
|
17
|
Bernasochi GB, Bell JR, Simpson ER, Delbridge LM, Boon WC. Impact of Estrogens on the Regulation of White, Beige, and Brown Adipose Tissue Depots. Compr Physiol 2019; 9:457-475. [DOI: 10.1002/cphy.c180009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Liu T, Kamiyoshi A, Tanaka M, Iida S, Sakurai T, Ichikawa-Shindo Y, Kawate H, Hirabayashi K, Dai K, Cui N, Tanaka M, Wei Y, Nakamura K, Matsui S, Yamauchi A, Shindo T. RAMP3 deficiency enhances postmenopausal obesity and metabolic disorders. Peptides 2018; 110:10-18. [PMID: 30385288 DOI: 10.1016/j.peptides.2018.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 01/03/2023]
Abstract
There is a marked increase in the incidence of visceral adiposity and insulin resistance among women following menopause. Adrenomedullin (AM) is an endogenous peptide first identified as a vasodilator, but now known to exert a variety of physiological effects. RAMP3 is a receptor activity-modifying protein that binds to the AM receptor (calcitonin receptor-like receptor). As expression of both AM and RAMP3 is reportedly activated by estrogen, we hypothesized that RAMP3 is crucially involved in the pathophysiology of postmenopausal obesity. To test this idea, we compared the effects of ovariectomy (OVX) and a high-fat diet for 10 weeks (a model of postmenopausal obesity) between RAMP3 knockout (RAMP3-/-) and wild-type mice. RAMP3-/- OVX mice exhibited greater obesity and adipose tissue weight gain as compared to wild-type OVX mice. RAMP3-/- OVX mice also exhibited higher serum insulin levels. In periuterine WAT from RAMP3-/- OVX mice, expression of lipolysis-related factors was lower and expression of inflammation-related factors was higher than in wild-type OVX mice. Hepatic steatosis was also exacerbated in RAMP3-/- OVX. Notably, expression of the membrane-type estrogen receptor GPR30 was downregulated in periuterine WAT from RAMP3-/- OVX mice. These findings raise the possibility that a GPR30-RAMP3 interaction is involved in the pathophysiology of postmenopausal obesity and suggest RAMP3 plays a key role in the regulation of energy metabolism and exerts a hepatoprotective effect in this model of postmenopausal obesity. RAMP3 may thus be a useful therapeutic target for treatment of postmenopausal obesity and metabolic disorders.
Collapse
Affiliation(s)
- Teng Liu
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Japan
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Japan.
| | - Megumu Tanaka
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Japan
| | - Shiho Iida
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Japan
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Japan
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Japan
| | - Kazutaka Hirabayashi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Japan
| | - Kun Dai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Japan
| | - Nanqi Cui
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Japan
| | - Masaaki Tanaka
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Japan
| | - Yangxuan Wei
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Japan
| | - Keisei Nakamura
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Japan
| | - Shuhei Matsui
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Japan; Department of Anesthesiology, Shinshu University School of Medicine, Japan
| | | | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Japan
| |
Collapse
|
19
|
Vinel A, Coudert AE, Buscato M, Valera MC, Ostertag A, Katzenellenbogen JA, Katzenellenbogen BS, Berdal A, Babajko S, Arnal JF, Fontaine C. Respective role of membrane and nuclear estrogen receptor (ER) α in the mandible of growing mice: Implications for ERα modulation. J Bone Miner Res 2018; 33:1520-1531. [PMID: 29624728 PMCID: PMC6563159 DOI: 10.1002/jbmr.3434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
Estrogens play an important role in bone growth and maturation as well as in the regulation of bone turnover in adults. Although the effects of 17β-estradiol (E2) are well documented in long bones and vertebrae, little is known regarding its action in the mandible. E2 actions could be mediated by estrogen receptor (ER) α or β. ERs act primarily as transcriptional factors through two activation functions (AFs), AF1 and AF2, but they can also elicit membrane-initiated steroid signaling (MISS). The aim of the present study was to define ER pathways involved in E2 effects on mandibular bone. Using mice models targeting ERβ or ERα, we first show that E2 effects on mandibular bone are mediated by ERα and do not require ERβ. Second, we show that nuclear ERαAF2 is absolutely required for all the actions of E2 on mandibular bone. Third, inactivation of ERαMISS partially reduced the E2 response on bone thickness and volume, whereas there was no significant impact on bone mineral density. Altogether, these results show that both nuclear and membrane ERα are requested to mediate full estrogen effects in the mandible of growing mice. Finally, selective activation of ERαMISS is able to exert an effect on alveolar bone but not on the cortical compartment, contrary to its protective action on femoral cortical bone. To conclude, these results highlight similarities but also specificities between effects of estrogen in long bones and in the mandible that could be of interest in therapeutic approaches to treat bone mass reduction. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alexia Vinel
- INSERM-U 1048, I2MC, University of Toulouse 3, Toulouse, France
| | - Amelie E Coudert
- Molecular Oral Pathophysiology Team, Centre de Recherche des Cordeliers, INSERM-U 1138, University of Paris-Diderot, Paris, France
| | - Melissa Buscato
- INSERM-U 1048, I2MC, University of Toulouse 3, Toulouse, France
| | | | - Agnès Ostertag
- UMR1132, BIOSCAR, University of Paris-Diderot, Paris, France
| | | | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ariane Berdal
- Molecular Oral Pathophysiology Team, Centre de Recherche des Cordeliers, INSERM-U 1138, University of Paris-Diderot, Paris, France
| | - Sylvie Babajko
- Molecular Oral Pathophysiology Team, Centre de Recherche des Cordeliers, INSERM-U 1138, University of Paris-Diderot, Paris, France
| | | | | |
Collapse
|
20
|
Abstract
Biosynthesis and secretion of the hypothalamic nonapeptide oxytocin largely depends on steroid hormones. Estradiol, corticosterone, and vitamin D seem to be the most prominent actors. Due to their lipophilic nature, systemic steroids are thought to be capable of crossing the blood-brain barrier, thus mediating central functions including neuroendocrine and behavioral control. The actual mode of action of steroids in hypothalamic circuitry is still unknown: Most of the oxytocinergic perikarya lack nuclear steroid receptors but express proteins suspected to be membrane receptors for steroids. Oxytocin expressing neurons contain enzymes important for intrinsic steroid metabolism. Furthermore, they produce and probably liberate specific steroid-binding globulins. Rapid responses to steroid hormones may involve these binding proteins and membrane-associated receptors, rather than classic nuclear receptors and genomic pathways. Neuroendocrine regulation, reproductive behaviors, and stress response seem to depend on these mechanisms.
Collapse
Affiliation(s)
| | - Scott D Ochs
- Dept. of Pharmacology, Via College of Osteopathic Medicine, Spartanburg, SC, USA
| | - Jack D Caldwell
- Dept. of Pharmacology, Via College of Osteopathic Medicine, Spartanburg, SC, USA
| |
Collapse
|
21
|
GPER-novel membrane oestrogen receptor. Clin Sci (Lond) 2017; 130:1005-16. [PMID: 27154744 DOI: 10.1042/cs20160114] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
Abstract
The recent discovery of the G protein-coupled oestrogen receptor (GPER) presents new challenges and opportunities for understanding the physiology, pathophysiology and pharmacology of many diseases. This review will focus on the expression and function of GPER in hypertension, kidney disease, atherosclerosis, vascular remodelling, heart failure, reproduction, metabolic disorders, cancer, environmental health and menopause. Furthermore, this review will highlight the potential of GPER as a therapeutic target.
Collapse
|
22
|
Trenti A, Tedesco S, Boscaro C, Ferri N, Cignarella A, Trevisi L, Bolego C. The Glycolytic Enzyme PFKFB3 Is Involved in Estrogen-Mediated Angiogenesis via GPER1. J Pharmacol Exp Ther 2017; 361:398-407. [PMID: 28348059 DOI: 10.1124/jpet.116.238212] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/22/2017] [Indexed: 01/08/2023] Open
Abstract
The endogenous estrogen 17β-estradiol (E2) is a key factor in promoting endothelial healing and angiogenesis. Recently, proangiogenic signals including vascular endothelial growth factor and others have been shown to converge in endothelial cell metabolism. Because inhibition of the glycolytic enzyme activator phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) reduces pathologic angiogenesis and estrogen receptor (ER) signaling stimulates glucose uptake and glycolysis by inducing PFKFB3 in breast cancer, we hypothesized that E2 triggers angiogenesis in endothelial cells via rapid ER signaling that requires PFKFB3 as a downstream effector. We report that treatment with the selective G protein-coupled estrogen receptor (GPER1) agonist G-1 (10-10 to 10-7 M) mimicked the chemotactic and proangiogenic effect of E2 as measured in a number of short-term angiogenesis assays in human umbilical vein endothelial cells (HUVECs); in addition, E2 treatment upregulated PFKFB3 expression in a time- and concentration-dependent manner. Such an effect peaked at 3 hours and was also induced by G-1 and abolished by pretreatment with the GPER1 antagonist G-15 or GPER1 siRNA, consistent with engagement of membrane ER. Experiments with the PFKFB3 inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one showed that PFKFB3 activity was required for estrogen-mediated HUVEC migration via GPER1. In conclusion, E2-induced angiogenesis was mediated at least in part by the membrane GPER1 and required upregulation of the glycolytic activator PFKFB3 in HUVECs. These findings unravel a previously unrecognized mechanism of estrogen-dependent endocrine-metabolic crosstalk in HUVECs and may have implications in angiogenesis occurring in ischemic or hypoxic tissues.
Collapse
Affiliation(s)
- Annalisa Trenti
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Serena Tedesco
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Andrea Cignarella
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| |
Collapse
|
23
|
Farman HH, Wu J, Gustafsson KL, Windahl SH, Kim SH, Katzenellenbogen JA, Ohlsson C, Lagerquist MK. Extra-nuclear effects of estrogen on cortical bone in males require ERαAF-1. J Mol Endocrinol 2017; 58:105-111. [PMID: 28057769 PMCID: PMC5278601 DOI: 10.1530/jme-16-0209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 01/02/2023]
Abstract
Estradiol (E2) signaling via estrogen receptor alpha (ERα) is important for the male skeleton as demonstrated by ERα inactivation in both mice and man. ERα mediates estrogenic effects not only by translocating to the nucleus and affecting gene transcription but also by extra-nuclear actions e.g., triggering cytoplasmic signaling cascades. ERα contains various domains, and the role of activation function 1 (ERαAF-1) is known to be tissue specific. The aim of this study was to determine the importance of extra-nuclear estrogen effects for the skeleton in males and to determine the role of ERαAF-1 for mediating these effects. Five-month-old male wild-type (WT) and ERαAF-1-inactivated (ERαAF-10) mice were orchidectomized and treated with equimolar doses of 17β-estradiol (E2) or an estrogen dendrimer conjugate (EDC), which is incapable of entering the nucleus and thereby only initiates extra-nuclear ER actions or their corresponding vehicles for 3.5 weeks. As expected, E2 treatment increased cortical thickness and trabecular bone volume per total volume (BV/TV) in WT males. EDC treatment increased cortical thickness in WT males, whereas no effect was detected in trabecular bone. In ERαAF-10 males, E2 treatment increased cortical thickness, but did not affect trabecular bone. Interestingly, the effect of EDC on cortical bone was abolished in ERαAF-10 mice. In conclusion, extra-nuclear estrogen signaling affects cortical bone mass in males, and this effect is dependent on a functional ERαAF-1. Increased knowledge regarding estrogen signaling mechanisms in the regulation of the male skeleton may aid the development of new treatment options for male osteoporosis.
Collapse
Affiliation(s)
- H H Farman
- Centre for Bone and Arthritis ResearchInstitute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - J Wu
- Centre for Bone and Arthritis ResearchInstitute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - K L Gustafsson
- Centre for Bone and Arthritis ResearchInstitute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - S H Windahl
- Centre for Bone and Arthritis ResearchInstitute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - S H Kim
- Department of ChemistryUniversity of Illinois, Urbana, Illinois, USA
| | | | - C Ohlsson
- Centre for Bone and Arthritis ResearchInstitute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - M K Lagerquist
- Centre for Bone and Arthritis ResearchInstitute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
24
|
Using three-point bending to evaluate tibia bone strength in ovariectomized young mice. J Biol Phys 2017; 43:139-148. [PMID: 28132161 DOI: 10.1007/s10867-016-9439-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022] Open
Abstract
It is well known that estrogen deficiency induces a deterioration of bone strength in aged females. The aim of this study is to determine the effect of estrogen depletion on tibia bone strength in sexually mature mice that are still undergoing skeletal maturation. At 8 weeks of age, C57BL/6 female mice underwent an ovariectomy (OVX) or sham (SHAM) surgery. Mice were killed at 2, 4, or 8 weeks post-surgery. Tibia length and cross-sectional area continued to increase in both treatment groups until 4 weeks post-surgery. Compared to SHAM mice, OVX mice demonstrated a significant reduction in uterine weight and plasma estrogen levels. Three-point bending was used to quantify the mechanical properties (breaking point, stress, stiffness, and elasticity) of the tibia. The tibias from the SHAM mice had a higher breaking point than all the age-matched OVX mice. At 8 weeks post-surgery, the tibias from the SHAM mice demonstrated higher elasticity, stress, and stiffness than the younger SHAM mice and the age-matched OVX mice. Compared to the SHAM mice, our study suggests that (1) there is a reduction in the mechanical strength of tibias from young OVX mice, and (2) the greatest decline in tibia strength of the OVX mice was once they reached skeletal maturity.
Collapse
|
25
|
Masuhara M, Tsukahara T, Tomita K, Furukawa M, Miyawaki S, Sato T. A relation between osteoclastogenesis inhibition and membrane-type estrogen receptor GPR30. Biochem Biophys Rep 2016; 8:389-394. [PMID: 28955981 PMCID: PMC5614543 DOI: 10.1016/j.bbrep.2016.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/05/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Abstract
Disruption of the cooperative balance between osteoblasts and osteoclasts causes various bone disorders, some of which are because of abnormal osteoclast recruitment. Osteoporosis, one of the bone disorders, is not effectively treated by currently available medicines. In addition to the development of novel drugs for palliative treatment, the exploitation of novel compounds for preventive treatment is important in an aging society. Quercetin, a major flavonoid found in many fruits and vegetables, has been expected to inhibit cancer and prevent several diseases because of its anti-inflammatory and estrogenic functions. It has been reported that quercetin has the potential to reduce bone resorption, but the mechanism by which this compound affects the differentiation of osteoclasts remains unknown. Here, using a bone marrow cell-based in vitro osteoclast differentiation system from bone marrow cells, we found that the ability of quercetin to inhibit osteoclastogenesis was related to its estrogenic activity. The inhibition was partially blocked by a specific antagonist for the nuclear receptor estrogen receptor α, but a specific antagonist of the membrane-type receptor GPR30 completely ablated this inhibition. Furthermore, quercetin suppressed the transient increase of Akt phosphorylation induced by the stimulation of macrophage colony-stimulating factor and receptor activator of NF-κB ligand with no effect on MAPK phosphorylation, suggesting exquisite crosstalk between cytokine receptor and G-protein coupled receptor signaling. These results indicate the important role of GPR30 in osteoclast differentiation and provide new insights to the development of new treatments for osteoporosis. Flavonoids can prevent osteoporosis, but the precise mechanism remains unknown. The major flavonoid quercetin inhibited osteoclastogenesis. The inhibition was entirely rescued by GPR30 antagonism. GPR30 has a key role in mechanism of osteoclastogenesis prevention by quercetin.
Collapse
Affiliation(s)
- Masaaki Masuhara
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Takao Tsukahara
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Minami Furukawa
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
- Department of Orthodontics, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Shouichi Miyawaki
- Department of Orthodontics, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
- Corresponding author.
| |
Collapse
|
26
|
Wei A, Shen B, Williams LA, Bhargav D, Yan F, Chong BH, Diwan AD. Expression and functional roles of estrogen receptor GPR30 in human intervertebral disc. J Steroid Biochem Mol Biol 2016; 158:46-55. [PMID: 26815911 DOI: 10.1016/j.jsbmb.2016.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 01/21/2023]
Abstract
Estrogen withdrawal, a characteristic of female aging, is associated with age-related intervertebral disc (IVD) degeneration. The function of estrogen is mediated by two classic nuclear receptors, estrogen receptor (ER)-α and -β, and a membrane bound G-protein-coupled receptor 30 (GPR30). To date, the expression and function of GPR30 in human spine is poorly understood. This study aimed to evaluate GPR30 expression in IVD, and its role in estrogen-related regulation of proliferation and apoptosis of disc nucleus pulposus (NP) cells. GPR30 expression was examined in 30 human adult NP and 9 fetal IVD. Results showed that GPR30 was expressed in NP cells at both mRNA and protein levels. In human fetal IVD, GPR30 protein was expressed in the NP at 12-14 weeks gestation, but was undetectable at 8-11 weeks. The effect of 17β-estradiol (E2) on GPR30-mediated proliferation and interleukin-1β (IL-1β)-induced apoptosis of NP cells was investigated. Cultured NP cells were treated with or without E2, GPR30 antagonist G36, and ER antagonist ICI 182,780. NP cell viability was tested by MTS assay. Apoptosis was determined by flow cytometry using fluorescence labeled annexin-V, TUNEL assay and immumnocytochemical staining of activated caspase-3. E2 enhanced cell proliferation and prevented IL-1β-induced cell death, but the effect was partially blocked by G36 and completely abrogated by a combination of ICI 182,780 and G36. This study demonstrates that GPR30 is expressed in human IVD to transmit signals triggering E2-induced NP cell proliferation and protecting against IL-1β-induced apoptosis. The effects of E2 on NP cells require both GPR30 and classic estrogen receptors.
Collapse
Affiliation(s)
- Aiqun Wei
- Department of Orthopedic Research, Orthopedic Research Institute, St George Hospital, University of New South Wales, Sydney, Australia
| | - Bojiang Shen
- Department of Orthopedic Research, Orthopedic Research Institute, St George Hospital, University of New South Wales, Sydney, Australia
| | - Lisa A Williams
- Department of Orthopedic Research, Orthopedic Research Institute, St George Hospital, University of New South Wales, Sydney, Australia
| | - Divya Bhargav
- Department of Orthopedic Research, Orthopedic Research Institute, St George Hospital, University of New South Wales, Sydney, Australia
| | - Feng Yan
- Department of Hematology, St George Hospital, University of New South Wales, Sydney, Australia
| | - Beng H Chong
- Department of Hematology, St George Hospital, University of New South Wales, Sydney, Australia
| | - Ashish D Diwan
- Department of Orthopedic Research, Orthopedic Research Institute, St George Hospital, University of New South Wales, Sydney, Australia.
| |
Collapse
|
27
|
Benmansour S, Adeniji OS, Privratsky AA, Frazer A. Effects of Long-Term Treatment with Estradiol and Estrogen Receptor Subtype Agonists on Serotonergic Function in Ovariectomized Rats. Neuroendocrinology 2016; 103:269-81. [PMID: 26159182 PMCID: PMC4698103 DOI: 10.1159/000437268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/28/2015] [Indexed: 12/31/2022]
Abstract
Acute estradiol treatment was reported to slow the clearance of serotonin via activation of estrogen receptors (ER)β and/or GPR30 and to block the ability of a selective serotonin reuptake inhibitor (SSRI) to slow serotonin clearance via activation of ERα. In this study, the behavioral consequences of longer-term treatments with estradiol or ER subtype-selective agonists and/or an SSRI were examined in the forced swim test (FST). Ovariectomized rats were administered the following for 2 weeks: estradiol, ERβ agonist (diarylpropionitrile, DPN), GPR30 agonist (G1), ERα agonist (PPT), and/or the SSRI sertraline. Similar to sertraline, longer-term treatment with estradiol, DPN or G1 induced an antidepressant-like effect. By contrast, PPT did not, even though it blocked the antidepressant-like effect of sertraline. Uterus weights, used as a peripheral measure of estrogenic activity, were increased by estradiol and PPT but not DPN or G1 treatment. A second part of this study investigated, using Western blot analyses in homogenates from hippocampus, whether these behavioral effects are accompanied by changes in the activation of specific signaling pathways and/or TrkB. Estradiol and G1 increased phosphorylation of Akt, ERK and TrkB. These effects were similar to those obtained after treatment with sertraline. Treatment with DPN increased phosphorylation of ERK and TrkB, but it did not alter that of Akt. Treatment with PPT increased phosphorylation of Akt and ERK without altering that of TrkB. In conclusion, activation of at least TrkB and possibly ERK may be involved in the antidepressant-like effect of estradiol, ERβ and GPR30 agonists whereas Akt activation may not be necessary.
Collapse
Affiliation(s)
- Saloua Benmansour
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas 78229
| | - Opeyemi S. Adeniji
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas 78229
| | - Anthony A. Privratsky
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas 78229
| | - Alan Frazer
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas 78229
- South Texas Veterans Health Care System, San Antonio, Texas 78284, USA
| |
Collapse
|
28
|
Gaudet HM, Cheng SB, Christensen EM, Filardo EJ. The G-protein coupled estrogen receptor, GPER: The inside and inside-out story. Mol Cell Endocrinol 2015; 418 Pt 3:207-19. [PMID: 26190834 DOI: 10.1016/j.mce.2015.07.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023]
Abstract
GPER possesses structural and functional characteristics shared by members of the G-protein-coupled receptor (GPCR) superfamily, the largest class of plasma membrane receptors. This newly appreciated estrogen receptor is localized predominately within intracellular membranes in most, but not all, cell types and its surface expression is modulated by steroid hormones and during tissue injury. An intracellular staining pattern is not unique among GPCRs, which employ a diverse array of molecular mechanisms that restrict cell surface expression and effectively regulating receptor binding and activation. The finding that GPER displays an intracellular predisposition has created some confusion as the estrogen-inducible transcription factors, ERα and ERβ, also reside intracellularly, and has led to complex suggestions of receptor interaction. GPER undergoes constitutive retrograde trafficking from the plasma membrane to the endoplasmic reticulum and recent studies indicate its interaction with PDZ binding proteins that sort transmembrane receptors to synaptosomes and endosomes. Genetic targeting and selective ligand approaches as well as cell models that express GPER in the absence of ERs clearly supports GPER as a bonafide "stand alone" receptor. Here, the molecular details that regulate GPER action, its cell biological activities and its implicated roles in physiological and pathological processes are reviewed.
Collapse
Affiliation(s)
- H M Gaudet
- Wheaton College, Department of Chemistry, Norton, MA, 02766, USA
| | - S B Cheng
- Women & Infants Hospital, Brown University, Providence, RI, 02903, USA
| | - E M Christensen
- Wheaton College, Department of Chemistry, Norton, MA, 02766, USA
| | - E J Filardo
- Rhode Island Hospital, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
29
|
Abstract
The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| |
Collapse
|
30
|
Kang WB, Deng YT, Wang DS, Feng D, Liu Q, Wang XS, Ru JY, Cong Y, Zhao JN, Zhao MG, Liu G. Osteoprotective effects of estrogen membrane receptor GPR30 in ovariectomized rats. J Steroid Biochem Mol Biol 2015; 154:237-44. [PMID: 26187146 DOI: 10.1016/j.jsbmb.2015.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022]
Abstract
G protein-coupled estrogen receptor 30 (GPR30) is expressed in bone tissue. However, little is known regarding the function of GPR30 in postmenopausal osteoporosis. In this study, we examined the effects of GPR30 on ovariectomy (OVX)-induced osteoporosis in rats, including the effects on proliferation, differentiation, and expression of proteins in osteoblasts. Administration of G1 (35 μg/kg, ip, 3 times/week for 6 weeks), a specific agonist of GPR30, prevented OVX-induced increase in bone turnover rate, decrease in bone mineral content and bone mineral density, damage to bone structure, and aggravation of bone biomechanical properties. In addition, G1 did not affect uterine weight in the OVX rats. Osteoblasts isolated from calvarias from newborn rats were used to explore the underlying mechanisms. G1 (150 pM) promoted proliferation and differentiation of osteoblasts through a positive feedback of GPR30, which then activated the PI3K-Akt, ERK, and CREB pathways. G15 (750 pM), a specific antagonist of GPR30, reversed the above effects initiated by G1 treatment. In conclusion, activation of GPR30 protected bones against osteoporosis in OVX rats and exerted no untoward effect on the uterus. We suggest that GPR30 can be used as an effective therapeutic target for the prevention and treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Wen-bo Kang
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, China
| | - Ya-ting Deng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Dong-sheng Wang
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, China
| | - Dan Feng
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 7l0038, China
| | - Qian Liu
- Department of Orthodontic, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Xin-shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Jiang-ying Ru
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, China
| | - Yu Cong
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, China
| | - Jian-ning Zhao
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, China.
| | - Ming-gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Gang Liu
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, China.
| |
Collapse
|
31
|
Chuang SC, Chen CH, Fu YC, Tai IC, Li CJ, Chang LF, Ho ML, Chang JK. Estrogen receptor mediates simvastatin-stimulated osteogenic effects in bone marrow mesenchymal stem cells. Biochem Pharmacol 2015; 98:453-64. [PMID: 26410676 DOI: 10.1016/j.bcp.2015.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/22/2015] [Indexed: 11/18/2022]
Abstract
Simvastatin, an HMG-CoA reductase inhibitor, is known to promote osteogenic differentiation. However, the mechanism underlying simvastatin-induced osteogenesis is not well understood. In this study, we hypothesize that the estrogen receptor (ER) mediates simvastatin-induced osteogenic differentiation. ER antagonists and siRNA were used to determine the involvement of the ER in simvastatin-induced osteogenesis in mouse bone marrow mesenchymal stem cells (D1 cells). Osteogenesis was evaluated by mRNA expression, protein level/activity of osteogenic markers, and mineralization. The estrogen response element (ERE) promoter activity and the ER-simvastatin binding affinity were examined. Our results showed that the simvastatin-induced osteogenic effects were decreased by treatment with ERα antagonists and ERα siRNA but not by an antagonist specific for the G protein-coupled estrogen receptor (GPER-1). The simvastatin-induced osteogenic effects were further increased by E2 treatment and were reversed by ERα antagonists or siRNA treatment. Luciferase reporter gene assays demonstrated that simvastatin increase ERα-dependent transcriptional activity that was suppressed by ERα antagonists. Furthermore, the ERα-simvastatin binding assay showed that IC50 value of simvastatin is 7.85 μM and that of E2 is 32.8 nM, indicating that simvastatin is a weak ligand for ERα. These results suggest that simvastatin-stimulated osteogenesis is mediated by ERα but not GPER-1. Moreover, this is the first report to demonstrate that simvastatin acts as an ERα ligand and a co-activator to enhance ERα-dependent transcriptional activity and thus promotes osteogenesis. These results indicate that simvastatin-induced osteogenesis is mediated via an ERα-dependent pathway.
Collapse
Affiliation(s)
- Shu-Chun Chuang
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Chin Fu
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Chun Tai
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Ju Li
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Fu Chang
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Je-Ken Chang
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
32
|
Prossnitz ER, Hathaway HJ. What have we learned about GPER function in physiology and disease from knockout mice? J Steroid Biochem Mol Biol 2015; 153:114-26. [PMID: 26189910 PMCID: PMC4568147 DOI: 10.1016/j.jsbmb.2015.06.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
Abstract
Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and pathophysiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also demonstrated roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, United States; University of New Mexico Cancer Center, Albuquerque, NM 87131, United States.
| | - Helen J Hathaway
- Department of Cell Biology & Physiology, University of New Mexico, Albuquerque, NM 87131, United States; University of New Mexico Cancer Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
33
|
Khan K, Pal S, Yadav M, Maurya R, Trivedi AK, Sanyal S, Chattopadhyay N. Prunetin signals via G-protein-coupled receptor, GPR30(GPER1): Stimulation of adenylyl cyclase and cAMP-mediated activation of MAPK signaling induces Runx2 expression in osteoblasts to promote bone regeneration. J Nutr Biochem 2015; 26:1491-501. [PMID: 26345541 DOI: 10.1016/j.jnutbio.2015.07.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/13/2015] [Accepted: 07/20/2015] [Indexed: 01/26/2023]
Abstract
Prunetin is found in red clover and fruit of Prunus avium (red cherry). The effect of prunetin on osteoblast function, its mode of action and bone regeneration in vivo were investigated. Cultures of primary osteoblasts, osteoblastic cell line and HEK293T cells were used for various in vitro studies. Adult female rats received drill-hole injury at the femur diaphysis to assess the bone regenerative effect of prunetin. Prunetin at 10nM significantly (a) increased proliferation and differentiation of primary cultures of osteoblasts harvested from rats and (b) promoted formation of mineralized nodules by bone marrow stromal/osteoprogenitor cells. At this concentration, prunetin did not activate any of the two nuclear estrogen receptors (α and β). However, prunetin triggered signaling via a G-protein-coupled receptor, GPR30/GPER1, and enhanced cAMP levels in osteoblasts. G15, a selective GPR30 antagonist, abolished prunetin-induced increases in osteoblast proliferation, differentiation and intracellular cAMP. In osteoblasts, prunetin up-regulated runt-related transcription factor 2 (Runx2) protein through cAMP-dependent Erk/MAP kinase activation that ultimately resulted in the up-regulation of GPR30. Administration of prunetin at 0.25mg/kg given to rats stimulated bone regeneration at the site of drill hole and up-regulated Runx2 expression in the fractured callus and the effect was comparable to human parathyroid hormone, the only clinically used osteogenic therapy. We conclude that prunetin promotes osteoinduction in vivo and the mechanism is defined by signaling through GPR30 resulting in the up-regulation of the key osteogenic gene Runx2 that in turn up-regulates GPR30.
Collapse
Affiliation(s)
- Kainat Khan
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226021, India
| | - Subhashis Pal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226021, India
| | - Manisha Yadav
- Division of Biochemistry, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226021, India
| | - Rakesh Maurya
- Division of Medicinal and Process Chemistry, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226021, India
| | - Arun Kumar Trivedi
- Division of Biochemistry, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226021, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226021, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226021, India.
| |
Collapse
|
34
|
Osteoprotective effect of combination therapy of low-dose oestradiol with G15, a specific antagonist of GPR30/GPER in ovariectomy-induced osteoporotic rats. Biosci Rep 2015; 35:BSR20150146. [PMID: 26181370 PMCID: PMC4613688 DOI: 10.1042/bsr20150146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/16/2015] [Indexed: 11/23/2022] Open
Abstract
Administration of low-dose oestradiol (E2) combining G15, this combination therapy may be an effective supplement of drugs in prevention and treatment for postmenopausal osteoporosis. Identified and cloned in 1996 for the first time, G protein-coupled oestrogen receptor (ER) 30 (GPR30/GPER) has been a hot spot in the field of sex hormone research till now. In the present study, we examined the effects of low-dose oestradiol (E2) combined with G15, a specific antagonist of GPR30 on ovariectomy (OVX)-induced osteoporosis in rats. Female Sprague–Dawley (SD) rats undergoing OVX were used to evaluate the osteoprotective effect of the drugs. Administration of E2 [35 μg/kg, intraperitoneally (ip), three times/week) combining G15 (160 μg/kg, ip, three times/week) for 6 weeks was found to have prevented OVX-induced effects, including increase in bone turnover rate, decrease in bone mineral content (BMC) and bone mineral density (BMD), damage of bone structure and the aggravation in biomechanical properties of bone. The therapeutic effect of these two drugs in combination was better than that of E2 alone. Meanwhile, the administration of G15 prevented body weight increase or endometrium proliferation in the rats. In conclusion, administration of low-dose E2 combining G15 had a satisfactory bone protective effect for OVX rats, without significant influence on body weight or the uterus. This combination therapy may be an effective supplement of drugs in prevention and treatment for postmenopausal osteoporosis.
Collapse
|
35
|
Santollo J, Daniels D. Activation of G protein-coupled estrogen receptor 1 (GPER-1) decreases fluid intake in female rats. Horm Behav 2015; 73:39-46. [PMID: 26093261 PMCID: PMC4546888 DOI: 10.1016/j.yhbeh.2015.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/19/2015] [Accepted: 05/28/2015] [Indexed: 11/19/2022]
Abstract
Estradiol (E2) decreases fluid intake in the female rat and recent studies from our lab demonstrate that the effect is at least in part mediated by membrane-associated estrogen receptors. Because multiple estrogen receptor subtypes can localize to the cell membrane, it is unclear which receptor(s) is generating the anti-dipsogenic effect of E2. The G protein-coupled estrogen receptor 1 (GPER-1) is a particularly interesting possibility because it has been shown to regulate blood pressure; many drinking-regulatory systems play overlapping roles in the control of blood pressure. Accordingly, we tested the hypothesis that activation of GPER-1 is sufficient to decrease fluid intake in female rats. In support of this hypothesis we found that treatment with the selective GPER-1 agonist G1 reduced AngII-stimulated fluid intake in OVX rats. Given the close association between food and fluid intakes in rats, and previous reports suggesting GPER-1 plays a role in energy homeostasis, we tested the hypothesis that the effect of GPER-1 on fluid intake was caused by a more direct effect on food intake. We found, however, that G1-treatment did not influence short-term or overnight food intake in OVX rats. Together these results reveal a novel effect of GPER-1 in the control of drinking behavior and provide an example of the divergence in the controls of fluid and food intakes in female rats.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY 14260, United States
| | - Derek Daniels
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY 14260, United States.
| |
Collapse
|
36
|
Itoga M, Konno Y, Moritoki Y, Saito Y, Ito W, Tamaki M, Kobayashi Y, Kayaba H, Kikuchi Y, Chihara J, Takeda M, Ueki S, Hirokawa M. G-protein-coupled estrogen receptor agonist suppresses airway inflammation in a mouse model of asthma through IL-10. PLoS One 2015; 10:e0123210. [PMID: 25826377 PMCID: PMC4380451 DOI: 10.1371/journal.pone.0123210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/28/2015] [Indexed: 02/06/2023] Open
Abstract
Estrogen influences the disease severity and sexual dimorphism in asthma, which is caused by complex mechanisms. Besides classical nuclear estrogen receptors (ERαβ), G-protein-coupled estrogen receptor (GPER) was recently established as an estrogen receptor on the cell membrane. Although GPER is associated with immunoregulatory functions of estrogen, the pathophysiological role of GPER in allergic inflammatory lung disease has not been examined. We investigated the effect of GPER-specific agonist G-1 in asthmatic mice. GPER expression in asthmatic lung was confirmed by immunofluorescent staining. OVA-sensitized BALB/c and C57BL/6 mice were treated with G-1 by daily subcutaneous injections during an airway challenge phase, followed by histological and biochemical examination. Strikingly, administration of G-1 attenuated airway hyperresponsiveness, accumulation of inflammatory cells, and levels of Th2 cytokines (IL-5 and IL-13) in BAL fluid. G-1 treatment also decreased serum levels of anti-OVA IgE antibodies. The frequency of splenic Foxp3+CD4+ regulatory T cells and IL-10-producing GPER+CD4+ T cells was significantly increased in G-1-treated mice. Additionally, splenocytes isolated from G-1-treated mice showed greater IL-10 production. G-1-induced amelioration of airway inflammation and IgE production were abolished in IL-10-deficient mice. Taken together, these results indicate that extended GPER activation negatively regulates the acute asthmatic condition by altering the IL-10-producing lymphocyte population. The current results have potential importance for understanding the mechanistic aspects of function of estrogen in allergic inflammatory response.
Collapse
Affiliation(s)
- Masamichi Itoga
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Department of Clinical Laboratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036–8562, Japan
| | - Yasunori Konno
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Division of Dentistry and Oral Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| | - Yuki Moritoki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| | - Yukiko Saito
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| | - Wataru Ito
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Nagareyama Tobu Clinic, 909–1 Nazukari, Nagareyama City, Chiba, 270–0145, Japan
| | - Mami Tamaki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| | - Yoshiki Kobayashi
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Department of Otolaryngology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573–1010, Japan
| | - Hiroyuki Kayaba
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Department of Clinical Laboratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036–8562, Japan
| | - Yuta Kikuchi
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| | - Junichi Chihara
- Soseikai General Hospital, 101 Shimotoba Hiroosacho, Fushimi-ku, Kyoto City, Kyoto, 612–8473, Japan
| | - Masahide Takeda
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- Department of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- * E-mail: (SU); (MT)
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
- * E-mail: (SU); (MT)
| | - Makoto Hirokawa
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010–8543, Japan
| |
Collapse
|
37
|
Rochira V, Kara E, Carani C. The endocrine role of estrogens on human male skeleton. Int J Endocrinol 2015; 2015:165215. [PMID: 25873947 PMCID: PMC4383300 DOI: 10.1155/2015/165215] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022] Open
Abstract
Before the characterization of human and animal models of estrogen deficiency, estrogen action was confined in the context of the female bone. These interesting models uncovered a wide spectrum of unexpected estrogen actions on bone in males, allowing the formulation of an estrogen-centric theory useful to explain how sex steroids act on bone in men. Most of the principal physiological events that take place in the developing and mature male bone are now considered to be under the control of estrogen. Estrogen determines the acceleration of bone elongation at puberty, epiphyseal closure, harmonic skeletal proportions, the achievement of peak bone mass, and the maintenance of bone mass. Furthermore, it seems to crosstalk with androgen even in the determination of bone size, a more androgen-dependent phenomenon. At puberty, epiphyseal closure and growth arrest occur when a critical number of estrogens is reached. The same mechanism based on a critical threshold of serum estradiol seems to operate in men during adulthood for bone mass maintenance via the modulation of bone formation and resorption in men. This threshold should be better identified in-between the ranges of 15 and 25 pg/mL. Future basic and clinical research will optimize strategies for the management of bone diseases related to estrogen deficiency in men.
Collapse
Affiliation(s)
- Vincenzo Rochira
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy
- Azienda USL di Modena, Nuovo Ospedale Civile Sant'Agostino Estense (NOCSAE), Via P. Giardini 1355, 41126 Modena, Italy
- *Vincenzo Rochira:
| | - Elda Kara
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy
| | - Cesare Carani
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy
| |
Collapse
|
38
|
Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, Börjesson AE, Ohlsson C. Sex steroid actions in male bone. Endocr Rev 2014; 35:906-60. [PMID: 25202834 PMCID: PMC4234776 DOI: 10.1210/er.2014-1024] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sex steroids are chief regulators of gender differences in the skeleton, and male gender is one of the strongest protective factors against osteoporotic fractures. This advantage in bone strength relies mainly on greater cortical bone expansion during pubertal peak bone mass acquisition and superior skeletal maintenance during aging. During both these phases, estrogens acting via estrogen receptor-α in osteoblast lineage cells are crucial for male cortical and trabecular bone, as evident from conditional genetic mouse models, epidemiological studies, rare genetic conditions, genome-wide meta-analyses, and recent interventional trials. Genetic mouse models have also demonstrated a direct role for androgens independent of aromatization on trabecular bone via the androgen receptor in osteoblasts and osteocytes, although the target cell for their key effects on periosteal bone formation remains elusive. Low serum estradiol predicts incident fractures, but the highest risk occurs in men with additionally low T and high SHBG. Still, the possible clinical utility of serum sex steroids for fracture prediction is unknown. It is likely that sex steroid actions on male bone metabolism rely also on extraskeletal mechanisms and cross talk with other signaling pathways. We propose that estrogens influence fracture risk in aging men via direct effects on bone, whereas androgens exert an additional antifracture effect mainly via extraskeletal parameters such as muscle mass and propensity to fall. Given the demographic trends of increased longevity and consequent rise of osteoporosis, an increased understanding of how sex steroids influence male bone health remains a high research priority.
Collapse
Affiliation(s)
- Dirk Vanderschueren
- Clinical and Experimental Endocrinology (D.V.) and Gerontology and Geriatrics (M.R.L., E.G.), Department of Clinical and Experimental Medicine; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine (M.R.L., F.C.); and Centre for Metabolic Bone Diseases (D.V., M.R.L., E.G.), KU Leuven, B-3000 Leuven, Belgium; and Center for Bone and Arthritis Research (M.K.L., L.V., A.E.B., C.O.), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim HR, Kim YS, Yoon JA, Lyu SW, Shin H, Lim HJ, Hong SH, Lee DR, Song H. Egr1 is rapidly and transiently induced by estrogen and bisphenol A via activation of nuclear estrogen receptor-dependent ERK1/2 pathway in the uterus. Reprod Toxicol 2014; 50:60-7. [PMID: 25461906 DOI: 10.1016/j.reprotox.2014.10.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/20/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
Coordinate actions of ovarian estrogen (E2) and progesterone (P4) via their own receptors are critical for establishing uterine receptivity for embryo implantation in the uterus. E2 regulates expression of an array of genes to mediate its major actions on heterogeneous uterine cell types. Here we have investigated regulatory mechanism(s) of E2 and bisphenol A (BPA), an endocrine disruptor with potent estrogenic activity on expression of early growth response 1 (Egr1), a zinc finger transcription factor that regulates cell growth, differentiation and apoptosis in the uterus. Egr1 was rapidly and transiently induced by E2 and BPA mainly in stromal cells via nuclear estrogen receptor (ER)-ERK1/2 pathway. ICI 182,780, an ER antagonist, effectively inhibited their actions on EGR1 expression following ERK1/2 phosphorylation. Administration of pharmacological inhibitors for ERK1/2, but not AKT significantly blocked EGR1 expression induced by E2 and BPA. P4 effectively dampened action(s) of E2 and BPA on Egr1 expression via nuclear progesterone receptor. Its antagonistic effects were partially interfered with RU486 pretreatment. Interestingly, EGR1 is specifically induced in stromal cells surrounding implanting blastocyst. Collectively, our results show that through nuclear ER-dependent ERK1/2 phosphorylation, not only E2 but also endocrine disruptors with estrogenic activity such as BPA rapidly and transiently induce Egr1 which may be important for embryo implantation and decidualization in mouse uterus.
Collapse
Affiliation(s)
- Hye-Ryun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seoul 135-081, Republic of Korea
| | - Yeon Sun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seoul 135-081, Republic of Korea
| | - Jung Ah Yoon
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 135-081, Republic of Korea
| | - Sang Woo Lyu
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 135-081, Republic of Korea
| | - Hyejin Shin
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyunjung J Lim
- Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea; Stem Cell Institute, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul 135-081, Republic of Korea
| | - Haengseok Song
- Department of Biomedical Science, College of Life Science, CHA University, Seoul 135-081, Republic of Korea; Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 135-081, Republic of Korea.
| |
Collapse
|
40
|
Davis KE, Carstens EJ, Irani BG, Gent LM, Hahner LM, Clegg DJ. Sexually dimorphic role of G protein-coupled estrogen receptor (GPER) in modulating energy homeostasis. Horm Behav 2014; 66:196-207. [PMID: 24560890 PMCID: PMC4051842 DOI: 10.1016/j.yhbeh.2014.02.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 12/30/2022]
Abstract
This article is part of a Special Issue "Energy Balance". The classical estrogen receptors, estrogen receptor-α and estrogen receptor-β are well established in the regulation of body weight and energy homeostasis in both male and female mice, whereas, the role for G protein-coupled estrogen receptor 1 (GPER) as a modulator of energy homeostasis remains controversial. This study sought to determine whether gene deletion of GPER (GPER KO) alters body weight, body adiposity, food intake, and energy homeostasis in both males and females. Male mice lacking GPER developed moderate obesity and larger adipocyte size beginning at 8 weeks of age, with significant reductions in energy expenditure, but not food intake or adipocyte number. Female GPER KO mice developed increased body weight relative to WT females a full 6 weeks later than the male GPER KO mice. Female GPER KO mice also had reductions in energy expenditure, but no significant increases in body fat content. Consistent with their decrease in energy expenditure, GPER KO males and females showed significant reductions in two brown fat thermogenic proteins. GPER KO females, prior to their divergence in body weight, were less sensitive than WT females to the feeding-inhibitory effects of leptin and CCK. Additionally, body weight was not as modulated by ovariectomy or estradiol replacement in GPER KO mice. Estradiol treatment activated phosphorylated extracellular signal-regulated kinase (pERK) in WT but not GPER KO females. For the first time, GPER expression was found in the adipocyte but not the stromal fraction of adipose tissue. Together, these results provide new information elucidating a sexual dimorphism in GPER function in the development of postpubertal energy balance.
Collapse
Affiliation(s)
- Kathryn E Davis
- University of Texas Southwestern Medical Center, Department of Plastic Surgery, 5323 Harry Hines Blvd., Dallas, TX 75390-8860, USA
| | - Elizabeth J Carstens
- University of Texas Southwestern Medical Center, School of Medicine, 5323 Harry Hines Blvd., Dallas, TX 75390-8854, USA
| | - Boman G Irani
- University of Texas Southwestern Medical Center, Department of Internal Medicine, 5323 Harry Hines Blvd., Dallas, TX 75390-8854, USA
| | - Lana M Gent
- University of Texas Southwestern Medical Center, Department of Internal Medicine, 5323 Harry Hines Blvd., Dallas, TX 75390-8854, USA
| | - Lisa M Hahner
- University of Texas Southwestern Medical Center, Department of Internal Medicine, 5323 Harry Hines Blvd., Dallas, TX 75390-8854, USA
| | - Deborah J Clegg
- University of Texas Southwestern Medical Center, Department of Internal Medicine, 5323 Harry Hines Blvd., Dallas, TX 75390-8854, USA.
| |
Collapse
|
41
|
Sjöström M, Hartman L, Grabau D, Fornander T, Malmström P, Nordenskjöld B, Sgroi DC, Skoog L, Stål O, Leeb-Lundberg LMF, Fernö M. Lack of G protein-coupled estrogen receptor (GPER) in the plasma membrane is associated with excellent long-term prognosis in breast cancer. Breast Cancer Res Treat 2014; 145:61-71. [PMID: 24715381 DOI: 10.1007/s10549-014-2936-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 01/27/2023]
Abstract
G protein-coupled estrogen receptor (GPER), or GPR30, is a membrane receptor reported to mediate non-genomic estrogen responses. Tamoxifen is a partial agonist at GPER in vitro. Here, we investigated if GPER expression is prognostic in primary breast cancer, if the receptor is treatment-predictive for adjuvant tamoxifen, and if receptor subcellular localization has any impact on the prognostic value. Total and plasma membrane (PM) GPER expression was analyzed by immunohistochemistry in breast tumors from 742 postmenopausal lymph node-negative patients subsequently randomized for tamoxifen treatment for 2-5 years versus no systemic treatment, regardless of estrogen receptor (ER) status, and with a median follow-up of 17 years for patients free of event. PM GPER expression was a strong independent prognostic factor for poor prognosis in breast cancer without treatment-predictive information for tamoxifen. In the tamoxifen-treated ER-positive and progesterone receptor (PgR)-positive patient subgroup, the absence of PM GPER (53 % of all ER-positive tumors) predicted 91 % 20-year distant disease-free survival, compared to 73 % in the presence of GPER (p = 0.001). Total GPER expression showed positive correlations with ER and PgR and negative correlation with histological grade, but the correlations were biphasic. On the other hand, PM GPER expression showed strong negative correlations with ER and PgR, and strong positive correlation with HER2 overexpression and high histological grade. GPER overexpression and PM localization are critical events in breast cancer progression, and lack of GPER in the PM is associated with excellent long-term prognosis in ER-positive and PgR-positive tamoxifen-treated primary breast cancer.
Collapse
Affiliation(s)
- Martin Sjöström
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Anchan D, Clark S, Pollard K, Vasudevan N. GPR30 activation decreases anxiety in the open field test but not in the elevated plus maze test in female mice. Brain Behav 2014; 4:51-9. [PMID: 24653954 PMCID: PMC3937706 DOI: 10.1002/brb3.197] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 12/23/2022] Open
Abstract
The GPR30 is a novel estrogen receptor (ER) that is a candidate membrane ER based on its binding to 17β estradiol and its rapid signaling properties such as activation of the extracellular-regulated kinase (ERK) pathway. Its distribution in the mouse limbic system predicts a role for this receptor in the estrogenic modulation of anxiety behaviors in the mouse. A previous study showed that chronic administration of a selective agonist to the GPR30 receptor, G-1, in the female rat can improve spatial memory, suggesting that GPR30 plays a role in hippocampal-dependent cognition. In this study, we investigated the effect of a similar chronic administration of G-1 on behaviors that denote anxiety in adult ovariectomized female mice, using the elevated plus maze (EPM) and the open field test as well as the activation of the ERK pathway in the hippocampus. Although estradiol benzoate had no effect on behaviors in the EPM or the open field, G-1 had an anxiolytic effect solely in the open field that was independent of ERK signaling in either the ventral or dorsal hippocampus. Such an anxiolytic effect may underlie the ability of G-1 to increase spatial memory, by acting on the hippocampus.
Collapse
Affiliation(s)
- Divya Anchan
- Neuroscience Program, Tulane University New Orleans, 70118, Louisiana
| | - Sara Clark
- Cell and Molecular Biology Department, Tulane University New Orleans, 70118, Louisiana
| | - Kevin Pollard
- Neuroscience Program, Tulane University New Orleans, 70118, Louisiana
| | - Nandini Vasudevan
- Cell and Molecular Biology Department, Tulane University New Orleans, 70118, Louisiana
| |
Collapse
|
43
|
Börjesson AE, Lagerquist MK, Windahl SH, Ohlsson C. The role of estrogen receptor α in the regulation of bone and growth plate cartilage. Cell Mol Life Sci 2013; 70:4023-37. [PMID: 23516016 PMCID: PMC11114058 DOI: 10.1007/s00018-013-1317-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/07/2013] [Accepted: 03/04/2013] [Indexed: 02/02/2023]
Abstract
Estrogens are important endocrine regulators of skeletal growth and maintenance in both females and males. Studies have demonstrated that the estrogen receptor (ER)-α is the main mediator of these estrogenic effects in bone. Therefore, estrogen signaling via ERα is a target both for affecting longitudinal bone growth and bone remodeling. However, treatment with estradiol (E2) leads to an increased risk of side effects such as venous thromboembolism and breast cancer. Thus, an improved understanding of the signaling pathways of ERα will be essential in order to find better bone specific treatments with minimal adverse effects for different estrogen-related bone disorders. This review summarizes the recent data regarding the intracellular signaling mechanisms, in vivo, mediated by the ERα activation functions (AFs), AF-1 and AF-2, and the effect on bone, growth plate and other estrogen responsive tissues. In addition, we review the recent cell-specific ERα-deleted mouse models lacking ERα specifically in neuronal cells or growth plate cartilage. The newly characterized signaling pathways of estrogen, described in this review, provide a better understanding of the ERα signaling pathways, which may facilitate the design of new, bone-specific treatment strategies with minimal adverse effects.
Collapse
Affiliation(s)
- A. E. Börjesson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - M. K. Lagerquist
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - S. H. Windahl
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - C. Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
44
|
Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1215-67. [PMID: 23904103 DOI: 10.1152/ajpregu.00446.2012] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypothalamic-pituitary-gonadal (HPG) axis function fundamentally affects the physiology of eating. We review sex differences in the physiological and pathophysiological controls of amounts eaten in rats, mice, monkeys, and humans. These controls result from interactions among genetic effects, organizational effects of reproductive hormones (i.e., permanent early developmental effects), and activational effects of these hormones (i.e., effects dependent on hormone levels). Male-female sex differences in the physiology of eating involve both organizational and activational effects of androgens and estrogens. An activational effect of estrogens decreases eating 1) during the periovulatory period of the ovarian cycle in rats, mice, monkeys, and women and 2) tonically between puberty and reproductive senescence or ovariectomy in rats and monkeys, sometimes in mice, and possibly in women. Estrogens acting on estrogen receptor-α (ERα) in the caudal medial nucleus of the solitary tract appear to mediate these effects in rats. Androgens, prolactin, and other reproductive hormones also affect eating in rats. Sex differences in eating are mediated by alterations in orosensory capacity and hedonics, gastric mechanoreception, ghrelin, CCK, glucagon-like peptide-1 (GLP-1), glucagon, insulin, amylin, apolipoprotein A-IV, fatty-acid oxidation, and leptin. The control of eating by central neurochemical signaling via serotonin, MSH, neuropeptide Y, Agouti-related peptide (AgRP), melanin-concentrating hormone, and dopamine is modulated by HPG function. Finally, sex differences in the physiology of eating may contribute to human obesity, anorexia nervosa, and binge eating. The variety and physiological importance of what has been learned so far warrant intensifying basic, translational, and clinical research on sex differences in eating.
Collapse
Affiliation(s)
- Lori Asarian
- Institute of Veterinary Physiology and Center for Integrated Human Physiology, University of Zurich, Zurich, Switzerland; and
| | | |
Collapse
|
45
|
Ueda K, Karas RH. Emerging evidence of the importance of rapid, non-nuclear estrogen receptor signaling in the cardiovascular system. Steroids 2013; 78:589-96. [PMID: 23276634 DOI: 10.1016/j.steroids.2012.12.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/07/2012] [Accepted: 12/13/2012] [Indexed: 11/20/2022]
Abstract
Estrogen receptors are classically known as ligand-activated transcription factors that regulate gene transcription in cells in response to hormone binding. In addition to this "genomic" signaling pathway, a "rapid, non-nuclear" signaling pathway mediated by cell membrane-associated estrogen receptors also has been recognized. Although for many years there was little evidence to support any physiological relevance of rapid-signaling, very recently evidence has been accumulating supporting the importance of the rapid, non-nuclear signaling as potentially critical for the protective effects of estrogen in the cardiovascular system. Better understanding of the rapid, non-nuclear signaling potentially provides an opportunity to design "pathway-specific" selective estrogen receptor modulators capable of differentially regulating non-nuclear vs. genomic effects that may prove useful ultimately as specific therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Kazutaka Ueda
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | | |
Collapse
|
46
|
Börjesson AE, Farman HH, Engdahl C, Koskela A, Sjögren K, Kindblom JM, Stubelius A, Islander U, Carlsten H, Antal MC, Krust A, Chambon P, Tuukkanen J, Lagerquist MK, Windahl SH, Ohlsson C. The role of activation functions 1 and 2 of estrogen receptor-α for the effects of estradiol and selective estrogen receptor modulators in male mice. J Bone Miner Res 2013; 28:1117-26. [PMID: 23225083 PMCID: PMC3631300 DOI: 10.1002/jbmr.1842] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/12/2012] [Accepted: 11/26/2012] [Indexed: 12/21/2022]
Abstract
Estradiol (E2) is important for male skeletal health and the effect of E2 is mediated via estrogen receptor (ER)-α. This was demonstrated by the findings that men with an inactivating mutation in aromatase or a nonfunctional ERα had osteopenia and continued longitudinal growth after sexual maturation. The aim of the present study was to evaluate the role of different domains of ERα for the effects of E2 and selective estrogen receptor modulators (SERMs) on bone mass in males. Three mouse models lacking either ERαAF-1 (ERαAF-1(0)), ERαAF-2 (ERαAF-2(0)), or the total ERα (ERα(-/-)) were orchidectomized (orx) and treated with E2 or placebo. E2 treatment increased the trabecular and cortical bone mass and bone strength, whereas it reduced the thymus weight and bone marrow cellularity in orx wild type (WT) mice. These parameters did not respond to E2 treatment in orx ERα(-/-) or ERαAF-2(0). However, the effects of E2 in orx ERαAF-1(0) [corrected] were tissue-dependent, with a clear response in cortical bone parameters and bone marrow cellularity, but no response in trabecular bone. To determine the role of ERαAF-1 for the effects of SERMs, we treated orx WT and ERαAF-1(0) mice with raloxifene (Ral), lasofoxifene (Las), bazedoxifene (Bza), or vehicle. These SERMs increased total body areal bone mineral density (BMD) and trabecular volumetric BMD to a similar extent in orx WT mice. Furthermore, only Las increased cortical thickness significantly and only Bza increased bone strength significantly. However, all SERMs showed a tendency toward increased cortical bone parameters. Importantly, all SERM effects were absent in the orx ERαAF-1(0) mice. In conclusion, ERαAF-2 is required for the estrogenic effects on all evaluated parameters, whereas the role of ERαAF-1 is tissue-specific. All evaluated effects of Ral, Las and Bza are dependent on a functional ERαAF-1. Our findings might contribute to the development of bone-specific SERMs in males.
Collapse
Affiliation(s)
- Anna E Börjesson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nelson ER, Wardell SE, McDonnell DP. The molecular mechanisms underlying the pharmacological actions of estrogens, SERMs and oxysterols: implications for the treatment and prevention of osteoporosis. Bone 2013; 53:42-50. [PMID: 23168292 PMCID: PMC3552054 DOI: 10.1016/j.bone.2012.11.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/19/2012] [Accepted: 11/12/2012] [Indexed: 12/12/2022]
Abstract
Estrogen therapy and hormone therapy are effective options for the prevention and treatment of osteoporosis, although because of their significant side effect profile, long term use for these applications is not recommended. Whereas SERMs (Selective Estrogen Receptor Modulators) exhibit a more favorable side effect profile, the currently available medicines in this class are substantially less effective in bone than classical estrogens. However, the results of substantial efforts that have gone into defining the mechanisms that underlie the pharmacology of estrogens, antiestrogens and SERMs have informed the development of the next generation of SERMs and have led to the development of TSECs (Tissue Selective Estrogen Complexes), a new class of ER-modulator. Further, the recent determination that the oxysterol 27-hydroxycholesterol functions as an endogenous SERM has highlighted an unexpected link between hypercholesterolemia and bone biology and must be considered in any discussions of ER-pharmacology. This review considers the most recent progress in our understanding of ER pharmacology and how this has and will be translated into new medicines for the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Erik R Nelson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | |
Collapse
|
48
|
Tian R, Wang Z, Shi Z, Li D, Wang Y, Zhu Y, Lin W, Gui Y, Zheng XL. Differential expression of G-protein-coupled estrogen receptor-30 in human myometrial and uterine leiomyoma smooth muscle. Fertil Steril 2013; 99:256-263.e3. [DOI: 10.1016/j.fertnstert.2012.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 09/07/2012] [Accepted: 09/07/2012] [Indexed: 12/11/2022]
|
49
|
Shi H, Kumar SPDS, Liu X. G protein-coupled estrogen receptor in energy homeostasis and obesity pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:193-250. [PMID: 23317786 PMCID: PMC3632385 DOI: 10.1016/b978-0-12-386933-3.00006-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity and its related metabolic diseases have reached a pandemic level worldwide. There are sex differences in the prevalence of obesity and its related metabolic diseases, with men being more vulnerable than women; however, the prevalence of these disorders increases dramatically in women after menopause, suggesting that sex steroid hormone estrogens play key protective roles against development of obesity and metabolic diseases. Estrogens are important regulators of several aspects of metabolism, including body weight and body fat, caloric intake and energy expenditure, and glucose and lipid metabolism in both males and females. Estrogens act in complex ways on their nuclear estrogen receptors (ERs) ERα and ERβ and transmembrane ERs such as G protein-coupled estrogen receptor. Genetic tools, such as different lines of knockout mouse models, and pharmacological agents, such as selective agonists and antagonists, are available to study function and signaling mechanisms of ERs. We provide an overview of the evidence for the physiological and cellular actions of ERs in estrogen-dependent processes in the context of energy homeostasis and body fat regulation and discuss its pathology that leads to obesity and related metabolic states.
Collapse
Affiliation(s)
- Haifei Shi
- Department of Biology, Center for Physiology and Neuroscience, Miami University, Oxford, Ohio, USA
| | | | | |
Collapse
|
50
|
Zhu L, Yang Y, Xu P, Zou F, Yan X, Liao L, Xu J, O'Malley BW, Xu Y. Steroid receptor coactivator-1 mediates estrogenic actions to prevent body weight gain in female mice. Endocrinology 2013; 154:150-8. [PMID: 23211707 PMCID: PMC3529365 DOI: 10.1210/en.2012-2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen receptor-α (ERα) expressed by hypothalamic proopiomelanocortin and steroidogenic factor-1 neurons largely mediates the antiobesity effects of estrogens in females. However, the critical molecular events that are coupled to ERα and mediate estrogenic effects on energy balance remain unknown. In the current study, we demonstrated that steroid receptor coactivator-1 (SRC1), a nuclear receptor coactivator, is abundantly expressed by both proopiomelanocortin and steroidogenic factor-1 neurons. We further showed that central administration of an ERα agonist, propyl pyrazole triol, acutely increases physical interaction between SRC1 and ERα in the hypothalamus. Finally, we demonstrated that the effects of estrogens on energy homeostasis are significantly blunted in female mice lacking SRC1 globally. Collectively our results indicate that SRC1 is functionally required to mediate the antiobesity effects of estrogen-ERα signals.
Collapse
Affiliation(s)
- Liangru Zhu
- Children’s Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77479, USA
| | | | | | | | | | | | | | | | | |
Collapse
|