1
|
Jang DK, Park YS, Yoo MW, Hwang SH, Ryu SY, Kwon OK, Hur H, Yoon HM, Eom BW, Ahn HS, Son T, Song KY, Lee HH, Choi MG, An JY, Lee SI, Lee SH, Park DJ. Efficacy of ursodeoxycholic acid for bile reflux after distal gastrectomy in patients with gastric cancer: a secondary analysis of the PEGASUS-D randomized clinical trial. Int J Surg 2024; 110:7824-7831. [PMID: 39422533 PMCID: PMC11634197 DOI: 10.1097/js9.0000000000002127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Few studies have been conducted on the prevention of bile reflux in gastric cancer patients who have undergone gastrectomy. The aim of this study was to evaluate the efficacy and safety of ursodeoxycholic acid (UDCA) in preventing bile reflux after gastrectomy in patients with gastric cancer. METHODS This study was a secondary analysis of the PEGASUS-D trial, a randomized, double-blind, placebo-controlled clinical trial. Adults with a diagnosis of gastric cancer who underwent gastrectomy were enrolled. Eligible participants were randomly assigned to receive 300 mg of UDCA, 600 mg of UDCA, or placebo at a ratio of 1:1:1. UDCA and placebo were administered daily for 52 weeks. The primary outcomes included bile reflux symptoms at each time point, the percentage of participants with bile reflux, and the grade of gastritis. RESULTS Among 521 participants who underwent randomization, 151, 164, and 150 participants were analyzed from the 300 mg UDCA, 600 mg UDCA, and placebo groups, respectively. The difference in symptoms between the three groups was not significant. Bile reflux was less evident in the UDCA group than in the placebo group; however, this difference was significant only in the 300 mg group at 12 months postoperation (odds ratio, 0.44; P =0.0076). A significant reduction in gastritis was also observed in the 300 mg group at 12 months postoperation (odds ratio, 0.50; P =0.0368) compared to the placebo group. CONCLUSIONS This study showed that UDCA administration significantly reduced bile reflux and gastritis by ~50% at the 12 months-postoperative follow-up in patients who underwent gastrectomy for gastric cancer.
Collapse
Affiliation(s)
- Dong Kee Jang
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul
| | - Young Suk Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam-si
| | - Moon-Won Yoo
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Sun-Hwi Hwang
- Department of Surgery and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan
| | - Seong-Yeob Ryu
- Department of Surgery, Chosun University Hospital, Kwangju
| | - Oh Kyoung Kwon
- Department of Surgery, Kyoungpook National University Chilgok Hospital, Daegu
| | - Hoon Hur
- Department of Surgery, Ajou University Hospital, Suwon
| | - Hong Man Yoon
- Center for Gastric Cancer, National Cancer Center, Goyang
| | - Bang Wool Eom
- Center for Gastric Cancer, National Cancer Center, Goyang
| | - Hye Seong Ahn
- Department of Surgery, Boramae Medical Center, Seoul
| | - Taeil Son
- Department of Surgery, Yonsei University Severance Hospital, Seoul
| | - Kyo Young Song
- Department of Surgery, Catholic University Seoul St. Mary’s Hospital, Seoul
| | - Han Hong Lee
- Department of Surgery, Catholic University Seoul St. Mary’s Hospital, Seoul
| | - Min-Gew Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | - Ji Yeong An
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | - Sang-Il Lee
- Department of Surgery, Chungnam National University Hospital, Daejeon
| | - Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul
| | - Do Joong Park
- Department of Surgery and Cancer Research Institute, Seoul National University Bundang Hospital, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhang N, Guo D, Guo N, Yang D, Yan H, Yao J, Xiao H, Shao M, Guan Y, Zhang G. Integration of UPLC-MS/MS-based metabolomics and desorption electrospray ionization-mass spectrometry imaging reveals that Shouhui Tongbian Capsule alleviates slow transit constipation by regulating bile acid metabolism. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124331. [PMID: 39369590 DOI: 10.1016/j.jchromb.2024.124331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Slow transit constipation (STC) is a common intestinal disorder. Some studies reported that Shouhui Tongbian Capsule (SHTB) can effectively mitigate STC symptoms. A detailed understanding of the changes in the endogenous metabolite profile of rats is crucial for a more accurate comprehension of the molecular pathological characteristics of SHTB in treating STC. In the present study, a method integrating metabolomics based on Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and Desorption electrospray ionization (DESI)-mass spectrometry imaging (MSI) was proposed to investigate serum, feces and colon tissue metabolic alterations of STC rats induced by diphenoxylate and the effect of SHTB treatment on metabolism. Then, Enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) analysis for verifying the potential mechanism of SHTB in treating STC. As a result, we first indicated that SHTB significantly improved intestinal peristalsis and low fecal water content in STC rats. Furthermore, after treatment with SHTB, the thickness of muscle layers was increased, demonstrated SHTB's effectiveness in reducing intestinal injury in STC rats. Besides, bile acid (BA) metabolomics based on UPLC-MS/MS revealed significant increase in serum levels of Cholic acid (CA), Deoxycholic acid (DCA), Chenodeoxycholic acid (CDCA), Ursodeoxycholic acid (UDCA), and Glycolithocholic acid (GLCA), whereas the contents of CA and DCA in feces were significantly decreased in STC rats. Nonetheless, they returned to the control levels after the SHTB administration. ELISA results showed that SHTB significantly hindered the excessive reabsorption of BAs by inhibiting apical sodium-dependent bile acid transporter (ASBT), organic solute transporter alpha (OSTα) and organic solute transporter beta (OSTβ) in the ileum tissue of STC rats. Furthermore, the DESI-MSI analysis revealed that SHTB remarkably enhanced DCA in the colon tissue of STC rats. The WB results indicated that SHTB reinstated Takeda G-protein-coupled receptor 5 (TGR5) expression, a receptor for BAs and a key regulator of colonic motility. Consequently, DCA exerted its effects on TGR5, leading to the promotion of colonic motility. This study provided more comprehensive and detailed information about the BA metabolomics in the serum, feces and colon of STC rats. These findings highlighted the promising potential of metabolomics based on UPLC-MS/MS and DESI-MSI method for application in the study of STC diseases.
Collapse
Affiliation(s)
- Na Zhang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dong Guo
- Department of Neurology, Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dawei Yang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Han Yan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Shandong, China
| | - He Xiao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Shandong, China
| | - Mingguo Shao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Shandong, China
| | - Yongxia Guan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Shandong, China.
| | - Guimin Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Shandong, China.
| |
Collapse
|
3
|
Riaz H, Zheng B, Zheng Y, Liu Z, Gu HM, Imran M, Yaqoob T, Bhinder MA, Zhang DW, Zahoor MY. The spectrum of novel ABCB11 gene variations in children with progressive familial intrahepatic cholestasis type 2 in Pakistani cohorts. Sci Rep 2024; 14:18876. [PMID: 39143102 PMCID: PMC11324741 DOI: 10.1038/s41598-024-59945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/17/2024] [Indexed: 08/16/2024] Open
Abstract
Progressive familial intrahepatic cholestasis (PFIC) is a rare childhood manifested disease associated with impaired bile secretion with severe pruritus yellow stool, and sometimes hepatosplenomegaly. PFIC is caused by mutations in ATP8B1, ABCB11, ABCB4, TJP2, NR1H4, SLC51A, USP53, KIF12, ZFYVE19, and MYO5B genes depending on its type. ABCB11 mutations lead to PFIC2 that encodes the bile salt export pump (BSEP). Different mutations of ABCB11 have been reported in different population groups but no data available in Pakistani population being a consanguineous one. We sequenced coding exons of the ABCB11 gene along with its flanking regions in 66 unrelated Pakistani children along with parents with PFIC2 phenotype. We identified 20 variations of ABCB11: 12 in homozygous form, one compound heterozygous, and seven heterozygous. These variants include 11 missenses, two frameshifts, two nonsense mutations, and five splicing variants. Seven variants are novel candidate variants and are not detected in any of the 120 chromosomes from normal ethnically matched individuals. Insilico analysis revealed that four homozygous missense variations have high pathogenic scores. Minigene analysis of splicing variants showed exon skipping and the addition of exon. This data is a useful addition to the disease variants genomic database and would be used in the future to build a diagnostic algorithm.
Collapse
Affiliation(s)
- Hafsa Riaz
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Bixia Zheng
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yucan Zheng
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhifeng Liu
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hong-Mei Gu
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Muhammad Imran
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tahir Yaqoob
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Munir Ahmad Bhinder
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Da-Wei Zhang
- Department of Pediatrics, University of Alberta, Edmonton, Canada.
| | - Muhammad Yasir Zahoor
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
4
|
Jyotsna, Sarkar B, Yadav M, Deka A, Markandey M, Sanyal P, Nagarajan P, Gaikward N, Ahuja V, Mohanty D, Basak S, Gokhale RS. A hepatocyte-specific transcriptional program driven by Rela and Stat3 exacerbates experimental colitis in mice by modulating bile synthesis. eLife 2024; 12:RP93273. [PMID: 39137024 PMCID: PMC11321761 DOI: 10.7554/elife.93273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Hepatic factors secreted by the liver promote homeostasis and are pivotal for maintaining the liver-gut axis. Bile acid metabolism is one such example wherein, bile acid synthesis occurs in the liver and its biotransformation happens in the intestine. Dysfunctional interactions between the liver and the intestine stimulate varied pathological outcomes through its bidirectional portal communication. Indeed, aberrant bile acid metabolism has been reported in inflammatory bowel disease (IBD). However, the molecular mechanisms underlying these crosstalks that perpetuate intestinal permeability and inflammation remain obscure. Here, we identify a novel hepatic gene program regulated by Rela and Stat3 that accentuates the inflammation in an acute experimental colitis model. Hepatocyte-specific ablation of Rela and Stat3 reduces the levels of primary bile acids in both the liver and the gut and shows a restricted colitogenic phenotype. On supplementation of chenodeoxycholic acid (CDCA), knock-out mice exhibit enhanced colitis-induced alterations. This study provides persuasive evidence for the development of multi-organ strategies for treating IBD and identifies a hepatocyte-specific Rela-Stat3 network as a promising therapeutic target.
Collapse
Affiliation(s)
- Jyotsna
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Binayak Sarkar
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Mohit Yadav
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Alvina Deka
- System Immunology Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Manasvini Markandey
- Department of GastroEnterology, All India Institute of Medical SciencesNew DelhiIndia
| | | | - Perumal Nagarajan
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | | | - Vineet Ahuja
- Department of GastroEnterology, All India Institute of Medical SciencesNew DelhiIndia
| | - Debasisa Mohanty
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Soumen Basak
- System Immunology Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Rajesh S Gokhale
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
- Department of Biology, Indian Institute of Science Education and ResearchPashanIndia
| |
Collapse
|
5
|
Crestani E, Benamar M, Phipatanakul W, Rachid R, Chatila TA. Age-specific Metabolomic profiles in children with food allergy. Clin Immunol 2024; 261:109928. [PMID: 38336145 PMCID: PMC10947862 DOI: 10.1016/j.clim.2024.109928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Food allergy (FA) in young children is often associated with eczema, frequently directed to egg/cow milk allergens and has a higher chance of resolution, while FA that persists in older children has less chance of resolution and is less clearly associated with atopy. METHODS Children with FA (n = 62) and healthy controls (n = 28) were categorized into "younger" (≤5 years) and "older" (>5 years). Mass spectrometry-based untargeted metabolomic profiling as wells as cytokine profiling were performed on plasma samples in FA children in each age group. RESULTS Younger FA children manifested unique alterations in bile acids, polyamine metabolites and chemokines associated with Th2 responses, while older FA children displayed pronounced changes in long chain fatty acids, acylcarnitines and proinflammatory cytokines. CONCLUSIONS FA children of different ages manifest unique metabolic changes which may reflect at least in part pathogenic mechanisms and environmental influences operative at different time points in the disease course.
Collapse
Affiliation(s)
- E Crestani
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - M Benamar
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - W Phipatanakul
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - R Rachid
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - T A Chatila
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Yin H, Gao X, Yang H, Xu Z, Wang X, Wang X, Gao Y, Shi Z, Chen X, Cao L, Zhang C, Wang Z, Hu H, Xiao W. Total alditols from Cistanche deserticola attenuate functional constipation by regulating bile acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117420. [PMID: 37967778 DOI: 10.1016/j.jep.2023.117420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE Functional constipation (FC), characterized by chronic constipation, significantly impacts physiological function and induces psychological stress in patients. However, current clinical treatment options for FC are currently limited. Cistanche deserticola, a traditional Chinese medicine that promotes intestinal moisture and bowel relaxation, contains cistanche total alditol extract (CTAE) as its primary active extract. However, the production of CTAE, its overall efficacy, and potential mechanisms for treating FC have yet to been investigated. AIM OF THE STUDY This study aimed to reveal the overall efficacy and potential mechanism of action of CTAE in rats with FC using a combination of stable preparation, pharmacodynamics, non-targeted metabolomics, bile acid metabolomics, and western blotting. MATERIALS AND METHODS Fourteen batches of CTAE underwent quality testing. A rat model of FC was developed using diphenoxylate tablets. The comprehensive pharmacodynamic effects of CTAE on FC were evaluated using fecal characteristics (wet weight, dry weight, and water content), intestinal transmission (colonic EMG amplitude, colonic EMG frequency, propulsion length, and propulsion rate), serum and colon biochemical indicators, distribution of interstitial cells of Cajal (ICC), and pathological examination. Non-targeted metabolomics was performed to assess the changes in endogenous metabolite profiles induced by CTAE. Bile acid metabolomics and western blotting analyses were employed to validate the potential mechanisms of action of CTAE. RESULTS CTAE, with a total content of betaine, mannitol, D-fructose, glucose, and sucrose of (75.67 ± 3.73) %, significantly enhanced intestinal transit, regulated neurotransmitters, increased the expression of c-kit in ICC, and alleviated intestinal inflammation in rats with FC. Non-targeted metabolomics revealed that CTAE significantly alleviated FC-induced metabolic disorders, mainly the biosynthesis of primary bile acids. Targeted metabolomic analysis confirmed that CTAE regulated FC-induced bile acid disorders. Western-blotting results confirmed that CTAE increased the expression of CYP8B1, FGF15, TGR5, and FXR, thereby modulating bile acid synthesis and enterohepatic circulation. CONCLUSION CTAE demonstrates significant therapeutic effects on FC, primarily through the regulation of bile acid synthesis and enterohepatic circulation. These findings provide a promising foundation for the development and clinical application of novel CATE-based drugs.
Collapse
Affiliation(s)
- Hongmei Yin
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Xia Gao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Hao Yang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, 222001, China; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China
| | - Zhongkun Xu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Xuening Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Xuesong Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Yunjia Gao
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ziyi Shi
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xialin Chen
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Liang Cao
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Chenfeng Zhang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Zhenzhong Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Hanfei Hu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China
| | - Wei Xiao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co., Ltd. Lianyungang, 222001, China; Jiangsu Kanion Modern Chinese Medicine Institute, Nanjing, 211100, China; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200120, China.
| |
Collapse
|
7
|
Qu Y, Park SH, Dallas DC. The Role of Bovine Kappa-Casein Glycomacropeptide in Modulating the Microbiome and Inflammatory Responses of Irritable Bowel Syndrome. Nutrients 2023; 15:3991. [PMID: 37764775 PMCID: PMC10538225 DOI: 10.3390/nu15183991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder marked by chronic abdominal pain, bloating, and irregular bowel habits. Effective treatments are still actively sought. Kappa-casein glycomacropeptide (GMP), a milk-derived peptide, holds promise because it can modulate the gut microbiome, immune responses, gut motility, and barrier functions, as well as binding toxins. These properties align with the recognized pathophysiological aspects of IBS, including gut microbiota imbalances, immune system dysregulation, and altered gut barrier functions. This review delves into GMP's role in regulating the gut microbiome, accentuating its influence on bacterial populations and its potential to promote beneficial bacteria while inhibiting pathogenic varieties. It further investigates the gut microbial shifts observed in IBS patients and contemplates GMP's potential for restoring microbial equilibrium and overall gut health. The anti-inflammatory attributes of GMP, especially its impact on vital inflammatory markers and capacity to temper the low-grade inflammation present in IBS are also discussed. In addition, this review delves into current research on GMP's effects on gut motility and barrier integrity and examines the changes in gut motility and barrier function observed in IBS sufferers. The overarching goal is to assess the potential clinical utility of GMP in IBS management.
Collapse
Affiliation(s)
- Yunyao Qu
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (Y.Q.); (S.H.P.)
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA
| | - Si Hong Park
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (Y.Q.); (S.H.P.)
| | - David C. Dallas
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (Y.Q.); (S.H.P.)
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
8
|
Tawulie D, Jin L, Shang X, Li Y, Sun L, Xie H, Zhao J, Liao J, Zhu Z, Cui H, Wen W. Jiang-Tang-San-Huang pill alleviates type 2 diabetes mellitus through modulating the gut microbiota and bile acids metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154733. [PMID: 36870307 DOI: 10.1016/j.phymed.2023.154733] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Jiang-Tang-San-Huang (JTSH) pill, a traditional Chinese medicine (TCM) prescription, has long been applied to clinically treat type 2 diabetes mellitus (T2DM), while the underlying antidiabetic mechanism remains unclarified. Currently, it is believed that the interaction between intestinal microbiota and bile acids (BAs) metabolism mediates host metabolism and promotes T2DM. PURPOSE To elucidate the underlying mechanisms of JTSH for treating T2DM with animal models. METHODS In this study, male SD rats received high-fat diet (HFD) and streptozotocin (STZ) injection to induce T2DM and were treated with different dosages (0.27, 0.54 and 1.08 g/kg) of JTSH pill for 4 weeks; metformin was given as a positive control. Alterations of gut microbiota and BA profiles in the distal ileum were assessed by 16S ribosomal RNA gene sequencing and ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), respectively. Additionally, we conducted quantitative Real Time-PCR and western blotting to determine the mRNA and protein expression levels of intestinal farnesoid X receptor (FXR), fibroblast growth factor 15 (FGF15), Takeda G-protein-coupled receptor 5 (TGR5) and glucagon-like peptide 1 (GLP-1) as well as hepatic cytochrome P450, family 7, subfamily a, poly-peptide 1 (CYP7A1) and cytochrome P450, family 8, subfamily b, poly-peptide 1 (CYP8B1), which are involved in BAs metabolism and enterohepatic circulation. RESULTS Here, the results revealed that JTSH treatment significantly ameliorated hyperglycaemia, insulin resistance (IR), hyperlipidaemia, and pathological changes in the pancreas, liver, kidney and intestine and reduced the serum levels of pro-inflammatory cytokines in T2DM model rats. 16S rRNA sequencing and UPLC-MS/MS showed that JTSH treatment could modulate gut microbiota dysbiosis by preferentially increasing bacteria (e.g., Bacteroides, Lactobacillus, Bifidobacterium) with bile-salt hydrolase (BSH) activity, which might in turn lead to the accumulation of ileal unconjugated BAs (e.g., CDCA, DCA) and further upregulate the intestinal FXR/FGF15 and TGR5/GLP-1 signaling pathways. CONCLUSION The study demonstrated that JTSH treatment could alleviate T2DM by modulating the interaction between gut microbiota and BAs metabolism. These findings suggest that JTSH pill may serve as a promising oral therapeutic agent for T2DM.
Collapse
Affiliation(s)
- Dina Tawulie
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lulu Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xin Shang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yimei Li
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Le Sun
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Haixue Xie
- Yunnan Provincial Hospital of Chinese Medicine, Kunming 650021, China
| | - Jie Zhao
- Yunnan Provincial Hospital of Chinese Medicine, Kunming 650021, China
| | - Jiabao Liao
- Department of Emergency, Jiaxing Hospital of Traditional Chinese Medicine, Hangzhou 310003, China; Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314033, China
| | - Zhangzhi Zhu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Weibo Wen
- Yunnan Provincial Hospital of Chinese Medicine, Kunming 650021, China.
| |
Collapse
|
9
|
Feris F, McRae A, Kellogg TA, McKenzie T, Ghanem O, Acosta A. Mucosal and hormonal adaptations after Roux-en-Y gastric bypass. Surg Obes Relat Dis 2023; 19:37-49. [PMID: 36243547 PMCID: PMC9797451 DOI: 10.1016/j.soard.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 01/12/2023]
Abstract
The aim of this study was to perform a comprehensive literature review regarding the relevant hormonal and histologic changes observed after Roux-en-Y gastric bypass (RYGB). We aimed to describe the relevant hormonal (glucagon-like peptides 1 and 2 [GLP-1 and GLP-2], peptide YY [PYY], oxyntomodulin [OXM], bile acids [BA], cholecystokinin [CCK], ghrelin, glucagon, gastric inhibitory polypeptide [GIP], and amylin) profiles, as well as the histologic (mucosal cellular) adaptations happening after patients undergo RYGB. Our review compiles the current evidence and furthers the understanding of the rationale behind the food intake regulatory adaptations occurring after RYGB surgery. We identify gaps in the literature where the potential for future investigations and therapeutics may lie. We performed a comprehensive database search without language restrictions looking for RYGB bariatric surgery outcomes in patients with pre- and postoperative blood work hormonal profiling and/or gut mucosal biopsies. We gathered the relevant study results and describe them in this review. Where human findings were lacking, we included animal model studies. The amalgamation of physiologic, metabolic, and cellular adaptations following RYGB is yet to be fully characterized. This constitutes a fundamental aspiration for enhancing and individualizing obesity therapy.
Collapse
Affiliation(s)
- Fauzi Feris
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Alison McRae
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Todd A Kellogg
- Division of Endocrine and Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Travis McKenzie
- Division of Endocrine and Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Omar Ghanem
- Division of Endocrine and Metabolic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
10
|
Hashem AM, Cifuentes L, Calderon G, Ricardo-Silgado ML, Gonzalez-Izundegui D, Campos A, McRae A, Franks S, Hurtado MD, Burton D, Petterson XM, Lanza IR, Camilleri M, Acosta A. Effect of caloric intake and macronutrient composition on intestinal cholesterol absorption and bile acids in patients with obesity. Am J Physiol Gastrointest Liver Physiol 2022; 323:G157-G164. [PMID: 35727128 PMCID: PMC9377780 DOI: 10.1152/ajpgi.00108.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 01/31/2023]
Abstract
Obesity is associated with alterations in cholesterol and bile acid (BA) metabolism. However, the interaction among dietary intake, cholesterol absorption, and BA metabolism in patients with obesity remains unclear. We conducted a 4-wk nutritional intervention nonrandomized clinical trial with three different sequential diets for a week in the following order: regular diet (RD); high calorie, high-fat diet (HCHF), washout period on RD; and low-calorie, low-fat diet (LCLF). We provided participants with meal replacements during HCHF and LCLF diets. A total of 16 participants completed the study [n = 8 normal weight (NW); n = 8 with obesity (OB)]. Overall, there was a significant increase in intestinal cholesterol uptake when changing from RD to HCHF and a reduction in intestinal cholesterol uptake from HCHF to LCLF. When analyzing by BMI groups, these findings were similar in patients with NW (RD to HCHF: P < 0.007; HCHF to LCLF: P = 0.02); however, in patients with obesity, the change in intestinal cholesterol uptake was only observed when changing from RD to HCHF (P = 0.006). There was no correlation between cholesterol absorption and fecal bile acids or other markers of BA metabolism in all patients or the subgroups. Dietary caloric content had a significant effect on cholesterol absorption, however, this effect is blunted in patients with obesity. These data are consistent with the impaired effect of a low-fat diet on cholesterol absorption in obesity.NEW & NOTEWORTHY We show how switching from a regular diet to an HCHF increases cholesterol absorption in patients with normal weight and obesity. The decrease in cholesterol absorption from an HCHF to an LCLF, on the other hand, was only seen in normal-weight controls, underlining the importance of body weight in this regulation. In addition, changes in caloric and fat content had an immediate and direct effect on hepatic bile acid production.
Collapse
Affiliation(s)
- Anas Mohamad Hashem
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Lizeth Cifuentes
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Gerardo Calderon
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Maria Laura Ricardo-Silgado
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Daniel Gonzalez-Izundegui
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Alejandro Campos
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Alison McRae
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Shawna Franks
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Maria Daniela Hurtado
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, Mayo Clinic Health System, La Crosse, Wisconsin
| | - Duane Burton
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Ian R Lanza
- Metabolomics Core Laboratory, Mayo Clinic, Rochester, Minnesota
- Endocrinology Research Unit, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Michael Camilleri
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
11
|
Yang T, Yang S, Zhao J, Wang P, Li S, Jin Y, Liu Z, Zhang X, Zhang Y, Zhao Y, Liao J, Li S, Hua K, Gu Y, Wang D, Huang J. Comprehensive Analysis of Gut Microbiota and Fecal Bile Acid Profiles in Children With Biliary Atresia. Front Cell Infect Microbiol 2022; 12:914247. [PMID: 35782134 PMCID: PMC9247268 DOI: 10.3389/fcimb.2022.914247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundBiliary atresia (BA) is the most common cholestatic liver disease in neonates. Herein, we aimed at characterizing the gut microbiota and fecal bile acid profiles of BA patients, defining the correlations between them, and evaluating the relationship between the clinical pathogenesis and changes in the gut microbiota and bile acid profiles.MethodsA total of 84 fecal samples from BA patients (n = 46) and matched healthy controls (HCs, n = 38) were subjected to sequencing by 16S rRNA gene amplification, and fecal bile acid were analyzed by targeted metabolomics.FindingsCompared with the controls, a structural separation of the intestinal flora of BA patients was uncovered, which was accompanied by changes in the composition of fecal bile acids. In the BA group, Actinobacillus, Monoglobus, and Agathobacter were enriched in patients without cholangitis (p < 0.05). Selenomonadaceae and Megamonas were more abundant in patients without recurrent cholangitis episodes (p < 0.05), while Lachnospiraceae and Ruminococcaceae were enriched in patients with multiple recurrences of cholangitis (p < 0.05). Postoperative jaundice clearance was associated with Campylobacter and Rikenellaceae (p < 0.05), and tauroursodeoxycholic acid was associated with jaundice clearance (p < 0.001).ConclusionBA patients are characterized by different compositions of gut microbiota and bile acids, and their interaction is involved in the process of liver damage in BA, which may be closely related to the occurrence of postoperative cholangitis and jaundice clearance.
Collapse
|
12
|
Songisepp E, Stsepetova J, Rätsep M, Kuus L, Piir A, Kilk K, Mikelsaar M. Polyfunctional metabolic properties of the human strain Lactiplantibacillus plantarum Inducia (DSM 21379): Experimental and clinical approaches. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
13
|
Sakavitsi ME, Breynaert A, Nikou T, Lauwers S, Pieters L, Hermans N, Halabalaki M. Availability and Metabolic Fate of Olive Phenolic Alcohols Hydroxytyrosol and Tyrosol in the Human GI Tract Simulated by the In Vitro GIDM-Colon Model. Metabolites 2022; 12:391. [PMID: 35629895 PMCID: PMC9144922 DOI: 10.3390/metabo12050391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/15/2023] Open
Abstract
Hydroxytyrosol (HTyr) and tyrosol (Tyr) are the most well studied phenolic alcohols of olive oil and olive products demonstrating numerous and significant beneficial health effects. However, their activity in the human organism as food bioactives is strongly associated with their bioavailability and metabolism, while manifested through their metabolites. Nevertheless, there are limited studies investigating their biotransformation and mainly catabolism by gut microflora under a holistic interpretation close to the human organism. Thus, in the present study, the GastroIntestinal Dialysis (GIDM)-colon model, a continuous flow in vitro dialysis system mimicking physiological conditions during human gastrointestinal digestion, was used to explore the metabolism of HTyr and Tyr as pure compounds. The GIDM-colon model simulates absorption from the lumen to the mucosa, followed by the colon phase using pooled human fecal suspensions. Samples were collected at different time points and analyzed via LC-Orbitrap MS. An integrated approach combining Multivariate Data Analysis (MVA) and thorough dereplication procedures led to the identification of HTyr and Tyr metabolites in different phases (gastric, small intestine, and colon), yielding also valuable information about metabolites kinetics. To our knowledge, this is the first study reporting full spectrometric data of HTyr and Tyr metabolites along with possible transformation mechanisms in the GI tract.
Collapse
Affiliation(s)
- Maria Eleni Sakavitsi
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.E.S.); (T.N.)
| | - Annelies Breynaert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (A.B.); (S.L.); (L.P.)
| | - Theodora Nikou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.E.S.); (T.N.)
| | - Stef Lauwers
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (A.B.); (S.L.); (L.P.)
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (A.B.); (S.L.); (L.P.)
| | - Nina Hermans
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (A.B.); (S.L.); (L.P.)
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.E.S.); (T.N.)
| |
Collapse
|
14
|
Elwing JE, Atassi H, Rogers BD, Sayuk GS. Emerging therapies in the management of Irritable Bowel Syndrome (IBS). Expert Opin Emerg Drugs 2022; 27:55-73. [PMID: 35266839 DOI: 10.1080/14728214.2022.2052043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Irritable bowel syndrome (IBS) is a common, symptom-based disorder of chronic abdominal pain and altered bowel habits. The pathogenesis of IBS is multifactorial, leading to the potential for the development of multiple, diverse treatment strategies. This mechanistic heterogeneity also leads to the realization that available therapies are only effective in a subset of IBS suffers. Current US Food and Drug Administration (FDA) approved therapies for IBS with diarrhea (IBS-D) and IBS with constipation (IBS-C) are reviewed. Limited symptom responses and side effect experiences lead to considerable patient dissatisfaction with currently available IBS treatments. Only a small percentage of IBS patients are on prescription therapies underscoring the potential market and need for additional therapeutic options. AREAS COVERED : Expanding on currently available therapies, the serotonergic and endogenous opioid receptor systems continue to be a focus of future IBS treatment development. Additional novel emerging therapies include the endogenous cannabinoid system, bile acid secretion and sequestration, and exploit our enhanced understanding of visceral sensory signaling and intestinal secretomotor function. EXPERT OPINION While challenges remain for the future development of IBS therapies, the diverse etiologies underlying the disorder present an opportunity for novel therapies. Hence, great potential is anticipated for future IBS treatment options.
Collapse
Affiliation(s)
- Jill E Elwing
- St. Louis Veterans Affairs Medical Center, St. Louis, MO, USA
| | - Hadi Atassi
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - Benjamin D Rogers
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA.,Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory S Sayuk
- St. Louis Veterans Affairs Medical Center, St. Louis, MO, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Shen Y, Liu K, Luo X, Guan Q, Cheng L. A simple and reliable bile acid assay in human serum by LC-MS/MS. J Clin Lab Anal 2022; 36:e24279. [PMID: 35137454 PMCID: PMC8906021 DOI: 10.1002/jcla.24279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 01/05/2023] Open
Abstract
Background Bile acids, as important signaling molecules and regulatory factors acting on glucose, lipid, and energy metabolism, are always involved in liver, biliary, and intestinal diseases. Development and validation of a simple liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for determination of bile acids is significant for the routine clinical testing. Methods Fifty microlitre of serum was mixed with 10 μl of the internal standard working solution and then 140 μl of methanol for protein precipitation. After centrifuged, the supernatant was directly used for LC‐MS/MS analysis. Results Good separation of all bile acid species was achieved. The method was validated with consistent linearity for individual bile acids, good recovery, low carryover, satisfactory sample stability, and analytical specificity against hemolysis, lipemia, and bilirubinemia. The intra‐day and the inter‐day imprecision values were in the range of 1.53%–10.63% and 3.01%–13.98%, respectively. No obvious matrix effect was observed. The reference intervals of bile acids in adults have been established for the clinical testing. Conclusions The low sample volume, simple sample preparation, good separation of all species, and satisfying validation results make this LC‐MS/MS approach suitable for usage as a high‐throughput assay in routine clinical laboratories.
Collapse
Affiliation(s)
- Ying Shen
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ke Liu
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xia Luo
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qing Guan
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Liming Cheng
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
16
|
Rotondo-Trivette S, Wang B, Gayer C, Parsana R, Luan Y, Sun F, Michail S. Decreased secondary faecal bile acids in children with ulcerative colitis and Clostridioides difficile infection. Aliment Pharmacol Ther 2021; 54:792-804. [PMID: 34218431 PMCID: PMC8384671 DOI: 10.1111/apt.16496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with ulcerative colitis (UC) have an increased risk of Clostridioides difficile infection (CDI). There is a well-documented relationship between bile acids and CDI. AIMS To evaluate faecal bile acid profiles and gut microbial changes associated with CDI in children with UC. METHODS This study was conducted at Children's Hospital Los Angeles. Faecal bile acids and gut microbial genes related to bile acid metabolism were measured in 29 healthy children, 23 children with mild to moderate UC without prior CDI (UC group), 16 children with mild to moderate UC with prior CDI (UC+CDI group) and 10 children without UC with prior CDI (CDI group). RESULTS Secondary faecal bile acids, especially lithocholic acid (3.296 vs 10.793, P ≤ 0.001) and ursodeoxycholic acid (7.414 vs 10.617, P ≤ 0.0001), were significantly lower in children with UC+CDI when compared to UC alone. Secondary faecal bile acids can predict disease status between these groups with 84.6% accuracy. Additionally, gut microbial genes coding for bile salt hydrolase, 7α-hydroxysteroid dehydrogenase and 7α/β-dehydroxylation were all diminished in children with UC+CDI compared to children with UC alone. CONCLUSIONS Bile acids can distinguish between children with UC based on their prior CDI status. Bile acid profile changes can be explained by gut microbial genes encoding for bile salt hydrolase, 7α-hydroxysteroid dehydrogenase and 7α/β-dehydroxylation. Bile acid profiles may be helpful as biomarkers to identify UC children who have had CDI and may serve as future therapeutic targets.
Collapse
Affiliation(s)
| | - Beibei Wang
- Quantitative and Computational Biology Program, Department of Biological Sciences, University of Southern California,School of Mathematics, Shandong University, Jinan, Shandong, China
| | - Christopher Gayer
- Keck School of Medicine, University of Southern California, Los Angeles, California,Children’s Hospital of Los Angeles, Los Angeles, California
| | - Riddhi Parsana
- Children’s Hospital of Los Angeles, Los Angeles, California
| | - Yihui Luan
- School of Mathematics, Shandong University, Jinan, Shandong, China
| | - Fengzhu Sun
- Quantitative and Computational Biology Program, Department of Biological Sciences, University of Southern California
| | - Sonia Michail
- Keck School of Medicine, University of Southern California, Los Angeles, California,Children’s Hospital of Los Angeles, Los Angeles, California
| |
Collapse
|
17
|
Pogodina AV, Romanitsa AI, Rychkova LV. Obesity and functional bowel disorders: are they linked? OBESITY AND METABOLISM 2021; 18:132-141. [DOI: 10.14341/omet12706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Obesity and functional bowel disease (FBD) are affecting a large number of people worldwide. They have psychosocial consequences and associated with considerable healthcare resource use. The purpose of this review was a comprehensive study of the relationship between obesity and FBD, as well as mechanisms to explain this relationship. An analysis of the literature provides strong evidence of a link between obesity and diarrhea, but there is currently insufficient data to speak confidently about the link between obesity and irritable bowel syndrome. Most studies suggest that adult obesity is not associated or negatively associated with constipation. The association of obesity with diarrhea is most convincingly explained through diet, eating behavior, changes in the metabolism of bile acids, accelerated colonic transit, altered intestinal microbiota and associated inflammation and increased intestinal permeability. Medicines taken by patients, as well as non-alcoholic fatty liver disease, can play their own role.Planning and conducting studies, including longitudinal ones, based on valid diagnostic criteria and taking into account the widest possible range of confounders, will allow a deeper study of the problem of comorbidity of obesity and FBD. This will help optimize the treatment of these diseases.
Collapse
Affiliation(s)
- A. V. Pogodina
- Scientific Center for Family Health and Human Reproduction Problems
| | - A. I. Romanitsa
- Scientific Center for Family Health and Human Reproduction Problems
| | - L. V. Rychkova
- Scientific Center for Family Health and Human Reproduction Problems
| |
Collapse
|
18
|
Abstract
INTRODUCTION Bile acids, such as chenodeoxycholic acid, play an important role in digestion but are also involved in intestinal motility, fluid homeostasis, and humoral activity. Colonic delivery of sodium chenodeoxycholate (CDC) has demonstrated clinical efficacy in treating irritable bowel syndrome with constipation but was associated with a high frequency of abdominal pain. We hypothesized that these adverse effects were triggered by local super-physiological CDC levels caused by an unfavorable pharmacokinetic profile of the delayed release formulation. METHODS We developed novel release matrix systems based on hydroxypropyl methylcellulose (HPMC) for sustained release of CDC. These included standard HPMC formulations as well as bi-layered formulations to account for potential delivery failures due to low colonic fluid in constipated patients. We evaluated CDC release profiles in silico (pharmacokinetic modeling), in vitro and in vivo in swine (pharmacokinetics, rectal manometry). RESULTS For the delayed release formulation in vitro release studies demonstrated pH triggered dose dumping which was associated with giant colonic contractions in vivo. Release from the bi-layered HPMC systems provided controlled release of CDC while minimizing the frequency of giant contractions and providing enhanced exposure as compared to standard HPMC formulations in vivo. DISCUSSION Bi-phasic CDC release could help treat constipation while mitigating abdominal pain observed in previous clinical trials. Further studies are necessary to demonstrate the therapeutic potential of these systems in humans.
Collapse
|
19
|
Guz M, Jeleniewicz W, Malm A, Korona-Glowniak I. A Crosstalk between Diet, Microbiome and microRNA in Epigenetic Regulation of Colorectal Cancer. Nutrients 2021; 13:2428. [PMID: 34371938 PMCID: PMC8308570 DOI: 10.3390/nu13072428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
A still growing interest between human nutrition in relation to health and disease states can be observed. Dietary components shape the composition of microbiota colonizing our gastrointestinal tract which play a vital role in maintaining human health. There is a strong evidence that diet, gut microbiota and their metabolites significantly influence our epigenome, particularly through the modulation of microRNAs. These group of small non-coding RNAs maintain cellular homeostasis, however any changes leading to impaired expression of miRNAs contribute to the development of different pathologies, including neoplastic diseases. Imbalance of intestinal microbiota due to diet is primary associated with the development of colorectal cancer as well as other types of cancers. In the present work we summarize current knowledge with particular emphasis on diet-microbiota-miRNAs axis and its relation to the development of colorectal cancer.
Collapse
Affiliation(s)
- Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (I.K.-G.)
| | - Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (I.K.-G.)
| |
Collapse
|
20
|
di Gregorio MC, Cautela J, Galantini L. Physiology and Physical Chemistry of Bile Acids. Int J Mol Sci 2021; 22:1780. [PMID: 33579036 PMCID: PMC7916809 DOI: 10.3390/ijms22041780] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Bile acids (BAs) are facial amphiphiles synthesized in the body of all vertebrates. They undergo the enterohepatic circulation: they are produced in the liver, stored in the gallbladder, released in the intestine, taken into the bloodstream and lastly re-absorbed in the liver. During this pathway, BAs are modified in their molecular structure by the action of enzymes and bacteria. Such transformations allow them to acquire the chemical-physical properties needed for fulling several activities including metabolic regulation, antimicrobial functions and solubilization of lipids in digestion. The versatility of BAs in the physiological functions has inspired their use in many bio-applications, making them important tools for active molecule delivery, metabolic disease treatments and emulsification processes in food and drug industries. Moreover, moving over the borders of the biological field, BAs have been largely investigated as building blocks for the construction of supramolecular aggregates having peculiar structural, mechanical, chemical and optical properties. The review starts with a biological analysis of the BAs functions before progressively switching to a general overview of BAs in pharmacology and medicine applications. Lastly the focus moves to the BAs use in material science.
Collapse
Affiliation(s)
- Maria Chiara di Gregorio
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jacopo Cautela
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
21
|
Du G, Del Giudice A, Alfredsson V, Carnerup AM, Pavel NV, Loh W, Masci G, Nyström B, Galantini L, Schillén K. Effect of temperature on the association behavior in aqueous mixtures of an oppositely charged amphiphilic block copolymer and bile salt. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Calderon G, McRae A, Rievaj J, Davis J, Zandvakili I, Linker-Nord S, Burton D, Roberts G, Reimann F, Gedulin B, Vella A, LaRusso NF, Camilleri M, Gribble FM, Acosta A. Ileo-colonic delivery of conjugated bile acids improves glucose homeostasis via colonic GLP-1-producing enteroendocrine cells in human obesity and diabetes. EBioMedicine 2020; 55:102759. [PMID: 32344198 PMCID: PMC7186521 DOI: 10.1016/j.ebiom.2020.102759] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background The bile acid (BA) pathway plays a role in regulation of food intake and glucose metabolism, based mainly on findings in animal models. Our aim was to determine whether the BA pathway is altered and correctable in human obesity and diabetes. Methods We conducted 3 investigations: 1) BA receptor pathways were studied in NCI-H716 enteroendocrine cell (EEC) line, whole human colonic mucosal tissue and in human colonic EEC isolated by Fluorescence-activated Cell Sorting (ex vivo) from endoscopically-obtained biopsies colon mucosa; 2) We characterized the BA pathway in 307 participants by measuring during fasting and postprandial levels of FGF19, 7αC4 and serum BA; 3) In a placebo-controlled, double-blind, randomised, 28-day trial, we studied the effect of ileo-colonic delivery of conjugated BAs (IC-CBAS) on glucose metabolism, incretins, and lipids, in participants with obesity and diabetes. Findings Human colonic GLP-1-producing EECs express TGR5, and upon treatment with bile acids in vitro, human EEC differentially expressed GLP-1 at the protein and mRNA level. In Ussing Chamber, GLP-1 release was stimulated by Taurocholic acid in either the apical or basolateral compartment. FGF19 was decreased in obesity and diabetes compared to controls. When compared to placebo, IC-CBAS significantly decreased postprandial glucose, fructosamine, fasting insulin, fasting LDL, and postprandial FGF19 and increased postprandial GLP-1 and C-peptide. Increase in faecal BA was associated with weight loss and with decreased fructosamine. Interpretations In humans, BA signalling machinery is expressed in colonic EECs, deficient in obesity and diabetes, and when stimulated with IC-CBAS, improved glucose homeostasis. ClinicalTrials.gov number, NCT02871882, NCT02033876. Funding Research support and drug was provided by Satiogen Pharmaceuticals (San Diego, CA). AA, MC, and NFL report grants (AA- C-Sig P30DK84567, K23 DK114460; MC- NIH R01 DK67071; NFL- R01 DK057993) from the NIH. JR was supported by an Early Career Grant from Society for Endocrinology.
Collapse
Affiliation(s)
- Gerardo Calderon
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Alison McRae
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Juraj Rievaj
- University of Cambridge, UK; Current affiliation: Dosage Form Design & Development, AstraZeneca Granta Park, Cambridge CB21 6GH, UK
| | - Judith Davis
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Inuk Zandvakili
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Sara Linker-Nord
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Duane Burton
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Geoffrey Roberts
- Current affiliation: Dosage Form Design & Development, AstraZeneca Granta Park, Cambridge CB21 6GH, UK
| | | | | | - Adrian Vella
- Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Nicholas F LaRusso
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States
| | | | - Andres Acosta
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Charlton 8-142, 200 First St. S.W., Rochester, MN 55905, United States.
| |
Collapse
|
23
|
Talavera-Urquijo E, Beisani M, Balibrea JM, Alverdy JC. Is bariatric surgery resolving NAFLD via microbiota-mediated bile acid ratio reversal? A comprehensive review. Surg Obes Relat Dis 2020; 16:1361-1369. [PMID: 32336663 DOI: 10.1016/j.soard.2020.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/18/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
Despite the fact that there is still insufficient evidence to consider non-alcoholic fatty liver disease (NAFLD) as an stand-alone indication for bariatric surgery, many clinical and histopathological beneficial effects on both NAFLD and non-alcoholic steatohepatitis (NASH) have been shown. Although weight loss seems to be the obvious mechanism, weight-loss independent factors are also believed to be involved. Among them, changes in gut microbiota and bile acids (BA) composition may be playing an unappreciated role in the improvement of NAFLD. In this review we examine the mechanisms and interdependence of the gut microbiota and BA, and their influence on NAFLD pathogenesis and its reversal following bariatric surgery. According to the currently available evidence, gut microbiota has a major influence on BA composition. In fact, both BA and microbiome disturbances (dysbiosis) play a role in the etiopathogenesis of NAFLD and might be potential therapeutic targets. In addition, bariatric surgery can modify the intraluminal ileal environment in a way that causes significant repopulation of the gut microbiota and a reversal of the plasma primary/secondary BA ratio, which, in turn, induces weigh-independent metabolic improvements.
Collapse
Affiliation(s)
- Eider Talavera-Urquijo
- Department of General & Digestive Surgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Beisani
- Department of Surgery, Hospital del Mar, Barcelona, Spain
| | - José M Balibrea
- Department of Gastrointestinal Surgery, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain.
| | - John C Alverdy
- Department of Surgery University of Chicago, Pritzker School of Medicine, Chicago, Illinois
| |
Collapse
|
24
|
Crestani E, Harb H, Charbonnier LM, Leirer J, Motsinger-Reif A, Rachid R, Phipatanakul W, Kaddurah-Daouk R, Chatila TA. Untargeted metabolomic profiling identifies disease-specific signatures in food allergy and asthma. J Allergy Clin Immunol 2020; 145:897-906. [PMID: 31669435 PMCID: PMC7062570 DOI: 10.1016/j.jaci.2019.10.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Food allergy (FA) affects an increasing proportion of children for reasons that remain obscure. Novel disease biomarkers and curative treatment options are strongly needed. OBJECTIVE We sought to apply untargeted metabolomic profiling to identify pathogenic mechanisms and candidate disease biomarkers in patients with FA. METHODS Mass spectrometry-based untargeted metabolomic profiling was performed on serum samples of children with either FA alone, asthma alone, or both FA and asthma, as well as healthy pediatric control subjects. RESULTS In this pilot study patients with FA exhibited a disease-specific metabolomic signature compared with both control subjects and asthmatic patients. In particular, FA was uniquely associated with a marked decrease in sphingolipid levels, as well as levels of a number of other lipid metabolites, in the face of normal frequencies of circulating natural killer T cells. Specific comparison of patients with FA and asthmatic patients revealed differences in the microbiota-sensitive aromatic amino acid and secondary bile acid metabolism. Children with both FA and asthma exhibited a metabolomic profile that aligned with that of FA alone but not asthma. Among children with FA, the history of severe systemic reactions and the presence of multiple FAs were associated with changes in levels of tryptophan metabolites, eicosanoids, plasmalogens, and fatty acids. CONCLUSIONS Children with FA have a disease-specific metabolomic profile that is informative of disease mechanisms and severity and that dominates in the presence of asthma. Lower levels of sphingolipids and ceramides and other metabolomic alterations observed in children with FA might reflect the interplay between an altered microbiota and immune cell subsets in the gut.
Collapse
Affiliation(s)
- Elena Crestani
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Hani Harb
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Jonathan Leirer
- Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC
| | - Rima Rachid
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Wanda Phipatanakul
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences and the Duke Institute for Brain Sciences, Duke University, Durham, NC
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
25
|
Luo ZL, Cheng L, Wang T, Tang LJ, Tian FZ, Xiang K, Cui L. Bile Acid Transporters Are Expressed and Heterogeneously Distributed in Rat Bile Ducts. Gut Liver 2020; 13:569-575. [PMID: 30919600 PMCID: PMC6743800 DOI: 10.5009/gnl18265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Cholangiocytes are capable of reabsorbing bile salts from bile, but the pathophysiological significance of this process is unclear. To this end, we detected the expression and distribution of bile acid transport proteins in cholangiocytes from normal rat liver and analyzed the possible pathophysiological significance. Methods Bile duct tissues of Sprague-Dawley rats were isolated by enzymatic digestion and mechanical isolation, and then divided into large and small bile duct tissues. Immunohistochemistry, real-time polymerase chain reaction and Western blotting were used to determine the expression of the apical sodium-dependent bile acid transporter (ASBT), ileal bile acid binding protein (IBABP), and basolateral organic solute transporter α (Ostα) in the biliary tract system of rats. Differences in the expression and distribution of these proteins were analyzed. Results In cholangiocytes, ASBT and IBABP were mainly expressed in cholangiocytes of the large bile ducts, in which the expression of both was significantly higher than that in the small ducts (p<0.05). Ostα was simultaneously expressed in cholangiocytes of both the large and small bile ducts, showing no significant difference in expression between the two groups of bile ducts (p>0.05). Conclusions Bile acid transporters are expressed and heterogeneously distributed in rat bile ducts, indicating that bile acid reabsorption by cholangiocytes might mainly occur in the large bile ducts. These findings may help explore the physiology of bile ducts and the pathogenesis of various cholangiopathies.
Collapse
Affiliation(s)
- Zhu-Lin Luo
- Departments of General Surgery, Chengdu Military General Hospital, Chengdu, China
| | - Long Cheng
- Departments of General Surgery, Chengdu Military General Hospital, Chengdu, China
| | - Tao Wang
- Departments of General Surgery, Chengdu Military General Hospital, Chengdu, China
| | - Li-Jun Tang
- Departments of General Surgery, Chengdu Military General Hospital, Chengdu, China
| | - Fu-Zhou Tian
- Departments of General Surgery, Chengdu Military General Hospital, Chengdu, China
| | - Ke Xiang
- Departments of General Surgery, Chengdu Military General Hospital, Chengdu, China
| | - Lin Cui
- Departments of Orthopedics, Chengdu Military General Hospital, Chengdu, China
| |
Collapse
|
26
|
Wang X, Zheng R, Yao Q, Liang Z, Wu M, Wang H. Effects of fluoride on the histology, lipid metabolism, and bile acid secretion in liver of Bufo gargarizans larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113052. [PMID: 31465901 DOI: 10.1016/j.envpol.2019.113052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/12/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
In our study, Bufo gargarizans (B. gargarizans) larvae were exposed to control, 0.5, 5, 10 and 50 mg/L of NaF from Gs 26 to 42. At Gs 42, we evaluated the changes of liver histology and the mRNA levels of target genes in liver. In addition, we also examined the composition and content of fatty acids. Histological analysis revealed that fluoride caused liver injury, such as the increase of number of melanomacrophage centres, atrophy of nucleus, dilation of bile canaliculus, and decrease of quantity, degradation and deposition of lipid droplets. The results of RT-qPCR indicated that exposure to 5, 10 and 50 mg/L of NaF significantly decreased the transcript levels of genes related to fatty acid synthesis (FASN, FAE, MECR, KAR and TECR) in liver. Besides, mRNA expression of genes involved in fatty acid β-oxidation (ECHS1, HADHA, SCP2, CPT2, ACAA1 and ACAA2) and oxidative stress (SOD, GPx, MICU1 and HSP90) was significantly downregulated in 0.5, 5, 10 and 50 mg/L of NaF treatment groups. Also, in the relative expression of genes associated with synthesis and secretion of bile acid, BSEP significantly increased at 0.5, 5 and 50 mg/L of NaF while HSD3B7 significantly reduced in 0.5, 5, 10 and 50 mg/L of NaF. Finally, the fatty acid extraction and GC-MS analysis showed that the content of saturated fatty acids (SFAs) was decreased and the content of polyunsaturated fatty acids (PUFAs) was increased in all fluoride treatment groups. Taken together, the present results indicated that fluoride-induced the histological alterations of liver might be linked to the disorder of lipid metabolism, oxidative damage.
Collapse
Affiliation(s)
- Xianchan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Rui Zheng
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Qiong Yao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Zhijia Liang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, PR China.
| |
Collapse
|
27
|
Castro J, Harrington AM, Lieu T, Garcia-Caraballo S, Maddern J, Schober G, O’Donnell T, Grundy L, Lumsden AL, Miller P, Ghetti A, Steinhoff MS, Poole DP, Dong X, Chang L, Bunnett NW, Brierley SM. Activation of pruritogenic TGR5, MrgprA3, and MrgprC11 on colon-innervating afferents induces visceral hypersensitivity. JCI Insight 2019; 4:131712. [PMID: 31536477 PMCID: PMC6824308 DOI: 10.1172/jci.insight.131712] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Itch induces scratching that removes irritants from the skin, whereas pain initiates withdrawal or avoidance of tissue damage. While pain arises from both the skin and viscera, we investigated whether pruritogenic irritant mechanisms also function within visceral pathways. We show that subsets of colon-innervating sensory neurons in mice express, either individually or in combination, the pruritogenic receptors Tgr5 and the Mas-gene-related GPCRs Mrgpra3 and Mrgprc11. Agonists of these receptors activated subsets of colonic sensory neurons and evoked colonic afferent mechanical hypersensitivity via a TRPA1-dependent mechanism. In vivo intracolonic administration of individual TGR5, MrgprA3, or MrgprC11 agonists induced pronounced visceral hypersensitivity to colorectal distension. Coadministration of these agonists as an "itch cocktail" augmented hypersensitivity to colorectal distension and changed mouse behavior. These irritant mechanisms were maintained and enhanced in a model of chronic visceral hypersensitivity relevant to irritable bowel syndrome. Neurons from human dorsal root ganglia also expressed TGR5, as well as the human ortholog MrgprX1, and showed increased responsiveness to pruritogenic agonists in pathological states. These data support the existence of an irritant-sensing system in the colon that is a visceral representation of the itch pathways found in skin, thereby contributing to sensory disturbances accompanying common intestinal disorders.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrea M. Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Gudrun Schober
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Tracey O’Donnell
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Amanda L. Lumsden
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul Miller
- AnaBios Corporation, San Diego, California, USA
| | | | - Martin S. Steinhoff
- Department of Dermatology and Dermatology Immunology Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine-Qatar and Weill Cornell University, New York, New York, USA
- School of Medicine Qatar University, Doha, Qatar
| | - Daniel P. Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lin Chang
- G. Oppenheimer Centre for Neurobiology of Stress and Resilience, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California, USA
| | - Nigel W. Bunnett
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery and
- Department of Pharmacology, Columbia University, New York, New York, USA
| | - Stuart M. Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
28
|
Shin A, Xu H, Imperiale TF. Associations of chronic diarrhoea with non-alcoholic fatty liver disease and obesity-related disorders among US adults. BMJ Open Gastroenterol 2019; 6:e000322. [PMID: 31523443 PMCID: PMC6711435 DOI: 10.1136/bmjgast-2019-000322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
Mechanisms explaining observed associations between diarrhoea and obesity or increased body mass index (BMI) are unclear.
Collapse
Affiliation(s)
- Andrea Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Huiping Xu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thomas F Imperiale
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Center of Innovation, Health Services Research and Development, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, United States
| |
Collapse
|
29
|
Jin LH, Fang ZP, Fan MJ, Huang WD. Bile-ology: from bench to bedside. J Zhejiang Univ Sci B 2019; 20:414-427. [PMID: 31090267 PMCID: PMC6568232 DOI: 10.1631/jzus.b1900158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
Bile acids (BAs) are originally known as detergents essential for the digestion and absorption of lipids. In recent years, extensive research has unveiled new functions of BAs as gut hormones that modulate physiological and pathological processes, including glucose and lipid metabolism, energy expenditure, inflammation, tumorigenesis, cardiovascular disease, and even the central nervous system in addition to cholesterol homeostasis, enterohepatic protection and liver regeneration. BAs are closely linked with gut microbiota which might explain some of their crucial roles in organs. The signaling actions of BAs can also be mediated through specific nuclear receptors and membrane-bound G protein-coupled receptors. Several pharmacological agents or bariatric surgeries have demonstrated efficacious therapeutic effects on metabolic diseases through targeting BA signaling. In this mini-review, we summarize recent advances in bile-ology, focusing on its translational studies.
Collapse
Affiliation(s)
- Li-hua Jin
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
- State Key Laboratory of Cellular Stress Biology; Innovation Center for Cell Signaling Network; School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Zhi-peng Fang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Min-jie Fan
- College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Wen-dong Huang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
30
|
MahmoudianDehkordi S, Arnold M, Nho K, Ahmad S, Jia W, Xie G, Louie G, Kueider-Paisley A, Moseley MA, Thompson JW, St John Williams L, Tenenbaum JD, Blach C, Baillie R, Han X, Bhattacharyya S, Toledo JB, Schafferer S, Klein S, Koal T, Risacher SL, Kling MA, Motsinger-Reif A, Rotroff DM, Jack J, Hankemeier T, Bennett DA, De Jager PL, Trojanowski JQ, Shaw LM, Weiner MW, Doraiswamy PM, van Duijn CM, Saykin AJ, Kastenmüller G, Kaddurah-Daouk R. Altered bile acid profile associates with cognitive impairment in Alzheimer's disease-An emerging role for gut microbiome. Alzheimers Dement 2019; 15:76-92. [PMID: 30337151 PMCID: PMC6487485 DOI: 10.1016/j.jalz.2018.07.217] [Citation(s) in RCA: 415] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/01/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Increasing evidence suggests a role for the gut microbiome in central nervous system disorders and a specific role for the gut-brain axis in neurodegeneration. Bile acids (BAs), products of cholesterol metabolism and clearance, are produced in the liver and are further metabolized by gut bacteria. They have major regulatory and signaling functions and seem dysregulated in Alzheimer's disease (AD). METHODS Serum levels of 15 primary and secondary BAs and their conjugated forms were measured in 1464 subjects including 370 cognitively normal older adults, 284 with early mild cognitive impairment, 505 with late mild cognitive impairment, and 305 AD cases enrolled in the AD Neuroimaging Initiative. We assessed associations of BA profiles including selected ratios with diagnosis, cognition, and AD-related genetic variants, adjusting for confounders and multiple testing. RESULTS In AD compared to cognitively normal older adults, we observed significantly lower serum concentrations of a primary BA (cholic acid [CA]) and increased levels of the bacterially produced, secondary BA, deoxycholic acid, and its glycine and taurine conjugated forms. An increased ratio of deoxycholic acid:CA, which reflects 7α-dehydroxylation of CA by gut bacteria, strongly associated with cognitive decline, a finding replicated in serum and brain samples in the Rush Religious Orders and Memory and Aging Project. Several genetic variants in immune response-related genes implicated in AD showed associations with BA profiles. DISCUSSION We report for the first time an association between altered BA profile, genetic variants implicated in AD, and cognitive changes in disease using a large multicenter study. These findings warrant further investigation of gut dysbiosis and possible role of gut-liver-brain axis in the pathogenesis of AD.
Collapse
Affiliation(s)
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, HI, USA; Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoxiang Xie
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Gregory Louie
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | | | - M Arthur Moseley
- Duke Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Durham, NC, USA
| | - J Will Thompson
- Duke Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Durham, NC, USA
| | - Lisa St John Williams
- Duke Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Durham, NC, USA
| | - Jessica D Tenenbaum
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | | | - Xianlin Han
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sudeepa Bhattacharyya
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jon B Toledo
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA
| | | | | | | | - Shannon L Risacher
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mitchel Allan Kling
- Behavioral Health Service, Crescenz VA Medical Center and Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alison Motsinger-Reif
- Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Daniel M Rotroff
- Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - John Jack
- Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, RA Leiden, The Netherlands
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Columbia University College of Physicians and Surgeons Department of Neurology, Center for Translational & Computational Neuroimmunology, New York, NY, USA
| | - John Q Trojanowski
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M Shaw
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael W Weiner
- Center for Imaging of Neurodegenerative Diseases, Department of Radiology, San Francisco VA Medical Center/University of California San Francisco, San Francisco, CA, USA
| | - P Murali Doraiswamy
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | | | - Andrew J Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
31
|
Graham SF, Rey NL, Ugur Z, Yilmaz A, Sherman E, Maddens M, Bahado-Singh RO, Becker K, Schulz E, Meyerdirk LK, Steiner JA, Ma J, Brundin P. Metabolomic Profiling of Bile Acids in an Experimental Model of Prodromal Parkinson's Disease. Metabolites 2018; 8:metabo8040071. [PMID: 30384419 PMCID: PMC6316593 DOI: 10.3390/metabo8040071] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023] Open
Abstract
For people with Parkinson’s disease (PD), considered the most common neurodegenerative disease behind Alzheimer’s disease, accurate diagnosis is dependent on many factors; however, misdiagnosis is extremely common in the prodromal phases of the disease, when treatment is thought to be most effective. Currently, there are no robust biomarkers that aid in the early diagnosis of PD. Following previously reported work by our group, we accurately measured the concentrations of 18 bile acids in the serum of a prodromal mouse model of PD. We identified three bile acids at significantly different concentrations (p < 0.05) when mice representing a prodromal PD model were compared with controls. These include ω-murichoclic acid (MCAo), tauroursodeoxycholic acid (TUDCA) and ursodeoxycholic acid (UDCA). All were down-regulated in prodromal PD mice with TUDCA and UDCA at significantly lower levels (17-fold and 14-fold decrease, respectively). Using the concentration of three bile acids combined with logistic regression, we can discriminate between prodromal PD mice from control mice with high accuracy (AUC (95% CI) = 0.906 (0.777–1.000)) following cross validation. Our study highlights the need to investigate bile acids as potential biomarkers that predict PD and possibly reflect the progression of manifest PD.
Collapse
Affiliation(s)
- Stewart F Graham
- Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
- Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA.
| | - Nolwen L Rey
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Zafer Ugur
- Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
| | - Ali Yilmaz
- Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
| | - Eric Sherman
- University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael Maddens
- Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
- Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA.
| | - Ray O Bahado-Singh
- Beaumont Health, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA.
- Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA.
| | - Katelyn Becker
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Emily Schulz
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Lindsay K Meyerdirk
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
32
|
Lacy BE. Review article: an analysis of safety profiles of treatments for diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol Ther 2018; 48:817-830. [PMID: 30194692 PMCID: PMC6667996 DOI: 10.1111/apt.14948] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/27/2018] [Accepted: 07/28/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is multifactorial in nature, and a wide range of therapies is available to manage symptoms of this common disorder. AIM To provide an overview of the safety of interventions that may be used to manage patients with diarrhoea-predominant IBS (IBS-D). METHODS Medline and Embase database searches (through 02 May 2018) to identify clinical studies that evaluated treatment safety and/or efficacy in adults with IBS-D. RESULTS IBS-D treatments include dietary modification, probiotics, serotonin receptor antagonists, opioid receptor agonists and antagonists, nonsystemic antibiotics, bile acid sequestrants, antidepressants, and complementary and alternative therapies. These treatments vary in administration frequency (eg, daily; short-course therapy) and target various pathophysiologic factors. Safety profiles vary considerably by treatment among IBS-D therapies. The number needed to harm (defined as the number of patients treated to encounter an adverse event) was lowest (worse) for antidepressants (8.5) and highest (best) for probiotics (35), and the number needed to harm (defined as the number of patients who discontinued due to an adverse event) was lowest for tricyclic antidepressants (9) and highest for rifaximin (8971). Notable safety concerns with IBS-D treatments include pancreatitis with eluxadoline, ischaemic colitis and serious complications of constipation with alosetron, and cardiac adverse events with loperamide and tricyclic antidepressants. Treatment decisions need to account for medication risks and adverse events for each patient. CONCLUSIONS Multiple treatment options are now available for patients with IBS-D. However, the safety profiles of these agents vary widely by number needed to harm value. Providers should consider both safety and efficacy of a specific intervention when determining how best to manage patients' IBS-D symptoms.
Collapse
Affiliation(s)
- Brian E. Lacy
- Section of GastroenterologyMayo ClinicJacksonvilleFlorida
| |
Collapse
|
33
|
Bile acids and FXR in functional gastrointestinal disorders. Dig Liver Dis 2018; 50:795-803. [PMID: 29908754 DOI: 10.1016/j.dld.2018.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
Abstract
Functional gastrointestinal disorders (FGIDs), such as irritable bowel syndrome (IBS) and chronic constipation (CC), are commonly diagnosed conditions in clinical practice which create a substantial global burden. Since the farnesoid X receptor (FXR) and bile acids (BAs) are responsible for maintaining homeostasis in the GI tract, any disturbances in the expression of FXR or the composition of BAs may contribute to the development of the GI symptoms. Alterations in the mechanism of action of FXR directly affect the BAs pool and account for increased intestinal permeability and changes in abundance and diversity of gut microbiota leading to intestinal dysmotility. Current review focuses on the correlation between the FXR, BAs and the composition of gut microbiota and its influence on the occurrence of GI symptoms in FGIDs.
Collapse
|
34
|
Rao SSC. Treating constipation with bile: a new target. Lancet Gastroenterol Hepatol 2018; 3:520-521. [DOI: 10.1016/s2468-1253(18)30166-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 10/16/2022]
|
35
|
Damsgaard B, Dalby HR, Krogh K, Jørgensen SMD, Arveschough AK, Agnholt J, Dahlerup JF, Jørgensen SP. Long-term effect of medical treatment of diarrhoea in 377 patients with SeHCAT scan diagnosed bile acid malabsorption from 2003 to 2016; a retrospective study. Aliment Pharmacol Ther 2018; 47:951-957. [PMID: 29368342 DOI: 10.1111/apt.14533] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/13/2017] [Accepted: 01/03/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Excessive amounts of bile acids entering the colon due to bile acid malabsorption cause chronic bile acid diarrhoea. Diagnosis is possible by measuring the retention fraction of orally ingested 75 Selenium homotaurocholic acid (SeHCAT). The knowledge of long-term effects of medical treatment is sparse. AIM To describe diarrhoea, adherence to treatment, treatment effects and quality of life in a large, well-defined cohort of patients with bile acid diarrhoea. METHODS A retrospective survey was performed among 594 patients with bile acid malabsorption verified by SeHCAT scans at our unit between 2003 and 2016. Questionnaires about medical history, diarrhoea, use of medication, and quality of life scores were mailed to all patients. RESULTS Among 594 patients 377 (69%) responded. Among respondents, 121 (32%) had bile acid diarrhoea due to ileal disease or resection (type 1), 198 (52%) idiopathic bile acid diarrhoea (type 2) and 58 (16%) bile acid diarrhoea due to other non-ileal disease, mainly cholecystectomy (type 3). At follow-up, half of the patients, 184 (50%), reported improvement of diarrhoea. However, 273 patients (74%) still reported diarrhoea and 234 (62%) regularly used anti-diarrhoeal medication. In spite of treatment, 235 (64%) considered reduced quality of life by diarrhoea and 184 (50%) reported that diarrhoea was unaltered or worse than before established diagnosis. CONCLUSION Many patients with bile acid diarrhoea continue to have bothersome diarrhoea in spite of correct diagnosis and treatment.
Collapse
Affiliation(s)
- B Damsgaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - H R Dalby
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - K Krogh
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - S M D Jørgensen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - A K Arveschough
- Department of Nuclear Medicine & PET-centre, Aarhus University Hospital, Aarhus, Denmark
| | - J Agnholt
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - J F Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - S P Jørgensen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
36
|
Wilkins JM, Trushina E. Application of Metabolomics in Alzheimer's Disease. Front Neurol 2018; 8:719. [PMID: 29375465 PMCID: PMC5770363 DOI: 10.3389/fneur.2017.00719] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
Progress toward the development of efficacious therapies for Alzheimer’s disease (AD) is halted by a lack of understanding early underlying pathological mechanisms. Systems biology encompasses several techniques including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. Metabolomics is the newest omics platform that offers great potential for the diagnosis and prognosis of neurodegenerative diseases as an individual’s metabolome reflects alterations in genetic, transcript, and protein profiles and influences from the environment. Advancements in the field of metabolomics have demonstrated the complexity of dynamic changes associated with AD progression underscoring challenges with the development of efficacious therapeutic interventions. Defining systems-level alterations in AD could provide insights into disease mechanisms, reveal sex-specific changes, advance the development of biomarker panels, and aid in monitoring therapeutic efficacy, which should advance individualized medicine. Since metabolic pathways are largely conserved between species, metabolomics could improve the translation of preclinical research conducted in animal models of AD into humans. A summary of recent developments in the application of metabolomics to advance the AD field is provided below.
Collapse
Affiliation(s)
- Jordan Maximillian Wilkins
- Mitochondrial Neurobiology and Therapeutics Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Eugenia Trushina
- Mitochondrial Neurobiology and Therapeutics Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
37
|
|
38
|
Voiosu A, Wiese S, Voiosu T, Bendtsen F, Møller S. Bile acids and cardiovascular function in cirrhosis. Liver Int 2017; 37:1420-1430. [PMID: 28222247 DOI: 10.1111/liv.13394] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/12/2017] [Indexed: 02/13/2023]
Abstract
Cirrhotic cardiomyopathy and the hyperdynamic syndrome are clinically important complications of cirrhosis, but their exact pathogenesis is still partly unknown. Experimental models have proven the cardiotoxic effects of bile acids and recent studies of their varied receptor-mediated functions offer new insight into their involvement in cardiovascular dysfunction in cirrhosis. Bile acid receptors such as farnesoid X-activated receptor and TGR5 are currently under investigation as potential therapeutic targets in a variety of pathological conditions. These receptors have also recently been identified in cardiomyocytes, vascular endothelial cells and smooth muscle cells where they seem to play an important role in cellular metabolism. Chronic cholestasis leading to abnormal levels of circulating bile acids alters the normal signalling pathways and contributes to the development of profound cardiovascular disturbances. This review summarizes the evidence regarding the role of bile acids and their receptors in the generation of cardiovascular dysfunction in cirrhosis.
Collapse
Affiliation(s)
- Andrei Voiosu
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark.,Gastroenterology and Hepatology Department, Colentina Clinical Hospital, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Signe Wiese
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark.,Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Theodor Voiosu
- Gastroenterology and Hepatology Department, Colentina Clinical Hospital, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Flemming Bendtsen
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Gastro Unit, Medical Division, Hvidovre Hospital, Hvidovre, Denmark
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark.,Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Henström M, Hadizadeh F, Beyder A, Bonfiglio F, Zheng T, Assadi G, Rafter J, Bujanda L, Agreus L, Andreasson A, Dlugosz A, Lindberg G, Schmidt PT, Karling P, Ohlsson B, Talley NJ, Simren M, Walter S, Wouters M, Farrugia G, D'Amato M. TRPM8 polymorphisms associated with increased risk of IBS-C and IBS-M. Gut 2017; 66:1725-1727. [PMID: 27974553 PMCID: PMC5561393 DOI: 10.1136/gutjnl-2016-313346] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/20/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Maria Henström
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Fatemeh Hadizadeh
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden,School of Nutrition, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Ferdinando Bonfiglio
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden,Department of Gastrointestinal and Liver Diseases, BioDonostia Health Research Institute, San Sebastian, Spain
| | - Tenghao Zheng
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Ghazaleh Assadi
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Joseph Rafter
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Luis Bujanda
- Department of Gastrointestinal and Liver Diseases, BioDonostia Health Research Institute, San Sebastian, Spain
| | - Lars Agreus
- Division for Family Medicine, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Anna Andreasson
- Division for Family Medicine, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden,Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Aldona Dlugosz
- Department of Medicine, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Greger Lindberg
- Department of Medicine, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Peter T Schmidt
- Department of Medicine, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Pontus Karling
- Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bodil Ohlsson
- Department of Internal Medicine, Lund University, Skåne University Hospital, Sweden
| | - Nicholas J Talley
- Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia
| | - Magnus Simren
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanna Walter
- Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine,Linköping University, Linköping, Sweden
| | - Mira Wouters
- Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven University, Leuven, Belgium
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Mauro D'Amato
- Department of Gastrointestinal and Liver Diseases, BioDonostia Health Research Institute, San Sebastian, Spain,BioCruces Health Research Institute, Bilbao, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain,Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Bacterial bile salt hydrolase: an intestinal microbiome target for enhanced animal health. Anim Health Res Rev 2017; 17:148-158. [PMID: 28155801 DOI: 10.1017/s1466252316000153] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To effectively mitigate antimicrobial resistance in the agricultural ecosystem, there is an increasing pressure to reduce and eliminate the use of in-feed antibiotics for growth promotion and disease prevention in food animals. However, limiting antibiotic use could compromise animal production efficiency and health. Thus, there is an urgent need to develop effective alternatives to antibiotic growth promoters (AGPs). Increasing evidence has shown that the growth-promoting effect of AGPs was highly correlated with the reduced activity of bile salt hydrolase (BSH), an intestinal bacterial enzyme that has a negative impact on host fat digestion and energy harvest; consistent with this finding, the population of Lactobacillus species, the major intestinal BSH-producer, was significantly reduced in response to AGP use. Thus, BSH is a key mechanistic microbiome target for developing novel alternatives to AGPs. Despite recent significant progress in the characterization of diverse BSH enzymes, research on BSH is still in its infancy. This review is focused on the function of BSH and its significant impacts on host physiology in human beings, laboratory animals and food animals. The gaps in BSH-based translational microbiome research for enhanced animal health are also identified and discussed.
Collapse
|
41
|
Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology 2017; 152:1679-1694.e3. [PMID: 28214524 DOI: 10.1053/j.gastro.2017.01.055] [Citation(s) in RCA: 628] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 02/06/2023]
Abstract
Bile acids are signaling molecules that coordinately regulate metabolism and inflammation via the nuclear farnesoid X receptor (FXR) and the Takeda G protein-coupled receptor 5 (TGR5). These receptors activate transcriptional networks and signaling cascades controlling the expression and activity of genes involved in bile acid, lipid and carbohydrate metabolism, energy expenditure, and inflammation by acting predominantly in enterohepatic tissues, but also in peripheral organs. In this review, we discuss the most recent findings on the inter-organ signaling and interplay with the gut microbiota of bile acids and their receptors in meta-inflammation, with a focus on their pathophysiologic roles in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic steatohepatitis, and their potential therapeutic applications.
Collapse
Affiliation(s)
- Oscar Chávez-Talavera
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France.
| |
Collapse
|
42
|
Camilleri M, Halawi H, Oduyebo I. Biomarkers as a diagnostic tool for irritable bowel syndrome: where are we? Expert Rev Gastroenterol Hepatol 2017; 11:303-316. [PMID: 28128666 DOI: 10.1080/17474124.2017.1288096] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome (IBS) is a common condition in clinical practice. There are currently no objective tests to rule in the disease, but rather tests to rule out other diseases. Biomarkers in IBS may provide the tools needed for diagnosis, prognosis and therapy. These include identification of differences in microbial composition, immune activation, bile acid composition, colonic transit, and alteration in sensation in subgroups of IBS patients. Areas covered: Studies included in our review were chosen based on a PubMed search for 'biomarkers' and 'IBS'. We have reviewed the literature on biomarkers to appraise their accuracy, validity and whether they are actionable. We have not covered genetic associations as biomarkers in this review. Expert commentary: There is significant promise in the usefulness of biomarkers for IBS. The most promising actionable biomarkers are markers of changes in bile acid balance, such as elevated bile acid in the stool, and altered colonic transit. However, there is also potential for microbial studies and mucosal proteases as future actionable biomarkers.
Collapse
Affiliation(s)
- Michael Camilleri
- a Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) , Mayo Clinic , Rochester , MN, USA
| | - Houssam Halawi
- a Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) , Mayo Clinic , Rochester , MN, USA
| | - Ibironke Oduyebo
- a Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) , Mayo Clinic , Rochester , MN, USA
| |
Collapse
|
43
|
Abstract
Chronic constipation is a common, persistent condition affecting many patients worldwide, presenting significant economic burden and resulting in substantial healthcare utilization. In addition to infrequent bowel movements, the definition of constipation includes excessive straining, a sense of incomplete evacuation, failed or lengthy attempts to defecate, use of digital manoeuvres for evacuation of stool, abdominal bloating, and hard consistency of stools. After excluding secondary causes of constipation, chronic idiopathic or primary constipation can be classified as functional defecation disorder, slow-transit constipation (STC), and constipation-predominant irritable bowel syndrome (IBS-C). These classifications are not mutually exclusive and significant overlap exists. Initial therapeutic approach to primary constipation, regardless of aetiology, consists of diet and lifestyle changes such as encouraging adequate fluid and fibre intake, regular exercise, and dietary modification. Laxatives are the mainstay of pharmacologic treatment for potential long-term therapy in patients who do not respond to lifestyle or dietary modification. After a failed empiric trial of laxatives, diagnostic testing is necessary to understand underlying anorectal and/or colonic pathophysiology. No single test provides a comprehensive assessment for primary constipation; therefore, multiple tests are used to provide complementary information to one another. Dyssynergic defecation, a functional defecation disorder, is an acquired behavioural disorder of defecation present in two-thirds of adult patients, where an inability to coordinate the abdominal, recto-anal, and pelvic floor muscles during attempted defecation exists. Biofeedback therapy is the mainstay treatment for dyssynergic defecation aimed at improving coordination of abdominal and anorectal muscles. A large percentage of patients with dyssynergic defecation also exhibit rectal hyposensitivity and may benefit from the addition of sensory retraining. Our understanding of the pathophysiology of STC is evolving. The advent of high-resolution colonic manometry allows for the improved identification of colonic motor patterns and may provide further insight into pathophysiological mechanisms. In a minority of cases of STC, identification of colonic neuropathy suggests a medically refractory condition, warranting consideration of colectomy. The pathophysiology of IBS-C is poorly understood with multiple etiological factors implicated. Pharmacological advances in the treatment of primary constipation have added therapeutic options to the armamentarium of this disorder. Drug development in the secretagogue, serotonergic prokinetic, and ileal bile acid transporter inhibition pathways has yielded current and future medical treatment options for primary chronic constipation.
Collapse
Affiliation(s)
- Amol Sharma
- Division of Gastroenterology and Hepatology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Satish Rao
- Division of Gastroenterology and Hepatology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
44
|
JUŘICA J, DOVRTĚLOVÁ G, NOSKOVÁ K, ZENDULKA O. Bile Acids, Nuclear Receptors and Cytochrome P450. Physiol Res 2016; 65:S427-S440. [DOI: 10.33549/physiolres.933512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review summarizes the importance of bile acids (BA) as important regulators of various homeostatic mechanisms with detailed focus on cytochrome P450 (CYP) enzymes. In the first part, synthesis, metabolism and circulation of BA is summarized and BA are reviewed as physiological ligands of nuclear receptors which regulate transcription of genes involved in their metabolism, transport and excretion. Notably, PXR, FXR and VDR are the most important nuclear receptors through which BA regulate transcription of CYP genes involved in the metabolism of both BA and xenobiotics. Therapeutic use of BA and their derivatives is also briefly reviewed. The physiological role of BA interaction with nuclear receptors is basically to decrease production of toxic non-polar BA and increase their metabolic turnover towards polar BA and thus decrease their toxicity. By this, the activity of some drug-metabolizing CYPs is also influenced what could have clinically relevant consequences in cholestatic diseases or during the treatment with BA or their derivatives.
Collapse
Affiliation(s)
| | | | | | - O. ZENDULKA
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno. Czech Republic
| |
Collapse
|
45
|
Chumpitazi BP, Shulman RJ. Underlying molecular and cellular mechanisms in childhood irritable bowel syndrome. Mol Cell Pediatr 2016; 3:11. [PMID: 26883355 PMCID: PMC4755958 DOI: 10.1186/s40348-016-0036-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/04/2016] [Indexed: 12/17/2022] Open
Abstract
Irritable bowel syndrome (IBS) affects a large number of children throughout the world. The symptom expression of IBS is heterogeneous, and several factors which may be interrelated within the IBS biopsychosocial model play a role. These factors include visceral hyperalgesia, intestinal permeability, gut microbiota, psychosocial distress, gut inflammation, bile acids, food intolerance, colonic bacterial fermentation, and genetics. The molecular and cellular mechanisms of these factors are being actively investigated. In this mini-review, we present updates of these mechanisms and, where possible, relate the findings to childhood IBS. Mechanistic elucidation may lead to the identification of biomarkers as well as personalized childhood IBS therapies.
Collapse
Affiliation(s)
- Bruno P Chumpitazi
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, 77030, TX, USA.
- Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, 6621 Fannin Street, 77030, Houston, TX, USA.
| | - Robert J Shulman
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, 77030, TX, USA.
- Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, 6621 Fannin Street, 77030, Houston, TX, USA.
- Children's Nutrition Research Center, 1100 Bates Avenue, Houston, 77030, TX, USA.
| |
Collapse
|
46
|
DUBOC H, TOLSTANOVA G, YUAN PQ, WU V, KAJI I, BIRAUD M, AKIBA Y, KAUNITZ J, MILLION M, TACHE Y, LARAUCHE M. Reduction of epithelial secretion in male rat distal colonic mucosa by bile acid receptor TGR5 agonist, INT-777: role of submucosal neurons. Neurogastroenterol Motil 2016; 28:1663-1676. [PMID: 27259385 PMCID: PMC5083223 DOI: 10.1111/nmo.12866] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/28/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent evidence from rat neuron-free mucosa study suggests that the membrane bile acid receptor TGR5 decreases colonic secretion under basal and stimulated conditions. As submucosal neurons are key players in secretory processes and highly express TGR5, we investigated their role in TGR5 agonist-induced inhibition of secretion and the pathways recruited. METHODS TGR5 expression and localization were assessed in rat proximal (pC) and distal (dC) colon by qPCR and immunohistochemistry with double labeling for cholinergic neurons in whole-mount preparations. The influence of a selective (INT-777) or weak (ursodeoxycholic acid, UDCA) TGR5 agonist on colonic secretion was assessed in Ussing chambers, in dC preparation removing seromuscular ± submucosal tissues, in the presence of different inhibitors of secretion pathways. KEY RESULTS TGR5 mRNA is expressed in full thickness dC and pC and immunoreactivity is located in colonocytes and pChAT-positive neurons. Addition of INT-777, and less potently UDCA, decreased colonic secretion in seromuscular stripped dC by -58.17± 2.6%. INT-777 effect on basal secretion was reduced in neuron-free and TTX-treated mucosal-submucosal preparations. Atropine, hexamethonium, indomethacin, and L-NAME all reduced significantly INT-777's inhibitory effect while the 5-HT4 antagonist, RS-39604, and lidocaine abolished it. INT-777 inhibited stimulated colonic secretion induced by nicotine, but not cisapride, carbachol or PGE2. CONCLUSIONS & INFERENCES TGR5 activation inhibits basal and stimulated distal colonic secretion in rats by acting directly on epithelial cells and also inhibiting submucosal neurons. This could represent a counter-regulatory mechanism, at the submucosal level, of the known prosecretory effect of bile acids in the colon.
Collapse
Affiliation(s)
- Henri DUBOC
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA,VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA,DHU UNITY, Inserm UMR 1149, and Louis Mourier Hospital, Department of Gastroenterology and Hepatology, AP-HP, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Ganna TOLSTANOVA
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA,VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA,Educational-Scientific Center “Institute of Biology” Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Pu-Qing YUAN
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA,VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Vincent WU
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA,VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Izumi KAJI
- Department of Medicine, School of Medicine, UCLA,Brentwood Biomedical Research Institute, Los Angeles, California, USA
| | - Mandy BIRAUD
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA,VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Yasutada AKIBA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA,Department of Medicine, School of Medicine, UCLA,Brentwood Biomedical Research Institute, Los Angeles, California, USA
| | - Jonathan KAUNITZ
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA,Department of Medicine, School of Medicine, UCLA,Department of Surgery, School of Medicine, UCLA,Brentwood Biomedical Research Institute, Los Angeles, California, USA
| | - Mulugeta MILLION
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA,VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Yvette TACHE
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA,VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Muriel LARAUCHE
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA,VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
47
|
Kaska L, Sledzinski T, Chomiczewska A, Dettlaff-Pokora A, Swierczynski J. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World J Gastroenterol 2016; 22:8698-8719. [PMID: 27818587 PMCID: PMC5075546 DOI: 10.3748/wjg.v22.i39.8698] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
Clinical studies have indicated that circulating bile acid (BA) concentrations increase following bariatric surgery, especially following malabsorptive procedures such as Roux-en-Y gastric bypasses (RYGB). Moreover, total circulating BA concentrations in patients following RYGB are positively correlated with serum glucagon-like peptide-1 concentrations and inversely correlated with postprandial glucose concentrations. Overall, these data suggest that the increased circulating BA concentrations following bariatric surgery - independently of calorie restriction and body-weight loss - could contribute, at least in part, to improvements in insulin sensitivity, incretin hormone secretion, and postprandial glycemia, leading to the remission of type-2 diabetes (T2DM). In humans, the primary and secondary BA pool size is dependent on the rate of biosynthesis and the enterohepatic circulation of BAs, as well as on the gut microbiota, which play a crucial role in BA biotransformation. Moreover, BAs and gut microbiota are closely integrated and affect each other. Thus, the alterations in bile flow that result from anatomical changes caused by bariatric surgery and changes in gut microbiome may influence circulating BA concentrations and could subsequently contribute to T2DM remission following RYGB. Research data coming largely from animal and cell culture models suggest that BAs can contribute, via nuclear farnezoid X receptor (FXR) and membrane G-protein-receptor (TGR-5), to beneficial effects on glucose metabolism. It is therefore likely that FXR, TGR-5, and BAs play a similar role in glucose metabolism following bariatric surgery in humans. The objective of this review is to discuss in detail the results of published studies that show how bariatric surgery affects glucose metabolism and subsequently T2DM remission.
Collapse
|
48
|
Bächler T, le Roux CW, Bueter M. How do patients' clinical phenotype and the physiological mechanisms of the operations impact the choice of bariatric procedure? Clin Exp Gastroenterol 2016; 9:181-9. [PMID: 27524917 PMCID: PMC4965261 DOI: 10.2147/ceg.s87205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bariatric surgery is currently the most effective option for the treatment of morbid obesity and its associated comorbidities. Recent clinical and experimental findings have challenged the role of mechanical restriction and caloric malabsorption as the main mechanisms for weight loss and health benefits. Instead, other mechanisms including increased levels of satiety gut hormones, altered gut microbiota, changes in bile acid metabolism, and/or energy expenditure have been proposed as explanations for benefits of bariatric surgery. Beside the standard proximal Roux-en-Y gastric bypass and the biliopancreatic diversion with or without duodenal switch, where parts of the small intestine are excluded from contact with nutrients, resectional techniques like the sleeve gastrectomy (SG) have recently been added to the armory of bariatric surgeons. The variation of weight loss and glycemic control is vast between but also within different bariatric operations. We surveyed members of the Swiss Society for the Study of Morbid Obesity and Metabolic Disorders to assess the extent to which the phenotype of patients influences the choice of bariatric procedure. Swiss bariatric surgeons preferred Roux-en-Y gastric bypass and SG for patients with type 2 diabetes mellitus and patients with a body mass index >50 kg/m2, which is consistent with the literature. An SG was preferred in patients with a high anesthetic risk or previous laparotomy. The surgeons’ own experience was a major determinant as there is little evidence in the literature for this approach. Although trends will come and go, evidence-based medicine requires a rigorous examination of the proof to inform clinical practice.
Collapse
Affiliation(s)
- Thomas Bächler
- Department of General and Visceral Surgery, Fribourg Cantonal Hospital (HFR), Fribourg, Switzerland
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland; Gastrosurgical Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Marco Bueter
- Division of Visceral and Transplantation Surgery, University Hospital Zurich (USZ), Zürich, Switzerland
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW It is long known that immune and metabolic cascades intersect at various cross-points. More recently, the regulatory influence of the microbiota on both of these cascades has emerged. Advances with therapeutic implications for chronic immunologic and metabolic disorders are examined. RECENT FINDINGS Disturbances of the microbiota, particularly in early life, may be the proximate environmental risk factor in socioeconomically developed societies for development of chronic immune-allergic and metabolic disorders, including obesity. Antibiotics and dietary factors contribute to this risk. Multiple microbial signalling molecules mediate host-microbe interactions including bacterial metabolites such as short-chain fatty acids, bile salts and others. SUMMARY New strategies for manipulating the composition and metabolic activity of the gut microbiota have emerged and offer a realistic prospect of personalized therapeutic options in immune and metabolic diseases.
Collapse
Affiliation(s)
- Fergus Shanahan
- Department of Medicine and APC Microbiome Institute, National University of Ireland, Cork, Ireland
| | | |
Collapse
|
50
|
Chang L, Heitkemper MM, Wiley JW, Camilleri M. 2015 James W. Freston Single Topic Conference: A Renaissance in the Understanding and Management of Irritable Bowel Syndrome. Gastroenterology 2016; 151:e1-8. [PMID: 27215658 PMCID: PMC5410382 DOI: 10.1053/j.gastro.2016.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lin Chang
- Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Margaret M. Heitkemper
- Department of Biobehavioral Nursing & Health Systems, School of Nursing, Division of Gastroenterology, School of Medicine, University of Washington, Seattle, Washington
| | - John W. Wiley
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Michael Camilleri
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|