1
|
Gür HE, Balcıoğlu E, Patat D, Uçar S, Gür FM, Yalçın B, Nisari M. Investigation of the potential teratogenic effects of fructose on the embryo using the rat whole embryo culture model. Food Chem Toxicol 2024; 193:114985. [PMID: 39271047 DOI: 10.1016/j.fct.2024.114985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/24/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Excessive consumption of fructose-sweetened foods and beverages is a growing concern worldwide. Studies have demonstrated that fructose consumption before and during pregnancy can result in adverse outcomes such as decreased decidualization, increased fetal losses, and low birth weight. The study investigated the teratogenic effects of fructose on rat embryos during organogenesis using whole embryo culture. Within the scope of the study, 4 groups were formed as control, low, medium, and high-dose fructose (HDF) with 10 embryos in each group. The 9.5-day-old rat embryos were cultured with different concentrations of fructose (1, 5 and 10 mM) for 48 h and the possible effects of fructose were examined using morphological scoring, histochemistry, immunofluorescence, and TUNEL methods. According to the analyses, protein synthesis and proliferation were decreased, vascular formation was suppressed, and apoptosis was increased in embryos exposed to fructose, especially at concentrations of 5 mM and above. According to the morphological scoring results, it was determined that heart, hind limb, and somite development were retarded in all experimental groups compared to the control group, developmental retardation increased in direct proportion to fructose concentration, and also significant malformations were observed in all parameters examined in the HDF group. In addition, analysis of yolk sac diameter, head length, crown rump length and somite numbers showed that these parameters were significantly decreased in all experimental groups. End of the study, it was concluded that fructose at concentrations of 1 mM and above may induce embryonic development retardation and other anomalies by decreasing protein synthesis and cell proliferation, suppressing vascular formation, and increasing apoptosis in embryonic tissues.
Collapse
Affiliation(s)
- Hatice Emel Gür
- Department of Histology & Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Esra Balcıoğlu
- Department of Histology & Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Dilara Patat
- Department of Anatomy, Faculty of Medicine, Medipol University, Ankara, Turkey
| | - Sümeyye Uçar
- Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fatih Mehmet Gür
- Department of Histology & Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Turkey
| | - Betül Yalçın
- Department of Histology & Embryology, Faculty of Medicine, Adiyaman University, Turkey
| | - Mehtap Nisari
- Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Ohno R, Auditore A, Gensberger-Reigl S, Saller J, Stützer J, Weigel I, Pischetsrieder M. Qualitative and Quantitative Profiling of Fructose Degradation Products Revealed the Formation of Thirteen Reactive Carbonyl Compounds and Higher Reactivity Compared to Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19131-19142. [PMID: 39145730 DOI: 10.1021/acs.jafc.4c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Fructose occurs in foods and as a metabolite in vivo. It can be degraded, leading to the formation of reactive carbonyl compounds, which may influence food properties and have an impact on health. The present study performed an in-depth qualitative and quantitative profiling of fructose degradation products. Thus, the α-dicarbonyl compounds 3-deoxyglucosone, glucosone, methylglyoxal, glyoxal, hydroxypyruvaldehyde, threosone, 3-deoxythreosone, and 1-desoxypentosone and the monocarbonyl compounds formaldehyde, acetaldehyde, glycolaldehyde, glyceraldehyde, and dihydroxyacetone were detected in fructose solutions incubated at 37 °C. Quantitative profiling after 7 days revealed 4.6-271.6-fold higher yields of all degradation products from fructose compared to glucose. Except for 3-deoxyglucosone, the product formation appeared to be metal dependent, indicating oxidative pathways. CaCl2 and MgCl2 partially reduced fructose degradation. Due to its high reactivity compared to glucose, particularly toward metal-catalyzed pathways, fructose may be a strong contributor to sugar degradation and Maillard reaction in foods and in vivo.
Collapse
Affiliation(s)
- Reiichi Ohno
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Andrea Auditore
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Sabrina Gensberger-Reigl
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Julia Saller
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Joachim Stützer
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Ingrid Weigel
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| |
Collapse
|
3
|
Cook NE, McGovern MR, Zaman T, Lundin PM, Vaughan RA. Fructose Reduces Mitochondrial Metabolism and Increases Extracellular BCAA during Insulin Resistance in C2C12 Myotubes. Nutrients 2024; 16:1582. [PMID: 38892515 PMCID: PMC11174010 DOI: 10.3390/nu16111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Fructose is a commonly consumed monosaccharide implicated in developing several metabolic diseases. Previously, elevated branched-chain amino acids (BCAA) have been correlated with the severity of insulin resistance. Most recently, the effect of fructose consumption on the downregulation of BCAA catabolic enzymes was observed. Thus, this mechanistic study investigated the effects of physiologically attainable levels of fructose, both with and without concurrent insulin resistance, in a myotube model of skeletal muscle. METHODS C2C12 mouse myoblasts were treated with fructose at a concentration of 100 µM (which approximates physiologically attainable concentrations in peripheral circulation) both with and without hyperinsulinemic-mediated insulin resistance. Gene expression was assessed by qRT-PCR, and protein expression was assessed by Western blot. Oxygen consumption rate and extracellular acidification rate were used to assess mitochondrial oxidative and glycolytic metabolism, respectively. Liquid chromatography-mass spectrometry was utilized to analyze leucine, isoleucine and valine concentration values. RESULTS Fructose significantly reduced peak glycolytic and peak mitochondrial metabolism without altering related gene or protein expression. Similarly, no effect of fructose on BCAA catabolic enzymes was observed; however, fructose treatment resulted in elevated total extracellular BCAA in insulin-resistant cells. DISCUSSION Collectively, these observations demonstrate that fructose at physiologically attainable levels does not appear to alter insulin sensitivity or BCAA catabolic potential in cultured myotubes. However, fructose may depress peak cell metabolism and BCAA utilization during insulin resistance.
Collapse
Affiliation(s)
- Norah E. Cook
- Department of Health and Human Performance, High Point University, One University Parkway, High Point, NC 27268, USA; (N.E.C.); (M.R.M.)
| | - Macey R. McGovern
- Department of Health and Human Performance, High Point University, One University Parkway, High Point, NC 27268, USA; (N.E.C.); (M.R.M.)
| | - Toheed Zaman
- Department of Chemistry, High Point University, High Point, NC 27268, USA; (T.Z.); (P.M.L.)
| | - Pamela M. Lundin
- Department of Chemistry, High Point University, High Point, NC 27268, USA; (T.Z.); (P.M.L.)
| | - Roger A. Vaughan
- Department of Health and Human Performance, High Point University, One University Parkway, High Point, NC 27268, USA; (N.E.C.); (M.R.M.)
| |
Collapse
|
4
|
Xia M, Xia Y, Sun Y, Wang J, Lu J, Wang X, Xia D, Xu X, Sun B. Gut microbiome is associated with personality traits of free-ranging Tibetan macaques ( Macaca thibetana). Front Microbiol 2024; 15:1381372. [PMID: 38711972 PMCID: PMC11070476 DOI: 10.3389/fmicb.2024.1381372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
Recent studies have emphasized that there is a strong link between the gut microbiome and the brain that affects social behavior and personality in animals. However, the interface between personality and the gut microbiome in wild primates remains poorly understood. Here, we used high-throughput sequencing and ethological methods in primate behavioral ecology to investigate the relationship between gut microbiome and personality in Tibetan macaques (Macaca thibetana). The behavioral assessment results indicated three personality dimensions including socialization, shyness, and anxiety. There was significant variation in alpha diversity only for shyness, with a significantly lower alpha diversity indices (including Shannon, Chao1, and PD) for bold individuals than for shy individuals. Using regression models to control for possible confounding factors, we found that the relative abundance of three genera, Akkermansia, Dialister, and Asteroleplasma, was significantly and positively correlated with the sociability scores in the macaques. In addition, Oscillospiraceae exhibited a positive correlation with scores for Shy Dimension. Furthermore, we found that the predicted functional genes for propionate and pyruvate, porphyrin and chlorophyll metabolic pathways related to animal behavior, were significant enriched in shyness group. We propose that the gut microbiome may play an important role in the formation of personality of Tibetan macaques.
Collapse
Affiliation(s)
- Mengyi Xia
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Yingna Xia
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Yu Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Jingjing Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Jiakai Lu
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Xi Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| | - Dongpo Xia
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
- School of Life Sciences, Anhui University, Hefei, China
| | - Xiaojuan Xu
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| | - Binghua Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Anhui University, Hefei, China
| |
Collapse
|
5
|
Staltner R, Burger K, Baumann A, Bergheim I. Fructose: a modulator of intestinal barrier function and hepatic health? Eur J Nutr 2023; 62:3113-3124. [PMID: 37596353 PMCID: PMC10611622 DOI: 10.1007/s00394-023-03232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
PURPOSE Consumption of fructose has repeatedly been discussed to be a key factor in the development of health disturbances such as hypertension, diabetes type 2, and non-alcoholic fatty liver disease. Despite intense research efforts, the question if and how high dietary fructose intake interferes with human health has not yet been fully answered. RESULTS Studies suggest that besides its insulin-independent metabolism dietary fructose may also impact intestinal homeostasis and barrier function. Indeed, it has been suggested by the results of human and animal as well as in vitro studies that fructose enriched diets may alter intestinal microbiota composition. Furthermore, studies have also shown that both acute and chronic intake of fructose may lead to an increased formation of nitric oxide and a loss of tight junction proteins in small intestinal tissue. These alterations have been related to an increased translocation of pathogen-associated molecular patterns (PAMPs) like bacterial endotoxin and an induction of dependent signaling cascades in the liver but also other tissues. CONCLUSION In the present narrative review, results of studies assessing the effects of fructose on intestinal barrier function and their impact on the development of health disturbances with a particular focus on the liver are summarized and discussed.
Collapse
Affiliation(s)
- Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria.
| |
Collapse
|
6
|
Nikolaou KC, Godbersen S, Manoharan M, Wieland S, Heim MH, Stoffel M. Inflammation-induced TRIM21 represses hepatic steatosis by promoting the ubiquitination of lipogenic regulators. JCI Insight 2023; 8:e164694. [PMID: 37937648 PMCID: PMC10721265 DOI: 10.1172/jci.insight.164694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/14/2023] [Indexed: 11/09/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a leading cause for chronic liver diseases. Current therapeutic options are limited due to an incomplete mechanistic understanding of how steatosis transitions to NASH. Here we show that the TRIM21 E3 ubiquitin ligase is induced by the synergistic actions of proinflammatory TNF-α and fatty acids in livers of humans and mice with NASH. TRIM21 ubiquitinates and degrades ChREBP, SREBP1, ACC1, and FASN, key regulators of de novo lipogenesis, and A1CF, an alternative splicing regulator of the high-activity ketohexokinase-C (KHK-C) isoform and rate-limiting enzyme of fructose metabolism. TRIM21-mediated degradation of these lipogenic activators improved steatosis and hyperglycemia as well as fructose and glucose tolerance. Our study identifies TRIM21 as a negative regulator of liver steatosis in NASH and provides mechanistic insights into an immunometabolic crosstalk that limits fatty acid synthesis and fructose metabolism during metabolic stress. Thus, enhancing this natural counteracting force of steatosis through inhibition of key lipogenic activators via TRIM21-mediated ubiquitination may provide a therapeutic opportunity to treat NASH.
Collapse
Affiliation(s)
| | - Svenja Godbersen
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| | | | - Stefan Wieland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus H. Heim
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
- Medical Faculty, University of Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Geidl-Flueck B, Gerber PA. Fructose drives de novo lipogenesis affecting metabolic health. J Endocrinol 2023; 257:e220270. [PMID: 36753292 PMCID: PMC10083579 DOI: 10.1530/joe-22-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Despite the existence of numerous studies supporting a pathological link between fructose consumption and the development of the metabolic syndrome and its sequelae, such as non-alcoholic fatty liver disease (NAFLD), this link remains a contentious issue. With this article, we shed a light on the impact of sugar/fructose intake on hepatic de novo lipogenesis (DNL), an outcome parameter known to be dysregulated in subjects with type 2 diabetes and/or NAFLD. In this review, we present findings from human intervention studies using physiological doses of sugar as well as mechanistic animal studies. There is evidence from both human and animal studies that fructose is a more potent inducer of hepatic lipogenesis than glucose. This is most likely due to the liver's prominent physiological role in fructose metabolism, which may be disrupted under pathological conditions by increased hepatic expression of fructolytic and lipogenic enzymes. Increased DNL may not only contribute to ectopic fat deposition (i.e. in the liver), but it may also impair several metabolic processes through DNL-related fatty acids (e.g. beta-cell function, insulin secretion, or insulin sensitivity).
Collapse
Affiliation(s)
- Bettina Geidl-Flueck
- 1Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland
| | - Philipp A Gerber
- 1Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland
| |
Collapse
|
8
|
Iizuka K. Recent Progress on Fructose Metabolism-Chrebp, Fructolysis, and Polyol Pathway. Nutrients 2023; 15:nu15071778. [PMID: 37049617 PMCID: PMC10096667 DOI: 10.3390/nu15071778] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Excess fructose intake is associated with obesity, fatty liver, tooth decay, cancer, and cardiovascular diseases. Even after the ingestion of fructose, fructose concentration in the portal blood is never high; fructose is further metabolized in the liver, and the blood fructose concentration is 1/100th of the glucose concentration. It was previously thought that fructose was metabolized in the liver and not in the small intestine, but it has been reported that metabolism in the small intestine also plays an important role in fructose metabolism. Glut5 knockout mice exhibit poor fructose absorption. In addition, endogenous fructose production via the polyol pathway has also received attention; gene deletion of aldose reductase (Ar), ketohexokinase (Khk), and triokinase (Tkfc) has been found to prevent the development of fructose-induced liver lipidosis. Carbohydrate response element-binding protein (Chrebp) regulates the expression of Glut5, Khk, aldolase b, and Tkfc. We review fructose metabolism with a focus on the roles of the glucose-activating transcription factor Chrebp, fructolysis, and the polyol pathway.
Collapse
Affiliation(s)
- Katsumi Iizuka
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan
- Food and Nutrition Service Department, Fujita Health University Hospital, Toyoake 470-1192, Japan
| |
Collapse
|
9
|
Fan Y, Zhang Y, Chen C, Ying Z, Su Q, Li X, Chen Y. Fasting serum fructose is associated with metabolic dysfunction-associated fatty liver disease: A prospective study. Hepatol Res 2023. [PMID: 36745152 DOI: 10.1111/hepr.13888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
AIM The association between sugar-sweetened beverages and metabolic disorders has been well studied. However, it has not been determined whether fasting serum fructose is associated with metabolic dysfunction-associated fatty liver disease (MAFLD). METHODS Participants were enrolled from 2011 to 2012 in Shanghai. Fasting serum fructose concentration was measured with a validated liquid chromatography-tandem mass spectrometry method. RESULTS A total of 954 participants without diabetes were included. They were followed for an average of 3.5 years. A total of 320 (33.5%) participants had MAFLD at baseline. With the increase in fasting serum fructose level by quartile, the MAFLD prevalence was increased by 27.0%, 25.0%, 37.4%, and 44.5%, respectively (p < 0.001). Each SD increase in fasting serum fructose level was associated with a 60% increased risk of MAFLD (odds ratio 1.60; 95% confidence interval [CI], 1.36-1.88; p < 0.001). Fasting serum fructose levels were more closely associated with four components of MAFLD (hepatic steatosis, prediabetes, insulin resistance, and low high-density lipoprotein). We built a diagnostic model named the fructose fat index (FFI). The area under the receiver operating characteristic curve of the FFI was 0.879 (95% CI, 0.850-0.908) in the derivation cohort and 0.827 (95% CI, 0.776-0.878) in the validation cohort. Subsequent prospective studies found that the incidence risk of MAFLD was 2.26 times higher in the high-fructose group than in the low-fructose group among female participants (95% CI, 1.46-3.49; p < 0.001). CONCLUSION Fasting serum fructose concentration, which mostly reflects endogenous fructose, was associated with a higher risk of MAFLD. The FFI derived from fasting serum fructose could be used to predict MAFLD.
Collapse
Affiliation(s)
- Yujuan Fan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuecheng Zhang
- General Practice Department, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Congling Chen
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Ying
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Su
- Department of Endocrinology and Metabolism, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Chen
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
SUZUKI YUSUKE, KONDO KAZUMA, TOYODA KAORU, TANAKA YUKI, KOBAYASHI AKIO, YOKOYAMA DAIGO, SAKAKIBARA HIROYUKI. Novel Biomarker Establishment for Evaluation of Excessive Fructose Consumption Using a Rat Model. In Vivo 2023; 37:173-181. [PMID: 36593010 PMCID: PMC9843779 DOI: 10.21873/invivo.13066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM The habitual consumption of excessive fructose is associated with the onset and progression of lifestyle-related diseases, such as nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the physiological changes observed when consuming a diet containing excessive fructose on the viewpoints of hepatotoxicity biological markers using a rat model and explored the biomarker candidates that could detect the effects of excessive fructose intake at an early stage. MATERIALS AND METHODS Male rats were fed 63% high fructose diet (HFrD) ad libitum and their blood samples were collected before and at 1, 2, 3, and 4 weeks after allocation. The plasma biochemical parameters, hepatotoxic enzyme activities including alkaline phosphatase (ALP) isozymes were analyzed. RESULTS HFrD consumption for 4-weeks created NAFLD-like symptoms, including elevated plasma lipid parameters and hepatotoxicity markers, as well as fat accumulation in the liver compared with rats consuming a control diet. Alanine aminotransferase (ALT) and glutamate dehydrogenase (GLDH) were increased from the 3rd and 2nd weeks, respectively, but no changes were observed on ALP activity. However, the daily consumption of the HFrD increased the plasma activities of liver-type ALP isozyme, and decreased plasma small intestinal-type ALP isozyme soon after the start of feeding. CONCLUSION ALP isozyme analysis in combination with GLDH and ALT activities in the plasma samples could be a useful tool to detect the physiological changes induced by excessive fructose intake at an early stage of the development of NAFLD.
Collapse
Affiliation(s)
- YUSUKE SUZUKI
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan,Toxicology Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - KAZUMA KONDO
- Toxicology Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - KAORU TOYODA
- Toxicology Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - YUKI TANAKA
- Toxicology Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Kanagawa, Japan
| | - AKIO KOBAYASHI
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan
| | - DAIGO YOKOYAMA
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - HIROYUKI SAKAKIBARA
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
11
|
Campos-Maldonado F, González-Dávalos ML, Piña E, Anaya-Loyola MA, Shimada A, Varela-Echavarria A, Mora O. Fructose promotes more than glucose the adipocytic differentiation of pig mesenchymal stem cells. J Food Biochem 2022; 46:e14429. [PMID: 36153825 DOI: 10.1111/jfbc.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 01/13/2023]
Abstract
The goal of this study was to evaluate how glucose and fructose affected the adipose differentiation of pig newborn mesenchymal stem cells (MSCs). Cells were grown with or without inosine in 7.5 mM glucose (substituted with 1.5 or 6 mM fructose). MSCs displayed adipose morphology after 70 days of differentiation. Fructose stimulated the highest levels of PPARγ and C/EBPβ. Fructose at 6 mM, but not glucose at 7.5 mM or fructose at 1.5 mM, promotes differentiation of MSCs into adipocytes and increases 11-hydroxysteroid dehydrogenase (11β-HSD1) and NADPH oxidase 4 (NOX4) mRNA in the absence of hepatic effects (as simulated by the inosine). Fructose and glucose increased xanthine oxide-reductase (XOR) catalytic activity almost 10-fold and elevated their products: intracellular reactive oxygen species (ROS) pool, extracellular H2 O2 pool by 4 orders of magnitude, and uric acid by a factor of 10. Therefore, in our experimental model, differentiation of MSCs into adipocytes occurs exclusively at the blood concentration of fructose detected after ingestion by people on a high fructose diet. PRACTICAL APPLICATIONS: The results of this study provide new evidence for fructose's adipogenic potential in mesenchymal stem cells, a model in which its effects on XOR activity had not been studied. The increased expression of genes such as C/EBPβ, PPARγ, and NOX4, as well as the increased XOR activity and high production of ROS during the differentiation process in the presence of fructose, coincides in pointing to this hexose as an important factor in the development of adipogenesis in young animals, which could have a great impact on the development of future obesity.
Collapse
Affiliation(s)
- Francisco Campos-Maldonado
- Maestría en Ciencias de la Nutrición Humana, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - María L González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FES-Cuautitlán), UNAM, Cuautitlan Izcalli, Mexico
| | | | | | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FES-Cuautitlán), UNAM, Cuautitlan Izcalli, Mexico
| | | | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Facultad de Estudios Superiores-Cuautitlán (FES-Cuautitlán), UNAM, Cuautitlan Izcalli, Mexico
| |
Collapse
|
12
|
Zhang H, Li X, Niu Y, Yang Z, Lu Y, Su Q, Qin L. Fasting serum fructose is associated with risk of gestational diabetes mellitus. BMC Pregnancy Childbirth 2022; 22:446. [PMID: 35643436 PMCID: PMC9148505 DOI: 10.1186/s12884-022-04768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Objective
To investigate the association of fasting serum fructose concentrations and the incidence of GDM.
Research design and methods
Five hundred twenty six pregnant women who attended the obstetric clinic of Xinhua Hospital, Chongming Branch were recruited prospectively from September 2019 to November 2020. Fasting serum fructose concentrations were measured by a validated liquid chromatography–tandem mass spectrometry method. GDM was diagnosed according to the criteria of the IADPSG. Independent sample t-test was used to compare the differences between groups. Multiple stepwise regression analysis was used to estimate the associations of serum fructose and other variables. Multivariate logistic regression models were adopted to evaluate the odds ratios (ORs) for GDM.
Results
Of the 526 pregnant women, 110 were diagnosed with GDM. Fasting fructose concentrations were increased significantly in GDM patients compared to those without GDM (1.30 ug/ml vs 1.16 ug/ml, p<0.001). Fasting fructose concentration was independently associated with GDM after adjusting the potential confounders, 1 ug/ml increase in fasting serum fructose level was associated with an 81.1% increased risk of GDM (1.811, [1.155-2.840]). Taking fructose <1.036 ug/ml as the reference, the OR for GDM was significantly higher in fructose ≥1.036 ug/ml group (OR, 1.669; 95% CI, 1.031–2.701) after all the potential confounders were adjusted.
Conclusions
Increased fasting serum fructose levels were independently associated with the incidence of GDM.
Collapse
|
13
|
Lin J, Yang Q, Guo J, Li M, Hao Z, He J, Li J. Gut Microbiome Alterations and Hepatic Metabolic Flexibility in the Gansu Zokor, Eospalax cansus: Adaptation to Hypoxic Niches. Front Cardiovasc Med 2022; 9:814076. [PMID: 35402538 PMCID: PMC8984292 DOI: 10.3389/fcvm.2022.814076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The Gansu zokor (Eospalax cansus), a typical subterranean rodent endemic to the Chinese Loess Plateau, spends almost its whole life in its self-constructed underground burrows and has strong adaptability to ambient hypoxia. Energy adaptation is the key to supporting hypoxia tolerance, and recent studies have shown that the intestinal microbiota has an evident effect on energy metabolism. However, how the gut microbiome of Gansu zokor will change in response to hypoxia and the metabolic role played by the microbiome have not been reported. Thus, we exposed Gansu zokors to severe hypoxia of 6.5% of O2 (6 or 44 h) or moderate hypoxia of 10.5% of O2 (44 h or 4 weeks), and then analyzed 16S rRNA sequencing, metagenomic sequencing, metagenomic binning, liver carbohydrate metabolites, and the related molecular levels. Our results showed that the hypoxia altered the microbiota composition of Gansu zokor, and the relative contribution of Ileibacterium to carbohydrate metabolism became increased under hypoxia, such as glycolysis and fructose metabolism. Furthermore, Gansu zokor liver enhanced carbohydrate metabolism under the short-term (6 or 44 h) hypoxia but it was suppressed under the long-term (4 weeks) hypoxia. Interestingly, under all hypoxia conditions, Gansu zokor liver exhibited enhanced fructose-driven metabolism through increased expression of the GLUT5 fructose transporter, ketohexokinase (KHK), aldolase B (ALDOB), and aldolase C (ALDOC), as well as increased KHK enzymatic activity and fructose utilization. Overall, our results suggest that the altered gut microbiota mediates the carbohydrate metabolic pattern under hypoxia, possibly contributing to the hepatic metabolic flexibility in Gansu zokor, which leads to better adaptation to hypoxic environments.
Collapse
|
14
|
Herman MA, Birnbaum MJ. Molecular aspects of fructose metabolism and metabolic disease. Cell Metab 2021; 33:2329-2354. [PMID: 34619074 PMCID: PMC8665132 DOI: 10.1016/j.cmet.2021.09.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Excessive sugar consumption is increasingly considered as a contributor to the emerging epidemics of obesity and the associated cardiometabolic disease. Sugar is added to the diet in the form of sucrose or high-fructose corn syrup, both of which comprise nearly equal amounts of glucose and fructose. The unique aspects of fructose metabolism and properties of fructose-derived metabolites allow for fructose to serve as a physiological signal of normal dietary sugar consumption. However, when fructose is consumed in excess, these unique properties may contribute to the pathogenesis of cardiometabolic disease. Here, we review the biochemistry, genetics, and physiology of fructose metabolism and consider mechanisms by which excessive fructose consumption may contribute to metabolic disease. Lastly, we consider new therapeutic options for the treatment of metabolic disease based upon this knowledge.
Collapse
Affiliation(s)
- Mark A Herman
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | | |
Collapse
|
15
|
The Effects of Butyrate on Induced Metabolic-Associated Fatty Liver Disease in Precision-Cut Liver Slices. Nutrients 2021; 13:nu13124203. [PMID: 34959755 PMCID: PMC8703944 DOI: 10.3390/nu13124203] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) starts with hepatic triglyceride accumulation (steatosis) and can progress to more severe stages such as non-alcoholic steatohepatitis (NASH) and even cirrhosis. Butyrate, and butyrate-producing bacteria, have been suggested to reduce liver steatosis directly and systemically by increasing liver β-oxidation. This study aimed to examine the influence of butyrate directly on the liver in an ex vivo induced MAFLD model. To maintain essential intercellular interactions, precision-cut liver slices (PCLSs) were used. These PCLSs were prepared from male C57BL/6J mice and cultured in varying concentrations of fructose, insulin, palmitic acid and oleic acid, to mimic metabolic syndrome. Dose-dependent triglyceride accumulation was measured after 24 and 48 h of incubation with the different medium compositions. PCLSs viability, as indicated by ATP content, was not affected by medium composition or the butyrate concentration used. Under induced steatotic conditions, butyrate did not prevent triglyceride accumulation. Moreover, it lowered the expression of genes encoding for fatty acid oxidation and only increased C4 related carnitines, which indicate butyrate oxidation. Nevertheless, butyrate lowered the fibrotic response of PCLSs, as shown by reduced gene expression of fibronectin, alpha-smooth muscle actin and osteopontin, and protein levels of type I collagen. These results suggest that in the liver, butyrate alone does not increase lipid β-oxidation directly but might aid in the prevention of MAFLD progression to NASH and cirrhosis.
Collapse
|
16
|
Identification of new GLUT2-selective inhibitors through in silico ligand screening and validation in eukaryotic expression systems. Sci Rep 2021; 11:13751. [PMID: 34215797 PMCID: PMC8253845 DOI: 10.1038/s41598-021-93063-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Glucose is an essential energy source for cells. In humans, its passive diffusion through the cell membrane is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT2 transports both glucose and fructose with low affinity and plays a critical role in glucose sensing mechanisms. Alterations in the function or expression of GLUT2 are involved in the Fanconi-Bickel syndrome, diabetes, and cancer. Distinguishing GLUT2 transport in tissues where other GLUTs coexist is challenging due to the low affinity of GLUT2 for glucose and fructose and the scarcity of GLUT-specific modulators. By combining in silico ligand screening of an inward-facing conformation model of GLUT2 and glucose uptake assays in a hexose transporter-deficient yeast strain, in which the GLUT1-5 can be expressed individually, we identified eleven new GLUT2 inhibitors (IC50 ranging from 0.61 to 19.3 µM). Among them, nine were GLUT2-selective, one inhibited GLUT1-4 (pan-Class I GLUT inhibitor), and another inhibited GLUT5 only. All these inhibitors dock to the substrate cavity periphery, close to the large cytosolic loop connecting the two transporter halves, outside the substrate-binding site. The GLUT2 inhibitors described here have various applications; GLUT2-specific inhibitors can serve as tools to examine the pathophysiological role of GLUT2 relative to other GLUTs, the pan-Class I GLUT inhibitor can block glucose entry in cancer cells, and the GLUT2/GLUT5 inhibitor can reduce the intestinal absorption of fructose to combat the harmful effects of a high-fructose diet.
Collapse
|
17
|
Lin J, Fan L, Han Y, Guo J, Hao Z, Cao L, Kang J, Wang X, He J, Li J. The mTORC1/eIF4E/HIF-1α Pathway Mediates Glycolysis to Support Brain Hypoxia Resistance in the Gansu Zokor, Eospalax cansus. Front Physiol 2021; 12:626240. [PMID: 33708138 PMCID: PMC7940537 DOI: 10.3389/fphys.2021.626240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The Gansu zokor (Eospalax cansus) is a subterranean rodent species that is unique to China. These creatures inhabit underground burrows with a hypoxia environment. Metabolic energy patterns in subterranean rodents have become a recent focus of research; however, little is known about brain energy metabolism under conditions of hypoxia in this species. The mammalian (mechanistic) target of rapamycin complex 1 (mTORC1) coordinates eukaryotic cell growth and metabolism, and its downstream targets regulate hypoxia inducible factor-1α (HIF-1α) under conditions of hypoxia to induce glycolysis. In this study, we compared the metabolic characteristics of hypoxia-tolerant subterranean Gansu zokors under hypoxic conditions with those of hypoxia-intolerant Sprague-Dawley rats with a similar-sized surface area. We exposed Gansu zokors and rats to hypoxia I (44 h at 10.5% O2) or hypoxia II (6 h at 6.5% O2) and then measured the transcriptional levels of mTORC1 downstream targets, the transcriptional and translational levels of glycolysis-related genes, glucose and fructose levels in plasma and brain, and the activity of key glycolysis-associated enzymes. Under hypoxia, we found that hif-1α transcription was upregulated via the mTORC1/eIF4E pathway to drive glycolysis. Furthermore, Gansu zokor brain exhibited enhanced fructose-driven glycolysis under hypoxia through increased expression of the GLUT5 fructose transporter and ketohexokinase (KHK), in addition to increased KHK enzymatic activity, and utilization of fructose; these changes did not occur in rat. However, glucose-driven glycolysis was enhanced in both Gansu zokor and rat under hypoxia II of 6.5% O2 for 6 h. Overall, our results indicate that on the basis of glucose as the main metabolic substrate, fructose is used to accelerate the supply of energy in Gansu zokor, which mirrors the metabolic responses to hypoxia in this species.
Collapse
Affiliation(s)
- Jinyan Lin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Lele Fan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Yuming Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Juanjuan Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Zhiqiang Hao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Lingna Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jiamin Kang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jianping He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jingang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
18
|
Sweet but Bitter: Focus on Fructose Impact on Brain Function in Rodent Models. Nutrients 2020; 13:nu13010001. [PMID: 33374894 PMCID: PMC7821920 DOI: 10.3390/nu13010001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Fructose consumption has drastically increased during the last decades due to the extensive commercial use of high-fructose corn syrup as a sweetener for beverages, snacks and baked goods. Fructose overconsumption is known to induce obesity, dyslipidemia, insulin resistance and inflammation, and its metabolism is considered partially responsible for its role in several metabolic diseases. Indeed, the primary metabolites and by-products of gut and hepatic fructolysis may impair the functions of extrahepatic tissues and organs. However, fructose itself causes an adenosine triphosphate (ATP) depletion that triggers inflammation and oxidative stress. Many studies have dealt with the effects of this sugar on various organs, while the impact of fructose on brain function is, to date, less explored, despite the relevance of this issue. Notably, fructose transporters and fructose metabolizing enzymes are present in brain cells. In addition, it has emerged that fructose consumption, even in the short term, can adversely influence brain health by promoting neuroinflammation, brain mitochondrial dysfunction and oxidative stress, as well as insulin resistance. Fructose influence on synaptic plasticity and cognition, with a major impact on critical regions for learning and memory, was also reported. In this review, we discuss emerging data about fructose effects on brain health in rodent models, with special reference to the regulation of food intake, inflammation, mitochondrial function and oxidative stress, insulin signaling and cognitive function.
Collapse
|
19
|
Nikolaou KC, Vatandaslar H, Meyer C, Schmid MW, Tuschl T, Stoffel M. The RNA-Binding Protein A1CF Regulates Hepatic Fructose and Glycerol Metabolism via Alternative RNA Splicing. Cell Rep 2020; 29:283-300.e8. [PMID: 31597092 DOI: 10.1016/j.celrep.2019.08.100] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/09/2019] [Accepted: 08/29/2019] [Indexed: 01/11/2023] Open
Abstract
The regulation of hepatic gene expression has been extensively studied at the transcriptional level; however, the control of metabolism through posttranscriptional gene regulation by RNA-binding proteins in physiological and disease states is less understood. Here, we report a major role for the hormone-sensitive RNA-binding protein (RBP) APOBEC1 complementation factor (A1CF) in the generation of hepatocyte-specific and alternatively spliced transcripts. Among these transcripts are isoforms for the dominant and high-affinity fructose-metabolizing ketohexokinase C and glycerol kinase, two key metabolic enzymes that are linked to hepatic gluconeogenesis and found to be markedly reduced upon hepatic ablation of A1cf. Consequently, mice lacking A1CF exhibit improved glucose tolerance and are protected from fructose-induced hyperglycemia, hepatic steatosis, and development of obesity. Our results identify a previously unreported function of A1CF as a regulator of alternative splicing of a subset of genes influencing hepatic glucose production through fructose and glycerol metabolism.
Collapse
Affiliation(s)
- Kostas C Nikolaou
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Marc W Schmid
- MWSchmid GmbH, Möhrlistrasse 25, 8006 Zurich, Switzerland
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland; Medical Faculty, University of Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
20
|
Koepsell H. Glucose transporters in the small intestine in health and disease. Pflugers Arch 2020; 472:1207-1248. [PMID: 32829466 PMCID: PMC7462918 DOI: 10.1007/s00424-020-02439-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
Absorption of monosaccharides is mainly mediated by Na+-D-glucose cotransporter SGLT1 and the facititative transporters GLUT2 and GLUT5. SGLT1 and GLUT2 are relevant for absorption of D-glucose and D-galactose while GLUT5 is relevant for D-fructose absorption. SGLT1 and GLUT5 are constantly localized in the brush border membrane (BBM) of enterocytes, whereas GLUT2 is localized in the basolateral membrane (BLM) or the BBM plus BLM at low and high luminal D-glucose concentrations, respectively. At high luminal D-glucose, the abundance SGLT1 in the BBM is increased. Hence, D-glucose absorption at low luminal glucose is mediated via SGLT1 in the BBM and GLUT2 in the BLM whereas high-capacity D-glucose absorption at high luminal glucose is mediated by SGLT1 plus GLUT2 in the BBM and GLUT2 in the BLM. The review describes functions and regulations of SGLT1, GLUT2, and GLUT5 in the small intestine including diurnal variations and carbohydrate-dependent regulations. Also, the roles of SGLT1 and GLUT2 for secretion of enterohormones are discussed. Furthermore, diseases are described that are caused by malfunctions of small intestinal monosaccharide transporters, such as glucose-galactose malabsorption, Fanconi syndrome, and fructose intolerance. Moreover, it is reported how diabetes, small intestinal inflammation, parental nutrition, bariatric surgery, and metformin treatment affect expression of monosaccharide transporters in the small intestine. Finally, food components that decrease D-glucose absorption and drugs in development that inhibit or downregulate SGLT1 in the small intestine are compiled. Models for regulations and combined functions of glucose transporters, and for interplay between D-fructose transport and metabolism, are discussed.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstr 6, 97070, Würzburg, Germany.
| |
Collapse
|
21
|
Chen Y, Lin H, Qin L, Lu Y, Zhao L, Xia M, Jiang J, Li X, Yu C, Zong G, Zheng Y, Gao X, Su Q, Li X. Fasting Serum Fructose Levels Are Associated With Risk of Incident Type 2 Diabetes in Middle-Aged and Older Chinese Population. Diabetes Care 2020; 43:2217-2225. [PMID: 32611608 DOI: 10.2337/dc19-2494] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/24/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We investigated the relationship between fasting serum fructose levels and the risk of incident type 2 diabetes in a prospective Chinese cohort. RESEARCH DESIGN AND METHODS Among 949 community-based participants aged ≥40 years without diabetes at baseline, fasting serum fructose levels were measured using liquid chromatography-tandem mass spectrometry. The participants were followed up for the occurrence of diabetes. Cox regression models were performed to analyze the effect of fasting serum fructose levels on risk of incident diabetes. RESULTS During a median of 3.5 years' follow-up, 179 of 949 (18.9%) participants developed type 2 diabetes. Elevated fasting serum fructose levels were associated with an increased risk of incident diabetes in a dose-response manner. After adjustment for age, sex, BMI, lipid profiles, blood pressure, liver function, smoking and drinking status, baseline glucose level, and sugar-sweetened beverage consumption, a 1-SD increased fasting fructose level was associated with a 35% (95% CI 1.08-1.67) increased risk of developing diabetes. After further adjustment for serum uric acid and estimated glomerular filtration rate, the association was partially attenuated (hazard ratio 1.33 [95% CI 1.07-1.65]). The association was similar by age, prediabetes status, BMI, and family history of diabetes but attenuated in women (P for heterogeneity = 0.037). CONCLUSIONS Elevated fasting serum fructose levels were independently associated with increased risk of incident type 2 diabetes in a middle-aged and older Chinese population. Our data suggest that higher fasting serum fructose levels might serve as a biomarker and/or a contributor to incident diabetes.
Collapse
Affiliation(s)
- Ying Chen
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huandong Lin
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Qin
- Department of Endocrinology and Metabolism, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Youli Lu
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China.,Shanghai Clinical Center, Chinese Academy of Science, Shanghai, China
| | - Lin Zhao
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingjing Jiang
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaomu Li
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Yu
- Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China.,Shanghai Clinical Center, Chinese Academy of Science, Shanghai, China
| | - Geng Zong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Gao
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Su
- Department of Endocrinology and Metabolism, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoying Li
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Holman GD. Structure, function and regulation of mammalian glucose transporters of the SLC2 family. Pflugers Arch 2020; 472:1155-1175. [PMID: 32591905 PMCID: PMC7462842 DOI: 10.1007/s00424-020-02411-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
The SLC2 genes code for a family of GLUT proteins that are part of the major facilitator superfamily (MFS) of membrane transporters. Crystal structures have recently revealed how the unique protein fold of these proteins enables the catalysis of transport. The proteins have 12 transmembrane spans built from a replicated trimer substructure. This enables 4 trimer substructures to move relative to each other, and thereby alternately opening and closing a cleft to either the internal or the external side of the membrane. The physiological substrate for the GLUTs is usually a hexose but substrates for GLUTs can include urate, dehydro-ascorbate and myo-inositol. The GLUT proteins have varied physiological functions that are related to their principal substrates, the cell type in which the GLUTs are expressed and the extent to which the proteins are associated with subcellular compartments. Some of the GLUT proteins translocate between subcellular compartments and this facilitates the control of their function over long- and short-time scales. The control of GLUT function is necessary for a regulated supply of metabolites (mainly glucose) to tissues. Pathophysiological abnormalities in GLUT proteins are responsible for, or associated with, clinical problems including type 2 diabetes and cancer and a range of tissue disorders, related to tissue-specific GLUT protein profiles. The availability of GLUT crystal structures has facilitated the search for inhibitors and substrates and that are specific for each GLUT and that can be used therapeutically. Recent studies are starting to unravel the drug targetable properties of each of the GLUT proteins.
Collapse
Affiliation(s)
- Geoffrey D Holman
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
23
|
Liao Y, Davies NA, Bogle IDL. Computational Modeling of Fructose Metabolism and Development in NAFLD. Front Bioeng Biotechnol 2020; 8:762. [PMID: 32775322 PMCID: PMC7388684 DOI: 10.3389/fbioe.2020.00762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcohol fatty liver disease (NAFLD) is a common disorder that has increased in prevalence 20-fold over the last three decades. It covers a spectrum of conditions resulting from excess lipid accumulation in the liver without alcohol abuse. Among all the risk factors, over-consumption of fructose has been repeatedly reported in both clinical and experimental studies to be highly associated with the development of NAFLD. However, studying in vivo systems is complicated, time consuming and expensive. A detailed kinetic model of fructose metabolism was constructed to investigate the metabolic mechanisms whereby fructose consumption can induce dyslipidaemia associated with NAFLD and to explore whether the pathological conditions can be reversed during the early stages of disease. The model contains biochemical components and reactions identified from the literature, including ~120 parameters, 25 variables, and 25 first order differential equations. Three scenarios were presented to demonstrate the behavior of the model. Scenario one predicts the acute effects of a change in carbohydrate input in lipid profiles. The results present progressive triglyceride accumulations in the liver and plasma for three diets. The rate of accumulation was greater in the fructose diet than that of the mixed or glucose only models. Scenario two explores the variability of metabolic reaction rate within the general population. Sensitivity analysis reveals that hepatic triglyceride concentration is most sensitive to the rate constant of pyruvate kinase and fructokinase. Scenario three tests the effect of one specific inhibitor that might be potentially administered. The simulations of fructokinase suppression provide a good model for potentially reversing simple steatosis induced by high fructose consumption, which can be corroborated by experimental studies. The predictions in these three scenarios suggest that the model is robust and it has sufficient detail to present the kinetic relationship between fructose and lipid in the liver.
Collapse
Affiliation(s)
- Yunjie Liao
- Department of Chemical Engineering, Center for Process Systems Engineering, University College London, London, United Kingdom.,Division of Medicine, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Nathan A Davies
- Division of Medicine, Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - I David L Bogle
- Department of Chemical Engineering, Center for Process Systems Engineering, University College London, London, United Kingdom
| |
Collapse
|
24
|
Eberhart T, Schönenberger MJ, Walter KM, Charles KN, Faust PL, Kovacs WJ. Peroxisome-Deficiency and HIF-2α Signaling Are Negative Regulators of Ketohexokinase Expression. Front Cell Dev Biol 2020; 8:566. [PMID: 32733884 PMCID: PMC7360681 DOI: 10.3389/fcell.2020.00566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
Ketohexokinase (KHK) is the first and rate-limiting enzyme of fructose metabolism. Expression of the two alternatively spliced KHK isoforms, KHK-A and KHK-C, is tissue-specific and KHK-C is predominantly expressed in liver, kidney and intestine and responsible for the fructose-catabolizing function. While KHK isoform choice has been linked to the development of disorders such as obesity, diabetes, cardiovascular disease and cancer, little is known about the regulation of total KHK expression. In the present study, we investigated how hypoxic signaling influences fructose metabolism in the liver. Hypoxia or von Hippel-Lindau (VHL) tumor suppressor loss leads to the stabilization of hypoxia-inducible factors alpha (HIF-1α and HIF-2α) and the activation of their signaling to mediate adaptive responses. By studying liver-specific Vhl, Vhl/Hif1a, and Vhl/Epas1 knockout mice, we found that KHK expression is suppressed by HIF-2α (encoded by Epas1) but not by HIF-1α signaling on mRNA and protein levels. Reduced KHK levels were accompanied by downregulation of aldolase B (ALDOB) in the livers of Vhl and Vhl/Hif1a knockout mice, further indicating inhibited fructose metabolism. HIF-1α and HIF-2α have both overlapping and distinct target genes but are differentially regulated depending on the cell type and physiologic or pathologic conditions. HIF-2α activation augments peroxisome degradation in mammalian cells by pexophagy and thereby changes lipid composition reminiscent of peroxisomal disorders. We further demonstrated that fructose metabolism is negatively regulated by peroxisome-deficiency in a Pex2 knockout Zellweger mouse model, which lacks functional peroxisomes and is characterized by widespread metabolic dysfunction. Repression of fructolytic genes in Pex2 knockout mice appeared to be independent of PPARα signaling and nutritional status. Interestingly, our results demonstrate that both HIF-2α and peroxisome-deficiency result in downregulation of Khk independent of splicing as both isoforms, Khka as well as Khkc, are significantly downregulated. Hence, our study offers new and unexpected insights into the general regulation of KHK, and therefore fructolysis. We revealed a novel regulatory function of HIF-2α, suggesting that HIF-1α and HIF-2α have tissue-specific opposing roles in the regulation of Khk expression, isoform choice and fructolysis. In addition, we discovered a previously unknown function of peroxisomes in the regulation of fructose metabolism.
Collapse
Affiliation(s)
- Tanja Eberhart
- Institute of Molecular Health Sciences, ETH Zürich, Zurich, Switzerland
| | | | | | - Khanichi N. Charles
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Phyllis L. Faust
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Werner J. Kovacs
- Institute of Molecular Health Sciences, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
25
|
Jang C, Wada S, Yang S, Gosis B, Zeng X, Zhang Z, Shen Y, Lee G, Arany Z, Rabinowitz JD. The small intestine shields the liver from fructose-induced steatosis. Nat Metab 2020; 2:586-593. [PMID: 32694791 PMCID: PMC8020332 DOI: 10.1038/s42255-020-0222-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Per capita fructose consumption has increased 100-fold over the last century1. Epidemiological studies suggest that excessive fructose consumption, and especially consumption of sweet drinks, is associated with hyperlipidaemia, non-alcoholic fatty liver disease, obesity and diabetes2-7. Fructose metabolism begins with its phosphorylation by the enzyme ketohexokinase (KHK), which exists in two alternatively spliced forms8. The more active isozyme, KHK-C, is expressed most strongly in the liver, but also substantially in the small intestine9,10 where it drives dietary fructose absorption and conversion into other metabolites before fructose reaches the liver11-13. It is unclear whether intestinal fructose metabolism prevents or contributes to fructose-induced lipogenesis and liver pathology. Here we show that intestinal fructose catabolism mitigates fructose-induced hepatic lipogenesis. In mice, intestine-specific KHK-C deletion increases dietary fructose transit to the liver and gut microbiota and sensitizes mice to fructose's hyperlipidaemic effects and hepatic steatosis. In contrast, intestine-specific KHK-C overexpression promotes intestinal fructose clearance and decreases fructose-induced lipogenesis. Thus, intestinal fructose clearance capacity controls the rate at which fructose can be safely ingested. Consistent with this, we show that the same amount of fructose is more strongly lipogenic when drunk than eaten, or when administered as a single gavage, as opposed to multiple doses spread over 45 min. Collectively, these data demonstrate that fructose induces lipogenesis when its dietary intake rate exceeds the intestinal clearance capacity. In the modern context of ready food availability, the resulting fructose spillover drives metabolic syndrome. Slower fructose intake, tailored to intestinal capacity, can mitigate these consequences.
Collapse
Affiliation(s)
- Cholsoon Jang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| | - Shogo Wada
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven Yang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bridget Gosis
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xianfeng Zeng
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Zhaoyue Zhang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Yihui Shen
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Gina Lee
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Zoltan Arany
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
26
|
Al-Jawadi A, Patel CR, Shiarella RJ, Romelus E, Auvinen M, Guardia J, Pearce SC, Kishida K, Yu S, Gao N, Ferraris RP. Cell-Type-Specific, Ketohexokinase-Dependent Induction by Fructose of Lipogenic Gene Expression in Mouse Small Intestine. J Nutr 2020; 150:1722-1730. [PMID: 32386219 PMCID: PMC7330472 DOI: 10.1093/jn/nxaa113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/06/2020] [Accepted: 04/01/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND High intakes of fructose are associated with metabolic diseases, including hypertriglyceridemia and intestinal tumor growth. Although small intestinal epithelia consist of many different cell types, express lipogenic genes, and convert dietary fructose to fatty acids, there is no information on the identity of the cell type(s) mediating this conversion and on the effects of fructose on lipogenic gene expression. OBJECTIVES We hypothesized that fructose regulates the intestinal expression of genes involved in lipid and apolipoprotein synthesis, that regulation depends on the fructose transporter solute carrier family 2 member a5 [Slc2a5 (glucose transporter 5)] and on ketohexokinase (Khk), and that regulation occurs only in enterocytes. METHODS We compared lipogenic gene expression among different organs from wild-type adult male C57BL mice consuming a standard vivarium nonpurified diet. We then gavaged twice daily for 2.5 d fructose or glucose solutions (15%, 0.3 mL per mouse) into wild-type, Slc2a5-knockout (KO), and Khk-KO mice with free access to the nonpurified diet and determined expression of representative lipogenic genes. Finally, from mice fed the nonpurified diet, we made organoids highly enriched in enterocyte, goblet, Paneth, or stem cells and then incubated them overnight in 10 mM fructose or glucose. RESULTS Most lipogenic genes were significantly expressed in the intestine relative to the kidney, liver, lung, and skeletal muscle. In vivo expression of Srebf1, Acaca, Fasn, Scd1, Dgat1, Gk, Apoa4, and Apob mRNA and of Scd1 protein increased (P < 0.05) by 3- to 20-fold in wild-type, but not in Slc2a5-KO and Khk-KO, mice gavaged with fructose. In vitro, Slc2a5- and Khk-dependent, fructose-induced increases, which ranged from 1.5- to 4-fold (P < 0.05), in mRNA concentrations of all these genes were observed only in organoids enriched in enterocytes. CONCLUSIONS Fructose specifically stimulates expression of mouse small intestinal genes for lipid and apolipoprotein synthesis. Secretory and stem cells seem incapable of transport- and metabolism-dependent lipogenesis, occurring only in absorptive enterocytes.
Collapse
Affiliation(s)
- Arwa Al-Jawadi
- Present address for AA-J: Thermo Fisher Scientific, 5823 Newton Drive, Carlsbad, CA 92008 USA
| | - Chirag R Patel
- Present address for CRP: Independent Drug Safety Consultant, 1801 Augustine Cut-off, Wilmington, DE 19803
| | - Reilly J Shiarella
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Emmanuellie Romelus
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Madelyn Auvinen
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Joshua Guardia
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Sarah C Pearce
- Present address for SCP: Performance Nutrition Team, Combat Feeding Directorate, Natick Soldier Research, Development, and Engineering Center (NSRDEC), 15 General Greene Avenue, Natick, MA 01760-5018
| | - Kunihiro Kishida
- Present address for KK: Department of Science and Technology on Food Safety, Kindai University, Wakayama 649-6493, Japan
| | - Shiyan Yu
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, NJ, USA
| | - Nan Gao
- Department of Biological Sciences, Life Science Center, Rutgers University, Newark, NJ, USA
| | | |
Collapse
|
27
|
Williams EAJ, Douard V, Sugimoto K, Inui H, Devime F, Zhang X, Kishida K, Ferraris RP, Fritton JC. Bone Growth is Influenced by Fructose in Adolescent Male Mice Lacking Ketohexokinase (KHK). Calcif Tissue Int 2020; 106:541-552. [PMID: 31996963 PMCID: PMC9466006 DOI: 10.1007/s00223-020-00663-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 01/20/2020] [Indexed: 01/01/2023]
Abstract
Fructose is metabolized in the cytoplasm by the enzyme ketohexokinase (KHK), and excessive consumption may affect bone health. Previous work in calcium-restricted, growing mice demonstrated that fructose disrupted intestinal calcium transport. Thus, we hypothesized that the observed effects on bone were dependent on fructose metabolism and took advantage of a KHK knockout (KO) model to assess direct effects of high plasma fructose on the long bones of growing mice. Four groups (n = 12) of 4-week-old, male, C57Bl/6 background, congenic mice with intact KHK (wild-type, WT) or global knockout of both isoforms of KHK-A/C (KHK-KO), were fed 20% glucose (control diet) or fructose for 8 weeks. Dietary fructose increased by 40-fold plasma fructose in KHK-KO compared to the other three groups (p < 0.05). Obesity (no differences in epididymal fat or body weight) or altered insulin was not observed in either genotype. The femurs of KHK-KO mice with the highest levels of plasma fructose were shorter (2%). Surprisingly, despite the long-term blockade of KHK, fructose feeding resulted in greater bone mineral density, percent volume, and number of trabeculae as measured by µCT in the distal femur of KHK-KO. Moreover, higher plasma fructose concentrations correlated with greater trabecular bone volume, greater work-to-fracture in three-point bending of the femur mid-shaft, and greater plasma sclerostin. Since the metabolism of fructose is severely inhibited in the KHK-KO condition, our data suggest mechanism(s) that alter bone growth may be related to the plasma concentration of fructose.
Collapse
Affiliation(s)
- Edek A J Williams
- Department of Biomedical Engineering, Graduate School, Rutgers University, New Brunswick, NJ, USA
| | - Veronique Douard
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Hiroshi Inui
- Center for Research and Development of Bioresources & Department of Clinical Nutrition, College of Health and Human Sciences, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Fabienne Devime
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Xufei Zhang
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Kunihiro Kishida
- Department of Science and Technology On Food Safety, Kindai University, Wakayama, Japan
| | - Ronaldo P Ferraris
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - J Christopher Fritton
- Department of Biomedical Engineering, Graduate School, Rutgers University, New Brunswick, NJ, USA.
- Departments of Mechanical and Biomedical Engineering, Grove School of Engineering, The City College of New York, 160 Convent Avenue, Steinman Hall T401, New York, NY, 10031, USA.
| |
Collapse
|
28
|
Evidence for Toxic Advanced Glycation End-Products Generated in the Normal Rat Liver. Nutrients 2019; 11:nu11071612. [PMID: 31315223 PMCID: PMC6683103 DOI: 10.3390/nu11071612] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022] Open
Abstract
Glucose/fructose in beverages/foods containing high-fructose corn syrup (HFCS) are metabolized to glyceraldehyde (GA) in the liver. We previously reported that GA-derived advanced glycation end-products (toxic AGEs, TAGE) are generated and may induce the onset/progression of non-alcoholic fatty liver disease (NAFLD). We revealed that the generation of TAGE in the liver and serum TAGE levels were higher in NAFLD patients than in healthy humans. Although we propose the intracellular generation of TAGE in the normal liver, there is currently no evidence to support this, and the levels of TAGE produced have not yet been measured. In the present study, male Wister/ST rats that drank normal water or 10% HFCS 55 (HFCS beverage) were maintained for 13 weeks, and serum TAGE levels and intracellular TAGE levels in the liver were analyzed. Rats in the HFCS group drank 127.4 mL of the HFCS beverage each day. Serum TAGE levels and intracellular TAGE levels in the liver both increased in the HFCS group. A positive correlation was observed between intracellular TAGE levels in the liver and serum TAGE levels. On the other hand, in male Wister/ST rats that drank Lactobacillus beverage for 12 weeks-a commercial drink that contains glucose, fructose, and sucrose- no increases were observed in intracellular TAGE or serum TAGE levels. Intracellular TAGE were generated in the normal rat liver, and their production was promoted by HFCS, which may increase the risk of NAFLD.
Collapse
|
29
|
Zwarts I, van Zutphen T, Kruit JK, Liu W, Oosterveer MH, Verkade HJ, Uhlenhaut NH, Jonker JW. Identification of the fructose transporter GLUT5 (SLC2A5) as a novel target of nuclear receptor LXR. Sci Rep 2019; 9:9299. [PMID: 31243309 PMCID: PMC6594926 DOI: 10.1038/s41598-019-45803-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 06/12/2019] [Indexed: 12/24/2022] Open
Abstract
Fructose has become a major constituent of our modern diet and is implicated as an underlying cause in the development of metabolic diseases. The fructose transporter GLUT5 (SLC2A5) is required for intestinal fructose absorption. GLUT5 expression is induced in the intestine and skeletal muscle of type 2 diabetes (T2D) patients and in certain cancers that are dependent on fructose metabolism, indicating that modulation of GLUT5 levels could have potential in the treatment of these diseases. Using an unbiased screen for transcriptional control of the human GLUT5 promoter we identified a strong and specific regulation by liver X receptor α (LXRα, NR1H3). Using promoter truncations and site-directed mutagenesis we identified a functional LXR response element (LXRE) in the human GLUT5 promoter, located at −385 bp relative to the transcriptional start site (TSS). Finally, mice treated with LXR agonist T0901317 showed an increase in Glut5 mRNA and protein levels in duodenum and adipose tissue, underscoring the in vivo relevance of its regulation by LXR. Together, our findings show that LXRα regulates GLUT5 in mice and humans. As a ligand-activated transcription factor, LXRα might provide novel pharmacologic strategies for the selective modulation of GLUT5 activity in the treatment of metabolic disease as well as cancer.
Collapse
Affiliation(s)
- Irene Zwarts
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Tim van Zutphen
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Janine K Kruit
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Weilin Liu
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Maaike H Oosterveer
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Henkjan J Verkade
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - N Henriette Uhlenhaut
- Molecular Endocrinology, Institute for Diabetes and Cancer IDC, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany.,Gene Center, Ludwig-Maximilians-Universität München (LMU), Feodor-Lynen-Straße 25, Munich, 81377, Germany
| | - Johan W Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
30
|
Zhang X, Grosfeld A, Williams E, Vasiliauskas D, Barretto S, Smith L, Mariadassou M, Philippe C, Devime F, Melchior C, Gourcerol G, Dourmap N, Lapaque N, Larraufie P, Blottière HM, Herberden C, Gerard P, Rehfeld JF, Ferraris RP, Fritton JC, Ellero-Simatos S, Douard V. Fructose malabsorption induces cholecystokinin expression in the ileum and cecum by changing microbiota composition and metabolism. FASEB J 2019; 33:7126-7142. [PMID: 30939042 DOI: 10.1096/fj.201801526rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current fructose consumption levels often overwhelm the intestinal capacity to absorb fructose. We investigated the impact of fructose malabsorption on intestinal endocrine function and addressed the role of the microbiota in this process. To answer this question, a mouse model of moderate fructose malabsorption [ketohexokinase mutant (KHK)-/-] and wild-type (WT) littermate mice were used and received a 20%-fructose (KHK-F and WT-F) or 20%-glucose diet. Cholecystokinin (Cck) mRNA and protein expression in the ileum and cecum, as well as preproglucagon (Gcg) and neurotensin (Nts) mRNA expression in the cecum, increased in KHK-F mice. In KHK-F mice, triple-label immunohistochemistry showed major up-regulation of CCK in enteroendocrine cells (EECs) that were glucagon-like peptide-1 (GLP-1)+/Peptide YY (PYY-) in the ileum and colon and GLP-1-/PYY- in the cecum. The cecal microbiota composition was drastically modified in the KHK-F in association with an increase in glucose, propionate, succinate, and lactate concentrations. Antibiotic treatment abolished fructose malabsorption-dependent induction of cecal Cck mRNA expression and, in mouse GLUTag and human NCI-H716 cells, Cck mRNA expression levels increased in response to propionate, both suggesting a microbiota-dependent process. Fructose reaching the lower intestine can modify the composition and metabolism of the microbiota, thereby stimulating the production of CCK from the EECs possibly in response to propionate.-Zhang, X., Grosfeld, A., Williams, E., Vasiliauskas, D., Barretto, S., Smith, L., Mariadassou, M., Philippe, C., Devime, F., Melchior, C., Gourcerol, G., Dourmap, N., Lapaque, N., Larraufie, P., Blottière, H. M., Herberden, C., Gerard, P., Rehfeld, J. F., Ferraris, R. P., Fritton, J. C., Ellero-Simatos, S., Douard, V. Fructose malabsorption induces cholecystokinin expression in the ileum and cecum by changing microbiota composition and metabolism.
Collapse
Affiliation(s)
- Xufei Zhang
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Collège Doctoral, Sorbonne Université, Paris, France
| | - Alexandra Grosfeld
- Centre de Recherche des Cordeliers, INSERM Unité Mixte de Recherche (UMR) S1138, Sorbonne Université, Sorbonne Cités, Université Paris-Diderot (UPD), Centre National de la Recherche Scientifique (CNRS)-Instituts Hospitalo-Universitaires (IHU), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Edek Williams
- Department of Orthopedics, Rutgers University, Newark, New Jersey, USA
| | - Daniel Vasiliauskas
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Gif-sur-Yvette, France
| | | | | | - Mahendra Mariadassou
- Mathématiques et Informatique Appliquées du Génome à l'Environnement (MaIAGE), Unité de Recherche (UR) 1404, INRA, Jouy-en-Josas, France
| | - Catherine Philippe
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Fabienne Devime
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Chloé Melchior
- INSERM Unit 1073, University of Rouen (UNIROUEN), Normandie University, Rouen, France
| | - Guillaume Gourcerol
- INSERM Unit 1073, University of Rouen (UNIROUEN), Normandie University, Rouen, France
| | - Nathalie Dourmap
- UNIROUEN, INSERM U1245 and Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Normandy University, Rouen, France
| | - Nicolas Lapaque
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pierre Larraufie
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Hervé M Blottière
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Christine Herberden
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Gerard
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; and
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, Newark, New Jersey, USA
| | | | | | - Veronique Douard
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
31
|
Wu CW, Hung CY, Hirase H, Tain YL, Lee WC, Chan JYH, Fu MH, Chen LW, Liu WC, Liang CK, Ho YH, Kung YC, Leu S, Wu KLH. Pioglitazone reversed the fructose-programmed astrocytic glycolysis and oxidative phosphorylation of female rat offspring. Am J Physiol Endocrinol Metab 2019; 316:E622-E634. [PMID: 30668149 DOI: 10.1152/ajpendo.00408.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excessive maternal high-fructose diet (HFD) during pregnancy and lactation has been reported to cause metabolic disorders in the offspring. Whether the infant's brain metabolism is disturbed by maternal HFD is largely unknown. Brain energy metabolism is elevated dramatically during fetal and postnatal development, whereby maternal nutrition is a key factor that determines cellular metabolism. Astrocytes, a nonneuronal cell type in the brain, are considered to support the high-energy demands of neurons by supplying lactate. In this study, the effects of maternal HFD on astrocytic glucose metabolism were investigated using hippocampal primary cultures of female infants. We found that glycolytic capacity and mitochondrial respiration and electron transport chain were suppressed by maternal HFD. Mitochondrial DNA copy number and mitochondrial transcription factor A expression were suppressed by maternal HFD. Western blots and immunofluorescent images further indicated that the glucose transporter 1 was downregulated whereas the insulin receptor-α, phospho-insulin receptor substrate-1 (Y612) and the p85 subunit of phosphatidylinositide 3-kinase were upregulated in the HFD group. Pioglitazone, which is known to increase astrocytic glucose metabolism, effectively reversed the suppressed glycolysis, and lactate release was restored. Moreover, pioglitazone also normalized oxidative phosphorylation with an increase of cytosolic ATP. Together, these results suggest that maternal HFD impairs astrocytic energy metabolic pathways that were reversed by pioglitazone.
Collapse
Affiliation(s)
- Chih-Wei Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Hajime Hirase
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science , Wako, Saitama , Japan
- Saitama University Brain Science Institute , Saitama , Japan
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen , Copenhagen , Denmark
| | - You-Lin Tain
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Republic of China
| | - Wei-Chia Lee
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Republic of China
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Mu-Hui Fu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Republic of China
| | - Lee-Wei Chen
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Wen-Chung Liu
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Chih-Kuang Liang
- Division of Neurology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Ying-Hao Ho
- Division of Neurology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Yu Chih Kung
- Master of Science Program in Health Care, Department of Nursing, Meiho University, Republic of China
- Department of Nursing, Meiho University, Taiwan, Republic of China
| | - Steve Leu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, Taiwan, Republic of China
| |
Collapse
|
32
|
Prins GH, Luangmonkong T, Oosterhuis D, Mutsaers HAM, Dekker FJ, Olinga P. A Pathophysiological Model of Non-Alcoholic Fatty Liver Disease Using Precision-Cut Liver Slices. Nutrients 2019; 11:E507. [PMID: 30818824 PMCID: PMC6470479 DOI: 10.3390/nu11030507] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 01/02/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disorder closely related to metabolic syndrome. NAFLD can progress to an inflammatory state called non-alcoholic steatohepatitis (NASH), which may result in the development of fibrosis and hepatocellular carcinoma. To develop therapeutic strategies against NAFLD, a better understanding of the molecular mechanism is needed. Current in vitro NAFLD models fail to capture the essential interactions between liver cell types and often do not reflect the pathophysiological status of patients. To overcome limitations of commonly used in vitro and in vivo models, precision-cut liver slices (PCLSs) were used in this study. PCLSs, prepared from liver tissue obtained from male Wistar rats, were cultured in supraphysiological concentrations of glucose, fructose, insulin, and palmitic acid to mimic metabolic syndrome. Accumulation of lipid droplets was visible and measurable after 24 h in PCLSs incubated with glucose, fructose, and insulin, both in the presence and absence of palmitic acid. Upregulation of acetyl-CoA carboxylase 1 and 2, and of sterol responsive element binding protein 1c, suggests increased de novo lipogenesis in PCLSs cultured under these conditions. Additionally, carnitine palmitoyltransferase 1 expression was reduced, which indicates impaired fatty acid transport and disrupted mitochondrial β-oxidation. Thus, steatosis was successfully induced in PCLSs with modified culture medium. This novel ex vivo NAFLD model could be used to investigate the multicellular and molecular mechanisms that drive NAFLD development and progression, and to study potential anti-steatotic drugs.
Collapse
Affiliation(s)
- Grietje H Prins
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9712VM Groningen, The Netherlands.
| | - Theerut Luangmonkong
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9712VM Groningen, The Netherlands.
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, 10400 Bangkok, Thailand.
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9712VM Groningen, The Netherlands.
| | - Henricus A M Mutsaers
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9712VM Groningen, The Netherlands.
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, University of Groningen, 9712VM Groningen, The Netherlands.
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9712VM Groningen, The Netherlands.
| |
Collapse
|
33
|
Abstract
Fructose in the form of sucrose and high fructose corn syrup is absorbed by the intestinal transporter and mainly metabolized in the small intestine. However, excess intake of fructose overwhelms the absorptive capacity of the small intestine, leading to fructose malabsorption. Carbohydrate response element-binding protein (ChREBP) is a basic helix-loop-helix leucine zipper transcription factor that plays a key role in glycolytic and lipogenic gene expression in response to carbohydrate consumption. While ChREBP was initially identified as a glucose-responsive factor in the liver, recent evidence suggests that ChREBP is essential for fructoseinduced lipogenesis and gluconeogenesis in the small intestine as well as in the liver. We recently identified that the loss of ChREBP leads to fructose intolerance via insufficient induction of genes involved in fructose transport and metabolism in the intestine. As fructose consumption is increasing and closely associated with metabolic and gastrointestinal diseases, a comprehensive understanding of cellular fructose sensing and metabolism via ChREBP may uncover new therapeutic opportunities. In this mini review, we briefly summarize recent progress in intestinal fructose metabolism, regulation and function of ChREBP by fructose, and delineate the potential mechanisms by which excessive fructose consumption may lead to irritable bowel syndrome.
Collapse
Affiliation(s)
- Ho-Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999, Korea
| | - Ji-Young Cha
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999; Gachon Medical Institute, Gil Medical Center, Incheon 21565, Korea
| |
Collapse
|
34
|
Villegas LR, Rivard CJ, Hunter B, You Z, Roncal C, Joy MS, Le MT. Effects of fructose-containing sweeteners on fructose intestinal, hepatic, and oral bioavailability in dual-catheterized rats. PLoS One 2018; 13:e0207024. [PMID: 30408104 PMCID: PMC6224110 DOI: 10.1371/journal.pone.0207024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/22/2018] [Indexed: 01/28/2023] Open
Abstract
Objective Fructose is commonplace in Western diets and is consumed primarily through added sugars as sucrose or high fructose corn syrup. High consumption of fructose has been linked to the development of metabolic disorders, such as cardiovascular diseases. The majority of the harmful effects of fructose can be traced to its uncontrolled and rapid metabolism, primarily within the liver. It has been speculated that the formulation of fructose-containing sweeteners can have varying impacts on its adverse effects. Unfortunately, there is limited data supporting this hypothesis. The objective of this study was to examine the impact of different fructose-containing sweeteners on the intestinal, hepatic, and oral bioavailability of fructose. Methods Portal and femoral vein catheters were surgically implanted in male Wistar rats. Animals were gavaged with a 1 g/kg carbohydrate solution consisting of fructose, 45% glucose/55% fructose, sucrose, glucose, or water. Blood samples were then collected from the portal and systemic circulation. Fructose levels were measured and pharmacokinetic parameters were calculated. Results Compared to animals that were gavaged with 45% glucose/55% fructose or sucrose, fructose-gavaged animals had a 40% greater fructose area under the curve and a 15% greater change in maximum fructose concentration in the portal circulation. In the systemic circulation of fructose-gavaged animals, the fructose area under the curve was 17% and 24% higher and the change in the maximum fructose concentration was 15% and 30% higher than the animals that received 45% glucose/55% fructose or sucrose, respectively. After the oral administration of fructose, 45% glucose/55% fructose, and sucrose, the bioavailability of fructose was as follows: intestinal availability was 0.62, 0.53 and 0.57; hepatic availability was 0.33, 0.45 and 0.45; and oral bioavailability was 0.19, 0.23 and 0.24, respectively. Conclusions Our studies show that the co-ingestion of glucose did not enhance fructose absorption, rather, it decreased fructose metabolism in the liver. The intestinal, hepatic, and oral bioavailability of fructose was similar between 45% glucose/55% fructose and sucrose.
Collapse
Affiliation(s)
- Leah R. Villegas
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Christopher J. Rivard
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Brandi Hunter
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Zhiying You
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Carlos Roncal
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Melanie S. Joy
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - MyPhuong T. Le
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
35
|
Miller CO, Yang X, Lu K, Cao J, Herath K, Rosahl TW, Askew R, Pavlovic G, Zhou G, Li C, Akiyama TE. Ketohexokinase knockout mice, a model for essential fructosuria, exhibit altered fructose metabolism and are protected from diet-induced metabolic defects. Am J Physiol Endocrinol Metab 2018; 315:E386-E393. [PMID: 29870677 DOI: 10.1152/ajpendo.00027.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fructose consumption in humans and animals has been linked to enhanced de novo lipogenesis, dyslipidemia, and insulin resistance. Hereditary deficiency of ketohexokinase (KHK), the first enzymatic step in fructose metabolism, leads to essential fructosuria in humans, characterized by elevated levels of blood and urinary fructose following fructose ingestion but is otherwise clinically benign. To address whether KHK deficiency is associated with altered glucose and lipid metabolism, a Khk knockout (KO) mouse line was generated and characterized. NMR spectroscopic analysis of plasma following ingestion of [6-13C] fructose revealed striking differences in biomarkers of fructose metabolism. Significantly elevated urine and plasma 13C-fructose levels were observed in Khk KO vs. wild-type (WT) control mice, as was reduced conversion of 13C-fructose into plasma 13C-glucose and 13C-lactate. In addition, the observation of significant levels of fructose-6-phosphate in skeletal muscle tissue of Khk KO, but not WT, mice suggests a potential mechanism, whereby fructose is metabolized via muscle hexokinase in the absence of KHK. Khk KO mice on a standard chow diet displayed no metabolic abnormalities with respect to ambient glucose, glucose tolerance, body weight, food intake, and circulating trigylcerides, β-hydroxybutyrate, and lactate. When placed on a high-fat and high-fructose (HF/HFruc) diet, Khk KO mice had markedly reduced liver weight, triglyceride levels, and insulin levels. Together, these results suggest that Khk KO mice may serve as a good model for essential fructosuria in humans and that inhibition of KHK offers the potential to protect from diet-induced hepatic steatosis and insulin resistance.
Collapse
Affiliation(s)
- Corin O Miller
- Department of Translational Imaging Biomarkers, Merck, Kenilworth, New Jersey
| | - Xiaodong Yang
- Department of Cardiometabolic Disorders, Merck, Kenilworth, New Jersey
| | - Ku Lu
- Department of Cardiometabolic Disorders, Merck, Kenilworth, New Jersey
| | - Jin Cao
- Department of Translational Imaging Biomarkers, Merck, Kenilworth, New Jersey
| | - Kithsiri Herath
- Department of Cardiometabolic Disorders, Merck, Kenilworth, New Jersey
| | | | - Roger Askew
- Department of Pharmacology, Merck, Kenilworth, New Jersey
| | | | - Gaochao Zhou
- Department of Pharmacology, Merck, Kenilworth, New Jersey
| | - Cai Li
- Department of Pharmacology, Merck, Kenilworth, New Jersey
| | - Taro E Akiyama
- Department of Cardiometabolic Disorders, Merck, Kenilworth, New Jersey
| |
Collapse
|
36
|
Maldonado EM, Fisher CP, Mazzatti DJ, Barber AL, Tindall MJ, Plant NJ, Kierzek AM, Moore JB. Multi-scale, whole-system models of liver metabolic adaptation to fat and sugar in non-alcoholic fatty liver disease. NPJ Syst Biol Appl 2018; 4:33. [PMID: 30131870 PMCID: PMC6102210 DOI: 10.1038/s41540-018-0070-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a serious public health issue associated with high fat, high sugar diets. However, the molecular mechanisms mediating NAFLD pathogenesis are only partially understood. Here we adopt an iterative multi-scale, systems biology approach coupled to in vitro experimentation to investigate the roles of sugar and fat metabolism in NAFLD pathogenesis. The use of fructose as a sweetening agent is controversial; to explore this, we developed a predictive model of human monosaccharide transport, signalling and metabolism. The resulting quantitative model comprising a kinetic model describing monosaccharide transport and insulin signalling integrated with a hepatocyte-specific genome-scale metabolic network (GSMN). Differential kinetics for the utilisation of glucose and fructose were predicted, but the resultant triacylglycerol production was predicted to be similar for monosaccharides; these predictions were verified by in vitro data. The role of physiological adaptation to lipid overload was explored through the comprehensive reconstruction of the peroxisome proliferator activated receptor alpha (PPARα) regulome integrated with a hepatocyte-specific GSMN. The resulting qualitative model reproduced metabolic responses to increased fatty acid levels and mimicked lipid loading in vitro. The model predicted that activation of PPARα by lipids produces a biphasic response, which initially exacerbates steatosis. Our data support the evidence that it is the quantity of sugar rather than the type that is critical in driving the steatotic response. Furthermore, we predict PPARα-mediated adaptations to hepatic lipid overload, shedding light on potential challenges for the use of PPARα agonists to treat NAFLD.
Collapse
Affiliation(s)
- Elaina M. Maldonado
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH UK
| | - Ciarán P. Fisher
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ UK
| | | | - Amy L. Barber
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH UK
| | - Marcus J. Tindall
- Department of Mathematics and Statistics, University of Reading, Berkshire, RG6 6AX UK
- Institute of Cardiovascular and Metabolic Research, University of Reading, Berkshire, RG6 6UR UK
| | - Nicholas J. Plant
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH UK
- Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT UK
| | - Andrzej M. Kierzek
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH UK
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ UK
| | - J. Bernadette Moore
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH UK
- School of Food Science & Nutrition, University of Leeds, Leeds, West Yorkshire, LS2 9JT UK
| |
Collapse
|
37
|
Oh AR, Sohn S, Lee J, Park JM, Nam KT, Hahm KB, Kim YB, Lee HJ, Cha JY. ChREBP deficiency leads to diarrhea-predominant irritable bowel syndrome. Metabolism 2018; 85:286-297. [PMID: 29669261 PMCID: PMC7400734 DOI: 10.1016/j.metabol.2018.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Fructose malabsorption is a common digestive disorder in which absorption of fructose in the small intestine is impaired. An abnormality of the main intestinal fructose transporter proteins has been proposed as a cause for fructose malabsorption. However the underlying molecular mechanism for this remains unclear. In this study, we investigated whether carbohydrate response element-binding protein (ChREBP) plays a role in intestinal fructose absorption through the regulation of genes involved in fructose transport and metabolism and ion transport. METHODS Wild type (WT) and Chrebp knockout (KO) mice (6 or 8 weeks old) were fed a control diet (55% starch, 15% maltodextrin 10) or high-fructose diet (HFrD, 60% fructose, 10% starch) for 3-12 days. Body weight and food intake were measured, signs of fructose malabsorption were monitored, and the expression of genes involved in fructose transport/metabolism and ion transport was evaluated. Furthermore, transient transfection and chromatin immunoprecipitation were performed to show the direct interaction between ChREBP and carbohydrate response elements in the promoter of Slc2A5, which encodes the fructose transporter GLUT5. RESULTS Chrebp KO mice fed the control diet maintained a constant body weight, whereas those fed a HFrD showed significant weight loss within 3-5 days. In addition, Chrebp KO mice fed the HFrD exhibited a markedly distended cecum and proximal colon containing both fluid and gas, suggesting incomplete fructose absorption. Fructose-induced increases of genes involved in fructose transport (GLUT5), fructose metabolism (fructokinase, aldolase B, triokinase, and lactate dehydrogenase), and gluconeogenesis (glucose-6-phosphatase and fructose-1,6-bisphosphatase) were observed in the intestine of WT but not of Chrebp KO mice. Moreover the Na+/H+ exchanger NHE3, which is involved in Na+ and water absorption in the intestine, was significantly decreased in HFrD-fed Chrebp KO mice. Consistent with this finding, the high-fructose diet-fed Chrebp KO mice developed severe diarrhea. Results of chromatin immunoprecipitation assays showed a direct interaction of ChREBP with the Glut5 promoter, but not the Nhe3 promoter, in the small intestine. Ectopic co-expression of ChREBP and its heterodimer partner Max-like protein X activated the Glut5 promoter in Caco-2BBE cells. CONCLUSIONS ChREBP plays a key role in the dietary fructose transport as well as conversion into lactate and glucose through direct transcriptional control of genes involved in fructose transport, fructolysis, and gluconeogenesis. Moreover, ablation of Chrebp results in a severe diarrhea in mice fed a high-fructose diet, which is associated with the insufficient induction of GLUT5 in the intestine.
Collapse
Affiliation(s)
- Ah-Reum Oh
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Seonyong Sohn
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Junghoon Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Jong-Min Park
- CHA Cancer Prevention Research Center, CHA Bio Complex, CHA University, Seongnam 13488, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ki-Baik Hahm
- CHA Cancer Prevention Research Center, CHA Bio Complex, CHA University, Seongnam 13488, Republic of Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Ho-Jae Lee
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Ji-Young Cha
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University College of Medicine, Incheon 21999, Republic of Korea; Gachon Medical Research Institute, Gil Medical Center, Incheon 21565, Republic of Korea.
| |
Collapse
|
38
|
Abstract
Increased understanding of fructose metabolism, which begins with uptake via the intestine, is important because fructose now constitutes a physiologically significant portion of human diets and is associated with increased incidence of certain cancers and metabolic diseases. New insights in our knowledge of intestinal fructose absorption mediated by the facilitative glucose transporter GLUT5 in the apical membrane and by GLUT2 in the basolateral membrane are reviewed. We begin with studies related to structure as well as ligand binding, then revisit the controversial proposition that apical GLUT2 is the main mediator of intestinal fructose absorption. The review then describes how dietary fructose may be sensed by intestinal cells to affect the expression and activity of transporters and fructolytic enzymes, to interact with the transport of certain minerals and electrolytes, and to regulate portal and peripheral fructosemia and glycemia. Finally, it discusses the potential contributions of dietary fructose to gastrointestinal diseases and to the gut microbiome.
Collapse
Affiliation(s)
- Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07946, USA;
| | - Jun-Yong Choe
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, North Chicago, Illinois 60064, USA;
| | - Chirag R Patel
- Independent Drug Safety Consulting, Wilmington, Delaware 19803, USA;
| |
Collapse
|
39
|
Abstract
We have previously reported that 60% sucrose diet-fed ChREBP knockout mice (KO) showed body weight loss resulting in lethality. We aimed to elucidate whether sucrose and fructose metabolism are impaired in KO. Wild-type mice (WT) and KO were fed a diet containing 30% sucrose with/without 0.08% miglitol, an α-glucosidase inhibitor, and these effects on phenotypes were tested. Furthermore, we compared metabolic changes of oral and peritoneal fructose injection. A thirty percent sucrose diet feeding did not affect phenotypes in KO. However, miglitol induced lethality in 30% sucrose-fed KO. Thirty percent sucrose plus miglitol diet-fed KO showed increased cecal contents, increased fecal lactate contents, increased growth of lactobacillales and Bifidobacterium and decreased growth of clostridium cluster XIVa. ChREBP gene deletion suppressed the mRNA levels of sucrose and fructose related genes. Next, oral fructose injection did not affect plasma glucose levels and liver fructose contents; however, intestinal sucrose and fructose related mRNA levels were increased only in WT. In contrast, peritoneal fructose injection increased plasma glucose levels in both mice; however, the hepatic fructose content in KO was much higher owing to decreased hepatic Khk mRNA expression. Taken together, KO showed sucrose intolerance and fructose malabsorption owing to decreased gene expression.
Collapse
|
40
|
Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, Liu W, Tesz GJ, Birnbaum MJ, Rabinowitz JD. The Small Intestine Converts Dietary Fructose into Glucose and Organic Acids. Cell Metab 2018; 27:351-361.e3. [PMID: 29414685 PMCID: PMC6032988 DOI: 10.1016/j.cmet.2017.12.016] [Citation(s) in RCA: 370] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/18/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022]
Abstract
Excessive consumption of sweets is a risk factor for metabolic syndrome. A major chemical feature of sweets is fructose. Despite strong ties between fructose and disease, the metabolic fate of fructose in mammals remains incompletely understood. Here we use isotope tracing and mass spectrometry to track the fate of glucose and fructose carbons in vivo, finding that dietary fructose is cleared by the small intestine. Clearance requires the fructose-phosphorylating enzyme ketohexokinase. Low doses of fructose are ∼90% cleared by the intestine, with only trace fructose but extensive fructose-derived glucose, lactate, and glycerate found in the portal blood. High doses of fructose (≥1 g/kg) overwhelm intestinal fructose absorption and clearance, resulting in fructose reaching both the liver and colonic microbiota. Intestinal fructose clearance is augmented both by prior exposure to fructose and by feeding. We propose that the small intestine shields the liver from otherwise toxic fructose exposure.
Collapse
Affiliation(s)
- Cholsoon Jang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sheng Hui
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Wenyun Lu
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Alexis J Cowan
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Raphael J Morscher
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Gina Lee
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medical School, New York, NY 10065, USA
| | - Wei Liu
- Pfizer Inc. Internal Medicine, Cambridge, MA 02139, USA
| | | | | | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
41
|
Valenzuela-Melgarejo FJ, Caro-Díaz C, Cabello-Guzmán G. Potential Crosstalk between Fructose and Melatonin: A New Role of Melatonin-Inhibiting the Metabolic Effects of Fructose. Int J Endocrinol 2018; 2018:7515767. [PMID: 30154843 PMCID: PMC6092995 DOI: 10.1155/2018/7515767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
Increased consumption of energy-dense foods such as fructose-rich syrups represents one of the significant, growing concerns related to the alarming trend of overweight, obesity, and metabolic disorders worldwide. Metabolic pathways affected by fructose involve genes related to lipogenesis/lipolysis, beta-oxidation, mitochondrial biogenesis, gluconeogenesis, oxidative phosphorylation pathways, or altering of circadian production of insulin and leptin. Moreover, fructose can be a risk factor during pregnancy elevating the risk of preterm delivery, hypertension, and metabolic impairment of the mother and fetus. Melatonin is a chronobiotic and homeostatic hormone that can modulate the harmful effects of fructose via clock gene expression and metabolic pathways, modulating the expression of PPARγ, SREBF-1 (SREBP-1), hormone-sensitive lipase, C/EBP-α genes, NRF-1, PGC1α, and uncoupling protein-1. Moreover, this hormone has the capacity in the rat of reverting the harmful effects of fructose, increasing the body weight and weight ratio of the liver, and increasing the body weight and restoring the glycemia from mothers exposed to fructose. The aim of this review is to show the potential crosstalk between fructose and melatonin and their potential role during pregnancy.
Collapse
Affiliation(s)
| | - Claudia Caro-Díaz
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| | - Gerardo Cabello-Guzmán
- Laboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile
| |
Collapse
|
42
|
Tikunov AP, Shim YS, Bhattarai N, Siler SQ, Soldatow V, LeCluyse EL, McDunn JE, Watkins PB, Macdonald JM. Dose-response in a high density three-dimensional liver device with real-time bioenergetic and metabolic flux quantification. Toxicol In Vitro 2017; 45:119-127. [DOI: 10.1016/j.tiv.2017.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/23/2017] [Accepted: 08/30/2017] [Indexed: 12/17/2022]
|
43
|
Fan X, Liu H, Liu M, Wang Y, Qiu L, Cui Y. Increased utilization of fructose has a positive effect on the development of breast cancer. PeerJ 2017; 5:e3804. [PMID: 28970966 PMCID: PMC5622605 DOI: 10.7717/peerj.3804] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/23/2017] [Indexed: 01/05/2023] Open
Abstract
Rapid proliferation and Warburg effect make cancer cells consume plenty of glucose, which induces a low glucose micro-environment within the tumor. Up to date, how cancer cells keep proliferating in the condition of glucose insufficiency still remains to be explored. Recent studies have revealed a close correlation between excessive fructose consumption and breast cancer genesis and progression, but there is no convincing evidence showing that fructose could directly promote breast cancer development. Herein, we found that fructose, not amino acids, could functionally replace glucose to support proliferation of breast cancer cells. Fructose endowed breast cancer cells with the colony formation ability and migratory capacity as effective as glucose. Interestingly, although fructose was readily used by breast cancer cells, it failed to restore proliferation of non-tumor cells in the absence of glucose. These results suggest that fructose could be relatively selectively employed by breast cancer cells. Indeed, we observed that a main transporter of fructose, GLUT5, was highly expressed in breast cancer cells and tumor tissues but not in their normal counterparts. Furthermore, we demonstrated that the fructose diet promoted metastasis of 4T1 cells in the mouse models. Taken together, our data show that fructose can be used by breast cancer cells specifically in glucose-deficiency, and suggest that the high-fructose diet could accelerate the progress of breast cancer in vivo.
Collapse
Affiliation(s)
- Xiajing Fan
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hongru Liu
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Miao Liu
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuanyuan Wang
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Li Qiu
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanfen Cui
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
44
|
Geidl-Flueck B, Gerber PA. Insights into the Hexose Liver Metabolism-Glucose versus Fructose. Nutrients 2017; 9:E1026. [PMID: 28926951 PMCID: PMC5622786 DOI: 10.3390/nu9091026] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022] Open
Abstract
High-fructose intake in healthy men is associated with characteristics of metabolic syndrome. Extensive knowledge exists about the differences between hepatic fructose and glucose metabolism and fructose-specific mechanisms favoring the development of metabolic disturbances. Nevertheless, the causal relationship between fructose consumption and metabolic alterations is still debated. Multiple effects of fructose on hepatic metabolism are attributed to the fact that the liver represents the major sink of fructose. Fructose, as a lipogenic substrate and potent inducer of lipogenic enzyme expression, enhances fatty acid synthesis. Consequently, increased hepatic diacylglycerols (DAG) are thought to directly interfere with insulin signaling. However, independently of this effect, fructose may also counteract insulin-mediated effects on liver metabolism by a range of mechanisms. It may drive gluconeogenesis not only as a gluconeogenic substrate, but also as a potent inducer of carbohydrate responsive element binding protein (ChREBP), which induces the expression of lipogenic enzymes as well as gluconeogenic enzymes. It remains a challenge to determine the relative contributions of the impact of fructose on hepatic transcriptome, proteome and allosterome changes and consequently on the regulation of plasma glucose metabolism/homeostasis. Mathematical models exist modeling hepatic glucose metabolism. Future models should not only consider the hepatic adjustments of enzyme abundances and activities in response to changing plasma glucose and insulin/glucagon concentrations, but also to varying fructose concentrations for defining the role of fructose in the hepatic control of plasma glucose homeostasis.
Collapse
Affiliation(s)
- Bettina Geidl-Flueck
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091 Zurich, Switzerland.
| | - Philipp A Gerber
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
45
|
Kishida K, Pearce SC, Yu S, Gao N, Ferraris RP. Nutrient sensing by absorptive and secretory progenies of small intestinal stem cells. Am J Physiol Gastrointest Liver Physiol 2017; 312:G592-G605. [PMID: 28336548 PMCID: PMC5495913 DOI: 10.1152/ajpgi.00416.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 01/31/2023]
Abstract
Nutrient sensing triggers responses by the gut-brain axis modulating hormone release, feeding behavior and metabolism that become dysregulated in metabolic syndrome and some cancers. Except for absorptive enterocytes and secretory enteroendocrine cells, the ability of many intestinal cell types to sense nutrients is still unknown; hence we hypothesized that progenitor stem cells (intestinal stem cells, ISC) possess nutrient sensing ability inherited by progenies during differentiation. We directed via modulators of Wnt and Notch signaling differentiation of precursor mouse intestinal crypts into specialized organoids each containing ISC, enterocyte, goblet, or Paneth cells at relative proportions much higher than in situ as determined by mRNA expression and immunocytochemistry of cell type biomarkers. We identified nutrient sensing cell type(s) by increased expression of fructolytic genes in response to a fructose challenge. Organoids comprised primarily of enterocytes, Paneth, or goblet, but not ISC, cells responded specifically to fructose without affecting nonfructolytic genes. Sensing was independent of Wnt and Notch modulators and of glucose concentrations in the medium but required fructose absorption and metabolism. More mature enterocyte- and goblet-enriched organoids exhibited stronger fructose responses. Remarkably, enterocyte organoids, upon forced dedifferentiation to reacquire ISC characteristics, exhibited a markedly extended lifespan and retained fructose sensing ability, mimicking responses of some dedifferentiated cancer cells. Using an innovative approach, we discovered that nutrient sensing is likely repressed in progenitor ISCs then irreversibly derepressed during specification into sensing-competent absorptive or secretory lineages, the surprising capacity of Paneth and goblet cells to detect fructose, and the important role of differentiation in modulating nutrient sensing.NEW & NOTEWORTHY Small intestinal stem cells differentiate into several cell types transiently populating the villi. We used specialized organoid cultures each comprised of a single cell type to demonstrate that 1) differentiation seems required for nutrient sensing, 2) secretory goblet and Paneth cells along with enterocytes sense fructose, suggesting that sensing is acquired after differentiation is triggered but before divergence between absorptive and secretory lineages, and 3) forcibly dedifferentiated enterocytes exhibit fructose sensing and lifespan extension.
Collapse
Affiliation(s)
- Kunihiro Kishida
- 1Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| | - Sarah C. Pearce
- 1Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| | - Shiyan Yu
- 2Department of Biological Sciences, Life Science Center, Rutgers University, Newark, New Jersey
| | - Nan Gao
- 2Department of Biological Sciences, Life Science Center, Rutgers University, Newark, New Jersey
| | - Ronaldo P. Ferraris
- 1Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| |
Collapse
|
46
|
Avian and Mammalian Facilitative Glucose Transporters. MICROARRAYS 2017; 6:microarrays6020007. [PMID: 28379195 PMCID: PMC5487954 DOI: 10.3390/microarrays6020007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/17/2022]
Abstract
The GLUT members belong to a family of glucose transporter proteins that facilitate glucose transport across the cell membrane. The mammalian GLUT family consists of thirteen members (GLUTs 1-12 and H⁺-myo-inositol transporter (HMIT)). Humans have a recently duplicated GLUT member, GLUT14. Avians express the majority of GLUT members. The arrangement of multiple GLUTs across all somatic tissues signifies the important role of glucose across all organisms. Defects in glucose transport have been linked to metabolic disorders, insulin resistance and diabetes. Despite the essential importance of these transporters, our knowledge regarding GLUT members in avians is fragmented. It is clear that there are no chicken orthologs of mammalian GLUT4 and GLUT7. Our examination of GLUT members in the chicken revealed that some chicken GLUT members do not have corresponding orthologs in mammals. We review the information regarding GLUT orthologs and their function and expression in mammals and birds, with emphasis on chickens and humans.
Collapse
|
47
|
Steenson S, Umpleby AM, Lovegrove JA, Jackson KG, Fielding BA. Role of the Enterocyte in Fructose-Induced Hypertriglyceridaemia. Nutrients 2017; 9:nu9040349. [PMID: 28368310 PMCID: PMC5409688 DOI: 10.3390/nu9040349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/21/2017] [Accepted: 03/31/2017] [Indexed: 01/12/2023] Open
Abstract
Dietary fructose has been linked to an increased post-prandial triglyceride (TG) level; which is an established independent risk factor for cardiovascular disease. Although much research has focused on the effects of fructose consumption on liver-derived very-low density lipoprotein (VLDL); emerging evidence also suggests that fructose may raise post-prandial TG levels by affecting the metabolism of enterocytes of the small intestine. Enterocytes have become well recognised for their ability to transiently store lipids following a meal and to thus control post-prandial TG levels according to the rate of chylomicron (CM) lipoprotein synthesis and secretion. The influence of fructose consumption on several aspects of enterocyte lipid metabolism are discussed; including de novo lipogenesis; apolipoprotein B48 and CM-TG production; based on the findings of animal and human isotopic tracer studies. Methodological issues affecting the interpretation of fructose studies conducted to date are highlighted; including the accurate separation of CM and VLDL. Although the available evidence to date is limited; disruption of enterocyte lipid metabolism may make a meaningful contribution to the hypertriglyceridaemia often associated with fructose consumption.
Collapse
Affiliation(s)
- Simon Steenson
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK.
- Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6AP, UK.
| | - A Margot Umpleby
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK.
| | - Julie A Lovegrove
- Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6AP, UK.
| | - Kim G Jackson
- Department of Food & Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading RG6 6AP, UK.
| | - Barbara A Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK.
| |
Collapse
|
48
|
Gu TT, Song L, Chen TY, Wang X, Zhao XJ, Ding XQ, Yang YZ, Pan Y, Zhang DM, Kong LD. Fructose downregulates miR-330 to induce renal inflammatory response and insulin signaling impairment: Attenuation by morin. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201600760] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/03/2017] [Accepted: 02/07/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Ting-Ting Gu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Lin Song
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Tian-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Xing Wang
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Xiao-Juan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Xiao-Qin Ding
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Yan-Zi Yang
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Dong-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; Nanjing P. R. China
| |
Collapse
|
49
|
Osman I, Poulose N, Ganapathy V, Segar L. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells. Eur J Pharmacol 2016; 791:703-710. [PMID: 27729247 DOI: 10.1016/j.ejphar.2016.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022]
Abstract
Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[14C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia.
Collapse
Affiliation(s)
- Islam Osman
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Ninu Poulose
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Lakshman Segar
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Vascular Biology Center, Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA; Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|