1
|
Wu Z, Peng S, Huang W, Zhang Y, Liu Y, Yu X, Shen L. The Role and Function of TRPM8 in the Digestive System. Biomolecules 2024; 14:877. [PMID: 39062591 PMCID: PMC11275170 DOI: 10.3390/biom14070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Transient receptor potential (TRP) melastatin member 8 (TRPM8) is a non-selective cation channel that can be activated by low temperatures (8-26 °C), cooling agents (including menthol analogs such as menthol, icilin, and WS-12), voltage, and extracellular osmotic pressure changes. TRPM8 expression has been identified in the digestive system by several research teams, demonstrating its significant involvement in tissue function and pathologies of the digestive system. Specifically, studies have implicated TRPM8 in various physiological and pathological processes of the esophagus, stomach, colorectal region, liver, and pancreas. This paper aims to comprehensively outline the distinct role of TRPM8 in different organs of the digestive system, offering insights for future mechanistic investigations of TRPM8. Additionally, it presents potential therapeutic targets for treating conditions such as digestive tract inflammation, tumors, sensory and functional disorders, and other related diseases. Furthermore, this paper addresses the limitations of existing studies and highlights the research prospects associated with TRPM8.
Collapse
Affiliation(s)
- Zunan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| | - Shuai Peng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| | - Wensha Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| | - Yuling Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.Z.); (Y.L.)
| | - Yashi Liu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.Z.); (Y.L.)
| | - Xiaoyun Yu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.Z.); (Y.L.)
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.W.); (S.P.); (W.H.)
- Hubei Key Laboratory of Digestive Diseases, Wuhan 430060, China
| |
Collapse
|
2
|
Li YC, Zhang FC, Xu TW, Weng RX, Zhang HH, Chen QQ, Hu S, Gao R, Li R, Xu GY. Advances in the pathological mechanisms and clinical treatments of chronic visceral pain. Mol Pain 2024; 20:17448069241305942. [PMID: 39673493 PMCID: PMC11645724 DOI: 10.1177/17448069241305942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024] Open
Abstract
Chronic visceral pain stems from internal organs and is frequently associated with functional gastrointestinal disorders, like irritable bowel syndrome (IBS). Since the underlying mechanisms of visceral pain remain largely unclear, clinical management is often limited and ineffective. Comprehensive research into the pathogenesis of visceral pain, along with the development of personalized therapeutic strategies, is crucial for advancing treatment options. Studies suggest that imbalances in purinergic receptors and neural circuit function are closely linked to the onset of visceral pain. In this review, we will explore the etiology and pathological mechanisms underlying visceral pain, with a focus on ion channels, epigenetic factors, and neural circuits, using functional gastrointestinal disorders as case studies. Finally, we will summarize and evaluate emerging treatments and potential initiatives aimed at managing visceral pain.
Collapse
Affiliation(s)
- Yong-Chang Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fu-Chao Zhang
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Timothy W Xu
- Department of Earth Sciences, University College London, London, UK
| | - Rui-Xia Weng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong-Hong Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian-Qian Chen
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Shufen Hu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Rong Gao
- Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guang-Yin Xu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Hossain MZ, Kitagawa J. Transient receptor potential channels as an emerging therapeutic target for oropharyngeal dysphagia. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:421-430. [PMID: 38022386 PMCID: PMC10665593 DOI: 10.1016/j.jdsr.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Oropharyngeal dysphagia is a serious health concern in older adults and patients with neurological disorders. Current oropharyngeal dysphagia management largely relies on compensatory strategies with limited efficacy. A long-term goal in swallowing/dysphagia-related research is the identification of pharmacological treatment strategies for oropharyngeal dysphagia. In recent decades, several pre-clinical and clinical studies have investigated the use of transient receptor potential (TRP) channels as a therapeutic target to facilitate swallowing. Various TRP channels are present in regions involved in the swallowing process. Animal studies have shown that local activation of these channels by their pharmacological agonists initiates swallowing reflexes; the number of reflexes increases when the dose of the agonist reaches a particular level. Clinical studies, including randomized clinical trials involving patients with oropharyngeal dysphagia, have demonstrated improved swallowing efficacy, safety, and physiology when TRP agonists are mixed with the food bolus. Additionally, there is evidence of plasticity development in swallowing-related neuronal networks in the brain upon TRP channel activation in peripheral swallowing-related regions. Thus, TRP channels have emerged as a promising target for the development of pharmacological treatments for oropharyngeal dysphagia.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| |
Collapse
|
4
|
Mayr S, Schliep R, Elfers K, Mazzuoli-Weber G. Mechanosensitive enteric neurons in the guinea pig gastric fundus and antrum. Neurogastroenterol Motil 2023; 35:e14674. [PMID: 37702071 DOI: 10.1111/nmo.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Coping with the ingested food, the gastric regions of fundus, corpus, and antrum display different motility patterns. Intrinsic components of such patterns involving mechanosensitive enteric neurons (MEN) have been described in the guinea pig gastric corpus but are poorly understood in the fundus and antrum. METHODS To elucidate mechanosensitive properties of myenteric neurons in the gastric fundus and antrum, membrane potential imaging using Di-8-ANEPPS was applied. A small-volume injection led to neuronal compression. We analyzed the number of MEN and their firing frequency in addition to the involvement of selected mechanoreceptors. To characterize the neurochemical phenotype of MEN, we performed immunohistochemistry. KEY RESULTS In the gastric fundus, 16% of the neurons reproducibly responded to mechanical stimulation and thus were MEN. Of those, 83% were cholinergic and 19% nitrergic. In the antrum, 6% of the neurons responded to the compression stimulus, equally distributed among cholinergic and nitrergic MEN. Defunctionalizing the sensory extrinsic afferents led to a significant drop in the number of MEN in both regions. CONCLUSION We provided evidence for MEN in the gastric fundus and antrum and further investigated mechanoreceptors. However, the proportions of the chemical phenotypes of the MEN differed significantly between both regions. Further investigations of synaptic connections of MEN are crucial to understand the hardwired neuronal circuits in the stomach.
Collapse
Affiliation(s)
- Sophia Mayr
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Ronja Schliep
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kristin Elfers
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
5
|
Langen KR, Dantzler HA, de Barcellos-Filho PG, Kline DD. Hypoxia augments TRPM3-mediated calcium influx in vagal sensory neurons. Auton Neurosci 2023; 247:103095. [PMID: 37146443 PMCID: PMC10330432 DOI: 10.1016/j.autneu.2023.103095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
Transient receptor potential melastatin 3 (TRPM3) channels contribute to nodose afferent and brainstem nucleus tractus solitarii (nTS) activity. Exposure to short, sustained hypoxia (SH) and chronic intermittent hypoxia (CIH) enhances nTS activity, although the mechanisms are unknown. We hypothesized TRPM3 may contribute to increased neuronal activity in nTS-projecting nodose ganglia viscerosensory neurons, and its influence is elevated following hypoxia. Rats were exposed to either room air (normoxia), 24-h of 10 % O2 (SH), or CIH (episodic 6 % O2 for 10d). A subset of neurons from normoxic rats were exposed to in vitro incubation for 24-h in 21 % or 1 % O2. Intracellular Ca2+ of dissociated neurons was monitored via Fura-2 imaging. Ca2+ levels increased upon TRPM3 activation via Pregnenolone sulfate (Preg) or CIM0216. Preg responses were eliminated by the TRPM3 antagonist ononetin, confirming agonist specificity. Removal of extracellular Ca2+ also eliminated Preg response, further suggesting Ca2+ influx via membrane-bound channels. In neurons isolated from SH-exposed rats, the TRPM3 elevation of Ca2+ was greater than in normoxic-exposed rats. The SH increase was reversed following a subsequent normoxic exposure. RNAScope demonstrated TRPM3 mRNA was greater after SH than in Norm ganglia. Incubating dissociated cultures from normoxic rats in 1 % O2 (24-h) did not alter the Preg Ca2+ responses compared to their normoxic controls. In contrast to in vivo SH, 10d CIH did not alter TRPM3 elevation of Ca2+. Altogether, these results demonstrate a hypoxia-specific increase in TRPM3-mediated calcium influx.
Collapse
Affiliation(s)
- Katherine R Langen
- Dept. of Biomedical Sciences, Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, 1500 Research Park Drive, Columbia, MO 65211, USA
| | - Heather A Dantzler
- Dept. of Biomedical Sciences, Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, 1500 Research Park Drive, Columbia, MO 65211, USA
| | - Procopio Gama de Barcellos-Filho
- Dept. of Biomedical Sciences, Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, 1500 Research Park Drive, Columbia, MO 65211, USA
| | - David D Kline
- Dept. of Biomedical Sciences, Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, 1500 Research Park Drive, Columbia, MO 65211, USA.
| |
Collapse
|
6
|
Horta NAC, Fernandes P, Cardoso TSR, Machado FSM, Drummond LR, Coimbra CC, Wanner SP, Maria L Castrucci A, Poletini MO. TRPV1 inactivation alters core body temperature and serum corticosterone levels: Impacts on clock genes expression in the liver and adrenal glands. J Therm Biol 2023. [PMID: 37344011 DOI: 10.1016/j.jtherbio.2023.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Hooper JS, Taylor-Clark TE. Irritant-evoked reflex tachyarrhythmia in spontaneously hypertensive rats is reduced by inhalation of TRPM8 agonists l-menthol and WS-12. J Appl Physiol (1985) 2023; 134:307-315. [PMID: 36603045 PMCID: PMC9886351 DOI: 10.1152/japplphysiol.00495.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/06/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Inhalation of noxious irritants activates nociceptive sensory afferent nerves innervating the airways, inducing reflex regulation of autonomic networks and the modulation of respiratory drive and cardiovascular (CV) parameters such as heart rate and blood pressure. In healthy mammals, irritant-evoked pulmonary-cardiac reflexes cause parasympathetic-mediated bradycardia. However, in spontaneously hypertensive (SH) rats, irritant inhalation also increases sympathetic drive to the heart. This remodeled pulmonary-cardiac reflex may contribute to cardiovascular risk caused by inhalation of air pollutants/irritants in susceptible individuals with cardiovascular disease (CVD). Previous studies have shown that the cooling mimic l-menthol, an agonist for the cold-sensitive transient receptor potential melastatin 8 (TRPM8), can alleviate nasal inflammatory symptoms and respiratory reflexes evoked by irritants. Here, we investigated the impact of inhalation of TRPM8 agonists l-menthol and WS-12 on pulmonary-cardiac reflexes evoked by inhalation of the irritant allyl isothiocyanate (AITC) using radiotelemetry. l-Menthol, but not its inactive analog d-menthol, significantly reduced the AITC-evoked reflex tachycardia and premature ventricular contractions (PVCs) in SH rats but had no effect on the AITC-evoked bradycardia in either SH or normotensive Wistar-Kyoto (WKY) rats. WS-12 reduced AITC-evoked tachycardia and PVCs in SH rats, but this more potent TRPM8 agonist also reduced AITC-evoked bradycardia. l-Menthol had no effect on heart rate when given alone, whereas WS-12 evoked a minor bradycardia in WKY rats. We conclude that stimulation of TRPM8-expressing afferents within the airways reduces irritant-evoked pulmonary-cardiac reflexes, especially the aberrant reflex tachyarrhythmia in SH rats. Airway menthol treatment may be an effective therapy for reducing pollution-associated CV exacerbations.NEW & NOTEWORTHY Irritant-evoked pulmonary-cardiac reflexes are remodeled in spontaneously hypertensive (SH) rats-causing de novo sympathetic reflexes that drive tachyarrhythmia. This remodeling may contribute to air pollution-associated risk in susceptible individuals with cardiovascular disease. We found that inhalation of TRPM8 agonists, l-menthol and WS-12, but not the inactive analog d-menthol, selectively reduces the reflex tachyarrhythmia evoked by allyl isothiocyanate (AITC) inhalation in SH rats. Use of menthol may protect susceptible individuals from pollution-associated CV exacerbations.
Collapse
Affiliation(s)
- J Shane Hooper
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Thomas E Taylor-Clark
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
8
|
Yao Y, Liu ZJ, Zhang YK, Sun HJ. Mechanism and potential treatments for gastrointestinal dysfunction in patients with COVID-19. World J Gastroenterol 2022; 28:6811-6826. [PMID: 36632313 PMCID: PMC9827583 DOI: 10.3748/wjg.v28.i48.6811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/01/2022] [Accepted: 12/07/2022] [Indexed: 12/26/2022] Open
Abstract
The global coronavirus disease 2019 (COVID-19) has become one of the biggest threats to the world since 2019. The respiratory and gastrointestinal tracts are the main targets for severe acute respiratory syndrome coronavirus 2 infection for they highly express angiotensin-converting enzyme-2 and transmembrane protease serine 2. In patients suffering from COVID-19, gastrointestinal symptoms have ranged from 12% to 61%. Anorexia, nausea and/or vomiting, diarrhea, and abdominal pain are considered to be the main gastrointestinal symptoms of COVID-19. It has been reported that the direct damage of intestinal mucosal epithelial cells, malnutrition, and intestinal flora disorders are involved in COVID-19. However, the underlying mechanisms remain unclear. Thus, in this study, we reviewed and discussed the correlated mechanisms that cause gastrointestinal symptoms in order to help to develop the treatment strategy and build an appropriate guideline for medical workers.
Collapse
Affiliation(s)
- Yang Yao
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, College of Basic Medical, Chongqing 404120, China
- Department of Clinical Pharmacology, College of Pharmacy, Dalian 116044, Liaoning Province, China
- Ministry of Public Infrastructure, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Zhu-Jun Liu
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, College of Basic Medical, Chongqing 404120, China
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing 404120, China
- Department of Business Administration, Metropolitan College of Science and Technology, Chongqing 404120, China
| | - Yu-Kun Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, College of Basic Medical, Chongqing 404120, China
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, Peking University, Beijing 100191, China
| | - Hui-Jun Sun
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, College of Basic Medical, Chongqing 404120, China
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|
9
|
Jawaid S, Herring AI, Getsy PM, Lewis SJ, Watanabe M, Kolesova H. Differential immunostaining patterns of transient receptor potential (TRP) ion channels in the rat nodose ganglion. J Anat 2022; 241:230-244. [PMID: 35396708 PMCID: PMC9296033 DOI: 10.1111/joa.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022] Open
Abstract
Vagal afferents regulate numerous physiological functions including arterial blood pressure, heart rate, breathing, and nociception. Cell bodies of vagal afferents reside in the inferior vagal (nodose) ganglia and their stimulation by various means is being considered as a way to regulate cardiorespiratory responses and control pain sensations. Stimulation of the nodose by exposure to infrared light is recently being considered as a precise way to elicit responses. These responses would likely involve the activity of temperature-sensitive membrane-bound channels. While papers have been published to track the expression of these transient receptor potential ion channels (TRPs), further studies are warranted to determine the in situ expression of the endogenous TRP proteins in the nodose ganglia to fully understand their pattern of expression, subcellular locations, and functions in this animal model. TRP ion channels are a superfamily of Na+ /Ca2+ -channels whose members are temperature- and/or mechano-sensitive and therefore represent a potential set of proteins that will be activated directly or indirectly by infrared light. Here, we report the spatial localization of six TRP channels, TRPV1, TRPV4, TRPM3, TRPM8, TRPA1, and TRPC1, from nodose ganglia taken from juvenile male Sprague-Dawley rats. The channels were detected using immunohistology with fluorescent tags on cryosections and imaged using confocal microscopy. All six TRP channels were detected with different levels of intensity in neuronal cell bodies and some were also detected in axonal fibers and blood vessels. The TRP receptors differed in their prevalence, in their patterns of expression, and in subcellular expression/localization. More specifically, TRPV1, TRPV4, TRPA1, TRPM8, TRPC1, and TRPM3 were found in vagal afferent cell bodies with a wide range of immunostaining intensity from neuron to neuron. Immunostaining for TRPV1, TRPV4, and TRPA1 appeared as fine particles scattered throughout the cytoplasm of the cell body. Intense TRPV1 immunostaining was also evident in a subset of axonal fibers. TRPM8 and TRPC1 were expressed in courser particles suggesting different subcellular compartments than for TRPV1. The localization of TRPM3 differed markedly from the other TRP channels with an immunostaining pattern that was localized to the periphery of a subset of cell bodies, whereas a scattering or no immunostaining was detected within the bulk of the cytoplasm. TRPV4 and TRPC1 were also expressed on the walls of blood vessels. The finding that all six TRP channels (representing four subfamilies) were present in the nodose ganglia provides the basis for studies designed to understand the roles of these channels in sensory transmission within vagal afferent fibers and in the responses elicited by exposure of nodose ganglia to infrared light and other stimuli. Depending on the location and functionality of the TRP channels, they may regulate the flux of Na+ /Ca2+ -across the membranes of cell bodies and axons of sensory afferents, efferent (motor) fibers coursing through the ganglia, and in vascular smooth muscle.
Collapse
Affiliation(s)
- Safdar Jawaid
- Divisions of Pediatric CardiologyCase Western Reserve University School of MedicineClevelandOHUSA
| | - Amanda I. Herring
- Divisions of Pediatric CardiologyCase Western Reserve University School of MedicineClevelandOHUSA
| | - Paulina M. Getsy
- Pediatric Pulmonology, Department of PediatricsCase Western Reserve University School of MedicineClevelandOHUSA
| | - Stephen J. Lewis
- Pediatric Pulmonology, Department of PediatricsCase Western Reserve University School of MedicineClevelandOHUSA
| | - Michiko Watanabe
- Divisions of Pediatric CardiologyCase Western Reserve University School of MedicineClevelandOHUSA
| | - Hana Kolesova
- Department of Anatomy, First Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
10
|
Yamamoto Y, Kitazawa M, Otsubo T, Miyagawa Y, Tokumaru S, Nakamura S, Koyama M, Ehara T, Hondo N, Soejima Y. Impact of seasonal and meteorological factors on the incidence of adhesive small bowel obstruction: A large-scale study using a national inpatient database. Ann Gastroenterol Surg 2022; 6:569-576. [PMID: 35847441 PMCID: PMC9271017 DOI: 10.1002/ags3.12541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 01/05/2023] Open
Abstract
Aim Whether seasonal and meteorological factors affect the incidence of adhesive small bowel obstruction (ASBO) remains unclear. This study aimed to clarify the impacts of seasonal and meteorological factors on the occurrence of ASBO. Methods Clinical data of patients with ASBO were acquired from 42 national university hospitals in Japan, using a national inpatient database, between April 2012 and March 2020. Meteorological data were obtained from the Japan Meteorological Agency. The number of monthly admissions of patients with ASBO was compared between each of the 12 months. Daily weather variables were investigated to clarify their association with ASBO patient admissions on a total of 119 802 days (Formula for calculation: study period [2922 days] ×41 cities). Results Overall, 4985 patients with ASBO were admitted. The number of admissions in June was smaller than that in October, November, and December (39 vs 63.5, P = .002, 39 vs 65, P = .004, and 39 vs 59.5, P = .002, respectively). Logistic regression analysis revealed that January, October, November, and December were associated with increased risk of admission compared to June (odds ratio [OR], 1.264; P = .001; OR, 1.454; P < .001; OR, 1.408; P < .001; OR, 1.330; P < .001), respectively. Regarding the weather variables, higher barometric pressure and lower humidity were associated with increased risk of admission (OR, 1.011; P < .001 and OR, 0.995; P < .001), respectively. Conclusion The incidence of ASBO is susceptible to barometric pressure and humidity and varies monthly. These results can contribute to the prevention, early detection, and immediate and appropriate management of ASBO.
Collapse
Affiliation(s)
- Yuta Yamamoto
- Division of GastroenterologicalHepato‐Biliary‐Pancreatic, Transplantation and Pediatric SurgeryDepartment of SurgeryShinshu University School of MedicineMatsumoto, NaganoJapan
| | - Masato Kitazawa
- Division of GastroenterologicalHepato‐Biliary‐Pancreatic, Transplantation and Pediatric SurgeryDepartment of SurgeryShinshu University School of MedicineMatsumoto, NaganoJapan
| | - Tetsuya Otsubo
- The Database Center of the National University HospitalsThe University of Tokyo HospitalTokyoJapan
- Division of Medical Information Technology and Administration PlanningKyoto University HospitalKyotoJapan
| | - Yusuke Miyagawa
- Division of GastroenterologicalHepato‐Biliary‐Pancreatic, Transplantation and Pediatric SurgeryDepartment of SurgeryShinshu University School of MedicineMatsumoto, NaganoJapan
| | - Shigeo Tokumaru
- Division of GastroenterologicalHepato‐Biliary‐Pancreatic, Transplantation and Pediatric SurgeryDepartment of SurgeryShinshu University School of MedicineMatsumoto, NaganoJapan
| | - Satoshi Nakamura
- Division of GastroenterologicalHepato‐Biliary‐Pancreatic, Transplantation and Pediatric SurgeryDepartment of SurgeryShinshu University School of MedicineMatsumoto, NaganoJapan
| | - Makoto Koyama
- Division of GastroenterologicalHepato‐Biliary‐Pancreatic, Transplantation and Pediatric SurgeryDepartment of SurgeryShinshu University School of MedicineMatsumoto, NaganoJapan
| | - Takehito Ehara
- Division of GastroenterologicalHepato‐Biliary‐Pancreatic, Transplantation and Pediatric SurgeryDepartment of SurgeryShinshu University School of MedicineMatsumoto, NaganoJapan
| | - Nao Hondo
- Division of GastroenterologicalHepato‐Biliary‐Pancreatic, Transplantation and Pediatric SurgeryDepartment of SurgeryShinshu University School of MedicineMatsumoto, NaganoJapan
| | - Yuji Soejima
- Division of GastroenterologicalHepato‐Biliary‐Pancreatic, Transplantation and Pediatric SurgeryDepartment of SurgeryShinshu University School of MedicineMatsumoto, NaganoJapan
| |
Collapse
|
11
|
Du Y, Chen J, Shen L, Wang B. TRP channels in inflammatory bowel disease: potential therapeutic targets. Biochem Pharmacol 2022; 203:115195. [DOI: 10.1016/j.bcp.2022.115195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022]
|
12
|
Yamamoto Y, Kitazawa M, Miyagawa Y, Tokumaru S, Nakamura S, Koyama M, Ehara T, Hondo N, Iijima Y, Soejima Y. Association of Daily Variance in Air Temperature With Postoperative Adhesive Small Bowel Obstruction. Cureus 2022; 14:e24176. [PMID: 35586353 PMCID: PMC9109246 DOI: 10.7759/cureus.24176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction: The influence of air temperature on adhesive small bowel obstruction (ASBO) is unknown. This study aimed to investigate the relationship between air temperature and postoperative ASBO. Methods: Overall, 312 patients with postoperative ASBO were included. They were categorized into two groups: the surgery group (n = 83) comprising patients who needed surgery, and the non-surgery group (n = 229) comprising patients who responded to conservative treatment. The associations between patients’ characteristics and weather variables on days of symptom onset with the need for surgical management were investigated. Weather variables included the daily mean barometric pressure, daily mean air temperature, day-to-day differences, daily variances, and diurnal variation in the air temperature. Day-to-day differences in weather variables were calculated as the daily mean variables on the day of symptom onset minus those on the previous day. The daily variances in weather variables were defined as the absolute value of day-to-day differences. Results: Compared to the non-surgery group, the surgery group had older patients (75 vs. 70 years, p = 0.009), a higher proportion of female patients (44.6% vs. 32.3%, p = 0.046), increased incidence of closed-loop sign (50.6% vs. 0.9%, p < 0.001), a lower proportion of feces sign (18.1% vs. 31.3%, p = 0.024), and a prolonged hospital stay (11 vs. 22 days, p < 0.001). The number distribution of patients in the surgery group in day-to-day differences in air temperature was different from that of the non-surgery group; the former has several peaks whereas the latter has almost one peak. Daily variance in mean air temperature on the day of symptom onset was higher in the surgery group than in the non-surgery group (2.3 vs. 1.3℃, p < 0.001). Multiple logistic regression analysis revealed that increased daily variance in air temperature on the onset day was associated with the need for surgical management (odds ratio 1.254, p = 0.002) and closed-loop obstruction (odds ratio 1.235, p = 0.017). Regarding seasonal variations, the risk of the need for surgery and closed-loop obstruction in each ASBO patient was the highest in spring, followed by that in summer, autumn, and winter. Consistently, the daily variance in mean air temperature in spring was higher than that in summer, autumn, and winter (p < 0.0001, p < 0.0001, and p = 0.0047, respectively). The risk of the need for surgery and closed-loop obstruction in each ASBO patient was the highest in spring, followed by that in summer, autumn, and winter. Consistently, daily variance in mean air temperature was higher in spring than that in summer, autumn, and winter (p < 0.0001, p < 0.0001, and p = 0.0047, respectively). Conclusion: Increased daily variance in mean air temperature on the day of onset is associated with the need for surgical management and closed-loop obstruction. Spring is characterized by the highest daily variance in mean air temperature among the four seasons, and is associated with high proportions of the need for surgery and closed-loop obstruction. These results can be clinically useful in terms of hospital resource reallocation and staffing, and can help clarify the pathogenesis of ASBO.
Collapse
|
13
|
Distribution and Assembly of TRP Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:111-138. [PMID: 35138613 DOI: 10.1007/978-981-16-4254-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last several decades, a large family of ion channels have been identified and studied intensively as cellular sensors for diverse physical and/or chemical stimuli. Named transient receptor potential (TRP) channels, they play critical roles in various aspects of cellular physiology. A large number of human hereditary diseases are found to be linked to TRP channel mutations, and their dysregulations lead to acute or chronical health problems. As TRP channels are named and categorized mostly based on sequence homology rather than functional similarities, they exhibit substantial functional diversity. Rapid advances in TRP channel study have been made in recent years and reported in a vast body of literature; a summary of the latest advancements becomes necessary. This chapter offers an overview of current understandings of TRP channel distribution and subunit assembly.
Collapse
|
14
|
Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022; 23:135-156. [PMID: 34983992 DOI: 10.1038/s41583-021-00544-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.
Collapse
|
15
|
Matsumoto K, Suenaga M, Mizutani Y, Matsui K, Yoshida A, Nakamoto T, Kato S. Role of transient receptor potential vanilloid subtype 2 in lower oesophageal sphincter in rat acid reflux oesophagitis. J Pharmacol Sci 2021; 146:125-135. [PMID: 34030795 DOI: 10.1016/j.jphs.2021.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Gastroesophageal reflux disease (GERD) is a common gastrointestinal disorder. In the present study, we investigated TRP vanilloid subfamily member 2 (TRPV2) expression in lower oesophageal sphincter (LES) and its involvement in acid reflux oesophagitis in rats. Expression of TRPV2 and nerve growth factor mRNAs was significantly enhanced in LES of rats with reflux oesophagitis compared with normal rats. TRPV2 was mainly expressed in inhibitory motor neurons, and partly in intrinsic and extrinsic primary afferent neurons, and macrophages in LES of normal and reflux oesophagitis rats. Number of TRPV2-immunopositive nerve fibres was significantly increased, but that of nNOS-, CGRP-, and PGP9.5-nerve fibres was not changed in reflux oesophagitis compared with normal group. Probenecid produced nitric oxide production and relaxation in LES and this response was significantly enhanced in oesophagitis compared with normal group. Probenecid-induced relaxant effect was blocked by a TRPV2 inhibitor, tranilast, and a NOS inhibitor, NG-nitro-l-arginine methyl ester, in reflux oesophagitis rats. Oral administration of tranilast significantly improved body weight loss, oesophageal lesions, and epithelial thickness in oesophagitis model. These results suggest that up-regulation of TRPV2 in inhibitory motor neurons is involved in LES relaxation in oesophagitis model. TRPV2 inhibition might be beneficial for treatment of GERD.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Minako Suenaga
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yumi Mizutani
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kohei Matsui
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ayano Yoshida
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tomohiro Nakamoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
16
|
Jaffal SM, Abbas MA. TRP channels in COVID-19 disease: Potential targets for prevention and treatment. Chem Biol Interact 2021; 345:109567. [PMID: 34166652 PMCID: PMC8217345 DOI: 10.1016/j.cbi.2021.109567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
Coronavirus disease 2019 [COVID-19] is a global health threat caused by severe acute respiratory syndrome coronavirus 2 [SARS-CoV2] that requires two proteins for entry: angiotensin-converting enzyme 2 [ACE2] and -membrane protease serine 2 [TMPRSS2]. Many patients complain from pneumonia, cough, fever, and gastrointestinal (GI) problems. Notably, different TRP channels are expressed in various tissues infected by SARS-CoV-2. TRP channels are cation channels that show a common architecture with high permeability to calcium [Ca2+] in most sub-families. Literature review shed light on the possible role of TRP channels in COVID-19 disease. TRP channels may take part in inflammation, pain, fever, anosmia, ageusia, respiratory, cardiovascular, GI and neurological complications related to COVID-19. Also, TRP channels could be the targets for many active compounds that showed effectiveness against SARS-CoV-2. Desensitization or blocking TRP channels by antibodies, aptamers, small molecules or venoms can be an option for COVID-19 prevention and future treatment. This review provides insights into the involvement of TRP channels in different symptoms and mechanisms of SARS-CoV-2 , potential treatments targeting these channels and highlights missing gaps in literature.
Collapse
Affiliation(s)
- Sahar M Jaffal
- Department of Biological Sciences, Faculty of Science, The University of Jordan, 11942, Amman, Jordan.
| | - Manal A Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328, Amman, Jordan; Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, 19328, Amman, Jordan
| |
Collapse
|
17
|
Park SJ, Yu Y, Beyak MJ. Effect of high-fat diet on mechanosensitive transient receptor potential channel activation in vagal afferent neurons. Can J Physiol Pharmacol 2021; 99:660-666. [PMID: 33108741 DOI: 10.1139/cjpp-2020-0306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mechanical stimulation of the gastrointestinal tract is an important stimulus of satiety and can be transduced by transient receptor potential (TRP) channels. Several studies have revealed attenuated vagally-mediated satiety responses including mechanosensitivity in diet-induced obesity; however, ion channels underlying this hyposensitivity have not been fully understood. This study aimed to examine the effect of chronic high-fat diet on activation of selected mechanosensitive TRP channels in vagal afferents. C57/BL6 mice were fed on either a high-fat or low-fat diet for 6-8 weeks. An increase in the intracellular calcium to hypotonic solution and activators of TRPV1, TRPV4, and TRPA1 was measured in nodose neurons using Ca2+-imaging techniques. Jejunal afferent nerve firing induced by mechanical stimulation and TRP channel agonists was measured using in vitro extracellular multiunit afferent recording. In high-fat diet-fed mice, we observed reduced calcium influx and jejunal afferent response induced by mechanical stimuli and agonists of TRPV4 and TRPA1, but not TRPV1. Our data show diet-induced obesity disrupts the activation of TRPV4 and TRPA1, at both the cellular level and the level of nerve terminals in the small intestine, which may partly explain reduced mechanosensitivity of vagal afferents and may contribute to decreased gut-brain satiety signaling in obesity.
Collapse
Affiliation(s)
- Sung Jin Park
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Yang Yu
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Michael J Beyak
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| |
Collapse
|
18
|
Ramirez VT, Sladek J, Godinez DR, Rude KM, Chicco P, Murray K, Brust-Mascher I, Gareau MG, Reardon C. Sensory Nociceptive Neurons Contribute to Host Protection During Enteric Infection With Citrobacter rodentium. J Infect Dis 2021; 221:1978-1988. [PMID: 31960920 DOI: 10.1093/infdis/jiaa014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/15/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neurons are an integral component of the immune system that functions to coordinate responses to bacterial pathogens. Sensory nociceptive neurons that can detect bacterial pathogens are found throughout the body with dense innervation of the intestinal tract. METHODS In this study, we assessed the role of these nerves in the coordination of host defenses to Citrobacter rodentium. Selective ablation of nociceptive neurons significantly increased bacterial burden 10 days postinfection and delayed pathogen clearance. RESULTS Because the sensory neuropeptide CGRP (calcitonin gene-related peptide) regulates host responses during infection of the skin, lung, and small intestine, we assessed the role of CGRP receptor signaling during C rodentium infection. Although CGRP receptor blockade reduced certain proinflammatory gene expression, bacterial burden and Il-22 expression was unaffected. CONCLUSIONS Our data highlight that sensory nociceptive neurons exert a significant host protective role during C rodentium infection, independent of CGRP receptor signaling.
Collapse
Affiliation(s)
- Valerie T Ramirez
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Jessica Sladek
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Dayn Romero Godinez
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Kavi M Rude
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Pamela Chicco
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Kaitlin Murray
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Melanie G Gareau
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| | - Colin Reardon
- Department of Anatomy, Physiology, & Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California, USA
| |
Collapse
|
19
|
Foote AG, Thibeault SL. Sensory Innervation of the Larynx and the Search for Mucosal Mechanoreceptors. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:371-391. [PMID: 33465318 PMCID: PMC8632506 DOI: 10.1044/2020_jslhr-20-00350] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/19/2020] [Accepted: 10/28/2020] [Indexed: 05/03/2023]
Abstract
Purpose The larynx is a uniquely situated organ, juxtaposed between the gastrointestinal and respiratory tracts, and endures considerable immunological challenges while providing reflexogenic responses via putative mucosal mechanoreceptor afferents. Laryngeal afferents mediate precise monitoring of sensory events by relay to the internal branch of the superior laryngeal nerve (iSLN). Exposure to a variety of stimuli (e.g., mechanical, chemical, thermal) at the mucosa-airway interface has likely evolved a diverse array of specialized sensory afferents for rapid laryngeal control. Accordingly, mucosal mechanoreceptors in demarcated laryngeal territories have been hypothesized as primary sources of sensory input. The purpose of this article is to provide a tutorial on current evidence for laryngeal afferent receptors in mucosa, the role of mechano-gated ion channels within airway epithelia and mechanisms for mechanoreceptors implicated in laryngeal health and disease. Method An overview was conducted on the distribution and identity of iSLN-mediated afferent receptors in the larynx, with specific focus on mechanoreceptors and their functional roles in airway mucosa. Results/Conclusions Laryngeal somatosensation at the cell and molecular level is still largely unexplored. This tutorial consolidates various animal and human researches, with translational emphasis provided for the importance of mucosal mechanoreceptors to normal and abnormal laryngeal function. Information presented in this tutorial has relevance to both clinical and research arenas. Improved understanding of iSLN innervation and corresponding mechanotransduction events will help shed light upon a variety of pathological reflex responses, including persistent cough, dysphonia, and laryngospasm.
Collapse
Affiliation(s)
- Alexander G. Foote
- Division of Otolaryngology–Head and Neck Surgery, University of Wisconsin–Madison
| | - Susan L. Thibeault
- Division of Otolaryngology–Head and Neck Surgery, University of Wisconsin–Madison
| |
Collapse
|
20
|
Ragozzino FJ, Arnold RA, Fenwick AJ, Riley TP, Lindberg JEM, Peterson B, Peters JH. TRPM3 expression and control of glutamate release from primary vagal afferent neurons. J Neurophysiol 2020; 125:199-210. [PMID: 33296617 DOI: 10.1152/jn.00229.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vagal afferent fibers contact neurons in the nucleus of the solitary tract (NTS) and release glutamate via three distinct release pathways: synchronous, asynchronous, and spontaneous. The presence of TRPV1 in vagal afferents is predictive of activity-dependent asynchronous glutamate release along with temperature-sensitive spontaneous vesicle fusion. However, pharmacological blockade or genetic deletion of TRPV1 does not eliminate the asynchronous profile and only attenuates the temperature-dependent spontaneous release at high temperatures (>40°C), indicating additional temperature-sensitive calcium conductance(s) contributing to these release pathways. The transient receptor potential cation channel melastatin subtype 3 (TRPM3) is a calcium-selective channel that functions as a thermosensor (30-37°C) in somatic primary afferent neurons. We predict that TRPM3 is expressed in vagal afferent neurons and contributes to asynchronous and spontaneous glutamate release pathways. We investigated these hypotheses via measurements on cultured nodose neurons and in brainstem slice preparations containing vagal afferent to NTS synaptic contacts. We found histological and genetic evidence that TRPM3 is highly expressed in vagal afferent neurons. The TRPM3-selective agonist, pregnenolone sulfate, rapidly and reversibly activated the majority (∼70%) of nodose neurons; most of which also contained TRPV1. We confirmed the role of TRPM3 with pharmacological blockade and genetic deletion. In the brain, TRPM3 signaling strongly controlled both basal and temperature-driven spontaneous glutamate release. Surprisingly, genetic deletion of TRPM3 did not alter synchronous or asynchronous glutamate release. These results provide convergent evidence that vagal afferents express functional TRPM3 that serves as an additional temperature-sensitive calcium conductance involved in controlling spontaneous glutamate release onto neurons in the NTS.NEW & NOTEWORTHY Vagal afferent signaling coordinates autonomic reflex function and informs associated behaviors. Thermosensitive transient receptor potential (TRP) channels detect temperature and nociceptive stimuli in somatosensory afferent neurons, however their role in vagal signaling remains less well understood. We report that the TRPM3 ion channel provides a major thermosensitive point of control over vagal signaling and synaptic transmission. We conclude that TRPM3 translates physiological changes in temperature to neurophysiological outputs and can serve as a cellular integrator in vagal afferent signaling.
Collapse
Affiliation(s)
- Forrest J Ragozzino
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Rachel A Arnold
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Axel J Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Timothy P Riley
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Jonathan E M Lindberg
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - BreeAnne Peterson
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - James H Peters
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
21
|
Bischof M, Olthoff S, Glas C, Thorn-Seshold O, Schaefer M, Hill K. TRPV3 endogenously expressed in murine colonic epithelial cells is inhibited by the novel TRPV3 blocker 26E01. Cell Calcium 2020; 92:102310. [PMID: 33161279 DOI: 10.1016/j.ceca.2020.102310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/05/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
TRPV3 is a Ca2+-permeable cation channel, prominently expressed by keratinocytes where it contributes to maintaining the skin barrier, skin regeneration, and keratinocyte differentiation. However, much less is known about its physiological function in other tissues and there is still a need for identifying novel and efficient TRPV3 channel blockers. By screening a compound library, we identified 26E01 as a novel TRPV3 blocker. 26E01 blocks heterologously expressed TRPV3 channels overexpressed in HEK293 cells as assessed by fluorometric intracellular free Ca2+ assays (IC50 = 8.6 μM) but does not affect TRPV1, TRPV2 or TRPV4 channels. Electrophysiological whole-cell recordings confirmed the reversible block of TRPV3 currents by 26E01, which was also effective in excised inside-out patches, hinting to a rather direct mode of action. 26E01 suppresses endogenous TRPV3 currents in the mouse 308 keratinocyte cell line and in the human DLD-1 colon carcinoma cell line (IC50 = 12 μM). In sections of the gastrointestinal epithelium of mice, the expression of TRPV3 mRNA follows a gradient along the gastrointestinal tract, with the highest expression in the distal colon. 26E01 efficiently attenuates 2-aminoethoxydiphenyl borate-induced calcium influx in primary colonic epithelial cells isolated from the distal colon. As 26E01 neither shows toxic effects on DLD-1 cells at concentrations of up to 100 μM in MTT assays nor on mouse primary colonic crypts as assessed by calcein-AM/propidium iodide co-staining, it may serve as a useful tool to further study the physiological function of TRPV3 in various tissues.
Collapse
Affiliation(s)
- Maria Bischof
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Stefan Olthoff
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Carina Glas
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Kerstin Hill
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
22
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Chemosensory Ion Channels in Peripheral Swallowing-Related Regions for the Management of Oropharyngeal Dysphagia. Int J Mol Sci 2020; 21:E6214. [PMID: 32867366 PMCID: PMC7503421 DOI: 10.3390/ijms21176214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022] Open
Abstract
Oropharyngeal dysphagia, or difficulty in swallowing, is a major health problem that can lead to serious complications, such as pulmonary aspiration, malnutrition, dehydration, and pneumonia. The current clinical management of oropharyngeal dysphagia mainly focuses on compensatory strategies and swallowing exercises/maneuvers; however, studies have suggested their limited effectiveness for recovering swallowing physiology and for promoting neuroplasticity in swallowing-related neuronal networks. Several new and innovative strategies based on neurostimulation in peripheral and cortical swallowing-related regions have been investigated, and appear promising for the management of oropharyngeal dysphagia. The peripheral chemical neurostimulation strategy is one of the innovative strategies, and targets chemosensory ion channels expressed in peripheral swallowing-related regions. A considerable number of animal and human studies, including randomized clinical trials in patients with oropharyngeal dysphagia, have reported improvements in the efficacy, safety, and physiology of swallowing using this strategy. There is also evidence that neuroplasticity is promoted in swallowing-related neuronal networks with this strategy. The targeting of chemosensory ion channels in peripheral swallowing-related regions may therefore be a promising pharmacological treatment strategy for the management of oropharyngeal dysphagia. In this review, we focus on this strategy, including its possible neurophysiological and molecular mechanisms.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| |
Collapse
|
23
|
Bertamino A, Ostacolo C, Medina A, Di Sarno V, Lauro G, Ciaglia T, Vestuto V, Pepe G, Basilicata MG, Musella S, Smaldone G, Cristiano C, Gonzalez-Rodriguez S, Fernandez-Carvajal A, Bifulco G, Campiglia P, Gomez-Monterrey I, Russo R. Exploration of TRPM8 Binding Sites by β-Carboline-Based Antagonists and Their In Vitro Characterization and In Vivo Analgesic Activities. J Med Chem 2020; 63:9672-9694. [PMID: 32787109 PMCID: PMC8009520 DOI: 10.1021/acs.jmedchem.0c00816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Transient
receptor potential melastatin 8 (TRPM8) ion channel represents
a valuable pharmacological option for several therapeutic areas. Here,
a series of conformationally restricted derivatives of the previously
described TRPM8 antagonist N,N′-dibenzyl
tryptophan 4 were prepared and characterized in vitro
by Ca2+-imaging and patch-clamp electrophysiology assays.
Molecular modeling studies led to identification of a broad and well-defined
interaction network of these derivatives inside the TRPM8 binding
site, underlying their antagonist activity. The (5R,11aS)-5-(4-chlorophenyl)-2-(4-fluorobenzyl)-5,6,11,11a-tetrahydro-1H-imidazo[1′,5′:1,6]pyrido[3,4-b]indole-1,3(2H)-dione (31a) emerged as a potent (IC50 = 4.10 ± 1.2 nM), selective,
and metabolically stable TRPM8 antagonist. In vivo, 31a showed significant target coverage in an icilin-induced WDS (at
11.5 mg/kg ip), an oxaliplatin-induced cold allodynia (at 10–30
μg sc), and CCI-induced thermal hyperalgesia (at 11.5 mg/kg
ip) mice models. These results confirm the tryptophan moiety as a
solid pharmacophore template for the design of highly potent modulators
of TRPM8-mediated activities.
Collapse
Affiliation(s)
- Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Alicia Medina
- IDiBE, Universitas Miguel Herna'ndez, Avda de la Universidad, 032020 Elche, Spain
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | | | - Simona Musella
- European Biomedical Research Institute (EBRIS), Via S. De Renzi 50, 84125 Salerno, Italy
| | - Gerardina Smaldone
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Claudia Cristiano
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | | | | | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy.,European Biomedical Research Institute (EBRIS), Via S. De Renzi 50, 84125 Salerno, Italy
| | - Isabel Gomez-Monterrey
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Roberto Russo
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
24
|
TRPM8 Channel Activation Reduces the Spontaneous Contractions in Human Distal Colon. Int J Mol Sci 2020; 21:ijms21155403. [PMID: 32751347 PMCID: PMC7432081 DOI: 10.3390/ijms21155403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
The transient receptor potential-melastatin 8 (TRPM8) is a non-selective Ca2+-permeable channel, activated by cold, membrane depolarization, and different cooling compounds. TRPM8 expression has been found in gut mucosal, submucosal, and muscular nerve endings. Although TRPM8 plays a role in pathological conditions, being involved in visceral pain and inflammation, the physiological functions in the digestive system remain unclear as yet. The aims of the present study were: (i) to verify the TRPM8 expression in human distal colon; (ii) to examine the effects of TRPM8 activation on colonic contractility; (iii) to characterize the mechanism of action. Reverse transcriptase-polymerase chain reaction (RT-PCR) and western blotting were used to analyze TRPM8 expression. The responses of human colon circular strips to different TRPM8 agonists [1-[Dialkyl-phosphinoyl]-alkane (DAPA) 2–5, 1-[Diisopropyl-phosphinoyl]-alkane (DIPA) 1–7, DIPA 1–8, DIPA 1–9, DIPA 1–10, and DIPA 1–12) were recorded using a vertical organ bath. The biomolecular analysis revealed gene and protein expression of TRPM8 in both mucosal and smooth muscle layers. All the agonists tested, except-DIPA 1–12, produced a concentration-dependent decrease in spontaneous contraction amplitude. The effect was significantly antagonized by 5-benzyloxytryptamine, a TRPM8 antagonist. The DIPA 1–8 agonist resulted in the most efficacious and potent activation among the tested molecules. The DIPA 1–8 effects were not affected by tetrodotoxin, a neural blocker, but they were significantly reduced by tetraethylammonium chloride, a non-selective blocker of K+ channels. Moreover, iberiotoxin, a blocker of the large-conductance Ca2+-dependent K+-channels, but not apamin, a blocker of small-conductance Ca2+-dependent K+ channels, significantly reduced the inhibitory DIPA 1–8 actions. The results of the present study demonstrated that TRPM8 receptors are also expressed in human distal colon in healthy conditions and that ligand-dependent TRPM8 activation is able to reduce the colonic spontaneous motility, probably by the opening of the large-conductance Ca2+-dependent K+-channels.
Collapse
|
25
|
Kupari J, Häring M, Agirre E, Castelo-Branco G, Ernfors P. An Atlas of Vagal Sensory Neurons and Their Molecular Specialization. Cell Rep 2020; 27:2508-2523.e4. [PMID: 31116992 PMCID: PMC6533201 DOI: 10.1016/j.celrep.2019.04.096] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/25/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
Sensory functions of the vagus nerve are critical for conscious perceptions and for monitoring visceral functions in the cardio-pulmonary and gastrointestinal systems. Here, we present a comprehensive identification, classification, and validation of the neuron types in the neural crest (jugular) and placode (nodose) derived vagal ganglia by single-cell RNA sequencing (scRNA-seq) transcriptomic analysis. Our results reveal major differences between neurons derived from different embryonic origins. Jugular neurons exhibit fundamental similarities to the somatosensory spinal neurons, including major types, such as C-low threshold mechanoreceptors (C-LTMRs), A-LTMRs, Aδ-nociceptors, and cold-, and mechano-heat C-nociceptors. In contrast, the nodose ganglion contains 18 distinct types dedicated to surveying the physiological state of the internal body. Our results reveal a vast diversity of vagal neuron types, including many previously unanticipated types, as well as proposed types that are consistent with chemoreceptors, nutrient detectors, baroreceptors, and stretch and volume mechanoreceptors of the respiratory, gastrointestinal, and cardiovascular systems. A comprehensive molecular identification of neuronal types in vagal ganglion complex Prdm12+ jugular ganglion neurons share features with spinal somatosensory neurons Phox2b+ viscerosensory nodose neurons are molecularly versatile and highly specialized Nodose neuron types are consistent with chemo-, baro-, stretch-, tension-, and volume-sensors
Collapse
Affiliation(s)
- Jussi Kupari
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Martin Häring
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Eneritz Agirre
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
26
|
Wen J, Bo T, Zhang X, Wang Z, Wang D. Thermo-TRPs and gut microbiota are involved in thermogenesis and energy metabolism during low temperature exposure of obese mice. J Exp Biol 2020; 223:jeb218974. [PMID: 32341176 DOI: 10.1242/jeb.218974] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Ambient temperature and food composition can affect energy metabolism of the host. Thermal transient receptor potential ion channels (thermo-TRPs) can detect temperature signals and are involved in the regulation of thermogenesis and energy homeostasis. Further, the gut microbiota have also been implicated in thermogenesis and obesity. In the present study, we tested the hypothesis that thermo-TRPs and gut microbiota are involved in reducing diet-induced obesity (DIO) during low temperature exposure. C57BL/6J mice in obese (body mass gain >45%), lean (body mass gain <15%) and control (body mass gain <1%) groups were exposed to high (23±1°C) or low (4±1°C) ambient temperature for 28 days. Our data showed that low temperature exposure attenuated DIO, but enhanced brown adipose tissue (BAT) thermogenesis. Low temperature exposure also resulted in increased noradrenaline (NA) concentrations in the hypothalamus, decreased TRP melastatin 8 (TRPM8) expression in the small intestine, and altered composition and diversity of gut microbiota. In DIO mice, there was a decrease in overall energy intake along with a reduction in TRP ankyrin 1 (TRPA1) expression and an increase in NA concentration in the small intestine. DIO mice also showed increases in Oscillospira, [Ruminococcus], Lactococcus and Christensenella and decreases in Prevotella, Odoribacter and Lactobacillus at the genus level in fecal samples. Together, our data suggest that thermos-TRPs and gut microbiota are involved in thermogenesis and energy metabolism during low temperature exposure in DIO mice.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingbei Bo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Dehua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Besecker EM, Blanke EN, Deiter GM, Holmes GM. Gastric vagal afferent neuropathy following experimental spinal cord injury. Exp Neurol 2019; 323:113092. [PMID: 31697943 DOI: 10.1016/j.expneurol.2019.113092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023]
Abstract
Dramatic impairment of gastrointestinal (GI) function accompanies high-thoracic spinal cord injury (T3-SCI). The vagus nerve contains mechano- and chemosensory fibers as well as the motor fibers necessary for the central nervous system (CNS) control of GI reflexes. Cell bodies for the vagal afferent fibers are located within the nodose gangla (NG) and the majority of vagal afferent axons are unmyelinated C fibers that are sensitive to capsaicin through activation of transient receptor potential vanilloid-1 (TRPV1) channels. Vagal afferent fibers also express receptors for GI hormones, including cholecystokinin (CCK). Previously, T3-SCI provokes a transient GI inflammatory response as well as a reduction of both gastric emptying and centrally-mediated vagal responses to GI peptides, including CCK. TRPV1 channels and CCK-A receptors (CCKar) expressed in vagal afferents are upregulated in models of visceral inflammation. The present study investigated whether T3-SCI attenuates peripheral vagal afferent sensitivity through plasticity of TRPV1 and CCK receptors. Vagal afferent response to graded mechanical stimulation of the stomach was significantly attenuated by T3-SCI at 3-day and 3-week recovery. Immunocytochemical labeling for CCKar and TRPV1 demonstrated expression on dissociated gastric-projecting NG neurons. Quantitative assessment of mRNA expression by qRT-PCR revealed significant elevation of CCKar and TRPV1 in the whole NG following T3-SCI in 3-day recovery, but levels returned to normal after 3-weeks. Three days after injury, systemic administration of CCK-8 s showed a significantly diminished gastric vagal afferent response in T3-SCI rats compared to control rats while systemic capsaicin infusion revealed a significant elevation of vagal response in T3-SCI vs control rats. These findings demonstrate that T3-SCI provokes peripheral remodeling and prolonged alterations in the response of vagal afferent fibers to the physiological signals associated with digestion.
Collapse
Affiliation(s)
- Emily M Besecker
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America; Department of Health Sciences, Gettysburg College, Gettysburg, PA 17325, United States of America
| | - Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America
| | - Gina M Deiter
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America.
| |
Collapse
|
28
|
The TRPA1 Ion Channel Contributes to Sensory-Guided Avoidance of Menthol in Mice. eNeuro 2019; 6:ENEURO.0304-19.2019. [PMID: 31624176 PMCID: PMC6825956 DOI: 10.1523/eneuro.0304-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 01/08/2023] Open
Abstract
The flavoring agent menthol elicits complex orosensory and behavioral effects including perceived cooling at low concentrations and irritation and ingestive avoidance at higher intensities. Oral menthol engages the cold-activated transient receptor potential (TRP) ion channel TRP melastatin 8 (TRPM8) on trigeminal fibers, although its aversive feature was discussed to involve activation of TRP ankyrin 1 (TRPA1) associated with nociceptive processing. Here, we studied the roles of TRPM8 and TRPA1 in orosensory responding to menthol by subjecting mice gene deficient for either channel to brief-access exposure tests, which measure immediate licking responses to fluid stimuli to capture sensory/tongue control of behavior. Stimuli included aqueous concentration series of (−)-menthol [0 (water), 0.3, 0.5, 0.7, 1.0, 1.5, and 2.3 mM] and the aversive bitter taste stimulus quinine-HCl (0, 0.01, 0.03, 0.1, 0.3, 1, and 3 mM). Concentration-response data were generated from daily brief-access tests conducted in lickometers, which recorded the number of licks water-restricted mice emitted to a randomly selected stimulus concentration over a block of several 10-s stimulus presentations. Wild-type mice showed aversive orosensory responses to menthol above 0.7 mM. Oral aversion to menthol was reduced in mice deficient for TRPA1 but not TRPM8. Oral aversion to quinine was similar between TRPA1 mutant and control mice but stronger than avoidance of menthol. This implied menthol avoidance under the present conditions represented a moderate form of oral aversion. These data reveal TRPA1 contributes to the oral sensory valence of menthol and have implications for how input from TRPA1 and TRPM8 shapes somatosensory-guided behaviors.
Collapse
|
29
|
Manolis AS, Manolis SA, Manolis AA, Manolis TA, Apostolaki N, Melita H. Winter Swimming. Curr Sports Med Rep 2019; 18:401-415. [DOI: 10.1249/jsr.0000000000000653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Alaimo A, Rubert J. The Pivotal Role of TRP Channels in Homeostasis and Diseases throughout the Gastrointestinal Tract. Int J Mol Sci 2019; 20:ijms20215277. [PMID: 31652951 PMCID: PMC6862298 DOI: 10.3390/ijms20215277] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
The transient receptor potential (TRP) channels superfamily are a large group of proteins that play crucial roles in cellular processes. For example, these cation channels act as sensors in the detection and transduction of stimuli of temperature, small molecules, voltage, pH, and mechanical constrains. Over the past decades, different members of the TRP channels have been identified in the human gastrointestinal (GI) tract playing multiple modulatory roles. Noteworthy, TRPs support critical functions related to the taste perception, mechanosensation, and pain. They also participate in the modulation of motility and secretions of the human gut. Last but not least, altered expression or activity and mutations in the TRP genes are often related to a wide range of disorders of the gut epithelium, including inflammatory bowel disease, fibrosis, visceral hyperalgesia, irritable bowel syndrome, and colorectal cancer. TRP channels could therefore be promising drug targets for the treatment of GI malignancies. This review aims at providing a comprehensive picture of the most recent advances highlighting the expression and function of TRP channels in the GI tract, and secondly, the description of the potential roles of TRPs in relevant disorders is discussed reporting our standpoint on GI tract–TRP channels interactions.
Collapse
Affiliation(s)
- Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo (Tn), Italy.
| | - Josep Rubert
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo (Tn), Italy.
| |
Collapse
|
31
|
Oral gavage of capsaicin causes TRPV1-dependent acute hypothermia and TRPV1-independent long-lasting increase of locomotor activity in the mouse. Physiol Behav 2019; 206:213-224. [DOI: 10.1016/j.physbeh.2019.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/20/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022]
|
32
|
Tsujimura T, Ueha R, Yoshihara M, Takei E, Nagoya K, Shiraishi N, Magara J, Inoue M. Involvement of the epithelial sodium channel in initiation of mechanically evoked swallows in anaesthetized rats. J Physiol 2019; 597:2949-2963. [PMID: 31032906 DOI: 10.1113/jp277895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Afferents carried by the superior laryngeal nerve play a primary role in the initiation of laryngeal mechanically evoked swallows in anaesthetized rats. Amiloride and its analogues inhibit swallowing evoked by mechanical stimulation, but not swallowing evoked by chemical and electrical stimulation. The epithelial sodium channel is probably involved in the initiation of laryngeal mechanically evoked swallows. ABSTRACT The swallowing reflex plays a critical role in airway protection. Because impaired laryngeal mechanosensation is associated with food bolus aspiration, it is important to know how the laryngeal sensory system regulates swallowing initiation. This study was performed to clarify the neuronal mechanism of mechanically evoked swallows. Urethane-anaesthetized Sprague-Dawley male rats were used. A swallow was identified by activation of the suprahyoid and thyrohyoid muscles on electromyography. The swallowing threshold was measured by von Frey filament and electrical stimulation of the larynx. The number of swallows induced by upper airway distension and capsaicin application (0.03 nmol, 3 μl) to the vocal folds was counted. The effects of topical application (0.3-30 nmol, 3 μl) of the epithelial sodium channel (ENaC) blocker amiloride and its analogues (benzamil and dimethylamiloride), acid-sensing ion channel (ASIC) inhibitors (mambalgine-1 and diminazene) and gadolinium to the laryngeal mucosa on swallowing initiation were evaluated. A nerve transection study indicated that afferents carried by the superior laryngeal nerve play a primary role in the initiation of laryngeal mechanically evoked swallows. The mechanical threshold of swallowing was increased in a dose-dependent manner by amiloride and its analogues and gadolinium, but not by ASIC inhibitors. The number of swallows by upper airway distension was significantly decreased by benzamil application. However, the initiation of swallows evoked by capsaicin and electrical stimulation was not affected by benzamil application. We speculate that the ENaC is involved in the initiation of laryngeal mechanically evoked swallows.
Collapse
Affiliation(s)
- Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Rumi Ueha
- Department of Otolaryngology, University of Tokyo, Tokyo, 113-8655, Japan
| | - Midori Yoshihara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Eri Takei
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Kouta Nagoya
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Naru Shiraishi
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
33
|
Chang RB. Body thermal responses and the vagus nerve. Neurosci Lett 2019; 698:209-216. [PMID: 30634012 PMCID: PMC7061531 DOI: 10.1016/j.neulet.2019.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
While thermosensation from external environment has been extensively studied, physiological responses to temperature changes inside the body and the underlying regulatory mechanisms are less understood. As a critical link between body and brain that relays visceral organ information and regulates numerous physiological functions, the vagus nerve has been proposed to mediate diverse visceral thermal reflexes and indirectly regulate body temperature. However, the precise role of the vagus nerve in body thermal responses or visceral organ-related thermoregulation is still under debate due to extensive contradictory results. This data discrepancy is likely due to the high cell heterogeneity in the vagus nerve, as diverse vagal neuron types mediate numerous and sometimes opposite physiological functions. Here, we will review evidences that support and against the role of the vagus nerve in body thermosensation and thermoregulation and discuss potential future approaches for better understanding of this critical issue.
Collapse
Affiliation(s)
- Rui B Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520, United States.
| |
Collapse
|
34
|
Szereda-Przestaszewska M, Kaczyńska K. Pharmacologically evoked apnoeas. Receptors and nervous pathways involved. Life Sci 2018; 217:237-242. [PMID: 30553870 DOI: 10.1016/j.lfs.2018.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 01/07/2023]
Abstract
This review analyses the knowledge about the incidence of transient apnoeic spells, induced by substances which activate vagal chemically sensitive afferents. It considers the specificity and expression of appropriate receptors, and relevant research on pontomedullary circuits contributing to a cessation of respiration. Insight is gained into an excitatory drive of 5-HT1A serotonin receptors in overcoming opioid-induced respiratory inhibition.
Collapse
Affiliation(s)
- Małgorzata Szereda-Przestaszewska
- Department of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, A. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, A. Pawińskiego 5, 02-106 Warsaw, Poland.
| |
Collapse
|
35
|
Abstract
Maintenance of a homeostatic body core temperature is a critical brain function accomplished by a central neural network. This orchestrates a complex behavioral and autonomic repertoire in response to environmental temperature challenges or declining energy homeostasis and in support of immune responses and many behavioral states. This review summarizes the anatomical, neurotransmitter, and functional relationships within the central neural network that controls the principal thermoeffectors: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for heat production. The core thermoregulatory network regulating these thermoeffectors consists of parallel but distinct central efferent pathways that share a common peripheral thermal sensory input. Delineating the neural circuit mechanism underlying central thermoregulation provides a useful platform for exploring its functional organization, elucidating the molecular underpinnings of its neuronal interactions, and discovering novel therapeutic approaches to modulating body temperature and energy homeostasis.
Collapse
Affiliation(s)
- S F Morrison
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon 97239, USA;
| | - K Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
36
|
Bishnoi M, Khare P, Brown L, Panchal SK. Transient receptor potential (TRP) channels: a metabolic TR(i)P to obesity prevention and therapy. Obes Rev 2018; 19:1269-1292. [PMID: 29797770 DOI: 10.1111/obr.12703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Cellular transport of ions, especially by ion channels, regulates physiological function. The transient receptor potential (TRP) channels, with 30 identified so far, are cation channels with high calcium permeability. These ion channels are present in metabolically active tissues including adipose tissue, liver, gastrointestinal tract, brain (hypothalamus), pancreas and skeletal muscle, which suggests a potential role in metabolic disorders including obesity. TRP channels have potentially important roles in adipogenesis, obesity development and its prevention and therapy because of their physiological properties including calcium permeability, thermosensation and taste perception, involvement in cell metabolic signalling and hormone release. This wide range of actions means that organ-specific actions are unlikely, thus increasing the possibility of adverse effects. Delineation of responses to TRP channels has been limited by the poor selectivity of available agonists and antagonists. Food constituents that can modulate TRP channels are of interest in controlling metabolic status. TRP vanilloid 1 channels modulated by capsaicin have been the most studied, suggesting that this may be the first target for effective pharmacological modulation in obesity. This review shows that most of the TRP channels are potential targets to reduce metabolic disorders through a range of mechanisms.
Collapse
Affiliation(s)
- M Bishnoi
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India.,Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - P Khare
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India
| | - L Brown
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - S K Panchal
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
37
|
Kazadi LC, Fletcher J, Barrow PA. Gastric cooling and menthol cause an increase in cardiac parasympathetic efferent activity in healthy adult human volunteers. Exp Physiol 2018; 103:1302-1308. [PMID: 30070742 DOI: 10.1113/ep087058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/31/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? How do gastric stretch and gastric cooling stimuli affect cardiac autonomic control? What is the main finding and its importance? Gastric stretch causes an increase in cardiac sympathetic activity. Stretch combined with cold stimulation result in an elimination of the sympathetic response to stretch and an increase in cardiac parasympathetic activity, in turn resulting in a reduction in heart rate. Gastric cold stimulation causes a shift in sympathovagal balance towards parasympathetic dominance. The cold-induced bradycardia has the potential to decrease cardiac workload, which might be significant in individuals with cardiovascular pathologies. ABSTRACT Gastric distension increases blood pressure and heart rate in young, healthy humans, but little is known about the effect of gastric stretch combined with cooling. We used a randomized crossover study to assess the cardiovascular responses to drinking 300 ml of ispaghula husk solution at either 6 or 37°C in nine healthy humans (age 24.08 ± 9.36 years) to establish the effect of gastric stretch with and without cooling. The effect of consuming peppermint oil capsules to activate cold thermoreceptors was also investigated. The ECG, respiratory movements and continuous blood pressure were recorded during a 5 min baseline period, followed by a 115 min post-drink period, during which 5 min epochs of data were recorded. Cardiac autonomic activity was assessed using time and frequency domain analyses of respiratory sinus arrhythmia to quantify parasympathetic autonomic activity, and corrected QT (QTc) interval analysis to quantify sympathetic autonomic activity. Gastric stretch only caused a significant reduction in QTc interval lasting up to 15 min, with a concomitant but non-significant increase in heart rate, indicating an increased sympathetic cardiac tone. The additional effect of gastric cold stimulation was significantly to reduce heart rate for up to 15 min, elevate indicators of cardiac parasympathetic tone and eliminate the reduction in QTc interval seen with gastric stretch only. Stimulation of gastric cold thermoreceptors with menthol also caused a significant reduction in heart rate and concomitant increase in the root mean square of successive differences. These findings indicate that gastric cold stimulation causes a shift in the sympathovagal balance of cardiac control towards a more parasympathetic dominant pattern.
Collapse
Affiliation(s)
- Lubobo-Claude Kazadi
- Department of Biomedical Science and Physiology, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, UK
| | - Janine Fletcher
- Department of Biomedical Science and Physiology, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, UK
| | - Paul A Barrow
- Department of Biomedical Science and Physiology, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, UK
| |
Collapse
|
38
|
Noyer L, Grolez GP, Prevarskaya N, Gkika D, Lemonnier L. TRPM8 and prostate: a cold case? Pflugers Arch 2018; 470:1419-1429. [PMID: 29926226 DOI: 10.1007/s00424-018-2169-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022]
Abstract
While originally cloned from the prostate in 2001, transient receptor potential, melastatin member 8 (TRPM8) has since been identified as the cold/menthol receptor in the peripheral nervous system. This discovery has led to hundreds of studies regarding the role of this channel in pain and thermosensation phenomena, while relegating TRPM8 involvement in cancer to a secondary role. Despite these findings, there is growing evidence that TRPM8 should be carefully studied within the frame of carcinogenesis, especially in the prostate, where it is highly expressed and where many teams have confirmed variations in its expression during cancer progression. Its regulation by physiological factors, such as PSA and androgens, has proved that TRPM8 can exhibit an activity beyond that of a cold receptor, thus explaining how the channel can be activated in organs not exposed to temperature variations. With this review, we aim to provide a brief overview of the current knowledge regarding the complex roles of TRPM8 in prostate carcinogenesis and to show that this research path still represents a "hot" topic with potential clinical applications in the short term.
Collapse
Affiliation(s)
- Lucile Noyer
- Inserm, U1003, Laboratory of Cell Physiology, University Lille Nord de France, 59655 Cedex, Villeneuve d'Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Guillaume P Grolez
- Inserm, U1003, Laboratory of Cell Physiology, University Lille Nord de France, 59655 Cedex, Villeneuve d'Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm, U1003, Laboratory of Cell Physiology, University Lille Nord de France, 59655 Cedex, Villeneuve d'Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Dimitra Gkika
- Inserm, U1003, Laboratory of Cell Physiology, University Lille Nord de France, 59655 Cedex, Villeneuve d'Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Loic Lemonnier
- Inserm, U1003, Laboratory of Cell Physiology, University Lille Nord de France, 59655 Cedex, Villeneuve d'Ascq, France.
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France.
| |
Collapse
|
39
|
De Col R, Messlinger K, Hoffmann T. Differential conduction and CGRP release in visceral versus cutaneous peripheral nerves in the mouse. J Neurosci Res 2018; 96:1398-1405. [DOI: 10.1002/jnr.24255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Roberto De Col
- Institute for Physiology and Pathophysiology; University of Erlangen-Nuremberg; Erlangen Germany
| | - Karl Messlinger
- Institute for Physiology and Pathophysiology; University of Erlangen-Nuremberg; Erlangen Germany
| | - Tali Hoffmann
- Institute for Physiology and Pathophysiology; University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
40
|
Jung WJ, Lee SY, Choi SI, Kim BK, Lee EJ, In KH, Lee MG. Toll-like receptor expression in pulmonary sensory neurons in the bleomycin-induced fibrosis model. PLoS One 2018. [PMID: 29518161 PMCID: PMC5843166 DOI: 10.1371/journal.pone.0193117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Airway sensory nerves are known to express several receptors and channels that are activated by exogenous and endogenous mediators that cause coughing. Toll-like receptor (TLR) s are expressed in nociceptive neurons and play an important role in neuroinflammation. However, there have been very few studies of TLR expression in lung-derived sensory neurons or their relevance to respiratory symptoms such as cough. We used the bleomycin-induced pulmonary fibrosis model to investigate the change in TLR expression in pulmonary neurons and the association of TLRs with transient receptor potential (TRP) channels in pulmonary neurons. After 2 weeks of bleomycin or saline administration, pulmonary fibrosis changes were confirmed using tissue staining and the SIRCOL collagen assay. TLRs (TLR 1-9) and TRP channel expression was analyzed using single cell reverse transcription polymerase chain reaction (RT-PCR) in isolated sensory neurons from the nodose/jugular ganglion and the dorsal root ganglion (DRG). Pulmonary sensory neurons expressed TLR2 and TLR5. In the bleomycin-induced pulmonary fibrosis model, TLR2 expression was detected in 29.5% (18/61) and 26.9% (21/78) of pulmonary nodose/jugular neurons and DRG neurons, respectively. TLR5 was also detected in 55.7% (34/61) and 42.3% (33/78) of pulmonary nodose/jugular neurons and DRG neurons, respectively, in the bleomycin-induced pulmonary fibrosis model. TLR5 was expressed in 63.4% of TRPV1 positive cells and 43.4% of TRPM8 positive cells. In conclusion, TLR2 and TLR5 expression is enhanced, especially in vagal neurons, in the bleomycin-induced fibrosis model group when compared to the saline treated control group. Co-expression of TLR5 and TRP channels in pulmonary sensory neurons was also observed. This work sheds new light on the role of TLRs in the control and manifestation of clinical symptoms, such as cough. To understand the role of TLRs in pulmonary sensory nerves, further study will be required.
Collapse
Affiliation(s)
- Won Jai Jung
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sang Yeub Lee
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- * E-mail:
| | - Sue In Choi
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Byung-Keun Kim
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Eun Joo Lee
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kwang Ho In
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Min-Goo Lee
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Khayyatzadeh SS, Kazemi-Bajestani SMR, Mirmousavi SJ, Heshmati M, Khoshmohabbat S, Ferns GA, Ghayour-Mobarhan M. Dietary behaviors in relation to prevalence of irritable bowel syndrome in adolescent girls. J Gastroenterol Hepatol 2018; 33:404-410. [PMID: 28770579 DOI: 10.1111/jgh.13908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/21/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUNDS AND AIMS There is limited evidence regarding the relationship between dietary behaviors and irritable bowel syndrome (IBS). This study aimed to explore the association between diet-related practices and prevalence of IBS. METHODS The study was conducted among 988 adolescent girls living in Iran. Dietary behaviors were pre-defined and assessed in nine domains using a pre-tested questionnaire. To investigate the association between diet-related practices and the presence of IBS, this study used logistic regression analysis in crude and adjusted models. RESULTS The prevalence of IBS was 16.9% in this population. Compared with individuals who did not consume fluid with their meal, those who always consumed fluid with meals had a greater chance of IBS (odds ratio [OR]: 2.91; P: 0.01). This study found a direct relationship between a greater intake of spicy food and IBS prevalence (OR: 5.28; P: 0.02). The individuals who ate fried foods every day also had a greater risk of IBS compared with those who did not consume fried foods (OR: 1.65; P: 0.01). The subjects who had lost ≥ 5 teeth had 2.23 times greater odds for IBS than the individual who had lost ≤ 1 tooth (OR: 2.23; P: 0.01) was a significant inverse relationship between the chewing sufficiency and the risk of IBS (OR: 4.04; P: 0.02). These associations remained significant after controlling for potential confounder. CONCLUSIONS Intra-meal fluid intake, chewing insufficiency, higher tooth loss, and the consumption of spicy and fried food were associated with increased risk of IBS. Prospective studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Sayyed Saeid Khayyatzadeh
- Student Research Committee, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Mohammad Reza Kazemi-Bajestani
- Cardiovascular Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Oncology, Division of Palliative Care Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Seyed Jamal Mirmousavi
- Community Medicine, Community Medicine Department, Medical School, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Masoud Heshmati
- Department of Immunology and Microbiology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somaieh Khoshmohabbat
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Abstract
Body core temperature of mammals is regulated by the central nervous system, in which the preoptic area (POA) of the hypothalamus plays a pivotal role. The POA receives peripheral and central thermosensory neural information and provides command signals to effector organs to elicit involuntary thermoregulatory responses, including shivering thermogenesis, nonshivering brown adipose tissue thermogenesis, and cutaneous vasoconstriction. Cool-sensory and warm-sensory signals from cutaneous thermoreceptors, monitoring environmental temperature, are separately transmitted through the spinal-parabrachial-POA neural pathways, distinct from the spinothalamocortical pathway for perception of skin temperature. These cutaneous thermosensory inputs to the POA likely impinge on warm-sensitive POA neurons, which monitor body core (brain) temperature, to alter thermoregulatory command outflows from the POA. The cutaneous thermosensory afferents elicit rapid thermoregulatory responses to environmental thermal challenges before they impact body core temperature. Peripheral humoral signals also act on neurons in the POA to transmit afferent information of systemic infection and energy storage to induce fever and to regulate energy balance, respectively. This chapter describes the thermoregulatory afferent mechanisms that convey cutaneous thermosensory signals to the POA and that integrate the neural and humoral afferent inputs to the POA to provide descending command signals to thermoregulatory effectors.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
43
|
Paris L, Marc I, Charlot B, Dumas M, Valmier J, Bardin F. Millisecond infrared laser pulses depolarize and elicit action potentials on in-vitro dorsal root ganglion neurons. BIOMEDICAL OPTICS EXPRESS 2017; 8:4568-4578. [PMID: 29082085 PMCID: PMC5654800 DOI: 10.1364/boe.8.004568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 05/27/2023]
Abstract
This work focuses on the optical stimulation of dorsal root ganglion (DRG) neurons through infrared laser light stimulation. We show that a few millisecond laser pulse at 1875 nm induces a membrane depolarization, which was observed by the patch-clamp technique. This stimulation led to action potentials firing on a minority of neurons beyond an energy threshold. A depolarization without action potential was observed for the majority of DRG neurons, even beyond the action potential energy threshold. The use of ruthenium red, a thermal channel blocker, stops the action potential generation, but has no effects on membrane depolarization. Local temperature measurements reveal that the depolarization amplitude is sensitive to the amplitude of the temperature rise as well as to the time rate of change of temperature, but in a way which may not fully follow a photothermal capacitive mechanism, suggesting that more complex mechanisms are involved.
Collapse
Affiliation(s)
- Lambert Paris
- Institut d’Electronique et des Systèmes, CNRS UMR5214, Université de Montpellier, Montpellier, France
- Institut des Neurosciences de Montpellier, INSERM U1051, Montpellier, France
| | | | - Benoit Charlot
- Institut d’Electronique et des Systèmes, CNRS UMR5214, Université de Montpellier, Montpellier, France
| | | | - Jean Valmier
- Institut des Neurosciences de Montpellier, INSERM U1051, Montpellier, France
| | - Fabrice Bardin
- Institut d’Electronique et des Systèmes, CNRS UMR5214, Université de Montpellier, Montpellier, France
- MIPA, Université de Nîmes, Place Gabriel Péri, 30000, Nîmes, France
| |
Collapse
|
44
|
Zhang T, Tanida M, Uchida K, Suzuki Y, Yang W, Kuda Y, Kurata Y, Tominaga M, Shibamoto T. Mouse Anaphylactic Hypotension Is Characterized by Initial Baroreflex Independent Renal Sympathoinhibition Followed by Sustained Renal Sympathoexcitation. Front Physiol 2017; 8:669. [PMID: 28936180 PMCID: PMC5594092 DOI: 10.3389/fphys.2017.00669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/23/2017] [Indexed: 01/14/2023] Open
Abstract
Aim: The hemodynamic response to mouse systemic anaphylaxis is characterized by an initial hypertension followed by sustained hypotension. However, the defense mechanisms of the sympathetic nervous system against this circulatory disturbance is not known. Here, we investigated the renal sympathetic nerve activity (RSNA) response to mouse systemic anaphylaxis, along with the roles of carotid sinus baroreceptor, vagal nerves and the transient receptor potential vanilloid type 1 channel (TRPV1). Methods: Male ovalbumin-sensitized C57BL/6N mice were used under pentobarbital anesthesia. RSNA, systemic arterial pressure (SAP) and heart rate (HR) were continuously measured for 60 min after the antigen injection. Results: Within 3 min after antigen injection, RSNA decreased along with a transient increase in SAP. Thereafter, RSNA showed a progressive increase during sustained hypotension. In contrast, HR continuously increased. Sinoaortic denervation, but not vagotomy, significantly attenuated the renal sympathoexcitation and tachycardia from 30 and 46 min, respectively, after antigen. The responses of RSNA, SAP and HR to anaphylaxis were not affected by pretreatment with a TRPV1 inhibitor, capsazepine, or by genetic knockout of TRPV1. Conclusion: The mouse systemic anaphylaxis causes a biphasic RSNA response with an initial baroreflex-independent decrease and secondary increase. The antigen-induced sympathoexcitation and tachycardia at the late stage are partly mediated by carotid sinus baroreceptors. Either vagal nerve or TRPV1 does not play any significant roles in the RSNA and HR responses in anesthetized mice.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Physiology II, Kanazawa Medical UniversityUchinada, Japan.,Department of Colorectal and Hernia Surgery, The Fourth Affiliated Hospital of China Medical UniversityShenyang, China
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical UniversityUchinada, Japan
| | - Kunitoshi Uchida
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazaki, Japan.,Department of Physiological Science and Molecular Biology, Fukuoka Dental CollegeFukuoka, Japan
| | - Yoshiro Suzuki
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazaki, Japan
| | - Wei Yang
- Department of Physiology II, Kanazawa Medical UniversityUchinada, Japan.,Department of Infectious Disease, The Sheng Jing Hospital of China Medical UniversityShenyang, China
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical UniversityUchinada, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical UniversityUchinada, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural SciencesOkazaki, Japan
| | | |
Collapse
|
45
|
Wu SW, Fowler DK, Shaffer FJ, Lindberg JEM, Peters JH. Ethyl Vanillin Activates TRPA1. J Pharmacol Exp Ther 2017; 362:368-377. [PMID: 28620120 DOI: 10.1124/jpet.116.239384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/19/2017] [Indexed: 01/11/2023] Open
Abstract
The nonselective cation channel transient receptor potential ankryn subtype family 1 (TRPA1) is expressed in neurons of dorsal root ganglia and trigeminal ganglia and also in vagal afferent neurons that innervate the lungs and gastrointestinal tract. Many TRPA1 agonists are reactive electrophilic compounds that form covalent adducts with TRPA1. Allyl isothiocyanate (AITC), the common agonist used to identify TRPA1, contains an electrophilic group that covalently binds with cysteine residues of TRPA1 and confers a structural change on the channel. There is scientific motivation to identify additional compounds that can activate TRPA1 with different mechanisms of channel gating. We provide evidence that ethyl vanillin (EVA) is a TRPA1 agonist. Using fluorescent calcium imaging and whole-cell patch-clamp electrophysiology on dissociated rat vagal afferent neurons and TRPA1-transfected COS-7 cells, we discovered that EVA activates cells also activated by AITC. Both agonists display similar current profiles and conductances. Pretreatment with A967079, a selective TRPA1 antagonist, blocks the EVA response as well as the AITC response. Furthermore, EVA does not activate vagal afferent neurons from TRPA1 knockout mice, showing selectivity for TRPA1 in this tissue. Interestingly, EVA appears to be pharmacologically different from AITC as a TRPA1 agonist. When AITC is applied before EVA, the EVA response is occluded. However, they both require intracellular oxidation to activate TRPA1. These findings suggest that EVA activates TRPA1 but via a distinct mechanism that may provide greater ease for study in native systems compared with AITC and may shed light on differential modes of TRPA1 gating by ligand types.
Collapse
Affiliation(s)
- Shaw-Wen Wu
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington (D.K.F., F.J.S., J.E.M.L., J.H.P.); and Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida (S.-w.W.)
| | - Daniel K Fowler
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington (D.K.F., F.J.S., J.E.M.L., J.H.P.); and Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida (S.-w.W.)
| | - Forrest J Shaffer
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington (D.K.F., F.J.S., J.E.M.L., J.H.P.); and Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida (S.-w.W.)
| | - Jonathon E M Lindberg
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington (D.K.F., F.J.S., J.E.M.L., J.H.P.); and Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida (S.-w.W.)
| | - James H Peters
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington (D.K.F., F.J.S., J.E.M.L., J.H.P.); and Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida (S.-w.W.)
| |
Collapse
|
46
|
Abstract
AIM The inhibitory responses of renal sympathetic nerve activity (RSNA) and heart rate (HR) to sustained hemorrhagic shock occurred in anesthetized rats, but have not yet been determined in mice. Here, we investigated the responses of RSNA and HR to hemorrhagic hypotension in anesthetized mice, with an emphasis on the molecule-based mechanism for roles of afferent vagal nerves. METHODS RSNA, HR, and mean systemic arterial pressure were continuously measured in male pentobarbital-anesthetized C57BL/6N mice. Hemorrhagic hypotension of 50 mmHg was evoked and maintained for 10 min. RESULTS During hemorrhagic hypotension, RSNA initially increased and then sustainedly decreased, while HR progressively decreased. Vagotomy eliminated the second-phase sympathoinhibition and bradycardia, and carotid sinus denervation with vagotomy abolished the initial renal sympathoexcitation. The renal sympathoinihibition during hemorrhagic hypotension of 50 mmHg was eliminated in mice pretreated with a transient receptor potential vanilloid type 1 channel (TRPV1) inhibitor, capsazepine, and in TRPV1 knockout (TRPV1) mice, but not in TRPV4 knockout mice. The bradycardia response to hemorrhagic hypotension was also absent in TRPV1 mice and mice pretreated with capsazepine. CONCLUSION Hemorrhagic hypotension in anesthetized mice causes biphasic responses of RSNA with an initial increase, followed by a sustained decrease, and a progressive decrease in HR. The initial sympathoexcitation is mediated by carotid sinus baroreceptors, while the later sympathoinhibition and bradycardia are mediated via the TRPV1 signals of vagal afferents.
Collapse
|
47
|
Urata T, Mori N, Fukuwatari T. Vagus nerve is involved in the changes in body temperature induced by intragastric administration of 1,8-cineole via TRPM8 in mice. Neurosci Lett 2017; 650:65-71. [PMID: 28412531 DOI: 10.1016/j.neulet.2017.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/06/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023]
Abstract
Transient Receptor Potential Melastatin 8 (TRPM8) is a cold receptor activated by mild cold temperature (<28°C). TRPM8 expressed in cutaneous sensory nerves is involved in cold sensation and thermoregulation. TRPM8 mRNA is detected in various tissues, including the gastrointestinal mucosa, and in the vagal afferent nerve. The relationship between vagal afferent nerve-specific expression of TRPM8 and thermoregulation remains unclear. In this study, we aimed to investigate whether TRPM8 expression in the vagal afferent nerve is involved in autonomic thermoregulation. We found that intragastric administration of 1,8-cineole, a TRPM8 agonist, increased intrascapular brown adipose tissue and colonic temperatures, and M8-B-treatment (TRPM8 antagonist) inhibited these responses. Intravenous administration of 1,8-cineole also showed similar effects. In vagotomized mice, the responses induced by intragastric administration of 1,8-cineole were attenuated. These results suggest that TRPM8 expressed in tissues apart from cutaneous sensory nerves are involved in autonomic thermoregulation response.
Collapse
Affiliation(s)
- Tomomi Urata
- Department of Nutrition, School of Human Culture, the University of Shiga Prefecture, Hassakacho 2500, Hikone, Shiga 522-8533, Japan
| | - Noriyuki Mori
- Department of Nutrition, School of Human Culture, the University of Shiga Prefecture, Hassakacho 2500, Hikone, Shiga 522-8533, Japan.
| | - Tsutomu Fukuwatari
- Department of Nutrition, School of Human Culture, the University of Shiga Prefecture, Hassakacho 2500, Hikone, Shiga 522-8533, Japan
| |
Collapse
|
48
|
Allais L, De Smet R, Verschuere S, Talavera K, Cuvelier CA, Maes T. Transient Receptor Potential Channels in Intestinal Inflammation: What Is the Impact of Cigarette Smoking? Pathobiology 2016; 84:1-15. [DOI: 10.1159/000446568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/02/2016] [Indexed: 11/19/2022] Open
|
49
|
Choi YJ, Kim N, Kim J, Lee DH, Park JH, Jung HC. Upregulation of Vanilloid Receptor-1 in Functional Dyspepsia With or Without Helicobacter pylori Infection. Medicine (Baltimore) 2016; 95:e3410. [PMID: 27175641 PMCID: PMC4902483 DOI: 10.1097/md.0000000000003410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The etiological basis of functional dyspepsia (FD) is incompletely understood. The aim of this study was to evaluate the involvement of nociceptor-related genes and Helicobacter pylori (HP) in the pathogenesis of FD. The expression of nociceptor-related genes was measured in gastric cell lines that were co-cultured with HP. FD patients (n = 117) and controls (n = 55) were enrolled from a tertiary hospital gastroenterology clinic. Expression of the genes nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF), and transient receptor potential cation channel subfamily V member 1 (TRPV1) in the gastric mucosa were detected by reverse transcription polymerase chain reaction (RT-PCR), and immunohistochemical staining of TRPV1 was analyzed. These measurements were repeated after 1 year. TRPV1, GDNF, and NGF expression was elevated in gastric cell lines co-cultured with HP. TRPV1 immunostaining was stronger in HP-positive than HP-negative subjects. The FD group showed higher expression levels of TRPV1, GDNF, and NGF and increased TRPV1 immunostaining compared with those of the control group (all P < 0.05). Among 61 subjects who were followed up at 1 year, controls with successful HP eradication and patients whose symptoms had improved both showed significant reductions in the expression of TRPV1 and NGF (all P < 0.05) compared with controls without HP eradication and patients whose symptoms had not improved, respectively. The expression of NGF, GDNF, and TRPV1 may be associated with the pathogenesis of FD. Since HP infection may induce the increased expression of these genes, anti-HP therapy could be beneficial for HP-positive patients with FD.
Collapse
Affiliation(s)
- Yoon Jin Choi
- From the Department of Internal Medicine and Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do (YJC, NK, DHL); and Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul (NK, JK, DHL, JHP, HCJ), South Korea
| | | | | | | | | | | |
Collapse
|
50
|
Setoguchi S, Watase D, Nagata-Akaho N, Haratake A, Matsunaga K, Takata J. Pharmacokinetics of Paradol Analogues Orally Administered to Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1932-1937. [PMID: 26868188 DOI: 10.1021/acs.jafc.5b05615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The kinetics parameters of paradols with different acyl chain lengths have been evaluated to determine their antiobesity site of action. Rats were orally administered olive oil containing 0-, 6-, 8-, or 12-paradol, and blood samples were collected at different time points. The concentrations of the paradols in the plasma were analyzed both with and without β-glucuronidase treatment. The area under the plasma concentration-time curve from 0 to 24 h (AUC(0-24h)) of the parent compounds decreased with increasing acyl chain length. Whereas 12-paradol showed the largest AUC(0-24h) with the longest time to reach its maximum plasma concentration of all of the compounds tested, the AUC(0-24h) values of the metabolites decreased with increasing acyl chain length. These results indicate that increasing acyl chain length leads to a decrease in the absorption of paradols via the intestinal tract, the wall of which was estimated to be their antiobesity site of action.
Collapse
Affiliation(s)
- Shuichi Setoguchi
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University , 19-1 Nanakuma 8-Chome, Jonan-ku, Fukuoka, Japan 814-0180
| | - Daisuke Watase
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University , 19-1 Nanakuma 8-Chome, Jonan-ku, Fukuoka, Japan 814-0180
| | - Nami Nagata-Akaho
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University , 19-1 Nanakuma 8-Chome, Jonan-ku, Fukuoka, Japan 814-0180
| | - Akinori Haratake
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University , 19-1 Nanakuma 8-Chome, Jonan-ku, Fukuoka, Japan 814-0180
| | - Kazuhisa Matsunaga
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University , 19-1 Nanakuma 8-Chome, Jonan-ku, Fukuoka, Japan 814-0180
| | - Jiro Takata
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University , 19-1 Nanakuma 8-Chome, Jonan-ku, Fukuoka, Japan 814-0180
| |
Collapse
|