1
|
Đorđević DB, Koračević GP, Đorđević AD, Lović DB. Hypertension and left ventricular hypertrophy. J Hypertens 2024; 42:1505-1515. [PMID: 38747417 DOI: 10.1097/hjh.0000000000003774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
In the initial stage, left ventricular hypertrophy (LVH) is adaptive, but in time, it transforms to maladaptive LVH which is specific for the development of various phenotypes that cause heart failure, initially with preserved, but later with reduced left ventricular ejection fraction. Pathophysiological mechanisms, which are characteristic for remodeling procedure, are numerous and extremely complex, and should be subjected to further research with the aim of making a comprehensive overview of hypertensive heart disease (HHD) and discovering new options for preventing and treating HHD. The contemporary methods, such as cardiac magnetic resonance (CMR) and computed tomography (CT) provide very accurate morphological and functional information on HHD. The objective of this review article is to summarize the available scientific information in terms of prevalence, pathophysiology, diagnostics, prevention, contemporary therapeutic options, as well as to present potential therapeutic solutions based on the research of pathological mechanisms which are at the core of HHD.
Collapse
Affiliation(s)
- Dragan B Đorđević
- Faculty of Medicine, University of Nis
- Institute for Treatment and Rehabilitation Niska Banja
| | - Goran P Koračević
- Faculty of Medicine, University of Nis
- Department for Cardiovascular Diseases, Clinical Center Nis, Nis, Serbia
| | | | - Dragan B Lović
- Clinic for Internal Diseases Intermedica, Singidunum University Nis, Jovana Ristica, Nis, Serbia
- Veterans Affair Medical Centre, Washington DC, USA
| |
Collapse
|
2
|
Gao R, Lu Y, Zhang W, Zhang Z. The Application of Berberine in Fibrosis and the Related Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:753-773. [PMID: 38716621 DOI: 10.1142/s0192415x24500307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The formation of fibrotic tissue, characterized by the excessive accumulation of extracellular matrix (ECM) components such as collagen and fibronectin, is a normal and crucial stage of tissue repair in all organs. The over-synthesis, deposition, and remodeling of ECM components lead to organ dysfunction, posing a significant medical burden. Berberine, an isoquinoline alkaloid, is commonly used in the treatment of gastrointestinal diseases. With the deepening of scientific research, it has been gradually discovered that berberine also plays an important role in fibrotic diseases. In this review, we systematically introduce the effective role of berberine in fibrosis-related diseases. Specifically, this paper aims to provide a comprehensive review of the therapeutic role of berberine in treating fibrosis in organs such as the heart, liver, lungs, and kidneys. By summarizing its various pathways and mechanisms of action, including the inhibition of the transforming growth factor-[Formula: see text]/Smad signaling pathway, PI3K/Akt signaling pathway, MAPK signaling pathway, RhoA/ROCK signaling, and mTOR/p70S6K signaling pathway, as well as its activation of the Nrf2-ARE signaling pathway, AMPK signaling pathway, phosphorylated Smad 2/3 and Smad 7, and other signaling pathways, this review offers additional evidence to support the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Rongmao Gao
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Yuanyu Lu
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Wei Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610057, P. R. China
| | - Zhao Zhang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| |
Collapse
|
3
|
Chen XY, Wang TT, Shen Q, Ma H, Li ZH, Yu XN, Huang XF, Qing LS, Luo P. Preclinical Investigations on Anti-fibrotic Potential of Long-Term Oral Therapy of Sodium Astragalosidate in Animal Models of Cardiac and Renal Fibrosis. ACS Pharmacol Transl Sci 2024; 7:421-431. [PMID: 38357273 PMCID: PMC10863439 DOI: 10.1021/acsptsci.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024]
Abstract
In traditional Chinese medicine, Radix Astragali has played a vital role in treating progressive fibrotic diseases. One of its main active components, astragaloside IV, is a promising anti-fibrotic treatment despite its extremely low bioavailability. Our study aimed to optimize sodium astragalosidate (SA) by salt formation to improve solubility and oral absorption for anti-fibrotic therapy in vivo. Isoproterenol-induced myocardial fibrosis rat models and obese BKS-db mice presenting diabetic kidney fibrosis were used in this study. Daily oral administration of SA (20 mg/kg) for 14 days ameliorated cardiac fibrosis by reducing collagen accumulation and fibrosis-related inflammatory signals, including TNF-α, IL-1β, and IL-6. In db/db mice, SA (5,10, and 20 mg/kg per day for 8 weeks) dose-dependently alleviated lipid metabolism impairment and renal dysfunction when administered orally. Furthermore, Western blot and immunohistochemistry analyses demonstrated that SA treatment inhibited renal fibrosis by suppressing TGF-β1/Smads signaling. Taken together, our findings provide the oral-route medication availability of SA, which thus might offer a novel lead compound in preclinical trial-enabling studies for developing a long-term therapy to treat and prevent fibrosis.
Collapse
Affiliation(s)
- Xiao-Yi Chen
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
- Institute
of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Tian-Tian Wang
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
- Chengdu
Institute of Biology, Chinese Academy of
Sciences, Chengdu 610041, China
| | - Qing Shen
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
- Collaborative
Innovation Center of Seafood Deep Processing, Zhejiang Province Joint
Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hao Ma
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
| | - Zhan-Hua Li
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
| | - Xi-Na Yu
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
| | - Xiao-Feng Huang
- Chengdu
Institute of Biology, Chinese Academy of
Sciences, Chengdu 610041, China
| | - Lin-Sen Qing
- Chengdu
Institute of Biology, Chinese Academy of
Sciences, Chengdu 610041, China
| | - Pei Luo
- State
Key Laboratories for Quality Research in Chinese Medicines, Faculty
of Pharmacy, Macau University of Science
and Technology, Macau 999078, China
| |
Collapse
|
4
|
Askari VR, Khosravi K, Baradaran Rahimi V, Garzoli S. A Mechanistic Review on How Berberine Use Combats Diabetes and Related Complications: Molecular, Cellular, and Metabolic Effects. Pharmaceuticals (Basel) 2023; 17:7. [PMID: 38275993 PMCID: PMC10819502 DOI: 10.3390/ph17010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid that can be extracted from herbs such as Coptis, Phellodendron, and Berberis. BBR has been widely used as a folk medicine to treat various disorders. It is a multi-target drug with multiple mechanisms. Studies have shown that it has antioxidant and anti-inflammatory properties and can also adjust intestinal microbial flora. This review focused on the promising antidiabetic effects of BBR in several cellular, animal, and clinical studies. Based on previous research, BBR significantly reduced levels of fasting blood glucose, hemoglobin A1C, inflammatory cytokines, and oxidative stress markers. Furthermore, BBR stimulated insulin secretion and improved insulin resistance through different pathways, including up-regulation of protein expression of proliferator-activated receptor (PPAR)-γ, glucose transporter (GLUT) 4, PI3K/AKT, and AMP-activated protein kinase (AMPK) activation. Interestingly, it was demonstrated that BBR has protective effects against diabetes complications, such as diabetic-induced hepatic damage, cardiovascular disorders, nephropathy, and neuropathy. Furthermore, multiple clinical trial studies have emphasized the ameliorative effects of BBR in type 2 diabetic patients.
Collapse
Affiliation(s)
- Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Kimia Khosravi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
5
|
Lu Y, Chen Z, Pan Y, Qi F. Identification of Drug Compounds for Capsular Contracture Based on Text Mining and Deep Learning. Plast Reconstr Surg 2023; 152:779e-790e. [PMID: 36862957 DOI: 10.1097/prs.0000000000010350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND Capsular contracture is a common and unpredictable complication after breast implant placement. Currently, the pathogenesis of capsular contracture is unclear, and the effectiveness of nonsurgical treatment is still doubtful. The authors' study aimed to investigate new drug therapies for capsular contracture by using computational methods. METHODS Genes related to capsular contracture were identified by text mining and GeneCodis. Then, the candidate key genes were selected through protein-protein interaction analysis in Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape. Drugs targeting the candidate genes with relation to capsular contracture were screened out in Pharmaprojects. Based on the drug-target interaction analysis by DeepPurpose, candidate drugs with highest predicted binding affinity were obtained eventually. RESULTS The authors' study identified 55 genes related to capsular contracture. Gene set enrichment analysis and protein-protein interaction analysis generated eight candidate genes. One hundred drugs targeting the candidate genes were selected. The seven candidate drugs with the highest predicted binding affinity were determined by DeepPurpose, including tumor necrosis factor alpha antagonist, estrogen receptor agonist, insulin-like growth factor 1 receptor, tyrosine kinase inhibitor, and matrix metallopeptidase 1 inhibitor. CONCLUSION Text mining and DeepPurpose can be used as a promising tool for drug discovery in exploring nonsurgical treatment to capsular contracture. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
Affiliation(s)
- Yeheng Lu
- From the Department of Plastic Surgery, Zhongshan Hospital
| | - Zhiwei Chen
- Big Data and Artificial Intelligence Center, Zhongshan Hospital, Fudan University
| | - Yuyan Pan
- From the Department of Plastic Surgery, Zhongshan Hospital
| | - Fazhi Qi
- From the Department of Plastic Surgery, Zhongshan Hospital
| |
Collapse
|
6
|
Zhang P, Li H, Zhang A, Wang X, Song Q, Li Z, Wang W, Xu J, Hou Y, Zhang Y. Mechanism of myocardial fibrosis regulation by IGF-1R in atrial fibrillation through the PI3K/Akt/FoxO3a pathway. Biochem Cell Biol 2023; 101:432-442. [PMID: 37018819 DOI: 10.1139/bcb-2022-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Atrial structural remodeling takes on a critical significance to the occurrence and maintenance of atrial fibrillation (AF). As revealed by recent data, insulin-like growth factor-1 receptor (IGF-1R) plays a certain role in tissue fibrosis. In this study, the mechanism of IGF-1R in atrial structural remodeling was examined based on in vivo and in vitro experiments. First, cluster analysis of AF hub genes was conducted, and then the molecular mechanism was proposed by which IGF-1R regulates myocardial fibrosis via the PI3K/Akt/FoxO3a pathway. Subsequently, the mentioned mechanism was verified in human cardiac fibroblasts (HCFs) and rats transduced with IGF-1 overexpression type 9 adeno-associated viruses. The results indicated that IGF-1R activation up-regulated collagen Ⅰ protein expression and Akt phosphorylation in HCFs and rat atrium. The administration of LY294002 reversed the above phenomenon, improved the shortening of atrial effective refractory period, and reduced the increased incidence of AF and atrial fibrosis in rats. The transfection of FoxO3a siRNA reduced the anti-fibrotic effect of LY294002 in HCFs. The above data revealed that activation of IGF-1R takes on a vital significance to atrial structural remodeling by facilitating myocardial fibrosis and expediting the occurrence and maintenance of AF through the regulation of the PI3K/Akt/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Huilin Li
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University. Ji'nan City, Shandong Province, China
| | - An Zhang
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University. Ji'nan City, Shandong Province, China
| | - Xiao Wang
- Department of Health Management Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Qiyuan Song
- Shandong First Medical University, The First Affiliated Hospital of Shandong First Medical University. Ji'nan City, Shandong Province, China
| | - Zhan Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Weizong Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Jingwen Xu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Yinglong Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Yong Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| |
Collapse
|
7
|
Wang H, Tang Q, Lu Y, Chen C, Zhao YL, Xu T, Yang CW, Chen XQ. Berberine-loaded MSC-derived sEVs encapsulated in injectable GelMA hydrogel for spinal cord injury repair. Int J Pharm 2023; 643:123283. [PMID: 37536642 DOI: 10.1016/j.ijpharm.2023.123283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
After spinal cord injury (SCI), local inflammatory response and fibrous scar formation severely hinder nerve regeneration. Berberine (Ber) has a powerful regulatory effect on the local microenvironment, but its limited solubility and permeability through the blood-brain barrier severely limit its systemic efficacy. Human umbilical cord mesenchymal stem cells (hUC-MSCs)-derived small extracellular vesicles (sEVs) are natural nanocarriers with high cargo loading capacity, and can cross the blood-brain barrier. Most importantly, sEVs can improve drug solubility and drug utilization. Therefore, they can overcome many defects of Ber application. This experiment aimed to design a Ber-carrying hUC-MSCs-derived sEVs and GelMA hydrogel. Ber was loaded into sEVs (sEVs-Ber) by ultrasonic co-incubation with a drug loading capacity (LC) of 15.07%. The unhindered release of up to 80% of sEVs-Ber from GelMA hydrogel was accomplished for up to 14 days. And they could be directly absorbed by local cells of injury, allowing for direct local delivery of the drug and enhancing its efficacy. The experimental results confirmed injecting GelMA-sEVs-Ber into spinal cord defects could exert anti-inflammatory effects by regulating the expression of inflammatory factors. It also demonstrated the anti-fibrotic effect of Ber in SCI for the first time. The modulatory effects of sEVs and Ber on the local microenvironment significantly promoted nerve regeneration and recovery of motor function in post-SCI rats. These results demonstrated that the GelMA-sEVs-Ber dual carrier system is a promising therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Heng Wang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Qin Tang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yang Lu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Cheng Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yu-Lin Zhao
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Tao Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Chang-Wei Yang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Xiao-Qing Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
8
|
Liang D, Liu L, Zhao Y, Luo Z, He Y, Li Y, Tang S, Tang J, Chen N. Targeting extracellular matrix through phytochemicals: a promising approach of multi-step actions on the treatment and prevention of cancer. Front Pharmacol 2023; 14:1186712. [PMID: 37560476 PMCID: PMC10407561 DOI: 10.3389/fphar.2023.1186712] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Extracellular matrix (ECM) plays a pivotal and dynamic role in the construction of tumor microenvironment (TME), becoming the focus in cancer research and treatment. Multiple cell signaling in ECM remodeling contribute to uncontrolled proliferation, metastasis, immune evasion and drug resistance of cancer. Targeting trilogy of ECM remodeling could be a new strategy during the early-, middle-, advanced-stages of cancer and overcoming drug resistance. Currently nearly 60% of the alternative anticancer drugs are derived from natural products or active ingredients or structural analogs isolated from plants. According to the characteristics of ECM, this manuscript proposes three phases of whole-process management of cancer, including prevention of cancer development in the early stage of cancer (Phase I); prevent the metastasis of tumor in the middle stage of cancer (Phase II); provide a novel method in the use of immunotherapy for advanced cancer (Phase III), and present novel insights on the contribution of natural products use as innovative strategies to exert anticancer effects by targeting components in ECM. Herein, we focus on trilogy of ECM remodeling and the interaction among ECM, cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), and sort out the intervention effects of natural products on the ECM and related targets in the tumor progression, provide a reference for the development of new drugs against tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Dan Liang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunjie Zhao
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Zhenyi Luo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yadi He
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Majid A, Hassan FO, Hoque MM, Gbadegoye JO, Lebeche D. Bioactive Compounds and Cardiac Fibrosis: Current Insight and Future Prospect. J Cardiovasc Dev Dis 2023; 10:313. [PMID: 37504569 PMCID: PMC10380727 DOI: 10.3390/jcdd10070313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiac fibrosis is a pathological condition characterized by excessive deposition of collagen and other extracellular matrix components in the heart. It is recognized as a major contributor to the development and progression of heart failure. Despite significant research efforts in characterizing and identifying key molecular mechanisms associated with myocardial fibrosis, effective treatment for this condition is still out of sight. In this regard, bioactive compounds have emerged as potential therapeutic antifibrotic agents due to their anti-inflammatory and antioxidant properties. These compounds exhibit the ability to modulate fibrogenic processes by inhibiting the production of extracellular matrix proteins involved in fibroblast to myofibroblast differentiation, or by promoting their breakdown. Extensive investigation of these bioactive compounds offers new possibilities for preventing or reducing cardiac fibrosis and its detrimental consequences. This comprehensive review aims to provide a thorough overview of the mechanisms underlying cardiac fibrosis, address the limitations of current treatment strategies, and specifically explore the potential of bioactive compounds as therapeutic interventions for the treatment and/or prevention of cardiac fibrosis.
Collapse
Affiliation(s)
- Abdul Majid
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fasilat Oluwakemi Hassan
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Md Monirul Hoque
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Joy Olaoluwa Gbadegoye
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Djamel Lebeche
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
10
|
Yan M, Liu S, Zeng W, Guo Q, Mei Y, Shao X, Su L, Liu Z, Zhang Y, Wang L, Diao H, Rong X, Guo J. The Chinese herbal medicine Fufang Zhenzhu Tiaozhi ameliorates diabetic cardiomyopathy by regulating cardiac abnormal lipid metabolism and mitochondrial dynamics in diabetic mice. Biomed Pharmacother 2023; 164:114919. [PMID: 37302318 DOI: 10.1016/j.biopha.2023.114919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is an important complication leading to the death of patients with diabetes, but there is no effective strategy for clinical treatments. Fufang Zhenzhu Tiaozhi (FTZ) is a patent medicine that is a traditional Chinese medicine compound preparation with comprehensive effects for the prevention and treatment of glycolipid metabolic diseases under the guidance of "modulating liver, starting pivot and cleaning turbidity". FTZ was proposed by Professor Guo Jiao and is used for the clinical treatment of hyperlipidemia. This study was designed to explore the regulatory mechanisms of FTZ on heart lipid metabolism dysfunction and mitochondrial dynamics disorder in mice with DCM, and it provides a theoretical basis for the myocardial protective effect of FTZ in diabetes. In this study, we demonstrated that FTZ protected heart function in DCM mice and downregulated the overexpression of free fatty acids (FFAs) uptake-related proteins cluster of differentiation 36 (CD36), fatty acid binding protein 3 (FABP3) and carnitine palmitoyl transferase 1 (CPT1). Moreover, FTZ treatment showed a regulatory effect on mitochondrial dynamics by inhibiting mitochondrial fission and promoting mitochondrial fusion. We also identified in vitro that FTZ could restore lipid metabolism-related proteins, mitochondrial dynamics-related proteins and mitochondrial energy metabolism in PA-treated cardiomyocytes. Our study indicated that FTZ improves the cardiac function of diabetic mice by attenuating the increase in fasting blood glucose levels, inhibiting the decrease in body weight, alleviating disordered lipid metabolism, and restoring mitochondrial dynamics and myocardial apoptosis in diabetic mouse hearts.
Collapse
Affiliation(s)
- Meiling Yan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Suping Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Wenru Zeng
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Qiaoling Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yu Mei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Xiaoqi Shao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Liyan Su
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Zhou Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yue Zhang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Lexun Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Hongtao Diao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Xianglu Rong
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Jiao Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China.
| |
Collapse
|
11
|
Effect of Berberine on the Status of Antioxidants in the Heart of Lead-Exposed Rats. Pharm Chem J 2023. [DOI: 10.1007/s11094-023-02837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
|
12
|
Patil P, Doshi G. Deciphering the Role of Pyroptosis Impact on Cardiovascular Diseases. Curr Drug Targets 2023; 24:1166-1183. [PMID: 38164730 DOI: 10.2174/0113894501267496231102114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 01/03/2024]
Abstract
Pyroptosis has become a noteworthy area of focus in recent years due to its association with inflammatory diseases. Pyroptosis is a type of programmed cell death accompanied by an inflammatory response, and the discovery of the gasdermin family has expanded the study of pyroptosis. The primary characteristics of pyroptosis include cell expansion, membrane penetration, and the ejection of cell contents. In healthy physiology, pyroptosis is an essential part of the host's defence against pathogen infection. Excessive Pyroptosis, however, can lead to unchecked and persistent inflammatory responses, including the emergence of inflammatory diseases. More precisely, gasdermin family members have a role in the creation of membrane holes during pyroptosis, which leads to cell lysis. It is also related to how pro-inflammatory intracellular substances, including IL-1, IL-18, and High mobility group box 1 (HMGB1), are used. Two different signalling pathways, one of which is regulated by caspase-1 and the other by caspase-4/5/11, are the primary causes of pyroptosis. Cardiovascular diseases are often associated with cell death and acute or chronic inflammation, making this area of research particularly relevant. In this review, we first systematically summarize recent findings related to Pyroptosis, exploring its characteristics and the signalling pathway mechanisms, as well as various treatment strategies based on its modulation that has emerged from the studies. Some of these strategies are currently undergoing clinical trials. Additionally, the article elaborates on the scientific evidence indicating the role of Pyroptosis in various cardiovascular diseases. As a whole, this should shed insight into future paths and present innovative ideas for employing Pyroptosis as a strong disease-fighting weapon.
Collapse
Affiliation(s)
- Poonam Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VLM Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VLM Road, Vile Parle (w), Mumbai, 400056, India
| |
Collapse
|
13
|
Liu J, Zhang Y, Liu M, Shi F, Cheng B. AG1024, an IGF-1 receptor inhibitor, ameliorates renal injury in rats with diabetic nephropathy via the SOCS/JAK2/STAT pathway. Open Med (Wars) 2023; 18:20230683. [PMID: 37034500 PMCID: PMC10080708 DOI: 10.1515/med-2023-0683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Insulin-like-growth factor-1 (IGF-1) is the ligand for insulin-like growth factor-1 receptor (IGF-1R), and the roles of IGF-1/IGF-1R in diabetic nephropathy (DN) are well-characterized previously. However, the biological functions of AG1024 (an IGF-1R inhibitor) in DN remain unknown. This study investigates the roles and related mechanisms of AG-1024 in DN. The experimental DN was established via intraperitoneal injection of streptozotocin, and STZ-induced diabetic rats were treated with AG1024 (20 mg/kg/day) for 8 weeks. The 24 h proteinuria, blood glucose level, serum creatinine, and blood urea nitrogen were measured for biochemical analyses. The increase in 24 h proteinuria, blood glucose level, serum creatinine, and blood urea of DN rats were conspicuously abated by AG1024. After biochemical analyses, the renal tissue specimens were collected, and as revealed by hematoxylin and eosin staining and Masson staining, AG-1024 mitigated typical renal damage and interstitial fibrosis in DN rats. Then, the anti-inflammatory effect of AG-1024 was assessed by western blotting and ELISA. Mechanistically, AG-1024 upregulated SOCS1 and SOCS3 expression and decreased phosphorylated JAK2, STAT1, and STAT3, as shown by western blotting. Collectively, AG-1024 (an IGF-1R inhibitor) ameliorates renal injury in experimental DN by attenuating renal inflammation and fibrosis via the SOCS/JAK2/STAT pathway.
Collapse
Affiliation(s)
- Jianhua Liu
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan 430015, Hubei, China
| | - Yun Zhang
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan 430015, Hubei, China
| | - Min Liu
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan 430015, Hubei, China
| | - Feng Shi
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan 430015, Hubei, China
| | - Bo Cheng
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), No. 168, Hong Kong Road, Jiang’an District, Wuhan 430015, Hubei, China
| |
Collapse
|
14
|
Setting the stage for universal pharmacological targeting of the glycocalyx. CURRENT TOPICS IN MEMBRANES 2023; 91:61-88. [PMID: 37080681 DOI: 10.1016/bs.ctm.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
All cells in the human body are covered by a complex meshwork of sugars as well as proteins and lipids to which these sugars are attached, collectively termed the glycocalyx. Over the past few decades, the glycocalyx has been implicated in a range of vital cellular processes in health and disease. Therefore, it has attracted considerable interest as a therapeutic target. Considering its omnipresence and its relevance for various areas of cell biology, the glycocalyx should be a versatile platform for therapeutic intervention, however, the full potential of the glycocalyx as therapeutic target is yet to unfold. This might be attributable to the fact that glycocalyx alterations are currently discussed mainly in the context of specific diseases. In this perspective review, we shift the attention away from a disease-centered view of the glycocalyx, focusing on changes in glycocalyx state. Furthermore, we survey important glycocalyx-targeted drugs currently available and finally discuss future steps. We hope that this approach will inspire a unified, holistic view of the glycocalyx in disease, helping to stimulate novel glycocalyx-targeted therapy strategies.
Collapse
|
15
|
Ahmedy OA, El-Tanbouly DM, Al-Mokaddem AK, El-Said YA. Insights into the role of P2X7R/DUSP6/ERK1/2 and SIRT2/MDM2 signaling in the nephroprotective effect of berberine against cisplatin-induced renal fibrosis in rats. Life Sci 2022; 309:121040. [DOI: 10.1016/j.lfs.2022.121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022]
|
16
|
Cai Y, Zhou Y, Li Z, Xia P, ChenFu X, Shi A, Zhang J, Yu P. Non-coding RNAs in necroptosis, pyroptosis, and ferroptosis in cardiovascular diseases. Front Cardiovasc Med 2022; 9:909716. [PMID: 35990979 PMCID: PMC9386081 DOI: 10.3389/fcvm.2022.909716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence has proved that non-coding RNAs (ncRNAs) play a critical role in the genetic programming and gene regulation of cardiovascular diseases (CVDs). Cardiovascular disease morbidity and mortality are rising and have become a primary public health issue that requires immediate resolution through effective intervention. Numerous studies have revealed that new types of cell death, such as pyroptosis, necroptosis, and ferroptosis, play critical cellular roles in CVD progression. It is worth noting that ncRNAs are critical novel regulators of cardiovascular risk factors and cell functions by mediating pyroptosis, necroptosis, and ferroptosis. Thus, ncRNAs can be regarded as promising therapeutic targets for treating and diagnosing cardiovascular diseases. Recently, there has been a surge of interest in the mediation of ncRNAs on three types of cell death in regulating tissue homeostasis and pathophysiological conditions in CVDs. Although our understanding of ncRNAs remains in its infancy, the studies reviewed here may provide important new insights into how ncRNAs interact with CVDs. This review summarizes what is known about the functions of ncRNAs in modulating cell death-associated CVDs and their role in CVDs, as well as their current limitations and future prospects.
Collapse
Affiliation(s)
- Yuxi Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiwen Zhou
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panpan Xia
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Xinxi ChenFu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Ao Shi
- School of Medicine, University of Nicosia, Nicosia, Cyprus
- School of Medicine, St. George University of London, London, United Kingdom
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jing Zhang
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- *Correspondence: Peng Yu
| |
Collapse
|
17
|
Li G, Yang J, Zhang D, Wang X, Han J, Guo X. Research Progress of Myocardial Fibrosis and Atrial Fibrillation. Front Cardiovasc Med 2022; 9:889706. [PMID: 35958428 PMCID: PMC9357935 DOI: 10.3389/fcvm.2022.889706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
With the aging population and the increasing incidence of basic illnesses such as hypertension and diabetes (DM), the incidence of atrial fibrillation (AF) has increased significantly. AF is the most common arrhythmia in clinical practice, which can cause heart failure (HF) and ischemic stroke (IS), increasing disability and mortality. Current studies point out that myocardial fibrosis (MF) is one of the most critical substrates for the occurrence and maintenance of AF. Although myocardial biopsy is the gold standard for evaluating MF, it is rarely used in clinical practice because it is an invasive procedure. In addition, serological indicators and imaging methods have also been used to evaluate MF. Nevertheless, the accuracy of serological markers in evaluating MF is controversial. This review focuses on the pathogenesis of MF, serological evaluation, imaging evaluation, and anti-fibrosis treatment to discuss the existing problems and provide new ideas for MF and AF evaluation and treatment.
Collapse
Affiliation(s)
- Guangling Li
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jing Yang
- Department of Pathology, Gansu Provincial Hospital, Lanzhou, China
| | - Demei Zhang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaomei Wang
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jingjing Han
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xueya Guo
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Xueya Guo,
| |
Collapse
|
18
|
Ren C, Liu K, Zhao X, Guo H, Luo Y, Chang J, Gao X, Lv X, Zhi X, Wu X, Jiang H, Chen Q, Li Y. Research Progress of Traditional Chinese Medicine in Treatment of Myocardial fibrosis. Front Pharmacol 2022; 13:853289. [PMID: 35754495 PMCID: PMC9213783 DOI: 10.3389/fphar.2022.853289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Effective drugs for the treatment of myocardial fibrosis (MF) are lacking. Traditional Chinese medicine (TCM) has garnered increasing attention in recent years for the prevention and treatment of myocardial fibrosis. This Article describes the pathogenesis of myocardial fibrosis from the modern medicine, along with the research progress. Reports suggest that Chinese medicine may play a role in ameliorating myocardial fibrosis through different regulatory mechanisms such as reduction of inflammatory reaction and oxidative stress, inhibition of cardiac fibroblast activation, reduction in extracellular matrix, renin-angiotensin-aldosterone system regulation, transforming growth Factor-β1 (TGF-β1) expression downregulation, TGF-β1/Smad signalling pathway regulation, and microRNA expression regulation. Therefore, traditional Chinese medicine serves as a valuable source of candidate drugs for exploration of the mechanism of occurrence and development, along with clinical prevention and treatment of MF.
Collapse
Affiliation(s)
- Chunzhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinke Zhao
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Huan Guo
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yali Luo
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Juan Chang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Provincial People’s Hospital, Lanzhou, China
| | - Xiang Gao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinfang Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaodong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xue Wu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- The Second Hospital of Lanzhou University, Lanzhou, China
| | - Hugang Jiang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qilin Chen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
19
|
Yang XX, Zhao ZY. miR-30a-5p inhibits the proliferation and collagen formation of cardiac fibroblasts in diabetic cardiomyopathy. Can J Physiol Pharmacol 2022; 100:167-175. [PMID: 35025607 DOI: 10.1139/cjpp-2021-0280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac fibrosis is one of the major pathological characteristics of diabetic cardiomyopathy (DCM). MicroRNAs (miRNAs, miRs) have been identified as key regulators in the progression of cardiac fibrosis. This study aimed to investigate the role of miR-30a-5p in DCM and the underlying mechanism. The rat model of diabetes mellitus (DM) was established by streptozotocin injection, and the rat primary cardiac fibroblasts (CFs) were isolated from cardiac tissue and then treated with high glucose (HG). MTT assay was performed to assess the viability of CFs. Dual-luciferase reporter gene assay was conducted to verify the interaction between miR-30a-5p and Smad2. The expression of miR-30a-5p was downregulated in the myocardial tissues of DM rats and HG-stimulated CFs. Overexpression of miR-30a-5p reduced Smad2 levels and inhibited collagen formation in HG-stimulated CFs and DM rats, as well as decreased the proliferation of CFs induced by HG. Smad2 was a target of miR-30a-5p and its expression was inhibited by miR-30a-5p. Furthermore, the simultaneous overexpression of Smad2 and miR-30a-5p reversed the effect of miR-30a-5p overexpression alone in CFs. Our results indicated that miR-30a-5p reduced Smad2 expression and also induced a decrease in proliferation and collagen formation in DCM.
Collapse
Affiliation(s)
- Xiao-Xu Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Zhen-Yu Zhao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| |
Collapse
|
20
|
Cao RY, Zhang Y, Feng Z, Liu S, Liu Y, Zheng H, Yang J. The Effective Role of Natural Product Berberine in Modulating Oxidative Stress and Inflammation Related Atherosclerosis: Novel Insights Into the Gut-Heart Axis Evidenced by Genetic Sequencing Analysis. Front Pharmacol 2022; 12:764994. [PMID: 35002703 PMCID: PMC8727899 DOI: 10.3389/fphar.2021.764994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
The exacerbation of oxidative and inflammatory reactions has been involved in atherosclerotic cardiovascular diseases leading to morbidity and mortality worldwide. Discovering the underlying mechanisms and finding optimized curative approaches to control the global prevalence of cardiovascular diseases is needed. Growing evidence has demonstrated that gut microbiota is associated with the development of atherosclerosis, while berberine, a natural product exhibits antiatherogenic effects in clinical and pre-clinical studies, which implies a potential link between berberine and gut microbiota. In light of these novel discoveries, evidence of the role of berberine in modulating atherosclerosis with a specific focus on its interaction with gut microbiota is collected. This review synthesizes and summarizes antioxidant and anti-inflammatory effects of berberine on combating atherosclerosis experimentally and clinically, explores the interaction between berberine and intestinal microbiota comprehensively, and provides novel insights of berberine in managing atherosclerotic cardiovascular diseases via targeting the gut-heart axis mechanistically. The phenomenon of how berberine overcomes its weakness of poor bioavailability to conduct its antiatherogenic properties is also discussed and interpreted in this article. An in-depth understanding of this emerging area may contribute to identifying therapeutic potentials of medicinal plant and natural product derived pharmaceuticals for the prevention and treatment of atherosclerotic cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Richard Y Cao
- CMVD Collaborative Program, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- CMVD Collaborative Program, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Zhen Feng
- CMVD Collaborative Program, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Siyu Liu
- School of Sport Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yifan Liu
- School of Medicine, Nantong University, Nantong, China
| | - Hongchao Zheng
- CMVD Collaborative Program, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Jian Yang
- CMVD Collaborative Program, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Zhang M, Yang H, Yang E, Li J, Dong L. Berberine Decreases Intestinal GLUT2 Translocation and Reduces Intestinal Glucose Absorption in Mice. Int J Mol Sci 2021; 23:327. [PMID: 35008753 PMCID: PMC8745600 DOI: 10.3390/ijms23010327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Postprandial hyperglycemia is an important causative factor of type 2 diabetes mellitus, and permanent localization of intestinal GLUT2 in the brush border membrane is an important reason of postprandial hyperglycemia. Berberine, a small molecule derived from Coptidis rhizome, has been found to be potent at lowering blood glucose, but how berberine lowers postprandial blood glucose is still elusive. Here, we investigated the effect of berberine on intestinal glucose transporter 2 (GLUT2) translocation and intestinal glucose absorption in type 2 diabetes mouse model. Type 2 diabetes was induced by feeding of a high-fat diet and injection of streptozotocin and diabetic mice were treated with berberine for 6 weeks. The effects of berberine on intestinal glucose transport and GLUT2 translocation were accessed in isolated intestines and intestinal epithelial cells (IEC-6), respectively. We found that berberine treatment improved glucose tolerance and systemic insulin sensitivity in diabetic mice. Furthermore, berberine decreased intestinal glucose transport and inhibited GLUT2 translocation from cytoplasm to brush border membrane in intestinal epithelial cells. Mechanistically, berberine inhibited intestinal insulin-like growth factor 1 (IGF-1R) phosphorylation and thus reduced localization of PLC-β2 in the membrane, leading to decreased GLUT2 translocation. These results suggest that berberine reduces intestinal glucose absorption through inhibiting IGF-1R-PLC-β2-GLUT2 signal pathway.
Collapse
Affiliation(s)
| | | | | | | | - Ling Dong
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Military Medical University, Xi’an 710032, China; (M.Z.); (H.Y.); (E.Y.); (J.L.)
| |
Collapse
|
22
|
Cao RY, Zheng Y, Zhang Y, Jiang L, Li Q, Sun W, Gu W, Cao W, Zhou L, Zheng H, Yang J. Berberine on the Prevention and Management of Cardiometabolic Disease: Clinical Applications and Mechanisms of Action. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1645-1666. [PMID: 34488551 DOI: 10.1142/s0192415x21500762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Berberine is an alkaloid from several medicinal plants originally used to treat diarrhea and dysentery as a traditional Chinese herbal medicine. In recent years, berberine has been discovered to exhibit a wide spectrum of biological activities in the treatment of diverse diseases ranging from cancer and neurological dysfunctions to metabolic disorders and heart diseases. This review article summarizes the clinical practice and laboratory exploration of berberine for the treatment of cardiometabolic and heart diseases, with a focus on the novel insights and recent advances of the underlying mechanisms recognized in the past decade. Berberine was found to display pleiotropic therapeutic effects against dyslipidemia, hyperglycemia, hypertension, arrhythmia, and heart failure. The mechanisms of berberine for the treatment of cardiometabolic disease involve combating inflammation and oxidative stress such as inhibiting proprotein convertase subtilisin/kexin 9 (PCSK9) activation, regulating electrical signals and ionic channels such as targeting human ether-a-go-go related gene (hERG) currents, promoting energy metabolism such as activating adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, modifying gut microbiota to promote transforming of berberine into its intestine-absorbable form, and interacting with non-coding RNAs via targeting multiple signaling pathways such as AMPK, mechanistic target of rapamycin (mTOR), etc. Collectively, berberine appears to be safe and well-tolerated in clinical practice, especially for those who are intolerant to statins. Knowledge from this field may pave the way for future development of more effective pharmaceutical approaches for managing cardiometabolic risk factors and preventing heart diseases.
Collapse
Affiliation(s)
- Richard Y Cao
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Yuntao Zheng
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China.,CVD Collaborative Program of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China
| | - Ying Zhang
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Lingling Jiang
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Qing Li
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Wanqun Sun
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Wenqin Gu
- Department of Rehabilitation, Shanghai Xuhui Fengling Community Healthcare Service Center, Shanghai 200032, P. R. China
| | - Weifeng Cao
- Department of Rehabilitation, Shanghai Xuhui Fengling Community Healthcare Service Center, Shanghai 200032, P. R. China
| | - Linyan Zhou
- Department of Rehabilitation, Shanghai Xuhui Caohejing Community Healthcare Service Center, Shanghai 200235, P. R. China
| | - Hongchao Zheng
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Jian Yang
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| |
Collapse
|
23
|
FTZ Ameliorates Diabetic Cardiomyopathy by Inhibiting Inflammation and Cardiac Fibrosis in the Streptozotocin-Induced Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5582567. [PMID: 34621323 PMCID: PMC8492284 DOI: 10.1155/2021/5582567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/16/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022]
Abstract
Background The pathogenesis and clinical features of diabetic cardiomyopathy (DCM) have been well studied in the past decade; however, effective approaches to prevent and treat this disease are limited. Fufang Zhenzhu Tiaozhi (FTZ) formula, a traditional Chinese prescription, is habitually used to treat dyslipidemia and diabetes. Recently, several studies have reported the therapeutic effects of FTZ on cardiovascular diseases. However, the effects of FTZ on DCM have not yet been fully elucidated. This study investigated the effects of FTZ on DCM and determined the mechanisms underlying its efficacy. Methods Diabetes was induced in mice by intraperitoneal injection of streptozotocin; the mice were randomly divided into a control group (Con), diabetes group (DCM), and diabetes-treated with FTZ (DCM + FTZ). Myocardial structural alterations, fibrosis biomarkers, and inflammation were observed. Besides, the potential targets and their related signaling pathways were analyzed using network pharmacology and further verified by Western blot. Results Diabetic mice showed significant body weight loss, hyperglycemia, and excessive collagen content in the cardiac tissue, while serum and myocardial inflammatory factors significantly increased. Nerveless, treatment with FTZ for 1 month significantly improved body weight, attenuated hyperglycemia, and alleviated diabetes-associated myocardial structure and function abnormalities. Furthermore, the serum levels of interleukin 12 (IL-12) and chemokine (C–C motif) ligand 2 (CCL2) as well as the mRNA levels of cardiac IL-12, IL-6, and C–C motif chemokine receptor 2 (Ccr2) reduced after FTZ treatment. Additionally, a total of 67 active compounds and 76 potential targets related to DCM were analyzed. Pathway and functional enrichment analyses showed that FTZ mainly regulates inflammation-related pathways, including MAPK and PI3K-AKT signaling pathways. Further investigation revealed that the activities of STAT3, AKT, and ERK were augmented in diabetic hearts but decreased in FTZ-treated cardiac tissues. Conclusion Our results suggest that FTZ exhibits therapeutic properties against DCM by ameliorating hyperglycemia-induced inflammation and fibrosis via at least partial inhibition of AKT, ERK, and STAT3 signaling pathways.
Collapse
|
24
|
Elmadbouh I, Singla DK. BMP-7 Attenuates Inflammation-Induced Pyroptosis and Improves Cardiac Repair in Diabetic Cardiomyopathy. Cells 2021; 10:2640. [PMID: 34685620 PMCID: PMC8533936 DOI: 10.3390/cells10102640] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 01/15/2023] Open
Abstract
In the present study, we investigated a novel signaling target in diabetic cardiomyopathy where inflammation induces caspase-1-dependent cell death, pyroptosis, involving Nek7-GBP5 activators to activate the NLRP3 inflammasome, destabilizes cardiac structure and neovascularization. Furthermore, we explored the therapeutic ability of bone morphogenetic protein-7 (BMP-7) to attenuate these adverse effects. C57BL/6J mice (n = 16 mice/group) were divided into: control (200 mg/kg, 0.9% saline intraperitoneal injection, i.p.); Streptozotocin (STZ) and STZ-BMP-7 groups (STZ, 200 mg/kg, i.p. injection). After 6 weeks, heart function was examined with echocardiography, and mice were sacrificed. Immunostaining, Western blotting, H&E, and Masson's trichrome staining was performed on heart tissues. STZ-induced diabetic cardiomyopathy significantly increased inflammasome formation (TLR4, NLRP3, Nek7, and GBP5), pyroptosis markers (caspase-1, IL-1β, and IL-18), inflammatory cytokines (IL-6 and TNF-α), MMP9, and infiltration of monocytes (CD14), macrophage (iNOS), and dendritic cells (CD11b and CD11c) (p < 0.05). Moreover, a significant endothelial progenitor cells (EPCs) dysfunction (c-Kit/FLk-1, CD31), adverse cardiac remodeling, and reduction in left ventricular (LV) heart function were observed in STZ versus control (p < 0.05). Treatment with BMP-7 significantly reduced inflammasome formation, pyroptosis, and inflammatory cytokines and infiltrated inflammatory cells. In addition, BMP-7 treatment enhanced EPC markers and neovascularization and subsequently improved cardiac remodeling in a diabetic heart. Moreover, a significant improvement in LV heart function was achieved after BMP-7 administration relative to diabetic mice (p < 0.05). In conclusion, BMP-7 attenuated inflammation-induced pyroptosis, adverse cardiac remodeling, and improved heart function via the TLR4-NLRP3 inflammasome complex activated by novel signaling Nek7/GBP5. Our BMP-7 pre-clinical studies of mice could have significant potential as a future therapy for diabetic patients.
Collapse
Affiliation(s)
| | - Dinender K. Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| |
Collapse
|
25
|
Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Adv Drug Deliv Rev 2021; 176:113904. [PMID: 34331987 PMCID: PMC8444077 DOI: 10.1016/j.addr.2021.113904] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/02/2023]
Abstract
In patients with diabetes, myocardial fibrosis may contribute to the pathogenesis of heart failure and arrhythmogenesis, increasing ventricular stiffness and delaying conduction. Diabetic myocardial fibrosis involves effects of hyperglycemia, lipotoxicity and insulin resistance on cardiac fibroblasts, directly resulting in increased matrix secretion, and activation of paracrine signaling in cardiomyocytes, immune and vascular cells, that release fibroblast-activating mediators. Neurohumoral pathways, cytokines, growth factors, oxidative stress, advanced glycation end-products (AGEs), and matricellular proteins have been implicated in diabetic fibrosis; however, the molecular links between the metabolic perturbations and activation of a fibrogenic program remain poorly understood. Although existing therapies using glucose- and lipid-lowering agents and neurohumoral inhibition may act in part by attenuating myocardial collagen deposition, specific therapies targeting the fibrotic response are lacking. This review manuscript discusses the clinical significance, molecular mechanisms and cell biology of diabetic cardiac fibrosis and proposes therapeutic targets that may attenuate the fibrotic response, preventing heart failure progression.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA.
| |
Collapse
|
26
|
Li X, Li L, Lei W, Chua HZ, Li Z, Huang X, Wang Q, Li N, Zhang H. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed Pharmacother 2021; 142:111979. [PMID: 34358754 DOI: 10.1016/j.biopha.2021.111979] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death worldwide and cardiac fibrosis is a common pathological process for cardiac remodeling in cardiovascular diseases. Cardiac fibrosis not only accelerates the deterioration progress of diseases but also becomes a pivotal contributor for futile treatment in clinical cardiovascular trials. Although cardiac fibrosis is common and prevalent, effective medicines to provide sufficient clinical intervention for cardiac fibrosis are still unavailable. Traditional Chinese medicine (TCM) is the natural essence experienced boiling, fry, and other processing methods, including active ingredients, extracts, and herbal formulas, which have been applied to treat human diseases for a long history. Recently, research has increasingly focused on the great potential of TCM for the prevention and treatment of cardiac fibrosis. Here, we aim to clarify the identified pro-fibrotic mechanisms and intensively summarize the application of TCM in improving cardiac fibrosis by working on these mechanisms. Through comprehensively analyzing, TCM mainly regulates the following pathways during ameliorating cardiac fibrosis: attenuation of inflammation and oxidative stress, inhibition of cardiac fibroblasts activation, reduction of extracellular matrix accumulation, modulation of the renin-angiotensin-aldosterone system, modulation of autophagy, regulation of metabolic-dependent mechanisms, and targeting microRNAs. We also discussed the deficiencies and the development direction of anti-fibrotic therapies on cardiac fibrosis. The data reviewed here demonstrates that TCM shows a robust effect on alleviating cardiac fibrosis, which provides us a rich source of new drugs or drug candidates. Besides, we also hope this review may give some enlightenment for treating cardiac fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Zi Chua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zining Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xianglong Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
27
|
Mesenchymal Stem Cells Therapies on Fibrotic Heart Diseases. Int J Mol Sci 2021; 22:ijms22147447. [PMID: 34299066 PMCID: PMC8307175 DOI: 10.3390/ijms22147447] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy is a promising alternative approach to heart diseases. The most prevalent source of multipotent stem cells, usually called somatic or adult stem cells (mesenchymal stromal/stem cells, MSCs) used in clinical trials is bone marrow (BM-MSCs), adipose tissue (AT-MSCs), umbilical cord (UC-MSCs) and placenta. Therapeutic use of MSCs in cardiovascular diseases is based on the benefits in reducing cardiac fibrosis and inflammation that compose the cardiac remodeling responsible for the maintenance of normal function, something which may end up causing progressive and irreversible dysfunction. Many factors lead to cardiac fibrosis and failure, and an effective therapy is lacking to reverse or attenuate this condition. Different approaches have been shown to be promising in surpassing the poor survival of transplanted cells in cardiac tissue to provide cardioprotection and prevent cardiac remodeling. This review includes the description of pre-clinical and clinical investigation of the therapeutic potential of MSCs in improving ventricular dysfunction consequent to diverse cardiac diseases.
Collapse
|
28
|
Hadova K, Mesarosova L, Kralova E, Doka G, Krenek P, Klimas J. The tyrosine kinase inhibitor crizotinib influences blood glucose and mRNA expression of GLUT4 and PPARs in the heart of rats with experimental diabetes. Can J Physiol Pharmacol 2021; 99:635-643. [PMID: 33201727 DOI: 10.1139/cjpp-2020-0572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tyrosine kinases inhibitors (TKIs) may alter glycaemia and may be cardiotoxic with importance in the diabetic heart. We investigated the effect of multi-TKI crizotinib after short-term administration on metabolic modulators of the heart of diabetic rats. Experimental diabetes mellitus (DM) was induced by streptozotocin (STZ; 80 mg·kg-1, i.p.), and controls (C) received vehicle. Three days after STZ, crizotinib (STZ+CRI; 25 mg·kg-1 per day p.o.) or vehicle was administered for 7 days. Blood glucose, C-peptide, and glucagon were assessed in plasma samples. Receptor tyrosine kinases (RTKs), cardiac glucose transporters, and peroxisome proliferator-activated receptors (PPARs) were determined in rat left ventricle by RT-qPCR method. Crizotinib moderately reduced blood glucose (by 25%, P < 0.05) when compared to STZ rats. The drug did not affect levels of C-peptide, an indicator of insulin secretion, suggesting altered tissue glucose utilization. Crizotinib had no impact on cardiac RTKs. However, an mRNA downregulation of insulin-dependent glucose transporter Glut4 in the hearts of STZ rats was attenuated after crizotinib treatment. Moreover, crizotinib normalized Ppard and reduced Pparg mRNA expression in diabetic hearts. Crizotinib decreased blood glucose independently of insulin and glucagon. This could be related to changes in regulators of cardiac metabolism such as GLUT4 and PPARs.
Collapse
Affiliation(s)
- Katarina Hadova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Lucia Mesarosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, the Netherlands
| | - Eva Kralova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Gabriel Doka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| |
Collapse
|
29
|
Cole LK, Zhang M, Chen L, Sparagna GC, Vandel M, Xiang B, Dolinsky VW, Hatch GM. Supplemental Berberine in a High-Fat Diet Reduces Adiposity and Cardiac Dysfunction in Offspring of Mouse Dams with Gestational Diabetes Mellitus. J Nutr 2021; 151:892-901. [PMID: 33484149 DOI: 10.1093/jn/nxaa408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There are few evidence-based strategies to attenuate the risk of metabolic syndrome in offspring exposed to gestational diabetes mellitus (GDM). Berberine (BBR) is an isoquinoline alkaloid extracted from Chinese herbs and exhibits glucose lowering properties. OBJECTIVES We hypothesized that dietary BBR would improve health outcomes in the mouse offspring of GDM dams. METHODS Wild-type C57BL/6 female mice were fed either a Lean-inducing low-fat diet (L-LF,10% kcal fat, 35% kcal sucrose) or a GDM-inducing high-fat diet (GDM-HF, 45% kcal fat, 17.5% sucrose) for 6 wk prior to breeding with wild-type C57BL/6 male mice throughout pregnancy and the suckling period. The resulting Lean and GDM-exposed male and female offspring were randomly assigned an LF (10% kcal fat, 35% kcal sucrose), HF (45% kcal fat, 17.5% sucrose), or high-fat berberine (HFB) (45% kcal fat, 17.5% sucrose diet) containing BBR (160 mg/kg/d, HFB) at weaning for 12 wk. The main outcome was to evaluate the effects of BBR on obesity, pancreatic islet function, and cardiac contractility in GDM-exposed HF-fed offspring. Significance between measurements was determined using a 2 (gestational exposure) × 3 (diet) factorial design by a 2- way ANOVA using Tukey post-hoc analysis. RESULTS In the GDM-HF group, body weights were significantly increased (16%) compared with those in baseline (L-LF) animals (P < 0.05). Compared with the L-LF animals, the GDM-HF group had a reduction in pancreatic insulin glucose-stimulated insulin secretion (74%) and increased cardiac isovolumetric contraction time (IVCT; ∼150%) (P < 0.05). Compared with GDM-HF animals, the GDM-HFB group with the dietary addition of BBR had significantly reduced body weight (16%), increased glucose-stimulated insulin secretion from pancreatic islets (254%), and reduced systolic heart function (46% IVCT) (P < 0.05). CONCLUSIONS In a mouse model of GDM, dietary BBR treatment provided protection from obesity and the development of pancreatic islet and cardiac dysfunction.
Collapse
Affiliation(s)
- Laura K Cole
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, China
| | - Genevieve C Sparagna
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Center, Aurora, USA
| | - Marilyne Vandel
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Bo Xiang
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Vernon W Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Grant M Hatch
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology and Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
30
|
Anti-inflammatory Effects of S. cumini Seed Extract on Gelatinase-B (MMP-9) Regulation against Hyperglycemic Cardiomyocyte Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8839479. [PMID: 33747350 PMCID: PMC7953863 DOI: 10.1155/2021/8839479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/04/2020] [Accepted: 02/16/2021] [Indexed: 01/15/2023]
Abstract
Black berry (Syzygium cumini) fruit is useful in curing diabetic complications; however, its role in diabetes-induced cardiomyopathy is not yet known. In this study, we investigated the regulation of gelatinase-B (MMP-9) by S. cumini methanol seed extract (MSE) in diabetic cardiomyopathy using real-time PCR, RT-PCR, immunocytochemistry, gel diffusion assay, and substrate zymography. The regulatory effects of MSE on NF-κB, TNF-α, and IL-6 were also examined. Identification and estimation of polyphenol constituents present in S. cumini extract were carried out using reverse-phase HPLC. Further, in silico docking studies of identified polyphenols with gelatinase-B were performed to elucidate molecular level interaction in the active site of gelatinase-B. Docking studies showed strong interaction of S. cumini polyphenols with gelatinase-B. Our findings indicate that MSE significantly suppresses gelatinase-B expression and activity in high-glucose- (HG-) stimulated cardiomyopathy. Further, HG-induced activation of NF-κB, TNF-α, and IL-6 was also remarkably reduced by MSE. Our results suggest that S. cumini MSE may be useful as an effective functional food and dietary supplement to regulate HG-induced cardiac stress through gelatinase.
Collapse
|
31
|
Xu X, Xie X, Zhang H, Wang P, Li G, Chen J, Chen G, Cao X, Xiong L, Peng F, Peng C. Water-soluble alkaloids extracted from Aconiti Radix lateralis praeparata protect against chronic heart failure in rats via a calcium signaling pathway. Biomed Pharmacother 2021; 135:111184. [PMID: 33418305 DOI: 10.1016/j.biopha.2020.111184] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 11/16/2022] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many studies have shown the beneficial effects of aconite water-soluble alkaloid extract (AWA) in experimental models of heart disease, which have been ascribed to the presence of aconine, hypaconine, talatisamine, fuziline, neoline, and songorine. This study evaluated the effects of a chemically characterized AWA by chemical content, evaluated its effects in suprarenal abdominal aortic coarctation surgery (AAC)-induced chronic heart failure (CHF) in rats, and revealed the underlying mechanisms of action by proteomics. METHODS Rats were distributed into different groups: sham, model, and AWA-treated groups (10, 20, and 40 mg/kg/day). Sham rats received surgery without AAC, whereas model rats an AWA-treated groups underwent AAC surgery. after 8 weeks, the treatment group was fed AWA for 4 weeks, and body weight was assessed weekly. At the end of the treatment, heart function was tested by echocardiography. AAC-induced chronic heart failure, including myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis, was evaluated in heart tissue and plasma by RT-qPCR, ELISA, hematoxylin and eosin (H&E) staining, Masson's trichrome staining, TUNEL staining, and immunofluorescence staining of α-SMA, Col Ⅰ, and Col Ⅲ. Then, a proteomics approach was used to explore the underlying mechanisms of action of AWA in chronic heart failure. RESULTS AWA administration reduced body weight gain, myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis, and rats showed improvement in cardiac function compared to model group. The extract significantly ameliorated the AAC-induced altered expression of heart failure markers such as ANP, NT-proBNP, and β-MHC, as well as fibrosis, hypertrophy markers MMP-2 and MMP-9, and other heart failure-related factors including plasma levels of TNF-α and IL-6. Furthermore, the extract reduced the protein expression of α-SMA, Col Ⅰ, and Col Ⅲ in the left ventricular (LV), thus inhibiting the LV remodeling associated with CHF. In addition, proteomics characterization of differentially expressed proteins showed that AWA administration inhibited left ventricular remodeling in CHF rats via a calcium signaling pathway, and reversed the expression of RyR2 and SERCA2a. CONCLUSIONS AWA extract exerts beneficial effects in an AAC-induced CHF model in rats, which was associated with an improvement in LV function, hypertrophy, fibrosis, and apoptotic status. These effects may be related to the regulation of calcium signaling by the altered expression of RyR2 and SERCA2a.
Collapse
MESH Headings
- Aconitum/chemistry
- Animals
- Apoptosis/drug effects
- Calcium Signaling/drug effects
- Cardiovascular Agents/isolation & purification
- Cardiovascular Agents/pharmacology
- Chronic Disease
- Disease Models, Animal
- Fibrosis
- Heart Failure/drug therapy
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Hypertrophy, Left Ventricular/drug therapy
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Rats, Sprague-Dawley
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Solubility
- Solvents/chemistry
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
- Water/chemistry
- Rats
Collapse
Affiliation(s)
- Xin Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Xiaofang Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Huiqiong Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Pei Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gangmin Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Junren Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Guanru Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Xiaoyu Cao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Xiong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu 611137, China.
| | - Cheng Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu 611137, China; Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine Co-founded by Sichuan Province and MOST, Chengdu 611137, China.
| |
Collapse
|
32
|
Glycocalyx disruption enhances motility, proliferation and collagen synthesis in diabetic fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118955. [PMID: 33421533 DOI: 10.1016/j.bbamcr.2021.118955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 11/22/2022]
Abstract
Impaired wound healing represents one of the most debilitating side effects of Diabetes mellitus. Though the role of fibroblasts in wound healing is well-known, the extent to which their function is altered in the context of diabetes remains incompletely understood. Here, we address this question by comparing the phenotypes of healthy dermal fibroblasts (HDFs) and diabetic dermal fibroblasts (DDFs). We show that DDFs are more elongated but less motile and less contractile than HDFs. Reduced motility of DDFs is attributed to formation of larger focal adhesions stabilized by a bulky glycocalyx, associated with increased expression of the cell surface glycoprotein mucin 16 (MUC 16). Disruption of the glycocalyx not only restored DDF motility to levels comparable to that of HDFs, but also led to increased proliferation and collagen synthesis. Collectively, our results illustrate the influence of glycocalyx disruption on mechanics of diabetic fibroblasts relevant to cell motility.
Collapse
|
33
|
Li Y, Cao Z, Li Q, Wang C, Zhou Z. Effects of Dendrobium Polysaccharides on the Functions of Human Skin Fibroblasts and Expression of Matrix Metalloproteinase-2 under High-Glucose Conditions. Int J Endocrinol 2021; 2021:1092975. [PMID: 33777140 PMCID: PMC7969111 DOI: 10.1155/2021/1092975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/25/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
The effects of Dendrobium polysaccharides (PDC) on the functions of human skin fibroblasts (HSFs) and expression of matrix metalloproteinase-2 under high-glucose conditions and exploration of the underlying mechanism remain unclear. We used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis and flow cytometry to evaluate the cell viability and apoptosis. The collagen levels were determined by the Sircol™ Collagen Assay. Real-time quantitative polymerase chain reaction (RT-PCR) was used to detect the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase inhibitor (TIMP-2) mRNA. We found the following: (1) under the high-glucose condition, the HSF cell viability, the expression of TIMP-2 mRNA, and the collagen levels were reduced, while the apoptosis rate and the expression of MMP-2 mRNA increased (P < 0.05). (2) In the high-glucose + PDC group, the PDC reversed the changes in the collagen level, viability, and apoptosis rate of the HSF cells caused by high glucose, with the expression of protein and TIMP-2 mRNA increased and the level of MMP-2 mRNA decreased (P < 0.05). This is the first time attempting to reveal that PDC can exhibit protective effects on HSF under high-glucose conditions, which may be related to the upregulation of the TIMP-2 expression and inhibition of the MMP-2 expression.
Collapse
Affiliation(s)
- Yajia Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ziqin Cao
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiangxiang Li
- National Clinical Research Center for Geriatric Disorders of Xiangya Hospital, Central South University (Sub-Center of Ningxia), Yinchuan, Ningxia Hui Autonomous Region 750001, China
- Ningxia Geriatric Disease Clinical Research Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750001, China
- Hunan People's Hospital, Department of Hunan Institute of Geriatrics, Changsha 410002, China
| | - Chenxu Wang
- Hunan People's Hospital, Department of Hunan Institute of Geriatrics, Changsha 410002, China
| | - Zhuo Zhou
- Hunan People's Hospital, Department of Hunan Institute of Geriatrics, Changsha 410002, China
| |
Collapse
|
34
|
Tan YY, Chen LX, Fang L, Zhang Q. Cardioprotective effects of polydatin against myocardial injury in diabetic rats via inhibition of NADPH oxidase and NF-κB activities. BMC Complement Med Ther 2020; 20:378. [PMID: 33308195 PMCID: PMC7733248 DOI: 10.1186/s12906-020-03177-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Diabetic cardiomyopathy is a main cause of the increased morbidity in diabetic patients, no effective treatment is available so far. Polydatin, a resveratrol glucoside isolated from the Polygonum cuspidatum, was found by our and others have antioxidant and cardioprotective activities. Therapeutic effects of polydatin on diabetic cardiomyopathy and the possible mechanisms remains unclear. This study aimed to investigate the cardioprotective effects and underlying mechanisms of polydatin on myocardial injury induced by hyperglycemia. Methods Diabetes in rats was made by high-fat diet combined with multiple low doses of streptozotocin, and then treated with polydatin (100 mg·kg-1·day-1, by gavage) for 8 weeks. Cardiac function was examined by echocardiography. Myocardial tissue and blood samples were collected for histology, protein and metabolic characteristics analysis. In cultured H9c2 cells with 30 mM of glucose, the direct effects of polydatin on myocyte injury were also observed. Results In diabetic rats, polydatin administration significantly improved myocardial dysfunction and attenuated histological abnormalities, as evidenced by elevating left ventricular shortening fraction and ejection fraction, as well as reducing cardiac hypertrophy and interstitial fibrosis. In cultured H9c2 cells, pretreatment of polydatin dose-dependently inhibited high glucose-induced cardiomyocyte injury. Further observation evidenced that polydatin suppressed the increase in the reactive oxygen species levels, NADPH oxidase activity and inflammatory cytokines production induced by hyperglycemia in vivo and in vitro. Polydatin also prevented the increase expression of NOX4, NOX2 and NF-κB in the high glucose -stimulated H9c2 cells and diabetic hearts. Conclusions Our results demonstrate that the cardioprotective effect of polydatin against hyperglycemia-induced myocardial injury is mediated by inhibition of NADPH oxidase and NF-κB activity. The findings may provide a novel understanding the mechanisms of the polydatin to be a potential treatment of diabetic cardiomyopathy. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-020-03177-y.
Collapse
Affiliation(s)
- Ying-Ying Tan
- Shaanxi Key Laboratory of Chinese Medicine Encephalopathy, Shaanxi University of Chinese Medicine, Century Avenue, Xianyang, Shaanxi, 712046, P. R. China.,Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P. R. China
| | - Lei-Xin Chen
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P. R. China
| | - Ling Fang
- Shaanxi Key Laboratory of Chinese Medicine Encephalopathy, Shaanxi University of Chinese Medicine, Century Avenue, Xianyang, Shaanxi, 712046, P. R. China
| | - Qi Zhang
- Shaanxi Key Laboratory of Chinese Medicine Encephalopathy, Shaanxi University of Chinese Medicine, Century Avenue, Xianyang, Shaanxi, 712046, P. R. China.
| |
Collapse
|
35
|
Jin Y, Cheng X, Huang X, Ding F, Lee SR, Wang F, Lu X, Su D, Chen B. The role of Hrd1 in ultraviolet (UV) radiation induced photoaging. Aging (Albany NY) 2020; 12:21273-21289. [PMID: 33168784 PMCID: PMC7695362 DOI: 10.18632/aging.103851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/20/2020] [Indexed: 01/20/2023]
Abstract
The purpose of the present study was to evaluate the role of Hrd1 in the ultraviolet (UV) radiation induced photoaging and explore its potential mechanism. The nude mice were exposed to the UVA/UVB irradiation for 10 weeks. The animals were subcutaneously injected with AAV5-NC, Hrd1-shRNA-AAV5, or Hrd1-overexpression-AAV5. The HSF cells were also transfected with Ad-NC, Ad-shRNA-Hrd1, or Ad-Hrd1, and irradiated by UVA/UVB stimulation. The clinical skin samples were harvested for detecting Hrd1 and IGF-1R expressions. As a result, the knockdown of Hrd1 attenuated the histopathological alteration and collagen degradation in UV-induced nude mice. The inhibition of Hrd1 by Hrd1-shRNA-AAV5 and Ad-shRNA-Hrd1 inhibited the Hrd1 expression and promoted IGF-1R, Type I collagen and type III collagen in mice and HSF cells. The overexpression of Hrd1 exerted the reverse effect. The Co-IP assay also indicated the interaction between Hrd1 and IGF-1R. Hrd1-mediated IGF-1R downregulation and collagen degradation were also observed in clinical skin samples. In conclusion, the present results demonstrated that Hrd1 degraded IGF-1R and collagen formation in UV-induced photoaging.
Collapse
Affiliation(s)
- Yi Jin
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xianye Cheng
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xin Huang
- Department of Pediatric and Preventive Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Fan Ding
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Sae Rom Lee
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Fengdi Wang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiaoyi Lu
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Dongming Su
- Center of Metabolic Disease Research, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Bin Chen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
36
|
You Y, Guo Y, Jia P, Zhuang B, Cheng Y, Deng H, Wang X, Zhang C, Luo S, Huang B. Ketogenic diet aggravates cardiac remodeling in adult spontaneously hypertensive rats. Nutr Metab (Lond) 2020; 17:91. [PMID: 33117428 PMCID: PMC7586698 DOI: 10.1186/s12986-020-00510-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
Background Ketogenic diet (KD) has been proposed to be an effective lifestyle intervention in metabolic syndrome. However, the effects of KD on cardiac remodeling have not been investigated. Our aim was to investigate the effects and the underling mechanisms of KD on cardiac remodeling in spontaneously hypertensive rats (SHRs). Methods 10-week-old spontaneously hypertensive rats were subjected to normal diet or ketogenic diet for 4 weeks. Then, their blood pressure and cardiac remodeling were assessed. Cardiac fibroblasts were isolated from 1- to 3-day-old neonatal pups. The cells were then cultured with ketone body with or without TGF-β to investigate the mechanism in vitro. Results 4 weeks of KD feeding aggravated interstitial fibrosis and cardiac remodeling in SHRs. More interestingly, ketogenic diet feeding increased the activity of mammalian target of rapamyoin (mTOR) complex 2 pathway in the heart of SHRs. In addition, β-hydroxybutyrate strengthened the progression of TGF-β-induced fibrosis in isolated cardiac fibroblasts. mTOR inhibition reversed this effect, indicating that ketone body contributes to cardiac fibroblasts via mTOR pathway. Conclusions These data suggest that ketogenic diet may lead to adverse effects on the remodeling in the hypertensive heart, and they underscore the necessity to fully evaluate its reliability before clinical use.
Collapse
Affiliation(s)
- Yuehua You
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Ping Jia
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Biaobiao Zhuang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Yu Cheng
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016 China
| | - Hongpei Deng
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016 China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Bi Huang
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
37
|
The effect of nutraceuticals on multiple signaling pathways in cardiac fibrosis injury and repair. Heart Fail Rev 2020; 27:321-336. [PMID: 32495263 DOI: 10.1007/s10741-020-09980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cardiac fibrosis is one of the most common pathological conditions caused by different heart diseases, including myocardial infarction and diabetic cardiomyopathy. Cardiovascular disease is one of the major causes of mortality worldwide. Cardiac fibrosis is caused by different processes, including inflammatory reactions and oxidative stress. The process of fibrosis begins by changing the balance between production and destruction of extracellular matrix components and stimulating the proliferation and differentiation of cardiac fibroblasts. Many studies have focused on finding drugs with less adverse effects for the treatment of cardiovascular disease. Some studies show that nutraceuticals are effective in preventing and treating diseases, including cardiovascular disease, and that they can reduce the risk. However, big clinical studies to prove the therapeutic properties of all these substances and their adverse effects are lacking so far. Therefore, in this review, we tried to summarize the knowledge on pathways and mechanisms of several nutraceuticals which have shown their usefulness in the prevention of cardiac fibrosis.
Collapse
|
38
|
Shinjyo N, Parkinson J, Bell J, Katsuno T, Bligh A. Berberine for prevention of dementia associated with diabetes and its comorbidities: A systematic review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:125-151. [PMID: 32005442 DOI: 10.1016/j.joim.2020.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A growing number of epidemiological studies indicate that metabolic syndrome (MetS) and its associated features play a key role in the development of certain degenerative brain disorders, including Alzheimer's disease and vascular dementia. Produced by several different medicinal plants, berberine is a bioactive alkaloid with a wide range of pharmacological effects, including antidiabetic effects. However, it is not clear whether berberine could prevent the development of dementia in association with diabetes. OBJECTIVE To give an overview of the therapeutic potential of berberine as a treatment for dementia associated with diabetes. SEARCH STRATEGY Database searches A and B were conducted using PubMed and ScienceDirect. In search A, studies on berberine's antidementia activities were identified using "berberine" and "dementia" as search terms. In search B, recent studies on berberine's effects on diabetes were surveyed using "berberine" and "diabetes" as search terms. INCLUSION CRITERIA Clinical and preclinical studies that investigated berberine's effects associated with MetS and cognitive dysfunction were included. DATA EXTRACTION AND ANALYSIS Data from studies were extracted by one author, and checked by a second; quality assessments were performed independently by two authors. RESULTS In search A, 61 articles were identified, and 22 original research articles were selected. In search B, 458 articles were identified, of which 101 were deemed relevant and selected. Three duplicates were removed, and a total of 120 articles were reviewed for this study. The results demonstrate that berberine exerts beneficial effects directly in the brain: enhancing cholinergic neurotransmission, improving cerebral blood flow, protecting neurons from inflammation, limiting hyperphosphorylation of tau and facilitating β-amyloid peptide clearance. In addition, evidence is growing that berberine is effective against diabetes and associated disorders, such as atherosclerosis, cardiomyopathy, hypertension, hepatic steatosis, diabetic nephropathy, gut dysbiosis, retinopathy and neuropathy, suggesting indirect benefits for the prevention of dementia. CONCLUSION Berberine could impede the development of dementia via multiple mechanisms: preventing brain damages and enhancing cognition directly in the brain, and indirectly through alleviating risk factors such as metabolic dysfunction, and cardiovascular, kidney and liver diseases. This study provided evidence to support the value of berberine in the prevention of dementia associated with MetS.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - James Parkinson
- Department of Life Sciences, Faculty of Science and Technology at the University of Westminster, London W1W 6UW, United Kingdom
| | - Jimmy Bell
- Department of Life Sciences, Faculty of Science and Technology at the University of Westminster, London W1W 6UW, United Kingdom.
| | - Tatsuro Katsuno
- Kashiwanoha Clinic of East Asian Medicine, Chiba University Hospital, Kashiwa, Chiba 277-0882, Japan
| | - Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O, NT 999077, Hong Kong, China.
| |
Collapse
|
39
|
Wang Y, Li H, Li Y, Zhao Y, Xiong F, Liu Y, Xue H, Yang Z, Ni S, Sahil A, Che H, Wang L. Coriolus versicolor
alleviates diabetic cardiomyopathy by inhibiting cardiac fibrosis and NLRP3 inflammasome activation. Phytother Res 2019; 33:2737-2748. [PMID: 31338905 DOI: 10.1002/ptr.6448] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yueqiu Wang
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Hui Li
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Yang Li
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Yihan Zhao
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Fangfei Xiong
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Yining Liu
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Hongru Xue
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Zhenyu Yang
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Sha Ni
- Department of Pharmacology, College of PharmacyHarbin Medical University Harbin Heilongjiang Province 150001 China
| | - Abbas Sahil
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
| | - Hui Che
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
- Institute of Chronic DiseaseHeilongjiang Academy of Medical Science Harbin Heilongjiang Province 150001 China
| | - Lihong Wang
- Department of EndocrinologyThe Second Affiliated Hospital of Harbin Medical University Harbin Heilongjiang Province 150001 China
- Institute of Chronic DiseaseHeilongjiang Academy of Medical Science Harbin Heilongjiang Province 150001 China
| |
Collapse
|
40
|
Ran Q, Wang J, Wang L, Zeng HR, Yang XB, Huang QW. Rhizoma coptidis as a Potential Treatment Agent for Type 2 Diabetes Mellitus and the Underlying Mechanisms: A Review. Front Pharmacol 2019; 10:805. [PMID: 31396083 PMCID: PMC6661542 DOI: 10.3389/fphar.2019.00805] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, especially type 2 diabetes mellitus (T2DM), has become a significant public health burden. Rhizoma coptidis (RC), known as Huang Lian, is widely used for treating diabetes in China. The bioactive compounds of RC, especially alkaloids, have the potential to suppress T2DM-induced lesions, including diabetic vascular dysfunction, diabetic heart disease, diabetic hyperlipidemia, diabetic nephropathy, diabetic encephalopathy, diabetic osteopathy, diabetic enteropathy, and diabetic retinopathy. This review summarizes the effects of RC and its bioactive compounds on T2DM and T2DM complications. Less research has been conducted on non-alkaloid fractions of RC, which may exert synergistic action with alkaloids. Moreover, we summarized the pharmacokinetic properties and structure-activity relationships of RC on T2DM with reference to extant literature and showed clearly that RC has potential therapeutic effect on T2DM.
Collapse
Affiliation(s)
- Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-bo Yang
- Ya’an Xun Kang Pharmaceutical Co., Ltd, Ya’an, China
| | - Qin-wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
41
|
Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, Barrea L, Hassan ST, Šmejkal K, Malaník M, Sychrová A, Barreca D, Ziberna L, Mahomoodally MF, Zengin G, Xu S, Nabavi SM, Shen AZ. Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics 2019; 9:1923-1951. [PMID: 31037148 PMCID: PMC6485276 DOI: 10.7150/thno.30787] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular and metabolic diseases (CVMD) are the leading causes of death worldwide, underscoring the urgent necessity to develop new pharmacotherapies. Berberine (BBR) is an eminent component of traditional Chinese and Ayurvedic medicine for more than 2000 years. Recently, BBR has attracted much interest for its pharmacological actions in treating and/or managing CVMD. Recent discoveries of basic, translational and clinical studies have identified many novel molecular targets of BBR (such as AMPK, SIRT1, LDLR, PCSK9, and PTP1B) and provided novel evidences supporting the promising therapeutic potential of BBR to combat CVMD. Thus, this review provides a timely overview of the pharmacological properties and therapeutic application of BBR in CVMD, and underlines recent pharmacological advances which validate BBR as a promising lead drug against CVMD.
Collapse
|
42
|
Meng S, Yang F, Wang Y, Qin Y, Xian H, Che H, Wang L. Silymarin ameliorates diabetic cardiomyopathy via inhibiting TGF-β1/Smad signaling. Cell Biol Int 2019; 43:65-72. [PMID: 30489003 DOI: 10.1002/cbin.11079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/24/2018] [Indexed: 12/21/2022]
Abstract
Diabetic cardiomyopathy (DCM) is the leading cause of morbidity and mortality in diabetes mellitus (DM) patients. Previous studies have shown that the transforming growth factor-beta 1 (TGF-β1)/Smad signaling pathway plays a key role in the development of myocardial fibrosis in DCM. Silymarin (SMN) is used clinically to treat liver disorders and acts by influencing TGF-β1. However, the possible effects of silymarin on DCM remain to be elucidated. In our study, the DM animal model was induced by streptozotocin (STZ) injection. Fasting blood glucose level was measured, and the structure and function of the heart were measured by hematoxylin and eosin (H&E) and Masson staining, echocardiography, and transmission electron microscopy (TEM). Western blot was used to detect the expression of TGF-β1, Smad2/3, phosphorylation Smad2/3(p-Smad2/3), and Smad7. Our results showed that silymarin downregulated blood glucose level and significantly improved cardiac fibrosis and collagen deposition in DM rats detected by H&E, Masson staining, and TEM assays. The echocardiography results showed that silymarin administration attenuated cardiac dysfunction in DM rats. Additionally, compared with untreated DM rats, levels of TGF-β1 and p-Smad2/3 were decreased, whereas Smad7 was increased following silymarin administration. These data demonstrate that silymarin ameliorates DCM through the inhibition of TGF-β1/Smad signaling, suggesting that silymarin may be a potential target for DCM treatment.
Collapse
Affiliation(s)
- Songyan Meng
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China.,Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Fan Yang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Yueqiu Wang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Ying Qin
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, 150081, China
| | - Huimin Xian
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Hui Che
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, 150081, China
| | - Lihong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, 150081, China
| |
Collapse
|
43
|
Zhaolin Z, Guohua L, Shiyuan W, Zuo W. Role of pyroptosis in cardiovascular disease. Cell Prolif 2018; 52:e12563. [PMID: 30525268 PMCID: PMC6496801 DOI: 10.1111/cpr.12563] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
Cardiac function is determined by the dynamic equilibrium of various cell types and the extracellular matrix that composes the heart. Cardiovascular diseases (CVDs), especially atherosclerosis and myocardial infarction, are often accompanied by cell death and acute/chronic inflammatory reactions. Caspase‐dependent pyroptosis is characterized by the activation of pathways leading to the activation of NOD‐like receptors, especially the NLRP3 inflammasome and its downstream effector inflammatory factors interleukin (IL)‐1β and IL‐18. Many studies in the past decade have investigated the role of pyroptosis in CVDs. The findings of these studies have led to the development of therapeutic approaches based on the regulation of pyroptosis, and some of these approaches are in clinical trials. This review summarizes the molecular mechanisms, regulation and cellular effects of pyroptosis briefly and then discusses the current pyroptosis studies in CVD research.
Collapse
Affiliation(s)
- Zeng Zhaolin
- Yueyang Maternal and Child Health Hospital, Yueyang, China.,Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Li Guohua
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Wu Shiyuan
- Yueyang Maternal and Child Health Hospital, Yueyang, China
| | - Wang Zuo
- Yueyang Maternal and Child Health Hospital, Yueyang, China.,Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
44
|
Song J, Yang R, Yang J, Zhou L. Mitochondrial Dysfunction-Associated Arrhythmogenic Substrates in Diabetes Mellitus. Front Physiol 2018; 9:1670. [PMID: 30574091 PMCID: PMC6291470 DOI: 10.3389/fphys.2018.01670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022] Open
Abstract
There is increasing evidence that diabetic cardiomyopathy increases the risk of cardiac arrhythmia and sudden cardiac death. While the detailed mechanisms remain incompletely understood, the loss of mitochondrial function, which is often observed in the heart of patients with diabetes, has emerged as a key contributor to the arrhythmogenic substrates. In this mini review, the pathophysiology of mitochondrial dysfunction in diabetes mellitus is explored in detail, followed by descriptions of several mechanisms potentially linking mitochondria to arrhythmogenesis in the context of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jiajia Song
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ruilin Yang
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China
| | - Jing Yang
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lufang Zhou
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
45
|
Li J, Xu J, Qin X, Yang H, Han J, Jia Y, Zhu H, Zhu L, Li J, Xie W, Hu D, Zhang X, Gao F. Acute pancreatic beta cell apoptosis by IL-1β is responsible for postburn hyperglycemia: Evidence from humans and mice. Biochim Biophys Acta Mol Basis Dis 2018; 1865:275-284. [PMID: 30419339 DOI: 10.1016/j.bbadis.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acute hyperglycemia is regarded as a risk factor for critically ill patients; however, insufficient understanding of its nature and underlying mechanisms hinders widespread adoption of glycemic control in critical care units. METHODS A single center, prospective cohort study recruiting 107 burn patients and 62 controls was conducted to characterize the early phase of acute hyperglycemia in burn patients. A total of 1643 blood samples were collected and analyzed over the entire postburn 200 h. A mouse severe burn model was used to study the underlying mechanisms of acute hyperglycemia postburn. RESULTS The dynamic change of postburn blood glucose represented a distinctive pattern in amplitude and duration that was in parallel with the degree of burn injury. Multiple linear regressions revealed that serum insulin, glucagon and glucocorticoid were the major factors affecting blood glucose postburn. Particularly, extensive burns impaired capacity and responsiveness of pancreatic insulin secretion, which was associated with increased serum IL-1β in burn patients. Mechanistically, acute IL-1β elevation specifically induced pancreatic beta cell apoptosis and dampened capacity of insulin secretion, leading to postburn hyperglycemia in burned mice. More importantly, inhibition of IL-1β not only alleviated pancreatic beta cell apoptosis, but also attenuated hyperglycemia and improved survival of burned mice. CONCLUSIONS Our findings reveal a novel mechanism of acute hyperglycemia postburn in which impaired insulin secretory capacity mediated by IL-1β leads to acute hyperglycemia. These data suggest that targeting IL-1β to restore endogenous insulin secretory function may be a novel glycemic control strategy to improve outcomes for burn patients.
Collapse
Affiliation(s)
- Jun Li
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jie Xu
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xinghua Qin
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hongyan Yang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huayu Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Liang Zhu
- Department of Medical Education, Fourth Military Medical University, Xi'an 710032, China
| | - Jia Li
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Wenjun Xie
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xing Zhang
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Feng Gao
- Department of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
46
|
Bloksgaard M, Lindsey M, Martinez-Lemus LA. Extracellular matrix in cardiovascular pathophysiology. Am J Physiol Heart Circ Physiol 2018; 315:H1687-H1690. [PMID: 30239231 DOI: 10.1152/ajpheart.00631.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) actively participates in diverse aspects of cardiovascular development and physiology as well as during disease development and progression. ECM roles are determined by its physical and mechanical properties and by its capacity to both release bioactive signals and activate cell signaling pathways. The ECM serves as a storage depot for a wide variety of molecules released in response to injury or with aging. Indeed, there is a plethora of examples describing how cells react to or modify ECM stiffness, how cells initiate intracellular signaling pathways, and how cells respond to the ECM. This Perspectives article reviews the contributions of 21 articles published in the American Journal of Physiology-Heart and Circulatory Physiology in response to a Call for Papers on this topic. Here, we summarize the contributions of these studies focused on the cardiac and vascular ECM. We highlight the translational importance of these studies and conclude that the ECM is a critical component of both the heart and vasculature. Readers are urged to examine and learn from this special Call for Papers.
Collapse
Affiliation(s)
- Maria Bloksgaard
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark
| | - Merry Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| |
Collapse
|