1
|
Elkrief D, Matusovsky O, Cheng YS, Rassier DE. From amino-acid to disease: the effects of oxidation on actin-myosin interactions in muscle. J Muscle Res Cell Motil 2023; 44:225-254. [PMID: 37805961 DOI: 10.1007/s10974-023-09658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023]
Abstract
Actin-myosin interactions form the basis of the force-producing contraction cycle within the sarcomere, serving as the primary mechanism for muscle contraction. Post-translational modifications, such as oxidation, have a considerable impact on the mechanics of these interactions. Considering their widespread occurrence, the explicit contributions of these modifications to muscle function remain an active field of research. In this review, we aim to provide a comprehensive overview of the basic mechanics of the actin-myosin complex and elucidate the extent to which oxidation influences the contractile cycle and various mechanical characteristics of this complex at the single-molecule, myofibrillar and whole-muscle levels. We place particular focus on amino acids shown to be vulnerable to oxidation in actin, myosin, and some of their binding partners. Additionally, we highlight the differences between in vitro environments, where oxidation is controlled and limited to actin and myosin and myofibrillar or whole muscle environments, to foster a better understanding of oxidative modification in muscle. Thus, this review seeks to encompass a broad range of studies, aiming to lay out the multi layered effects of oxidation in in vitro and in vivo environments, with brief mention of clinical muscular disorders associated with oxidative stress.
Collapse
Affiliation(s)
- Daren Elkrief
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Oleg Matusovsky
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Yu-Shu Cheng
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Dilson E Rassier
- Department of Physiology, McGill University, Montreal, QC, Canada.
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada.
- Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
2
|
Nikiforova AB, Baburina YL, Borisova MP, Surin AK, Kharechkina ES, Krestinina OV, Suvorina MY, Kruglova SA, Kruglov AG. Mitochondrial F-ATP Synthase Co-Migrating Proteins and Ca 2+-Dependent Formation of Large Channels. Cells 2023; 12:2414. [PMID: 37830628 PMCID: PMC10572550 DOI: 10.3390/cells12192414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Monomers, dimers, and individual FOF1-ATP synthase subunits are, presumably, involved in the formation of the mitochondrial permeability transition pore (PTP), whose molecular structure, however, is still unknown. We hypothesized that, during the Ca2+-dependent assembly of a PTP complex, the F-ATP synthase (subunits) recruits mitochondrial proteins that do not interact or weakly interact with the F-ATP synthase under normal conditions. Therefore, we examined whether the PTP opening in mitochondria before the separation of supercomplexes via BN-PAGE will increase the channel stability and channel-forming capacity of isolated F-ATP synthase dimers and monomers in planar lipid membranes. Additionally, we studied the specific activity and the protein composition of F-ATP synthase dimers and monomers from rat liver and heart mitochondria before and after PTP opening. Against our expectations, preliminary PTP opening dramatically suppressed the high-conductance channel activity of F-ATP synthase dimers and monomers and decreased their specific "in-gel" activity. The decline in the channel-forming activity correlated with the reduced levels of as few as two proteins in the bands: methylmalonate-semialdehyde dehydrogenase and prohibitin 2. These results indicate that proteins co-migrating with the F-ATP synthase may be important players in PTP formation and stabilization.
Collapse
Affiliation(s)
- Anna B. Nikiforova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| | - Yulia L. Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| | - Marina P. Borisova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| | - Alexey K. Surin
- Branch of the Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia;
- State Research Centre for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Russia;
| | - Ekaterina S. Kharechkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| | - Olga V. Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| | - Maria Y. Suvorina
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Russia;
| | - Svetlana A. Kruglova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, 142290 Pushchino, Russia;
| | - Alexey G. Kruglov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| |
Collapse
|
3
|
Mukherjee M, Jana CK, Das N. Oxidation of biological molecules with age and induced oxidative stress in different growth phases of Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 2023; 116:353-365. [PMID: 36749507 DOI: 10.1007/s10482-022-01807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/30/2022] [Indexed: 02/08/2023]
Abstract
One of the mechanistic approaches for explaining ageing is the oxidative stress theory of ageing. Saccharomyces cerevisiae has been used as a model to study ageing due to many factors. We have attempted to investigate if the differential ability to withstand oxidative stress can be correlated with their lifespans. In all the four strains studied (AP22, 699, 8C, and SP4), there was no age-associated increases in lipid peroxidation levels measured as thiobarbituric acid reactive substances (TBARS). Under induced oxidative stress conditions, there was an increased TBARS level in both the ages assessed with a quantum-fold increase in the stationary phase cells of AP22. In contrast, the late stationary phase cells of 8C exhibited the least susceptibility to induced oxidative stress. The level of TBARS in both exponential and late stationary phase cells of 699 was overall more than that in the other three strains. Protein carbonylation increased with age in 8C and 699. Induced stress increased carbonylation in the exponential cells of SP4 and 699 and the stationary phase cells of all four strains. Protein carbonylation data indicate that the AP22 cells exhibit decreased protein carbonylation vis-à-vis the other strains. Induced stress data showed that while the exponential cells of 699 are susceptible, the late stationary phase cells of 699 are most resistant. Western blotting analysis using anti-HNE antibodies showed two proteins of molecular mass ~ 56 and ~ 84 kDa that were selectively modified with age in all the strains. Under induced stress conditions, an additional protein of ~ 69 kDa was oxidized. Our investigation shows that the difference in lifespan between the four strains of S. cerevisiae may be regulated by oxidative stress. Knowledge of the identity of the oxidized proteins will significantly facilitate a better understanding of the effect of oxidative stress conditions on the cells of S. cerevisiae.
Collapse
Affiliation(s)
- Madhumathan Mukherjee
- Department of Biotechnology, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
- St. Teresa School, Santiniketan, Dist. Birbhum, 731235, India
| | - Chandan Kumar Jana
- Department of Chemistry, Purash-Kanpur Haridas Nandi Mahavidyalaya, P.O. Kanpur, Howrah, West Bengal, 711410, India
| | - Nilanjana Das
- Department of Biotechnology, Visva-Bharati University, Santiniketan, West Bengal, 731235, India.
| |
Collapse
|
4
|
Romero G, Salama G. Relaxin abrogates genomic remodeling of the aged heart. VITAMINS AND HORMONES 2021; 115:419-448. [PMID: 33706957 DOI: 10.1016/bs.vh.2020.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
"Healthy" aging drives structural and functional changes in the heart including maladaptive electrical remodeling, fibrosis and inflammation, which lower the threshold for cardiovascular diseases such as heart failure (HF) and atrial fibrillation (AF). Despite mixed results in clinical trials, Relaxin-therapy for 2-days reduced mortality by 37% at 180-days post-treatment, in patients with acute decompensated HF. Relaxin's short lifespan (2-3h) but long-lasting protective actions suggested that relaxin acts at a genomic level to reverse maladaptive remodeling in AF, HF and aging. Our recent studies showed that a 2-week treatment with Relaxin (0.4mg/kg/day) of aged (24months old F-344 rats) increases the expression of voltage-gated Na+ channels (mRNA, Nav1.5 and INa), connexin-43, abrogates inflammatory and immune responses and reverses myocardial fibrosis and cellular hypertrophy of the aged hearts. Relaxin acts directly at a wide range of cell types in the cardiovascular system that express its cognate GPCR receptor, RXFP1. RNA-seq analysis of young and aged hearts with and without Relaxin treatment revealed that "normal" aging altered the expression of ~10% of genes expressed in the ventricles, including: ion channels, components of fibrosis, hemodynamic biomarkers, immune and inflammatory responses which were reversed by Relaxin. The extensive cardiovascular remodeling caused by Relaxin was mediated through the activation of the Wnt/β-catenin signaling pathway which was otherwise suppressed by in adult cardiomyocytes intracellular by cytosolic Dickkopf1 (Dkk1). Wnt/β-catenin signaling is a mechanism that can explain the pleiotropic actions of Relaxin and the marked reversal of genomic changes that occur in aged hearts.
Collapse
Affiliation(s)
- Guillermo Romero
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Guy Salama
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Shoshan-Barmatz V, Shteinfer-Kuzmine A, Verma A. VDAC1 at the Intersection of Cell Metabolism, Apoptosis, and Diseases. Biomolecules 2020; 10:E1485. [PMID: 33114780 PMCID: PMC7693975 DOI: 10.3390/biom10111485] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
The voltage-dependent anion channel 1 (VDAC1) protein, is an important regulator of mitochondrial function, and serves as a mitochondrial gatekeeper, with responsibility for cellular fate. In addition to control over energy sources and metabolism, the protein also regulates epigenomic elements and apoptosis via mediating the release of apoptotic proteins from the mitochondria. Apoptotic and pathological conditions, as well as certain viruses, induce cell death by inducing VDAC1 overexpression leading to oligomerization, and the formation of a large channel within the VDAC1 homo-oligomer. This then permits the release of pro-apoptotic proteins from the mitochondria and subsequent apoptosis. Mitochondrial DNA can also be released through this channel, which triggers type-Ι interferon responses. VDAC1 also participates in endoplasmic reticulum (ER)-mitochondria cross-talk, and in the regulation of autophagy, and inflammation. Its location in the outer mitochondrial membrane, makes VDAC1 ideally placed to interact with over 100 proteins, and to orchestrate the interaction of mitochondrial and cellular activities through a number of signaling pathways. Here, we provide insights into the multiple functions of VDAC1 and describe its involvement in several diseases, which demonstrate the potential of this protein as a druggable target in a wide variety of pathologies, including cancer.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (A.S.-K.); (A.V.)
| | | | | |
Collapse
|
6
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Genetic Code Expansion: A Powerful Tool for Understanding the Physiological Consequences of Oxidative Stress Protein Modifications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7607463. [PMID: 29849913 PMCID: PMC5937447 DOI: 10.1155/2018/7607463] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/19/2018] [Indexed: 12/17/2022]
Abstract
Posttranslational modifications resulting from oxidation of proteins (Ox-PTMs) are present intracellularly under conditions of oxidative stress as well as basal conditions. In the past, these modifications were thought to be generic protein damage, but it has become increasingly clear that Ox-PTMs can have specific physiological effects. It is an arduous task to distinguish between the two cases, as multiple Ox-PTMs occur simultaneously on the same protein, convoluting analysis. Genetic code expansion (GCE) has emerged as a powerful tool to overcome this challenge as it allows for the site-specific incorporation of an Ox-PTM into translated protein. The resulting homogeneously modified protein products can then be rigorously characterized for the effects of individual Ox-PTMs. We outline the strengths and weaknesses of GCE as they relate to the field of oxidative stress and Ox-PTMs. An overview of the Ox-PTMs that have been genetically encoded and applications of GCE to the study of Ox-PTMs, including antibody validation and therapeutic development, is described.
Collapse
|
8
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
9
|
Approaches for extending human healthspan: from antioxidants to healthspan pharmacology. Essays Biochem 2017; 61:389-399. [PMID: 28698312 DOI: 10.1042/ebc20160091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023]
Abstract
Dramatic increases in human lifespan and declining population growth are monumental achievements but these same achievements have also led to many societies today ageing at a faster rate than ever before. Extending healthy lifespan (healthspan) is a key translational challenge in this context. Disease-centric approaches to manage population ageing risk are adding years to life without adding health to these years. The growing consensus that ageing is driven by a limited number of interconnected processes suggests an alternative approach. Instead of viewing each age-dependent disease as the result of an independent chain of events, this approach recognizes that most age-dependent diseases depend on and are driven by a limited set of ageing processes. While the relative importance of each of these processes and the best intervention strategies targeting them are subjects of debate, there is increasing interest in providing preventative intervention options to healthy individuals even before overt age-dependent diseases manifest. Elevated oxidative damage is involved in the pathophysiology of most age-dependent diseases and markers of oxidative damage often increase with age in many organisms. However, correlation is not causation and, sadly, many intervention trials of supposed antioxidants have failed to extend healthspan and to prevent diseases. This does not, however, mean that reactive species (RS) and redox signalling are unimportant. Ultimately, the most effective antioxidants may not turn out to be the best geroprotective drugs, but effective geroprotective interventions might well turn out to also have excellent, if probably indirect, antioxidant efficacy.
Collapse
|
10
|
Yang Y. Specific enrichment of a targeted nitrotyrosine-containing peptide from complex matrices and relative quantification for liquid chromatography–mass spectrometry analysis. J Chromatogr A 2017; 1485:90-100. [DOI: 10.1016/j.chroma.2017.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/01/2017] [Accepted: 01/13/2017] [Indexed: 12/27/2022]
|
11
|
Pasqualini FS, Nesmith AP, Horton RE, Sheehy SP, Parker KK. Mechanotransduction and Metabolism in Cardiomyocyte Microdomains. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4081638. [PMID: 28044126 PMCID: PMC5164897 DOI: 10.1155/2016/4081638] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 01/11/2023]
Abstract
Efficient contractions of the left ventricle are ensured by the continuous transfer of adenosine triphosphate (ATP) from energy production sites, the mitochondria, to energy utilization sites, such as ionic pumps and the force-generating sarcomeres. To minimize the impact of intracellular ATP trafficking, sarcomeres and mitochondria are closely packed together and in proximity with other ultrastructures involved in excitation-contraction coupling, such as t-tubules and sarcoplasmic reticulum junctions. This complex microdomain has been referred to as the intracellular energetic unit. Here, we review the literature in support of the notion that cardiac homeostasis and disease are emergent properties of the hierarchical organization of these units. Specifically, we will focus on pathological alterations of this microdomain that result in cardiac diseases through energy imbalance and posttranslational modifications of the cytoskeletal proteins involved in mechanosensing and transduction.
Collapse
Affiliation(s)
- Francesco S. Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Institute for Regenerative Medicine (IREM), Wyss Translational Center, University and ETH Zurich, Zurich, Switzerland
| | - Alexander P. Nesmith
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Renita E. Horton
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- James Worth Bagley College of Engineering and College of Agriculture and Life Sciences, Mississippi State University, Starkville, MS, USA
| | - Sean P. Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
12
|
Novel Roles for Peroxynitrite in Angiotensin II and CaMKII Signaling. Sci Rep 2016; 6:23416. [PMID: 27079272 PMCID: PMC4832198 DOI: 10.1038/srep23416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/07/2016] [Indexed: 12/28/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) oxidation controls excitability and viability. While hydrogen peroxide (H2O2) affects Ca2+-activated CaMKII in vitro, Angiotensin II (Ang II)-induced CaMKIIδ signaling in cardiomyocytes is Ca2+ independent and requires NADPH oxidase-derived superoxide, but not its dismutation product H2O2. To better define the biological regulation of CaMKII activation and signaling by Ang II, we evaluated the potential for peroxynitrite (ONOO−) to mediate CaMKII activation and downstream Kv4.3 channel mRNA destabilization by Ang II. In vitro experiments show that ONOO− oxidizes and modestly activates pure CaMKII in the absence of Ca2+/CaM. Remarkably, this apokinase stimulation persists after mutating known oxidation targets (M281, M282, C290), suggesting a novel mechanism for increasing baseline Ca2+-independent CaMKII activity. The role of ONOO− in cardiac and neuronal responses to Ang II was then tested by scavenging ONOO− and preventing its formation by inhibiting nitric oxide synthase. Both treatments blocked Ang II effects on Kv4.3, tyrosine nitration and CaMKIIδ oxidation and activation. Together, these data show that ONOO− participates in Ang II-CaMKII signaling. The requirement for ONOO− in transducing Ang II signaling identifies ONOO−, which has been viewed as a reactive damaging byproduct of superoxide and nitric oxide, as a mediator of GPCR-CaMKII signaling.
Collapse
|
13
|
Yang S, Xu W, Dong Z, Zhou M, Lin C, Jin H, Su Y, Li Q, Wang X, Chang H, Han W. TPEN prevents rapid pacing-induced calcium overload and nitration stress in HL-1 myocytes. Cardiovasc Ther 2016; 33:200-8. [PMID: 25973665 DOI: 10.1111/1755-5922.12134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Atrial fibrillation (AF) is the most common cardiac arrhythmia. However, the current drug interference of antiarrhythmia has limited efficacy and off-target effects. Accumulating evidence has implicated a potential role of nitration stress in the pathogenesis of AF. The aim of the study was to determine whether TPEN provided antinitration effects on atrial myocytes during AF, especially under circumstances of nitration stress. METHODS We utilized a rapid paced HL-1 cells model for AF. The changes of electrophysiological characteristics and structure of paced HL-1 cells were determined by a patch clamp and a TEM method. The effects of TPEN on pacing and ONOO(-) pretreated HL-1 cells were examined using MTT assay, TUNEL technique, confocal microscope experiment, and Western blot analysis. RESULTS The results revealed that ONOO(-) reduced the viability of HL-1 cells in a dose-dependent manner, and 1 μmol/L TPEN significantly ameliorated the damage caused by 50 μmol/L ONOO(-) (P < 0.05). Pacing and/or ONOO(-) -induced marked shortening of APD, myolysis, and nuclear condensation. TPEN inhibited the Ca(2+) overload induced by rapid pacing (P < 0.05) and ONOO(-) stimulation (P < 0.05). The application of TPEN significantly prevented the protein nitration caused by pacing or pacing plus ONOO(-) (P < 0.05). Additionally, pacing in combination with ONOO(-) treatment led to increase in apoptosis in HL-1 cells (P < 0.01), which could be reduced by pretreatment with TPEN (P < 0.05). CONCLUSIONS TPEN prevents Ca(2+) overload and nitration stress in HL-1 atrial myocytes during rapid pacing and circumstances of nitration stress.
Collapse
Affiliation(s)
- Shusen Yang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjing Xu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zengxiang Dong
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mo Zhou
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaolan Lin
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongbo Jin
- Laboratory of Physiology, Harbin Medical University, Harbin, China
| | - Yafen Su
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingyu Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huiying Chang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Han
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Bil-Lula I, Lin HB, Biały D, Wawrzyńska M, Diebel L, Sawicka J, Woźniak M, Sawicki G. Subthreshold nitric oxide synthase inhibition improves synergistic effects of subthreshold MMP-2/MLCK-mediated cardiomyocyte protection from hypoxic injury. J Cell Mol Med 2016; 20:1086-94. [PMID: 26992120 PMCID: PMC4882990 DOI: 10.1111/jcmm.12827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/04/2016] [Indexed: 01/06/2023] Open
Abstract
Injury of myocardium during ischaemia/reperfusion (I/R) is a complex and multifactorial process involving uncontrolled protein phosphorylation, nitration/nitrosylation by increased production of nitric oxide and accelerated contractile protein degradation by matrix metalloproteinase‐2 (MMP‐2). It has been shown that simultaneous inhibition of MMP‐2 with doxycycline (Doxy) and myosin light chain kinase (MLCK) with ML‐7 at subthreshold concentrations protects the heart from contractile dysfunction triggered by I/R in a synergistic manner. In this study, we showed that additional co‐administration of nitric oxide synthase (NOS) inhibitor (1400W or L‐NAME) in subthreshold concentrations improves this synergistic protection in the model of hypoxia–reoxygenation (H‐R)‐induced contractile dysfunction of cardiomyocytes. Isolated cardiomyocytes were subjected to 3 min. of hypoxia and 20 min. of reoxygenation in the presence or absence of the inhibitor cocktails. Contractility of cardiomyocytes was expressed as myocyte peak shortening. Inhibition of MMP‐2 by Doxy (25–100 μM), MLCK by ML‐7 (0.5–5 μM) and NOS by L‐NAME (25–100 μM) or 1400W (25–100 μM) protected myocyte contractility after H‐R in a concentration‐dependent manner. Inhibition of these activities resulted in full recovery of cardiomyocyte contractility after H‐R at the level of highest single‐drug concentration. The combination of subthreshold concentrations of NOS, MMP‐2 and MLCK inhibitors fully protected cardiomyocyte contractility and MLC1 from degradation by MMP‐2. The observed protection with addition of L‐NAME or 1400W was better than previously reported combination of ML‐7 and Doxy. The results of this study suggest that addition of NOS inhibitor to the mixture of inhibitors is better strategy for protecting cardiomyocyte contractility.
Collapse
Affiliation(s)
- Iwona Bil-Lula
- Department of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Han-Bin Lin
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dariusz Biały
- Department and Clinic of Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Lucas Diebel
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jolanta Sawicka
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mieczyslaw Woźniak
- Department of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland.,Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Grzegorz Sawicki
- Department of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland.,Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
15
|
Nuriel T, Whitehouse J, Ma Y, Mercer EJ, Brown N, Gross SS. ANSID: A Solid-Phase Proteomic Approach for Identification and Relative Quantification of Aromatic Nitration Sites. Front Chem 2016; 3:70. [PMID: 26779476 PMCID: PMC4703760 DOI: 10.3389/fchem.2015.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022] Open
Abstract
Nitration of tyrosine and other aromatic amino acid residues in proteins occurs in the setting of inflammatory, neurodegenerative, and cardiovascular diseases—importantly, this modification has been implicated in the pathogenesis of diverse diseases and the physiological process of aging. To understand the biological consequences of aromatic nitration in both health and disease, it is critical to molecularly identify the proteins that undergo nitration, specify their cognate modification sites and quantify their extent of nitration. To date, unbiased identification of nitrated proteins has often involved painstaking 2D-gel electrophoresis followed by Western Blotting with an anti-nitrotyrosine antibody for detection. Apart from being relatively slow and laborious, this method suffers from limited coverage, the potential for false-positive identifications, and failure to reveal specific amino acid modification sites. To overcome these shortcomings, we have developed a solid-phase, chemical-capture approach for unbiased and high-throughput discovery of nitrotyrosine and nitrotryptophan sites in proteins. Utilizing this method, we have successfully identified several endogenously nitrated proteins in rat brain and a total of 244 nitrated peptides from 145 proteins following in vitro exposure of rat brain homogenates to the nitrating agent peroxynitrite (1 mM). As expected, Tyr residues constituted the great majority of peroxynitrite-mediated protein nitration sites; however, we were surprised to discover several brain proteins that contain nitrated Trp residues. By incorporating a stable-isotope labeling step, this new Aromatic Nitration Site IDentification (ANSID) method was also adapted for relative quantification of nitration site abundances in proteins. Application of the ANSID method offers great potential to advance our understanding of the role of protein nitration in disease pathogenesis and normal physiology.
Collapse
Affiliation(s)
- Tal Nuriel
- Department of Pharmacology, Weill Cornell Medical CollegeNew York, NY, USA; Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical CollegeNew York, NY, USA
| | - Julia Whitehouse
- Department of Pharmacology, Weill Cornell Medical College New York, NY, USA
| | - Yuliang Ma
- Department of Pharmacology, Weill Cornell Medical College New York, NY, USA
| | - Emily J Mercer
- Department of Pharmacology, Weill Cornell Medical CollegeNew York, NY, USA; Department of Surgery, Weill Cornell Medical CollegeNew York, NY, USA
| | - Neil Brown
- Department of Pharmacology, Weill Cornell Medical College New York, NY, USA
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College New York, NY, USA
| |
Collapse
|
16
|
Alvarado G, Jeney V, Tóth A, Csősz É, Kalló G, Huynh AT, Hajnal C, Kalász J, Pásztor ET, Édes I, Gram M, Akerström B, Smith A, Eaton JW, Balla G, Papp Z, Balla J. Heme-induced contractile dysfunction in human cardiomyocytes caused by oxidant damage to thick filament proteins. Free Radic Biol Med 2015; 89:248-62. [PMID: 26409224 DOI: 10.1016/j.freeradbiomed.2015.07.158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
Intracellular free heme predisposes to oxidant-mediated tissue damage. We hypothesized that free heme causes alterations in myocardial contractility via disturbed structure and/or regulation of the contractile proteins. Isometric force production and its Ca(2+)-sensitivity (pCa50) were monitored in permeabilized human ventricular cardiomyocytes. Heme exposure altered cardiomyocyte morphology and evoked robust decreases in Ca(2+)-activated maximal active force (Fo) while increasing Ca(2+)-independent passive force (F passive). Heme treatments, either alone or in combination with H2O2, did not affect pCa50. The increase in F passive started at 3 µM heme exposure and could be partially reversed by the antioxidant dithiothreitol. Protein sulfhydryl (SH) groups of thick myofilament content decreased and sulfenic acid formation increased after treatment with heme. Partial restoration in the SH group content was observed in a protein running at 140 kDa after treatment with dithiothreitol, but not in other proteins, such as filamin C, myosin heavy chain, cardiac myosin binding protein C, and α-actinin. Importantly, binding of heme to hemopexin or alpha-1-microglobulin prevented its effects on cardiomyocyte contractility, suggesting an allosteric effect. In line with this, free heme directly bound to myosin light chain 1 in human cardiomyocytes. Our observations suggest that free heme modifies cardiac contractile proteins via posttranslational protein modifications and via binding to myosin light chain 1, leading to severe contractile dysfunction. This may contribute to systolic and diastolic cardiac dysfunctions in hemolytic diseases, heart failure, and myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Gerardo Alvarado
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; Department of Nephrology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Viktória Jeney
- Department of Nephrology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences, H-4032 Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gergő Kalló
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - An T Huynh
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csaba Hajnal
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Judit Kalász
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Enikő T Pásztor
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - István Édes
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Magnus Gram
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Bo Akerström
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Ann Smith
- School of Biological Sciences, University of Missouri-Kansas City, MO, USA
| | - John W Eaton
- Molecular Targets Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40059, USA
| | - György Balla
- MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences, H-4032 Debrecen, Hungary; Institute of Pediatrics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - József Balla
- Department of Nephrology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; MTA-DE Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences, H-4032 Debrecen, Hungary.
| |
Collapse
|
17
|
Interplay between oxidant species and energy metabolism. Redox Biol 2015; 8:28-42. [PMID: 26741399 PMCID: PMC4710798 DOI: 10.1016/j.redox.2015.11.010] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
It has long been recognized that energy metabolism is linked to the production of reactive oxygen species (ROS) and critical enzymes allied to metabolic pathways can be affected by redox reactions. This interplay between energy metabolism and ROS becomes most apparent during the aging process and in the onset and progression of many age-related diseases (i.e. diabetes, metabolic syndrome, atherosclerosis, neurodegenerative diseases). As such, the capacity to identify metabolic pathways involved in ROS formation, as well as specific targets and oxidative modifications is crucial to our understanding of the molecular basis of age-related diseases and for the design of novel therapeutic strategies. Herein we review oxidant formation associated with the cell's energetic metabolism, key antioxidants involved in ROS detoxification, and the principal targets of oxidant species in metabolic routes and discuss their relevance in cell signaling and age-related diseases. Energy metabolism is both a source and target of oxidant species. Reactive oxygen species are formed in redox reactions in catabolic pathways. Sensitive targets of oxidant species regulate the flux of metabolic pathways. Metabolic pathways and antioxidant systems are regulated coordinately.
Collapse
|
18
|
Nemutlu E, Gupta A, Zhang S, Viqar M, Holmuhamedov E, Terzic A, Jahangir A, Dzeja P. Decline of Phosphotransfer and Substrate Supply Metabolic Circuits Hinders ATP Cycling in Aging Myocardium. PLoS One 2015; 10:e0136556. [PMID: 26378442 PMCID: PMC4574965 DOI: 10.1371/journal.pone.0136556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/04/2015] [Indexed: 12/24/2022] Open
Abstract
Integration of mitochondria with cytosolic ATP-consuming/ATP-sensing and substrate supply processes is critical for muscle bioenergetics and electrical activity. Whether age-dependent muscle weakness and increased electrical instability depends on perturbations in cellular energetic circuits is unknown. To define energetic remodeling of aged atrial myocardium we tracked dynamics of ATP synthesis-utilization, substrate supply, and phosphotransfer circuits through adenylate kinase (AK), creatine kinase (CK), and glycolytic/glycogenolytic pathways using 18O stable isotope-based phosphometabolomic technology. Samples of intact atrial myocardium from adult and aged rats were subjected to 18O-labeling procedure at resting basal state, and analyzed using the 18O-assisted HPLC-GC/MS technique. Characteristics for aging atria were lower inorganic phosphate Pi[18O], γ-ATP[18O], β-ADP[18O], and creatine phosphate CrP[18O] 18O-labeling rates indicating diminished ATP utilization-synthesis and AK and CK phosphotransfer fluxes. Shift in dynamics of glycolytic phosphotransfer was reflected in the diminished G6P[18O] turnover with relatively constant glycogenolytic flux or G1P[18O] 18O-labeling. Labeling of G3P[18O], an indicator of G3P-shuttle activity and substrate supply to mitochondria, was depressed in aged myocardium. Aged atrial myocardium displayed reduced incorporation of 18O into second (18O2), third (18O3), and fourth (18O4) positions of Pi[18O] and a lower Pi[18O]/γ-ATP[18 O]-labeling ratio, indicating delayed energetic communication and ATP cycling between mitochondria and cellular ATPases. Adrenergic stress alleviated diminished CK flux, AK catalyzed β-ATP turnover and energetic communication in aging atria. Thus, 18O-assisted phosphometabolomics uncovered simultaneous phosphotransfer through AK, CK, and glycolytic pathways and G3P substrate shuttle deficits hindering energetic communication and ATP cycling, which may underlie energetic vulnerability of aging atrial myocardium.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Anu Gupta
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Song Zhang
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Maria Viqar
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ekhson Holmuhamedov
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora University of Wisconsin Medical Group, Aurora Health Care, Milwaukee, Wisconsin, United States of America
| | - Andre Terzic
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Arshad Jahangir
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora University of Wisconsin Medical Group, Aurora Health Care, Milwaukee, Wisconsin, United States of America
- * E-mail: (PD); (AJ)
| | - Petras Dzeja
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (PD); (AJ)
| |
Collapse
|
19
|
Zhan X, Wang X, Desiderio DM. Mass spectrometry analysis of nitrotyrosine-containing proteins. MASS SPECTROMETRY REVIEWS 2015; 34:423-448. [PMID: 24318073 DOI: 10.1002/mas.21413] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
Oxidative stress plays important roles in a wide range of diseases such as cancer, inflammatory disease, neurodegenerative disorders, etc. Tyrosine nitration in a protein is a chemically stable oxidative modification, and a marker of oxidative injuries. Mass spectrometry (MS) is a key technique to identify nitrotyrosine-containing proteins and nitrotyrosine sites in endogenous and synthetic nitroproteins and nitropeptides. However, in vivo nitrotyrosine-containing proteins occur with extreme low-abundance to severely challenge the use of MS to identify in vivo nitroproteins and nitrotyrosine sites. A preferential enrichment of nitroproteins and/or nitropeptides is necessary before MS analysis. Current enrichment methods include immuno-affinity techniques, chemical derivation of the nitro group plus target isolations, followed with tandem mass spectrometry analysis. This article reviews the MS techniques and pertinent before-MS enrichment techniques for the identification of nitrotyrosine-containing proteins. This article reviews future trends in the field of nitroproteomics, including quantitative nitroproteomics, systems biological networks of nitroproteins, and structural biology study of tyrosine nitration to completely clarify the biological functions of tyrosine nitration.
Collapse
Affiliation(s)
- Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- The State Key Laboratory of Medical Genetics, Central South University, 88 Xiangya Road, Changsha, Hunan, 410008, P.R. China
| | - Xiaowei Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
| | - Dominic M Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, Tennessee, 38163
| |
Collapse
|
20
|
Das N, Jana CK. Age-associated oxidative modifications of mitochondrial α-subunit of F1 ATP synthase from mouse skeletal muscles. Free Radic Res 2015; 49:954-61. [PMID: 25790938 DOI: 10.3109/10715762.2015.1017477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The objective of this study was to investigate the pattern of age-associated oxidative post-translational modifications in the skeletal muscles of a mammalian species and to address whether the modifications result in the loss of function of the oxidatively modified protein(s). Accordingly, proteins in the mitochondrial matrix of the hind limb of C57BL/6Nnia mice were examined for modifications by carbonylation--an established marker of oxidative post-translational modifications--by Western blotting using anti-2,4-dinitrophenyl antibodies and tritiated sodium borohydride methods. An age-associated increase in carbonylation of mitochondrial matrix proteins was observed, but not all proteins were equally susceptible. A 55 kDa protein, identified as the α-subunit of the F1 complex of ATP synthase (ATP phosphohydrolase [H(+)-transporting]), had approximately 17% and 27% higher levels of protein carbonyls in adult and old animals, respectively, in comparison to the young controls as estimated using tritiated sodium borohydride. In addition, an age-associated decline in its activity was observed, with approximately 9% and 28% decrease in the activity in the adult and old animals, respectively, in comparison to young controls. It may be concluded that such oxidative post-translational modifications and the resultant attenuation of the protein activity may contribute to the age-related energy loss and muscular degeneracy.
Collapse
Affiliation(s)
- N Das
- Department of Biotechnology, Visva-Bharati University , Santiniketan, West Bengal , India
| | | |
Collapse
|
21
|
Veiga-Lopez A, Pennathur S, Kannan K, Patisaul HB, Dolinoy DC, Zeng L, Padmanabhan V. Impact of gestational bisphenol A on oxidative stress and free fatty acids: Human association and interspecies animal testing studies. Endocrinology 2015; 156:911-22. [PMID: 25603046 PMCID: PMC4330308 DOI: 10.1210/en.2014-1863] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bisphenol A (BPA) is a high production volume chemical and an endocrine disruptor. Developmental exposures to BPA have been linked to adult metabolic pathologies, but the pathways through which these disruptions occur remain unknown. This is a comprehensive interspecies association vs causal study to evaluate risks posed by prenatal BPA exposure and to facilitate discovery of biomarkers of relevance to BPA toxicity. Samples from human pregnancies during the first trimester and at term, as well as fetal and/or adult samples from prenatally BPA-treated sheep, rats, and mice, were collected to assess the impact of BPA on free fatty acid and oxidative stress dynamics. Mothers exposed to higher BPA during early to midpregnancy and their matching term cord samples displayed increased 3-nitrotyrosine (NY), a marker of nitrosative stress. Maternal samples had increased palmitic acid, which was positively correlated with NY. Sheep fetuses and adult sheep and rats prenatally exposed to a human-relevant exposure dose of BPA showed increased systemic nitrosative stress. The strongest effect of BPA on circulating free fatty acids was observed in adult mice in the absence of increased oxidative stress. This is the first multispecies study that combines human association and animal causal studies assessing the risk posed by prenatal BPA exposure to metabolic health. This study provides evidence of the induction of nitrosative stress by prenatal BPA in both the mother and fetus at time of birth and is thus supportive of the use of maternal NY as a biomarker for offspring health.
Collapse
Affiliation(s)
- Almudena Veiga-Lopez
- Department of Pediatrics (A.V.-L., V.P.), University of Michigan, Ann Arbor, Michigan 48109; Department of Internal Medicine (S.P., L.Z.), University of Michigan, Ann Arbor, Michigan 48109; Wadsworth Center (K.K.), New York State Department of Health, Albany, New York 12201; Department of Biological Sciences (H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Environmental Health Sciences (D.C.D.), University of Michigan, Ann Arbor, Michigan 48109
| | | | | | | | | | | | | |
Collapse
|
22
|
Yeo WS, Kim YJ, Kabir MH, Kang JW, Ahsan-Ul-Bari M, Kim KP. Mass spectrometric analysis of protein tyrosine nitration in aging and neurodegenerative diseases. MASS SPECTROMETRY REVIEWS 2015; 34:166-183. [PMID: 24889964 DOI: 10.1002/mas.21429] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This review highlights the significance of protein tyrosine nitration (PTN) in signal transduction pathways, the progress achieved in analytical methods, and the implication of nitration in the cellular pathophysiology of aging and age-related neurodegenerative diseases. Although mass spectrometry of nitrated peptides has become a powerful tool for the characterization of nitrated peptides, the low stoichiometry of this modification clearly necessitates the use of affinity chromatography to enrich modified peptides. Analysis of nitropeptides involves identification of endogenous, intact modification as well as chemical conversion of the nitro group to a chemically reactive amine group and further modifications that enable affinity capture and enhance detectability by altering molecular properties. In this review, we focus on the recent progress in chemical derivatization of nitropeptides for enrichment and mass analysis, and for detection and quantification using various analytical tools. PTN participates in physiological processes, such as aging and neurodegenerative diseases. Accumulation of 3-nitrotyrosine has been found to occur during the aging process; this was identified through mass spectrometry. Further, there are several studies implicating the presence of nitrated tyrosine in age-related diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Yang M, Stowe DF, Udoh KB, Heisner JS, Camara AKS. Reversible blockade of complex I or inhibition of PKCβ reduces activation and mitochondria translocation of p66Shc to preserve cardiac function after ischemia. PLoS One 2014; 9:e113534. [PMID: 25436907 PMCID: PMC4250075 DOI: 10.1371/journal.pone.0113534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/26/2014] [Indexed: 01/08/2023] Open
Abstract
Aim Excess mitochondrial reactive oxygen species (mROS) play a vital role in cardiac ischemia reperfusion (IR) injury. P66Shc, a splice variant of the ShcA adaptor protein family, enhances mROS production by oxidizing reduced cytochrome c to yield H2O2. Ablation of p66Shc protects against IR injury, but it is unknown if and when p66Shc is activated during cardiac ischemia and/or reperfusion and if attenuating complex I electron transfer or deactivating PKCβ alters p66Shc activation during IR is associated with cardioprotection. Methods Isolated guinea pig hearts were perfused and subjected to increasing periods of ischemia and reperfusion with or without amobarbital, a complex I blocker, or hispidin, a PKCβ inhibitor. Phosphorylation of p66Shc at serine 36 and levels of p66Shc in mitochondria and cytosol were measured. Cardiac functional variables and redox states were monitored online before, during and after ischemia. Infarct size was assessed in some hearts after 120 min reperfusion. Results Phosphorylation of p66Shc and its translocation into mitochondria increased during reperfusion after 20 and 30 min ischemia, but not during ischemia only, or during 5 or 10 min ischemia followed by 20 min reperfusion. Correspondingly, cytosolic p66Shc levels decreased during these ischemia and reperfusion periods. Amobarbital or hispidin reduced phosphorylation of p66Shc and its mitochondrial translocation induced by 30 min ischemia and 20 min reperfusion. Decreased phosphorylation of p66Shc by amobarbital or hispidin led to better functional recovery and less infarction during reperfusion. Conclusion Our results show that IR activates p66Shc and that reversible blockade of electron transfer from complex I, or inhibition of PKCβ activation, decreases p66Shc activation and translocation and reduces IR damage. These observations support a novel potential therapeutic intervention against cardiac IR injury.
Collapse
Affiliation(s)
- Meiying Yang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, United States of America; Research Service, Zablocki VA Medical Center, Milwaukee, WI, United States of America; Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States of America
| | - Kenechukwu B Udoh
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - James S Heisner
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States of America; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
24
|
Beckendorf L, Linke WA. Emerging importance of oxidative stress in regulating striated muscle elasticity. J Muscle Res Cell Motil 2014; 36:25-36. [PMID: 25373878 PMCID: PMC4352196 DOI: 10.1007/s10974-014-9392-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/03/2014] [Indexed: 12/11/2022]
Abstract
The contractile function of striated muscle cells is altered by oxidative/nitrosative stress, which can be observed under physiological conditions but also in diseases like heart failure or muscular dystrophy. Oxidative stress causes oxidative modifications of myofilament proteins and can impair myocyte contractility. Recent evidence also suggests an important effect of oxidative stress on muscle elasticity and passive stiffness via modifications of the giant protein titin. In this review we provide a short overview of known oxidative modifications in thin and thick filament proteins and then discuss in more detail those oxidative stress-related modifications altering titin stiffness directly or indirectly. Direct modifications of titin include reversible disulfide bonding within the cardiac-specific N2-Bus domain, which increases titin stiffness, and reversible S-glutathionylation of cryptic cysteines in immunoglobulin-like domains, which only takes place after the domains have unfolded and which reduces titin stiffness in cardiac and skeletal muscle. Indirect effects of oxidative stress on titin can occur via reversible modifications of protein kinase signalling pathways (especially the NO-cGMP-PKG axis), which alter the phosphorylation level of certain disordered titin domains and thereby modulate titin stiffness. Oxidative stress also activates proteases such as matrix-metalloproteinase-2 and (indirectly via increasing the intracellular calcium level) calpain-1, both of which cleave titin to irreversibly reduce titin-based stiffness. Although some of these mechanisms require confirmation in the in vivo setting, there is evidence that oxidative stress-related modifications of titin are relevant in the context of biomarker design and represent potential targets for therapeutic intervention in some forms of muscle and heart disease.
Collapse
Affiliation(s)
- Lisa Beckendorf
- Department of Cardiovascular Physiology, Institute of Physiology, Ruhr University Bochum, MA 3/56, 44780, Bochum, Germany
| | | |
Collapse
|
25
|
Cadete VJJ, Sawicka J, Bekar LK, Sawicki G. Combined subthreshold dose inhibition of myosin light chain phosphorylation and MMP-2 activity provides cardioprotection from ischaemic/reperfusion injury in isolated rat heart. Br J Pharmacol 2014; 170:380-90. [PMID: 23822644 DOI: 10.1111/bph.12289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 06/02/2013] [Accepted: 06/13/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Phosphorylation and degradation of myosin light chain 1 (MLC1) during myocardial ischaemia/reperfusion (I/R) injury is a well-established phenomenon. It has been established that MMP-2 is involved in MLC1 degradation and that this degradation is increased when MLC1 is phosphorylated. We hypothesized that simultaneous inhibition of MLC1 phosphorylation and MMP-2 activity will protect hearts from I/R injury. As phosphorylation of MLC1 and MMP-2 activity is important for normal heart function, we used a cocktail consisting combination of low (subthreshold for any protective effect alone) doses of MLC kinase, MMP-2 inhibitors and subthreshold dose of an MLC phosphatase activator. EXPERIMENTAL APPROACH Isolated rat hearts were subjected to 20 min of global, no-flow ischaemia and 30 min reperfusion in the absence and presence of inhibitors of MLC1 phosphorylation and degradation. KEY RESULTS The recovery of cardiac function was improved in a concentration-dependent manner by the MLC kinase inhibitor, ML-7 (1-5 μM), the MLC phosphatase activator, Y-27632 (0.05-1 μM) or the MMP inhibitor, doxycycline (Doxy, 1-30 μM). Co-administration of subthreshold doses of ML-7 (1 μM) and Y-27632 (0.05 μM) showed a potential synergistic effect in protecting cardiac contractility and MLC1 levels in I/R hearts. Further combination with a subthreshold concentration of Doxy (1 μM) showed additional protection that resulted in full recovery to control levels. CONCLUSIONS AND IMPLICATIONS The results of this study exemplify a novel low-dose multidrug approach to pharmacological prevention of reperfusion injury that will enable a reduction of unwanted side effects and/or cytotoxicity associated with currently available MMP-2 and kinase inhibiting drugs.
Collapse
Affiliation(s)
- Virgilio J J Cadete
- Department of Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | |
Collapse
|
26
|
Peinado MÁ, Hernández R, Peragón J, Ovelleiro D, Pedrosa JÁ, Blanco S. Proteomic characterization of nitrated cell targets after hypobaric hypoxia and reoxygenation in rat brain. J Proteomics 2014; 109:309-21. [DOI: 10.1016/j.jprot.2014.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 06/16/2014] [Accepted: 07/08/2014] [Indexed: 12/17/2022]
|
27
|
Tsikas D, Duncan MW. Mass spectrometry and 3-nitrotyrosine: strategies, controversies, and our current perspective. MASS SPECTROMETRY REVIEWS 2014; 33:237-76. [PMID: 24167057 DOI: 10.1002/mas.21396] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 05/11/2023]
Abstract
Reactive-nitrogen species (RNS) such as peroxynitrite (ONOO(-)), that is, the reaction product of nitric oxide ((•)NO) and superoxide (O2(-•)), nitryl chloride (NO2Cl) and (•)NO2 react with the activated aromatic ring of tyrosine to form 3-nitrotyrosine. This modification, which has been known for more than a century, occurs to both the free form of the amino acid (i.e., soluble/free tyrosine) and to tyrosine residues covalently bound within the backbone of peptides and proteins. Nitration of tyrosine is thought to be of biological significance and has been linked to health and disease, but determining its role has proved challenging. Several key questions have been the focus of much of the research activity: (a) to what extent is free/soluble tyrosine nitrated in biological tissues and fluids, and (b) are there specific site(s) of nitration within peptides/proteins and to what extent (i.e., stoichiometry) does this modification occur? These issues have been addressed in a wide range of sample types (e.g., blood, urine, CSF, exhaled breath condensate and various tissues) and a diverse array of physiological/pathophysiological scenarios. The accurate determination of nitrated tyrosine is, however, a stumbling block. Despite extensive study, the extent to which nitration occurs in vivo, the specificity of the nitration reaction, and its importance in health and disease, remain unclear. In this review, we highlight the analytical challenges and discuss the approaches adopted to address them. Mass spectrometry, in combination with either gas chromatography (GC-MS, GC-MS/MS) or liquid chromatography (LC-MS/MS), has played the central role in the analysis of 3-nitrotyrosine and tyrosine-nitrated biological macromolecules. We discuss its unique attributes and highlight the role of stable-isotope labeled 3-nitrotyrosine analogs in both accurate quantification, and in helping to define the biological relevance of tyrosine nitration. We show that the application of sophisticated mass spectrometric techniques is advantageous if not essential, but that this alone is by no means a guarantee of accurate findings. We discuss the important analytical challenges in quantifying 3-nitrotyrosine, possible workarounds, and we attempt to make sense of the disparate findings that have been reported so far.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
28
|
Butterfield DA, Gu L, Di Domenico F, Robinson RAS. Mass spectrometry and redox proteomics: applications in disease. MASS SPECTROMETRY REVIEWS 2014; 33:277-301. [PMID: 24930952 DOI: 10.1002/mas.21374] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 06/03/2023]
Abstract
Proteomics techniques are continuously being developed to further understanding of biology and disease. Many of the pathways that are relevant to disease mechanisms rely on the identification of post-translational modifications (PTMs) such as phosphorylation, acetylation, and glycosylation. Much attention has also been focused on oxidative PTMs which include protein carbonyls, protein nitration, and the incorporation of fatty acids and advanced glycation products to amino acid side chains, amongst others. The introduction of these PTMs in the cell can occur due to the attack of reactive oxygen and nitrogen species (ROS and RNS, respectively) on proteins. ROS and RNS can be present as a result of normal metabolic processes as well as external factors such as UV radiation, disease, and environmental toxins. The imbalance of ROS and RNS with antioxidant cellular defenses leads to a state of oxidative stress, which has been implicated in many diseases. Redox proteomics techniques have been used to characterize oxidative PTMs that result as a part of normal cell signaling processes as well as oxidative stress conditions. This review highlights many of the redox proteomics techniques which are currently available for several oxidative PTMs and brings to the reader's attention the application of redox proteomics for understanding disease pathogenesis in neurodegenerative disorders and others such as cancer, kidney, and heart diseases.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, 40506
| | | | | | | |
Collapse
|
29
|
Lu N, Li J, He Y, Tian R, Xiao Q. Nitrative modifications of α-enolase in hepatic proteins from diabetic rats: the involvement of myeloperoxidase. Chem Biol Interact 2014; 220:12-9. [PMID: 24924950 DOI: 10.1016/j.cbi.2014.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 01/15/2023]
Abstract
Many studies reported that oxidative and nitrative stress might be important in the pathogenesis of diabetes and the development of its complications. In this study, we showed that α-enolase (EC 4.2.1.11, 2-phospho-d-glycerate hydrolase) was identified as the important target for oxidative and nitrative modifications in diabetic hepatic proteins. After 6 weeks of streptozotocin-administration, α-enolase expression and nitration were clearly increased in diabetic rat liver, whereas the enolase activity and oxidation status were not significantly changed in diabetic group. By means of immunoprecipitation and liquid chromatography-tandem mass spectrometry analysis, it was found that Tyr 12 and Tyr 257 of α-enolase were the most susceptible to nitration in diabetic rat liver. Moreover, myeloperoxidase (MPO) as a likely alternative mechanism for nitrative modification of α-enolase in vivo was apparently facilitated by the presence of higher MPO level and activity in diabetic liver, and fact that Tyr 12 and Tyr 191 of enolase was nitrated by MPO/nitrite/H2O2 system in vitro. Further studies in vitro indicated that carbonyl formation, rather than tyrosine nitration, might make a major contribution to the inactivation of enolase. The present results provided the new evidence for α-enolase as a susceptive target for MPO-catalyzed nitrative modification in diabetes. They also suggested a potential contribution of nitrative and oxidative modifications of enolase to an impaired glycolytic activity in diabetic hepatic injury.
Collapse
Affiliation(s)
- Naihao Lu
- Jiangxi Key Laboratory of Functional Organic Molecules, Jiangxi Science and Technology Normal University, Nanchang 330013, China; Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China.
| | - Jiayu Li
- Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China
| | - Yingjie He
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China; Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China
| | - Rong Tian
- Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China
| | - Qiang Xiao
- Jiangxi Key Laboratory of Functional Organic Molecules, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
30
|
Morris G, Maes M. Oxidative and Nitrosative Stress and Immune-Inflammatory Pathways in Patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Curr Neuropharmacol 2014; 12:168-85. [PMID: 24669210 PMCID: PMC3964747 DOI: 10.2174/1570159x11666131120224653] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 07/12/2013] [Accepted: 11/02/2013] [Indexed: 02/07/2023] Open
Abstract
Myalgic Encephalomyelitis (ME) / Chronic Fatigue Syndrome (CFS) has been classified as a disease of the central nervous system by the WHO since 1969. Many patients carrying this diagnosis do demonstrate an almost bewildering array of biological abnormalities particularly the presence of oxidative and nitrosative stress (O&NS) and a chronically activated innate immune system. The proposal made herein is that once generated chronically activated O&NS and immune-inflammatory pathways conspire to generate a multitude of self-sustaining and self-amplifying pathological processes which are associated with the onset of ME/CFS. Sources of continuous activation of O&NS and immune-inflammatory pathways in ME/CFS are chronic, intermittent and opportunistic infections, bacterial translocation, autoimmune responses, mitochondrial dysfunctions, activation of the Toll-Like Receptor Radical Cycle, and decreased antioxidant levels. Consequences of chronically activated O&NS and immune-inflammatory pathways in ME/CFS are brain disorders, including neuroinflammation and brain hypometabolism / hypoperfusion, toxic effects of nitric oxide and peroxynitrite, lipid peroxidation and oxidative damage to DNA, secondary autoimmune responses directed against disrupted lipid membrane components and proteins, mitochondrial dysfunctions with a disruption of energy metabolism (e.g. compromised ATP production) and dysfunctional intracellular signaling pathways. The interplay between all of these factors leads to self-amplifying feed forward loops causing a chronic state of activated O&NS, immune-inflammatory and autoimmune pathways which may sustain the disease.
Collapse
Affiliation(s)
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand ; Department of Psychiatry, Deakin University, Geelong, Australia
| |
Collapse
|
31
|
Oxidative stress in aging: advances in proteomic approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:573208. [PMID: 24688629 PMCID: PMC3943264 DOI: 10.1155/2014/573208] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/07/2013] [Indexed: 11/18/2022]
Abstract
Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging.
Collapse
|
32
|
Abstract
The scope of the current paper is to review existing and potential applications of proteomic analysis to aging research. The focus will lie on the unique opportunities of high-throughput studies for uncovering specific alterations in protein expression, protein complexes or protein modifications caused by biological aging. The result of such studies will outline aging phenotypes and potentially indicate pathways involved in the pathogenesis of age-associated disfunctions. Specific attention is paid to the illustrations of successful applications of proteomic technologies and potential applications of new proteomic concepts to biogerontological studies.
Collapse
Affiliation(s)
- Victor S Sharov
- University of Kansas, Pharmaceutical Chemistry Department, Lawrence, KS 66047, USA.
| | | |
Collapse
|
33
|
Kim SF. The Nitric Oxide-Mediated Regulation of Prostaglandin Signaling in Medicine. VITAMINS & HORMONES 2014; 96:211-45. [DOI: 10.1016/b978-0-12-800254-4.00009-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Abstract
Two-dimensional electrophoresis has nurtured the birth of proteomics. It is however no longer the exclusive setup used in proteomics, with the development of shotgun proteomics techniques that appear more fancy and fashionable nowadays.Nevertheless, 2D gel-based proteomics still has valuable features, and sometimes unique ones, which make it often an attractive choice when a proteomics strategy must be selected. These features are detailed in this chapter, as is the rationale for selecting or not 2D gel-based proteomics as a proteomic strategy.
Collapse
|
35
|
Nishtala K, Phong TQ, Steil L, Sauter M, Salazar MG, Kandolf R, Felix SB, Völker U, Klingel K, Hammer E. Proteomic analyses of age related changes in A.BY/SnJ mouse hearts. Proteome Sci 2013; 11:29. [PMID: 23816347 PMCID: PMC3704963 DOI: 10.1186/1477-5956-11-29] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 06/11/2013] [Indexed: 11/25/2022] Open
Abstract
Background A.BY/SnJ mice are used to study pathological alterations in the heart due to enteroviral infections. Since age is a well-known factor influencing the susceptibility of mice to infection, response to stress and manifestation of cardiovascular diseases, the myocardial proteome of A.BY/SnJ mice aged 1 and 4 months was comparatively studied using two dimensional-differential in-gel electrophoresis (2D-DIGE) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Results Complementary analyses by 2D-DIGE and gel-free LC-MS/MS revealed 96 distinct proteins displaying age associated alterations in their levels. Proteins related to protein transport, and transport chain, lipid metabolism and fatty acid transport showed significant changes in 4 months old mouse hearts compared to juvenile hearts. Proteins involved in lipid metabolism and transport were identified at significantly higher levels in older mice and dysregulation of proteins of the respiratory transport chain were observed. Conclusion The current proteomics study discloses age dependent changes occurring in the hearts already in young mice of the strain A.BY/SnJ. Besides alterations in protein transport, we provide evidence that a decrease of ATP synthase in murine hearts starts already in the first months of life, leading to well-known low expression levels manifested in old mice thereby raising the possibility of reduced energy supply. In the first few months of murine life this seems to be compensated by an increased lipid metabolism. The functional alterations described should be considered during experimental setups in disease related studies.
Collapse
Affiliation(s)
- Krishnatej Nishtala
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Universitätsmedizin Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17487 Greifswald, Germany
| | - Truong Quoc Phong
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Universitätsmedizin Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17487 Greifswald, Germany
| | - Leif Steil
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Universitätsmedizin Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17487 Greifswald, Germany
| | - Martina Sauter
- Abteilung Molekulare Pathologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Manuela Gesell Salazar
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Universitätsmedizin Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17487 Greifswald, Germany
| | - Reinhard Kandolf
- Abteilung Molekulare Pathologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Stephan B Felix
- Klinik für Innere Medizin B, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Universitätsmedizin Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17487 Greifswald, Germany
| | - Karin Klingel
- Abteilung Molekulare Pathologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Elke Hammer
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Universitätsmedizin Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17487 Greifswald, Germany
| |
Collapse
|
36
|
Effects of caloric restriction on cardiac oxidative stress and mitochondrial bioenergetics: potential role of cardiac sirtuins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:528935. [PMID: 23577224 PMCID: PMC3614061 DOI: 10.1155/2013/528935] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 02/18/2013] [Indexed: 01/25/2023]
Abstract
The biology of aging has not been fully clarified, but the free radical theory of aging is one of the strongest aging theories proposed to date. The free radical theory has been expanded to the oxidative stress theory, in which mitochondria play a central role in the development of the aging process because of their critical roles in bioenergetics, oxidant production, and regulation of cell death. A decline in cardiac mitochondrial function associated with the accumulation of oxidative damage might be responsible, at least in part, for the decline in cardiac performance with age. In contrast, lifelong caloric restriction can attenuate functional decline with age, delay the onset of morbidity, and extend lifespan in various species. The effect of caloric restriction appears to be related to a reduction in cellular damage induced by reactive oxygen species. There is increasing evidence that sirtuins play an essential role in the reduction of mitochondrial oxidative stress during caloric restriction. We speculate that cardiac sirtuins attenuate the accumulation of oxidative damage associated with age by modifying specific mitochondrial proteins posttranscriptionally. Therefore, the distinct role of each sirtuin in the heart subjected to caloric restriction should be clarified to translate sirtuin biology into clinical practice.
Collapse
|
37
|
Angiotensin-converting enzyme inhibition curbs tyrosine nitration of mitochondrial proteins in the renal cortex during the early stage of diabetes mellitus in rats. Clin Sci (Lond) 2013; 124:543-52. [PMID: 23130652 PMCID: PMC3540783 DOI: 10.1042/cs20120251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Experiments were performed to evaluate the hypothesis that ACE (angiotensin-converting enzyme) inhibition (enalapril) suppresses 3-NT (3-nitrotyrosine) production in the renal cortex during the early stage of Type 1 DM (diabetes mellitus) in the rat. Enalapril was administered chronically for 2 weeks to subsets of STZ (streptozotocin)-induced DM and vehicle-treated sham rats. O2− (superoxide anion) and NOx (nitrate+nitrite) levels were measured in the media bathing renal cortical slices after 90 min incubation in vitro. SOD (superoxide dismutase) activity and 3-NT content were measured in the renal cortex homogenate. Renal cortical nitrated protein was identified by proteomic analysis. Renal cortical production of O2− and 3-NT was increased in DM rats; however, enalapril suppressed these changes. DM rats also exhibited elevated renal cortical NOx production and SOD activity, and these changes were magnified by enalapril treatment. 2-DE (two-dimensional gel electrophoresis)-based Western blotting revealed more than 20 spots with positive 3-NT immunoreactivity in the renal cortex of DM rats. Enalapril treatment blunted the DM-induced increase in tyrosine nitration of three proteins ACO2, GDH1 and MMSDH (aconitase 2, glutamate dehydrogenase 1 and methylmalonate-semialdehyde dehydrogenase), each of which resides in mitochondria. These data are consistent with enalapril preventing DM-induced tyrosine nitration of mitochondrial proteins by a mechanism involving suppression of oxidant production and enhancement of antioxidant capacity, including SOD activation.
Collapse
|
38
|
Abstract
Oxidative stress accompanies a wide spectrum of clinically important cardiac disorders, including ischemia/reperfusion, diabetes mellitus, and hypertensive heart disease. Although reactive oxygen species (ROS) can activate signaling pathways that contribute to ischemic preconditioning and cardioprotection, high levels of ROS induce structural modifications of the sarcomere that impact on pump function and the pathogenesis of heart failure. However, the precise nature of the redox-dependent change in contractility is determined by the source/identity of the oxidant species, the level of oxidative stress, and the chemistry/position of oxidant-induced posttranslational modifications on individual proteins within the sarcomere. This review focuses on various ROS-induced posttranslational modifications of myofilament proteins (including direct oxidative modifications of myofilament proteins, myofilament protein phosphorylation by ROS-activated signaling enzymes, and myofilament protein cleavage by ROS-activated proteases) that have been implicated in the control of cardiac contractility.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, 630 W. 168 St, New York, NY 10032, USA.
| |
Collapse
|
39
|
Sakul A, Cumaoğlu A, Aydin E, Ari N, Dilsiz N, Karasu C. Age- and diabetes-induced regulation of oxidative protein modification in rat brain and peripheral tissues: consequences of treatment with antioxidant pyridoindole. Exp Gerontol 2013; 48:476-84. [PMID: 23470276 DOI: 10.1016/j.exger.2013.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 01/12/2023]
Abstract
The increased glyco- and lipo-oxidation events are considered one of the major factors in the accumulation of non-functional damaged proteins, and the antioxidants may inhibit extensive protein modification and nitrosylated protein levels, enhancing the oxidative damage at the cellular levels in aging and diabetes. Because of its central role in the pathogenesis of age-dependent and diabetes-mediated functional decline, we compared the levels of oxidatively modified protein markers, namely AGEs (Advanced Glycation End-protein adducts), 4-HNE (4-hydroxy-nonenal-histidine) and 3-NT (3-nitrotyrosine), in different tissues of young and old rats. Separately, these three oxidative stress parameters were explored in old rats subjected to experimentally induced diabetes and following a long-term treatment with a novel synthetic pyridoindole antioxidant derived from stobadine-SMe1EC2 (2-ethoxycarbonyl-8-methoxy-2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-b]indolinium dichloride). Diabetes induced by streptozotocin injection in rats aged 13-15 months, and SMe1EC2 treatment was applied during 4months to aged diabetic rats. AGEs and 4-HNE levels were significantly elevated in brain, ventricle and kidney, but not in lens and liver of aged rats when compared with young rats. Diabetes propagated ageing-induced increase in AGEs and 4-HNE in brain, ventricle and kidney, and raised significantly lens and liver AGEs and 4-HNE levels in aged rats. In aged diabetic rats, SMe1EC2 protected only the kidney against increase in AGEs, and inhibited significantly 4-HNE levels in brain, kidney, liver and lens that were observed more pronounced in lens. 3-NT was significantly increased in brain of aged rats and in kidney, lens and ventricle of aged diabetic rats, while SMe1EC2 has no protective effect on 3-NT increase. Results demonstrate that (1) the responsiveness of different tissue proteins to glyco-lipo-oxidative and nitrosative stress in the course of normal aging was miscellaneous. (2) Diabetes is a major factor contributing to accelerated aging. (3) SMe1EC2 selectively inhibited the generation of oxidatively modified proteins, only in a limited number of tissues.
Collapse
Affiliation(s)
- Arzu Sakul
- Cellular Stress Response & Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
40
|
Grubbs JK, Fritchen AN, Huff-Lonergan E, Gabler NK, Lonergan SM. Selection for residual feed intake alters the mitochondria protein profile in pigs. J Proteomics 2013; 80:334-45. [DOI: 10.1016/j.jprot.2013.01.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/09/2013] [Accepted: 01/16/2013] [Indexed: 11/26/2022]
|
41
|
Viera L, Radmilovich M, Vargas MR, Dennys CN, Wilson L, Barnes S, Franco MC, Beckman JS, Estévez AG. Temporal patterns of tyrosine nitration in embryo heart development. Free Radic Biol Med 2013; 55:101-8. [PMID: 23195686 PMCID: PMC3765090 DOI: 10.1016/j.freeradbiomed.2012.10.535] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/02/2012] [Accepted: 10/10/2012] [Indexed: 12/20/2022]
Abstract
Tyrosine nitration is a biomarker for the production of peroxynitrite and other reactive nitrogen species. Nitrotyrosine immunoreactivity is present in many pathological conditions including several cardiac diseases. Because the events observed during heart failure may recapitulate some aspects of development, we tested whether nitrotyrosine is present during normal development of the rat embryo heart and its potential relationship in cardiac remodeling through apoptosis. Nitric oxide production is highly dynamic during development, but whether peroxynitrite and nitrotyrosine are formed during normal embryonic development has received little attention. Rat embryo hearts exhibited strong nitrotyrosine immunoreactivity in endocardial and myocardial cells of the atria and ventricles from E12 to E18. After E18, nitrotyrosine staining faded and disappeared entirely by birth. Tyrosine nitration in the myocardial tissue coincided with elevated protein expression of nitric oxide synthases (eNOS and iNOS). The immunoreactivity for these NOS isoforms remained elevated even after nitrotyrosine had disappeared. Tyrosine nitration did not correlate with cell death or proliferation of cardiac cells. Analysis of tryptic peptides by MALDI-TOF showed that nitration occurs in actin, myosin, and the mitochondrial ATP synthase α chain. These results suggest that reactive nitrogen species are not restricted to pathological conditions but may play a role during normal embryonic development.
Collapse
Affiliation(s)
- Liliana Viera
- Laboratory of Motor Neuron Biology, Burke Medical Research Institute, White Plains, NY 10605
| | - Milka Radmilovich
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Cassandra N. Dennys
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida
| | - Landon Wilson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Maria Clara Franco
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida
| | - Joseph S. Beckman
- Linus Pauling Institute, Environmental Health Sciences Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97330
| | - Alvaro G. Estévez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida
| |
Collapse
|
42
|
Kumar V, Calamaras TD, Haeussler D, Colucci WS, Cohen RA, McComb ME, Pimentel D, Bachschmid MM. Cardiovascular redox and ox stress proteomics. Antioxid Redox Signal 2012; 17:1528-59. [PMID: 22607061 PMCID: PMC3448941 DOI: 10.1089/ars.2012.4706] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SIGNIFICANCE Oxidative post-translational modifications (OPTMs) have been demonstrated as contributing to cardiovascular physiology and pathophysiology. These modifications have been identified using antibodies as well as advanced proteomic methods, and the functional importance of each is beginning to be understood using transgenic and gene deletion animal models. Given that OPTMs are involved in cardiovascular pathology, the use of these modifications as biomarkers and predictors of disease has significant therapeutic potential. Adequate understanding of the chemistry of the OPTMs is necessary to determine what may occur in vivo and which modifications would best serve as biomarkers. RECENT ADVANCES By using mass spectrometry, advanced labeling techniques, and antibody identification, OPTMs have become accessible to a larger proportion of the scientific community. Advancements in instrumentation, database search algorithms, and processing speed have allowed MS to fully expand on the proteome of OPTMs. In addition, the role of enzymatically reversible OPTMs has been further clarified in preclinical models. CRITICAL ISSUES The identification of OPTMs suffers from limitations in analytic detection based on the methodology, instrumentation, sample complexity, and bioinformatics. Currently, each type of OPTM requires a specific strategy for identification, and generalized approaches result in an incomplete assessment. FUTURE DIRECTIONS Novel types of highly sensitive MS instrumentation that allow for improved separation and detection of modified proteins and peptides have been crucial in the discovery of OPTMs and biomarkers. To further advance the identification of relevant OPTMs in advanced search algorithms, standardized methods for sample processing and depository of MS data will be required.
Collapse
Affiliation(s)
- Vikas Kumar
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sharov V, Pal R, Dremina E, Michaelis E, Schöneich C. Fluorogenic tagging of protein 3-nitrotyrosine with 4-(aminomethyl)benzene sulfonate in tissues: a useful alternative to Immunohistochemistry for fluorescence microscopy imaging of protein nitration. Free Radic Biol Med 2012; 53:1877-85. [PMID: 22995636 PMCID: PMC3523807 DOI: 10.1016/j.freeradbiomed.2012.08.582] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 01/01/2023]
Abstract
Protein tyrosine nitration is a common biomarker of biological aging and diverse pathologies associated with the excessive formation of reactive oxygen and nitrogen species. Recently, we suggested a novel fluorogenic derivatization procedure for the detection of 3-nitrotyrosine (3-NT) using benzylamine derivatives to convert specifically protein- or peptide-bound 3-NT to a highly fluorescent benzoxazole product. In this study, we applied this procedure to fluorogenic derivatization of protein 3-NT in sections from adult rat cerebellum to: (i) test this method for imaging nitrated proteins in fixed brain tissue sections and (ii) compare the chemical approach to immunohistochemical labeling with anti-3-NT antibodies. Immunofluorescence analysis of cerebellar sections using anti-3-NT antibodies showed differential levels of immunostaining in the molecular, Purkinje, and granule cell layers of the cerebellar cortex; in agreement with previous reports, the Purkinje cells were most highly labeled. Importantly, fluorogenic derivatization reactions of cerebellar proteins with 4-(aminomethyl)benzene sulfonic acid (ABS) and K(3)Fe(CN)(6) at pH 9, after sodium dithionite reduction of 3-NT to 3-aminotyrosine, showed a very similar pattern of relative intensity of cell labeling and improved resolution compared with antibody labeling. Our data demonstrate that ABS derivatization may be either a useful alternative to or a complementary approach to immunolabeling in imaging protein nitration in cells and tissues, including under conditions of dual labeling with antibodies to cell proteins, thus allowing for cellular colocalization of nitrated proteins and any protein of interest.
Collapse
Affiliation(s)
- V.S. Sharov
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | - R. Pal
- Department of Pharmacology and Toxicology, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | - E.S. Dremina
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | - E.K. Michaelis
- Department of Pharmacology and Toxicology, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | - C. Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| |
Collapse
|
44
|
Yuan C, Solaro RJ. Myofilament proteins: From cardiac disorders to proteomic changes. Proteomics Clin Appl 2012; 2:788-99. [PMID: 21136879 DOI: 10.1002/prca.200780076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Myofilament proteins of the cardiac sarcomere house the molecular machinery responsible for generating tension and pressure. Release of intracellular Ca(2+) triggers myofilament tension generation and shortening, but the response to Ca(2+) is modulated by changes in key regulatory proteins. We review how these proteomic changes are essential to adaptive physiological regulation of cardiac output and become maladaptive in cardiac disorders. We also review the essentials of proteomic techniques used to study myofilament protein changes, including degradation, isoform expression, phosphorylation and oxidation. Selected proteomic studies illustrate the applications of these approaches.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
45
|
Gödecke A, Schrader J, Reinartz M. Nitric oxide-mediated protein modification in cardiovascular physiology and pathology. Proteomics Clin Appl 2012; 2:811-22. [PMID: 21136881 DOI: 10.1002/prca.200780079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO) is a key regulator of cardiovascular functions including the control of vascular tone, anti-inflammatory properties of the endothelium, cardiac contractility, and thrombocyte activation and aggregation. Numerous experimental data support the view that NO not only acts via cyclic guanosine monophosphate (cGMP)-dependent mechanisms but also modulates protein function by nitrosation, nitrosylation, glutathiolation, and nitration, respectively. To understand how NO regulates all of these diverse biological processes on the molecular level a comprehensive assessment of NO-mediated cGMP-dependent and independent targets is required. Novel proteomic approaches allow the simultaneous identification of large quantities of proteins modified in an NO-dependent manner and thereby will considerably deepen our understanding of the role NO plays in cardiovascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Axel Gödecke
- Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
| | | | | |
Collapse
|
46
|
Lancaster TS, Jefferson SJ, Hunter JC, Lopez V, Van Eyk JE, Lakatta EG, Korzick DH. Quantitative proteomic analysis reveals novel mitochondrial targets of estrogen deficiency in the aged female rat heart. Physiol Genomics 2012; 44:957-69. [PMID: 22930739 DOI: 10.1152/physiolgenomics.00184.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The incidence of myocardial infarction rises sharply at menopause, implicating a potential role for estrogen (E(2)) loss in age-related increases in ischemic injury. We aimed to identify quantitative changes to the cardiac mitochondrial proteome of aging females, based on the hypothesis that E(2) deficiency exacerbates age-dependent disruptions in mitochondrial proteins. Mitochondria isolated from left ventricles of adult (6 mo) and aged (24 mo) F344 ovary-intact or ovariectomized (OVX) rats were labeled with 8plex isobaric tags for relative and absolute quantification (iTRAQ; n = 5-6/group). Groups studied were adult, adult OVX, aged, and aged OVX. In vivo coronary artery ligation and in vitro mitochondrial respiration studies were also performed in a subset of rats. We identified 965 proteins across groups and significant directional changes in 67 proteins of aged and/or aged OVX; 32 proteins were unique to aged OVX. Notably, only six proteins were similarly altered in adult OVX (voltage-dependent ion channel 1, adenine nucleotide translocator 1, cytochrome c oxidase subunits VIIc and VIc, catalase, and myosin binding protein C). Proteins affected by aging were primarily related to cellular metabolism, oxidative stress, and cell death. The largest change occurred in monoamine oxidase-A (MAO-A), a source of oxidative stress. While acute MAO-A inhibition induced mild uncoupling in aged mitochondria, reductions in infarct size were not observed. Age-dependent alterations in mitochondrial signaling indicate a highly selective myocardial response to E(2) deficiency. The combined proteomic and functional approaches described here offer possibility of new protein targets for experimentation and therapeutic intervention in the aged female population.
Collapse
Affiliation(s)
- T S Lancaster
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Yang M, Camara AKS, Wakim BT, Zhou Y, Gadicherla AK, Kwok WM, Stowe DF. Tyrosine nitration of voltage-dependent anion channels in cardiac ischemia-reperfusion: reduction by peroxynitrite scavenging. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2049-59. [PMID: 22709907 DOI: 10.1016/j.bbabio.2012.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Excess superoxide (O(2)(-)) and nitric oxide (NO) forms peroxynitrite (ONOO(-)) during cardiac ischemia reperfusion (IR) injury, which in turn induces protein tyrosine nitration (tyr-N). Mitochondria are both a source of and target for ONOO(-). Our aim was to identify specific mitochondrial proteins that display enhanced tyr-N after cardiac IR injury, and to explore whether inhibiting O(2)(-)/ONOO(-) during IR decreases mitochondrial protein tyr-N and consequently improves cardiac function. We show here that IR increased tyr-N of 35 and 15kDa mitochondrial proteins using Western blot analysis with 3-nitrotyrosine antibody. Immunoprecipitation (IP) followed by LC-MS/MS identified 13 protein candidates for tyr-N. IP and Western blot identified and confirmed that the 35kDa tyr-N protein is the voltage-dependent anion channel (VDAC). Tyr-N of native cardiac VDAC with IR was verified on recombinant (r) VDAC with exogenous ONOO(-). We also found that ONOO(-) directly enhanced rVDAC channel activity, and rVDAC tyr-N induced by ONOO(-) formed oligomers. Resveratrol (RES), a scavenger of O(2)(-)/ONOO(-), reduced the tyr-N levels of both native and recombinant VDAC, while L-NAME, which inhibits NO generation, only reduced tyr-N levels of native VDAC. O(2)(-) and ONOO(-) levels were reduced in perfused hearts during IR by RES and L-NAME and this was accompanied by improved cardiac function. These results identify tyr-N of VDAC and show that reducing ONOO(-) during cardiac IR injury can attenuate tyr-N of VDAC and improve cardiac function.
Collapse
Affiliation(s)
- Meiying Yang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Old age is a major risk factor for cardiovascular diseases. Several lines of evidence in experimental animal models have indicated the central role of mitochondria both in lifespan determination and in cardiovascular aging. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and biogenesis as well as the crosstalk between mitochondria and cellular signaling in cardiac and vascular aging. Intrinsic cardiac aging in the murine model closely recapitulates age-related cardiac changes in humans (left ventricular hypertrophy, fibrosis and diastolic dysfunction), while the phenotype of vascular aging include endothelial dysfunction, reduced vascular elasticity, and chronic vascular inflammation. Both cardiac and vascular aging involve neurohormonal signaling (eg, renin-angiotensin, adrenergic, insulin-IGF1 signaling) and cell-autonomous mechanisms. The potential therapeutic strategies to improve mitochondrial function in aging and cardiovascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants, calorie restriction, calorie restriction mimetics, and exercise training.
Collapse
Affiliation(s)
- Dao-Fu Dai
- Department of Pathology, University of Washington, Seattle, USA
| | | | | |
Collapse
|
49
|
Perjés Á, Kubin A, Kónyi A, Szabados S, Cziráki A, Skoumal R, Ruskoaho H, Szokodi I. Physiological regulation of cardiac contractility by endogenous reactive oxygen species. Acta Physiol (Oxf) 2012; 205:26-40. [PMID: 22463609 DOI: 10.1111/j.1748-1716.2012.02391.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Increased production of reactive oxygen species (ROS) has been linked to the pathogenesis of congestive heart failure. However, emerging evidence suggests the involvement of ROS in the regulation of various physiological cellular processes in the myocardium. In this review, we summarize the latest findings regarding the role of ROS in the acute regulation of cardiac contractility. We discuss ROS-dependent modulation of the inotropic responses to G protein-coupled receptor agonists (e.g. β-adrenergic receptor agonists and endothelin-1), the potential cellular sources of ROS (e.g. NAD(P)H oxidases and mitochondria) and the proposed end-targets and signalling pathways by which ROS affect contractility. Accumulating new data supports the fundamental role of endogenously generated ROS to regulate cardiac function under physiological conditions.
Collapse
Affiliation(s)
| | - A.M. Kubin
- Department of Pharmacology and Toxicology; Institute of Biomedicine; Biocenter Oulu; University of Oulu; Oulu; Finland
| | - A. Kónyi
- Heart Institute; Medical School; University of Pécs; Pécs; Hungary
| | - S. Szabados
- Heart Institute; Medical School; University of Pécs; Pécs; Hungary
| | - A. Cziráki
- Heart Institute; Medical School; University of Pécs; Pécs; Hungary
| | - R. Skoumal
- Department of Pharmacology and Toxicology; Institute of Biomedicine; Biocenter Oulu; University of Oulu; Oulu; Finland
| | - H. Ruskoaho
- Department of Pharmacology and Toxicology; Institute of Biomedicine; Biocenter Oulu; University of Oulu; Oulu; Finland
| | - I. Szokodi
- Heart Institute; Medical School; University of Pécs; Pécs; Hungary
| |
Collapse
|
50
|
Gómez LA, Hagen TM. Age-related decline in mitochondrial bioenergetics: does supercomplex destabilization determine lower oxidative capacity and higher superoxide production? Semin Cell Dev Biol 2012; 23:758-67. [PMID: 22521482 DOI: 10.1016/j.semcdb.2012.04.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 03/31/2012] [Accepted: 04/04/2012] [Indexed: 12/17/2022]
Abstract
Mitochondrial decay plays a central role in the aging process. Although certainly multifactorial in nature, defective operation of the electron transport chain (ETC) constitutes a key mechanism involved in the age-associated loss of mitochondrial energy metabolism. Primarily, mitochondrial dysfunction affects the aging animal by limiting bioenergetic reserve capacity and/or increasing oxidative stress via enhanced electron leakage from the ETC. Even though the important aging characteristics of mitochondrial decay are known, the molecular events underlying inefficient electron flux that ultimately leads to higher superoxide appearance and impaired respiration are not completely understood. This review focuses on the potential role(s) that age-associated destabilization of the macromolecular organization of the ETC (i.e. supercomplexes) may be important for development of the mitochondrial aging phenotype, particularly in post-mitotic tissues.
Collapse
Affiliation(s)
- Luis A Gómez
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|