1
|
Kanbay M, Mizrak B, Alper EN, Copur S, Ortiz A. Acute kidney injury following CAR-T cell therapy: a nephrologist's perspective. Clin Kidney J 2025; 18:sfae359. [PMID: 39781479 PMCID: PMC11704793 DOI: 10.1093/ckj/sfae359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Indexed: 01/12/2025] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy, an emerging personalized immunotherapy for various haematologic malignancies, autoimmune diseases and other conditions, involves the modification of patients' T cells to express a chimeric antigen receptor that recognizes tumour or autoimmune cell antigens, allowing CAR-T cells to destroy cancerous and other target cells selectively. Despite remarkable clinical improvements in patients, multiple adverse effects have been associated with CAR-T cell therapy. Among the most recognized adverse effects are cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome and tumour lysis syndrome. Even though less recognized, the incidence of acute kidney injury (AKI) ranges from 5 to 33%. The wide range of reported AKI incidence rates might depend on patient population characteristics and comorbidities and specific CAR-T cell therapy features. Even though the exact pathophysiology remains unknown, several key mechanisms, including cytokine release syndrome, tumour lysis syndrome and other factors such as direct renal toxicity of CAR-T cell therapy, conditioning regimens or other medications (e.g. antibiotics), and infectious complications (e.g. sepsis) have been proposed. Risk factors for CAR-T-related AKI include lower baseline glomerular filtration rate, higher rates of allopurinol or rasburicase use, intravenous contrast material exposure, elevated baseline lactate dehydrogenase and grade 3 or higher cytokine release syndrome. Future prospective studies with larger patient populations are needed to gain insights into the pathophysiology of CAR-T-related AKI and, more importantly, to be able to prevent as well as to develop novel and more efficient treatment modalities. In this narrative review, we discuss the underlying pathophysiology, risk factors, potential interventions and future directions related to AKI following CAR-T cell therapy.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Berk Mizrak
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ezgi N Alper
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alberto Ortiz
- Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, Madrid, Spain
| |
Collapse
|
2
|
Yang Y, Luo K, Xu G. Acute kidney injury following chimeric antigen receptor T-cell therapy: Epidemiology, mechanism and prognosis. Clin Immunol 2024; 266:110311. [PMID: 38996858 DOI: 10.1016/j.clim.2024.110311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/03/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy is a promising treatment for hematologic tumors, and adverse events of acute kidney injury (AKI) have been reported. However, its incidence, clinical characteristics, and prognosis remained unclear. We searched PubMed, EMBASE, and Web of Science for study about AKI after CAR-T therapy, a total of 15 studies, comprising 694 patients, were included. Among the 694 patients, 154 (22%) developed AKI, of which 89 (57.8%) were in stage 1, 59 (38.3%) were in stage 2 or 3, and 6 (3.9%) were not reported. Cytokine release syndrome is considered to be the most common cause of AKI. Of the 154 AKI patients, only 16 (10.4%) received renal replacement therapy, most AKI recovered renal function after symptomatic treatment. Although the occurrence of AKI after CAR-T therapy is rare and mostly mild, active knowledge of its pathogenesis, timely diagnosis and treatment are necessary for clinicians.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China; Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, PR China
| | - Kaiping Luo
- Department of Nephrology, Ganzhou People's Hospital, Ganzhou, PR China.
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China.
| |
Collapse
|
3
|
Rajabloo Y, Saberi-Karimian M, Soflaei SS, Ferns GA, Ghayour-Mobarhan M. Syndecans and diabetic complications: A narrative review. Am J Med Sci 2024; 368:99-111. [PMID: 38697476 DOI: 10.1016/j.amjms.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Syndecan (SDC) is a member of the heparan sulfate proteoglycan (HSPG) family. It appears to play a role in the aetiology of diabetic complications, with decreased levels of SDCs being reported in the kidney, retina, and cardiac muscle in models of diabetes mellitus (DM). The reduced levels of SDCs may play an important role in the development of albuminuria in DM. Some studies have provided the evidence supporting the mechanisms underlying the role of SDCs in DM. However, SDCs and the molecular mechanisms involved are complex and need to be further elucidated. This review focuses on the underlying molecular mechanisms of SDCs that are involved in the development and progression of the complications of DM, which may help in developing new strategies to prevent and treat these complications.
Collapse
Affiliation(s)
- Yasamin Rajabloo
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Saberi-Karimian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sara Saffar Soflaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Masenga SK, Liweleya S, Kirabo A. High salt intake and HIV infection on endothelial glycocalyx shedding in salt-sensitive hypertension. Front Cell Dev Biol 2024; 12:1395885. [PMID: 39081863 PMCID: PMC11286502 DOI: 10.3389/fcell.2024.1395885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
The endothelial glycocalyx is closely associated with various physiological and pathophysiological events. Significant modification of the endothelial glycocalyx is an early process in the pathogenesis of cardiovascular disease. High dietary salt and HIV infection damages the endothelial glycocalyx causing endothelial dysfunction and increasing the risk for salt-sensitive hypertension and cardiovascular disease. The two factors, HIV infection and dietary salt are critical independent predictors of hypertension and cardiovascular disease and often synergize to exacerbate and accelerate disease pathogenesis. Salt-sensitive hypertension is more common among people living with HIV and is associated with risk for cardiovascular disease, stroke, heart attack and even death. However, the underlying mechanisms linking endothelial glycocalyx damage to dietary salt and HIV infection are lacking. Yet, both HIV infection/treatment and dietary salt are closely linked to endothelial glycocalyx damage and development of salt-sensitive hypertension. Moreover, the majority of individuals globally, consume more salt than is recommended and the burden of HIV especially in sub-Sahara Africa is disproportionately high. In this review, we have discussed the missing link between high salt and endothelial glycocalyx shedding in the pathogenesis of salt-sensitive hypertension. We have further elaborated the role played by HIV infection and treatment in modifying endothelial glycocalyx integrity to contribute to the development of hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Situmbeko Liweleya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, United States
- Vanderbilt Institute for Global Health, Nashville, TN, United States
| |
Collapse
|
5
|
Rabia B, Thanigaimani S, Golledge J. The potential involvement of glycocalyx disruption in abdominal aortic aneurysm pathogenesis. Cardiovasc Pathol 2024; 70:107629. [PMID: 38461960 DOI: 10.1016/j.carpath.2024.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysm is a weakening and expansion of the abdominal aorta. Currently, there is no drug treatment to limit abdominal aortic aneurysm growth. The glycocalyx is the outermost layer of the cell surface, mainly composed of glycosaminoglycans and proteoglycans. OBJECTIVE The aim of this review was to identify a potential relationship between glycocalyx disruption and abdominal aortic aneurysm pathogenesis. METHODS A narrative review of relevant published research was conducted. RESULTS Glycocalyx disruption has been reported to enhance vascular permeability, impair immune responses, dysregulate endothelial function, promote extracellular matrix remodeling and modulate mechanotransduction. All these effects are implicated in abdominal aortic aneurysm pathogenesis. Glycocalyx disruption promotes inflammation through exposure of adhesion molecules and release of proinflammatory mediators. Glycocalyx disruption affects how the endothelium responds to shear stress by reducing nitric oxide availabilty and adversely affecting the storage and release of several antioxidants, growth factors, and antithromotic proteins. These changes exacerbate oxidative stress, stimulate vascular smooth muscle cell dysfunction, and promote thrombosis, all effects implicated in abdominal aortic aneurysm pathogenesis. Deficiency of key component of the glycocalyx, such as syndecan-4, were reported to promote aneurysm formation and rupture in the angiotensin-II and calcium chloride induced mouse models of abdominal aortic aneurysm. CONCLUSION This review provides a summary of past research which suggests that glycocalyx disruption may play a role in abdominal aortic aneurysm pathogenesis. Further research is needed to establish a causal link between glycocalyx disruption and abdominal aortic aneurysm development.
Collapse
Affiliation(s)
- Bibi Rabia
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; Department of Pharmacy, Hazara University, Mansehra 21300, Pakistan
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland 4810, Australia.
| |
Collapse
|
6
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
7
|
Immonen T, Jung E, Gallo DM, Diaz-Primera R, Gotsch F, Whittaker P, Than NG, Bosco M, Tarca AL, Suksai M, Romero R, Chaiworapongsa T. Acute pyelonephritis in pregnancy and plasma syndecan-1: evidence of glycocalyx involvement. J Matern Fetal Neonatal Med 2023; 36:2155041. [PMID: 36642424 PMCID: PMC10352999 DOI: 10.1080/14767058.2022.2155041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/30/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Acute pyelonephritis, a risk factor for maternal sepsis, adult respiratory distress syndrome, and preterm labor, is a frequent cause of hospitalization. This condition is characterized by excessive intravascular inflammation and endothelial cell activation and dysfunction. Syndecan-1, a major component of the glycocalyx, is a gel-like layer that covers the luminal surface of healthy endothelial cells, preserving and mediating many endothelial functions. During pregnancy, there is an additional potential source of syndecan-1, the "syncytiotrophoblast glycocalyx," which lines the intervillous space. Insults that damage the glycocalyx lead to a shedding of syndecan-1 into the circulation. Hence, syndecan-1 has been proposed as a marker of endothelial injury in conditions such as sepsis, trauma, cardiovascular disease, and diabetes mellitus. OBJECTIVE The objective of this study was to determine whether the plasma syndecan-1 concentration changes in women with acute pyelonephritis in the presence or absence of bacteremia. STUDY DESIGN This cross-sectional study included three groups: (1) non-pregnant women (n = 25); (2) women with an uncomplicated pregnancy from whom samples were collected preterm (n = 61) or at term (n = 69); and (3) pregnant women diagnosed with acute pyelonephritis from whom samples were collected at the time of diagnosis during the second and third trimesters (n = 33). The diagnosis of acute pyelonephritis was based on clinical findings and a positive urine culture for bacteria. Blood culture results were available in 85% (28/33) of women with acute pyelonephritis. Plasma concentrations of syndecan-1 were determined by a validated immunoassay. RESULTS (1) Women with an uncomplicated pregnancy had a higher plasma concentration of syndecan-1 than non-pregnant women. The geometric mean (95% confidence interval [CI]) of syndecan-1 concentration was 51.0 (12.1-216.1) ng/mL in non-pregnant controls; 1280 (365-4487) ng/mL in normal preterm gestations; and 1786 (546-5834) ng/mL in normal term gestations (adjusted p < .005 for all three between group comparisons); (2) plasma syndecan-1 concentrations increased with gestational age among women with a normal pregnancy (p < .001, R2 = 0.27); (3) syndecan-1 multiple of the mean (MoM) values in pregnant patients with acute pyelonephritis were higher than those in normal pregnant women based on second- and third-trimester samples (p = .048, 1.26-fold change). The increase was driven primarily by cases with a positive blood culture (p = .009, 1.74-fold change); (4) when data from third-trimester samples were compared, overall differences in syndecan-1 MoM values between cases and controls were slightly larger (p = .03, 1.36- fold change), which were especially contributed to by cases with a positive blood culture (p = .023, fold change 1.79-fold change). CONCLUSIONS Plasma syndecan-1 concentration is higher in pregnant women and increases as a function of gestational age. Patients with acute pyelonephritis have a higher plasma concentration of syndecan-1, and this is particularly the case in the presence of bacteremia.
Collapse
Affiliation(s)
- Timothy Immonen
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Peter Whittaker
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Maternity Private Clinic, Budapest, Hungary
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
8
|
Foote CA, Ramirez-Perez FI, Smith JA, Ghiarone T, Morales-Quinones M, McMillan NJ, Augenreich MA, Power G, Burr K, Aroor AR, Bender SB, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. Neuraminidase inhibition improves endothelial function in diabetic mice. Am J Physiol Heart Circ Physiol 2023; 325:H1337-H1353. [PMID: 37801046 PMCID: PMC10908409 DOI: 10.1152/ajpheart.00337.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Neuraminidases cleave sialic acids from glycocalyx structures and plasma neuraminidase activity is elevated in type 2 diabetes (T2D). Therefore, we hypothesize circulating neuraminidase degrades the endothelial glycocalyx and diminishes flow-mediated dilation (FMD), whereas its inhibition restores shear mechanosensation and endothelial function in T2D settings. We found that compared with controls, subjects with T2D have higher plasma neuraminidase activity, reduced plasma nitrite concentrations, and diminished FMD. Ex vivo and in vivo neuraminidase exposure diminished FMD and reduced endothelial glycocalyx presence in mouse arteries. In cultured endothelial cells, neuraminidase reduced glycocalyx coverage. Inhalation of the neuraminidase inhibitor, zanamivir, reduced plasma neuraminidase activity, enhanced endothelial glycocalyx length, and improved FMD in diabetic mice. In humans, a single-arm trial (NCT04867707) of zanamivir inhalation did not reduce plasma neuraminidase activity, improved glycocalyx length, or enhanced FMD. Although zanamivir plasma concentrations in mice reached 225.8 ± 22.0 ng/mL, in humans were only 40.0 ± 7.2 ng/mL. These results highlight the potential of neuraminidase inhibition for ameliorating endothelial dysfunction in T2D and suggest the current Food and Drug Administration-approved inhaled dosage of zanamivir is insufficient to achieve desired outcomes in humans.NEW & NOTEWORTHY This work identifies neuraminidase as a key mediator of endothelial dysfunction in type 2 diabetes that may serve as a biomarker for impaired endothelial function and predictive of development and progression of cardiovascular pathologies associated with type 2 diabetes (T2D). Data show that intervention with the neuraminidase inhibitor zanamivir at effective plasma concentrations may represent a novel pharmacological strategy for restoring the glycocalyx and ameliorating endothelial dysfunction.
Collapse
Affiliation(s)
- Christopher A Foote
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
| | | | - James A Smith
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Thaysa Ghiarone
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | | | - Neil J McMillan
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Marc A Augenreich
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | - Katherine Burr
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | - Annayya R Aroor
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Shawn B Bender
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Department of Medicine, Center for Precision Medicine, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
9
|
Locatelli M, Rottoli D, Mahmoud R, Abbate M, Corna D, Cerullo D, Tomasoni S, Remuzzi G, Zoja C, Benigni A, Macconi D. Endothelial Glycocalyx of Peritubular Capillaries in Experimental Diabetic Nephropathy: A Target of ACE Inhibitor-Induced Kidney Microvascular Protection. Int J Mol Sci 2023; 24:16543. [PMID: 38003732 PMCID: PMC10671403 DOI: 10.3390/ijms242216543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Peritubular capillary rarefaction is a recurrent aspect of progressive nephropathies. We previously found that peritubular capillary density was reduced in BTBR ob/ob mice with type 2 diabetic nephropathy. In this model, we searched for abnormalities in the ultrastructure of peritubular capillaries, with a specific focus on the endothelial glycocalyx, and evaluated the impact of treatment with an angiotensin-converting enzyme inhibitor (ACEi). Mice were intracardially perfused with lanthanum to visualise the glycocalyx. Transmission electron microscopy analysis revealed endothelial cell abnormalities and basement membrane thickening in the peritubular capillaries of BTBR ob/ob mice compared to wild-type mice. Remodelling and focal loss of glycocalyx was observed in lanthanum-stained diabetic kidneys, associated with a reduction in glycocalyx components, including sialic acids, as detected through specific lectins. ACEi treatment preserved the endothelial glycocalyx and attenuated the ultrastructural abnormalities of peritubular capillaries. In diabetic mice, peritubular capillary damage was associated with an enhanced tubular expression of heparanase, which degrades heparan sulfate residues of the glycocalyx. Heparanase was also detected in renal interstitial macrophages that expressed tumor necrosis factor-α. All these abnormalities were mitigated by ACEi. Our findings suggest that, in experimental diabetic nephropathy, preserving the endothelial glycocalyx is important in order to protect peritubular capillaries from damage and loss.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy; (M.L.); (D.R.); (R.M.); (M.A.); (D.C.); (D.C.); (S.T.); (G.R.); (C.Z.); (D.M.)
| | | |
Collapse
|
10
|
Breslin JW. Edema and lymphatic clearance: molecular mechanisms and ongoing challenges. Clin Sci (Lond) 2023; 137:1451-1476. [PMID: 37732545 PMCID: PMC11025659 DOI: 10.1042/cs20220314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Resolution of edema remains a significant clinical challenge. Conditions such as traumatic shock, sepsis, or diabetes often involve microvascular hyperpermeability, which leads to tissue and organ dysfunction. Lymphatic insufficiency due to genetic causes, surgical removal of lymph nodes, or infections, leads to varying degrees of tissue swelling that impair mobility and immune defenses. Treatment options are limited to management of edema as there are no specific therapeutics that have demonstrated significant success for ameliorating microvascular leakage or impaired lymphatic function. This review examines current knowledge about the physiological, cellular, and molecular mechanisms that control microvascular permeability and lymphatic clearance, the respective processes for interstitial fluid formation and removal. Clinical conditions featuring edema, along with potential future directions are discussed.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, FL, U.S.A
| |
Collapse
|
11
|
Lv B, Huang S, Huang H, Niu N, Liu J. Endothelial Glycocalyx Injury in SARS-CoV-2 Infection: Molecular Mechanisms and Potential Targeted Therapy. Mediators Inflamm 2023; 2023:6685251. [PMID: 37674786 PMCID: PMC10480029 DOI: 10.1155/2023/6685251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
This review aims at summarizing state-of-the-art knowledge on glycocalyx and SARS-CoV-2. The endothelial glycocalyx is a dynamic grid overlying the surface of the endothelial cell (EC) lumen and consists of membrane-bound proteoglycans and glycoproteins. The role of glycocalyx has been determined in the regulation of EC permeability, adhesion, and coagulation. SARS-CoV-2 is an enveloped, single-stranded RNA virus belonging to β-coronavirus that causes the outbreak and the pandemic of COVID-19. Through the respiratory tract, SARS-CoV-2 enters blood circulation and interacts with ECs possessing angiotensin-converting enzyme 2 (ACE2). Intact glycolyx prevents SARS-CoV-2 invasion of ECs. When the glycocalyx is incomplete, virus spike protein of SARS-CoV-2 binds with ACE2 and enters ECs for replication. In addition, cytokine storm targets glycocalyx, leading to subsequent coagulation disorder. Therefore, it is intriguing to develop a novel treatment for SARS-CoV-2 infection through the maintenance of the integrity of glycocalyx. This review aims to summarize state-of-the-art knowledge of glycocalyx and its potential function in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bingxuan Lv
- The Second Hospital of Shandong University, Shandong University, 247 Beiyuan Street, Jinan 250033, China
| | - Shengshi Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| | - Hong Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| | - Na Niu
- Department of Pediatrics, Shandong Provincial Hospital, Shandong First Medical University, 324 Jingwu Road, Jinan 250021, China
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| |
Collapse
|
12
|
Alamilla-Sanchez ME, Alcala-Salgado MA, Cerezo Samperio B, Prado Lozano P, Diaz Garcia JD, Gonzalez Fuentes C, Yama Estrella MB, Morales Lopez EF. Advances in the Physiology of Transvascular Exchange and A New Look At Rational Fluid Prescription. Int J Gen Med 2023; 16:2753-2770. [PMID: 37408844 PMCID: PMC10319290 DOI: 10.2147/ijgm.s405926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/28/2023] [Indexed: 07/07/2023] Open
Abstract
The Starling principle is a model that explains the transvascular distribution of fluids essentially governed by hydrostatic and oncotic forces, which dynamically allow vascular refilling according to the characteristics of the blood vessel. However, careful analysis of fluid physiology has shown that the principle, while correct, is not complete. The revised Starling principle (Michel-Weinbaum model) provides relevant information on fluid kinetics. Special emphasis has been placed on the endothelial glycocalyx, whose subendothelial area allows a restricted oncotic pressure that limits the reabsorption of fluid from the interstitial space, so that transvascular refilling occurs mainly from the lymphatic vessels. The close correlation between pathological states of the endothelium (eg: sepsis, acute inflammation, or chronic kidney disease) and the prescription of fluids forces the physician to understand the dynamics of fluids in the organism; this will allow rational fluid prescriptions. A theory that integrates the physiology of exchange and transvascular refilling is the "microconstant model", whose variables include dynamic mechanisms that can explain edematous states, management of acute resuscitation, and type of fluids for common clinical conditions. The clinical-physiological integration of the concepts will be the hinges that allow a rational and dynamic prescription of fluids.
Collapse
Affiliation(s)
| | | | | | - Pamela Prado Lozano
- Department of Nephrology, Centro Medico Nacional “20 de Noviembre”, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
13
|
Abdullah S, Ghio M, Cotton-Betteridge A, Vinjamuri A, Drury R, Packer J, Aras O, Friedman J, Karim M, Engelhardt D, Kosowski E, Duong K, Shaheen F, McGrew PR, Harris CT, Reily R, Sammarco M, Chandra PK, Pociask D, Kolls J, Katakam PV, Smith A, Taghavi S, Duchesne J, Jackson-Weaver O. Succinate metabolism and membrane reorganization drives the endotheliopathy and coagulopathy of traumatic hemorrhage. SCIENCE ADVANCES 2023; 9:eadf6600. [PMID: 37315138 PMCID: PMC10266735 DOI: 10.1126/sciadv.adf6600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Acute hemorrhage commonly leads to coagulopathy and organ dysfunction or failure. Recent evidence suggests that damage to the endothelial glycocalyx contributes to these adverse outcomes. The physiological events mediating acute glycocalyx shedding are undefined, however. Here, we show that succinate accumulation within endothelial cells drives glycocalyx degradation through a membrane reorganization-mediated mechanism. We investigated this mechanism in a cultured endothelial cell hypoxia-reoxygenation model, in a rat model of hemorrhage, and in trauma patient plasma samples. We found that succinate metabolism by succinate dehydrogenase mediates glycocalyx damage through lipid oxidation and phospholipase A2-mediated membrane reorganization, promoting the interaction of matrix metalloproteinase 24 (MMP24) and MMP25 with glycocalyx constituents. In a rat hemorrhage model, inhibiting succinate metabolism or membrane reorganization prevented glycocalyx damage and coagulopathy. In patients with trauma, succinate levels were associated with glycocalyx damage and the development of coagulopathy, and the interaction of MMP24 and syndecan-1 was elevated compared to healthy controls.
Collapse
Affiliation(s)
- Sarah Abdullah
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Michael Ghio
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Robert Drury
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Jacob Packer
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Oguz Aras
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Jessica Friedman
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mardeen Karim
- Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Kelby Duong
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Farhana Shaheen
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Patrick R. McGrew
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Charles T. Harris
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Robert Reily
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Mimi Sammarco
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K. Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Derek Pociask
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, USA
| | - Jay Kolls
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, USA
| | - Prasad V. Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alison Smith
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Sharven Taghavi
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Juan Duchesne
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Olan Jackson-Weaver
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
14
|
Yu H, Song YY, Li XH. Early diabetic kidney disease: Focus on the glycocalyx. World J Diabetes 2023; 14:460-480. [PMID: 37273258 PMCID: PMC10236994 DOI: 10.4239/wjd.v14.i5.460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
The incidence of diabetic kidney disease (DKD) is sharply increasing worldwide. Microalbuminuria is the primary clinical marker used to identify DKD, and its initiating step in diabetes is glomerular endothelial cell dysfunction, particularly glycocalyx impairment. The glycocalyx found on the surface of glomerular endothelial cells, is a dynamic hydrated layer structure composed of pro-teoglycans, glycoproteins, and some adsorbed soluble components. It reinforces the negative charge barrier, transduces the shear stress, and mediates the interaction of blood corpuscles and podocytes with endothelial cells. In the high-glucose environment of diabetes, excessive reactive oxygen species and proinflammatory cytokines can damage the endothelial glycocalyx (EG) both directly and indirectly, which induces the production of microalbuminuria. Further research is required to elucidate the role of the podocyte glycocalyx, which may, together with endothelial cells, form a line of defense against albumin filtration. Interestingly, recent research has confirmed that the negative charge barrier function of the glycocalyx found in the glomerular basement membrane and its repulsion effect on albumin is limited. Therefore, to improve the early diagnosis and treatment of DKD, the potential mechanisms of EG degradation must be analyzed and more responsive and controllable targets must be explored. The content of this review will provide insights for future research.
Collapse
Affiliation(s)
- Hui Yu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Yun Song
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xian-Hua Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
15
|
Knežević D, Ćurko-Cofek B, Batinac T, Laškarin G, Rakić M, Šoštarič M, Zdravković M, Šustić A, Sotošek V, Batičić L. Endothelial Dysfunction in Patients Undergoing Cardiac Surgery: A Narrative Review and Clinical Implications. J Cardiovasc Dev Dis 2023; 10:jcdd10050213. [PMID: 37233179 DOI: 10.3390/jcdd10050213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Cardiac surgery is one of the highest-risk procedures, usually involving cardiopulmonary bypass and commonly inducing endothelial injury that contributes to the development of perioperative and postoperative organ dysfunction. Substantial scientific efforts are being made to unravel the complex interaction of biomolecules involved in endothelial dysfunction to find new therapeutic targets and biomarkers and to develop therapeutic strategies to protect and restore the endothelium. This review highlights the current state-of-the-art knowledge on the structure and function of the endothelial glycocalyx and mechanisms of endothelial glycocalyx shedding in cardiac surgery. Particular emphasis is placed on potential strategies to protect and restore the endothelial glycocalyx in cardiac surgery. In addition, we have summarized and elaborated the latest evidence on conventional and potential biomarkers of endothelial dysfunction to provide a comprehensive synthesis of crucial mechanisms of endothelial dysfunction in patients undergoing cardiac surgery, and to highlight their clinical implications.
Collapse
Affiliation(s)
- Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
| | - Gordana Laškarin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", M. Tita 188, 51410 Opatija, Croatia
| | - Marijana Rakić
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", M. Tita 188, 51410 Opatija, Croatia
| | - Maja Šoštarič
- Clinical Department of Anesthesiology and Perioperative Intensive Therapy, Division of Cardiac Anesthesiology and Intensive Therapy, University Clinical Center Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia
- Department of Anesthesiology and Reanimatology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Marko Zdravković
- Department of Anaesthesiology, Intensive Care and Pain Management, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Alan Šustić
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Vlatka Sotošek
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
16
|
Crompton M, Ferguson JK, Ramnath RD, Onions KL, Ogier AS, Gamez M, Down CJ, Skinner L, Wong KH, Dixon LK, Sutak J, Harper SJ, Pontrelli P, Gesualdo L, Heerspink HL, Toto RD, Welsh GI, Foster RR, Satchell SC, Butler MJ. Mineralocorticoid receptor antagonism in diabetes reduces albuminuria by preserving the glomerular endothelial glycocalyx. JCI Insight 2023; 8:e154164. [PMID: 36749631 PMCID: PMC10077489 DOI: 10.1172/jci.insight.154164] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
The glomerular endothelial glycocalyx (GEnGlx) forms the first part of the glomerular filtration barrier. Previously, we showed that mineralocorticoid receptor (MR) activation caused GEnGlx damage and albuminuria. In this study, we investigated whether MR antagonism could limit albuminuria in diabetes and studied the site of action. Streptozotocin-induced diabetic Wistar rats developed albuminuria, increased glomerular albumin permeability (Ps'alb), and increased glomerular matrix metalloproteinase (MMP) activity with corresponding GEnGlx loss. MR antagonism prevented albuminuria progression, restored Ps'alb, preserved GEnGlx, and reduced MMP activity. Enzymatic degradation of the GEnGlx negated the benefits of MR antagonism, confirming their dependence on GEnGlx integrity. Exposing human glomerular endothelial cells (GEnC) to diabetic conditions in vitro increased MMPs and caused glycocalyx damage. Amelioration of these effects confirmed a direct effect of MR antagonism on GEnC. To confirm relevance to human disease, we used a potentially novel confocal imaging method to show loss of GEnGlx in renal biopsy specimens from patients with diabetic nephropathy (DN). In addition, patients with DN randomized to receive an MR antagonist had reduced urinary MMP2 activity and albuminuria compared with placebo and baseline levels. Taken together, our work suggests that MR antagonists reduce MMP activity and thereby preserve GEnGlx, resulting in reduced glomerular permeability and albuminuria in diabetes.
Collapse
Affiliation(s)
- Michael Crompton
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Joanne K. Ferguson
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Raina D. Ramnath
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Karen L. Onions
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Anna S. Ogier
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Monica Gamez
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Colin J. Down
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Laura Skinner
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kitty H. Wong
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lauren K. Dixon
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Judit Sutak
- Pathology Department, Southmead Hospital, Bristol, United Kingdom
| | - Steven J. Harper
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Paola Pontrelli
- Division of Nephrology, Dialysis and Transplantation, Department of Emergency and Organ Transplantation, Aldo Moro University of Bari, Bari, Italy
| | - Loreto Gesualdo
- Division of Nephrology, Dialysis and Transplantation, Department of Emergency and Organ Transplantation, Aldo Moro University of Bari, Bari, Italy
| | - Hiddo L. Heerspink
- Department of Clinical Pharmacology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Robert D. Toto
- Department of Clinical Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gavin I. Welsh
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Rebecca R. Foster
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Simon C. Satchell
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Matthew J. Butler
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
17
|
Hettrick H, Aviles F. Microgravity and Lymphatics: Why Space Programs Need Lymphedema Physiology Specialists. Lymphat Res Biol 2023. [PMID: 36622762 DOI: 10.1089/lrb.2022.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: The resurgence of space travel in the recent years, both through formally trained astronauts on the International Space Station and the civilian space race to send astrocivilians to Low Earth Orbit and beyond, beckons the need to understand the role of the lymphatic system and role of endothelial glycocalyx when subjected to gravitational alterations. Methods and Results: A comprehensive narrative review of the literature explores a call to action for research and countermeasure development to support the health and well-being of humans subjected to space flight, with particular attention to the role of the lymphatic system and endothelial glycocalyx. Emerging evidence suggests a link between the dysfunction experienced with various physiological processes in microgravity, highlighting the need for more research exploring the role of the lymphatic system in the extremes of gravity and countermeasure development to reduce dysregulation. Conclusion: The synergistic and interdependent relationship of these structures are fundamental to health in space and on Earth.
Collapse
Affiliation(s)
- Heather Hettrick
- Department of Physical Therapy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Frank Aviles
- Wound Care Service Line Director, Natchitoches Regional Medical Center, Natchitoches, Louisiana, USA
| |
Collapse
|
18
|
Mitra R, Nersesyan A, Pentland K, Melin MM, Levy RM, Ebong EE. Diosmin and its glycocalyx restorative and anti-inflammatory effects on injured blood vessels. FASEB J 2022; 36:e22630. [PMID: 36315163 DOI: 10.1096/fj.202200053rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/10/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
The endothelium, a crucial homeostatic organ, regulates vascular permeability and tone. Under physiological conditions, endothelial stimulation induces vasodilator endothelial nitric oxide (eNO) release and prevents adhesion molecule accessibility and leukocyte adhesion and migration into vessel walls. Endothelium dysfunction is a principal event in cardiovascular disorders, including atherosclerosis. Minimal attention is given to an important endothelial cell structure, the endothelial glycocalyx (GCX), a negatively charged heterogeneous polysaccharide that serves as a protective covering for endothelial cells and enables endothelial cells to transduce mechanical stimuli into various biological and chemical activities. Endothelial GCX shedding thus plays a role in endothelial dysfunction, for example by increasing vascular permeability and decreasing vessel tone. Consequently, there is increasing interest in developing therapies that focus on GCX repair to limit downstream endothelium dysfunction and prevent further downstream cardiovascular events. Here, we present diosmin (3',5,7-trihydroxy-4'-methoxyflavone-7-rhamnoglucoside), a flavone glycoside of diosmetin, which downregulates adhesive molecule expression, decreases inflammation and capillary permeability, and upregulates eNO expression. Due to these pleiotropic effects of diosmin on the vasculature, a possible unidentified mechanism of action is through GCX restoration. We hypothesize that diosmin positively affects GCX integrity along with GCX-related endothelial functions. Our hypothesis was tested in a partial ligation left carotid artery (LCA) mouse model, where the right carotid artery was the control for each mouse. Diosmin (50 mg/kg) was administered daily for 7 days, 72 h after ligation. Within the ligated mice LCAs, diosmin treatment elevated the activated eNO synthase level, inhibited inflammatory cell uptake, decreased vessel wall thickness, increased vessel diameter, and increased GCX coverage of the vessel wall. ELISA showed a decrease in hyaluronan concentration in plasma samples of diosmin-treated mice, signifying reduced GCX shedding. In summary, diosmin supported endothelial GCX integrity, to which we attribute diosmin's preservation of endothelial function as indicated by attenuated expression of inflammatory factors and restored vascular tone.
Collapse
Affiliation(s)
- Ronodeep Mitra
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Alina Nersesyan
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Kaleigh Pentland
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - M Mark Melin
- M Health Fairview Wound Healing Institute, Edina, Minnesota, USA
| | - Robert M Levy
- Director of Clinical Development, Primus Pharmaceuticals, Inc., Scottsdale, Arizona, USA
| | - Eno E Ebong
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.,Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA.,Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States
| |
Collapse
|
19
|
Xu L, Lu LL, Wang YT, Zhou JB, Wang CX, Xin JD, Gao JD. Endothelial injury and inflammation in patients with hyperuricemic nephropathy at chronic kidney disease stages 1-2 and 3-4. World J Clin Cases 2022; 10:11766-11774. [PMID: 36405284 PMCID: PMC9669867 DOI: 10.12998/wjcc.v10.i32.11766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Endothelial injury and inflammation are the main pathological changes in hyperuricemic nephropathy (HN); however, they have not been assessed in patients in the early, middle, and late phases of HN.
AIM To investigate endothelial injury and inflammatory conditions between patients with HN at chronic kidney disease (CKD) stages 3-4 and CKD 1-2.
METHODS This study enrolled 80 patients (49 and 31 with HN at CKD stage 1-2 and 3-4, respectively) from the Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine between July 2021 and January 2022. Plasma levels of heparan sulfate, endocan, oxidized low-density lipoprotein (Ox-LDL), E-selectin, soluble intercellular adhesion molecule-1 (slCAM1), interleukin (IL)-1β, and IL-6 and urine levels of lipocalin-type prostaglandin D synthase (L-PGDS), IL-1β, and IL-6 were measured using enzyme-linked immunosorbnent assay.
RESULTS Comparison between patients with HN at CKD 1-2 and those with HN at CKD 3-4 showed that age and disease course were significant factors (P < 0.001 and P < 0.010, respectively). There were no statistical differences in sex, heart rate, body mass index, and systolic and diastolic blood pressures. The incidence of hypertension was also significant (P = 0.03). Plasma levels of heparin sulfate (P < 0.001), endocan (P = 0.034), E-selectin (P < 0.001), slCAM1 (P < 0.001), IL-1β (P = 0.006), and IL-6 (P = 0.004) and the urine levels of L-PGDS (P < 0.001), IL-1β (P = 0.003), and IL-6 (P < 0.001) were high in patients with HN at CKD 3-4 than in those with HN at CKD 1-2. The difference in plasma Ox-LDL levels was not significant (P = 0.078).
CONCLUSION Vascular endothelial injury and inflammation were higher in patients with HN at CKD3-4 than at CKD 1-2. Plasma heparin sulfate and slCAM1 levels are synergistic factors for CKD staging in HN.
Collapse
Affiliation(s)
- Li Xu
- Department of Nephrology, Shuguang Hospital Affiliated to the Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Li-Li Lu
- Department of Nephrology, Shuguang Hospital Affiliated to the Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Ya-Ting Wang
- Department of Nephrology, Shuguang Hospital Affiliated to the Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Jia-Bao Zhou
- Department of Nephrology, Shuguang Hospital Affiliated to the Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Chuan-Xu Wang
- Department of Nephrology, Shuguang Hospital Affiliated to the Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Jia-Dong Xin
- Department of Nephrology, Shuguang Hospital Affiliated to the Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Jian-Dong Gao
- Department of Nephrology, Shuguang Hospital Affiliated to the Shanghai University of Traditional Chinese Medicine, TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| |
Collapse
|
20
|
Yang Y, Zou S, Xu G. An update on the interaction between COVID-19, vaccines, and diabetic kidney disease. Front Immunol 2022; 13:999534. [DOI: 10.3389/fimmu.2022.999534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 01/08/2023] Open
Abstract
Up to now, coronavirus disease 2019 (COVID-19) is still affecting worldwide due to its highly infectious nature anrapid spread. Diabetic kidney disease (DKD) is an independent risk factor for severe COVID-19 outcomes, and they have a certain correlation in some aspects. Particularly, the activated renin–angiotensin–aldosterone system, chronic inflammation, endothelial dysfunction, and hypercoagulation state play an important role in the underlying mechanism linking COVID-19 to DKD. The dipeptidyl peptidase-4 inhibitor is considered a potential therapy for COVID-19 and has similarly shown organ protection in DKD. In addition, neuropilin-1 as an alternative pathway for angiotensin-converting enzyme 2 also contributes to severe acute respiratory syndrome coronavirus 2 entering the host cells, and its decreased expression can affect podocyte migration and adhesion. Here, we review the pathogenesis and current evidence of the interaction of DKD and COVID-19, as well as focus on elevated blood glucose following vaccination and its possible mechanism. Grasping the pathophysiology of DKD patients with COVID-19 is of great clinical significance for the formulation of therapeutic strategies.
Collapse
|
21
|
Souza MDGCD, Leal IB, Cyrino FZGDA, Bouskela E. Effects of different routes of administration and doses of Sulodexide on leukocyte-endothelium interaction and tissue perfusion on an animal model of low flow and high pressure in veins. Phlebology 2022; 37:721-731. [DOI: 10.1177/02683555221114539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Objectives To assess the effects of different doses and routes of Sulodexide on leukocyte-endothelium interaction and tissue perfusion in a model of venous hypertension and low blood flow. Methods Six weeks after venous hypertension induction, through external iliac vein ligature male hamsters ( Mesocricetus auratus) received Sulodexide at 1, 2, or 4 mg/kg/day or saline (placebo) by subcutaneous or intramuscular routes during 2 or 4 weeks. After treatments, leukocyte rolling and adhesion, functional capillary density (FCD), and venular diameter were evaluated on the affected hindlimb. Results Subcutaneous and intramuscular treatments with Sulodexide after 2 and 4 weeks, significantly reduced leukocyte rolling and adhesion and increased FCD. Sulodexide did not affect venular diameter and intramuscular treatment was more effective in reducing leukocyte adhesion than the subcutaneous one. Conclusion This preliminary study demonstrated that Sulodexide significantly decreased leukocyte-endothelium interaction and improved tissue perfusion in hamsters subjected to venous hypertension and low blood flow.
Collapse
Affiliation(s)
- Maria das Graças Coelho de Souza
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular (BioVasc), Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Iasmim Bento Leal
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular (BioVasc), Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Fatima Zely Garcia de Almeida Cyrino
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular (BioVasc), Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Eliete Bouskela
- Laboratório de Pesquisas Clínicas e Experimentais em Biologia Vascular (BioVasc), Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Jacobs R, Wise RD, Myatchin I, Vanhonacker D, Minini A, Mekeirele M, Kirkpatrick AW, Pereira BM, Sugrue M, De Keulenaer B, Bodnar Z, Acosta S, Ejike J, Tayebi S, Stiens J, Cordemans C, Van Regenmortel N, Elbers PWG, Monnet X, Wong A, Dabrowski W, Jorens PG, De Waele JJ, Roberts DJ, Kimball E, Reintam Blaser A, Malbrain MLNG. Fluid Management, Intra-Abdominal Hypertension and the Abdominal Compartment Syndrome: A Narrative Review. Life (Basel) 2022; 12:1390. [PMID: 36143427 PMCID: PMC9502789 DOI: 10.3390/life12091390] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND General pathophysiological mechanisms regarding associations between fluid administration and intra-abdominal hypertension (IAH) are evident, but specific effects of type, amount, and timing of fluids are less clear. OBJECTIVES This review aims to summarize current knowledge on associations between fluid administration and intra-abdominal pressure (IAP) and fluid management in patients at risk of intra-abdominal hypertension and abdominal compartment syndrome (ACS). METHODS We performed a structured literature search from 1950 until May 2021 to identify evidence of associations between fluid management and intra-abdominal pressure not limited to any specific study or patient population. Findings were summarized based on the following information: general concepts of fluid management, physiology of fluid movement in patients with intra-abdominal hypertension, and data on associations between fluid administration and IAH. RESULTS We identified three randomized controlled trials (RCTs), 38 prospective observational studies, 29 retrospective studies, 18 case reports in adults, two observational studies and 10 case reports in children, and three animal studies that addressed associations between fluid administration and IAH. Associations between fluid resuscitation and IAH were confirmed in most studies. Fluid resuscitation contributes to the development of IAH. However, patients with IAH receive more fluids to manage the effect of IAH on other organ systems, thereby causing a vicious cycle. Timing and approach to de-resuscitation are of utmost importance, but clear indicators to guide this decision-making process are lacking. In selected cases, only surgical decompression of the abdomen can stop deterioration and prevent further morbidity and mortality. CONCLUSIONS Current evidence confirms an association between fluid resuscitation and secondary IAH, but optimal fluid management strategies for patients with IAH remain controversial.
Collapse
Affiliation(s)
- Rita Jacobs
- Intensive Care Department, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Robert D. Wise
- Faculty Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Discipline of Anesthesiology and Critical Care, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Adult Intensive Care, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, OX3 9DU Oxford, UK
| | - Ivan Myatchin
- Intensive Care Department, University Hospital Brussels, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
- Emergency Medicine Department, Ziekenhuis Oost-Limburg, Schiepse Bos 6, 3600 Genk, Belgium
| | - Domien Vanhonacker
- Intensive Care Department, University Hospital Brussels, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Andrea Minini
- Intensive Care Department, University Hospital Brussels, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
- Department of Anesthesiology and Intensive Care, Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy
| | - Michael Mekeirele
- Intensive Care Department, University Hospital Brussels, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Andrew W. Kirkpatrick
- Departments of Critical Care Medicine and Surgery, The Trauma Program, University of Calgary, Victoria, BC V8W 2Y2, Canada
- The TeleMentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group, Calgary, AB T3H 3W8, Canada
| | - Bruno M. Pereira
- Department of Surgery, Health Applied Sciences, Vassouras University, Vassouras 27700, Brazil
- Campinas Holy House Residency Program, Terzius Institute, Campinas 13010, Brazil
| | - Michael Sugrue
- Donegal Clinical Research Academy and Emergency Surgery Outcome Advancement Project (eSOAP), F94 A0W2 Donegal, Ireland
| | - Bart De Keulenaer
- Department of Intensive Care, Fiona Stanley Hospital; Professor at the School of Surgery, The University of Western Australia, Perth, WA 6907, Australia
- Department of Intensive Care at SJOG Murdoch Hospital, Murdoch, WA 6150, Australia
| | - Zsolt Bodnar
- Consultant General Surgeon, Letterkenny University Hospital, F92 AE81 Letterkenny, Ireland
| | - Stefan Acosta
- Department of Clinical Sciences, Lund University, Box 117, SE-221 00 Lund, Sweden
| | - Janeth Ejike
- Department of Pediatrics, Loma Linda University Children’s Hospital, Loma Linda, CA 92354, USA
| | - Salar Tayebi
- Faculty of Engineering, Department of Electronics and Informatics, Vrije Universiteit Brussel (VUB), 1040 Etterbeek, Belgium
| | - Johan Stiens
- Department of Intensive Care, AZ Sint-Maria Hospital, 1500 Halle, Belgium
| | - Colin Cordemans
- Department of Intensive Care Medicine, Campus Stuivenberg, Ziekenhuis Netwerk Antwerpen, 2050 Antwerp, Belgium
| | - Niels Van Regenmortel
- Intensive Care Department, Antwerp University Hospital, 2650 Edegem, Belgium
- Department of Intensive Care Medicine, Campus Stuivenberg, Ziekenhuis Netwerk Antwerpen, 2050 Antwerp, Belgium
| | - Paul W. G. Elbers
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science (AMDS), Amsterdam UMC, Vrije Universiteit, 1081 Amsterdam, The Netherlands
| | - Xavier Monnet
- Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, FHU SEPSIS, 94275 Le Kremlin-Bicêtre, France
| | - Adrian Wong
- Faculty Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Department of Critical Care, King’s College Hospital NHS Foundation Trust London, London SE5 9RS, UK
| | - Wojciech Dabrowski
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Philippe G. Jorens
- Intensive Care Department, Antwerp University Hospital, 2650 Edegem, Belgium
- University of Antwerp, Laboratory of Experimental Medicine and Pediatrics (LEMP), 2000 Antwerpen, Belgium
| | - Jan J. De Waele
- Intensive Care Unit, University Hospital Ghent, 9000 Ghent, Belgium
| | - Derek J. Roberts
- Division of Vascular and Endovascular Surgery, Department of Surgery, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 1H3, Canada
| | - Edward Kimball
- Department of Surgery and Critical Care, U Health OND&T, Salt Lake City, UT 84105, USA
- Department of Surgical Critical Care SLC VA Medical Center, Salt Lake City, UT 84148, USA
| | - Annika Reintam Blaser
- Department of Anesthesiology and Intensive Care, University of Tartu, 50090 Tartu, Estonia
- Department of Intensive Care Medicine, Lucerne Cantonal Hospital, 6110 Lucerne, Switzerland
| | - Manu L. N. G. Malbrain
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Medical Data Management, Medaman, 2440 Geel, Belgium
- International Fluid Academy, 3360 Lovenjoel, Belgium
| |
Collapse
|
23
|
Kovtanyuk A, Turova V, Sidorenko I, Chebotarev A, Lampe R. Modeling of the cerebral blood circulation in a capillary network accounting for the influence of the endothelial surface layer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 224:107008. [PMID: 35901640 DOI: 10.1016/j.cmpb.2022.107008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE The paper describes a mathematical model of blood flow in capillaries with accounting for the endothelial surface layer (ESL). METHOD The influence of ESL is modeled by a boundary layer with zero flow velocity. Finite element modeling and an analytical approach based on the homogenization of the core region of blood flow occupied by erythrocytes are developed to describe the resistance of a capillary. The reliability of the results obtained is verified for different values of the discharge hematocrit and vessel diameter using known in vivo data. RESULTS The proposed approach is applied to the numerical simulation of blood circulation in a capillary network of the germinal matrix of infants born at 25 gestational weeks. The influence of the hematocrit level and effective thickness of ESL on the resistance of the capillary network of the germinal matrix of preterm infants is studied. It was found that a decrease in the effective thickness of ESL in the capillary network (and/or a decrease in the hematocrit) leads to reducing the resistance of the capillary network. CONCLUSION A decrease in the effective thickness of ESL in the capillary network leads to an increase in the pressure drop in arterioles, which may be considered as an additional risk factor for hemorrhages in fragile blood vessels within the germinal matrix.
Collapse
Affiliation(s)
- Andrey Kovtanyuk
- Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, München, 81675, Germany.
| | - Varvara Turova
- Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, München, 81675, Germany.
| | - Irina Sidorenko
- Fakultät für Mathematik, Technische Universität München, Boltzmannstr. 3, Garching bei München, 85747, Germany.
| | - Alexander Chebotarev
- Far Eastern Federal University, Far Eastern Center for Research and Education in Mathematics, Ajax Bay 10, Russky Island, Vladivostok, 690922, Russia.
| | - Renée Lampe
- Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, München, 81675, Germany.
| |
Collapse
|
24
|
Management of edema in pediatric nephrotic syndrome – Underfill or overfill? CURRENT PEDIATRICS REPORTS 2022. [DOI: 10.1007/s40124-022-00270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Foote CA, Soares RN, Ramirez-Perez FI, Ghiarone T, Aroor A, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. Endothelial Glycocalyx. Compr Physiol 2022; 12:3781-3811. [PMID: 35997082 PMCID: PMC10214841 DOI: 10.1002/cphy.c210029] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.
Collapse
Affiliation(s)
- Christopher A. Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Rogerio N. Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Annayya Aroor
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
26
|
Sosnowik S, Swain DL, Liu N, Fan S, Toris CB, Gong H. Endothelial Glycocalyx Morphology in Different Flow Regions of the Aqueous Outflow Pathway of Normal and Laser-Induced Glaucoma Monkey Eyes. Cells 2022; 11:cells11152452. [PMID: 35954296 PMCID: PMC9367875 DOI: 10.3390/cells11152452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Glycocalyx morphology was examined in the trabecular outflow pathway of monkey eyes with and without experimental glaucoma. Laser burns were administered along ~270 degrees of the trabecular meshwork (TM) of one eye (n = 6) or both eyes (n = 2) of each monkey until intraocular pressure remained elevated. Portions of the TM were not laser-treated. Unlasered eyes (n = 6) served as controls. Enucleated eyes were perfused at 15 mmHg to measure the outflow facility, perfused with fluorescein to evaluate the outflow pattern, perfusion-fixed for glycocalyx labeling, and processed for electron microscopy. Coverage and thickness of the glycocalyx were measured in the TM, Schlemm’s canal (SC), collector channels (CCs), intrascleral veins (ISVs), and episcleral veins (ESVs) in non-lasered regions and high- and low-flow regions of controls. Compared to controls, laser-treated eyes had decreased outflow facility (p = 0.02). Glycocalyx thickness increased from the TM to ESVs in non-lasered regions and controls (p < 0.05). Glycocalyx coverage was generally greater distally in non-lasered regions (p < 0.05). In lasered regions, TM, SC, and CCs were partly to completely obliterated, and ISVs and ESVs displayed minimal glycocalyx. Whether the glycocalyx is decreased in the trabecular outflow pathway of human glaucomatous eyes warrants investigation.
Collapse
Affiliation(s)
- Shayna Sosnowik
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
| | - David L. Swain
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Neil Liu
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Shan Fan
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Carol B. Toris
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence:
| |
Collapse
|
27
|
The role of the cell surface glycocalyx in drug delivery to and through the endothelium. Adv Drug Deliv Rev 2022; 184:114195. [PMID: 35292326 DOI: 10.1016/j.addr.2022.114195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
Cell membranes are key interfaces where materials engineering meets biology. Traditionally regarded as just the location of receptors regulating the uptake of molecules, we now know that all mammalian cell membranes are 'sugar coated'. These sugars, or glycans, form a matrix bound at the cell membrane via proteins and lipids, referred to as the glycocalyx, which modulate access to cell membrane receptors crucial for interactions with drug delivery systems (DDS). Focusing on the key blood-tissue barrier faced by most DDS to enable transport from the place of administration to target sites via the circulation, we critically assess the design of carriers for interactions at the endothelial cell surface. We also discuss the current challenges for this area and provide opportunities for future research efforts to more fully engineer DDS for controlled, efficient, and targeted interactions with the endothelium for therapeutic application.
Collapse
|
28
|
Yang R, Chen M, Zheng J, Li X, Zhang X. The Role of Heparin and Glycocalyx in Blood-Brain Barrier Dysfunction. Front Immunol 2022; 12:754141. [PMID: 34992593 PMCID: PMC8724024 DOI: 10.3389/fimmu.2021.754141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The blood-brain barrier (BBB) functions as a dynamic boundary that protects the central nervous system from blood and plays an important role in maintaining the homeostasis of the brain. Dysfunction of the BBB is a pathophysiological characteristic of multiple neurologic diseases. Glycocalyx covers the luminal side of vascular endothelial cells(ECs). Damage of glycocalyx leads to disruption of the BBB, while inhibiting glycocalyx degradation maintains BBB integrity. Heparin has been recognized as an anticoagulant and it protects endothelial glycocalyx from destruction. In this review, we summarize the role of glycocalyx in BBB formation and the therapeutic potency of heparin to provide a theoretical basis for the treatment of neurological diseases related to BBB breakdown.
Collapse
Affiliation(s)
- Rui Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingming Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiayin Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Li
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaojuan Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Cytlak UM, Dyer DP, Honeychurch J, Williams KJ, Travis MA, Illidge TM. Immunomodulation by radiotherapy in tumour control and normal tissue toxicity. Nat Rev Immunol 2022; 22:124-138. [PMID: 34211187 DOI: 10.1038/s41577-021-00568-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Radiotherapy (RT) is a highly effective anticancer treatment that is delivered to more than half of all patients with cancer. In addition to the well-documented direct cytotoxic effects, RT can have immunomodulatory effects on the tumour and surrounding tissues. These effects are thought to underlie the so-called abscopal responses, whereby RT generates systemic antitumour immunity outside the irradiated tumour. The full scope of these immune changes remains unclear but is likely to involve multiple components, such as immune cells, the extracellular matrix, endothelial and epithelial cells and a myriad of chemokines and cytokines, including transforming growth factor-β (TGFβ). In normal tissues exposed to RT during cancer therapy, acute immune changes may ultimately lead to chronic inflammation and RT-induced toxicity and organ dysfunction, which limits the quality of life of survivors of cancer. Here we discuss the emerging understanding of RT-induced immune effects with particular focus on the lungs and gut and the potential immune crosstalk that occurs between these tissues.
Collapse
Affiliation(s)
- Urszula M Cytlak
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Douglas P Dyer
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jamie Honeychurch
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kaye J Williams
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mark A Travis
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Timothy M Illidge
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
30
|
May T, de la Haye B, Nord G, Klatt K, Stephenson K, Adams S, Bollinger L, Hanchard N, Arning E, Bottiglieri T, Maleta K, Manary M, Jahoor F. One-carbon metabolism in children with marasmus and kwashiorkor. EBioMedicine 2022; 75:103791. [PMID: 35030356 PMCID: PMC8761690 DOI: 10.1016/j.ebiom.2021.103791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Kwashiorkor is a childhood syndrome of edematous malnutrition. Its precise nutritional precipitants remain uncertain despite nine decades of study. Remarkably, kwashiorkor's disturbances resemble the effects of experimental diets that are deficient in one-carbon nutrients. This similarity suggests that kwashiorkor may represent a nutritionally mediated syndrome of acute one-carbon metabolism dysfunction. Here we report findings from a cross-sectional exploration of serum one-carbon metabolites in Malawian children. METHODS Blood was collected from children aged 12-60 months before nutritional rehabilitation: kwashiorkor (N = 94), marasmic-kwashiorkor (N = 43) marasmus (N = 118), moderate acute malnutrition (N = 56) and controls (N = 46). Serum concentrations of 16 one-carbon metabolites were quantified using LC/MS techniques, and then compared across participant groups. FINDINGS Twelve of 16 measured one-carbon metabolites differed significantly between participant groups. Measured outputs of one-carbon metabolism, asymmetric dimethylarginine (ADMA) and cysteine, were lower in marasmic-kwashiorkor (median µmol/L (± SD): 0·549 (± 0·217) P = 0·00045 & 90 (± 40) P < 0·0001, respectively) and kwashiorkor (0·557 (± 0·195) P < 0·0001 & 115 (± 50) P < 0·0001), relative to marasmus (0·698 (± 0·212) & 153 (± 42)). ADMA and cysteine were well correlated with methionine in both kwashiorkor and marasmic-kwashiorkor. INTERPRETATION Kwashiorkor and marasmic-kwashiorkor were distinguished by evidence of one-carbon metabolism dysfunction. Correlative observations suggest that methionine deficiency drives this dysfunction, which is implicated in the syndrome's pathogenesis. The hypothesis that kwashiorkor can be prevented by fortifying low quality diets with methionine, along with nutrients that support efficient methionine use, such as choline, requires further investigation. FUNDING The Hickey Family Foundation, the American College of Gastroenterology, the NICHD, and the USDA/ARS.
Collapse
Affiliation(s)
- Thaddaeus May
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA.
| | | | | | - Kevin Klatt
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA,Center for Precision Environmental Health, Baylor College of Medicine
| | | | | | - Lucy Bollinger
- Washington University in St. Louis School of Medicine, USA
| | - Neil Hanchard
- National Institutes of Health, USA,National Human Genome Research Institute, Nationl Institutes of Health
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute
| | | | - Mark Manary
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA,The University of Malawi College of Medicine, Malawi,Washington University in St. Louis School of Medicine, USA
| | - Farook Jahoor
- Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston TX, USA
| |
Collapse
|
31
|
Drost CC, Rovas A, Kümpers P. Protection and rebuilding of the endothelial glycocalyx in sepsis - Science or fiction? Matrix Biol Plus 2021; 12:100091. [PMID: 34877522 PMCID: PMC8633034 DOI: 10.1016/j.mbplus.2021.100091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
The endothelial glycocalyx (eGC), a delicate carbohydrate-rich structure lining the luminal surface of the vascular endothelium, is vital for maintenance of microvascular homeostasis. In sepsis, damage of the eGC triggers the development of vascular hyperpermeability with consecutive edema formation and organ failure. While there is evidence that protection or rebuilding of the eGC might counteract sepsis-induced vascular leakage and improve outcome, approved therapeutics are not yet available. This narrative review aims to outline possible therapeutic strategies to ameliorate organ dysfunction caused by eGC impairment.
Collapse
Affiliation(s)
- Carolin Christina Drost
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Alexandros Rovas
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Philipp Kümpers
- Department of Medicine D, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| |
Collapse
|
32
|
Richards JE, Samet RE, Grissom TE. Scratching the Surface: Endothelial Damage in Traumatic Hemorrhagic Shock. Adv Anesth 2021; 39:35-51. [PMID: 34715980 DOI: 10.1016/j.aan.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Justin E Richards
- Department of Anesthesiology, University of Maryland School of Medicine, R Adams Cowley Shock Trauma Center, 22 S. Greene Street, Suite T1R77, Baltimore, MD 21201, USA
| | - Ron E Samet
- Department of Anesthesiology, University of Maryland School of Medicine, R Adams Cowley Shock Trauma Center, 22 S. Greene Street, Suite T1R77, Baltimore, MD 21201, USA
| | - Thomas E Grissom
- Department of Anesthesiology, University of Maryland School of Medicine, R Adams Cowley Shock Trauma Center, 22 S. Greene Street, Suite T1R77, Baltimore, MD 21201, USA.
| |
Collapse
|
33
|
Plasma hyaluronan, hyaluronidase activity and endogenous hyaluronidase inhibition in sepsis: an experimental and clinical cohort study. Intensive Care Med Exp 2021; 9:53. [PMID: 34632531 PMCID: PMC8502523 DOI: 10.1186/s40635-021-00418-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 09/23/2021] [Indexed: 12/29/2022] Open
Abstract
Background Plasma hyaluronan concentrations are increased during sepsis but underlying mechanisms leading to high plasma hyaluronan concentration are poorly understood. In this study we evaluate the roles of plasma hyaluronan, effective plasma hyaluronidase (HYAL) activity and its endogenous plasma inhibition in clinical and experimental sepsis. We specifically hypothesized that plasma HYAL acts as endothelial glycocalyx shedding enzyme, sheddase. Methods Plasma hyaluronan, effective HYAL activity and HYAL inhibition were measured in healthy volunteers (n = 20), in patients with septic shock (n = 17, day 1 and day 4), in patients with acute pancreatitis (n = 7, day 1 and day 4) and in anesthetized and mechanically ventilated pigs (n = 16). Sixteen pigs were allocated (unblinded, open label) into three groups: Sepsis-1 with infusion of live Escherichia coli (E. coli) 1 × 108 CFU/h of 12 h (n = 5), Sepsis-2 with infusion of E. coli 1 × 108 CFU/h of 6 h followed by 1 × 109 CFU/h of the remaining 6 h (n = 5) or Control with no E. coli infusion (n = 6). Results In experimental E. coli porcine sepsis and in time controls, plasma hyaluronan increases with concomitant decrease in effective plasma HYAL activity and increase of endogenous HYAL inhibition. Plasma hyaluronan increased in patients with septic shock but not in acute pancreatitis. Effective plasma HYAL was lower in septic shock and acute pancreatitis as compared to healthy volunteers, while plasma HYAL inhibition was only increased in septic shock. Conclusion Elevated plasma hyaluronan levels coincided with a concomitant decrease in effective plasma HYAL activity and increase of endogenous plasma HYAL inhibition both in experimental and clinical sepsis. In acute pancreatitis, effective plasma HYAL activity was decreased which was not associated with increased plasma hyaluronan concentrations or endogenous HYAL inhibition. The results suggest that plasma HYAL does not act as sheddase in sepsis or pancreatitis. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-021-00418-3.
Collapse
|
34
|
Hulde N, Rogenhofer N, Brettner F, Eckert NC, Fetz I, Buchheim JI, Kammerer T, Dendorfer A, Choukèr A, Hofmann-Kiefer KF, Rehm M, Thaler C. Effects of controlled ovarian stimulation on vascular barrier and endothelial glycocalyx: a pilot study. J Assist Reprod Genet 2021; 38:2273-2282. [PMID: 34286421 PMCID: PMC8490540 DOI: 10.1007/s10815-021-02233-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose Controlled ovarian stimulation significantly amplifies the number of maturing and ovulated follicles as well as ovarian steroid production. The ovarian hyperstimulation syndrome (OHSS) increases capillary permeability and fluid extravasation. Vascular integrity intensely is regulated by an endothelial glycocalyx (EGX) and we have shown that ovulatory cycles are associated with shedding of EGX components. This study investigates if controlled ovarian stimulation impacts on the integrity of the endothelial glycocalyx as this might explain key pathomechanisms of the OHSS. Methods Serum levels of endothelial glycocalyx components of infertility patients (n=18) undergoing controlled ovarian stimulation were compared to a control group of healthy women with regular ovulatory cycles (n=17). Results Patients during luteal phases of controlled ovarian stimulation cycles as compared to normal ovulatory cycles showed significantly increased Syndecan-1 serum concentrations (12.6 ng/ml 6.1125th–19.1375th to 13.9 ng/ml 9.625th–28.975th; p=0.026), indicating shedding and degradation of the EGX. Conclusion A shedding of EGX components during ovarian stimulation has not yet been described. Our study suggests that ovarian stimulation may affect the integrity of the endothelial surface layer and increasing vascular permeability. This could explain key features of the OHSS and provide new ways of prevention of this serious condition of assisted reproduction.
Collapse
Affiliation(s)
- Nikolai Hulde
- Department of Anesthesiology, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum, Georgstr 11, 32545, Bad Oeynhausen, Germany.
| | - N Rogenhofer
- Division of Gynecological Endocrinology and Reproductive Medicine, Department of Gynecology and Obstetrics, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - F Brettner
- Department of Anesthesiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - N C Eckert
- Department of Anesthesiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - I Fetz
- Department of Anesthesiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - J-I Buchheim
- Department of Anesthesiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - T Kammerer
- Department of Anesthesiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - A Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, Hospital of the University Munich, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - A Choukèr
- Department of Anesthesiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - K F Hofmann-Kiefer
- Department of Anesthesiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - M Rehm
- Department of Anesthesiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| | - C Thaler
- Division of Gynecological Endocrinology and Reproductive Medicine, Department of Gynecology and Obstetrics, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
35
|
Hydrogen Gas Inhalation Attenuates Endothelial Glycocalyx Damage and Stabilizes Hemodynamics in a Rat Hemorrhagic Shock Model. Shock 2021; 54:377-385. [PMID: 32804466 PMCID: PMC7458091 DOI: 10.1097/shk.0000000000001459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Supplemental Digital Content is available in the text Background: Hydrogen gas (H2) inhalation during hemorrhage stabilizes post-resuscitation hemodynamics, improving short-term survival in a rat hemorrhagic shock and resuscitation (HS/R) model. However, the underlying molecular mechanism of H2 in HS/R is unclear. Endothelial glycocalyx (EG) damage causes hemodynamic failure associated with HS/R. In this study, we tested the hypothesis that H2 alleviates oxidative stress by suppressing xanthine oxidoreductase (XOR) and/or preventing tumor necrosis factor-alfa (TNF-α)-mediated syndecan-1 shedding during EG damage. Methods: HS/R was induced in rats by reducing mean arterial pressure (MAP) to 35 mm Hg for 60 min followed by resuscitation. Rats inhaled oxygen or H2 + oxygen after achieving shock either in the presence or absence of an XOR inhibitor (XOR-I) for both the groups. In a second test, rats received oxygen alone or antitumor necrosis factor (TNF)-α monoclonal antibody with oxygen or H2. Two hours after resuscitation, XOR activity, purine metabolites, cytokines, syndecan-1 were measured and survival rates were assessed 6 h after resuscitation. Results: H2 and XOR-I both suppressed MAP reduction and improved survival rates. H2 did not affect XOR activity and the therapeutic effects of XOR-I and H2 were additive. H2 suppressed plasma TNF-α and syndecan-1 expression; however, no additional H2 therapeutic effect was observed in the presence of anti-TNF-α monoclonal antibody. Conclusions: H2 inhalation after shock stabilized hemodynamics and improved survival rates in an HS/R model independent of XOR. The therapeutic action of H2 was partially mediated by inhibition of TNF-α-dependent syndecan-1 shedding.
Collapse
|
36
|
Sugiyama N, Tawada M, Sun T, Suzuki Y, Kinashi H, Yamaguchi M, Katsuno T, Aten J, Vlahu CA, van Kuppevelt TH, Takei Y, Ishimoto T, Maruyama S, Mizuno M, Ito Y. Low-GDP, pH-neutral solutions preserve peritoneal endothelial glycocalyx during long-term peritoneal dialysis. Clin Exp Nephrol 2021; 25:1035-1046. [PMID: 33999275 DOI: 10.1007/s10157-021-02078-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND During peritoneal dialysis (PD), solute transport and ultrafiltration are mainly achieved by the peritoneal blood vasculature. Glycocalyx lies on the surface of endothelial cells and plays a role in vascular permeability. Low-glucose degradation product (GDP), pH-neutral PD solutions reportedly offer higher biocompatibility and lead to less peritoneal injury. However, the effects on the vasculature have not been clarified. METHODS Peritoneal tissues from 11 patients treated with conventional acidic solutions (acidic group) and 11 patients treated with low-GDP, pH-neutral solutions (neutral group) were examined. Control tissues were acquired from 5 healthy donors of kidney transplants (control group). CD31 and ratio of luminal diameter to vessel diameter (L/V ratio) were evaluated to identify endothelial cells and vasculopathy, respectively. Immunostaining for heparan sulfate (HS) domains and Ulex europaeus agglutinin-1 (UEA-1) binding was performed to assess sulfated glycosaminoglycans and the fucose-containing sugar chain of glycocalyx. RESULTS Compared with the acidic group, the neutral group showed higher CD31 positivity. L/V ratio was significantly higher in the neutral group, suggesting less progression of vasculopathy. Both HS expression and UEA-1 binding were higher in the neutral group, whereas HS expression was markedly more preserved than UEA-1 binding in the acidic group. In vessels with low L/V ratio, which were found only in the acidic group, HS expression and UEA-1 binding were diminished, suggesting a loss of glycocalyx. CONCLUSION Peritoneal endothelial glycocalyx was more preserved in patients treated with low-GDP, pH-neutral solution. The use of low-GDP, pH-neutral solutions could help to protect peritoneal vascular structures and functions.
Collapse
Affiliation(s)
- Naoya Sugiyama
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuhiro Tawada
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Ting Sun
- Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yasuhiro Suzuki
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Makoto Yamaguchi
- Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Takayuki Katsuno
- Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Jan Aten
- Department of Pathology, Amsterdam University Medical Center (Location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Carmen A Vlahu
- Department of Pathology, Amsterdam University Medical Center (Location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yoshifumi Takei
- Department of Medicinal Biochemistry, Aichi Gakuin University School of Pharmacy, Nagoya, Japan
| | - Takuji Ishimoto
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoichi Maruyama
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Mizuno
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
37
|
Smart L, Hughes D. The Effects of Resuscitative Fluid Therapy on the Endothelial Surface Layer. Front Vet Sci 2021; 8:661660. [PMID: 34026896 PMCID: PMC8137965 DOI: 10.3389/fvets.2021.661660] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/16/2021] [Indexed: 01/20/2023] Open
Abstract
The goal of resuscitative fluid therapy is to rapidly expand circulating blood volume in order to restore tissue perfusion. Although this therapy often serves to improve macrohemodynamic parameters, it can be associated with adverse effects on the microcirculation and endothelium. The endothelial surface layer (ESL) provides a protective barrier over the endothelium and is important for regulating transvascular fluid movement, vasomotor tone, coagulation, and inflammation. Shedding or thinning of the ESL can promote interstitial edema and inflammation and may cause microcirculatory dysfunction. The pathophysiologic perturbations of critical illness and rapid, large-volume fluid therapy both cause shedding or thinning of the ESL. Research suggests that restricting the volume of crystalloid, or “clear” fluid, may preserve some ESL integrity and improve outcome based on animal experimental models and preliminary clinical trials in people. This narrative review critically evaluates the evidence for the detrimental effects of resuscitative fluid therapy on the ESL and provides suggestions for future research directions in this field.
Collapse
Affiliation(s)
- Lisa Smart
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Dez Hughes
- Department of Veterinary Clinical Sciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, Werribee, VIC, Australia
| |
Collapse
|
38
|
Baljinnyam T, Radnaa E, Ouellette CM, Nelson C, Niimi Y, Andersen CR, Popov V, Lee JW, Prough DS, Enkhbaatar P. High molecular weight sodium hyaluronate improves survival of syndecan-1-deficient septic mice by inhibiting neutrophil migration. PLoS One 2021; 16:e0250327. [PMID: 33930030 PMCID: PMC8087021 DOI: 10.1371/journal.pone.0250327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
METHODS Sepsis was induced by cotton smoke inhalation followed by intranasal administration of Pseudomonas aeruginosa in female (> 6 months) Balb/c and syndecan-1 knockout mice. Survival of mice, lung capillary endothelial glycocalyx integrity, lung water content, and vascular hyper-permeability were determined with or without HMW-SH treatment in these mice. Effects of HMW-SH on endothelial permeability and neutrophil migration were tested in in vitro setting. RESULTS In septic wildtype mice, we found a severely damaged pulmonary microvascular endothelial glycocalyx and elevated levels of shed syndecan-1 in the circulation. These changes were associated with significantly increased pulmonary vascular permeability. In septic syndecan-1 knockout mice, extravascular lung water content was higher, and early death was observed. The administration of HMW-SH significantly reduced mortality and lung water content in septic syndecan-1 knockout mice, but not in septic wildtype mice. In in vitro setting, HMW-SH inhibited neutrophil migration and reduced cultured endothelial cell permeability increases. However, these effects were reversed by the addition of recombinant syndecan-1 ectodomain. CONCLUSIONS HMW-SH reduced lung tissue damage and mortality in the absence of syndecan-1 protein, possibly by reducing vascular hyper-permeability and neutrophil migration. Our results further suggest that increased shed syndecan-1 protein levels are linked with the inefficiency of HMW-SH in septic wildtype mice.
Collapse
Affiliation(s)
- Tuvshintugs Baljinnyam
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Enkhtuya Radnaa
- Division of Maternal-Fetal Medicine Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Casey M. Ouellette
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Christina Nelson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yosuke Niimi
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Clark R. Andersen
- Department of Biostatistics, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Vsevolod Popov
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jae-Woo Lee
- Department of Anesthesia, UCSF School of Medicine, San-Francisco, California, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Russell McEvoy GM, Shogan H, Sové RJ, Fraser GM. Development and validation of a novel microfluidic device for the manipulation of skeletal muscle microvascular blood flow in vivo. Microcirculation 2021; 28:e12698. [PMID: 33817909 DOI: 10.1111/micc.12698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To develop and validate a novel liquid microfluidic approach to deliver drugs to microscale regions of tissue while simultaneously allowing for visualization and quantification of microvascular blood flow. METHODS Microfluidic devices were fabricated using soft lithographic techniques, molded in polydimethylsiloxane, and bound to a coverslip with a 600 × 300 μm micro-outlet. Sprague-Dawley rats, anesthetized with pentobarbital, were instrumented to monitor systemic parameters. The extensor digitorum longus muscle was dissected, externalized, and reflected across the device mounted on the stage of an inverted microscope. Doses (10-8 to 10-3 M) of adenosine triphosphate (ATP), acetylcholine, and phenylephrine (PE) were administered to the muscle via perfusion through the device. Microvascular blood flow directly overlying the micro-outlet was recorded at multiple focal depths. Red blood cell (RBC) velocity, supply rate, and hematocrit were measured from recordings. RESULTS ATP significantly increased RBC velocity and supply rate. Increasing concentrations of PE caused a decrease in RBC velocity and supply rate. Perfusion changes were restricted to areas directly overlying the micro-outlet and within 500 μm. CONCLUSIONS This novel microfluidic device allows for a controlled delivery of dissolved substances to constrained regions of microvasculature while simultaneously allowing for visualization and measurement of blood flow within discrete vessels and networks.
Collapse
Affiliation(s)
- Gaylene M Russell McEvoy
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hamza Shogan
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Richard J Sové
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, Canada
| | - Graham M Fraser
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
40
|
Logsdon AF, Rhea EM, Reed M, Banks WA, Erickson MA. The neurovascular extracellular matrix in health and disease. Exp Biol Med (Maywood) 2021; 246:835-844. [PMID: 33302738 PMCID: PMC8719034 DOI: 10.1177/1535370220977195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The blood-brain barrier (BBB) is a vital interface that supports normal brain functions. Endothelial cells (ECs) are the main component of the BBB and are highly specialized to govern the transfer of substances into brain. The EC lumen is enmeshed with an extracellular matrix (ECM), known as the endothelial glycocalyx layer (EGL). The lumen-facing EGL is primarily comprised of proteoglycans (PGs) and glycosaminoglycans (GAGs), which function as the first line of defense for blood-to-brain transfer of substances. Circulating factors must first penetrate the EGL before interacting with the EC. The abundance and composition of the PG and GAGs can dictate EGL function, and determine which circulating substances communicate with the ECs. The EGL can interact with circulating factors through physio-chemical interactions with the EC. Some disease states reveal a "thinning" of the EGL that may increase EC interactions with components of the systemic circulation and alter BBB function. EGL changes may also contribute to the cognitive complications of systemic diseases, such as sepsis and diabetes. For decades, researchers have measured how genetic and environmental factors influence the peripheral EGL constituents; however, much less is known about the neurovascular EGL. In this mini-review, we introduce components of the EGL and innovative ways to measure their abundance and composition that may contribute to BBB dysfunction.
Collapse
Affiliation(s)
- Aric F Logsdon
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| | - Elizabeth M Rhea
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| | - May Reed
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| | - William A Banks
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| | - Michelle A Erickson
- Geriatrics Research Education and Clinical Center,
Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108,
USA
- Division of Gerontology and Geriatric Medicine,
Department of Medicine, University of Washington School of Medicine,
Seattle, WA 98159, USA
| |
Collapse
|
41
|
Chi Y, Liu X, Chai J. A narrative review of changes in microvascular permeability after burn. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:719. [PMID: 33987417 PMCID: PMC8106041 DOI: 10.21037/atm-21-1267] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective We aimed to review and discuss some of the latest research results related to post-burn pathophysiological changes and provide some clues for future study. Background Burns are one of the most common and serious traumas and consist of a series of pathophysiological changes of thermal injury. Accompanied by thermal damage to skin and soft tissues, inflammatory mediators are released in large quantities. Changes in histamine, bradykinin, and cytokines such as vascular endothelial growth factor (VEGF), metabolic factors such as adenosine triphosphate (ATP), and activated neutrophils all affect the body’s vascular permeability. Methods We searched articles with subject words “microvascular permeability”, “burn” “endothelium”, and “endothelial barrier” in PubMed in English published from the beginning of database to Dec, 2020. Conclusions The essence of burn shock is the rapid and extensive fluid transfer in burn and non-burn tissue. After severe burns, the local and systemic vascular permeability increase, causing intravascular fluid extravasation, leading to a progressive decrease in effective circulation volume, an increase in systemic vascular resistance, a decrease in cardiac output, peripheral tissue edema, multiple organ failure, and even death. There are many cells, tissues, mediators and structures involved in the pathophysiological process of the damage to vascular permeability. Ulinastatin is a promising agent for this problem.
Collapse
Affiliation(s)
- Yunfei Chi
- Burn Institute, The Fourth Medical Center of the PLA General Hospital, Beijing, China
| | - Xiangyu Liu
- Burn Institute, The Fourth Medical Center of the PLA General Hospital, Beijing, China
| | - Jiake Chai
- Burn Institute, The Fourth Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|
42
|
Sano M, Tamura T. Hydrogen Gas Therapy: From Preclinical Studies to Clinical Trials. Curr Pharm Des 2021; 27:650-658. [PMID: 33349213 DOI: 10.2174/1381612826666201221150857] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mounting evidence indicates that hydrogen gas (H2) is a versatile therapeutic agent, even at very low, non-combustible concentrations. The Chinese National Health and Medical Commission recently recommended the use of inhaled H2 in addition to O2 therapy in the treatment of COVID-19-associated pneumonia, and its effects extend to anti-tumor, anti-inflammatory and antioxidant actions. SUMMARY In this review, we have highlighted key findings from preclinical research and recent clinical studies demonstrating that H2 reduces the organ damage caused by ischemia-reperfusion. We have also outlined the critical role this effect plays in a variety of medical emergencies, including myocardial infarction, hemorrhagic shock, and out-of-hospital cardiac arrest, as well as in organ transplantation. H2 is compared with established treatments such as targeted temperature management, and we have also discussed its possible mechanisms of action, including the recently identified suppression of TNF-α-mediated endothelial glycocalyx degradation by inhaled H2. In addition, our new method that enables H2 gas to be easily transported to emergency settings and quickly injected into an organ preservation solution at the site of donor organ procurement have been described. CONCLUSION H2 is an easily administered, inexpensive and well-tolerated agent that is highly effective for a wide range of conditions in emergency medicine, as well as for preserving donated organs.
Collapse
Affiliation(s)
- Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyoshi Tamura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Abstract
The blood-brain barrier (BBB) protects the central nervous system (CNS) from unregulated exposure to the blood and its contents. The BBB also controls the blood-to-brain and brain-to-blood permeation of many substances, resulting in nourishment of the CNS, its homeostatic regulation and communication between the CNS and peripheral tissues. The cells forming the BBB communicate with cells of the brain and in the periphery. This highly regulated interface changes with healthy aging. Here, we review those changes, starting with morphology and disruption. Transporter changes include those for amyloid beta peptide, glucose and drugs. Brain fluid dynamics, pericyte health and basement membrane and glycocalyx compositions are all altered with healthy aging. Carrying the ApoE4 allele leads to an acceleration of most of the BBB's age-related changes. We discuss how alterations in the BBB that occur with healthy aging reflect adaptation to the postreproductive phase of life and may affect vulnerability to age-associated diseases.
Collapse
|
44
|
Østergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: Consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol Rep 2021; 9:e14726. [PMID: 33523608 PMCID: PMC7849453 DOI: 10.14814/phy2.14726] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Corona virus disease 2019 (COVID-19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV-2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness ("silent hypoxia"), delirium, rashes, and loss of smell (anosmia), to persisting chest pain, muscle weakness and -pain, fatigue, confusion, memory problems and difficulty to concentrate ("brain fog"), mood changes, and unexpected onset of hypertension or diabetes. SARS CoV-2 affects the microcirculation, causing endothelial cell swelling and damage (endotheliitis), microscopic blood clots (microthrombosis), capillary congestion, and damage to pericytes that are integral to capillary integrity and barrier function, tissue repair (angiogenesis), and scar formation. Similar to other instances of critical illness, COVID-19 is also associated with elevated cytokine levels in the systemic circulation. This review examines how capillary damage and inflammation may contribute to these acute and persisting COVID-19 symptoms by interfering with blood and tissue oxygenation and with brain function. Undetectable by current diagnostic methods, capillary flow disturbances limit oxygen diffusion exchange in lungs and tissue and may therefore cause hypoxemia and tissue hypoxia. The review analyzes the combined effects of COVID-19-related capillary damage, pre-existing microvascular changes, and upstream vascular tone on tissue oxygenation in key organs. It identifies a vicious cycle, as infection- and hypoxia-related inflammation cause capillary function to deteriorate, which in turn accelerates hypoxia-related inflammation and tissue damage. Finally, the review addresses the effects of low oxygen and high cytokine levels in brain tissue on neurotransmitter synthesis and mood. Methods to assess capillary functions in human organs and therapeutic means to protect capillary functions and stimulate capillary bed repair may prove important for the individualized management of COVID-19 patients and targeted rehabilitation strategies.
Collapse
Affiliation(s)
- Leif Østergaard
- Neuroradiology Research UnitSection of NeuroradiologyDepartment of RadiologyAarhus University HospitalAarhusDenmark
- Center of Functionally Integrative NeuroscienceDepartment of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
45
|
Wolpe AG, Ruddiman CA, Hall PJ, Isakson BE. Polarized Proteins in Endothelium and Their Contribution to Function. J Vasc Res 2021; 58:65-91. [PMID: 33503620 DOI: 10.1159/000512618] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Protein localization in endothelial cells is tightly regulated to create distinct signaling domains within their tight spatial restrictions including luminal membranes, abluminal membranes, and interendothelial junctions, as well as caveolae and calcium signaling domains. Protein localization in endothelial cells is also determined in part by the vascular bed, with differences between arteries and veins and between large and small arteries. Specific protein polarity and localization is essential for endothelial cells in responding to various extracellular stimuli. In this review, we examine protein localization in the endothelium of resistance arteries, with occasional references to other vessels for contrast, and how that polarization contributes to endothelial function and ultimately whole organism physiology. We highlight the protein localization on the luminal surface, discussing important physiological receptors and the glycocalyx. The protein polarization to the abluminal membrane is especially unique in small resistance arteries with the presence of the myoendothelial junction, a signaling microdomain that regulates vasodilation, feedback to smooth muscle cells, and ultimately total peripheral resistance. We also discuss the interendothelial junction, where tight junctions, adherens junctions, and gap junctions all convene and regulate endothelial function. Finally, we address planar cell polarity, or axial polarity, and how this is regulated by mechanosensory signals like blood flow.
Collapse
Affiliation(s)
- Abigail G Wolpe
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Claire A Ruddiman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Phillip J Hall
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA, .,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA,
| |
Collapse
|
46
|
Potje SR, Paula TDC, Paulo M, Bendhack LM. The Role of Glycocalyx and Caveolae in Vascular Homeostasis and Diseases. Front Physiol 2021; 11:620840. [PMID: 33519523 PMCID: PMC7838704 DOI: 10.3389/fphys.2020.620840] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
This review highlights recent findings about the role that endothelial glycocalyx and caveolae play in vascular homeostasis. We describe the structure, synthesis, and function of glycocalyx and caveolae in vascular cells under physiological and pathophysiological conditions. Special focus will be given in glycocalyx and caveolae that are associated with impaired production of nitric oxide (NO) and generation of reactive oxygen species (ROS). Such alterations could contribute to the development of cardiovascular diseases, such as atherosclerosis, and hypertension.
Collapse
Affiliation(s)
- Simone Regina Potje
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Tiago Dal-Cin Paula
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Michele Paulo
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lusiane Maria Bendhack
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
47
|
Zhao F, Zhong L, Luo Y. Endothelial glycocalyx as an important factor in composition of blood-brain barrier. CNS Neurosci Ther 2020; 27:26-35. [PMID: 33377610 PMCID: PMC7804892 DOI: 10.1111/cns.13560] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/03/2020] [Accepted: 11/22/2020] [Indexed: 12/19/2022] Open
Abstract
The blood‐brain barrier is a dynamic and complex neurovascular unit that protects neurons from somatic circulatory factors as well as regulates the internal environmental stability of the central nervous system. Endothelial glycocalyx is a critical component of an extended neurovascular unit that influences the structure of the blood‐brain barrier and plays various physiological functions, including an important role in maintaining normal neuronal homeostasis. Specifically, glycocalyx acts in physical and charge barriers, mechanical transduction, regulation of vascular permeability, modulation of inflammatory response, and anticoagulation. Since intact glycocalyx is necessary to maintain the stability and integrity of the internal environment of the blood‐brain barrier, damage to glycocalyx can lead to the dysfunction of the blood‐brain barrier. This review discusses the role of glycocalyx in the context of the substantial literature regarding the blood‐brain barrier research, in order to provide a theoretical basis for the diagnosis and treatment of neurological diseases as well as point to new breakthroughs and innovations in glycocalyx‐dependent blood‐brain barrier function.
Collapse
Affiliation(s)
- Fangfang Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Liyuan Zhong
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Benatti MN, Fabro AT, Miranda CH. Endothelial glycocalyx shedding in the acute respiratory distress syndrome after flu syndrome. J Intensive Care 2020; 8:72. [PMID: 32974033 PMCID: PMC7503444 DOI: 10.1186/s40560-020-00488-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scientific evidence indicates that endothelial glycocalyx (EG) shedding contributes to the pathophysiological installation of acute respiratory distress syndrome (ARDS) after bacterial sepsis. The aim was to evaluate the EG shedding in ARDS installation after flu syndrome. METHODS This cross-sectional study included patients with flu syndrome during the influenza outbreak divided into two groups: patients with and without ARDS. Healthy subjects without flu syndrome were included in a control group. We measured EG damage biomarkers (hyaluronan, syndecan-1) and endothelial cell injury biomarker (soluble thrombomodulin) during the first medical evaluation. Histological assessment of the perimeter of the hyaline membrane and the number of neutrophils infiltrated in the alveolar septum was performed in patients who died. RESULTS ARDS group had 30 patients (44 ± 16 years old, 57% men), the non-ARDS group had 36 patients (39 ± 17 years old, 42% men), and the control group had 35 individuals (44 ± 9 years old, 51% men). Hyaluronan levels were significantly higher in the ARDS group than the two groups [31 ng/ml (interquartile range-IQR 12-56) vs. 5 ng/ml (IQR 3-10) vs. 5 ng/ml (IQR 2-8); p < 0.0001]. Hyaluronan levels above 19 ng/ml in patients with flu syndrome were associated with a significant increase in 28-day mortality rate: relative risk (RR): 6.95; (95% confidence interval 1.88-25.67); p = 0.0017. A positive correlation was observed between hyaline membrane perimeter and soluble thrombomodulin levels (r = 0.89; p = 0.05) as well as between the number of neutrophils in the alveolar septum and hyaluronan levels (r = 0.89; p = 0.05). CONCLUSIONS Evidence of EG shedding was found in ARDS established after flu syndrome.
Collapse
Affiliation(s)
- Maira Nilson Benatti
- Division of Emergency Medicine, Department of Internal Medicine, Ribeirão Preto School of Medicine, São Paulo University, Rua Bernardino de Campos, 1000, Ribeirão Preto, São Paulo, 14020-670 Brazil
| | - Alexandre Todorovic Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto School of Medicine, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Henrique Miranda
- Division of Emergency Medicine, Department of Internal Medicine, Ribeirão Preto School of Medicine, São Paulo University, Rua Bernardino de Campos, 1000, Ribeirão Preto, São Paulo, 14020-670 Brazil
| |
Collapse
|
49
|
Kang H, Sun A, Wu Q, Yang J, Zhang W, Qu Y, Gao M, Deng X. Atherogenic diet-diminished endothelial glycocalyx contributes to impaired vasomotor properties in rat. Am J Physiol Heart Circ Physiol 2020; 319:H814-H823. [PMID: 32822214 DOI: 10.1152/ajpheart.00039.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hypercholesterolemia- and atherosclerosis-caused vasomotor property dysfunction may be involved in many clinic manifestations of atherosclerosis, including angina, acute myocardial infarction, and sudden cardiac death. However, its underlying mechanism is not clear. The endothelial glycocalyx is a protective surface layer on the endothelial cells, serving as a molecular sieve, cell adhesion modulator, and mechanosensor for blood flow. In the present study, we demonstrated by confocal microscopy in Sprague-Dawley (SD) male rats fed a 12-wk high-cholesterol diet (HC) compared with the normal diet (NC) that the dimension of the endothelial glycocalyx reduced significantly in both the common carotid artery (2.89 ± 0.41 µm and 3.25 ± 0.44 μm, respectively) and the internal sinus region (2.35 ± 0.07 µm and 3.46 ± 0.86 μm, respectively). Furthermore, we showed by real-time PCR that this dimension modification of endothelial glycocalyx may be attributed to a significant downregulation of heparan sulfate proteoglycan (HSPG)-related genes, including syndecan-3, glypican-1, and EXT1, not resulting from an enhanced shedding of sulfated glycosaminoglycans (sGAGs) from the vessel wall to the plasma. Meanwhile, the mean contraction and relaxation forces of the common carotid artery with responses to norepinephrine (NE) and acetylcholine (ACh) decreased ~0.34- and 0.13-fold, respectively, accompanied by a lower level of nitric oxide (NO) release. These findings suggest that the atherogenic high cholesterol diet diminished endothelial glycocalyx and disturbed the local NO release, thus contributing to the impaired vasomotor properties of the vessel.NEW & NOTEWORTHY Twelve-week high-cholesterol (HC) diet reduces the thickness of the endothelial glycocalyx in Sprague-Dawley (SD) male rats, which is mainly attributed to a downregulation of heparan sulfate proteoglycan-related genes (syndecan-3, glypican-1, EXT1), not resulting from an enhanced shedding of sulfated glycosaminoglycans (sGAGs) into the plasma. HC-diminished glycocalyx may disturb its mechanotransduction of local shear stress, lower nitric oxide (NO) release, and impair vasomotor responses to norepinephrine (NE) and acetylcholine (ACh).
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Anqiang Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Qiuhong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jiali Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Weichen Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yuxin Qu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Menghan Gao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
50
|
Role of endothelial glycocalyx in sliding friction at the catheter-blood vessel interface. Sci Rep 2020; 10:11855. [PMID: 32678286 PMCID: PMC7366638 DOI: 10.1038/s41598-020-68870-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/18/2020] [Indexed: 01/18/2023] Open
Abstract
Catheterization is a common medical operation to diagnose and treat cardiovascular diseases. The blood vessel lumen is coated with endothelial glycocalyx layer (EGL), which is important for the permeability and diffusion through the blood vessels wall, blood hemodynamics and mechanotransduction. However EGL’s role in catheter-blood vessel friction is not explored. We use a porcine aorta to mimic the blood vessel and a catheter loop was made to rub in reciprocating sliding mode against it to understand the role of catheter loop curvature, stiffness, normal load, sliding speed and EGL on the friction properties. Trypsin treatment was used to cause a degradation of the EGL. Decrease in catheter loop stiffness and EGL degradation were the strongest factors which dramatically increased the coefficient of friction (COF) and frictional energy dissipation at the aorta-catheter interface. Increasing sliding speed caused an increase but increase in normal load first caused a decrease and then an increase in the COF and frictional energy. These results provide the basic data for safety of operation and damage control during catheterization in patients with degraded EGL.
Collapse
|