1
|
Parapanov R, Debonneville A, Allouche M, Lugrin J, Rodriguez-Caro H, Liaudet L, Krueger T. Transient heat stress protects from severe endothelial damage and dysfunction during prolonged experimental ex-vivo lung perfusion. Front Immunol 2024; 15:1390026. [PMID: 38807604 PMCID: PMC11130382 DOI: 10.3389/fimmu.2024.1390026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction The pulmonary endothelium is the primary target of lung ischemia-reperfusion injury leading to primary graft dysfunction after lung transplantation. We hypothesized that treating damaged rat lungs by a transient heat stress during ex-vivo lung perfusion (EVLP) to elicit a pulmonary heat shock response could protect the endothelium from severe reperfusion injury. Methods Rat lungs damaged by 1h warm ischemia were reperfused on an EVLP platform for up to 6h at a constant temperature (T°) of 37°C (EVLP37°C group), or following a transient heat stress (HS) at 41.5°C from 1 to 1.5h of EVLP (EVLPHS group). A group of lungs exposed to 1h EVLP only (pre-heating conditions) was added as control (Baseline group). In a first protocol, we measured lung heat sock protein expression (HSP70, HSP27 and Hsc70) at selected time-points (n=5/group at each time). In a second protocol, we determined (n=5/group) lung weight gain (edema), pulmonary compliance, oxygenation capacity, pulmonary artery pressure (PAP) and vascular resistance (PVR), the expression of PECAM-1 (CD31) and phosphorylation status of Src-kinase and VE-cadherin in lung tissue, as well as the release in perfusate of cytokines (TNFα, IL-1β) and endothelial biomarkers (sPECAM, von Willebrand Factor -vWF-, sE-selectin and sICAM-1). Histological and immunofluorescent studies assessed perivascular edema and formation of 3-nitrotyrosine (a marker of peroxinitrite) in CD31 lung endothelium. Results HS induced an early (3h) and persisting expression of HSP70 and HSP27, without influencing Hsc70. Lungs from the EVLP37°C group developed massive edema, low compliance and oxygenation, elevated PAP and PVR, substantial release of TNFα, IL-1β, s-PECAM, vWF, E-selectin and s-ICAM, as well as significant Src-kinase activation, VE-cadherin phosphorylation, endothelial 3-NT formation and reduced CD31 expression. In marked contrast, all these alterations were either abrogated or significantly attenuated by HS treatment. Conclusion The therapeutic application of a transient heat stress during EVLP of damaged rat lungs reduces endothelial permeability, attenuates pulmonary vasoconstriction, prevents src-kinase activation and VE-cadherin phosphorylation, while reducing endothelial peroxinitrite generation and the release of cytokines and endothelial biomarkers. Collectively, these data demonstrate that therapeutic heat stress may represent a promising strategy to protect the lung endothelium from severe reperfusion injury.
Collapse
Affiliation(s)
- Roumen Parapanov
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Service of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Anne Debonneville
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Service of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Manon Allouche
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Service of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jérôme Lugrin
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Service of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Helena Rodriguez-Caro
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Lucas Liaudet
- Service of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Thorsten Krueger
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
2
|
Maslizan M, Haris MS, Ajat M, Md Jamil SNA, Azhar SC, Zahid NI, Mat Azmi ID. Non-lamellar lyotropic liquid crystalline nanoparticles as nanocarriers for enhanced drug encapsulation of atorvastatin calcium and proanthocyanidins. Chem Phys Lipids 2024; 260:105377. [PMID: 38325712 DOI: 10.1016/j.chemphyslip.2024.105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Atorvastatin calcium (ATV) and proanthocyanidins (PAC) have a strong antioxidant activity, that can benefit to reduce the atherosclerotic plaque progression. Unfortunately, the bioavailability of ATV is greatly reduced due to its limited drug solubility while the PAC drug is unstable upon exposure to the atmospheric oxygen. Herein, the lyotropic liquid crystalline nanoparticles (LLCNPs) constructed by a binary mixture of soy phosphatidylcholine (SPC) and citric acid ester of monoglyceride (citrem) at different weight ratios were used to encapsulate the hydrophobic ATV and hydrophilic PAC. The LLCNPs were further characterized by small-angle X-ray scattering and dynamic light scattering. Depending on the lipid composition, the systems have a size range of 140-190 nm and were able to encapsulate both drugs in the range of 90-100%. Upon increasing the citrem content of drug-loaded LLCNPs, the hexosomes (H2) was completely transformed to an emulsified inverse micellar (L2). The optimum encapsulation efficiency (EE) of ATV and PAC were obtained in citrem/SPC weight ratio 4:1 (L2) and 1:1 (H2), respectively. There was a substantial change in the mean size and PDI of the nanoparticles upon 30 days of storage with the ATV-loaded LLCNPs exhibiting greater colloidal instability than PAC-loaded LLCNPs. The biphasic released pattern (burst released at the initial stage followed by the sustained released at the later stage) was perceived in ATV formulation, while the burst drug released pattern was observed in PAC formulations that could be attributed by its internal H2 structure. Interestingly, the cytokine studies showed that the PAC-LLCNPs promisingly up regulate the expressions of tumor necrosis factor-alpha (TNF-α) better than the drug-free and ATV-loaded LLCNPs samples. The structural tunability of citrem/SPC nanoparticles and their effect on physicochemical characteristic, biological activities and potential as an alternative drug delivery platform in the treatment of atherosclerosis are discussed.
Collapse
Affiliation(s)
- Mardhiah Maslizan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Muhammad Salahuddin Haris
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Siti Nurul Ain Md Jamil
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Centre of Foundation Studies for Agricultural Science, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Shah Christirani Azhar
- Centre of Foundation Studies for Agricultural Science, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - N Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Centre of Foundation Studies for Agricultural Science, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
4
|
Karki P, Li Y, Zhang CO, Ke Y, Promnares K, Birukova AA, Eggerman TL, Bocharov AV, Birukov KG. Amphipathic Helical Peptide L37pA Protects against Lung Vascular Endothelial Dysfunction Caused by Truncated Oxidized Phospholipids via Antagonism with CD36 Receptor. Am J Respir Cell Mol Biol 2024; 70:11-25. [PMID: 37725486 PMCID: PMC10768836 DOI: 10.1165/rcmb.2023-0127oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
The generation of bioactive truncated oxidized phospholipids (Tr-OxPLs) from oxidation of cell-membrane or circulating lipoproteins is a common feature of various pathological states. Scavenger receptor CD36 is involved in lipid transport and acts as a receptor for Tr-OxPLs. Interestingly, Tr-OxPLs and CD36 are involved in endothelial dysfunction-derived acute lung injury, but the precise mechanistic connections remain unexplored. In the present study, we investigated the role of CD36 in mediating pulmonary endothelial cell (EC) dysfunction caused by Tr-OxPLs. Our results demonstrated that the Tr-OxPLs KOdia-PC, Paz-PC, PGPC, PON-PC, POV-PC, and lysophosphocholine caused an acute EC barrier disruption as revealed by measurements of transendothelial electrical resistance and VE-cadherin immunostaining. More importantly, a synthetic amphipathic helical peptide, L37pA, targeting human CD36 strongly attenuated Tr-OxPL-induced EC permeability. L37pA also suppressed Tr-OxPL-induced endothelial inflammatory activation monitored by mRNA expression of inflammatory cytokines/chemokines and adhesion molecules. In addition, L37pA blocked Tr-OxPL-induced NF-κB activation and tyrosine phosphorylation of Src kinase and VE-cadherin. The Src inhibitor SU6656 attenuated KOdia-PC-induced EC permeability and inflammation, but inhibition of the Toll-like receptors (TLRs) TLR1, TLR2, TLR4, and TLR6 had no such protective effects. CD36-knockout mice were more resistant to Tr-OxPL-induced lung injury. Treatment with L37pA was equally effective in ameliorating Tr-OxPL-induced vascular leak and lung inflammation as determined by an Evans blue extravasation assay and total cell and protein content in BAL fluid. Altogether, these results demonstrate an essential role of CD36 in mediating Tr-OxPL-induced EC dysfunction and suggest a strong therapeutic potential of CD36 inhibitory peptides in mitigating lung injury and inflammation.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Yue Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Chen-Ou Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kamoltip Promnares
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anna A. Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Thomas L. Eggerman
- Department of Laboratory Medicine, Clinical Center, and
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Greistorfer T, Jud P. Pathophysiological Aspects of COVID-19-Associated Vasculopathic Diseases. Thromb Haemost 2023; 123:931-944. [PMID: 37172941 DOI: 10.1055/s-0043-1768969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Since the beginning of coronavirus disease 2019 (COVID-19) pandemic, numerous data reported potential effects on the cardiovascular system due to infection by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which may lead to COVID-19-associated vasculopathies during the acute phase and measurable vascular changes in the convalescent phase. Infection by SARS-CoV-2 seems to have specific direct and indirect effects on the endothelium, immune and coagulation systems thus promoting endothelial dysfunction, immunothrombosis, and formation of neutrophil extracellular traps although the exact mechanisms still need to be elucidated. This review represents a recent update of pathophysiological pathways of the respective three major mechanisms contributing to COVID-19 vasculopathies and vascular changes and includes clinical implications and significance of outcome data.
Collapse
Affiliation(s)
- Thiemo Greistorfer
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Jud
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Kizhatil K, Clark G, Sunderland D, Bhandari A, Horbal L, Balasubramanian R, John S. FYN regulates aqueous humor outflow and IOP through the phosphorylation of VE-cadherin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556253. [PMID: 37886565 PMCID: PMC10602025 DOI: 10.1101/2023.09.04.556253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The exact sites and molecules that determine resistance to aqueous humor drainage and control intraocular pressure (IOP) need further elaboration. Proposed sites include the inner wall of Schlemms's canal and the juxtacanalicular trabecular meshwork ocular drainage tissues. The adherens junctions (AJs) of Schlemm's canal endothelial cells (SECs) must both preserve the blood-aqueous humor (AQH) barrier and be conducive to AQH drainage. How homeostatic control of AJ permeability in SC occurs and how such control impacts IOP is unclear. We hypothesized that mechano-responsive phosphorylation of the junctional molecule VE-CADHERIN (VEC) by SRC family kinases (SFKs) regulates the permeability of SEC AJs. We tested this by clamping IOP at either 16 mmHg, 25 mmHg, or 45 mmHg in mice and then measuring AJ permeability and VEC phosphorylation. We found that with increasing IOP: 1) SEC AJ permeability increased, 2) VEC phosphorylation was increased at tyrosine-658, and 3) SFKs were activated at the AJ. Among the two SFKs known to phosphorylate VEC, FYN, but not SRC, localizes to the SC. Furthermore, FYN mutant mice had decreased phosphorylation of VEC at SEC AJs, dysregulated IOP, and reduced AQH outflow. Together, our data demonstrate that increased IOP activates FYN in the inner wall of SC, leading to increased phosphorylation of AJ VEC and, thus, decreased resistance to AQH outflow. These findings support a crucial role of mechanotransduction signaling in IOP homeostasis within SC in response to IOP. These data strongly suggest that the inner wall of SC partially contributes to outflow resistance.
Collapse
|
7
|
Medrano-Bosch M, Simón-Codina B, Jiménez W, Edelman ER, Melgar-Lesmes P. Monocyte-endothelial cell interactions in vascular and tissue remodeling. Front Immunol 2023; 14:1196033. [PMID: 37483594 PMCID: PMC10360188 DOI: 10.3389/fimmu.2023.1196033] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Monocytes are circulating leukocytes of innate immunity derived from the bone marrow that interact with endothelial cells under physiological or pathophysiological conditions to orchestrate inflammation, angiogenesis, or tissue remodeling. Monocytes are attracted by chemokines and specific receptors to precise areas in vessels or tissues and transdifferentiate into macrophages with tissue damage or infection. Adherent monocytes and infiltrated monocyte-derived macrophages locally release a myriad of cytokines, vasoactive agents, matrix metalloproteinases, and growth factors to induce vascular and tissue remodeling or for propagation of inflammatory responses. Infiltrated macrophages cooperate with tissue-resident macrophages during all the phases of tissue injury, repair, and regeneration. Substances released by infiltrated and resident macrophages serve not only to coordinate vessel and tissue growth but cellular interactions as well by attracting more circulating monocytes (e.g. MCP-1) and stimulating nearby endothelial cells (e.g. TNF-α) to expose monocyte adhesion molecules. Prolonged tissue accumulation and activation of infiltrated monocytes may result in alterations in extracellular matrix turnover, tissue functions, and vascular leakage. In this review, we highlight the link between interactions of infiltrating monocytes and endothelial cells to regulate vascular and tissue remodeling with a special focus on how these interactions contribute to pathophysiological conditions such as cardiovascular and chronic liver diseases.
Collapse
Affiliation(s)
- Mireia Medrano-Bosch
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Blanca Simón-Codina
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Wladimiro Jiménez
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Pedro Melgar-Lesmes
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
8
|
Britzen-Laurent N, Weidinger C, Stürzl M. Contribution of Blood Vessel Activation, Remodeling and Barrier Function to Inflammatory Bowel Diseases. Int J Mol Sci 2023; 24:ijms24065517. [PMID: 36982601 PMCID: PMC10051397 DOI: 10.3390/ijms24065517] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) consist of a group of chronic inflammatory disorders with a complex etiology, which represent a clinical challenge due to their often therapy-refractory nature. In IBD, inflammation of the intestinal mucosa is characterized by strong and sustained leukocyte infiltration, resulting in the loss of epithelial barrier function and subsequent tissue destruction. This is accompanied by the activation and the massive remodeling of mucosal micro-vessels. The role of the gut vasculature in the induction and perpetuation of mucosal inflammation is receiving increasing recognition. While the vascular barrier is considered to offer protection against bacterial translocation and sepsis after the breakdown of the epithelial barrier, endothelium activation and angiogenesis are thought to promote inflammation. The present review examines the respective pathological contributions of the different phenotypical changes observed in the microvascular endothelium during IBD, and provides an overview of potential vessel-specific targeted therapy options for the treatment of IBD.
Collapse
Affiliation(s)
- Nathalie Britzen-Laurent
- Division of Surgical Research, Department of Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence:
| | - Carl Weidinger
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Michael Stürzl
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Division of Molecular and Experimental Surgery, Translational Research Center, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
9
|
The impact of α-synuclein aggregates on blood-brain barrier integrity in the presence of neurovascular unit cells. Int J Biol Macromol 2023; 229:305-320. [PMID: 36535359 DOI: 10.1016/j.ijbiomac.2022.12.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The role of the blood-brain barrier (BBB) is to control trafficking of biomolecules and protect the brain. This function can be compromised by pathological conditions. Parkinson's disease (PD) is characterized by the accumulation of α-synuclein aggregates (αSN-AGs) such as oligomers and fibrils, which contribute to disease progression and severity. Here we study how αSN-AGs affect the BBB in in vitro co-culturing models consisting of human brain endothelial hCMEC/D3 cells (to overcome inter-species differences) alone and co-cultured with astrocytes and neurons/glial cells. When cultivated on their own, hCMEC/D3 cells were compromised by αSN-AGs, which decreased cellular viability, mitochondrial membrane potential, wound healing activity, TEER value, and enhanced permeability, as well as increased the levels of ROS and NO. Co-culturing of these cells with activated microglia also increased BBB impairment according to TEER and systemic immune cell transmigration assays. In contrast, hCMEC/D3 cells co-cultured with astrocytes or dopaminergic neurons or simultaneously treated with their conditioned media showed increased resistance against αSN-AGs. Our work demonstrates the complex relationship between members of the neurovascular unit (NVU) (perivascular astrocytes, neurons, microglia, and endothelial cells), αSN-AGs and BBB.
Collapse
|
10
|
Sharma D, Kaur G, Bisen S, Sharma A, Ibrahim AS, Singh NK. IL-33 via PKCμ/PRKD1 Mediated α-Catenin Phosphorylation Regulates Endothelial Cell-Barrier Integrity and Ischemia-Induced Vascular Leakage. Cells 2023; 12:703. [PMID: 36899839 PMCID: PMC10001418 DOI: 10.3390/cells12050703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Angiogenesis, neovascularization, and vascular remodeling are highly dynamic processes, where endothelial cell-cell adhesion within the vessel wall controls a range of physiological processes, such as growth, integrity, and barrier function. The cadherin-catenin adhesion complex is a key contributor to inner blood-retinal barrier (iBRB) integrity and dynamic cell movements. However, the pre-eminent role of cadherins and their associated catenins in iBRB structure and function is not fully understood. Using a murine model of oxygen-induced retinopathy (OIR) and human retinal microvascular endothelial cells (HRMVECs), we try to understand the significance of IL-33 on retinal endothelial barrier disruption, leading to abnormal angiogenesis and enhanced vascular permeability. Using electric cell-substrate impedance sensing (ECIS) analysis and FITC-dextran permeability assay, we observed that IL-33 at a 20 ng/mL concentration induced endothelial-barrier disruption in HRMVECs. The adherens junction (AJs) proteins play a prominent role in the selective diffusion of molecules from the blood to the retina and in maintaining retinal homeostasis. Therefore, we looked for the involvement of adherens junction proteins in IL-33-mediated endothelial dysfunction. We observed that IL-33 induces α-catenin phosphorylation at serine/threonine (Ser/Thr) residues in HRMVECs. Furthermore, mass-spectroscopy (MS) analysis revealed that IL-33 induces the phosphorylation of α-catenin at Thr654 residue in HRMVECs. We also observed that PKCμ/PRKD1-p38 MAPK signaling regulates IL-33-induced α-catenin phosphorylation and retinal endothelial cell-barrier integrity. Our OIR studies revealed that genetic deletion of IL-33 resulted in reduced vascular leakage in the hypoxic retina. We also observed that the genetic deletion of IL-33 reduced OIR-induced PKCμ/PRKD1-p38 MAPK-α-catenin signaling in the hypoxic retina. Therefore, we conclude that IL-33-induced PKCμ/PRKD1-p38 MAPK-α-catenin signaling plays a significant role in endothelial permeability and iBRB integrity.
Collapse
Affiliation(s)
- Deepti Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Shivantika Bisen
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Anamika Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Ahmed S. Ibrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
11
|
Adzraku SY, Wang G, Cao C, Bao Y, Wang Y, Smith AO, Du Y, Wang H, Li Y, Xu K, Qiao J, Ju W, Zeng L. Robo4 inhibits gamma radiation-induced permeability of a murine microvascular endothelial cell by regulating the junctions. Cell Mol Biol Lett 2023; 28:2. [PMID: 36647012 PMCID: PMC9843922 DOI: 10.1186/s11658-022-00413-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Hematopoietic stem cell transplantation involves irradiation preconditioning which causes bone marrow endothelial cell dysfunction. While much emphasis is on the reconstitution of hematopoietic stem cells in the bone marrow microenvironment, endothelial cell preservation is indispensable to overcome the preconditioning damages. This study aims to ascertain the role of Roundabout 4 (Robo4) in regulating irradiation-induced damage to the endothelium. METHODS Microvascular endothelial cells were treated with γ-radiation to establish an endothelial cell injury model. Robo4 expression in the endothelial cells was manipulated employing lentiviral-mediated RNAi and gene overexpression technology before irradiation treatment. The permeability of endothelial cells was measured using qPCR, immunocytochemistry, and immunoblotting to analyze the effect on the expression and distribution of junctional molecules, adherens junctions, tight junctions, and gap junctions. Using Transwell endothelial monolayer staining, FITC-Dextran permeability, and gap junction-mediated intercellular communication (GJIC) assays, we determined the changes in endothelial functions after Robo4 gene manipulation and irradiation. Moreover, we measured the proportion of CD31 expression in endothelial cells by flow cytometry. We analyzed variations between two or multiple groups using Student's t-tests and ANOVA. RESULTS Ionizing radiation upregulates Robo4 expression but disrupts endothelial junctional molecules. Robo4 deletion causes further degradation of endothelial junctions hence increasing the permeability of the endothelial cell monolayer. Robo4 knockdown in microvascular endothelial cells increases the degradation and delocalization of ZO-1, PECAM-1, occludin, and claudin-5 molecules after irradiation. Conversely, connexin 43 expression increases after silencing Robo4 in endothelial cells to induce permeability but are readily destroyed when exposed to 10 Gy of gamma radiation. Also, Robo4 knockdown enhances Y731-VE-cadherin phosphorylation leading to the depletion and destabilization of VE-cadherin at the endothelial junctions following irradiation. However, Robo4 overexpression mitigates irradiation-induced degradation of tight junctional proteins and stabilizes claudin-5 and ZO-1 distribution. Finally, the enhanced expression of Robo4 ameliorates the irradiation-induced depletion of VE-cadherin and connexin 43, improves the integrity of microvascular endothelial cell junctions, and decreases permeability. CONCLUSION This study reveals that Robo4 maintains microvascular integrity after radiation preconditioning treatment by regulating endothelial permeability and protecting endothelial functions. Our results also provided a potential mechanism to repair the bone marrow vascular niche after irradiation by modulating Robo4 expression.
Collapse
Affiliation(s)
- Seyram Yao Adzraku
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002 China
| | - Guozhang Wang
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002 China
| | - Can Cao
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002 China
| | - Yurong Bao
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Yizhou Wang
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Alhaji Osman Smith
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Yuwei Du
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Haiyang Wang
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Yue Li
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Kailin Xu
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Jianlin Qiao
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| | - Wen Ju
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China ,Xuzhou Ruihu Health Management Consulting Co., Ltd, Xuzhou, 221002 China
| | - Lingyu Zeng
- grid.417303.20000 0000 9927 0537Blood Diseases Institute, Xuzhou Medical University, Xuzhou, 221002 China ,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 China
| |
Collapse
|
12
|
Zamani Rarani F, Zamani Rarani M, Hamblin MR, Rashidi B, Hashemian SMR, Mirzaei H. Comprehensive overview of COVID-19-related respiratory failure: focus on cellular interactions. Cell Mol Biol Lett 2022; 27:63. [PMID: 35907817 PMCID: PMC9338538 DOI: 10.1186/s11658-022-00363-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/06/2022] [Indexed: 01/08/2023] Open
Abstract
The pandemic outbreak of coronavirus disease 2019 (COVID-19) has created health challenges in all parts of the world. Understanding the entry mechanism of this virus into host cells is essential for effective treatment of COVID-19 disease. This virus can bind to various cell surface molecules or receptors, such as angiotensin-converting enzyme 2 (ACE2), to gain cell entry. Respiratory failure and pulmonary edema are the most important causes of mortality from COVID-19 infections. Cytokines, especially proinflammatory cytokines, are the main mediators of these complications. For normal respiratory function, a healthy air-blood barrier and sufficient blood flow to the lungs are required. In this review, we first discuss airway epithelial cells, airway stem cells, and the expression of COVID-19 receptors in the airway epithelium. Then, we discuss the suggested molecular mechanisms of endothelial dysfunction and blood vessel damage in COVID-19. Coagulopathy can be caused by platelet activation leading to clots, which restrict blood flow to the lungs and lead to respiratory failure. Finally, we present an overview of the effects of immune and non-immune cells and cytokines in COVID-19-related respiratory failure.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR Iran
| |
Collapse
|
13
|
The Multiple Roles of CD147 in the Development and Progression of Oral Squamous Cell Carcinoma: An Overview. Int J Mol Sci 2022; 23:ijms23158336. [PMID: 35955471 PMCID: PMC9369056 DOI: 10.3390/ijms23158336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Cluster of differentiation (CD)147, also termed extracellular matrix metalloprotease inducer or basigin, is a glycoprotein ubiquitously expressed throughout the human body, the oral cavity included. CD147 actively participates in physiological tissue development or growth and has important roles in reactive processes such as inflammation, immunity, and tissue repair. It is worth noting that deregulated expression and/or activity of CD147 is observed in chronic inflammatory or degenerative diseases, as well as in neoplasms. Among the latter, oral squamous cell carcinoma (OSCC) is characterized by an upregulation of CD147 in both the neoplastic and normal cells constituting the tumor mass. Most interestingly, the expression and/or activity of CD147 gradually increase as healthy oral mucosa becomes inflamed; hyperplastic/dysplastic lesions are then set on, and, eventually, OSCC develops. Based on these findings, here we summarize published studies which evaluate whether CD147 could be employed as a marker to monitor OSCC development and progression. Moreover, we describe CD147-promoted cellular and molecular events which are relevant to oral carcinogenesis, with the aim to provide useful information for assessing whether CD147 may be the target of novel therapeutic approaches directed against OSCC.
Collapse
|
14
|
Hamada N, Kawano KI, Nomura T, Furukawa K, Yusoff FM, Maruhashi T, Maeda M, Nakashima A, Higashi Y. Temporal Changes in Sparing and Enhancing Dose Protraction Effects of Ionizing Irradiation for Aortic Damage in Wild-Type Mice. Cancers (Basel) 2022; 14:3319. [PMID: 35884380 PMCID: PMC9321929 DOI: 10.3390/cancers14143319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
In medical and occupational settings, ionizing irradiation of the circulatory system occurs at various dose rates. We previously found sparing and enhancing dose protraction effects for aortic changes in wild-type mice at 6 months after starting irradiation with 5 Gy of photons. Here, we further analyzed changes at 12 months after stating irradiation. Irrespective of irradiation regimens, irradiation little affected left ventricular function, heart weight, and kidney weight. Irradiation caused structural disorganizations and intima-media thickening in the aorta, along with concurrent elevations of markers for proinflammation, macrophage, profibrosis, and fibrosis, and reductions in markers for vascular functionality and cell adhesion in the aortic endothelium. These changes were qualitatively similar but quantitatively less at 12 months than at 6 months. The magnitude of such changes at 12 months was not smaller in 25 fractions (Frs) but was smaller in 100 Frs and chronic exposure than acute exposure. The magnitude at 6 and 12 months was greater in 25 Frs, smaller in 100 Frs, and much smaller in chronic exposure than acute exposure. These findings suggest that dose protraction changes aortic damage, in a fashion that depends on post-irradiation time and is not a simple function of dose rate.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo 201-8511, Japan;
| | - Ki-ichiro Kawano
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan; (K.-i.K.); (F.M.Y.); (T.M.)
| | - Takaharu Nomura
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo 201-8511, Japan;
| | - Kyoji Furukawa
- Biostatistics Center, Kurume University, Fukuoka 830-0011, Japan;
| | - Farina Mohamad Yusoff
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan; (K.-i.K.); (F.M.Y.); (T.M.)
| | - Tatsuya Maruhashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan; (K.-i.K.); (F.M.Y.); (T.M.)
| | - Makoto Maeda
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima 739-8526, Japan;
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Yukihito Higashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan; (K.-i.K.); (F.M.Y.); (T.M.)
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
15
|
Ambrosino P, Calcaterra IL, Mosella M, Formisano R, D’Anna SE, Bachetti T, Marcuccio G, Galloway B, Mancini FP, Papa A, Motta A, Di Minno MND, Maniscalco M. Endothelial Dysfunction in COVID-19: A Unifying Mechanism and a Potential Therapeutic Target. Biomedicines 2022; 10:biomedicines10040812. [PMID: 35453563 PMCID: PMC9029464 DOI: 10.3390/biomedicines10040812] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generated a worldwide emergency, until the declaration of the pandemic in March 2020. SARS-CoV-2 could be responsible for coronavirus disease 2019 (COVID-19), which goes from a flu-like illness to a potentially fatal condition that needs intensive care. Furthermore, the persistence of functional disability and long-term cardiovascular sequelae in COVID-19 survivors suggests that convalescent patients may suffer from post-acute COVID-19 syndrome, requiring long-term care and personalized rehabilitation. However, the pathophysiology of acute and post-acute manifestations of COVID-19 is still under study, as a better comprehension of these mechanisms would ensure more effective personalized therapies. To date, mounting evidence suggests a crucial endothelial contribution to the clinical manifestations of COVID-19, as endothelial cells appear to be a direct or indirect preferential target of the virus. Thus, the dysregulation of many of the homeostatic pathways of the endothelium has emerged as a hallmark of severity in COVID-19. The aim of this review is to summarize the pathophysiology of endothelial dysfunction in COVID-19, with a focus on personalized pharmacological and rehabilitation strategies targeting endothelial dysfunction as an attractive therapeutic option in this clinical setting.
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (F.P.M.); (A.P.)
- Correspondence: (P.A.); (M.M.)
| | | | - Marco Mosella
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (M.M.); (S.E.D.)
| | - Roberto Formisano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (F.P.M.); (A.P.)
| | - Silvestro Ennio D’Anna
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (M.M.); (S.E.D.)
| | - Tiziana Bachetti
- Istituti Clinici Scientifici Maugeri IRCCS, Scientific Direction, 27100 Pavia, Italy;
| | - Giuseppina Marcuccio
- Università della Campania Luigi Vanvitelli, 81100 Caserta, Italy; (G.M.); (B.G.)
| | - Brurya Galloway
- Università della Campania Luigi Vanvitelli, 81100 Caserta, Italy; (G.M.); (B.G.)
| | - Francesco Paolo Mancini
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (F.P.M.); (A.P.)
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Antimo Papa
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (F.P.M.); (A.P.)
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy;
| | | | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (M.M.); (S.E.D.)
- Correspondence: (P.A.); (M.M.)
| |
Collapse
|
16
|
Lucas R, Hadizamani Y, Enkhbaatar P, Csanyi G, Caldwell RW, Hundsberger H, Sridhar S, Lever AA, Hudel M, Ash D, Ushio-Fukai M, Fukai T, Chakraborty T, Verin A, Eaton DC, Romero M, Hamacher J. Dichotomous Role of Tumor Necrosis Factor in Pulmonary Barrier Function and Alveolar Fluid Clearance. Front Physiol 2022; 12:793251. [PMID: 35264975 PMCID: PMC8899333 DOI: 10.3389/fphys.2021.793251] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023] Open
Abstract
Alveolar-capillary leak is a hallmark of the acute respiratory distress syndrome (ARDS), a potentially lethal complication of severe sepsis, trauma and pneumonia, including COVID-19. Apart from barrier dysfunction, ARDS is characterized by hyper-inflammation and impaired alveolar fluid clearance (AFC), which foster the development of pulmonary permeability edema and hamper gas exchange. Tumor Necrosis Factor (TNF) is an evolutionarily conserved pleiotropic cytokine, involved in host immune defense against pathogens and cancer. TNF exists in both membrane-bound and soluble form and its mainly -but not exclusively- pro-inflammatory and cytolytic actions are mediated by partially overlapping TNFR1 and TNFR2 binding sites situated at the interface between neighboring subunits in the homo-trimer. Whereas TNFR1 signaling can mediate hyper-inflammation and impaired barrier function and AFC in the lungs, ligand stimulation of TNFR2 can protect from ventilation-induced lung injury. Spatially distinct from the TNFR binding sites, TNF harbors within its structure a lectin-like domain that rather protects lung function in ARDS. The lectin-like domain of TNF -mimicked by the 17 residue TIP peptide- represents a physiological mediator of alveolar-capillary barrier protection. and increases AFC in both hydrostatic and permeability pulmonary edema animal models. The TIP peptide directly activates the epithelial sodium channel (ENaC) -a key mediator of fluid and blood pressure control- upon binding to its α subunit, which is also a part of the non-selective cation channel (NSC). Activity of the lectin-like domain of TNF is preserved in complexes between TNF and its soluble TNFRs and can be physiologically relevant in pneumonia. Antibody- and soluble TNFR-based therapeutic strategies show considerable success in diseases such as rheumatoid arthritis, psoriasis and inflammatory bowel disease, but their chronic use can increase susceptibility to infection. Since the lectin-like domain of TNF does not interfere with TNF's anti-bacterial actions, while exerting protective actions in the alveolar-capillary compartments, it is currently evaluated in clinical trials in ARDS and COVID-19. A more comprehensive knowledge of the precise role of the TNFR binding sites versus the lectin-like domain of TNF in lung injury, tissue hypoxia, repair and remodeling may foster the development of novel therapeutics for ARDS.
Collapse
Affiliation(s)
- Rudolf Lucas
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Rudolf Lucas,
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Robert W. Caldwell
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Harald Hundsberger
- Department of Medical Biotechnology, University of Applied Sciences, Krems, Austria,Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Supriya Sridhar
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Alice Ann Lever
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Dipankar Ash
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tohru Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Douglas C. Eaton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Maritza Romero
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland,Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, University Medical Centre of the Saarland, Saarland University, Homburg, Germany,Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, Homburg, Germany,Jürg Hamacher,
| |
Collapse
|
17
|
Ersland E, Ebrahim N, Mwizerwa O, Oba T, Oku K, Nishino M, Hikimoto D, Miyoshi H, Tomotoshi K, Rahmanian O, Ekwueme E, Neville C, Sundback C. Human Vascular Wall Microfluidic Model for Preclinical Evaluation of Drug-Induced Vascular Injury. Tissue Eng Part C Methods 2022; 28:83-92. [PMID: 35114818 PMCID: PMC9022170 DOI: 10.1089/ten.tec.2021.0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Drug-induced vascular injury (DIVI) in preclinical animal models often leads to candidate compound termination during drug development. DIVI has not been documented in human clinical trials with drugs that cause DIVI in preclinical animals. A robust human preclinical assay for DIVI is needed as an early vascular injury screen. A human vascular wall microfluidic tissue chip was developed with a human umbilical vein endothelial cell (HUVEC)-umbilical artery smooth muscle cell (vascular smooth muscle cell, VSMC) bilayer matured under physiological shear stress. Optimized temporal flow profiles produced HUVEC-VSMC bilayers with quiescent endothelial cell (EC) monolayers, EC tight junctions, and contractile VSMC morphology. Dose-response testing (3-30 μM concentration) was conducted with minoxidil and tadalafil vasodilators. Both drugs have demonstrated preclinical DIVI but lack clinical evidence. The permeability of severely damaged engineered bilayers (30 μM tadalafil) was 4.1 times that of the untreated controls. Immunohistochemical protein assays revealed contrasting perspectives on tadalafil and minoxidil-induced damage. Tadalafil impacted the endothelial monolayer with minor injury to the contractile VSMCs, whereas minoxidil demonstrated minor EC barrier injury but damaged VSMCs and activated ECs in a dose-response manner. This proof-of-concept human vascular wall bilayer model of DIVI is a critical step toward developing a preclinical human screening assay for drug development. Impact statement More than 90% of drug candidates fail during clinical trials due to human efficacy and toxicity concerns. Preclinical studies rely heavily on animal models, although animal toxicity and drug metabolism responses often differ from humans. During the drug development process, perfused in vitro human tissue chips could model the clinical drug response and potential toxicity of candidate compounds. Our long-term objective is to develop a human vascular wall tissue chip to screen for drug-induced vascular injury. Its application could ultimately reduce drug development delays and costs, and improve patient safety.
Collapse
Affiliation(s)
- Erik Ersland
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Neven Ebrahim
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Anatomy and Embryology, Mansoura University, Mansoura, Egypt
| | - Olive Mwizerwa
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Takahiro Oba
- Bioscience and Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Keisuke Oku
- Bioscience and Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Masafumi Nishino
- Bioscience and Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Daichi Hikimoto
- Bioscience and Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Hayato Miyoshi
- Bioscience and Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Kimihiko Tomotoshi
- Bioscience and Engineering Laboratories, FUJIFILM Corporation, Kanagawa, Japan
| | - Omid Rahmanian
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Emmanuel Ekwueme
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Craig Neville
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Cathryn Sundback
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Address correspondence to: Cathryn Sundback, ScD, Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 01451, USA
| |
Collapse
|
18
|
Nakano S, Nishikawa M, Kobayashi T, Harlin EW, Ito T, Sato K, Sugiyama T, Yamakawa H, Nagase T, Ueda H. The Rho guanine nucleotide exchange factor PLEKHG1 is activated by interaction with and phosphorylation by Src family kinase member FYN. J Biol Chem 2022; 298:101579. [PMID: 35031323 PMCID: PMC8819033 DOI: 10.1016/j.jbc.2022.101579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023] Open
Abstract
Rho family small GTPases (Rho) regulate various cell motility processes by spatiotemporally controlling the actin cytoskeleton. Some Rho-specific guanine nucleotide exchange factors (RhoGEFs) are regulated via tyrosine phosphorylation by Src family tyrosine kinase (SFK). We also previously reported that PLEKHG2, a RhoGEF for the GTPases Rac1 and Cdc42, is tyrosine-phosphorylated by SRC. However, the details of the mechanisms by which SFK regulates RhoGEFs are not well understood. In this study, we found for the first time that PLEKHG1, which has very high homology to the Dbl and pleckstrin homology domains of PLEKHG2, activates Cdc42 following activation by FYN, a member of the SFK family. We also show that this activation of PLEKHG1 by FYN requires interaction between these two proteins and FYN-induced tyrosine phosphorylation of PLEKHG1. We also found that the region containing the Src homology 3 and Src homology 2 domains of FYN is required for this interaction. Finally, we demonstrated that tyrosine phosphorylation of Tyr-720 and Tyr-801 in PLEKHG1 is important for the activation of PLEKHG1. These results suggest that FYN is a regulator of PLEKHG1 and may regulate cell morphology through Rho signaling via the interaction with and tyrosine phosphorylation of PLEKHG1.
Collapse
Affiliation(s)
- Shun Nakano
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Masashi Nishikawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | | | - Eka Wahyuni Harlin
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
| | - Takuya Ito
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
| | - Katsuya Sato
- Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tsuyoshi Sugiyama
- Faculty of Pharmacy, Gifu University of Medical Science, Kani, Gifu, Japan
| | | | | | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan; Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan.
| |
Collapse
|
19
|
Hamada N, Kawano KI, Nomura T, Furukawa K, Yusoff FM, Maruhashi T, Maeda M, Nakashima A, Higashi Y. Vascular Damage in the Aorta of Wild-Type Mice Exposed to Ionizing Radiation: Sparing and Enhancing Effects of Dose Protraction. Cancers (Basel) 2021; 13:5344. [PMID: 34771507 PMCID: PMC8582417 DOI: 10.3390/cancers13215344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
During medical (therapeutic or diagnostic) procedures or in other settings, the circulatory system receives ionizing radiation at various dose rates. Here, we analyzed prelesional changes in the circulatory system of wild-type mice at six months after starting acute, intermittent, or continuous irradiation with 5 Gy of photons. Independent of irradiation regimens, irradiation had little impact on left ventricular function, heart weight, and kidney weight. In the aorta, a single acute exposure delivered in 10 minutes led to structural disorganizations and detachment of the aortic endothelium, and intima-media thickening. These morphological changes were accompanied by increases in markers for profibrosis (TGF-β1), fibrosis (collagen fibers), proinflammation (TNF-α), and macrophages (F4/80 and CD68), with concurrent decreases in markers for cell adhesion (CD31 and VE-cadherin) and vascular functionality (eNOS) in the aortic endothelium. Compared with acute exposure, the magnitude of such aortic changes was overall greater when the same dose was delivered in 25 fractions spread over 6 weeks, smaller in 100 fractions over 5 months, and much smaller in chronic exposure over 5 months. These findings suggest that dose protraction alters vascular damage in the aorta, but in a way that is not a simple function of dose rate.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo 201-8511, Japan;
| | - Ki-ichiro Kawano
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan; (K.-i.K.); (F.M.Y.); (T.M.)
| | - Takaharu Nomura
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo 201-8511, Japan;
| | - Kyoji Furukawa
- Biostatistics Center, Kurume University, Kurume 830-0011, Japan;
| | - Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan; (K.-i.K.); (F.M.Y.); (T.M.)
| | - Tatsuya Maruhashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan; (K.-i.K.); (F.M.Y.); (T.M.)
| | - Makoto Maeda
- Natural Science Center for Basic Research and Development, Hiroshima 739-8526, Japan;
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan; (K.-i.K.); (F.M.Y.); (T.M.)
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
20
|
Trittmann JK, Jin Y, Liu Y, Nelin LD. Differential effects of the Src family tyrosine kinases Yes and Fyn on lipopolysaccharide-induced lung injury in ice. Am J Physiol Lung Cell Mol Physiol 2021; 321:L392-L403. [PMID: 34105991 DOI: 10.1152/ajplung.00181.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Endothelial cell apoptosis is an early event in the development of acute lung injury (ALI). We have previously found that the Src family tyrosine kinase (STK) Yes activates caspase-3, whereas the STK Fyn inhibits caspase-3 activation in cultured pulmonary endothelial cells. We hypothesized that deficiency in Yes or Fyn in mice would have differential effects on lipopolysaccharide (LPS)-induced ALI. Mice were treated with LPS (10 mg/kg ip) for 24 h. Histological evidence of lung injury was greater in LPS-treated wild-type mice than in vehicle-treated wild-type mice, and the LPS-induced histological evidence of lung injury was attenuated in yes-/- mice and enhanced in fyn-/- mice. In wild-type or fyn-/- mice, LPS resulted in greater lung wet-to-dry weight ratios than in controls, whereas in yes-/- mice lung, wet-to-dry weight was similar between LPS and controls. LPS-exposed fyn-/- mice had greater respiratory system resistance and lower respiratory system compliance than did LPS-exposed wild-type mice. TUNEL positive cells in the lung following LPS treatment were greater in the fyn-/- mice and lower in the yes-/- mice compared with that in the wild-type mice. Following LPS treatment lung protein levels of PECAM-1 were lower in fyn-/- mice than in controls or yes-/- mice. LPS treatment increased cleaved caspase-3 protein levels in wild-type mice, whereas LPS-induced caspase-3 activation was attenuated in yes-/- mice and enhanced in fyn-/- mice. These results indicate that LPS-induced ALI is positively mediated via Yes-related mechanisms and negatively mediated by Fyn-related mechanisms.
Collapse
Affiliation(s)
- Jennifer K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research, Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research, Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yusen Liu
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research, Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research, Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
21
|
Kondreddy V, Magisetty J, Keshava S, Rao LVM, Pendurthi UR. Gab2 (Grb2-Associated Binder2) Plays a Crucial Role in Inflammatory Signaling and Endothelial Dysfunction. Arterioscler Thromb Vasc Biol 2021; 41:1987-2005. [PMID: 33827252 PMCID: PMC8147699 DOI: 10.1161/atvbaha.121.316153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 01/21/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Jhansi Magisetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - L. Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Usha R. Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| |
Collapse
|
22
|
Liberale L, Ministrini S, Carbone F, Camici GG, Montecucco F. Cytokines as therapeutic targets for cardio- and cerebrovascular diseases. Basic Res Cardiol 2021; 116:23. [PMID: 33770265 PMCID: PMC7997823 DOI: 10.1007/s00395-021-00863-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Despite major advances in prevention and treatment, cardiac and cerebral atherothrombotic complications still account for substantial morbidity and mortality worldwide. In this context, inflammation is involved in the chronic process leading atherosclerotic plaque formation and its complications, as well as in the maladaptive response to acute ischemic events. For this reason, modulation of inflammation is nowadays seen as a promising therapeutic strategy to counteract the burden of cardio- and cerebrovascular disease. Being produced and recognized by both inflammatory and vascular cells, the complex network of cytokines holds key functions in the crosstalk of these two systems and orchestrates the progression of atherothrombosis. By binding to membrane receptors, these soluble mediators trigger specific intracellular signaling pathways eventually leading to the activation of transcription factors and a deep modulation of cell function. Both stimulatory and inhibitory cytokines have been described and progressively reported as markers of disease or interesting therapeutic targets in the cardiovascular field. Nevertheless, cytokine inhibition is burdened by harmful side effects that will most likely prevent its chronic use in favor of acute administrations in well-selected subjects at high risk. Here, we summarize the current state of knowledge regarding the modulatory role of cytokines on atherosclerosis, myocardial infarction, and stroke. Then, we discuss evidence from clinical trials specifically targeting cytokines and the potential implication of these advances into daily clinical practice.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland. .,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.
| | - Stefano Ministrini
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy.,First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
23
|
Chernyak BV, Popova EN, Prikhodko AS, Grebenchikov OA, Zinovkina LA, Zinovkin RA. COVID-19 and Oxidative Stress. BIOCHEMISTRY (MOSCOW) 2021; 85:1543-1553. [PMID: 33705292 PMCID: PMC7768996 DOI: 10.1134/s0006297920120068] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathogenesis of the novel coronavirus infection COVID-19 is the subject of active research around the world. COVID-19 caused by the SARS-CoV-2 is a complex disease in which interaction of the virus with target cells, action of the immune system and the body’s systemic response to these events are closely intertwined. Many respiratory viral infections, including COVID-19, cause death of the infected cells, activation of innate immune response, and secretion of inflammatory cytokines. All these processes are associated with the development of oxidative stress, which makes an important contribution to pathogenesis of the viral infections. This review analyzes information on the oxidative stress associated with the infections caused by SARS-CoV-2 and other respiratory viruses. The review also focuses on involvement of the vascular endothelium in the COVID-19 pathogenesis.
Collapse
Affiliation(s)
- B V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - E N Popova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A S Prikhodko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - O A Grebenchikov
- Negovsky Scientific Research Institute of General Reanimatology, Moscow, 107031, Russia
| | - L A Zinovkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - R A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, 119992, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| |
Collapse
|
24
|
Park KS, Schecterson L, Gumbiner BM. Enhanced endothelial barrier function by monoclonal antibody activation of vascular endothelial cadherin. Am J Physiol Heart Circ Physiol 2021; 320:H1403-H1410. [PMID: 33577432 DOI: 10.1152/ajpheart.00002.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Excessive vascular permeability occurs in inflammatory disease processes. Vascular endothelial cadherin (VE-cadherin) is an adhesion protein that controls vascular permeability. We identified monoclonal antibodies (mAbs) to human VE-cadherin that activate cell adhesion and inhibit the increased permeability of endothelial cell monolayers induced by thrombin receptor activator peptide-6 (TRAP-6). Two mAbs, 8A12c and 3A5a, reduce permeability, whereas an inhibitory mAb, 2E11d, enhances permeability. Activating mAbs also reduce permeability induced by tumor necrosis factor-α (TNF-α) and vascular endothelial cell growth factor (VEGF). The activating mAbs also stabilize the organization of the adherens junctions that are disrupted by TRAP-6, VEGF, or TNF-α. The activating mAbs act directly on the adhesive function of VE-cadherin because they did not block the accumulation of actin filaments stimulated by TRAP-6 and enhance physical cell-cell adhesion of VE-cadherin-expressing tissue culture cells. Therefore, VE-cadherin function can be regulated at the cell surface to control endothelial permeability.NEW & NOTEWORTHY Excessive vascular permeability is a serious complication of many inflammatory disease conditions. We have developed monoclonal antibodies that inhibit increases in endothelial monolayer permeability induced by several signaling factors by activating VE-cadherin mediated adhesion and stabilizing cell junctions. These antibodies and/or the mechanisms they reveal may lead to important therapeutics to treat vascular leakiness and inflammation.
Collapse
Affiliation(s)
- Ki-Sook Park
- Department of Biomedical Science and Technology/East-West Medical Research Institute, Kyung Hee University, Seoul, South Korea.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington
| | - Leslayann Schecterson
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington
| | - Barry M Gumbiner
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics, University of Washington, Seattle, Washington.,Department of Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
25
|
Loss of cIAP1 in Endothelial Cells Limits Metastatic Extravasation through Tumor-Derived Lymphotoxin Alpha. Cancers (Basel) 2021; 13:cancers13040599. [PMID: 33546280 PMCID: PMC7913358 DOI: 10.3390/cancers13040599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we determined whether Smac mimetics play a role in metastasis, specifically in circulation, tumor extravasation and growth in a metastatic site. Reports suggest inducing the degradation of IAPs through use of Smac mimetics, alters the ability of the tumor cell to metastasize. However, a role for the immune or stromal compartment in affecting the ability of tumor cells to metastasize upon loss of IAPs has not been defined. To address this open question, we utilized syngeneic tumor models in a late-stage model of metastasis. Loss of cIAP1 in the endothelial compartment, rather than depletion of cIAP2 or absence of cIAP1 in the hematopoietic compartment, caused reduction of tumor load in the lung. Our results underline the involvement of the endothelium in hindering tumor cell extravasation upon loss of cIAP1, in contrast to the immune compartment. Endothelial specific depletion of cIAP1 did not lead to cell death but resulted in an unresponsive endothelium barrier to permeability factors causing a decrease in tumor cell extravasation. Surprisingly, lymphotoxin alpha (LTA), and not TNF, secreted by the tumor cells, was critical for the extravasation. Using TCGA, we found high LTA mRNA expression correlated with decreased survival in kidney carcinoma and associated with advanced disease stage. Our data suggest that Smac mimetics, targeting cIAP1/2, reduce metastasis to the lung by inhibiting tumor cell extravasation.
Collapse
|
26
|
How Does Endothelial Permeability Affect the Development of Juvenile Idiopathic Arthritis? Vascular Endothelial Cadherin as a Promising New Tool Helpful in the Diagnostic Process. DISEASE MARKERS 2020; 2020:8899061. [PMID: 33144896 PMCID: PMC7596436 DOI: 10.1155/2020/8899061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/27/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022]
Abstract
Introduction Vascular endothelial cadherin (VE-cadherin) is a calcium-dependent protein essential for stabilization of the adherens junctions of the endothelial cells. Through vasculogenic mimicry, VE-cadherin may influence angiogenesis in synovial fibroblast-like cells. The soluble extracellular domain of VE-cadherin may be considered an indicator of endothelial dysfunction. Its potential as a diagnostic biomarker in rheumatic diseases, including juvenile idiopathic arthritis (JIA), needs to be investigated. Materials and Methods The study group included 80 patients diagnosed with JIA. In 53 individuals, blood samples were obtained twice with an average interval of 102.4 ± 4.6 days. Results from the study group were compared to 29 age- and sex-matched healthy children. Results Serum levels of VE-cadherin were significantly higher in JIA patients than in healthy controls. In such comparison, VE-cadherin had 87.5% sensitivity and 69.0% specificity for the cutoff level 4.36 ng/ml (Youden index 0.56, area under the curve 0.724). VE-cadherin concentrations negatively correlated with the disease activity score. However, such finding may be a false result because of the downregulation of VE-cadherin induced by glucocorticosteroids. Conclusions VE-cadherin may become a promising diagnostic biomarker of early stages of JIA. Its predictive significance may be decreased by utilization of glucocorticosteroids. A multicentre study including patients with other arthritides is recommended for further evaluation of this protein.
Collapse
|
27
|
Hamada N, Kawano KI, Yusoff FM, Furukawa K, Nakashima A, Maeda M, Yasuda H, Maruhashi T, Higashi Y. Ionizing Irradiation Induces Vascular Damage in the Aorta of Wild-Type Mice. Cancers (Basel) 2020; 12:E3030. [PMID: 33081026 PMCID: PMC7603246 DOI: 10.3390/cancers12103030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
There has been a recent upsurge of interest in the effects of ionizing radiation exposure on the circulatory system, because a mounting body of epidemiological evidence suggests that irradiation induces cardio- and cerebrovascular disease at a much lower dose and lower dose rate than previously considered. The goal of our project is to determine whether dose protraction alters radiation effects on the circulatory system in a mouse model. To this end, the use of wild-type mice is pivotal albeit without manifestation of vascular diseases, because disease models (e.g., apolipoprotein E-deficient mice) are prone to hormetic responses following protracted exposures. As such, here, we first set out to analyze prelesional changes in the descending thoracic aorta of wild-type mice up to six months after a single acute exposure to 0 or 5 Gy of 137Cs γ-rays. Scanning electron microscopy demonstrated that irradiation facilitated structural disorganizations and detachment of the aortic endothelium. The Miles assay with an albumin-binding dye Evans Blue revealed that irradiation enhanced vascular permeability. Immunofluorescence staining showed that irradiation led to partial loss of the aortic endothelium (evidenced by a lack of adhesion molecule CD31 and 4',6-diamidino-2-phenylindole (DAPI) signals), a decrease in endothelial nitric oxide synthase and adherens junction protein (vascular endothelial (VE)-cadherin) in the aortic endothelium, along with an increase in inflammation (tumor necrosis factor (TNF)-α) and macrophage (F4/80) markers in the aorta. These findings suggest that irradiation produces vascular damage manifested as endothelial cell loss and increased vascular permeability, and that the decreased adherens junction and the increased inflammation lead to macrophage recruitment implicated in the early stage of atherosclerosis.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo 201-8511, Japan
| | - Ki-ichiro Kawano
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan; (K.-i.K.); (F.M.Y.); (T.M.); (Y.H.)
| | - Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan; (K.-i.K.); (F.M.Y.); (T.M.); (Y.H.)
| | - Kyoji Furukawa
- Biostatistics Center, Kurume University, Kurume 830-0011, Japan;
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Makoto Maeda
- Natural Science Center for Basic Research and Development, Hiroshima 739-8526, Japan;
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Tatsuya Maruhashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan; (K.-i.K.); (F.M.Y.); (T.M.); (Y.H.)
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan; (K.-i.K.); (F.M.Y.); (T.M.); (Y.H.)
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
28
|
Zhang C, Chen H, He Q, Luo Y, He A, Tao A, Yan J. Fibrinogen/AKT/Microfilament Axis Promotes Colitis by Enhancing Vascular Permeability. Cell Mol Gastroenterol Hepatol 2020; 11:683-696. [PMID: 33075564 PMCID: PMC7843406 DOI: 10.1016/j.jcmgh.2020.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Increased vascular permeability (VP) has been indicated to play an important role in the pathogenesis of inflammatory bowel disease (IBD). However, the pathological causes of increased intestinal VP in IBD remain largely unknown. METHOD Fibrinogen level was measured in dextran sulphate sodium (DSS)-induced colitis and patients with ulcerative colitis. Gly-Pro-Arg-Pro acetate (GPRP), an Fg inhibitor, was used to detect the effect of Fg inhibition on the pathogenesis of DSS-induced colitis, as indicated by tissue damage, cytokine release and inflammatory cell infiltration. Miles assay was used to detect vascular permeability. RESULTS Through tandem mass tag-based quantitative proteomics, fibrinogen (Fg) was found to be upregulated in the colon of DSS-treated mice, which was consistent with increased Fg level in colon sample of patients with ulcerative colitis. Gly-Pro-Arg-Pro acetate (GPRP), an Fg inhibitor, significantly alleviated DSS-induced colitis as indicated by improvement of body weight loss and mortality. GPRP decreased colonic inflammation and VP in DSS-treated mice. In vivo, Fg enhanced VP as indicated by Miles assay, which was significantly inhibited by GRPR, AKT (serine/threonine kinase 1) inhibitors and low doses of Jasplakinolide which induced actin polymerization, while was dramatically enhanced by Cytochalasin D (an actin polymerization inhibitor). Moreover, activation of AKT was found in vessels of DSS-treated mice. In vitro, Fg induced activation of AKT and depolymerization of microfilament and promoted cell-to-cell disaggregation. Furthermore, inhibition of AKT decreased Fg-induced microfilament depolymerization. CONCLUSIONS Our findings highlight the importance of Fg in regulating colitis by modulation of VP via activating AKT and subsequent depolymerization of microfilament and suggest Fg as an attractive target for anti-colitis treatment.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, China
| | - Honglv Chen
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiaoling He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yiqin Luo
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Andong He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ailin Tao
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China,Ailin Tao, PhD, The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China. fax: 86-020-34153520.
| | - Jie Yan
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China,Correspondence Address correspondence to: Jie Yan, PhD, The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, 195 Dongfengxi Street, Yuexiu District, Guangzhou 510260, China. fax: 86-020-34153520
| |
Collapse
|
29
|
Hanchard J, Capó-Vélez CM, Deusch K, Lidington D, Bolz SS. Stabilizing Cellular Barriers: Raising the Shields Against COVID-19. Front Endocrinol (Lausanne) 2020; 11:583006. [PMID: 33101215 PMCID: PMC7554589 DOI: 10.3389/fendo.2020.583006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its clinical manifestation (COVID-19; coronavirus disease 2019) have caused a worldwide health crisis. Disruption of epithelial and endothelial barriers is a key clinical turning point that differentiates patients who are likely to develop severe COVID-19 outcomes: it marks a significant escalation in respiratory symptoms, loss of viral containment and a progression toward multi-organ dysfunction. These barrier mechanisms are independently compromised by known COVID-19 risk factors, including diabetes, obesity and aging: thus, a synergism between these underlying conditions and SARS-CoV-2 mechanisms may explain why these risk factors correlate with more severe outcomes. This review examines the key cellular mechanisms that SARS-CoV-2 and its underlying risk factors utilize to disrupt barrier function. As an outlook, we propose that glucagon-like peptide 1 (GLP-1) may be a therapeutic intervention that can slow COVID-19 progression and improve clinical outcome following SARS-CoV-2 infection. GLP-1 signaling activates barrier-promoting processes that directly oppose the pro-inflammatory mechanisms commandeered by SARS-CoV-2 and its underlying risk factors.
Collapse
Affiliation(s)
- Julia Hanchard
- Aphaia Pharma AG, Zug, Switzerland
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | | | | | - Darcy Lidington
- Aphaia Pharma AG, Zug, Switzerland
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Steffen-Sebastian Bolz
- Aphaia Pharma AG, Zug, Switzerland
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Unfractionated heparin attenuates endothelial barrier dysfunction via the phosphatidylinositol-3 kinase/serine/threonine kinase/nuclear factor kappa-B pathway. Chin Med J (Engl) 2020; 133:1815-1823. [PMID: 32649510 PMCID: PMC7470014 DOI: 10.1097/cm9.0000000000000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Vascular endothelial dysfunction is considered a key pathophysiologic process for the development of acute lung injury. In this study, we aimed at investigating the effects of unfractionated heparin (UFH) on the lipopolysaccharide (LPS)-induced changes of vascular endothelial-cadherin (VE-cadherin) and the potential underlying mechanisms. Methods Male C57BL/6 J mice were randomized into three groups: vehicle, LPS, and LPS + UFH groups. Intraperitoneal injection of 30 mg/kg LPS was used to induce sepsis. Mice in the LPS + UFH group received subcutaneous injection of 8 U UFH 0.5 h before LPS injection. The lung tissue of the mice was collected for assessing lung injury by measuring the lung wet/dry (W/D) weight ratio and observing histological changes. Human pulmonary microvascular endothelial cells (HPMECs) were cultured and used to analyze the effects of UFH on LPS- or tumor necrosis factor-alpha (TNF-α)-induced vascular hyperpermeability, membrane expression of VE-cadherin, p120-catenin, and phosphorylated myosin light chain (p-MLC), and F-actin remodeling, and on the LPS-induced activation of the phosphatidylinositol-3 kinase (PI3K)/serine/threonine kinase (Akt)/nuclear factor kappa-B (NF-κB) signaling pathway. Results In vivo, UFH pretreatment significantly attenuated LPS-induced pulmonary histopathological changes (neutrophil infiltration and erythrocyte effusion, alveolus pulmonis collapse, and thicker septum), decreased the lung W/D, and increased protein concentration (LPS vs. LPS + UFH: 0.57 ± 0.04 vs. 0.32 ± 0.04 mg/mL, P = 0.0092), total cell count (LPS vs. LPS + UFH: 9.57 ± 1.23 vs. 3.65 ± 0.78 × 105/mL, P = 0.0155), polymorphonuclear neutrophil percentage (LPS vs. LPS + UFH: 88.05% ± 2.88% vs. 22.20% ± 3.92%, P = 0.0002), and TNF-α (460.33 ± 23.48 vs. 189.33 ± 14.19 pg/mL, P = 0.0006) in the bronchoalveolar lavage fluid. In vitro, UFH pre-treatment prevented the LPS-induced decrease in the membrane expression of VE-cadherin (LPS vs. LPS + UFH: 0.368 ± 0.044 vs. 0.716 ± 0.064, P = 0.0114) and p120-catenin (LPS vs. LPS + UFH: 0.208 ± 0.018 vs. 0.924 ± 0.092, P = 0.0016), and the LPS-induced increase in the expression of p-MLC (LPS vs. LPS + UFH: 0.972 ± 0.092 vs. 0.293 ± 0.025, P = 0.0021). Furthermore, UFH attenuated LPS- and TNF-α-induced hyperpermeability of HPMECs (LPS vs. LPS + UFH: 8.90 ± 0.66 vs. 15.84 ± 1.09 Ω·cm2, P = 0.0056; TNF-α vs. TNF-α + UFH: 11.28 ± 0.64 vs. 18.15 ± 0.98 Ω·cm2, P = 0.0042) and F-actin remodeling (LPS vs. LPS + UFH: 56.25 ± 1.51 vs. 39.70 ± 1.98, P = 0.0027; TNF-α vs. TNF-α + UFH: 55.42 ± 1.42 vs. 36.51 ± 1.20, P = 0.0005) in vitro. Additionally, UFH decreased the phosphorylation of Akt (LPS vs. LPS + UFH: 0.977 ± 0.081 vs. 0.466 ± 0.035, P = 0.0045) and I kappa B Kinase (IKK) (LPS vs. LPS + UFH: 1.023 ± 0.070 vs. 0.578 ± 0.044, P = 0.0060), and the nuclear translocation of NF-κB (LPS vs. LPS + UFH: 1.003 ± 0.077 vs. 0.503 ± 0.065, P = 0.0078) in HPMECs, which was similar to the effect of the PI3K inhibitor, wortmannin. Conclusions The protective effect of UFH against LPS-induced pulmonary endothelial barrier dysfunction involves VE-cadherin stabilization and PI3K/Akt/NF-κB signaling.
Collapse
|
31
|
Colás-Algora N, García-Weber D, Cacho-Navas C, Barroso S, Caballero A, Ribas C, Correas I, Millán J. Compensatory increase of VE-cadherin expression through ETS1 regulates endothelial barrier function in response to TNFα. Cell Mol Life Sci 2020; 77:2125-2140. [PMID: 31396656 PMCID: PMC11105044 DOI: 10.1007/s00018-019-03260-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
Abstract
VE-cadherin plays a central role in controlling endothelial barrier function, which is transiently disrupted by proinflammatory cytokines such as tumor necrosis factor (TNFα). Here we show that human endothelial cells compensate VE-cadherin degradation in response to TNFα by inducing VE-cadherin de novo synthesis. This compensation increases adherens junction turnover but maintains surface VE-cadherin levels constant. NF-κB inhibition strongly reduced VE-cadherin expression and provoked endothelial barrier collapse. Bacterial lipopolysaccharide and TNFα upregulated the transcription factor ETS1, in vivo and in vitro, in an NF-κB dependent manner. ETS1 gene silencing specifically reduced VE-cadherin protein expression in response to TNFα and exacerbated TNFα-induced barrier disruption. We propose that TNFα induces not only the expression of genes involved in increasing permeability to small molecules and immune cells, but also a homeostatic transcriptional program in which NF-κB- and ETS1-regulated VE-cadherin expression prevents the irreversible damage of endothelial barriers.
Collapse
Affiliation(s)
| | - Diego García-Weber
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain.
- INSERM, U1016, Institut Cochin, Paris, France.
| | | | - Susana Barroso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
| | - Alvaro Caballero
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
| | - Catalina Ribas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049, Madrid, Spain.
| |
Collapse
|
32
|
Guo X, Eitnier RA, Beard RS, Meegan JE, Yang X, Aponte AM, Wang F, Nelson PR, Wu MH. Focal adhesion kinase and Src mediate microvascular hyperpermeability caused by fibrinogen- γC- terminal fragments. PLoS One 2020; 15:e0231739. [PMID: 32352989 PMCID: PMC7192500 DOI: 10.1371/journal.pone.0231739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Objectives We previously reported microvascular leakage resulting from fibrinogen-γ chain C-terminal products (γC) occurred via a RhoA-dependent mechanism. The objective of this study was to further elucidate the signaling mechanism by which γC induces endothelial hyperpermeability. Since it is known that γC binds and activates endothelial αvβ3, a transmembrane integrin receptor involved in intracellular signaling mediated by the tyrosine kinases FAK and Src, we hypothesized that γC alters endothelial barrier function by activating the FAK-Src pathway leading to junction dissociation and RhoA driven cytoskeletal stress-fiber formation. Methods and results Using intravital microscopy of rat mesenteric microvessels, we show increased extravasation of plasma protein (albumin) resulting from γC administration. In addition, capillary fluid filtration coefficient (Kfc) indicated γC-induced elevated lung vascular permeability. Furthermore, γC decreased transendothelial barrier resistance in a time-dependent and dose-related fashion in cultured rat lung microvascular endothelial cells (RLMVECs), accompanied by increased FAK/Src phosphorylation detection by western blot. Experiments with pharmacological inhibition or gene silencing of FAK showed significantly reduced γC-induced albumin and fluid leakage across microvessels, stress-fiber formation, VE-cadherin tyrosine phosphorylation, and improved γC-induced endothelial barrier dysfunction, indicating the involvement of FAK in γC mediated hyperpermeability. Comparable results were found when Src was targeted in a similar manner, however inhibition of FAK prevented Src activation, suggesting that FAK is upstream of Src in γC-mediated hyperpermeability. In addition, γC-induced cytoskeletal stress-fiber formation was attenuated during inhibition or silencing of these tyrosine kinases, concomitantly with RhoA inhibition. Conclusion The FAK-Src pathway contributes to γC-induced microvascular barrier dysfunction, junction protein phosphorylation and disorganization in a manner that involves RhoA and stress-fiber formation.
Collapse
Affiliation(s)
- Xiaohua Guo
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Rebecca A. Eitnier
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Richard S. Beard
- Department of Biomolecular Research, Boise State University, Boise, ID, United States of America
| | - Jamie E. Meegan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Alexandra M. Aponte
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Fang Wang
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Peter R. Nelson
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Mack H. Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
- * E-mail:
| |
Collapse
|
33
|
Karki P, Birukov KG. Oxidized Phospholipids in Healthy and Diseased Lung Endothelium. Cells 2020; 9:cells9040981. [PMID: 32326516 PMCID: PMC7226969 DOI: 10.3390/cells9040981] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022] Open
Abstract
Circulating and cell membrane phospholipids undergo oxidation caused by enzymatic and non-enzymatic mechanisms. As a result, a diverse group of bioactive oxidized phospholipids generated in these conditions have both beneficial and harmful effects on the human body. Increased production of oxidized phospholipid products with deleterious effects is linked to the pathogenesis of various cardiopulmonary disorders such as atherosclerosis, thrombosis, acute lung injury (ALI), and inflammation. It has been determined that the contrasting biological effects of lipid oxidation products are governed by their structural variations. For example, full-length products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine oxidation (OxPAPC) have prominent endothelial barrier protective and anti-inflammatory activities while most of the truncated oxidized phospholipids induce vascular leak and exacerbate inflammation. The extensive studies from our group and other groups have demonstrated a strong potential of OxPAPC in mitigating a wide range of agonist-induced lung injuries and inflammation in pulmonary endothelial cell culture and rodent models of ALI. Concurrently, elevated levels of truncated oxidized phospholipids are present in aged mice lungs that potentiate the inflammatory agents-induced lung injury. On the other hand, increased levels of full length OxPAPC products accelerate ALI recovery by facilitating production of anti-inflammatory lipid mediator, lipoxin A4, and other molecules with anti-inflammatory properties. These findings suggest that OxPAPC-assisted lipid program switch may be a promising therapeutic strategy for treatment of acute inflammatory syndromes. In this review, we will summarize the vascular-protective and deleterious aspects of oxidized phospholipids and discuss their therapeutic potential including engineering of stable analogs of oxidized phospholipids with improved anti-inflammatory and barrier-protective properties.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-(410)-706-2578; Fax: +1-(410)-706-6952
| |
Collapse
|
34
|
Nash M, McGrath JP, Cartland SP, Patel S, Kavurma MM. Tumour necrosis factor superfamily members in ischaemic vascular diseases. Cardiovasc Res 2020; 115:713-720. [PMID: 30816914 DOI: 10.1093/cvr/cvz042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/25/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
Current treatment of ischaemic vascular diseases such as coronary and peripheral artery disease includes angioplasty and bypass grafting, as well as lipid lowering therapies and control of other cardiovascular risk factors. Numerous members of the tumour necrosis factor superfamily (TNFSF) have recently shown emerging roles in both the protection and progression of such diseases. Understanding the role TNFSF members play in ischaemic vascular disease may provide insight into the development of novel therapeutics to prevent or treat diseases relating to atherosclerosis and ischaemia. This review summarizes the most recent findings relating to TNFSF members and the mechanisms that precede ischaemic vascular disease progression, particularly endothelial dysfunction, chronic inflammation, and atherosclerotic plaque development. This review also explores recent translational research on the role of TNFSF therapies in cardiovascular disease.
Collapse
Affiliation(s)
- Megan Nash
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney NSW, Australia.,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.,Department of Biochemistry, University of Bath, Bath, UK
| | - Jordan P McGrath
- Department of Cardiology, Royal Prince Alfred Hospital, Missenden Rd Camperdown, NSW, Australia
| | - Siân P Cartland
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney NSW, Australia.,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Sanjay Patel
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney NSW, Australia.,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Missenden Rd Camperdown, NSW, Australia
| | - Mary M Kavurma
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney NSW, Australia.,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
35
|
Yang Y, Dong X, Zheng S, Sun J, Ye J, Chen J, Fang Y, Zhao B, Yin Z, Cao P, Luo L. GSTpi regulates VE-cadherin stabilization through promoting S-glutathionylation of Src. Redox Biol 2019; 30:101416. [PMID: 31927409 PMCID: PMC6957793 DOI: 10.1016/j.redox.2019.101416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/09/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
GSTpi is a Phase II metabolic enzyme which is originally considered as an important facilitator of cellular detoxification. Here, we found that GSTpi stabilized VE-cadherin in endothelial cell membrane through inhibiting VE-cadherin phosphorylation and VE-cadherin/catenin complex dissociation, and consequently maintained endothelial barrier function. Our findings demonstrated a novel mechanism that GSTpi inhibited VE-cadherin phosphorylation through suppressing the activation of Src/VE-cadherin pathway. Mass spectrometry analysis and molecular docking showed that GSTpi enhanced Src S-glutathionylation at Cys185, Cys245, and Cys400 of Src. More important, we found that GSTpi promoted S-glutathionylation of Src was essential for GSTpi to inhibit Src phosphorylation and activation. Furthermore, in vivo experiments indicated that AAV-GSTpi exerted the protective effect on pulmonary vessel permeability in the animal model of acute lung injury. This study revealed a novel regulatory effect of GSTpi on vascular endothelial barrier function and the importance of S-glutathionylation of Src induced by GSTpi in the activation of Src/VE-cadherin pathway. GSTpi regulates endothelial barrier function in response to pro-inflammatory stress. GSTpi inhibits the destabilization of membrane VE-cadherin through suppressing the activation of Src/VE-cadherin pathway. GSTpi selectively inhibits Src phosphorylation by S-glutathionylating novel cysteines of Src. GSTpi exerts the protective effect on pulmonary vessel permeability in the animal model of acute lung injury.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, Jiangsu, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Xiaoliang Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Shuangning Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jinbing Sun
- Changshu No.1 People's Hospital Affiliated to Soochow University, Changshu, 215500, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Yuan Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Bing Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China; Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
36
|
Beldman T, Malinova TS, Desclos E, Grootemaat AE, Misiak ALS, van der Velden S, van Roomen CPAA, Beckers L, van Veen HA, Krawczyk PM, Hoebe RA, Sluimer JC, Neele AE, de Winther MPJ, van der Wel NN, Lutgens E, Mulder WJM, Huveneers S, Kluza E. Nanoparticle-Aided Characterization of Arterial Endothelial Architecture during Atherosclerosis Progression and Metabolic Therapy. ACS NANO 2019; 13:13759-13774. [PMID: 31268670 PMCID: PMC6933811 DOI: 10.1021/acsnano.8b08875] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/03/2019] [Indexed: 05/08/2023]
Abstract
Atherosclerosis is associated with a compromised endothelial barrier, facilitating the accumulation of immune cells and macromolecules in atherosclerotic lesions. In this study, we investigate endothelial barrier integrity and the enhanced permeability and retention (EPR) effect during atherosclerosis progression and therapy in Apoe-/- mice using hyaluronan nanoparticles (HA-NPs). Utilizing ultrastructural and en face plaque imaging, we uncover a significantly decreased junction continuity in the atherosclerotic plaque-covering endothelium compared to the normal vessel wall, indicative of disrupted endothelial barrier. Intriguingly, the plaque advancement had a positive effect on junction stabilization, which correlated with a 3-fold lower accumulation of in vivo administrated HA-NPs in advanced plaques compared to early counterparts. Furthermore, by using super-resolution and correlative light and electron microscopy, we trace nanoparticles in the plaque microenvironment. We find nanoparticle-enriched endothelial junctions, containing 75% of detected HA-NPs, and a high HA-NP accumulation in the endothelium-underlying extracellular matrix, which suggest an endothelial junctional traffic of HA-NPs to the plague. Finally, we probe the EPR effect by HA-NPs in the context of metabolic therapy with a glycolysis inhibitor, 3PO, proposed as a vascular normalizing strategy. The observed trend of attenuated HA-NP uptake in aortas of 3PO-treated mice coincides with the endothelial silencing activity of 3PO, demonstrated in vitro. Interestingly, the therapy also reduced the plaque inflammatory burden, while activating macrophage metabolism. Our findings shed light on natural limitations of nanoparticle accumulation in atherosclerotic plaques and provide mechanistic insight into nanoparticle trafficking across the atherosclerotic endothelium. Furthermore, our data contribute to the rising field of endothelial barrier modulation in atherosclerosis.
Collapse
Affiliation(s)
- Thijs
J. Beldman
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Tsveta S. Malinova
- Vascular
Microenvironment and Integrity, Department of Medical Biochemistry,
Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, Amsterdam 1105 AZ, The
Netherlands
| | - Emilie Desclos
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Anita E. Grootemaat
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Aresh L. S. Misiak
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Saskia van der Velden
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Cindy P. A. A. van Roomen
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Linda Beckers
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Henk A. van Veen
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Przemyslaw M. Krawczyk
- Department
of Medical Biology, Amsterdam University
Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Ron A. Hoebe
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Judith C. Sluimer
- Department
of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht 6229 ER, The Netherlands
| | - Annette E. Neele
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Menno P. J. de Winther
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Institute
for Cardiovascular Prevention, Ludwig Maximilians
University, Munich 80336, Germany
| | - Nicole N. van der Wel
- Cellular
Imaging-Core Facility, Academic Medical
Center, Amsterdam 1105 AZ, The Netherlands
| | - Esther Lutgens
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Institute
for Cardiovascular Prevention, Ludwig Maximilians
University, Munich 80336, Germany
| | - Willem J. M. Mulder
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
- Translational
and Molecular Imaging Institute, Icahn School
of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Stephan Huveneers
- Vascular
Microenvironment and Integrity, Department of Medical Biochemistry,
Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, Amsterdam 1105 AZ, The
Netherlands
| | - Ewelina Kluza
- Experimental
Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular
Sciences (ACS), Amsterdam University Medical
Center, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
37
|
Jagrosse ML, Dean DA, Rahman A, Nilsson BL. RNAi therapeutic strategies for acute respiratory distress syndrome. Transl Res 2019; 214:30-49. [PMID: 31401266 PMCID: PMC7316156 DOI: 10.1016/j.trsl.2019.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Acute respiratory distress syndrome (ARDS), replacing the clinical term acute lung injury, involves serious pathophysiological lung changes that arise from a variety of pulmonary and nonpulmonary injuries and currently has no pharmacological therapeutics. RNA interference (RNAi) has the potential to generate therapeutic effects that would increase patient survival rates from this condition. It is the purpose of this review to discuss potential targets in treating ARDS with RNAi strategies, as well as to outline the challenges of oligonucleotide delivery to the lung and tactics to circumvent these delivery barriers.
Collapse
Affiliation(s)
| | - David A Dean
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Arshad Rahman
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York.
| |
Collapse
|
38
|
Su VYF, Chiou SH, Lin CS, Mo MH, Yang KY. Induced Pluripotent Stem Cells Attenuate Endothelial Leakage in Acute Lung Injury via Tissue Inhibitor of Metalloproteinases-1 to Reduce Focal Adhesion Kinase Activity. Stem Cells 2019; 37:1516-1527. [PMID: 31588644 DOI: 10.1002/stem.3093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
Induced pluripotent stem cells (iPSCs) can reduce the severity of endotoxin-induced acute lung injury (ALI). However, the interaction between iPSCs and vascular endothelium remains unclear. In this study, we investigated the effects of iPSCs in moderating pulmonary endothelial leakage in endotoxin-induced ALI. Murine iPSCs were delivered intravenously to male C57BL/6 mice (8-12 weeks old) 4 hours after intratracheal lipopolysaccharide (LPS) delivery. Histology, blood and bronchoalveolar lavage fluid (BALF) cytokine and junctional protein assays, and regulatory signaling pathway assays were performed 24 hours later. Human umbilical vein endothelial cells (HUVECs) were used as a model of junctional protein-expressing cells and stimulated with LPS. Our results showed that iPSC treatment alleviated histological signs of ALI, protein leakage, and proinflammatory cytokines. iPSC therapy restored vascular endothelial cadherin (VE-cadherin) expression in ALI mouse lungs. In HUVECs, human iPSCs (hiPSCs) restored disrupted VE-cadherin expression and reduced the activity of Snail and focal adhesion kinase (FAK) phosphorylation in Tyr397 in response to LPS. iPSC-conditioned medium contained extra antiangiogenic factor of tissue inhibitor of metalloproteinases-1 (TIMP-1) compared with control medium. TIMP-1 inhibition diminished the beneficial effects of iPSC-conditioned medium in ALI mice. Our study suggested that iPSCs attenuate endothelial cell leakage in endotoxin-induced ALI via a mechanism involving TIMP-1 and the FAK/Snail pathway. Stem Cells 2019;37:1516-1527.
Collapse
Affiliation(s)
- Vincent Yi-Fong Su
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Internal Medicine, Taipei City Hospital, Taipei City Government, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Shiuan Lin
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Chinese Medicine for Post-Baccalaureate of I-Shou University, Kaohsiung, Taiwan
| | - Min-Hsiang Mo
- Department of Biomedical, MetaTech (AP) Inc, New Taipei City, Taiwan.,Institute of Molecular Biotechnology, Dayeh University, Taipei, Taiwan
| | - Kuang-Yao Yang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
39
|
Álvarez RS, Jancic C, Garimano N, Sacerdoti F, Paton AW, Paton JC, Ibarra C, Amaral MM. Crosstalk between Human Microvascular Endothelial Cells and Tubular Epithelial Cells Modulates Pro-Inflammatory Responses Induced by Shiga Toxin Type 2 and Subtilase Cytotoxin. Toxins (Basel) 2019; 11:toxins11110648. [PMID: 31703347 PMCID: PMC6891416 DOI: 10.3390/toxins11110648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 01/18/2023] Open
Abstract
Hemolytic uremic syndrome (HUS) is a consequence of Shiga toxin (Stx)-producing Escherichia coli (STEC) infection and is the most frequent cause of acute renal failure (ARF) in children. Subtilase cytotoxin (SubAB) has also been associated with HUS pathogenesis. We previously reported that Stx2 and SubAB cause different effects on co-cultures of human renal microvascular endothelial cells (HGEC) and human proximal tubular epithelial cells (HK-2) relative to HGEC and HK-2 monocultures. In this work we have analyzed the secretion of pro-inflammatory cytokines by co-cultures compared to monocultures exposed or not to Stx2, SubAB, and Stx2+SubAB. Under basal conditions, IL-6, IL-8 and TNF-α secretion was different between monocultures and co-cultures. After toxin treatments, high concentrations of Stx2 and SubAB decreased cytokine secretion by HGEC monocultures, but in contrast, low toxin concentrations increased their release. Toxins did not modulate the cytokine secretion by HK-2 monocultures, but increased their release in the HK-2 co-culture compartment. In addition, HK-2 monocultures were stimulated to release IL-8 after incubation with HGEC conditioned media. Finally, Stx2 and SubAB were detected in HGEC and HK-2 cells from the co-cultures. This work describes, for the first time, the inflammatory responses induced by Stx2 and SubAB, in a crosstalk model of renal endothelial and epithelial cells.
Collapse
Affiliation(s)
- Romina S. Álvarez
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (R.S.Á.); (N.G.); (F.S.); (C.I.)
| | - Carolina Jancic
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires 1425, Argentina;
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Nicolás Garimano
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (R.S.Á.); (N.G.); (F.S.); (C.I.)
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (R.S.Á.); (N.G.); (F.S.); (C.I.)
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia; (A.W.P.); (J.C.P.)
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia; (A.W.P.); (J.C.P.)
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (R.S.Á.); (N.G.); (F.S.); (C.I.)
| | - María M. Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (R.S.Á.); (N.G.); (F.S.); (C.I.)
- Correspondence:
| |
Collapse
|
40
|
Abstract
The endothelium physically separates blood from surrounding tissue and yet allows for the regulated passage of nutrients, waste, and leukocytes into and out of the circulation. Trans-endothelium flux occurs across endothelial cells (transcellular) and between endothelial cells (paracellular). Paracellular endothelial barrier function depends on the regulation of cell-cell junctions. Interestingly, a functional relationship between cell-cell junctions and cell-matrix adhesions has long been appreciated but the molecular mechanisms underpinning this relationship are not fully understood. Here we review the evidence that supports the notion that cell-matrix interactions contribute to the regulation of cell-cell junctions, focusing primarily on the important adherens junction protein VE-cadherin. In particular, we will discuss recent insights gained into how integrin signaling impacts VE-cadherin stability in adherens junctions and endothelial barrier function.
Collapse
Affiliation(s)
- Fadi E Pulous
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center (FEP, BGP) and Cancer Biology Graduate Program (FEP), Emory University School of Medicine, Atlanta, GA, USA
| | - Brian G Petrich
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center (FEP, BGP) and Cancer Biology Graduate Program (FEP), Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
41
|
Wang L, Chung J, Gill SE, Mehta S. Quantification of adherens junction disruption and contiguous paracellular protein leak in human lung endothelial cells under septic conditions. Microcirculation 2019; 26:e12528. [PMID: 30636088 DOI: 10.1111/micc.12528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Sepsis is associated with dysfunction of MVEC resulting in organ edema and inflammation. VE-cadherin, a component of MVEC adherens junctions, may be disrupted in sepsis. However, the direct connection between individual MVEC VE-cadherin disruption and increased paracellular permeability is uncertain. METHODS Human pulmonary MVEC were cultured on a biotin matrix and treated with cytomix, as a model of sepsis, vs PBS. MVEC permeability was assessed by trans-MVEC monolayer leak of Oregon green 488-conjugated avidin, which bound subcellular biotin to localize sites of paracellular leak. Leak was correlated with individual cell-specific MVEC surface VE-cadherin continuity by fluorescence microscopy. RESULTS Cytomix treatment reduced total MVEC VE-cadherin density, disrupted surface VE-cadherin continuity, was associated with intercellular gap formation, and enhanced paracellular avidin leak. Cytomix-induced MVEC paracellular avidin leak was strongly correlated temporally and was highly contiguous with focal MVEC surface VE-cadherin disruption. Total cellular VE-cadherin density was less strongly correlated with MVEC paracellular avidin leak and individual cell-specific focal surface VE-cadherin discontinuity. CONCLUSIONS These data support a mechanistic link between septic human lung MVEC VE-cadherin disruption and contiguous paracellular protein leak, and will permit more detailed assessment of individual cell-specific mechanisms of septic MVEC barrier dysfunction.
Collapse
Affiliation(s)
- Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Justin Chung
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| |
Collapse
|
42
|
Maas SL, Soehnlein O, Viola JR. Organ-Specific Mechanisms of Transendothelial Neutrophil Migration in the Lung, Liver, Kidney, and Aorta. Front Immunol 2018; 9:2739. [PMID: 30538702 PMCID: PMC6277681 DOI: 10.3389/fimmu.2018.02739] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
Immune responses are dependent on the recruitment of leukocytes to the site of inflammation. The classical leukocyte recruitment cascade, consisting of capture, rolling, arrest, adhesion, crawling, and transendothelial migration, is thoroughly studied but mostly in model systems, such as the cremasteric microcirculation. This cascade paradigm, which is widely accepted, might be applicable to many tissues, however recruitment mechanisms might substantially vary in different organs. Over the last decade, several studies shed light on organ-specific mechanisms of leukocyte recruitment. An improved awareness of this matter opens new therapeutic windows and allows targeting inflammation in a tissue-specific manner. The aim of this review is to summarize the current understanding of the leukocyte recruitment in general and how this varies in different organs. In particular we focus on neutrophils, as these are the first circulating leukocytes to reach the site of inflammation. Specifically, the recruitment mechanism in large arteries, as well as vessels in the lungs, liver, and kidney will be addressed.
Collapse
Affiliation(s)
- Sanne L Maas
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Physiology and Pharmacology (FyFa) and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joana R Viola
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
43
|
Role of truncated oxidized phospholipids in acute endothelial barrier dysfunction caused by particulate matter. PLoS One 2018; 13:e0206251. [PMID: 30419037 PMCID: PMC6231611 DOI: 10.1371/journal.pone.0206251] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022] Open
Abstract
Particulate matter (PM) air pollution is a global environmental health problem contributing to more severe lung inflammation and injury. However, the molecular and cellular mechanisms of PM-induced exacerbation of lung barrier dysfunction and injury are not well understood. In the current study, we tested a hypothesis that PM exacerbates vascular barrier dysfunction via ROS-induced generation of truncated oxidized phospholipids (Tr-OxPLs). Treatment of human pulmonary endothelial cells with PM caused endothelial cell barrier disruption in a dose-dependent fashion. Biochemical analysis showed destabilization of cell junctions by PM via tyrosine phosphorylation and internalization of VE-cadherin. These events were accompanied by PM-induced generation of Tr-OxPLs, detected by mass spectrometry analysis. Furthermore, purified Tr-OxPLs: POVPC, PGPC and lyso-PC alone, caused a rapid increase in endothelial permeability and augmented pulmonary endothelial barrier dysfunction induced by submaximal doses of PM. In support of a role of TR-OxPLs-dependent mechanism in mediation of PM effects, ectopic expression of intracellular type 2 platelet-activating factor acetylhydrolase (PAFAH2), which specifically hydrolyzes Tr-OxPLs, significantly attenuated PM-induced endothelial hyperpermeability. In summary, this study uncovered a novel mechanism of PM-induced sustained dysfunction of pulmonary endothelial cell barrier which is driven by PM-induced generation of truncated products of phospholipid oxidation causing destabilization of cell junctions.
Collapse
|
44
|
Park SM, Kim H, Song KH, Eom S, Park H, Doh J, Kim DS. Ultra-thin, aligned, free-standing nanofiber membranes to recapitulate multi-layered blood vessel/tissue interface for leukocyte infiltration study. Biomaterials 2018; 169:22-34. [DOI: 10.1016/j.biomaterials.2018.03.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/13/2023]
|
45
|
Ghavampour S, Kleefeldt F, Bömmel H, Volland J, Paus A, Horst A, Pfeiffer V, Hübner S, Wagner N, Rueckschloss U, Ergün S. Endothelial barrier function is differentially regulated by CEACAM1-mediated signaling. FASEB J 2018; 32:5612-5625. [PMID: 29746166 DOI: 10.1096/fj.201800331r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) is known to be crucial to vasculogenesis and angiogenesis. Recently, CEACAM1 deficiency was shown to result in the formation of aortic plaque-like lesions, indicating a role for CEACAM1 in adult vessels as well. The underlying mechanisms remained largely elusive. Therefore, we aimed to elucidate the role of CEACAM1 in endothelial homeostasis. Here, we show that CEACAM1 deficiency causes subcellular eNOS redistribution in endothelial cells ( i.e., by eNOS depalmitoylation) and alters endothelial glycocalyx that confers antiadhesive properties to the endothelium ( i.e., by repression of glycocalyx-degrading enzymes). Accordingly, our analysis revealed an increased leukocyte-endothelial interaction in CEACAM1-deficient endothelium. In addition, CEACAM1 age dependently modulated basal and TNF-α-mediated endothelial barrier (EB) leakiness. In younger mice, CEACAM1 was protective for EB, whereas in aged mice it promoted EB leakiness. EB function depends on interendothelial adherence junctions formed by β-catenin/vascular endothelial-cadherin complexes. We show here that CEACAM1 influenced basal and TNF-α-mediated phosphorylation of β-catenin and caveolin-1, which are essential players in EB modulation. Both increased adhesiveness to leukocytes and EB modulation due to CEACAM1 deficiency may facilitate inflammatory cell transmigration into the vascular wall and subsequent plaque formation. Collectively, these results identify a crucial role for CEACAM1 in endothelial homeostasis of adult blood vessels.-Ghavampour, S., Kleefeldt, F., Bömmel, H., Volland, J., Paus, A., Horst, A., Pfeiffer, V., Hübner, S., Wagner, N., Rueckschloss, U., Ergün, S. Endothelial barrier function is differentially regulated by CEACAM1-mediated signaling.
Collapse
Affiliation(s)
- Sharang Ghavampour
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Heike Bömmel
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Julian Volland
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Alexander Paus
- Institute of Anatomy, University Hospital Essen, Essen, Germany; and
| | - Andrea Horst
- Department of Clinical Chemistry, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Verena Pfeiffer
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Stefan Hübner
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
46
|
Abstract
Endothelial cells line blood vessels and provide a dynamic interface between the blood and tissues. They remodel to allow leukocytes, fluid and small molecules to enter tissues during inflammation and infections. Here we compare the signaling networks that contribute to endothelial permeability and leukocyte transendothelial migration, focusing particularly on signals mediated by small GTPases that regulate cell adhesion and the actin cytoskeleton. Rho and Rap GTPase signaling is important for both processes, but they differ in that signals are activated locally under leukocytes, whereas endothelial permeability is a wider event that affects the whole cell. Some molecules play a unique role in one of the two processes, and could therefore be targeted to selectively alter either endothelial permeability or leukocyte transendothelial migration.
Collapse
Affiliation(s)
- Camilla Cerutti
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
47
|
Urbano RL, Furia C, Basehore S, Clyne AM. Stiff Substrates Increase Inflammation-Induced Endothelial Monolayer Tension and Permeability. Biophys J 2017; 113:645-655. [PMID: 28793219 PMCID: PMC5550298 DOI: 10.1016/j.bpj.2017.06.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/15/2017] [Accepted: 06/13/2017] [Indexed: 01/22/2023] Open
Abstract
Arterial stiffness and inflammation are associated with atherosclerosis, and each have individually been shown to increase endothelial monolayer tension and permeability. The objective of this study was to determine if substrate stiffness enhanced endothelial monolayer tension and permeability in response to inflammatory cytokines. Porcine aortic endothelial cells were cultured at confluence on polyacrylamide gels of varying stiffness and treated with either tumor necrosis factor-α (TNFα) or thrombin. Monolayer tension was measured through vinculin localization at the cell membrane, traction force microscopy, and phosphorylated myosin light chain quantity and actin fiber colocalization. Cell permeability was measured by cell-cell junction confocal microscopy and a dextran permeability assay. When treated with TNFα or thrombin, endothelial monolayers on stiffer substrates showed increased traction forces, vinculin at the cell membrane, and vinculin phosphorylation, suggesting elevated monolayer tension. Interestingly, VE-cadherin shifted toward a smaller molecular weight in endothelial monolayers on softer substrates, which may relate to increased VE-cadherin endocytosis and degradation. Phosphorylated myosin light chain colocalization with actin stress fibers increased in endothelial monolayers treated with TNFα or thrombin on stiffer substrates, indicating elevated cell monolayer contractility. Endothelial monolayers also developed focal adherens intercellular junctions and became more permeable when cultured on stiffer substrates in the presence of the inflammatory cytokines. Whereas each of these effects was likely mitigated by Rho/ROCK, Rho/ROCK pathway inhibition via Y27632 disrupted cell-cell junction morphology, showing that cell contractility is required to maintain adherens junction integrity. These data suggest that stiff substrates change intercellular junction protein localization and degradation, which may counteract the inflammation-induced increase in endothelial monolayer tension and thereby moderate inflammation-induced junction loss and associated endothelial monolayer permeability on stiffer substrates.
Collapse
|
48
|
Yan M, Zhang X, Chen A, Gu W, Liu J, Ren X, Zhang J, Wu X, Place AT, Minshall RD, Liu G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. FASEB J 2017; 31:4759-4769. [PMID: 28701303 DOI: 10.1096/fj.201700280r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/27/2017] [Indexed: 12/16/2022]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) mediates the firm adhesion of leukocytes to endothelial cells and initiates subsequent signaling that promotes their transendothelial migration (TEM). Vascular endothelial (VE)-cadherin plays a critical role in endothelial cell-cell adhesion, thereby controlling endothelial permeability and leukocyte transmigration. This study aimed to determine the molecular signaling events that originate from the ICAM-1-mediated firm adhesion of neutrophils that regulate VE-cadherin's role as a negative regulator of leukocyte transmigration. We observed that ICAM-1 interacts with Src homology domain 2-containing phosphatase-2 (SHP-2), and SHP-2 down-regulation via silencing of small interfering RNA in endothelial cells enhanced neutrophil adhesion to endothelial cells but inhibited neutrophil transmigration. We also found that VE-cadherin associated with the ICAM-1-SHP-2 complex. Moreover, whereas the activation of ICAM-1 leads to VE-cadherin dissociation from ICAM-1 and VE-cadherin association with actin, SHP-2 down-regulation prevented ICAM-1-VE-cadherin association and promoted VE-cadherin-actin association. Furthermore, SHP-2 down-regulation in vivo promoted LPS-induced neutrophil recruitment in mouse lung but delayed neutrophil extravasation. These results suggest that SHP-2-via association with ICAM-1-mediates ICAM-1-induced Src activation and modulates VE-cadherin switching association with ICAM-1 or actin, thereby negatively regulating neutrophil adhesion to endothelial cells and enhancing their TEM.-Yan, M., Zhang, X., Chen, A., Gu, W., Liu, J., Ren, X., Zhang, J., Wu, X., Place, A. T., Minshall, R. D., Liu, G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction.
Collapse
Affiliation(s)
- Meiping Yan
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinhua Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ao Chen
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Gu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jie Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojiao Ren
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianping Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaoxiong Wu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aaron T Place
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Guoquan Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China;
| |
Collapse
|
49
|
Chang F, Flavahan S, Flavahan NA. Impaired activity of adherens junctions contributes to endothelial dilator dysfunction in ageing rat arteries. J Physiol 2017; 595:5143-5158. [PMID: 28561330 DOI: 10.1113/jp274189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/17/2017] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Ageing-induced endothelial dysfunction contributes to organ dysfunction and progression of cardiovascular disease. VE-cadherin clustering at adherens junctions promotes protective endothelial functions, including endothelium-dependent dilatation. Ageing increased internalization and degradation of VE-cadherin, resulting in impaired activity of adherens junctions. Inhibition of VE-cadherin clustering at adherens junctions (function-blocking antibody; FBA) reduced endothelial dilatation in young arteries but did not affect the already impaired dilatation in old arteries. After junctional disruption with the FBA, dilatation was similar in young and old arteries. Src tyrosine kinase activity and tyrosine phosphorylation of VE-cadherin were increased in old arteries. Src inhibition increased VE-cadherin at adherens junctions and increased endothelial dilatation in old, but not young, arteries. Src inhibition did not increase dilatation in old arteries treated with the VE-cadherin FBA. Ageing impairs the activity of adherens junctions, which contributes to endothelial dilator dysfunction. Restoring the activity of adherens junctions could be of therapeutic benefit in vascular ageing. ABSTRACT Endothelial dilator dysfunction contributes to pathological vascular ageing. Experiments assessed whether altered activity of endothelial adherens junctions (AJs) might contribute to this dysfunction. Aortas and tail arteries were isolated from young (3-4 months) and old (22-24 months) F344 rats. VE-cadherin immunofluorescent staining at endothelial AJs and AJ width were reduced in old compared to young arteries. A 140 kDa VE-cadherin species was present on the cell surface and in TTX-insoluble fractions, consistent with junctional localization. Levels of the 140 kDa VE-cadherin were decreased, whereas levels of a TTX-soluble 115 kDa VE-cadherin species were increased in old compared to young arteries. Acetylcholine caused endothelium-dependent dilatation that was decreased in old compared to young arteries. Disruption of VE-cadherin clustering at AJs (function-blocking antibody, FBA) inhibited dilatation to acetylcholine in young, but not old, arteries. After the FBA, there was no longer any difference in dilatation between old and young arteries. Src activity and tyrosine phosphorylation of VE-cadherin were increased in old compared to young arteries. In old arteries, Src inhibition (saracatinib) increased: (i) 140 kDa VE-cadherin in the TTX-insoluble fraction, (ii) VE-cadherin intensity at AJs, (iii) AJ width, and (iv) acetylcholine dilatation. In old arteries treated with the FBA, saracatinib no longer increased acetylcholine dilatation. Saracatinib did not affect dilatation in young arteries. Therefore, ageing impairs AJ activity, which appears to reflect Src-induced phosphorylation, internalization and degradation of VE-cadherin. Moreover, impaired AJ activity can account for the endothelial dilator dysfunction in old arteries. Restoring endothelial AJ activity may be a novel therapeutic approach to vascular ageing.
Collapse
Affiliation(s)
- Fumin Chang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sheila Flavahan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas A Flavahan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
50
|
Kabacik S, Raj K. Ionising radiation increases permeability of endothelium through ADAM10-mediated cleavage of VE-cadherin. Oncotarget 2017; 8:82049-82063. [PMID: 29137243 PMCID: PMC5669869 DOI: 10.18632/oncotarget.18282] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023] Open
Abstract
The association between ionising radiation (IR) exposure and risk of cardiovascular diseases (CVD) is well documented, but the underlying mechanism is still poorly understood. As atherosclerotic plaques are the most common cause of CVD, we investigated the effects of IR on one of the critical parameters for atherosclerotic plaque formation – endothelium permeability to macromolecules. We used endothelial cells from human coronary artery as a model of the endothelial layer. Our results show that exposure of this endothelial layer to IR increased its permeability to macromolecules of various sizes in a dose-dependent manner. Immunofluorescence analysis revealed disruption of cell junctions caused by decreased amounts of two junction proteins, one of which is vascular endothelial cadherin (VE-cadherin). The reduction in the level of this protein was not due to diminished transcription but to protein processing instead. We observed a radiation dose-dependent increase in the cleavage of VE-cadherin by ADAM10. This was not mediated through the canonical VEGF route but was instead accompanied by intra-cellular calcium release. Importantly, inhibition of ADAM10 activity rescued IR-induced permeability. Our observations demonstrate that exposure to IR activates ADAM10 to cleave VE-cadherin leading to augmented endothelium permeability; a feature that can lead to the development of atherosclerotic plaques and increase the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Sylwia Kabacik
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| |
Collapse
|