1
|
Meegan JE, Rizzo AN, Schmidt EP, Bastarache JA. Cellular Mechanisms of Lung Injury: Current Perspectives. Clin Chest Med 2024; 45:821-833. [PMID: 39443000 PMCID: PMC11499619 DOI: 10.1016/j.ccm.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The alveolar-capillary barrier includes microvascular endothelial and alveolar epithelial cells and their matrices, and its disruption is a critical driver of lung injury during development of acute respiratory distress syndrome. In this review, we provide an overview of the structure and function of the alveolar-capillary barrier during health and highlight several important signaling mechanisms that underlie endothelial and epithelial injury during critical illness, emphasizing areas with potential for development of therapeutic strategies targeting alveolar-capillary leak. We also emphasize the importance of biomarker and preclinical studies in developing novel therapies and highlight important areas warranting future investigation.
Collapse
Affiliation(s)
- Jamie E Meegan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alicia N Rizzo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 148, Boston, MA 02114, USA
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 148, Boston, MA 02114, USA
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Ahmad S, Nasser W, Ahmad A. Epigenetic mechanisms of alveolar macrophage activation in chemical-induced acute lung injury. Front Immunol 2024; 15:1488913. [PMID: 39582870 PMCID: PMC11581858 DOI: 10.3389/fimmu.2024.1488913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024] Open
Abstract
Airways, alveoli and the pulmonary tissues are the most vulnerable to the external environment including occasional deliberate or accidental exposure to highly toxic chemical gases. However, there are many effective protective mechanisms that maintain the integrity of the pulmonary tissues and preserve lung function. Alveolar macrophages form the first line of defense against any pathogen or chemical/reactant that crosses the airway mucociliary barrier and reaches the alveolar region. Resident alveolar macrophages are activated or circulating monocytes infiltrate the airspace to contribute towards inflammatory or reparative responses. Studies on response of alveolar macrophages to noxious stimuli are rapidly emerging and alveolar macrophage are also being sought as therapeutic target. Here such studies have been reviewed and put together for a better understanding of the role pulmonary macrophages in general and alveolar macrophage in particular play in the pathogenesis of disease caused by chemical induced acute lung injury.
Collapse
Affiliation(s)
- Shama Ahmad
- Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | |
Collapse
|
3
|
Orfali R, AlFaiz A, Alanazi M, Alabdulsalam R, Alharbi M, Alromaih Y, Dallak I, Alrahal M, Alwatban A, Saud R. TRPV4 Channel Modulators as Potential Drug Candidates for Cystic Fibrosis. Int J Mol Sci 2024; 25:10551. [PMID: 39408877 PMCID: PMC11476765 DOI: 10.3390/ijms251910551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, resulting in defective chloride ion channels. This leads to thick, dehydrated mucus that severely disrupts mucociliary clearance in the respiratory system and triggers infection that eventually is the cause of death of CF patients. Current therapeutic strategies primarily focus on restoring CFTR function, blocking epithelial sodium channels to prevent mucus dehydration, or directly targeting mucus to reduce its viscosity. Among the ion channels expressed in ciliated bronchial epithelial cells, the transient receptor potential vanilloid 4 (TRPV4) channel emerges as a significant channel in CF pathogenesis. Activation of TRPV4 channels affects the regulation of airway surface liquid by modulating sodium absorption and intracellular calcium levels, which indirectly influences CFTR activity. TRPV4 is also involved in the regulatory volume decrease (RVD) process and enhances inflammatory responses in CF patients. Here, we combine current findings on TRPV4 channel modulation as a promising therapeutic approach for CF. Although limited studies have directly explored TRPV4 in CF, emerging evidence indicates that TRPV4 activation can significantly impact key pathological processes in the disease. Further investigation into TRPV4 modulators could lead to innovative treatments that alleviate severe respiratory complications and improve outcomes for CF patients.
Collapse
Affiliation(s)
- Razan Orfali
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Ali AlFaiz
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Madhawi Alanazi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Rahaf Alabdulsalam
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Meaad Alharbi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Yara Alromaih
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Ismail Dallak
- King Abdulaziz Medical City, Jeddah 9515, Saudi Arabia
| | - Marah Alrahal
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia (M.A.)
| | - Abdulaziz Alwatban
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 13317, Saudi Arabia
| | - Reem Saud
- General Education Department, Dar Al-Hikmah University, Jeddah 22246, Saudi Arabia
| |
Collapse
|
4
|
Niu L, Wang S, Xu Y, Zu X, You X, Zhang Q, Zhuang P, Jiang M, Gao J, Hou X, Zhang Y, Bai G, Deng J. Honokiol targeting ankyrin repeat domain of TRPV4 ameliorates endothelial permeability in mice inflammatory bowel disease induced by DSS. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117825. [PMID: 38296175 DOI: 10.1016/j.jep.2024.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classic traditional Chinese medicine, Magnolia officinalis (M. officinalis) is widely used in digestive diseases. It has rich gastrointestinal activity including inflammatory bowel disease (IBD) treatment, but the mechanism is not clear. AIM OF THE STUDY In recent years, there has been a growing interest in investigating the regulatory effects of herbal compounds on transient receptor potential (TRP) channel proteins. Transient receptor potential vanilloid 4 (TRPV4), a subtype involved in endothelial permeability regulation, was discussed as the target of M. officinalis in the treatment of IBD in the study. Based on the targeting effect of TRPV4, this study investigated the active ingredients and mechanism of M. officinalis extract in treating IBD. MATERIALS AND METHODS To reveal the connection between the active ingredients in M. officinalis and TRPV4, a bioactivity-guided high performance liquid chromatography system coupled with mass spectrometry identification was utilized to screen for TRPV4 antagonists. TRPV4 siRNA knockdown experiment was employed to validate the significance of TRPV4 as a crucial target in regulating endothelial permeability by honokiol (HON). The interaction of the active ingredient representing HON with TRPV4 was confirmed by molecular docking, fluorescence-based thermal shift and live cell calcium imaging experiments. The potential binding sites and inhibitory mechanisms of HON in TRPV4 were analyzed by molecular dynamics simulation and microscale thermophoresis. The therapeutic effect of HON based on TRPV4 was discussed in DSS-IBD mice. RESULTS Our finding elucidated that the inhibitory activity of M. officinalis against TRPV4 is primarily attributed to HON analogues. The knockdown of TRPV4 expression significantly impaired the calcium regulation and permeability protection in endothelial cells. The mechanism study revealed that HON specifically targets the Q239 residue located in the ankyrin repeat domain of TRPV4, and competitively inhibits channel opening with adenosine triphosphate (ATP) binding. The immunofluorescence assay demonstrated that the administration of HON enhances the expression and location of VE-Cadherin to protect the endothelial barrier and attenuates immune cell infiltration. CONCLUSIONS The finding suggested that HON alleviates IBD by improving endothelial permeability through TRPV4. The discovery provides valuable insights into the potential therapeutic strategy of active natural products for alleviating IBD.
Collapse
Affiliation(s)
- Lin Niu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shilong Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yanyan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xingwang Zu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xinyu You
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiuyang Zhang
- Thompson Rivers University, Manna, British Columbia, Canada
| | - Pengwei Zhuang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xiaotao Hou
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica and China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning, China
| | - Yanjun Zhang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China; Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica and China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning, China.
| | - Jiagang Deng
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica and China-ASEAN Joint Laboratory for International Cooperation in Traditional Medicine Research, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
5
|
Bihari S, Costell MH, Bouchier T, Behm DJ, Burgert M, Ye G, Bersten AD, Puukila S, Cavallaro E, Sprecher DL, Dixon DL. Evaluation of GSK2789917-induced TRPV4 inhibition in animal models of fluid induced lung injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3461-3475. [PMID: 37966569 DOI: 10.1007/s00210-023-02821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Administration of bolus intravenous fluids, common in pre-hospital and hospitalised patients, is associated with increased lung vascular permeability and mortality outside underlying disease states. In our laboratory, the induction of lung injury and oedema through rapid administration of intravenous fluid in rats was reduced by a non-specific antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. The aims of this study were to determine the effect of selective TRPV4 inhibition on fluid-induced lung injury (FILI) and compare the potency of FILI inhibition to that of an established model of TRPV4 agonist-induced lung oedema. In a series of experiments, rats received specific TRPV4 inhibitor (GSK2789917) at high (15 μg/kg), medium (5 μg/kg) or low (2 μg/kg) dose or vehicle prior to induction of lung injury by intravenous infusion of TRPV4 agonist (GSK1016790) or saline. GSK1016790 significantly increased lung wet weight/body weight ratio by 96% and lung wet-to-dry weight ratio by 43% in vehicle pre-treated rats, which was inhibited by GSK2789917 in a dose-dependent manner (IC50 = 3 ng/mL). Similarly, in a single-dose study, bolus saline infusion significantly increased lung wet weight/body weight by 17% and lung wet-to-dry weight ratio by 15%, which was attenuated by high dose GSK2789917. However, in a final GSK2789917 dose-response study, inhibition did not reach significance and an inhibitory potency was not determined due to the lack of a clear dose-response. In the FILI model, TRPV4 may have a role in lung injury induced by rapid-fluid infusion, indicated by inconsistent amelioration with high dose TRPV4 antagonist.
Collapse
Affiliation(s)
- Shailesh Bihari
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
- Intensive and Critical Care Unit, Flinders Medical Centre, Flinders Drive, Bedford Park, SA, 5042, Australia
| | - Melissa H Costell
- GlaxoSmithKline (GSK), 1250 South Collegeville Road, Collegeville, PA, 19426-0989, USA
| | - Tara Bouchier
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - David J Behm
- GlaxoSmithKline (GSK), 1250 South Collegeville Road, Collegeville, PA, 19426-0989, USA
| | - Mark Burgert
- GlaxoSmithKline (GSK), 1250 South Collegeville Road, Collegeville, PA, 19426-0989, USA
| | - Guosen Ye
- GlaxoSmithKline (GSK), 1250 South Collegeville Road, Collegeville, PA, 19426-0989, USA
| | - Andrew D Bersten
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
- Intensive and Critical Care Unit, Flinders Medical Centre, Flinders Drive, Bedford Park, SA, 5042, Australia
| | - Stephanie Puukila
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Elena Cavallaro
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Dennis L Sprecher
- GlaxoSmithKline (GSK), 1250 South Collegeville Road, Collegeville, PA, 19426-0989, USA
| | - Dani-Louise Dixon
- College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
- Intensive and Critical Care Unit, Flinders Medical Centre, Flinders Drive, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
6
|
Ta HQ, Kuppusamy M, Sonkusare SK, Roeser ME, Laubach VE. The endothelium: gatekeeper to lung ischemia-reperfusion injury. Respir Res 2024; 25:172. [PMID: 38637760 PMCID: PMC11027545 DOI: 10.1186/s12931-024-02776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
The success of lung transplantation is limited by the high rate of primary graft dysfunction due to ischemia-reperfusion injury (IRI). Lung IRI is characterized by a robust inflammatory response, lung dysfunction, endothelial barrier disruption, oxidative stress, vascular permeability, edema, and neutrophil infiltration. These events are dependent on the health of the endothelium, which is a primary target of IRI that results in pulmonary endothelial barrier dysfunction. Over the past 10 years, research has focused more on the endothelium, which is beginning to unravel the multi-factorial pathogenesis and immunologic mechanisms underlying IRI. Many important proteins, receptors, and signaling pathways that are involved in the pathogenesis of endothelial dysfunction after IR are starting to be identified and targeted as prospective therapies for lung IRI. In this review, we highlight the more significant mediators of IRI-induced endothelial dysfunction discovered over the past decade including the extracellular glycocalyx, endothelial ion channels, purinergic receptors, kinases, and integrins. While there are no definitive clinical therapies currently available to prevent lung IRI, we will discuss potential clinical strategies for targeting the endothelium for the treatment or prevention of IRI. The accruing evidence on the essential role the endothelium plays in lung IRI suggests that promising endothelial-directed treatments may be approaching the clinic soon. The application of therapies targeting the pulmonary endothelium may help to halt this rapid and potentially fatal injury.
Collapse
Affiliation(s)
- Huy Q Ta
- Department of Surgery, University of Virginia, P. O. Box 801359, Charlottesville, VA, 22908, USA
| | - Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Mark E Roeser
- Department of Surgery, University of Virginia, P. O. Box 801359, Charlottesville, VA, 22908, USA
| | - Victor E Laubach
- Department of Surgery, University of Virginia, P. O. Box 801359, Charlottesville, VA, 22908, USA.
| |
Collapse
|
7
|
Vermillion MS, Saari N, Bray M, Nelson AM, Bullard RL, Rudolph K, Gigliotti AP, Brendler J, Jantzi J, Kuehl PJ, McDonald JD, Burgert ME, Weber W, Sucoloski S, Behm DJ. Effect of TRPV4 Antagonist GSK2798745 on Chlorine Gas-Induced Acute Lung Injury in a Swine Model. Int J Mol Sci 2024; 25:3949. [PMID: 38612759 PMCID: PMC11011849 DOI: 10.3390/ijms25073949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
As a regulator of alveolo-capillary barrier integrity, Transient Receptor Potential Vanilloid 4 (TRPV4) antagonism represents a promising strategy for reducing pulmonary edema secondary to chemical inhalation. In an experimental model of acute lung injury induced by exposure of anesthetized swine to chlorine gas by mechanical ventilation, the dose-dependent effects of TRPV4 inhibitor GSK2798745 were evaluated. Pulmonary function and oxygenation were measured hourly; airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, and histopathology were assessed 24 h post-exposure. Exposure to 240 parts per million (ppm) chlorine gas for ≥50 min resulted in acute lung injury characterized by sustained changes in the ratio of partial pressure of oxygen in arterial blood to the fraction of inspiratory oxygen concentration (PaO2/FiO2), oxygenation index, peak inspiratory pressure, dynamic lung compliance, and respiratory system resistance over 24 h. Chlorine exposure also heightened airway response to methacholine and increased wet-to-dry lung weight ratios at 24 h. Following 55-min chlorine gas exposure, GSK2798745 marginally improved PaO2/FiO2, but did not impact lung function, airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, or histopathology. In summary, in this swine model of chlorine gas-induced acute lung injury, GSK2798745 did not demonstrate a clinically relevant improvement of key disease endpoints.
Collapse
Affiliation(s)
- Meghan S. Vermillion
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Nathan Saari
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Mathieu Bray
- GSK, Collegeville, PA 19426, USA; (M.B.); (S.S.); (D.J.B.)
| | - Andrew M. Nelson
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Robert L. Bullard
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Karin Rudolph
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Andrew P. Gigliotti
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Jeffrey Brendler
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Jacob Jantzi
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Philip J. Kuehl
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Jacob D. McDonald
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | | | - Waylon Weber
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | | | - David J. Behm
- GSK, Collegeville, PA 19426, USA; (M.B.); (S.S.); (D.J.B.)
| |
Collapse
|
8
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
9
|
Hansen CE, Kamermans A, Mol K, Berve K, Rodriguez-Mogeda C, Fung WK, van Het Hof B, Fontijn RD, van der Pol SMA, Michalick L, Kuebler WM, Kenkhuis B, van Roon-Mom W, Liedtke W, Engelhardt B, Kooij G, Witte ME, de Vries HE. Inflammation-induced TRPV4 channels exacerbate blood-brain barrier dysfunction in multiple sclerosis. J Neuroinflammation 2024; 21:72. [PMID: 38521959 PMCID: PMC10960997 DOI: 10.1186/s12974-024-03069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) dysfunction and immune cell migration into the central nervous system (CNS) are pathogenic drivers of multiple sclerosis (MS). Ways to reinstate BBB function and subsequently limit neuroinflammation present promising strategies to restrict disease progression. However, to date, the molecular players directing BBB impairment in MS remain poorly understood. One suggested candidate to impact BBB function is the transient receptor potential vanilloid-type 4 ion channel (TRPV4), but its specific role in MS pathogenesis remains unclear. Here, we investigated the role of TRPV4 in BBB dysfunction in MS. MAIN TEXT In human post-mortem MS brain tissue, we observed a region-specific increase in endothelial TRPV4 expression around mixed active/inactive lesions, which coincided with perivascular microglia enrichment in the same area. Using in vitro models, we identified that microglia-derived tumor necrosis factor-α (TNFα) induced brain endothelial TRPV4 expression. Also, we found that TRPV4 levels influenced brain endothelial barrier formation via expression of the brain endothelial tight junction molecule claudin-5. In contrast, during an inflammatory insult, TRPV4 promoted a pathological endothelial molecular signature, as evidenced by enhanced expression of inflammatory mediators and cell adhesion molecules. Moreover, TRPV4 activity mediated T cell extravasation across the brain endothelium. CONCLUSION Collectively, our findings suggest a novel role for endothelial TRPV4 in MS, in which enhanced expression contributes to MS pathogenesis by driving BBB dysfunction and immune cell migration.
Collapse
Grants
- 813294 European Union´s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (ENTRAIN)
- 813294 European Union´s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (ENTRAIN)
- 813294 European Union´s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (ENTRAIN)
- 813294 European Union´s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant (ENTRAIN)
- 91719305 Dutch Research Council, NWO, Vidi grant
- 91719305 Dutch Research Council, NWO, Vidi grant
- 91719305 Dutch Research Council, NWO, Vidi grant
- 18-1023MS Stichting MS Research
- 20-1106MS Stichting MS Research
- 20-1106MS Stichting MS Research
- 18-1023MS Stichting MS Research
- 20-1106MS Stichting MS Research
- 81X3100216 Deutsches Zentrum für Herz-Kreislaufforschung
- SFB-TR84 : subprojects A02 & C09, SFB-1449 subproject B01, SFB 1470 subproject A04, KU1218/9-1, KU1218/11-1, and KU1218/12-1 Deutsche Forschungsgemeinschaft
- PROVID (01KI20160A) and SYMPATH (01ZX1906A) Bundesministerium für Bildung und Forschung
- HA2016-02-02 Hersenstichting
Collapse
Affiliation(s)
- Cathrin E Hansen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Kevin Mol
- Department of Biomedical Engineering and Physics, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Kristina Berve
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Wing Ka Fung
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Bert van Het Hof
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Ruud D Fontijn
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Susanne M A van der Pol
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Laura Michalick
- Institute of Physiology, Corporate member of the Freie Universität Berlin and Humboldt Universität to Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Corporate member of the Freie Universität Berlin and Humboldt Universität to Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| | - Boyd Kenkhuis
- Department of Human Genetics, Leiden University Medical Center Leiden, Leiden, The Netherlands
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
| | - Willeke van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center Leiden, Leiden, The Netherlands
| | - Wolfgang Liedtke
- Department of Neurology, Duke University, Durham, NY, USA
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | | | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maarten E Witte
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Otero-Sobrino Á, Blanco-Carlón P, Navarro-Aguadero MÁ, Gallardo M, Martínez-López J, Velasco-Estévez M. Mechanosensitive Ion Channels: Their Physiological Importance and Potential Key Role in Cancer. Int J Mol Sci 2023; 24:13710. [PMID: 37762011 PMCID: PMC10530364 DOI: 10.3390/ijms241813710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Mechanosensitive ion channels comprise a broad group of proteins that sense mechanical extracellular and intracellular changes, translating them into cation influx to adapt and respond to these physical cues. All cells in the organism are mechanosensitive, and these physical cues have proven to have an important role in regulating proliferation, cell fate and differentiation, migration and cellular stress, among other processes. Indeed, the mechanical properties of the extracellular matrix in cancer change drastically due to high cell proliferation and modification of extracellular protein secretion, suggesting an important contribution to tumor cell regulation. In this review, we describe the physiological significance of mechanosensitive ion channels, emphasizing their role in cancer and immunity, and providing compelling proof of the importance of continuing to explore their potential as new therapeutic targets in cancer research.
Collapse
Affiliation(s)
- Álvaro Otero-Sobrino
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Pablo Blanco-Carlón
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Miguel Ángel Navarro-Aguadero
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Miguel Gallardo
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Joaquín Martínez-López
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - María Velasco-Estévez
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), 28029 Madrid, Spain; (Á.O.-S.); (P.B.-C.); (M.Á.N.-A.); (M.G.); (J.M.-L.)
- Department of Hematology, Hospital Universitario 12 de Octubre, Instituto de Investigacion Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
11
|
Kumar M, Zaman MK, Das S, Goyary D, Pathak MP, Chattopadhyay P. Transient Receptor Potential Vanilloid (TRPV4) channel inhibition: A novel promising approach for the treatment of lung diseases. Biomed Pharmacother 2023; 163:114861. [PMID: 37178575 DOI: 10.1016/j.biopha.2023.114861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Research on transient receptor potential vanilloid-4 (TRPV4) can provide a promising potential therapeutic target in the development of novel medicines for lung disorders. TRPV4 expresses in lung tissue and plays an important role in the maintenance of respiratory homeostatic function. TRPV4 is upregulated in life-threatening respiratory diseases like pulmonary hypertension, asthma, cystic fibrosis, and chronic obstructive pulmonary diseases. TRPV4 is linked to several proteins that have physiological functions and are sensitive to a wide variety of stimuli, such as mechanical stimulation, changes in temperature, and hypotonicity, and responds to a variety of proteins and lipid mediators, including anandamide (AA), the arachidonic acid metabolite, 5,6-epoxyeicosatrienoic acid (5,6-EET), a plant dimeric diterpenoid called bisandrographolide A (BAA), and the phorbol ester 4-alpha-phorbol-12,13-didecanoate (4α-PDD). This study focused on relevant research evidence of TRPV4 in lung disorders and its agonist and antagonist effects. TRPV4 can be a possible target of discovered molecules that exerts high therapeutic potential in the treatment of respiratory diseases by inhibiting TRPV4.
Collapse
Affiliation(s)
- Mohit Kumar
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India; Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Md Kamaruz Zaman
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India; Pharmaceutical & Fine Chemical Division, Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal 700073, India
| | - Danswrang Goyary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam 781026, India.
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam 784001, India.
| |
Collapse
|
12
|
CFTR-a (novel) target in ARDS : Commentary on "Loss of endothelial CFTR drives barrier failure and edema formation in lung infection and can be targeted by CFTR potentiation", Erfinanda et al., Sci. Transl. Med. 14, eabg8577 (2022). Pflugers Arch 2023; 475:417-419. [PMID: 36847846 PMCID: PMC9969384 DOI: 10.1007/s00424-023-02800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
|
13
|
Stinson RJ, Morice AH, Sadofsky LR. Modulation of transient receptor potential (TRP) channels by plant derived substances used in over-the-counter cough and cold remedies. Respir Res 2023; 24:45. [PMID: 36755306 PMCID: PMC9907891 DOI: 10.1186/s12931-023-02347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Upper respiratory tract infections (URTIs) impact all age groups and have a significant economic and social burden on society, worldwide. Most URTIs are mild and self-limiting, but due to the wide range of possible causative agents, including Rhinovirus (hRV), Adenovirus, Respiratory Syncytial Virus (RSV), Coronavirus and Influenza, there is no single and effective treatment. Over-the-counter (OTC) remedies, including traditional medicines and those containing plant derived substances, help to alleviate symptoms including inflammation, pain, fever and cough. PURPOSE This systematic review focuses on the role of the major plant derived substances in several OTC remedies used to treat cold symptoms, with a particular focus on the transient receptor potential (TRP) channels involved in pain and cough. METHODS Literature searches were done using Pubmed and Web of Science, with no date limitations, using the principles of the PRISMA statement. The search terms used were 'TRP channel AND plant compound', 'cough AND plant compound', 'cough AND TRP channels AND plant compound', 'cough AND P2X3 AND plant compound' and 'P2X3 AND plant compound' where plant compound represents menthol or camphor or eucalyptus or turpentine or thymol. RESULTS The literature reviewed showed that menthol activates TRPM8 and may inhibit respiratory reflexes reducing irritation and cough. Menthol has a bimodal action on TRPA1, but inhibition may have an analgesic effect. Eucalyptus also activates TRPM8 and inhibits TRPA1 whilst down regulating P2X3, aiding in the reduction of cough, pain and airway irritation. Camphor inhibits TRPA1 and the activation of TRPM8 may add to the effects of menthol. Activation of TRPV1 by camphor, may also have an analgesic effect. CONCLUSIONS The literature suggests that these plant derived substances have multifaceted actions and can interact with the TRP 'cough' receptors. The plant derived substances used in cough and cold medicines have the potential to target multiple symptoms experienced during a cold.
Collapse
Affiliation(s)
- Rebecca J. Stinson
- grid.9481.40000 0004 0412 8669Centre for Biomedicine, Hull York Medical School, The University of Hull, Cottingham Road, Hull, HU6 7RX UK
| | - Alyn H. Morice
- grid.413631.20000 0000 9468 0801Clinical Sciences Centre, Hull York Medical School, Castle Hill Hospital, Cottingham, Hull, HU16 5JQ UK
| | - Laura R. Sadofsky
- grid.9481.40000 0004 0412 8669Centre for Biomedicine, Hull York Medical School, The University of Hull, Cottingham Road, Hull, HU6 7RX UK
| |
Collapse
|
14
|
Erfinanda L, Zou L, Gutbier B, Kneller L, Weidenfeld S, Michalick L, Lei D, Reppe K, Teixeira Alves LG, Schneider B, Zhang Q, Li C, Fatykhova D, Schneider P, Liedtke W, Sohara E, Mitchell TJ, Gruber AD, Hocke A, Hippenstiel S, Suttorp N, Olschewski A, Mall MA, Witzenrath M, Kuebler WM. Loss of endothelial CFTR drives barrier failure and edema formation in lung infection and can be targeted by CFTR potentiation. Sci Transl Med 2022; 14:eabg8577. [PMID: 36475904 DOI: 10.1126/scitranslmed.abg8577] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pneumonia is the most common cause of the acute respiratory distress syndrome (ARDS). Here, we identified loss of endothelial cystic fibrosis transmembrane conductance regulator (CFTR) as an important pathomechanism leading to lung barrier failure in pneumonia-induced ARDS. CFTR was down-regulated after Streptococcus pneumoniae infection ex vivo or in vivo in human or murine lung tissue, respectively. Analysis of isolated perfused rat lungs revealed that CFTR inhibition increased endothelial permeability in parallel with intracellular chloride ion and calcium ion concentrations ([Cl-]i and [Ca2+]i). Inhibition of the chloride ion-sensitive with-no-lysine kinase 1 (WNK1) protein with tyrphostin 47 or WNK463 replicated the effect of CFTR inhibition on endothelial permeability and endothelial [Ca2+]i, whereas WNK1 activation by temozolomide attenuated it. Endothelial [Ca2+]i transients and permeability in response to inhibition of either CFTR or WNK1 were prevented by inhibition of the cation channel transient receptor potential vanilloid 4 (TRPV4). Mice deficient in Trpv4 (Trpv4-/-) developed less lung edema and protein leak than their wild-type littermates after infection with S. pneumoniae. The CFTR potentiator ivacaftor prevented lung CFTR loss, edema, and protein leak after S. pneumoniae infection in wild-type mice. In conclusion, lung infection caused loss of CFTR that promoted lung edema formation through intracellular chloride ion accumulation, inhibition of WNK1, and subsequent disinhibition of TRPV4, resulting in endothelial calcium ion influx and vascular barrier failure. Ivacaftor prevented CFTR loss in the lungs of mice with pneumonia and may, therefore, represent a possible therapeutic strategy in people suffering from ARDS due to severe pneumonia.
Collapse
Affiliation(s)
- Lasti Erfinanda
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Lin Zou
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Heart Center, 13353 Berlin, Germany.,Department of Endocrinology, Shanghai Pudong New Area Gongli Hospital, 200135 Shanghai, China
| | - Birgitt Gutbier
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Laura Kneller
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Sarah Weidenfeld
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Laura Michalick
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Disi Lei
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Heart Center, 13353 Berlin, Germany
| | - Katrin Reppe
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Luiz Gustavo Teixeira Alves
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Bill Schneider
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Qi Zhang
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Caihong Li
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Diana Fatykhova
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Paul Schneider
- Department for General and Thoracic Surgery, DRK Clinics, 13359 Berlin, Germany
| | - Wolfgang Liedtke
- Departments of Neurology, Neurobiology, and Clinics for Pain and Palliative Care, Duke University Medical Center, Durham, NC 27710, USA
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Timothy J Mitchell
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15-2TT, UK
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Andreas Hocke
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, 10117 Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, 10117 Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, 10117 Berlin, Germany
| | - Andrea Olschewski
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Marcus A Mall
- German Center for Lung Research (DZL), associated partner site, 10117 Berlin, Germany.,Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, 10117 Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, 10117 Berlin, Germany
| |
Collapse
|
15
|
Toumpanakis D, Chatzianastasiou A, Vassilakopoulou V, Mizi E, Dettoraki M, Perlikos F, Giatra G, Mikos N, Theocharis S, Vassilakopoulos T. TRPV4 Inhibition Exerts Protective Effects Against Resistive Breathing Induced Lung Injury. Int J Chron Obstruct Pulmon Dis 2022; 17:343-353. [PMID: 35210764 PMCID: PMC8857953 DOI: 10.2147/copd.s336108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/03/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction TRPV4 channels are calcium channels, activated by mechanical stress, that have been implicated in the pathogenesis of pulmonary inflammation. During resistive breathing (RB), increased mechanical stress is imposed on the lung, inducing lung injury. The role of TRPV4 channels in RB-induced lung injury is unknown. Materials and Methods Spontaneously breathing adult male C57BL/6 mice were subjected to RB by tracheal banding. Following anaesthesia, mice were placed under a surgical microscope, the surface area of the trachea was measured and a nylon band was sutured around the trachea to reduce area to half. The specific TRPV4 inhibitor, HC-067047 (10 mg/kg ip), was administered either prior to RB and at 12 hrs following initiation of RB (preventive) or only at 12 hrs after the initiation of RB (therapeutic protocol). Lung injury was assessed at 24 hrs of RB, by measuring lung mechanics, total protein, BAL total and differential cell count, KC and IL-6 levels in BAL fluid, surfactant Protein (Sp)D in plasma and a lung injury score by histology. Results RB decreased static compliance (Cst), increased total protein in BAL (p < 0.001), total cell count due to increased number of both macrophages and neutrophils, increased KC and IL-6 in BAL (p < 0.001 and p = 0.01, respectively) and plasma SpD (p < 0.0001). Increased lung injury score was detected. Both preventive and therapeutic HC-067047 administration restored Cst and inhibited the increase in total protein, KC and IL-6 levels in BAL fluid, compared to RB. Preventive TRPV4 inhibition ameliorated the increase in BAL cellularity, while therapeutic TRPV4 inhibition exerted a partial effect. TRPV4 inhibition blunted the increase in plasma SpD (p < 0.001) after RB and the increase in lung injury score was also inhibited. Conclusion TRPV4 inhibition exerts protective effects against RB-induced lung injury.
Collapse
Affiliation(s)
- Dimitrios Toumpanakis
- “Marianthi Simou” Applied Biomedical Research and Training Center, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Correspondence: Dimitrios Toumpanakis, Email
| | - Athanasia Chatzianastasiou
- “Marianthi Simou” Applied Biomedical Research and Training Center, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vyronia Vassilakopoulou
- “Marianthi Simou” Applied Biomedical Research and Training Center, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftheria Mizi
- “Marianthi Simou” Applied Biomedical Research and Training Center, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Dettoraki
- “Marianthi Simou” Applied Biomedical Research and Training Center, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotis Perlikos
- “Marianthi Simou” Applied Biomedical Research and Training Center, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Giatra
- “Marianthi Simou” Applied Biomedical Research and Training Center, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- 3 Department of Critical Care Medicine, Evgenideio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Mikos
- Allergology Department, Laiko General Hospital, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Vassilakopoulos
- “Marianthi Simou” Applied Biomedical Research and Training Center, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- 3 Department of Critical Care Medicine, Evgenideio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
16
|
Jia Q, Yang Y, Chen X, Yao S, Hu Z. Emerging roles of mechanosensitive ion channels in acute lung injury/acute respiratory distress syndrome. Respir Res 2022; 23:366. [PMID: 36539808 PMCID: PMC9764320 DOI: 10.1186/s12931-022-02303-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a devastating respiratory disorder with high rates of mortality and morbidity, but the detailed underlying mechanisms of ALI/ARDS remain largely unknown. Mechanosensitive ion channels (MSCs), including epithelial sodium channel (ENaC), Piezo channels, transient receptor potential channels (TRPs), and two-pore domain potassium ion (K2P) channels, are highly expressed in lung tissues, and the activity of these MSCs can be modulated by mechanical forces (e.g., mechanical ventilation) and other stimuli (e.g., LPS, hyperoxia). Dysfunction of MSCs has been found in various types of ALI/ARDS, and MSCs play a key role in regulating alveolar fluid clearance, alveolar epithelial/endothelial barrier function, the inflammatory response and surfactant secretion in ALI/ARDS lungs. Targeting MSCs exerts therapeutic effects in the treatment of ALI/ARDS. In this review, we summarize the structure and functions of several well-recognized MSCs, the role of MSCs in the pathogenesis of ALI/ARDS and recent advances in the pharmacological and molecular modulation of MSCs in the treatment of ALI/ARDS. According to the current literature, targeting MSCs might be a very promising therapeutic approach against ALI/ARDS.
Collapse
Affiliation(s)
- Qi Jia
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyi Yang
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanglong Yao
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Hu
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Yang C, Si M, Zhou J. Silencing TRPV4 partially reverses the neurotoxic effects caused by excess Ketamine. J Toxicol Sci 2021; 46:69-81. [PMID: 33536391 DOI: 10.2131/jts.46.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Excessive use of Ketamine (KET) has a neurotoxic effect on the brain. This study explored the effect of Transient Receptor Potential Vanilloid 4 (TRPV4) on KET-induced neurotoxicity in the hippocampus. We extracted and identified rat hippocampal neuronal cells. The hippocampal neurons were treated with different concentrations (0, 0.1, 1, 10, 100, 300 and 1000 μmol/L) of KET (6, 12 and 24 hr). Cell viability was detected by cell counting Kit-8 (CCK-8), and TRPV4 expression was detected by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR) and western blot. After silencing TRPV4, we tested cell viability and apoptosis. The contents of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and catalase (CAT) were detected by colorimetry, and the contents of TNF-α, IL-1β, IL-6 and reactive oxygen species (ROS) were detected by Enzyme-Linked ImmunoSorbent Assay (ELISA). Finally, the expression levels of apoptosis-related proteins Bcl-2, Bax and Cleaved caspase-3, and phosphorylated-p65 (p-65), p65, phosphorylated-IκBα (p-IκBα) and IκBα were detected by qRT-PCR and western blot. KET inhibited the viability of hippocampal neurons in a dose-dependent manner, and up-regulated TRPV4 expression. SiTRPV4 inhibits KET-induced decrease in cell viability and promotes apoptosis. SiTRPV4 reduced MDA and ROS content, increased SOD, GSH and CAT levels. The release of proinflammatory factors TNF-α, IL-1β and IL-6 was also inhibited by siTRPV4. In addition, siTRPV4 up-regulated KET-induced Bcl-2 expression in hippocampal neurons, down-regulated Bax and Cleaved caspase-3, and inhibited the activation of the inflammatory pathway. Silencing TRPV4 partially reverses the neurotoxic effects induced by KET through regulating apoptosis-related proteins and p65/IκBα pathway.
Collapse
Affiliation(s)
- Chunsong Yang
- Department of Neurosurgery, Shengzhou People's Hospital, China
| | - Mengqing Si
- School of Medicine, Nanchang University, China
| | - Jing Zhou
- Department of Neurosurgery, Shengzhou People's Hospital, China
| |
Collapse
|
18
|
Jaffal SM, Abbas MA. TRP channels in COVID-19 disease: Potential targets for prevention and treatment. Chem Biol Interact 2021; 345:109567. [PMID: 34166652 PMCID: PMC8217345 DOI: 10.1016/j.cbi.2021.109567] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
Coronavirus disease 2019 [COVID-19] is a global health threat caused by severe acute respiratory syndrome coronavirus 2 [SARS-CoV2] that requires two proteins for entry: angiotensin-converting enzyme 2 [ACE2] and -membrane protease serine 2 [TMPRSS2]. Many patients complain from pneumonia, cough, fever, and gastrointestinal (GI) problems. Notably, different TRP channels are expressed in various tissues infected by SARS-CoV-2. TRP channels are cation channels that show a common architecture with high permeability to calcium [Ca2+] in most sub-families. Literature review shed light on the possible role of TRP channels in COVID-19 disease. TRP channels may take part in inflammation, pain, fever, anosmia, ageusia, respiratory, cardiovascular, GI and neurological complications related to COVID-19. Also, TRP channels could be the targets for many active compounds that showed effectiveness against SARS-CoV-2. Desensitization or blocking TRP channels by antibodies, aptamers, small molecules or venoms can be an option for COVID-19 prevention and future treatment. This review provides insights into the involvement of TRP channels in different symptoms and mechanisms of SARS-CoV-2 , potential treatments targeting these channels and highlights missing gaps in literature.
Collapse
Affiliation(s)
- Sahar M Jaffal
- Department of Biological Sciences, Faculty of Science, The University of Jordan, 11942, Amman, Jordan.
| | - Manal A Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328, Amman, Jordan; Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, 19328, Amman, Jordan
| |
Collapse
|
19
|
Liu L, Guo M, Lv X, Wang Z, Yang J, Li Y, Yu F, Wen X, Feng L, Zhou T. Role of Transient Receptor Potential Vanilloid 4 in Vascular Function. Front Mol Biosci 2021; 8:677661. [PMID: 33981725 PMCID: PMC8107436 DOI: 10.3389/fmolb.2021.677661] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) channels are widely expressed in systemic tissues and can be activated by many stimuli. TRPV4, a Ca2+-permeable cation channel, plays an important role in the vasculature and is implicated in the regulation of cardiovascular homeostasis processes such as blood pressure, vascular remodeling, and pulmonary hypertension and edema. Within the vasculature, TRPV4 channels are expressed in smooth muscle cells, endothelial cells, and perivascular nerves. The activation of endothelial TRPV4 contributes to vasodilation involving nitric oxide, prostacyclin, and endothelial-derived hyperpolarizing factor pathways. TRPV4 activation also can directly cause vascular smooth muscle cell hyperpolarization and vasodilation. In addition, TRPV4 activation can evoke constriction in some specific vascular beds or under some pathological conditions. TRPV4 participates in the control of vascular permeability and vascular damage, particularly in the lung capillary endothelial barrier and lung injury. It also participates in vascular remodeling regulation mainly by controlling vasculogenesis and arteriogenesis. This review examines the role of TRPV4 in vascular function, particularly in vascular dilation and constriction, vascular permeability, vascular remodeling, and vascular damage, along with possible mechanisms, and discusses the possibility of targeting TRPV4 for therapy.
Collapse
Affiliation(s)
- Liangliang Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mengting Guo
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaowang Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhiwei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jigang Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yanting Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fan Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xin Wen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Mraheil MA, Toque HA, La Pietra L, Hamacher J, Phanthok T, Verin A, Gonzales J, Su Y, Fulton D, Eaton DC, Chakraborty T, Lucas R. Dual Role of Hydrogen Peroxide as an Oxidant in Pneumococcal Pneumonia. Antioxid Redox Signal 2021; 34:962-978. [PMID: 32283950 PMCID: PMC8035917 DOI: 10.1089/ars.2019.7964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance:Streptococcus pneumoniae (Spn), a facultative anaerobic Gram-positive human pathogen with increasing rates of penicillin and macrolide resistance, is a major cause of lower respiratory tract infections worldwide. Pneumococci are a primary agent of severe pneumonia in children younger than 5 years and of community-acquired pneumonia in adults. A major defense mechanism toward Spn is the generation of reactive oxygen species, including hydrogen peroxide (H2O2), during the oxidative burst of neutrophils and macrophages. Paradoxically, Spn produces high endogenous levels of H2O2 as a strategy to promote colonization. Recent Advances: Pneumococci, which express neither catalase nor common regulators of peroxide stress resistance, have developed unique mechanisms to protect themselves from H2O2. Spn generates high levels of H2O2 as a strategy to promote colonization. Production of H2O2 moreover constitutes an important virulence phenotype and its cellular activities overlap and complement those of other virulence factors, such as pneumolysin, in modulating host immune responses and promoting organ injury. Critical Issues: This review examines the dual role of H2O2 in pneumococcal pneumonia, from the viewpoint of both the pathogen (defense mechanisms, lytic activity toward competing pathogens, and virulence) and the resulting host-response (inflammasome activation, endoplasmic reticulum stress, and damage to the alveolar-capillary barrier in the lungs). Future Directions: An understanding of the complexity of H2O2-mediated host-pathogen interactions is necessary to develop novel strategies that target these processes to enhance lung function during severe pneumonia.
Collapse
Affiliation(s)
- Mobarak Abu Mraheil
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Haroldo A Toque
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Luigi La Pietra
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Juerg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Internal Medicine V-Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany
| | - Tenzing Phanthok
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Alexander Verin
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Joyce Gonzales
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - David Fulton
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Douglas C Eaton
- Department of Medicine, Emory School of Medicine, Atlanta, Georgia, USA
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Rudolf Lucas
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
21
|
Gu Q, Lee LY. TRP channels in airway sensory nerves. Neurosci Lett 2021; 748:135719. [PMID: 33587987 PMCID: PMC7988689 DOI: 10.1016/j.neulet.2021.135719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Transient Receptor Potential (TRP) channels expressed in specific subsets of airway sensory nerves function as transducers and integrators of a diverse range of sensory inputs including chemical, mechanical and thermal signals. These TRP sensors can detect inhaled irritants as well as endogenously released chemical substances. They play an important role in generating the afferent activity carried by these sensory nerves and regulating the centrally mediated pulmonary defense reflexes. Increasing evidence reported in recent investigations has revealed important involvements of several TRP channels (TRPA1, TRPV1, TRPV4 and TRPM8) in the manifestation of various symptoms and pathogenesis of certain acute and chronic airway diseases. This mini-review focuses primarily on these recent findings of the responses of these TRP sensors to the biological stresses emerging under the pathophysiological conditions of the lung and airways.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA.
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY, 40536-0298, USA.
| |
Collapse
|
22
|
Horie S, McNicholas B, Rezoagli E, Pham T, Curley G, McAuley D, O'Kane C, Nichol A, Dos Santos C, Rocco PRM, Bellani G, Laffey JG. Emerging pharmacological therapies for ARDS: COVID-19 and beyond. Intensive Care Med 2020; 46:2265-2283. [PMID: 32654006 PMCID: PMC7352097 DOI: 10.1007/s00134-020-06141-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
ARDS, first described in 1967, is the commonest form of acute severe hypoxemic respiratory failure. Despite considerable advances in our knowledge regarding the pathophysiology of ARDS, insights into the biologic mechanisms of lung injury and repair, and advances in supportive care, particularly ventilatory management, there remains no effective pharmacological therapy for this syndrome. Hospital mortality at 40% remains unacceptably high underlining the need to continue to develop and test therapies for this devastating clinical condition. The purpose of the review is to critically appraise the current status of promising emerging pharmacological therapies for patients with ARDS and potential impact of these and other emerging therapies for COVID-19-induced ARDS. We focus on drugs that: (1) modulate the immune response, both via pleiotropic mechanisms and via specific pathway blockade effects, (2) modify epithelial and channel function, (3) target endothelial and vascular dysfunction, (4) have anticoagulant effects, and (5) enhance ARDS resolution. We also critically assess drugs that demonstrate potential in emerging reports from clinical studies in patients with COVID-19-induced ARDS. Several therapies show promise in earlier and later phase clinical testing, while a growing pipeline of therapies is in preclinical testing. The history of unsuccessful clinical trials of promising therapies underlines the challenges to successful translation. Given this, attention has been focused on the potential to identify biologically homogenous subtypes within ARDS, to enable us to target more specific therapies 'precision medicines.' It is hoped that the substantial number of studies globally investigating potential therapies for COVID-19 will lead to the rapid identification of effective therapies to reduce the mortality and morbidity of this devastating form of ARDS.
Collapse
Affiliation(s)
- Shahd Horie
- Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland, Galway, Ireland
| | - Bairbre McNicholas
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Galway, Ireland
| | - Emanuele Rezoagli
- Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland, Galway, Ireland
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - Tài Pham
- Service de médecine Intensive-Réanimation, AP-HP, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Ger Curley
- Department of Anaesthesiology, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Danny McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
- Department of Intensive Care Medicine, Royal Victoria Hospital, Belfast, Northern Ireland, UK
| | - Cecilia O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Alistair Nichol
- Clinical Research Centre at St Vincent's University Hospital, University College Dublin, Dublin, Ireland
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
- Intensive Care Unit, Alfred Hospital, Melbourne, Australia
| | - Claudia Dos Santos
- Keenan Research Centre and Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giacomo Bellani
- Department of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - John G Laffey
- Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland, Galway, Ireland.
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Galway, Ireland.
| |
Collapse
|
23
|
Mole S, Harry A, Fowler A, Hotee S, Warburton J, Waite S, Beerahee M, Behm DJ, Badorrek P, Müller M, Faulenbach C, Lazaar AL, Hohlfeld JM. Investigating the effect of TRPV4 inhibition on pulmonary-vascular barrier permeability following segmental endotoxin challenge. Pulm Pharmacol Ther 2020; 64:101977. [PMID: 33189900 DOI: 10.1016/j.pupt.2020.101977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/20/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acute Respiratory Distress Syndrome (ARDS) is associated with increased pulmonary-vascular permeability. In the lung, transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable cation channel, is a regulator of endothelial permeability and pulmonary edema. We performed a Phase I, placebo-controlled, double-blind, randomized, parallel group, proof-of-mechanism study to investigate the effects of TRPV4 channel blocker, GSK2798745, on pulmonary-vascular barrier permeability using a model of lipopolysaccharide (LPS)-induced lung inflammation. METHODS Healthy participants were randomized 1:1 to receive 2 single doses of GSK2798745 or placebo, 12 h apart. Two hours after the first dose, participants underwent bronchoscopy and segmental LPS instillation. Total protein concentration and neutrophil counts were measured in bronchoalveolar lavage (BAL) samples collected before and 24 h after LPS challenge, as markers of barrier permeability and inflammation, respectively. The primary endpoint was baseline adjusted total protein concentration in BAL at 24 h after LPS challenge. A Bayesian framework was used to estimate the posterior probability of any percentage reduction (GSK2798745 relative to placebo). Safety endpoints included the incidence of adverse events (AEs), vital signs, 12-lead electrocardiogram, clinical laboratory and haematological evaluations, and spirometry. RESULTS Forty-seven participants were dosed and 45 completed the study (22 on GSK2798745 and 23 on placebo). Overall, GSK2798745 was well tolerated. Small reductions in mean baseline adjusted BAL total protein (~9%) and neutrophils (~7%) in the LPS-challenged segment were observed in the GSK2798745 group compared with the placebo group; however, the reductions did not meet pre-specified success criteria of at least a 95% posterior probability that the percentage reduction in the mean 24-h post LPS BAL total protein level (GSK2798745 relative to placebo) exceeded zero. Median plasma concentrations of GSK2798745 were predicted to inhibit TRPV4 on lung vascular endothelial cells by ~70-85% during the 24 h after LPS challenge; median urea-corrected BAL concentrations of GSK2798745 were 3.0- to 8.7-fold higher than those in plasma. CONCLUSIONS GSK2798745 did not affect segmental LPS-induced elevation of BAL total protein or neutrophils, despite blood and lung exposures that were predicted to be efficacious. CLINICALTRIALS. GOV IDENTIFIER NCT03511105.
Collapse
Affiliation(s)
- Sarah Mole
- GlaxoSmithKline, Gunnells Wood Road, Stevenage, UK.
| | - Anya Harry
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA, 19426, USA
| | - Andy Fowler
- GlaxoSmithKline, Stockley Park, West Uxbridge, Middlesex, UB11 1BT, UK
| | - Sarah Hotee
- GlaxoSmithKline, Gunnells Wood Road, Stevenage, UK
| | | | - Sarah Waite
- GlaxoSmithKline, Stockley Park, West Uxbridge, Middlesex, UB11 1BT, UK
| | | | - David J Behm
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA, 19426, USA
| | - Philipp Badorrek
- Fraunhofer-Institut Fuer Toxikologie und Experimentelle Medizin [ITEM], Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Meike Müller
- Fraunhofer-Institut Fuer Toxikologie und Experimentelle Medizin [ITEM], Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Cornelia Faulenbach
- Fraunhofer-Institut Fuer Toxikologie und Experimentelle Medizin [ITEM], Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Aili L Lazaar
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA, 19426, USA
| | - Jens M Hohlfeld
- Fraunhofer-Institut Fuer Toxikologie und Experimentelle Medizin [ITEM], Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany; Hannover Medical School and German Centre for Lung Research, Medizinische Hochschule Hannover OE6876, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
24
|
Achanta S, Jordt SE. Transient receptor potential channels in pulmonary chemical injuries and as countermeasure targets. Ann N Y Acad Sci 2020; 1480:73-103. [PMID: 32892378 PMCID: PMC7933981 DOI: 10.1111/nyas.14472] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
The lung is highly sensitive to chemical injuries caused by exposure to threat agents in industrial or transportation accidents, occupational exposures, or deliberate use as weapons of mass destruction (WMD). There are no antidotes for the majority of the chemical threat agents and toxic inhalation hazards despite their use as WMDs for more than a century. Among several putative targets, evidence for transient receptor potential (TRP) ion channels as mediators of injury by various inhalational chemical threat agents is emerging. TRP channels are expressed in the respiratory system and are essential for homeostasis. Among TRP channels, the body of literature supporting essential roles for TRPA1, TRPV1, and TRPV4 in pulmonary chemical injuries is abundant. TRP channels mediate their function through sensory neuronal and nonneuronal pathways. TRP channels play a crucial role in complex pulmonary pathophysiologic events including, but not limited to, increased intracellular calcium levels, signal transduction, recruitment of proinflammatory cells, neurogenic inflammatory pathways, cough reflex, hampered mucus clearance, disruption of the integrity of the epithelia, pulmonary edema, and fibrosis. In this review, we summarize the role of TRP channels in chemical threat agents-induced pulmonary injuries and how these channels may serve as medical countermeasure targets for broader indications.
Collapse
Affiliation(s)
- Satyanarayana Achanta
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
25
|
Summers KM, Bush SJ, Hume DA. Network analysis of transcriptomic diversity amongst resident tissue macrophages and dendritic cells in the mouse mononuclear phagocyte system. PLoS Biol 2020; 18:e3000859. [PMID: 33031383 PMCID: PMC7575120 DOI: 10.1371/journal.pbio.3000859] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/20/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
The mononuclear phagocyte system (MPS) is a family of cells including progenitors, circulating blood monocytes, resident tissue macrophages, and dendritic cells (DCs) present in every tissue in the body. To test the relationships between markers and transcriptomic diversity in the MPS, we collected from National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) a total of 466 quality RNA sequencing (RNA-seq) data sets generated from mouse MPS cells isolated from bone marrow, blood, and multiple tissues. The primary data were randomly downsized to a depth of 10 million reads and requantified. The resulting data set was clustered using the network analysis tool BioLayout. A sample-to-sample matrix revealed that MPS populations could be separated based upon tissue of origin. Cells identified as classical DC subsets, cDC1s and cDC2s, and lacking Fcgr1 (encoding the protein CD64) were contained within the MPS cluster, no more distinct than other MPS cells. A gene-to-gene correlation matrix identified large generic coexpression clusters associated with MPS maturation and innate immune function. Smaller coexpression gene clusters, including the transcription factors that drive them, showed higher expression within defined isolated cells, including monocytes, macrophages, and DCs isolated from specific tissues. They include a cluster containing Lyve1 that implies a function in endothelial cell (EC) homeostasis, a cluster of transcripts enriched in intestinal macrophages, and a generic lymphoid tissue cDC cluster associated with Ccr7. However, transcripts encoding Adgre1, Itgax, Itgam, Clec9a, Cd163, Mertk, Mrc1, Retnla, and H2-a/e (encoding class II major histocompatibility complex [MHC] proteins) and many other proposed macrophage subset and DC lineage markers each had idiosyncratic expression profiles. Coexpression of immediate early genes (for example, Egr1, Fos, Dusp1) and inflammatory cytokines and chemokines (tumour necrosis factor [Tnf], Il1b, Ccl3/4) indicated that all tissue disaggregation and separation protocols activate MPS cells. Tissue-specific expression clusters indicated that all cell isolation procedures also co-purify other unrelated cell types that may interact with MPS cells in vivo. Comparative analysis of RNA-seq and single-cell RNA-seq (scRNA-seq) data from the same lung cell populations indicated that MPS heterogeneity implied by global cluster analysis may be even greater at a single-cell level. This analysis highlights the power of large data sets to identify the diversity of MPS cellular phenotypes and the limited predictive value of surface markers to define lineages, functions, or subpopulations.
Collapse
Affiliation(s)
- Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
26
|
Rosenkranz SC, Shaposhnykov A, Schnapauff O, Epping L, Vieira V, Heidermann K, Schattling B, Tsvilovskyy V, Liedtke W, Meuth SG, Freichel M, Gelderblom M, Friese MA. TRPV4-Mediated Regulation of the Blood Brain Barrier Is Abolished During Inflammation. Front Cell Dev Biol 2020; 8:849. [PMID: 32974355 PMCID: PMC7481434 DOI: 10.3389/fcell.2020.00849] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Blood-brain barrier (BBB) dysfunction is critically involved in determining the extent of several central nervous systems (CNS) pathologies and here in particular neuroinflammatory conditions. Inhibiting BBB breakdown could reduce the level of vasogenic edema and the number of immune cells invading the CNS, thereby counteracting neuronal injury. Transient receptor potential (TRP) channels have an important role as environmental sensors and constitute attractive therapeutic targets that are involved in calcium homeostasis during pathologies of the CNS. Transient receptor potential vanilloid 4 (TRPV4) is a calcium permeable, non-selective cation channel highly expressed in endothelial cells. As it is involved in the regulation of the blood brain barrier permeability and consequently cerebral edema formation, we anticipated a regulatory role of TRPV4 in CNS inflammation and subsequent neuronal damage. Here, we detected an increase in transendothelial resistance in mouse brain microvascular endothelial cells (MbMECs) after treatment with a selective TRPV4 inhibitor. However, this effect was abolished after the addition of IFNγ and TNFα indicating that inflammatory conditions override TRPV4-mediated permeability. Accordingly, we did not observe a protection of Trpv4-deficient mice when compared to wildtype controls in a preclinical model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), and no differences in infarct sizes following transient middle cerebral artery occlusion (tMCAO), the experimental stroke model, which leads to an acute postischemic inflammatory response. Furthermore, Evans Blue injections did not show differences in alterations of the blood brain barrier (BBB) permeability between genotypes in both animal models. Together, TRPV4 does not regulate brain microvascular endothelial permeability under inflammation.
Collapse
Affiliation(s)
- Sina C Rosenkranz
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Artem Shaposhnykov
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Schnapauff
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Epping
- Klinik für Neurologie mit Institut für Translationale Neurologie, Universität Münster, Münster, Germany
| | - Vanessa Vieira
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Karsten Heidermann
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Schattling
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Wolfgang Liedtke
- Departments of Neurology, Anesthesiology and Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - Sven G Meuth
- Klinik für Neurologie mit Institut für Translationale Neurologie, Universität Münster, Münster, Germany
| | - Marc Freichel
- Pharmakologisches Institut, Universität Heidelberg, Heidelberg, Germany
| | - Mathias Gelderblom
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Kuebler WM, Jordt SE, Liedtke WB. Urgent reconsideration of lung edema as a preventable outcome in COVID-19: inhibition of TRPV4 represents a promising and feasible approach. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1239-L1243. [PMID: 32401673 PMCID: PMC7276984 DOI: 10.1152/ajplung.00161.2020] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Lethality of coronavirus disease (COVID-19) during the 2020 pandemic, currently still in the exponentially accelerating phase in most countries, is critically driven by disruption of the alveolo-capillary barrier of the lung, leading to lung edema as a direct consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We argue for inhibition of the transient receptor potential vanilloid 4 (TRPV4) calcium-permeable ion channel as a strategy to address this issue, based on the rationale that TRPV4 inhibition is protective in various preclinical models of lung edema and that TRPV4 hyperactivation potently damages the alveolo-capillary barrier, with lethal outcome. We believe that TRPV4 inhibition has a powerful prospect at protecting this vital barrier in COVID-19 patients, even to rescue a damaged barrier. A clinical trial using a selective TRPV4 inhibitor demonstrated a benign safety profile in healthy volunteers and in patients suffering from cardiogenic lung edema. We argue for expeditious clinical testing of this inhibitor in COVID-19 patients with respiratory malfunction and at risk for lung edema. Perplexingly, among the currently pursued therapeutic strategies against COVID-19, none is designed to directly protect the alveolo-capillary barrier. Successful protection of the alveolo-capillary barrier will not only reduce COVID-19 lethality but will also preempt a distressing healthcare scenario with insufficient capacity to provide ventilator-assisted respiration.
Collapse
Affiliation(s)
- Wolfgang M. Kuebler
- 1Institute of Physiology, Charité Medical University of Berlin, Berlin, Germany
| | - Sven-Eric Jordt
- 2Department of Anesthesiology, Duke University, Durham, North Carolina
| | - Wolfgang B. Liedtke
- 2Department of Anesthesiology, Duke University, Durham, North Carolina,3Department of Neurology, Duke University, Durham, North Carolina,4Department of Neurobiology, Duke University, Durham, North Carolina
| |
Collapse
|
28
|
Genova T, Gaglioti D, Munaron L. Regulation of Vessel Permeability by TRP Channels. Front Physiol 2020; 11:421. [PMID: 32431625 PMCID: PMC7214926 DOI: 10.3389/fphys.2020.00421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The vascular endothelium constitutes a semi-permeable barrier between blood and interstitial fluids. Since an augmented endothelial permeability is often associated to pathological states, understanding the molecular basis for its regulation is a crucial biomedical and clinical challenge. This review focuses on the processes controlling paracellular permeability that is the permeation of fluids between adjacent endothelial cells (ECs). Cytosolic calcium changes are often detected as early events preceding the alteration of the endothelial barrier (EB) function. For this reason, great interest has been devoted in the last decades to unveil the molecular mechanisms underlying calcium fluxes and their functional relationship with vessel permeability. Beyond the dicotomic classification between store-dependent and independent calcium entry at the plasma membrane level, the search for the molecular components of the related calcium-permeable channels revealed a difficult task for intrinsic and technical limitations. The contribution of redundant channel-forming proteins including members of TRP superfamily and Orai1, together with the very complex intracellular modulatory pathways, displays a huge variability among tissues and along the vascular tree. Moreover, calcium-independent events could significantly concur to the regulation of vascular permeability in an intricate and fascinating multifactorial framework.
Collapse
Affiliation(s)
- Tullio Genova
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Deborah Gaglioti
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
29
|
Swinarew AS, Stanula AJ, Gabor J, Raif P, Paluch J, Karpiński J, Kubik K, Okła H, Ostrowski A, Tkacz E, Skoczyński S, Waśkiewicz Z, Rosemann T, Nikolaidis PT, Knechtle B. The influence of chlorine in indoor swimming pools on the composition of breathing phase of professional swimmers. Respir Res 2020; 21:88. [PMID: 32295600 PMCID: PMC7161211 DOI: 10.1186/s12931-020-01350-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/02/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Swimming is one of the most popular forms of physical activity. Pool water is cleaned with chlorine, which - in combination with compounds contained in water - could form chloramines and trichloromethane in the swimmer's lungs. The aim of the present study was to examine the effect of swimming training in an indoor pool on the composition of swimmers' respiratory phase metabolomics, and develop a system to provide basic information about its impact on the swimmer's airway mucosa metabolism, which could help to assess the risk of secondary respiratory tract diseases i.e. sport results, condition, and health including lung acute and chronic diseases). DESIGN A group of competitive swimmers participated in the study and samples of their respiratory phase before training, immediately after training, and 2 h after training were assessed. METHODS Sixteen male national and international-level competitive swimmers participated in this study. Respiratory phase analysis of the indoor swimming pool swimmers was performed. Gas chromatography combined with mass spectrometry (GCMS) was used in the measurements. All collected data were transferred to numerical analysis for trends of tracking and mapping. The breathing phase was collected on special porous material and analyzed using GCMS headspace. RESULTS The obtained samples of exhaled air were composed of significantly different metabolomics when compared before, during and after exercise training. This suggests that exposition to indoor chlorine causes changes in the airway mucosa. CONCLUSION This phenomenon may be explained by occurrence of a chlorine-initiated bio-reaction in the swimmers' lungs. The obtained results indicate that chromatographic exhaled gas analysis is a sensitive method of pulmonary metabolomic changes assessment. Presented analysis of swimmers exhaled air indicates, that indoor swimming may be responsible for airway irritation caused by volatile chlorine compounds and their influence on lung metabolism.
Collapse
Affiliation(s)
- Andrzej S. Swinarew
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
- Department of Swimming and Water Rescue, Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Arkadiusz J. Stanula
- Department of Swimming and Water Rescue, Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Jadwiga Gabor
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Paweł Raif
- Department of Biosensors and Biomedical Signals Processing, Faculty of Biomedical Engineering, Silesian University of Technology in Gliwice, Gliwice, Poland
| | - Jarosław Paluch
- Department of Laryngology, School of Medicine in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Jakub Karpiński
- Department of Swimming and Water Rescue, Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Klaudia Kubik
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Hubert Okła
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Andrzej Ostrowski
- Department of Water Sports, Academy of Physical Education, Kraków, Poland
| | - Ewaryst Tkacz
- Department of Biosensors and Biomedical Signals Processing, Faculty of Biomedical Engineering, Silesian University of Technology in Gliwice, Gliwice, Poland
| | - Szymon Skoczyński
- Department of Pneumonology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Zbigniew Waśkiewicz
- Department of Swimming and Water Rescue, Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
- Department of Sports Medicine and Medical Rehabilitation, Sechenov University, Moscow, 119991 Russia
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland
| | | | - Beat Knechtle
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| |
Collapse
|
30
|
Kuebler WM, Jordt SE, Liedtke WB. COVID-19: urgent reconsideration of lung edema as a preventable outcome Inhibition of TRPV4 as a promising and feasible approach. SSRN 2020:3558887. [PMID: 32714108 PMCID: PMC7366813 DOI: 10.2139/ssrn.3558887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/21/2020] [Indexed: 02/06/2023]
Abstract
Lethality of Covid-19 during the 2020 pandemic, currently in the exponentially-accelerating phase in most countries, is critically driven by disruption of the alveolo-capillary barrier of the lung, leading to lung edema as a direct consequence of SARS-CoV-2 infection. We argue for inhibition of the TRPV4 calcium-permeable ion channel as a strategy to address this issue, based on the rationale that TRPV4 inhibition is protective in various preclinical models of lung edema, and that TRPV4 hyperactivation potently damages the alveolo-capillary barrier, with lethal outcome. We believe that TRPV4 inhibition has a powerful prospect at protecting this vital barrier in Covid-19 patients, even to rescue a damaged barrier. A clinical trial using a selective TRPV4 inhibitor demonstrated a benign safety profile in healthy volunteers and in patients suffering from cardiogenic lung edema. We argue for expeditious clinical testing of this inhibitor in Covid-19 patients with respiratory malfunction and at risk for lung edema. We note that among the currently pursued therapeutic strategies against Covid-19, none is designed to directly protect the alveolo-capillary barrier. Successful protection of the alveolo-capillary barrier will not only reduce Covid-19 lethality but will pre-empt a catastrophic scenario in healthcare with insufficient capacity to provide ventilator-assisted respiration.
Collapse
Affiliation(s)
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University, Durham NC, USA
| | - Wolfgang B Liedtke
- Department of Anesthesiology, Duke University, Durham NC, USA
- Department of Neurology, Duke University, Durham NC, USA
- Department of Neurobiology, Duke University, Durham NC, USA
| |
Collapse
|
31
|
Michalick L, Kuebler WM. TRPV4-A Missing Link Between Mechanosensation and Immunity. Front Immunol 2020; 11:413. [PMID: 32210976 PMCID: PMC7076180 DOI: 10.3389/fimmu.2020.00413] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Transient receptor potential vanilloid-type 4 (TRPV4) cation channel is widely expressed in all tissues as well as in immune cells and its function as mechanosensitive Ca2+ channel seems to be conserved throughout all mammalian species. Of late, emerging evidence has implicated TRPV4 in the activation and differentiation of innate immune cells, especially in neutrophils, monocytes, and macrophages. As such, TRPV4 has been shown to mediate neutrophil adhesion and chemotaxis, as well as production of reactive oxygen species in response to pro-inflammatory stimuli. In macrophages, TRPV4 mediates formation of both reactive oxygen and nitrogen species, and regulates phagocytosis, thus facilitating bacterial clearance and resolution of infection. Importantly, TRPV4 may present a missing link between mechanical forces and immune responses. This connection has been exemplary highlighted by the demonstrated role of TRPV4 in macrophage activation and subsequent induction of lung injury following mechanical overventilation. Mechanosensation via TRPV4 is also expected to activate innate immune cells and establish a pro-inflammatory loop in fibrotic diseases with increased deposition of extracellular matrix (ECM) and substrate stiffness. Likewise, TRPV4 may be activated by cell migration through the endothelium or the extracellular matrix, or even by circulating immune cells squeezing through the narrow passages of the pulmonary or systemic capillary bed, a process that has recently been linked to neutrophil priming and depriming. Here, we provide an overview over the emerging role of TRPV4 in innate immune responses and highlight two distinct modes for the activation of TRPV4 by either mechanical forces ("mechanoTRPV4") or by pathogens ("immunoTRPV4").
Collapse
Affiliation(s)
- Laura Michalick
- Institute of Physiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Physiology, Berlin Institute of Health, Berlin, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Physiology, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
32
|
Wan L, Wu W, Jiang S, Wan S, Meng D, Wang Z, Zhang J, Wei L, Yu P. Mibefradil and Flunarizine, Two T-Type Calcium Channel Inhibitors, Protect Mice against Lipopolysaccharide-Induced Acute Lung Injury. Mediators Inflamm 2020; 2020:3691701. [PMID: 33223955 PMCID: PMC7671802 DOI: 10.1155/2020/3691701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Recent studies have illuminated that blocking Ca2+ influx into effector cells is an attractive therapeutic strategy for lung injury. We hypothesize that T-type calcium channel may be a potential therapeutic target for acute lung injury (ALI). In this study, the pharmacological activity of mibefradil (a classical T-type calcium channel inhibitor) was assessed in a mouse model of lipopolysaccharide- (LPS-) induced ALI. In LPS challenged mice, mibefradil (20 and 40 mg/kg) dramatically decreased the total cell number, as well as the productions of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF). Mibefradil also suppressed total protein concentration in BALF, attenuated Evans blue extravasation, MPO activity, and NF-κB activation in lung tissue. Furthermore, flunarizine, a widely prescripted antimigraine agent with potent inhibition on T-type channel, was also found to protect mice against lung injury. These data demonstrated that T-type calcium channel inhibitors may be beneficial for treating acute lung injury. The important role of T-type calcium channel in the acute lung injury is encouraged to be further investigated.
Collapse
Affiliation(s)
- Limei Wan
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Weibin Wu
- Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing 526020, China
| | - Shunjun Jiang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Dongmei Meng
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhipeng Wang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Li Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Pengjiu Yu
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
33
|
Li J, Wen AM, Potla R, Benshirim E, Seebarran A, Benz MA, Henry OYF, Matthews BD, Prantil-Baun R, Gilpin SE, Levy O, Ingber DE. AAV-mediated gene therapy targeting TRPV4 mechanotransduction for inhibition of pulmonary vascular leakage. APL Bioeng 2019; 3:046103. [PMID: 31803860 PMCID: PMC6887658 DOI: 10.1063/1.5122967] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Enhanced vascular permeability in the lungs can lead to pulmonary edema, impaired gas exchange, and ultimately respiratory failure. While oxygen delivery, mechanical ventilation, and pressure-reducing medications help alleviate these symptoms, they do not treat the underlying disease. Mechanical activation of transient receptor potential vanilloid 4 (TRPV4) ion channels contributes to the development of pulmonary vascular disease, and overexpression of the high homology (HH) domain of the TRPV4-associated transmembrane protein CD98 has been shown to inhibit this pathway. Here, we describe the development of an adeno-associated virus (AAV) vector encoding the CD98 HH domain in which the AAV serotypes and promoters have been optimized for efficient and specific delivery to pulmonary cells. AAV-mediated gene delivery of the CD98 HH domain inhibited TRPV4 mechanotransduction in a specific manner and protected against pulmonary vascular leakage in a human lung Alveolus-on-a-Chip model. As AAV has been used clinically to deliver other gene therapies, these data raise the possibility of using this type of targeted approach to develop mechanotherapeutics that target the TRPV4 pathway for treatment of pulmonary edema in the future.
Collapse
Affiliation(s)
- Juan Li
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Amy M Wen
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | | | | | | | - Maximilian A Benz
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Olivier Y F Henry
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | | | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - Oren Levy
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
34
|
Lindsay CD, Timperley CM. TRPA1 and issues relating to animal model selection for extrapolating toxicity data to humans. Hum Exp Toxicol 2019; 39:14-36. [PMID: 31578097 DOI: 10.1177/0960327119877460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel is a sensor for irritant chemicals, has ancient lineage, and is distributed across animal species including humans, where it features in many organs. Its activation by a diverse panel of electrophilic molecules (TRPA1 agonists) through electrostatic binding and/or covalent attachment to the protein causes the sensation of pain. This article reviews the species differences between TRPA1 channels and their responses, to assess the suitability of different animals to model the effects of TRPA1-activating electrophiles in humans, referring to common TRPA1 activators (exogenous and endogenous) and possible mechanisms of action relating to their toxicology. It concludes that close matching of in vitro and in vivo models will help optimise the identification of relevant biochemical and physiological responses to benchmark the efficacy of potential therapeutic drugs, including TRPA1 antagonists, to counter the toxic effects of those electrophiles capable of harming humans. The analysis of the species issue provided should aid the development of medical treatments to counter poisoning by such chemicals.
Collapse
Affiliation(s)
- C D Lindsay
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Salisbury, UK
| | - C M Timperley
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Salisbury, UK
| |
Collapse
|
35
|
Achanta S, Jordt SE. Toxic effects of chlorine gas and potential treatments: a literature review. Toxicol Mech Methods 2019; 31:244-256. [PMID: 31532270 DOI: 10.1080/15376516.2019.1669244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chlorine gas is one of the highly produced chemicals in the USA and around the world. Chlorine gas has several uses in water purification, sanitation, and industrial applications; however, it is a toxic inhalation hazard agent. Inhalation of chlorine gas, based on the concentration and duration of the exposure, causes a spectrum of symptoms, including but not limited to lacrimation, rhinorrhea, bronchospasm, cough, dyspnea, acute lung injury, death, and survivors develop signs of pulmonary fibrosis and reactive airway disease. Despite the use of chlorine gas as a chemical warfare agent since World War I and its known potential as an industrial hazard, there is no specific antidote. The resurgence of the use of chlorine gas as a chemical warfare agent in recent years has brought speculation of its use as weapons of mass destruction. Therefore, developing antidotes for chlorine gas-induced lung injuries remains the need of the hour. While some of the pre-clinical studies have made substantial progress in the understanding of chlorine gas-induced pulmonary pathophysiology and identifying potential medical countermeasure(s), yet none of the drug candidates are approved by the U.S. Food and Drug Administration (FDA). In this review, we summarized pathophysiology of chlorine gas-induced pulmonary injuries, pre-clinical animal models, development of a pipeline of potential medical countermeasures under FDA animal rule, and future directions for the development of antidotes for chlorine gas-induced lung injuries.
Collapse
Affiliation(s)
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
36
|
Kitsuki T, Yoshimoto RU, Aijima R, Hatakeyama J, Cao AL, Zhang JQ, Ohsaki Y, Mori Y, Kido MA. Enhanced junctional epithelial permeability in TRPV4-deficient mice. J Periodontal Res 2019; 55:51-60. [PMID: 31343743 PMCID: PMC7027751 DOI: 10.1111/jre.12685] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 01/01/2023]
Abstract
Background and Objective As the interface between the oral cavity and the teeth, the junctional epithelial barrier is critical for gingival defense. The junctional epithelium is subject to mechanical stresses from biting force or external insults such as bacterial attacks, but little is known about the effects of mechanical stimuli on epithelial functions. Transient receptor potential vanilloid 4 (TRPV4) functions as a mechanosensitive nonselective cation channel. In the present study, based on marked expression of TRPV4 in the mouse junctional epithelium, we aimed to clarify the putative links between TRPV4 and junctional complexes in the junctional epithelium. Methods and Results Histological observations revealed that the junctional epithelium in TRPV4‐deficient (TRPV4−/−) mice had wider intercellular spaces than that in wild‐type (TRPV4+/+) mice. Exogenous tracer penetration in the junctional epithelium was greater in TRPV4−/− mice than in TRPV4+/+ mice, and immunoreactivity for adherens junction proteins was suppressed in TRPV4−/− mice compared with TRPV4+/+ mice. Analysis of a mouse periodontitis model showed greater bone volume loss in TRPV4−/− mice compared with TRPV4+/+ mice, indicating that an epithelial barrier deficiency in TRPV4−/− mice may be associated with periodontal complications. Conclusion The present findings identify a crucial role for TRPV4 in the formation of adherens junctions in the junctional epithelium, which could regulate its permeability. TRPV4 may be a candidate pharmacological target to combat periodontal diseases.
Collapse
Affiliation(s)
- Tomoko Kitsuki
- Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan.,Oral and Maxillofacial Surgery, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Reiko U Yoshimoto
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Reona Aijima
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Junko Hatakeyama
- Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan.,Department of Operative Dentistry and Endodontology, Fukuoka Dental College, Fukuoka, Japan
| | - Ai-Lin Cao
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Jing-Qi Zhang
- Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasuyoshi Ohsaki
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoshihide Mori
- Oral and Maxillofacial Surgery, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Mizuho A Kido
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
37
|
Abstract
BACKGROUND Lower tidal volumes are increasingly used in acute respiratory distress syndrome, but mortality has changed little in the last 20 yr. Therefore, in addition to ventilator settings, it is important to target molecular mediators of injury. Sepsis and other inflammatory states increase circulating concentrations of Gas6, a ligand for the antiinflammatory receptor Axl, and of a soluble decoy form of Axl. We investigated the effects of lung stretch on Axl signaling. METHODS We used a mouse model of early injury from high tidal volume and assessed the effects of inhibiting Axl on in vivo lung injury (using an antagonist R428, n = 4/group). We further determined the effects of stretch on Axl activation using in vitro lung endothelial cells. RESULTS High tidal volume caused mild injury (compliance decreased 6%) as intended, and shedding of the Axl receptor (soluble Axl in bronchoalveolar fluid increased 77%). The Axl antagonist R428 blocked the principal downstream Axl target (suppressor of cytokine signaling 3 [SOCS3]) but did not worsen lung physiology or inflammation. Cyclic stretch in vitro caused Axl to become insensitive to activation by its agonist, Gas6. Finally, in vitro Axl responses were rescued by blocking stretch-activated calcium channels (using guanidinium chloride [GdCl3]), and the calcium ionophore ionomycin replicated the effect of stretch. CONCLUSIONS These data suggest that lung endothelial cell overdistention activates ion channels, and the resultant influx of Ca inactivates Axl. Downstream inactivation of Axl by stretch was not anticipated; preventing this would be required to exploit Axl receptors in reducing lung injury.
Collapse
|
38
|
Matsumoto K, Kato S. [TRPV4 regulates vascular endothelial permeability during colonic inflammation in dextran sulphate sodium-induced murine colitis]. Nihon Yakurigaku Zasshi 2018; 152:170-174. [PMID: 30298837 DOI: 10.1254/fpj.152.170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel involved in physical sensing in various tissue types. The present study aimed to elucidate the function and expression of TRPV4 in colonic vascular endothelial cells during dextran sulphate sodium (DSS)-induced colitis. The role of TRPV4 in the progression of colonic inflammation was examined in the 2% DSS-induced murine colitis model using immunohistochemical analysis, Western blotting, and Evans blue dye extrusion assay. DSS-induced colitis was significantly attenuated in TRPV4-deficient (TRPV4 KO) mice when compared to wild-type mice. Repeated intrarectal administration of GSK1016790A, a TRPV4 agonist, exacerbated the severity of DSS-induced colitis. Bone marrow transfer experiments demonstrated a dominant role of TRPV4 in non-haematopoietic cells for DSS-induced colitis. DSS treatment upregulated TRPV4 expression in the vascular endothelia of colonic mucosa and submucosa. DSS treatment increased vascular permeability, which was abolished in TRPV4 KO mice. The DSS-induced increase in vascular permeability was further enhanced by intravenous administration of GSK1016790A, which was abrogated by a TRPV4 antagonist RN1734. TRPV4 was co-localized with vascular endothelial (VE)-cadherin, and VE-cadherin expression was decreased by repeated intravenous administration of GSK1016790A during colitis. Furthermore, TRPV4 activation by GSK106790A decreased VE-cadherin expression in mouse aortic endothelial cells exposed to TNF-α. These findings indicate that TRPV4 upregulation in vascular endothelial cells contributes to the progression of colonic inflammation via the activation of vascular permeability. Thus, TRPV4 is an attractive target for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| |
Collapse
|
39
|
Simmons S, Erfinanda L, Bartz C, Kuebler WM. Novel mechanisms regulating endothelial barrier function in the pulmonary microcirculation. J Physiol 2018; 597:997-1021. [PMID: 30015354 DOI: 10.1113/jp276245] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022] Open
Abstract
The pulmonary epithelial and vascular endothelial cell layers provide two sequential physical and immunological barriers that together form a semi-permeable interface and prevent alveolar and interstitial oedema formation. In this review, we focus specifically on the continuous endothelium of the pulmonary microvascular bed that warrants strict control of the exchange of gases, fluid, solutes and circulating cells between the plasma and the interstitial space. The present review provides an overview of emerging molecular mechanisms that permit constant transcellular exchange between the vascular and interstitial compartment, and cause, prevent or reverse lung endothelial barrier failure under experimental conditions, yet with a clinical perspective. Based on recent findings and at times seemingly conflicting results we discuss emerging paradigms of permeability regulation by altered ion transport as well as shifts in the homeostasis of sphingolipids, angiopoietins and prostaglandins.
Collapse
Affiliation(s)
- Szandor Simmons
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lasti Erfinanda
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bartz
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Echocardiographic validation of pulmonary hypertension due to heart failure with reduced ejection fraction in mice. Sci Rep 2018; 8:1363. [PMID: 29358732 PMCID: PMC5778040 DOI: 10.1038/s41598-018-19625-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/05/2018] [Indexed: 01/08/2023] Open
Abstract
Pulmonary hypertension (PH) associated with left heart diseases is the most prevalent cause of PH. The scarcity of studies exploring the pathophysiology and therapies of group II PH resides in the lack of validated small animal models with non-invasive determination of the presence and severity of PH. Heart failure (HF) was induced in mice by coronary artery ligation. Mice developed PH as evidenced by an elevated right ventricular (RV) systolic pressure and RV hypertrophy. Detailed non-invasive echocardiographic analysis on the left and right ventricles showed impaired left ventricular (LV) systolic and diastolic function. In addition, RV hypertrophy was confirmed by echo and accompanied by impaired function as well as increased pulmonary resistance. Correlation analysis validated the use of the LV wall-motion score index (WMSI) at a threshold value of ≥2.0 as a powerful and reliable indicator for the presence of PH and RV dysfunction. Echocardiography is an accurate non-invasive technique to diagnose PH in a HF mouse model. Moreover, an echocardiographic parameter of infarct size and LV function, the LV WMSI, reliably correlates with the presence of PH, RV hypertrophy and RV dysfunction and could be used to improve efficiency and design of pre-clinical studies.
Collapse
|
41
|
Hamacher J, Hadizamani Y, Borgmann M, Mohaupt M, Männel DN, Moehrlen U, Lucas R, Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 8:1644. [PMID: 29354115 PMCID: PMC5758508 DOI: 10.3389/fimmu.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research.
Collapse
Affiliation(s)
- Jürg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Internal Medicine V - Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Yalda Hadizamani
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Michèle Borgmann
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Markus Mohaupt
- Internal Medicine, Sonnenhofspital Bern, Bern, Switzerland
| | | | - Ueli Moehrlen
- Paediatric Visceral Surgery, Universitäts-Kinderspital Zürich, Zürich, Switzerland
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Uz Stammberger
- Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Novartis Institutes for Biomedical Research, Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
42
|
Matsumoto K, Yamaba R, Inoue K, Utsumi D, Tsukahara T, Amagase K, Tominaga M, Kato S. Transient receptor potential vanilloid 4 channel regulates vascular endothelial permeability during colonic inflammation in dextran sulphate sodium-induced murine colitis. Br J Pharmacol 2017; 175:84-99. [PMID: 29053877 DOI: 10.1111/bph.14072] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/14/2017] [Accepted: 10/08/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE The transient receptor potential vanilloid 4 (TRPV4) channel is a non-selective cation channel involved in physical sensing in various tissue types. The present study aimed to elucidate the function and expression of TRPV4 channels in colonic vascular endothelial cells during dextran sulphate sodium (DSS)-induced colitis. EXPERIMENTAL APPROACH The role of TRPV4 channels in the progression of colonic inflammation was examined in a murine DSS-induced colitis model using immunohistochemical analysis, Western blotting and Evans blue dye extrusion assay. KEY RESULTS DSS-induced colitis was significantly attenuated in TRPV4-deficient (TRPV4 KO) as compared to wild-type mice. Repeated intrarectal administration of GSK1016790A, a TRPV4 agonist, exacerbated the severity of DSS-induced colitis. Bone marrow transfer experiments demonstrated the important role of TRPV4 in non-haematopoietic cells for DSS-induced colitis. DSS treatment up-regulated TRPV4 expression in the vascular endothelia of colonic mucosa and submucosa. DSS treatment increased vascular permeability, which was abolished in TRPV4 KO mice. This DSS-induced increase in vascular permeability was further enhanced by i.v. administration of GSK1016790A, and this effect was abolished by the TRPV4 antagonist RN1734. TRPV4 was co-localized with vascular endothelial (VE)-cadherin, and VE-cadherin expression was decreased by repeated i.v. administration of GSK1016790A during colitis. Furthermore, GSK106790A decreased VE-cadherin expression in mouse aortic endothelial cells exposed to TNF-α. CONCLUSION AND IMPLICATIONS These findings indicate that an up-regulation of TRPV4 channels in vascular endothelial cells contributes to the progression of colonic inflammation by increasing vascular permeability. Thus, TRPV4 is an attractive target for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Riho Yamaba
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ken Inoue
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daichi Utsumi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Takuya Tsukahara
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
43
|
Bartoszewski R, Matalon S, Collawn JF. Ion channels of the lung and their role in disease pathogenesis. Am J Physiol Lung Cell Mol Physiol 2017; 313:L859-L872. [PMID: 29025712 PMCID: PMC5792182 DOI: 10.1152/ajplung.00285.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
Maintenance of normal epithelial ion and water transport in the lungs includes providing a thin layer of surface liquid that coats the conducting airways. This airway surface liquid is critical for normal lung function in a number of ways but, perhaps most importantly, is required for normal mucociliary clearance and bacterial removal. Preservation of the appropriate level of hydration, pH, and viscosity for the airway surface liquid requires the proper regulation and function of a battery of different types of ion channels and transporters. Here we discuss how alterations in ion channel/transporter function often lead to lung pathologies.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
- Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
- Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
44
|
Transient Receptor Potential Vanilloid 4 and Serum Glucocorticoid-regulated Kinase 1 Are Critical Mediators of Lung Injury in Overventilated Mice In Vivo. Anesthesiology 2017; 126:300-311. [PMID: 27861175 DOI: 10.1097/aln.0000000000001443] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mechanical ventilation can cause lung endothelial barrier failure and inflammation cumulating in ventilator-induced lung injury. Yet, underlying mechanotransduction mechanisms remain unclear. Here, the authors tested the hypothesis that activation of the mechanosensitive Ca channel transient receptor potential vanilloid (TRPV4) by serum glucocorticoid-regulated kinase (SGK) 1 may drive the development of ventilator-induced lung injury. METHODS Mice (total n = 54) were ventilated for 2 h with low (7 ml/kg) or high (20 ml/kg) tidal volumes and assessed for signs of ventilator-induced lung injury. Isolated-perfused lungs were inflated with continuous positive airway pressures of 5 or 15 cm H2O (n = 7 each), and endothelial calcium concentration was quantified by real-time imaging. RESULTS Genetic deficiency or pharmacologic inhibition of TRPV4 or SGK1 protected mice from overventilation-induced vascular leakage (reduction in alveolar protein concentration from 0.84 ± 0.18 [mean ± SD] to 0.46 ± 0.16 mg/ml by TRPV4 antagonization), reduced lung inflammation (macrophage inflammatory protein 2 levels of 193 ± 163 in Trpv4 vs. 544 ± 358 pmol/ml in wild-type mice), and attenuated endothelial calcium responses to lung overdistension. Functional coupling of TRPV4 and SGK1 in lung endothelial mechanotransduction was confirmed by proximity ligation assay demonstrating enhanced TRPV4 phosphorylation at serine 824 at 18% as compared to 5% cyclic stretch, which was prevented by SGK1 inhibition. CONCLUSIONS Lung overventilation promotes endothelial calcium influx and barrier failure through a mechanism that involves activation of TRPV4, presumably due to phosphorylation at its serine 824 residue by SGK1. TRPV4 and SGK1 may present promising new targets for prevention or treatment of ventilator-induced lung injury.
Collapse
|
45
|
Li C, Bo L, Li P, Lu X, Li W, Pan L, Sun Y, Mu D, Liu W, Jin F. Losartan, a selective antagonist of AT1 receptor, attenuates seawater inhalation induced lung injury via modulating JAK2/STATs and apoptosis in rat. Pulm Pharmacol Ther 2017; 45:69-79. [PMID: 28483563 DOI: 10.1016/j.pupt.2017.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/29/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Abstract
Losartan is a selective antagonist of AngⅠ type (AT1) receptor of Angiotensin Ⅱ (Ang Ⅱ), which is widely used as a clinical medicine for the hypertension. Recent studies have shown that losartan was shown to protect from acute lung injury (ALI). However, the underlying mechanism remains unclear. The aim of this research was to clarify whether Ang Ⅱ participated in the inflammatory response of ALI induced by seawater inhalation, and whether losartan had the protective effects on ALI by blocking the combination of Ang Ⅱ and AT1 receptor. In the current study, the severity of lung injury and the inflammatory reactions during seawater drowning induced ALI were assessed. Besides, we also detected the activation of relative pathways such as NF-κB, JAK2/STATs and apoptosis. The results showed that seawater inhalation could up-regulate the expression of Ang Ⅱ and AT1. While pretreatment of losartan (especially 15 mg/kg and 30 mg/kg) alleviated lung injury by inhibiting Ang-Ⅱ and AT1 receptor combination and in turn decreased the expression of p-NF-κB and activation of JAK2/STATs pathway. We also confirmed that losartan could reduce the apoptotic ratio of cells in the lung by modulating the phosphorylation of JNK and leak of cytochrome C to cytosol. Taken together, these findings demonstrate that losartan might have a therapeutic potential as an anti-inflammatory agent for treating SWI-ALI.
Collapse
Affiliation(s)
- Congcong Li
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, 710038, PR China
| | - Liyan Bo
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, 710038, PR China
| | - Pengcheng Li
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, 710038, PR China
| | - Xi Lu
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, 710038, PR China
| | - Wangping Li
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, 710038, PR China
| | - Lei Pan
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, 710038, PR China
| | - Yani Sun
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, 710038, PR China
| | - Deguang Mu
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, 710038, PR China
| | - Wei Liu
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, 710038, PR China.
| | - Faguang Jin
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, 710038, PR China.
| |
Collapse
|
46
|
White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev 2017; 96:911-73. [PMID: 27252279 DOI: 10.1152/physrev.00016.2015] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.
Collapse
Affiliation(s)
- John P M White
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mario Cibelli
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Laszlo Urban
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bernd Nilius
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Istvan Nagy
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
47
|
Bihari S, Dixon DL, Lawrence MD, De Bellis D, Bonder CS, Dimasi DP, Bersten AD. Fluid-induced lung injury-role of TRPV4 channels. Pflugers Arch 2017; 469:1121-1134. [PMID: 28456852 DOI: 10.1007/s00424-017-1983-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/11/2017] [Accepted: 04/16/2017] [Indexed: 02/07/2023]
Abstract
Administration of bolus intravenous fluid is associated with respiratory dysfunction and increased mortality, findings with no clear mechanistic explanation. The objective of this study was to examine whether bolus intravenous (i.v.) fluid administration results in acute lung injury in a rat model and further, to examine whether this injury is associated with transient receptor potential vallinoid (TRPV)4 channel function and endothelial inflammatory response. Healthy male Sprague-Dawley rats were administered 60 ml/kg 0.9% saline i.v. over 30 min. Manifestation of acute lung injury was assessed by lung physiology, morphology, and markers of inflammation. The role of TRPV4 channels in fluid-induced lung injury was subsequently examined by the administration of ruthenium red (RR) in this established rat model and again in TRPV4 KO mice. In endothelial cell culture, permeability and P-selectin expression were measured following TRPV4 agonist with and without antagonist; 0.9% saline resulted in an increase in lung water, lavage protein and phospholipase A2, and plasma angiopoietin-2, with worsening in arterial blood oxygen (PaO2), lung elastance, surfactant activity, and lung histological injury score. These effects were ameliorated following i.v. fluid in rats receiving RR. TRPV4 KO mice did not develop lung edema. Expression of P-selectin increased in endothelial cells following administration of a TRPV4 agonist, which was ameliorated by simultaneous addition of RR. Bolus i.v. 0.9% saline resulted in permeability pulmonary edema. Data from ruthenium red, TRPV4 KO mice, and endothelial cell culture suggest activation of TRPV4 and release of angiopoietin 2 and P-selectin as the central mechanism.
Collapse
Affiliation(s)
- Shailesh Bihari
- Department of Critical Care Medicine, Flinders University, Adelaide, 5001, Australia. .,Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, Adelaide, South Australia, 5042, Australia.
| | - Dani-Louise Dixon
- Department of Critical Care Medicine, Flinders University, Adelaide, 5001, Australia.,Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, Adelaide, South Australia, 5042, Australia
| | - Mark D Lawrence
- Department of Critical Care Medicine, Flinders University, Adelaide, 5001, Australia
| | - Dylan De Bellis
- Department of Critical Care Medicine, Flinders University, Adelaide, 5001, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5000, Australia
| | - David P Dimasi
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5000, Australia
| | - Andrew D Bersten
- Department of Critical Care Medicine, Flinders University, Adelaide, 5001, Australia.,Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, Adelaide, South Australia, 5042, Australia
| |
Collapse
|
48
|
Dietrich A, Steinritz D, Gudermann T. Transient receptor potential (TRP) channels as molecular targets in lung toxicology and associated diseases. Cell Calcium 2017; 67:123-137. [PMID: 28499580 DOI: 10.1016/j.ceca.2017.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/24/2022]
Abstract
The lungs as the gateways of our body to the external environment are essential for gas exchange. They are also exposed to toxicants from two sides, the airways and the vasculature. Apart from naturally produced toxic agents, millions of human made chemicals were produced since the beginning of the industrial revolution whose toxicity still needs to be determined. While the knowledge about toxic substances is increasing only slowly, a paradigm shift regarding the proposed mechanisms of toxicity at the plasma membrane emerged. According to their broad-range chemical reactivity, the mechanism of lung injury evoked by these agents has long been described as rather unspecific. Consequently, therapeutic options are still restricted to symptomatic treatment. The identification of molecular down-stream effectors in cells was a major step forward in the mechanistic understanding of the action of toxic chemicals and will pave the way for more causal and specific toxicity testing as well as therapeutic options. In this context, the involvement of Transient Receptor Potential (TRP) channels as chemosensors involved in the detection and effectors of toxicant action is an attractive concept intensively discussed in the scientific community. In this review we will summarize recent evidence for an involvement of TRP channels (TRPA1, TRPC4, TRPC6, TRPV1, TRPV4, TRPM2 and TRPM8) expressed in the lung in pathways of toxin sensing and as mediators of lung inflammation and associated diseases like asthma, COPD, lung fibrosis and edema formation. Specific modulators of these channels may offer new therapeutic options in the future and will endorse strategies for a causal, specifically tailored treatment based on the mechanistic understanding of molecular events induced by lung-toxic agents.
Collapse
Affiliation(s)
- Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU Munich, Germany.
| | - Dirk Steinritz
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU Munich, Germany; Bundeswehr-Institute of Pharmacology and Toxicology, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU Munich, Germany
| |
Collapse
|
49
|
Grace MS, Bonvini SJ, Belvisi MG, McIntyre P. Modulation of the TRPV4 ion channel as a therapeutic target for disease. Pharmacol Ther 2017; 177:9-22. [PMID: 28202366 DOI: 10.1016/j.pharmthera.2017.02.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transient Receptor Potential Vanilloid 4 (TRPV4) is a broadly expressed, polymodally gated ion channel that plays an important role in many physiological and pathophysiological processes. TRPV4 knockout mice and several synthetic pharmacological compounds that selectively target TRPV4 are now available, which has allowed detailed investigation in to the therapeutic potential of this ion channel. Results from animal studies suggest that TRPV4 antagonism has therapeutic potential in oedema, pain, gastrointestinal disorders, and lung diseases such as cough, bronchoconstriction, pulmonary hypertension, and acute lung injury. A lack of observed side-effects in vivo has prompted a first-in-human trial for a TRPV4 antagonist in healthy participants and stable heart failure patients. If successful, this would open up an exciting new area of research for a multitude of TRPV4-related pathologies. This review will discuss the known roles of TRPV4 in disease, and highlight the possible implications of targeting this important cation channel for therapy.
Collapse
Affiliation(s)
- Megan S Grace
- Baker Heart and Diabetes Institute, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia; Department of Physiology, School of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| | - Sara J Bonvini
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| |
Collapse
|
50
|
Simonsen U, Wandall-Frostholm C, Oliván-Viguera A, Köhler R. Emerging roles of calcium-activated K channels and TRPV4 channels in lung oedema and pulmonary circulatory collapse. Acta Physiol (Oxf) 2017; 219:176-187. [PMID: 27497091 DOI: 10.1111/apha.12768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/30/2015] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
Abstract
It has been suggested that the transient receptor potential cation (TRP) channel subfamily V (vanilloid) type 4 (TRPV4) and intermediate conductance calcium-activated potassium (KCa3.1) channels contribute to endothelium-dependent vasodilation. Here, we summarize very recent evidence for a synergistic interplay of TRPV4 and KCa3.1 channels in lung disease. Among the endothelial Ca2+ -permeable TRPs, TRPV4 is best characterized and produces arterial dilation by stimulating Ca2+ -dependent nitric oxide synthesis and endothelium-dependent hyperpolarization. Besides these roles, some TRP channels control endothelial/epithelial barrier functions and vascular integrity, while KCa3.1 channels provide the driving force required for Cl- and water transport in some cells and most secretory epithelia. The three conditions, increased pulmonary venous pressure caused by left heart disease, high inflation pressure and chemically induced lung injury, may lead to activation of TRPV4 channels followed by Ca2+ influx leading to activation of KCa3.1 channels in endothelial cells ultimately leading to acute lung injury. We find that a deficiency in KCa3.1 channels protects against TRPV4-induced pulmonary arterial relaxation, fluid extravasation, haemorrhage, pulmonary circulatory collapse and cardiac arrest in vivo. These data identify KCa3.1 channels as crucial molecular components in downstream TRPV4 signal transduction and as a potential target for the prevention of undesired fluid extravasation, vasodilatation and pulmonary circulatory collapse.
Collapse
Affiliation(s)
- U. Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology; Aarhus University; Aarhus C Denmark
| | - C. Wandall-Frostholm
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology; Aarhus University; Aarhus C Denmark
| | - A. Oliván-Viguera
- Translational Research Unit; University Hospital Miguel Servet and IACS/IIS; Aragonese Agency for Investigation and Development (ARAID); Zaragoza Spain
| | - R. Köhler
- Translational Research Unit; University Hospital Miguel Servet and IACS/IIS; Aragonese Agency for Investigation and Development (ARAID); Zaragoza Spain
| |
Collapse
|