1
|
Xu JB, Guan WJ, Zhang YL, Qiu ZE, Chen L, Hou XC, Yue J, Zhou YY, Sheng J, Zhao L, Zhu YX, Sun J, Zhao J, Zhou WL, Zhong NS. SARS-CoV-2 envelope protein impairs airway epithelial barrier function and exacerbates airway inflammation via increased intracellular Cl - concentration. Signal Transduct Target Ther 2024; 9:74. [PMID: 38528022 DOI: 10.1038/s41392-024-01753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 03/27/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection disrupts the epithelial barrier and triggers airway inflammation. The envelope (E) protein, a core virulence structural component of coronaviruses, may play a role in this process. Pathogens could interfere with transepithelial Cl- transport via impairment of the cystic fibrosis transmembrane conductance regulator (CFTR), which modulates nuclear factor κB (NF-κB) signaling. However, the pathological effects of SARS-CoV-2 E protein on airway epithelial barrier function, Cl- transport and the robust inflammatory response remain to be elucidated. Here, we have demonstrated that E protein down-regulated the expression of tight junctional proteins, leading to the disruption of the airway epithelial barrier. In addition, E protein triggered the activation of Toll-like receptor (TLR) 2/4 and downstream c-Jun N-terminal kinase (JNK) signaling, resulting in an increased intracellular Cl- concentration ([Cl-]i) via up-regulating phosphodiesterase 4D (PDE4D) expression in airway epithelial cells. This elevated [Cl-]i contributed to the heightened airway inflammation through promoting the phosphorylation of serum/glucocorticoid regulated kinase 1 (SGK1). Moreover, blockade of SGK1 or PDE4 alleviated the robust inflammatory response induced by E protein. Overall, these findings provide novel insights into the pathogenic role of SARS-CoV-2 E protein in airway epithelial damage and the ongoing airway inflammation during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jian-Bang Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Guangzhou National Laboratory, Guangzhou, P. R. China.
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiao-Chun Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Junqing Yue
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangzhou National Laboratory, Guangzhou, P. R. China
| | - Yu-Yun Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jie Sheng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Lei Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, P. R. China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangzhou National Laboratory, Guangzhou, P. R. China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China
- Guangzhou National Laboratory, Guangzhou, P. R. China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China.
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P. R. China.
- Guangzhou National Laboratory, Guangzhou, P. R. China.
| |
Collapse
|
2
|
Tang S, De Jesus AC, Chavez D, Suthakaran S, Moore SK, Suthakaran K, Homami S, Rathnasinghe R, May AJ, Schotsaert M, Britto CJ, Bhattacharya J, Hook JL. Rescue of alveolar wall liquid secretion blocks fatal lung injury due to influenza-staphylococcal coinfection. J Clin Invest 2023; 133:e163402. [PMID: 37581936 PMCID: PMC10541650 DOI: 10.1172/jci163402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
Secondary lung infection by inhaled Staphylococcus aureus (SA) is a common and lethal event for individuals infected with influenza A virus (IAV). How IAV disrupts host defense to promote SA infection in lung alveoli, where fatal lung injury occurs, is not known. We addressed this issue using real-time determinations of alveolar responses to IAV in live, intact, perfused lungs. Our findings show that IAV infection blocked defensive alveolar wall liquid (AWL) secretion and induced airspace liquid absorption, thereby reversing normal alveolar liquid dynamics and inhibiting alveolar clearance of inhaled SA. Loss of AWL secretion resulted from inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel in the alveolar epithelium, and airspace liquid absorption was caused by stimulation of the alveolar epithelial Na+ channel (ENaC). Loss of AWL secretion promoted alveolar stabilization of inhaled SA, but rescue of AWL secretion protected against alveolar SA stabilization and fatal SA-induced lung injury in IAV-infected mice. These findings reveal a central role for AWL secretion in alveolar defense against inhaled SA and identify AWL inhibition as a critical mechanism of IAV lung pathogenesis. AWL rescue may represent a new therapeutic approach for IAV-SA coinfection.
Collapse
Affiliation(s)
- Stephanie Tang
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Graduate School of Biomedical Sciences
| | - Ana Cassandra De Jesus
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Deebly Chavez
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Sayahi Suthakaran
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Graduate School of Biomedical Sciences
| | - Sarah K.L. Moore
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Keshon Suthakaran
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Sonya Homami
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Graduate School of Biomedical Sciences
| | - Raveen Rathnasinghe
- Graduate School of Biomedical Sciences
- Global Health and Emerging Pathogens Institute, Department of Microbiology
| | - Alison J. May
- Department of Cell, Developmental and Regenerative Biology
- Department of Otolaryngology, and
- Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Global Health and Emerging Pathogens Institute, Department of Microbiology
| | - Clemente J. Britto
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jahar Bhattacharya
- Departments of Medicine and Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York, USA
| | - Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Global Health and Emerging Pathogens Institute, Department of Microbiology
| |
Collapse
|
3
|
Eisenhut M. Rhinorrhea and increased chloride secretion through the CFTR chloride channel-a systematic review. Eur Arch Otorhinolaryngol 2023; 280:4309-4318. [PMID: 37338585 DOI: 10.1007/s00405-023-08067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE Allergic and non-allergic rhinorrhea in the forms of acute or chronic rhinosinusitis can mean a watery nasal discharge that is disabling. Primary objective was to review the evidence supporting the hypothesis that rhinorrhea is due to increased chloride secretion through the CFTR chloride channel. METHODS The structure of the evidence review followed the EQUATOR Reporting Guidelines. Databases searched from inception to February 2022 included Pubmed, EMBASE and the Cochrane library using keywords "Rhinorrhea", "chloride", "chloride channel", "CFTR" and "randomized controlled trial". Quality assessment was according to the Oxford Centre for Evidence-based Medicine. RESULTS 49 articles were included. They included randomized controlled trials out of which subsets of data with the outcome of rhinorrhea on 6038 participants were analysed and in vitro and animal studies. The review revealed that drugs, which activate CFTR are associated with rhinorrhea. Viruses, which cause rhinorrhea like rhinovirus were found to activate CFTR. The chloride concentration in nasal fluid showed an increase in patients with viral upper respiratory tract infection. Increased hydrostatic tissue pressure, which is an activator of CFTR was observed in allergic upper airway inflammation. In this condition exhaled breath condensate chlorine concentration was found to be significantly increased. Drugs, which can reduce CFTR function including steroids, anti-histamines, sympathomimetic and anticholinergic drugs reduced rhinorrhea in randomized controlled trials. CONCLUSIONS A model of CFTR activation-mediated rhinorrhea explains the effectiveness of anticholinergic, sympathomimetic, anti-histamine and steroid drugs in reducing rhinorrhea and opens up avenues for further improvement of treatment by already known specific CFTR inhibitors.
Collapse
Affiliation(s)
- Michael Eisenhut
- Paediatric Department, Luton and Dunstable University Hospital, Luton, LU40DZ, UK.
| |
Collapse
|
4
|
Thompson D, Cismaru CV, Rougier JS, Schwemmle M, Zimmer G. The M2 proteins of bat influenza A viruses reveal atypical features compared to conventional M2 proteins. J Virol 2023; 97:e0038823. [PMID: 37540019 PMCID: PMC10506471 DOI: 10.1128/jvi.00388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/14/2023] [Indexed: 08/05/2023] Open
Abstract
The influenza A virus (IAV) M2 protein has proton channel activity, which plays a role in virus uncoating and may help to preserve the metastable conformation of the IAV hemagglutinin (HA). In contrast to the highly conserved M2 proteins of conventional IAV, the primary sequences of bat IAV H17N10 and H18N11 M2 proteins show remarkable divergence, suggesting that these proteins may differ in their biological function. We, therefore, assessed the proton channel activity of bat IAV M2 proteins and investigated its role in virus replication. Here, we show that the M2 proteins of bat IAV did not fully protect acid-sensitive HA of classical IAV from low pH-induced conformational change, indicating low proton channel activity. Interestingly, the N31S substitution not only rendered bat IAV M2 proteins sensitive to inhibition by amantadine but also preserved the metastable conformation of acid-sensitive HA to a greater extent. In contrast, the acid-stable HA of H18N11 did not rely on such support by M2 protein. When mutant M2(N31S) protein was expressed in the context of chimeric H18N11/H5N1(6:2) encoding HA and NA of avian IAV H5N1, amantadine significantly inhibited virus entry, suggesting that ion channel activity supported virus uncoating. Finally, the cytoplasmic domain of the H18N11 M2 protein mediated rapid internalization of the protein from the plasma membrane leading to low-level expression at the cell surface. However, cell surface levels of H18N11 M2 protein were significantly enhanced in cells infected with the chimeric H18N11/H5N1(6:2) virus. The potential role of the N1 sialidase in arresting M2 internalization is discussed. IMPORTANCE Bat IAV M2 proteins not only differ from the homologous proteins of classical IAV by their divergent primary sequence but are also unable to preserve the metastable conformation of acid-sensitive HA, indicating low proton channel activity. This unusual feature may help to avoid M2-mediated cytotoxic effects and inflammation in bats infected with H17N10 or H18N11. Unlike classical M2 proteins, bat IAV M2 proteins with the N31S substitution mediated increased protection of HA from acid-induced conformational change. This remarkable gain of function may help to understand how single point mutations can modulate proton channel activity. In addition, the cytoplasmic domain was found to be responsible for the low cell surface expression level of bat IAV M2 proteins. Given that the M2 cytoplasmic domain of conventional IAV is well known to participate in virus assembly at the plasma membrane, this atypical feature might have consequences for bat IAV budding and egress.
Collapse
Affiliation(s)
- Danielle Thompson
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Christiana Victoria Cismaru
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Martin Schwemmle
- Institute of Virology, Medical Center – University of Freiburg, Freiburg im Breisgau, Germany
| | - Gert Zimmer
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Pathology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Earnhardt EY, Tipper JL, D’Mello A, Jian MY, Conway ES, Mobley JA, Orihuela CJ, Tettelin H, Harrod KS. Influenza A-induced cystic fibrosis transmembrane conductance regulator dysfunction increases susceptibility to Streptococcus pneumoniae. JCI Insight 2023; 8:e170022. [PMID: 37318849 PMCID: PMC10443798 DOI: 10.1172/jci.insight.170022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023] Open
Abstract
Influenza A virus (IAV) infection is commonly complicated by secondary bacterial infections that lead to increased morbidity and mortality. Our recent work demonstrates that IAV disrupts airway homeostasis, leading to airway pathophysiology resembling cystic fibrosis disease through diminished cystic fibrosis transmembrane conductance regulator (CFTR) function. Here, we use human airway organotypic cultures to investigate how IAV alters the airway microenvironment to increase susceptibility to secondary infection with Streptococcus pneumoniae (Spn). We observed that IAV-induced CFTR dysfunction and airway surface liquid acidification is central to increasing susceptibility to Spn. Additionally, we observed that IAV induced profound transcriptional changes in the airway epithelium and proteomic changes in the airway surface liquid in both CFTR-dependent and -independent manners. These changes correspond to multiple diminished host defense pathways and altered airway epithelial function. Collectively, these findings highlight both the importance of CFTR function during infectious challenge and demonstrate a central role for the lung epithelium in secondary bacterial infections following IAV.
Collapse
Affiliation(s)
- Erin Y. Earnhardt
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L. Tipper
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adonis D’Mello
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ming-Yuan Jian
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elijah S. Conway
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Carlos J. Orihuela
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kevin S. Harrod
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Lagni A, Lotti V, Diani E, Rossini G, Concia E, Sorio C, Gibellini D. CFTR Inhibitors Display In Vitro Antiviral Activity against SARS-CoV-2. Cells 2023; 12:cells12050776. [PMID: 36899912 PMCID: PMC10000629 DOI: 10.3390/cells12050776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Several reports have indicated that SARS-CoV-2 infection displays unexpected mild clinical manifestations in people with cystic fibrosis (pwCF), suggesting that CFTR expression and function may be involved in the SARS-CoV-2 life cycle. To evaluate the possible association of CFTR activity with SARS-CoV-2 replication, we tested the antiviral activity of two well-known CFTR inhibitors (IOWH-032 and PPQ-102) in wild type (WT)-CFTR bronchial cells. SARS-CoV-2 replication was inhibited by IOWH-032 treatment, with an IC50 of 4.52 μM, and by PPQ-102, with an IC50 of 15.92 μM. We confirmed this antiviral effect on primary cells (MucilAirTM wt-CFTR) using 10 μM IOWH-032. According to our results, CFTR inhibition can effectively tackle SARS-CoV-2 infection, suggesting that CFTR expression and function might play an important role in SARS-CoV-2 replication, revealing new perspectives on the mechanisms governing SARS-CoV-2 infection in both normal and CF individuals, as well as leading to potential novel treatments.
Collapse
Affiliation(s)
- Anna Lagni
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Virginia Lotti
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
- Correspondence:
| | - Erica Diani
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Giada Rossini
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Ercole Concia
- Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Claudio Sorio
- General Pathology Section, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Davide Gibellini
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| |
Collapse
|
7
|
Sinha M, Zabini D, Guntur D, Nagaraj C, Enyedi P, Olschewski H, Kuebler WM, Olschewski A. Chloride channels in the lung: Challenges and perspectives for viral infections, pulmonary arterial hypertension, and cystic fibrosis. Pharmacol Ther 2022; 237:108249. [PMID: 35878810 DOI: 10.1016/j.pharmthera.2022.108249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
Fine control over chloride homeostasis in the lung is required to maintain membrane excitability, transepithelial transport as well as intra- and extracellular ion and water homeostasis. Over the last decades, a growing number of chloride channels and transporters have been identified in the cells of the pulmonary vasculature and the respiratory tract. The importance of these proteins is underpinned by the fact that impairment of their physiological function is associated with functional dysregulation, structural remodeling, or hereditary diseases of the lung. This paper reviews the field of chloride channels and transporters in the lung and discusses chloride channels in disease processes such as viral infections including SARS-CoV- 2, pulmonary arterial hypertension, cystic fibrosis and asthma. Although chloride channels have become a hot research topic in recent years, remarkably few of them have been targeted by pharmacological agents. As such, we complement the putative pathophysiological role of chloride channels here with a summary of their therapeutic potential.
Collapse
Affiliation(s)
- Madhushri Sinha
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Diana Zabini
- Department of Physiology, Neue Stiftingtalstrasse 6/V, 8010 Graz, Austria.
| | - Divya Guntur
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Peter Enyedi
- Department of Physiology, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary.
| | - Horst Olschewski
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Andrea Olschewski
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| |
Collapse
|
8
|
Xia X, Cheng A, Wang M, Ou X, Sun D, Mao S, Huang J, Yang Q, Wu Y, Chen S, Zhang S, Zhu D, Jia R, Liu M, Zhao XX, Gao Q, Tian B. Functions of Viroporins in the Viral Life Cycle and Their Regulation of Host Cell Responses. Front Immunol 2022; 13:890549. [PMID: 35720341 PMCID: PMC9202500 DOI: 10.3389/fimmu.2022.890549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Viroporins are virally encoded transmembrane proteins that are essential for viral pathogenicity and can participate in various stages of the viral life cycle, thereby promoting viral proliferation. Viroporins have multifaceted effects on host cell biological functions, including altering cell membrane permeability, triggering inflammasome formation, inducing apoptosis and autophagy, and evading immune responses, thereby ensuring that the virus completes its life cycle. Viroporins are also virulence factors, and their complete or partial deletion often reduces virion release and reduces viral pathogenicity, highlighting the important role of these proteins in the viral life cycle. Thus, viroporins represent a common drug-protein target for inhibiting drugs and the development of antiviral therapies. This article reviews current studies on the functions of viroporins in the viral life cycle and their regulation of host cell responses, with the aim of improving the understanding of this growing family of viral proteins.
Collapse
Affiliation(s)
- Xiaoyan Xia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
9
|
Sriram K, Insel MB, Insel PA. Inhaled β2 Adrenergic Agonists and Other cAMP-Elevating Agents: Therapeutics for Alveolar Injury and Acute Respiratory Disease Syndrome? Pharmacol Rev 2021; 73:488-526. [PMID: 34795026 DOI: 10.1124/pharmrev.121.000356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled long-acting β-adrenergic agonists (LABAs) and short-acting β-adrenergic agonists are approved for the treatment of obstructive lung disease via actions mediated by β2 adrenergic receptors (β2-ARs) that increase cellular cAMP synthesis. This review discusses the potential of β2-AR agonists, in particular LABAs, for the treatment of acute respiratory distress syndrome (ARDS). We emphasize ARDS induced by pneumonia and focus on the pathobiology of ARDS and actions of LABAs and cAMP on pulmonary and immune cell types. β2-AR agonists/cAMP have beneficial actions that include protection of epithelial and endothelial cells from injury, restoration of alveolar fluid clearance, and reduction of fibrotic remodeling. β2-AR agonists/cAMP also exert anti-inflammatory effects on the immune system by actions on several types of immune cells. Early administration is likely critical for optimizing efficacy of LABAs or other cAMP-elevating agents, such as agonists of other Gs-coupled G protein-coupled receptors or cyclic nucleotide phosphodiesterase inhibitors. Clinical studies that target lung injury early, prior to development of ARDS, are thus needed to further assess the use of inhaled LABAs, perhaps combined with inhaled corticosteroids and/or long-acting muscarinic cholinergic antagonists. Such agents may provide a multipronged, repurposing, and efficacious therapeutic approach while minimizing systemic toxicity. SIGNIFICANCE STATEMENT: Acute respiratory distress syndrome (ARDS) after pulmonary alveolar injury (e.g., certain viral infections) is associated with ∼40% mortality and in need of new therapeutic approaches. This review summarizes the pathobiology of ARDS, focusing on contributions of pulmonary and immune cell types and potentially beneficial actions of β2 adrenergic receptors and cAMP. Early administration of inhaled β2 adrenergic agonists and perhaps other cAMP-elevating agents after alveolar injury may be a prophylactic approach to prevent development of ARDS.
Collapse
Affiliation(s)
- Krishna Sriram
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Michael B Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Paul A Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| |
Collapse
|
10
|
Gargan S, Stevenson NJ. Unravelling the Immunomodulatory Effects of Viral Ion Channels, towards the Treatment of Disease. Viruses 2021; 13:2165. [PMID: 34834972 PMCID: PMC8618147 DOI: 10.3390/v13112165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
The current COVID-19 pandemic has highlighted the need for the research community to develop a better understanding of viruses, in particular their modes of infection and replicative lifecycles, to aid in the development of novel vaccines and much needed anti-viral therapeutics. Several viruses express proteins capable of forming pores in host cellular membranes, termed "Viroporins". They are a family of small hydrophobic proteins, with at least one amphipathic domain, which characteristically form oligomeric structures with central hydrophilic domains. Consequently, they can facilitate the transport of ions through the hydrophilic core. Viroporins localise to host membranes such as the endoplasmic reticulum and regulate ion homeostasis creating a favourable environment for viral infection. Viroporins also contribute to viral immune evasion via several mechanisms. Given that viroporins are often essential for virion assembly and egress, and as their structural features tend to be evolutionarily conserved, they are attractive targets for anti-viral therapeutics. This review discusses the current knowledge of several viroporins, namely Influenza A virus (IAV) M2, Human Immunodeficiency Virus (HIV)-1 Viral protein U (Vpu), Hepatitis C Virus (HCV) p7, Human Papillomavirus (HPV)-16 E5, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Open Reading Frame (ORF)3a and Polyomavirus agnoprotein. We highlight the intricate but broad immunomodulatory effects of these viroporins and discuss the current antiviral therapies that target them; continually highlighting the need for future investigations to focus on novel therapeutics in the treatment of existing and future emergent viruses.
Collapse
Affiliation(s)
- Siobhan Gargan
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
| | - Nigel J. Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
- Viral Immunology Group, Royal College of Surgeons in Ireland-Medical University of Bahrain, Manama 15503, Bahrain
| |
Collapse
|
11
|
Abdel Hameid R, Cormet-Boyaka E, Kuebler WM, Uddin M, Berdiev BK. SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport. Am J Physiol Lung Cell Mol Physiol 2021; 320:L430-L435. [PMID: 33434105 PMCID: PMC7938641 DOI: 10.1152/ajplung.00499.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic, toward the host cells is determined, at least in part, by the expression and distribution of its cell surface receptor, angiotensin-converting enzyme 2 (ACE2). The virus further exploits the host cellular machinery to gain access into the cells; its spike protein is cleaved by a host cell surface transmembrane serine protease 2 (TMPRSS2) shortly after binding ACE2, followed by its proteolytic activation at a furin cleavage site. The virus primarily targets the epithelium of the respiratory tract, which is covered by a tightly regulated airway surface liquid (ASL) layer that serves as a primary defense mechanism against respiratory pathogens. The volume and viscosity of this fluid layer is regulated and maintained by a coordinated function of different transport pathways in the respiratory epithelium. We argue that SARS-CoV-2 may potentially alter evolutionary conserved second-messenger signaling cascades via activation of G protein-coupled receptors (GPCRs) or by directly modulating G protein signaling. Such signaling may in turn adversely modulate transepithelial transport processes, especially those involving cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC), thereby shifting the delicate balance between anion secretion and sodium absorption, which controls homeostasis of this fluid layer. As a result, activation of the secretory pathways including CFTR-mediated Cl− transport may overwhelm the absorptive pathways, such as ENaC-dependent Na+ uptake, and initiate a pathophysiological cascade leading to lung edema, one of the most serious and potentially deadly clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- Reem Abdel Hameid
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bakhrom K Berdiev
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
12
|
Lidington D, Bolz SS. A Scientific Rationale for Using Cystic Fibrosis Transmembrane Conductance Regulator Therapeutics in COVID-19 Patients. Front Physiol 2020; 11:583862. [PMID: 33250777 PMCID: PMC7672116 DOI: 10.3389/fphys.2020.583862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Several pathological manifestations in coronavirus disease 2019 (COVID-19), including thick mucus, poor mucociliary clearance, and bronchial wall thickening, overlap with cystic fibrosis disease patterns and may be indicative of “acquired” cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. Indeed, tumor necrosis factor (TNF), a key cytokine driving COVID-19 pathogenesis, downregulates lung CFTR protein expression, providing a strong rationale that acquired CFTR dysfunction arises in the context of COVID-19 infection. In this perspective, we propose that CFTR therapeutics, which are safe and generally well-tolerated, may provide benefit to COVID-19 patients. Although CFTR therapeutics are currently only approved for treating cystic fibrosis, there are efforts to repurpose them for conditions with “acquired” CFTR dysfunction, for example, chronic obstructive pulmonary disease. In addition to targeting the primary lung pathology, CFTR therapeutics may possess value-added effects: their anti-inflammatory properties may dampen exaggerated immune cell responses and promote cerebrovascular dilation; the latter aspect may offer some protection against COVID-19 related stroke.
Collapse
Affiliation(s)
- Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, ON, Canada.,Heart and Stroke/Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Peteranderl C, Kuznetsova I, Schulze J, Hardt M, Lecuona E, Sznajder JI, Vadász I, Morty RE, Pleschka S, Wolff T, Herold S. Influenza A Virus Infection Induces Apical Redistribution of Na +, K +-ATPase in Lung Epithelial Cells In Vitro and In Vivo. Am J Respir Cell Mol Biol 2019; 61:395-398. [PMID: 31469298 PMCID: PMC6839927 DOI: 10.1165/rcmb.2019-0096le] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Christin Peteranderl
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- The Cardio-Pulmonary InstituteGiessen, Germany
| | - Irina Kuznetsova
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- Justus-Liebig-UniversityGiessen, Germany
| | | | | | - Emilia Lecuona
- Northwestern University Feinberg School of MedicineChicago, Illinoisand
| | - Jacob I. Sznajder
- Northwestern University Feinberg School of MedicineChicago, Illinoisand
| | - István Vadász
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- The Cardio-Pulmonary InstituteGiessen, Germany
| | - Rory E. Morty
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- The Cardio-Pulmonary InstituteGiessen, Germany
- Max Planck Institute for Heart and Lung ResearchBad Nauheim, Germany
| | | | | | - Susanne Herold
- Universities of Giessen and Marburg Lung CenterGiessen, Germany
- The Cardio-Pulmonary InstituteGiessen, Germany
- Northwestern University Feinberg School of MedicineChicago, Illinoisand
| |
Collapse
|
14
|
To J, Torres J. Viroporins in the Influenza Virus. Cells 2019; 8:cells8070654. [PMID: 31261944 PMCID: PMC6679168 DOI: 10.3390/cells8070654] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022] Open
Abstract
Influenza is a highly contagious virus that causes seasonal epidemics and unpredictable pandemics. Four influenza virus types have been identified to date: A, B, C and D, with only A–C known to infect humans. Influenza A and B viruses are responsible for seasonal influenza epidemics in humans and are responsible for up to a billion flu infections annually. The M2 protein is present in all influenza types and belongs to the class of viroporins, i.e., small proteins that form ion channels that increase membrane permeability in virus-infected cells. In influenza A and B, AM2 and BM2 are predominantly proton channels, although they also show some permeability to monovalent cations. By contrast, M2 proteins in influenza C and D, CM2 and DM2, appear to be especially selective for chloride ions, with possibly some permeability to protons. These differences point to different biological roles for M2 in types A and B versus C and D, which is also reflected in their sequences. AM2 is by far the best characterized viroporin, where mechanistic details and rationale of its acid activation, proton selectivity, unidirectionality, and relative low conductance are beginning to be understood. The present review summarizes the biochemical and structural aspects of influenza viroporins and discusses the most relevant aspects of function, inhibition, and interaction with the host.
Collapse
Affiliation(s)
- Janet To
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
15
|
Brand JD, Lazrak A, Trombley JE, Shei RJ, Adewale AT, Tipper JL, Yu Z, Ashtekar AR, Rowe SM, Matalon S, Harrod KS. Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis. JCI Insight 2018; 3:123467. [PMID: 30333319 DOI: 10.1172/jci.insight.123467] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023] Open
Abstract
Severe influenza (IAV) infection can develop into bronchopneumonia and edema, leading to acquired respiratory distress syndrome (ARDS) and pathophysiology. Underlying causes for pulmonary edema and aberrant fluid regulation largely remain unknown, particularly regarding the role of viral-mediated mechanisms. Herein, we show that distinct IAV strains reduced the functions of the epithelial sodium channel (ENaC) and the cystic fibrosis transmembrane regulator (CFTR) in murine respiratory and alveolar epithelia in vivo, as assessed by measurements of nasal potential differences and single-cell electrophysiology. Reduced ion channel activity was distinctly limited to virally infected cells in vivo and not bystander uninfected lung epithelium. Multiple lines of evidence indicated ENaC and CFTR dysfunction during the acute infection period; however, only CFTR dysfunction persisted beyond the infection period. ENaC, CFTR, and Na,K-ATPase activities and protein levels were also reduced in virally infected human airway epithelial cells. Reduced ENaC and CFTR led to changes in airway surface liquid morphology of human tracheobronchial cultures and airways of IAV-infected mice. Pharmacologic correction of CFTR function ameliorated IAV-induced physiologic changes. These changes are consistent with mucous stasis and pulmonary edema; furthermore, they indicate that repurposing therapeutic interventions correcting CFTR dysfunction may be efficacious for treatment of IAV lung pathophysiology.
Collapse
Affiliation(s)
- Jeffrey D Brand
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - John E Trombley
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Ren-Jay Shei
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - A Timothy Adewale
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Tipper
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Amit R Ashtekar
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Steven M Rowe
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, and.,Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine
| |
Collapse
|
16
|
Influenza A Virus M2 Protein: Roles from Ingress to Egress. Int J Mol Sci 2017; 18:ijms18122649. [PMID: 29215568 PMCID: PMC5751251 DOI: 10.3390/ijms18122649] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) matrix protein 2 (M2) is among the smallest bona fide, hence extensively studied, ion channel proteins. The M2 ion channel activity is not only essential for virus replication, but also involved in modulation of cellular homeostasis in a variety of ways. It is also the target for ion channel inhibitors, i.e., anti-influenza drugs. Thus far, several studies have been conducted to elucidate its biophysical characteristics, structure-function relationships of the ion channel, and the M2-host interactome. In this review, we discuss M2 protein synthesis and assembly into an ion channel, its roles in IAV replication, and the pathophysiological impact on the host cell.
Collapse
|
17
|
Bartoszewski R, Matalon S, Collawn JF. Ion channels of the lung and their role in disease pathogenesis. Am J Physiol Lung Cell Mol Physiol 2017; 313:L859-L872. [PMID: 29025712 PMCID: PMC5792182 DOI: 10.1152/ajplung.00285.2017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
Maintenance of normal epithelial ion and water transport in the lungs includes providing a thin layer of surface liquid that coats the conducting airways. This airway surface liquid is critical for normal lung function in a number of ways but, perhaps most importantly, is required for normal mucociliary clearance and bacterial removal. Preservation of the appropriate level of hydration, pH, and viscosity for the airway surface liquid requires the proper regulation and function of a battery of different types of ion channels and transporters. Here we discuss how alterations in ion channel/transporter function often lead to lung pathologies.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
- Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
- Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
- Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
18
|
Londino JD, Lazrak A, Collawn JF, Bebok Z, Harrod KS, Matalon S. Influenza virus infection alters ion channel function of airway and alveolar cells: mechanisms and physiological sequelae. Am J Physiol Lung Cell Mol Physiol 2017; 313:L845-L858. [PMID: 28775098 DOI: 10.1152/ajplung.00244.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) and the amiloride-sensitive epithelial sodium channels (ENaC) are located in the apical membranes of airway and alveolar epithelial cells. These transporters play an important role in the regulation of lung fluid balance across airway and alveolar epithelia by being the conduits for chloride (Cl-) and bicarbonate ([Formula: see text]) secretion and sodium (Na+) ion absorption, respectively. The functional role of these channels in the respiratory tract is to maintain the optimum volume and ionic composition of the bronchial periciliary fluid (PCL) and alveolar lining fluid (ALF) layers. The PCL is required for proper mucociliary clearance of pathogens and debris, and the ALF is necessary for surfactant homeostasis and optimum gas exchange. Dysregulation of ion transport may lead to mucus accumulation, bacterial infections, inflammation, pulmonary edema, and compromised respiratory function. Influenza (or flu) in mammals is caused by influenza A and B viruses. Symptoms include dry cough, sore throat, and is often followed by secondary bacterial infections, accumulation of fluid in the alveolar spaces and acute lung injury. The underlying mechanisms of flu symptoms are not fully understood. This review summarizes our present knowledge of how influenza virus infections alter airway and alveolar epithelial cell CFTR and ENaC function in vivo and in vitro and the role of these changes in influenza pathogenesis.
Collapse
Affiliation(s)
- James David Londino
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zsuzsanna Bebok
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
19
|
Huipao N, Borwornpinyo S, Wiboon-ut S, Campbell CR, Lee IH, Hiranyachattada S, Sukasem C, Thitithanyanont A, Pholpramool C, Cook DI, Dinudom A. P2Y6 receptors are involved in mediating the effect of inactivated avian influenza virus H5N1 on IL-6 & CXCL8 mRNA expression in respiratory epithelium. PLoS One 2017; 12:e0176974. [PMID: 28494003 PMCID: PMC5426635 DOI: 10.1371/journal.pone.0176974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 04/20/2017] [Indexed: 11/18/2022] Open
Abstract
One of the key pathophysiologies of H5N1 infection is excessive proinflammatory cytokine response (cytokine storm) characterized by increases in IFN-β, TNF-α, IL-6, CXCL10, CCL4, CCL2 and CCL5 in the respiratory tract. H5N1-induced cytokine release can occur via an infection-independent mechanism, however, detail of the cellular signaling involved is poorly understood. To elucidate this mechanism, the effect of inactivated (β-propiolactone-treated) H5N1 on the cytokine and chemokine mRNA expression in 16HBE14o- human respiratory epithelial cells was investigated. We found that the inactivated-H5N1 increased mRNA for IL-6 and CXCL8 but not TNF-α, CCL5 or CXCL10. This effect of the inactivated-H5N1 was inhibited by sialic acid receptor inhibitor (α-2,3 sialidase), adenosine diphosphatase (apyrase), P2Y receptor (P2YR) inhibitor (suramin), P2Y6R antagonist (MRS2578), phospholipase C inhibitor (U73122), protein kinase C inhibitors (BIM and Gö6976) and cell-permeant Ca2+ chelator (BAPTA-AM). Inhibitors of MAPK signaling, including of ERK1/2 (PD98059), p38 MAPK (SB203580) and JNK (SP600125) significantly suppressed the inactivated-H5N1-induced mRNA expression of CXCL8. On the other hand, the inactivated-H5N1-induced mRNA expression of IL-6 was inhibited by SB203580, but not PD98059 or SP600125, whereas SN-50, an inhibitor of NF-κB, inhibited the effect of virus on mRNA expression of both of IL-6 and CXCL8. Taken together, our data suggest that, without infection, inactivated-H5N1 induces mRNA expression of IL-6 and CXCL8 by a mechanism, or mechanisms, requiring interaction between viral hemagglutinin and α-2,3 sialic acid receptors at the cell membrane of host cells, and involves activation of P2Y6 purinergic receptors.
Collapse
Affiliation(s)
- Nawiya Huipao
- Department of Physiology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suwimon Wiboon-ut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Craig R. Campbell
- Discipline of Physiology, The Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Il-Ha Lee
- Discipline of Physiology, The Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | | | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Chumpol Pholpramool
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - David I. Cook
- Discipline of Physiology, The Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Anuwat Dinudom
- Discipline of Physiology, The Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
20
|
Hover S, Foster B, Barr JN, Mankouri J. Viral dependence on cellular ion channels - an emerging anti-viral target? J Gen Virol 2017; 98:345-351. [PMID: 28113044 DOI: 10.1099/jgv.0.000712] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The broad range of cellular functions governed by ion channels represents an attractive target for viral manipulation. Indeed, modulation of host cell ion channel activity by viral proteins is being increasingly identified as an important virus-host interaction. Recent examples have demonstrated that virion entry, virus egress and the maintenance of a cellular environment conducive to virus persistence are, in part, dependent on virus manipulation of ion channel activity. Most excitingly, evidence has emerged that targeting ion channels pharmacologically can impede virus life cycles. Here, we discuss current examples of virus-ion channel interactions and the potential of targeting ion channel function as a new, pharmacologically safe and broad-ranging anti-viral therapeutic strategy.
Collapse
Affiliation(s)
- Samantha Hover
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Becky Foster
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - John N Barr
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
21
|
Bhowmick S, Chakravarty C, Sellathamby S, Lal SK. The influenza A virus matrix protein 2 undergoes retrograde transport from the endoplasmic reticulum into the cytoplasm and bypasses cytoplasmic proteasomal degradation. Arch Virol 2016; 162:919-929. [PMID: 27942972 DOI: 10.1007/s00705-016-3153-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 11/07/2016] [Indexed: 11/28/2022]
Abstract
The matrix protein 2 (M2) is a spliced product of segment 7 genome of influenza A virus. Previous studies indicate its role in uncoating of the viral ribonucleoprotein complex during viral entry and in membrane scission while budding. Despite its crucial role in the viral life cycle, little is known about its subcellular distribution and dynamics. In this study, we have shown that the M2 protein is translocated from the membrane to the cytoplasm by a retrograde route via endosomes and the Golgi network. It utilizes retromer cargo while moving from the endosome to the trans-Golgi network and prevents endosome fusion with the lysosome. Further, M2 interacts with the endoplasmic-reticulum-resident AAA-ATPase p97 for its release into the cytoplasm. Our study also revealed that the M2 protein in the cellular milieu does not undergo ubiquitin-mediated proteasomal degradation. The migration of M2 through this pathway inside the infected cell suggests possible new roles that the M2 protein may have in the host cytoplasm, apart from its previously described functions.
Collapse
Affiliation(s)
- Sanchari Bhowmick
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Chandrani Chakravarty
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,Department of Biomedical Science, Bharathidasan University, Trichy, India
| | | | - Sunil K Lal
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India. .,School of Science, Monash University, 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
22
|
Matalon S, Bartoszewski R, Collawn JF. Role of epithelial sodium channels in the regulation of lung fluid homeostasis. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1229-38. [PMID: 26432872 DOI: 10.1152/ajplung.00319.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/25/2015] [Indexed: 01/11/2023] Open
Abstract
In utero, fetal lung epithelial cells actively secrete Cl(-) ions into the lung air spaces while Na(+) ions follow passively to maintain electroneutrality. This process, driven by an electrochemical gradient generated by the Na(+)-K(+)-ATPase, is responsible for the secretion of fetal fluid that is essential for normal lung development. Shortly before birth, a significant upregulation of amiloride-sensitive epithelial channels (ENaCs) on the apical side of the lung epithelial cells results in upregulation of active Na(+) transport. This process is critical for the reabsorption of fetal lung fluid and the establishment of optimum gas exchange. In the adult lung, active Na(+) reabsorption across distal lung epithelial cells limits the degree of alveolar edema in patients with acute lung injury and cardiogenic edema. Cl(-) ions are transported either paracellularly or transcellularly to preserve electroneutrality. An increase in Cl(-) secretion across the distal lung epithelium has been reported following an acute increase in left atrial pressure and may result in pulmonary edema. In contrast, airway epithelial cells secrete Cl(-) through apical cystic fibrosis transmembrane conductance regulator and Ca(2+)-activated Cl(-) channels and absorb Na(+). Thus the coordinated action of Cl(-) secretion and Na(+) absorption is essential for maintenance of the volume of epithelial lining fluid that, in turn, maximizes mucociliary clearance and facilitates clearance of bacteria and debris from the lungs. Any factor that interferes with Na(+) or Cl(-) transport or dramatically upregulates ENaC activity in airway epithelial cells has been associated with lung diseases such as cystic fibrosis or chronic obstructive lung disease. In this review we focus on the role of the ENaC, the mechanisms involved in ENaC regulation, and how ENaC dysregulation can lead to lung pathology.
Collapse
Affiliation(s)
- Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
23
|
Gregory DJ, Kobzik L. Influenza lung injury: mechanisms and therapeutic opportunities. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1041-6. [PMID: 26408556 DOI: 10.1152/ajplung.00283.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/16/2015] [Indexed: 12/22/2022] Open
Abstract
In this Perspectives, we discuss some recent developments in the pathogenesis of acute lung injury following influenza infection, with an emphasis on promising therapeutic leads. Damage to the alveolar-capillary barrier has been quantified in mice, and agents have been identified that can help to preserve barrier integrity, such as vasculotide, angiopoietin-like 4 neutralization, and sphingosine 1-phosphate mimics. Results from studies using mesenchymal stem cells have been disappointing, despite promising data in other types of lung injury. The roles of fatty acid binding protein 5, prostaglandin E2, and the interplay between IFN-γ and STAT1 in epithelial signaling during infection have been addressed in vitro. Finally, we discuss the role of autophagy in inflammatory cytokine production and the viral life cycle and the opportunities this presents for intervention.
Collapse
Affiliation(s)
- David J Gregory
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health
| | - Lester Kobzik
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health
| |
Collapse
|
24
|
Jurkuvenaite A, Benavides GA, Komarova S, Doran SF, Johnson M, Aggarwal S, Zhang J, Darley-Usmar VM, Matalon S. Upregulation of autophagy decreases chlorine-induced mitochondrial injury and lung inflammation. Free Radic Biol Med 2015; 85:83-94. [PMID: 25881550 PMCID: PMC4508227 DOI: 10.1016/j.freeradbiomed.2015.03.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/06/2015] [Accepted: 03/24/2015] [Indexed: 12/14/2022]
Abstract
The mechanisms of toxicity during exposure of the airways to chlorinated biomolecules generated during the course of inflammation and to chlorine (Cl2) gas are poorly understood. We hypothesized that lung epithelial cell mitochondria are damaged by Cl2 exposure and activation of autophagy mitigates this injury. To address this, NCI-H441 (human lung adenocarcinoma epithelial) cells were exposed to Cl2 (100 ppm/15 min) and bioenergetics were assessed. One hour after Cl2, cellular bioenergetic function and mitochondrial membrane potential were decreased. These changes were associated with increased MitoSOX signal, and treatment with the mitochondrial redox modulator MitoQ attenuated these bioenergetic defects. At 6h postexposure, there was significant increase in autophagy, which was associated with an improvement of mitochondrial function. Pretreatment of H441 cells with trehalose (an autophagy activator) improved bioenergetic function, whereas 3-methyladenine (an autophagy inhibitor) resulted in increased bioenergetic dysfunction 1h after Cl2 exposure. These data indicate that Cl2 induces bioenergetic dysfunction, and autophagy plays a protective role in vitro. Addition of trehalose (2 vol%) to the drinking water of C57BL/6 mice for 6 weeks, but not 1 week, before Cl2 (400 ppm/30 min) decreased white blood cells in the bronchoalveolar lavage fluid at 6h after Cl2 by 70%. Acute administration of trehalose delivered through inhalation 24 and 1h before the exposure decreased alveolar permeability but not cell infiltration. These data indicate that Cl2 induces bioenergetic dysfunction associated with lung inflammation and suggests that autophagy plays a protective role.
Collapse
Affiliation(s)
- Asta Jurkuvenaite
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Pulmonary Injury and Repair Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294,USA; Center for Free Radical Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Svetlana Komarova
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephen F Doran
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michelle Johnson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294,USA; Center for Free Radical Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Saurabh Aggarwal
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Pulmonary Injury and Repair Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294,USA; Center for Free Radical Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Veterans Administration Medical Center, Birmingham, AL 35233, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294,USA; Center for Free Radical Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Pulmonary Injury and Repair Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
25
|
Londino JD, Lazrak A, Noah JW, Aggarwal S, Bali V, Woodworth BA, Bebok Z, Matalon S. Influenza virus M2 targets cystic fibrosis transmembrane conductance regulator for lysosomal degradation during viral infection. FASEB J 2015; 29:2712-25. [PMID: 25795456 PMCID: PMC4478808 DOI: 10.1096/fj.14-268755] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/26/2015] [Indexed: 12/24/2022]
Abstract
We sought to determine the mechanisms by which influenza infection of human epithelial cells decreases cystic fibrosis transmembrane conductance regulator (CFTR) expression and function. We infected human bronchial epithelial (NHBE) cells and murine nasal epithelial (MNE) cells with various strains of influenza A virus. Influenza infection significantly reduced CFTR short circuit currents (Isc) and protein levels at 8 hours postinfection. We then infected CFTR expressing human embryonic kidney (HEK)-293 cells (HEK-293 CFTRwt) with influenza virus encoding a green fluorescent protein (GFP) tag and performed whole-cell and cell-attached patch clamp recordings. Forskolin-stimulated, GlyH-101-sensitive CFTR conductances, and CFTR open probabilities were reduced by 80% in GFP-positive cells; Western blots also showed significant reduction in total and plasma membrane CFTR levels. Knockdown of the influenza matrix protein 2 (M2) with siRNA, or inhibition of its activity by amantadine, prevented the decrease in CFTR expression and function. Lysosome inhibition (bafilomycin-A1), but not proteasome inhibition (lactacystin), prevented the reduction in CFTR levels. Western blots of immunoprecipitated CFTR from influenza-infected cells, treated with BafA1, and probed with antibodies against lysine 63-linked (K-63) or lysine 48-linked (K-48) polyubiquitin chains supported lysosomal targeting. These results highlight CFTR damage, leading to early degradation as an important contributing factor to influenza infection-associated ion transport defects.
Collapse
Affiliation(s)
- James David Londino
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Ahmed Lazrak
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - James W Noah
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Saurabh Aggarwal
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Vedrana Bali
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Bradford A Woodworth
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Zsuzsanna Bebok
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Sadis Matalon
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
26
|
Herold S, Becker C, Ridge KM, Budinger GRS. Influenza virus-induced lung injury: pathogenesis and implications for treatment. Eur Respir J 2015; 45:1463-78. [PMID: 25792631 DOI: 10.1183/09031936.00186214] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/07/2015] [Indexed: 01/21/2023]
Abstract
The influenza viruses are some of the most important human pathogens, causing substantial seasonal and pandemic morbidity and mortality. In humans, infection of the lower respiratory tract of can result in flooding of the alveolar compartment, development of acute respiratory distress syndrome and death from respiratory failure. Influenza-mediated damage of the airway, alveolar epithelium and alveolar endothelium results from a combination of: 1) intrinsic viral pathogenicity, attributable to its tropism for host airway and alveolar epithelial cells; and 2) a robust host innate immune response, which, while contributing to viral clearance, can worsen the severity of lung injury. In this review, we summarise the molecular events at the virus-host interface during influenza virus infection, highlighting some of the important cellular responses. We discuss immune-mediated viral clearance, the mechanisms promoting or perpetuating lung injury, lung regeneration after influenza-induced injury, and recent advances in influenza prevention and therapy.
Collapse
Affiliation(s)
- Susanne Herold
- Dept of Internal Medicine II, Universities Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Christin Becker
- Dept of Internal Medicine II, Universities Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karen M Ridge
- Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - G R Scott Budinger
- Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
27
|
Brune K, Frank J, Schwingshackl A, Finigan J, Sidhaye VK. Pulmonary epithelial barrier function: some new players and mechanisms. Am J Physiol Lung Cell Mol Physiol 2015; 308:L731-45. [PMID: 25637609 DOI: 10.1152/ajplung.00309.2014] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022] Open
Abstract
The pulmonary epithelium serves as a barrier to prevent access of the inspired luminal contents to the subepithelium. In addition, the epithelium dictates the initial responses of the lung to both infectious and noninfectious stimuli. One mechanism by which the epithelium does this is by coordinating transport of diffusible molecules across the epithelial barrier, both through the cell and between cells. In this review, we will discuss a few emerging paradigms of permeability changes through altered ion transport and paracellular regulation by which the epithelium gates its response to potentially detrimental luminal stimuli. This review is a summary of talks presented during a symposium in Experimental Biology geared toward novel and less recognized methods of epithelial barrier regulation. First, we will discuss mechanisms of dynamic regulation of cell-cell contacts in the context of repetitive exposure to inhaled infectious and noninfectious insults. In the second section, we will briefly discuss mechanisms of transcellular ion homeostasis specifically focused on the role of claudins and paracellular ion-channel regulation in chronic barrier dysfunction. In the next section, we will address transcellular ion transport and highlight the role of Trek-1 in epithelial responses to lung injury. In the final section, we will outline the role of epithelial growth receptor in barrier regulation in baseline, acute lung injury, and airway disease. We will then end with a summary of mechanisms of epithelial control as well as discuss emerging paradigms of the epithelium role in shifting between a structural element that maintains tight cell-cell adhesion to a cell that initiates and participates in immune responses.
Collapse
Affiliation(s)
- Kieran Brune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - James Frank
- The Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco VA Medical Center, and NCIRE/Veterans Health Research Institute, San Francisco, California
| | - Andreas Schwingshackl
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - James Finigan
- Division of Oncology, Cancer Center, National Jewish Health, Denver, Colorado
| | - Venkataramana K Sidhaye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland;
| |
Collapse
|
28
|
Matalon S. A critical review of the American Journal of Physiology-Lung Cellular and Molecular Physiology: 2012-2015. Am J Physiol Lung Cell Mol Physiol 2014; 307:L911-6. [PMID: 25381028 DOI: 10.1152/ajplung.00330.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
I have had the privilege of serving as Editor-in-Chief of the American Journal of Physiology: Lung Cellular and Molecular Physiology from 1/1/2012 to 1/1/2015 and have been reappointed for another 3-year term. When I took over as editor, I published an editorial in AJP-Lung in which I highlighted my vision and outlined the tasks to be accomplished to transform AJP-Lung into "The best place to publish basic, translational, and hypothesis-driven clinical lung research." Herein I review our accomplishments during the first term. As promised, we review each article submitted to this journal and our reviews always help the quality and impact of every paper. We recognized the contributions of junior authors by establishing a number of awards and increased the visibility of AJP-Lung by establishing Facebook and Blog electronic pages and sponsoring symposia in scientific meetings. Our impact factor increased from 3.523 in 2011 to 4.041 in 2012 and, thanks to our calls for papers, we are receiving large numbers of high-quality papers in all aspects of pulmonary cell biology and lung diseases. The best is yet to come.
Collapse
Affiliation(s)
- Sadis Matalon
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
29
|
Abstract
CFTR is a cAMP-activated chloride and bicarbonate channel that is critical for lung homeostasis. Decreases in CFTR expression have dire consequences in cystic fibrosis (CF) and have been suggested to be a component of the lung pathology in chronic obstructive pulmonary disease. Decreases or loss of channel function often lead to mucus stasis, chronic bacterial infections, and the accompanying chronic inflammatory responses that promote progressive lung destruction, and, eventually in CF, lung failure. Here we discuss CFTR's functional role airway surface liquid hydration and pH, in regulation of other channels such as the epithelial sodium channel, and in regulating inflammatory responses in the lung.
Collapse
Affiliation(s)
- James F Collawn
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
30
|
Lazrak A, Fu L, Bali V, Bartoszewski R, Rab A, Havasi V, Keiles S, Kappes J, Kumar R, Lefkowitz E, Sorscher EJ, Matalon S, Collawn JF, Bebok Z. The silent codon change I507-ATC->ATT contributes to the severity of the ΔF508 CFTR channel dysfunction. FASEB J 2013; 27:4630-45. [PMID: 23907436 PMCID: PMC4046180 DOI: 10.1096/fj.13-227330] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/15/2013] [Indexed: 01/08/2023]
Abstract
The most common disease-causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene is the out-of-frame deletion of 3 nucleotides (CTT). This mutation leads to the loss of phenylalanine-508 (ΔF508) and a silent codon change (SCC) for isoleucine-507 (I507-ATC→ATT). ΔF508 CFTR is misfolded and degraded by endoplasmic reticulum-associated degradation (ERAD). We have demonstrated that the I507-ATC→ATT SCC alters ΔF508 CFTR mRNA structure and translation dynamics. By comparing the biochemical and functional properties of the I507-ATT and I507-ATC ΔF508 CFTR, we establish that the I507-ATC→ATT SCC contributes to the cotranslational misfolding, ERAD, and to the functional defects associated with ΔF508 CFTR. We demonstrate that the I507-ATC ΔF508 CFTR is less susceptible to the ER quality-control machinery during translation than the I507-ATT, although 27°C correction is necessary for sufficient cell-surface expression. Whole-cell patch-clamp recordings indicate sustained, thermally stable cAMP-activated Cl(-) transport through I507-ATC and unstable function of the I507-ATT ΔF508 CFTR. Single-channel recordings reveal improved gating properties of the I507-ATC compared to I507-ATT ΔF508 CFTR (NPo=0.45±0.037 vs. NPo=0.09±0.002; P<0.001). Our results signify the role of the I507-ATC→ATT SCC in the ΔF508 CFTR defects and support the importance of synonymous codon choices in determining the function of gene products.
Collapse
Affiliation(s)
- Ahmed Lazrak
- 2Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., MCLM 350A, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vohwinkel CU, Vadász I. Influenza A matrix protein M2 downregulates CFTR: inhibition of chloride transport by a proton channel of the viral envelope. Am J Physiol Lung Cell Mol Physiol 2013; 304:L813-6. [PMID: 23605001 DOI: 10.1152/ajplung.00091.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
32
|
Zabner J, Freimuth P, Puga A, Fabrega A, Welsh MJ, Morty RE, Schmoldt C, Bespalowa J, Wolff T, Pleschka S, Mayer K, Gattenloehner S, Fink L, Lohmeyer J, Seeger W, Sznajder JI, Mutlu GM, Budinger GRS, Herold S. Lack of high affinity fiber receptor activity explains the resistance of ciliated airway epithelia to adenovirus infection. J Clin Invest 1997; 126:1566-80. [PMID: 9276731 DOI: 10.1172/jci83931] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/26/2016] [Indexed: 12/20/2022] Open
Abstract
Although recombinant adenoviruses are attractive vectors for gene transfer to airway epithelia, they have proven to be relatively inefficient. To investigate the mechanisms of adenovirus-mediated gene transfer to airway epithelia, we examined the role of adenovirus fiber and penton base, the two proteins involved in attachment to and entry of virus into the cell. We used human airway epithelia grown under conditions that allow differentiation and development of a ciliated apical surface that closely resembles the in vivo condition. We found that addition of fiber protein inhibited virus binding and vector-mediated gene transfer to immature airway epithelia, as well as to primary cultures of rat hepatocytes and HeLa cells. However, fiber protein had no effect on vector binding and gene transfer to ciliated airway epithelia. We obtained similar results with addition of penton base protein: the protein inhibited gene transfer to immature epithelia, whereas there was no effect with ciliated epithelia. Moreover, infection was not attenuated with an adenovirus containing a mutation in penton base that prevents the interaction with cell surface integrins. These data suggest that the receptors required for efficient infection by adenovirus are either not present or not available on the apical surface of ciliated human airway epithelia. The results explain the reason for inefficient gene transfer and suggest approaches for improvement.
Collapse
Affiliation(s)
- J Zabner
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 5224
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|