1
|
Rong N, Wu J, Zhao B, Peng W, Yang H, Zhang G, Ruan D, Wei X, Liu J. Comparison of the pathogenicity and neutrophil and monocyte response between SARS-CoV-2 prototype and Omicron BA.1 in a lethal mouse model. Animal Model Exp Med 2024. [PMID: 38760905 DOI: 10.1002/ame2.12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/02/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND SARS-CoV-2, first identified in late 2019, has given rise to numerous variants of concern (VOCs), posing a significant threat to human health. The emergence of Omicron BA.1.1 towards the end of 2021 led to a pandemic in early 2022. At present, the lethal mouse model for the study of SARS-CoV-2 needs supplementation, and the alterations in neutrophils and monocytes caused by different strains remain to be elucidated. METHODS Human ACE2 transgenic mice were inoculated with the SARS-CoV-2 prototype and Omicron BA.1, respectively. The pathogenicity of the two strains was evaluated by observing clinical symptoms, viral load and pathology. Complete blood count, immunohistochemistry and flow cytometry were performed to detect the alterations of neutrophils and monocytes caused by the two strains. RESULTS Our findings revealed that Omicron BA.1 exhibited significantly lower virulence compared to the SARS-CoV-2 prototype in the mouse model. Additionally, we observed a significant increase in the proportion of neutrophils late in infection with the SARS-CoV-2 prototype and Omicron BA.1. We found that the proportion of monocytes increased at first and then decreased. The trends in the changes in the proportions of neutrophils and monocytes induced by the two strains were similar. CONCLUSION Our study provides valuable insights into the utility of mouse models for simulating the severe disease of SARS-CoV-2 prototype infection and the milder manifestation associated with Omicron BA.1. SARS-CoV-2 prototype and Omicron BA.1 resulted in similar trends in the changes in neutrophils and monocytes.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jing Wu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Binbin Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Wanjun Peng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Hekai Yang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Gengxin Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | | | - Xiaohui Wei
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Rong N, Wei X, Liu J. The Role of Neutrophil in COVID-19: Positive or Negative. J Innate Immun 2024; 16:80-95. [PMID: 38224674 PMCID: PMC10861219 DOI: 10.1159/000535541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Neutrophils are the first line of defense against pathogens. They are divided into multiple subpopulations during development and kill pathogens through various mechanisms. Neutrophils are considered one of the markers of severe COVID-19. SUMMARY In-depth research has revealed that neutrophil subpopulations have multiple complex functions. Different subsets of neutrophils play an important role in the progression of COVID-19. KEY MESSAGES In this review, we provide a detailed overview of the developmental processes of neutrophils at different stages and their recruitment and activation after SARS-CoV-2 infection, aiming to elucidate the changes in neutrophil subpopulations, characteristics, and functions after infection and provide a reference for mechanistic research on neutrophil subpopulations in the context of SARS-CoV-2 infection. In addition, we have also summarized research progress on potential targeted drugs for neutrophil immunotherapy, hoping to provide information that aids the development of therapeutic drugs for the clinical treatment of critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China,
| | - Xiaohui Wei
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Ojha M, Smith NJ, Devine AJ, Joshi R, Goodman EM, Fan Q, Schuman R, Porollo A, Wells JM, Tiwary E, Batie MR, Gray J, Deshmukh H, Borchers MT, Ammerman SA, Varisco BM. Anti-CELA1 antibody KF4 prevents emphysema by inhibiting stretch-mediated remodeling. JCI Insight 2024; 9:e169189. [PMID: 38193533 PMCID: PMC10906462 DOI: 10.1172/jci.insight.169189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024] Open
Abstract
There are no therapies to prevent emphysema progression. Chymotrypsin-like elastase 1 (CELA1) is a serine protease that binds and cleaves lung elastin in a stretch-dependent manner and is required for emphysema in a murine antisense oligonucleotide model of α-1 antitrypsin (AAT) deficiency. This study tested whether CELA1 is important in strain-mediated lung matrix destruction in non-AAT-deficient emphysema and the efficacy of CELA1 neutralization. Airspace simplification was quantified after administration of tracheal porcine pancreatic elastase (PPE), after 8 months of cigarette smoke (CS) exposure, and in aging. In all 3 models, Cela1-/- mice had less emphysema and preserved lung elastin despite increased lung immune cells. A CELA1-neutralizing antibody was developed (KF4), and it inhibited stretch-inducible lung elastase in ex vivo mouse and human lung and immunoprecipitated CELA1 from human lung. In mice, systemically administered KF4 penetrated lung tissue in a dose-dependent manner and 5 mg/kg weekly prevented emphysema in the PPE model with both pre- and postinjury initiation and in the CS model. KF4 did not increase lung immune cells. CELA1-mediated lung matrix remodeling in response to strain is an important contributor to postnatal airspace simplification, and we believe that KF4 could be developed as a lung matrix-stabilizing therapy in emphysema.
Collapse
Affiliation(s)
- Mohit Ojha
- Lincoln Medical Center and Mental Health Center, New York, New York, USA
| | - Noah J. Smith
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrew J. Devine
- Heritage College of Osteopathic Medicine, Ohio University, Athens Ohio, USA
| | - Rashika Joshi
- Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Emily M. Goodman
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Qiang Fan
- Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Richard Schuman
- Antibody and Immunoassay Consultants, Rockville, Maryland, USA
| | - Aleksey Porollo
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - J. Michael Wells
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
- UAB Lung Health Center, Birmingham, Alabama, USA
| | - Ekta Tiwary
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
- UAB Lung Health Center, Birmingham, Alabama, USA
| | | | - Jerilyn Gray
- Perinatal Institute, Center for Perinatal Immunity, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hitesh Deshmukh
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Perinatal Institute, Center for Perinatal Immunity, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michael T. Borchers
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Brian M. Varisco
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| |
Collapse
|
4
|
Saucedo L, Pfister IB, Schild C, Garweg JG. Association of inflammation-related markers and diabetic retinopathy severity in the aqueous humor, but not serum of type 2 diabetic patients. PLoS One 2023; 18:e0293139. [PMID: 37883447 PMCID: PMC10602301 DOI: 10.1371/journal.pone.0293139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Diabetic retinopathy (DR) is a frequent microvascular complication of diabetes mellitus, and inflammatory pathways have been linked to its pathogenesis. In this retrospective, observational pilot study, we aimed to compare the concentrations of four inflammation-related proteins, ZAG, Reg-3a, elafin and RBP-4, in the serum and aqueous humor of healthy controls and diabetic patients with different stages of DR. The concentrations of VEGF-A, IL-8, IL-6 were determined in parallel as internal controls. In the serum, we did not find significant differences in the concentrations of target proteins. In the aqueous humor, higher levels of ZAG, RBP-4, Reg-3a and elafin were observed in advanced nonproliferative DR (NPDR)/ proliferative DR (PDR) compared to controls. The levels of ZAG and RBP-4 were also higher in advanced NPDR/PDR than in nonapparent DR. Normalization of target protein concentrations to the aqueous humor total protein demonstrates that a spill-over from serum due to breakage of the blood-retina barrier only partially accounts for increased inflammation related markers in later stages. In conclusion, we found elevated levels of Reg-3a, RBP-4, elafin and ZAG in advanced stages of diabetic retinopathy. Higher levels of pro-inflammatory proteins, Reg-3a and RBP-4, might contribute to the pathogenesis of diabetic retinopathy, as the parallel increased concentrations of anti-inflammatory molecules elafin and ZAG might indicate a compensatory mechanism.
Collapse
Affiliation(s)
- Lucia Saucedo
- Swiss Eye Institute, Rotkreuz, and Berner Augenklinik, Bern, Switzerland
| | - Isabel B. Pfister
- Swiss Eye Institute, Rotkreuz, and Berner Augenklinik, Bern, Switzerland
| | - Christin Schild
- Swiss Eye Institute, Rotkreuz, and Berner Augenklinik, Bern, Switzerland
| | - Justus G. Garweg
- Swiss Eye Institute, Rotkreuz, and Berner Augenklinik, Bern, Switzerland
- Department Ophthalmology, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Goodwin AT, John AE, Joseph C, Habgood A, Tatler AL, Susztak K, Palmer M, Offermanns S, Henderson NC, Jenkins RG. Stretch regulates alveologenesis and homeostasis via mesenchymal Gαq/11-mediated TGFβ2 activation. Development 2023; 150:dev201046. [PMID: 37102682 PMCID: PMC10259661 DOI: 10.1242/dev.201046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Abstract
Alveolar development and repair require tight spatiotemporal regulation of numerous signalling pathways that are influenced by chemical and mechanical stimuli. Mesenchymal cells play key roles in numerous developmental processes. Transforming growth factor-β (TGFβ) is essential for alveologenesis and lung repair, and the G protein α subunits Gαq and Gα11 (Gαq/11) transmit mechanical and chemical signals to activate TGFβ in epithelial cells. To understand the role of mesenchymal Gαq/11 in lung development, we generated constitutive (Pdgfrb-Cre+/-;Gnaqfl/fl;Gna11-/-) and inducible (Pdgfrb-Cre/ERT2+/-;Gnaqfl/fl;Gna11-/-) mesenchymal Gαq/11 deleted mice. Mice with constitutive Gαq/11 gene deletion exhibited abnormal alveolar development, with suppressed myofibroblast differentiation, altered mesenchymal cell synthetic function, and reduced lung TGFβ2 deposition, as well as kidney abnormalities. Tamoxifen-induced mesenchymal Gαq/11 gene deletion in adult mice resulted in emphysema associated with reduced TGFβ2 and elastin deposition. Cyclical mechanical stretch-induced TGFβ activation required Gαq/11 signalling and serine protease activity, but was independent of integrins, suggesting an isoform-specific role for TGFβ2 in this model. These data highlight a previously undescribed mechanism of cyclical stretch-induced Gαq/11-dependent TGFβ2 signalling in mesenchymal cells, which is imperative for normal alveologenesis and maintenance of lung homeostasis.
Collapse
Affiliation(s)
- Amanda T. Goodwin
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alison E. John
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Chitra Joseph
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Anthony Habgood
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Amanda L. Tatler
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Katalin Susztak
- Department of Medicine, Division of Nephrology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew Palmer
- Department of Pathology, Division of Nephrology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4238, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Neil C. Henderson
- Centre for Inflammation Research, University of Edinburgh, EH16 4TJ, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - R. Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| |
Collapse
|
6
|
Mižíková I, Thébaud B. Perinatal origins of bronchopulmonary dysplasia-deciphering normal and impaired lung development cell by cell. Mol Cell Pediatr 2023; 10:4. [PMID: 37072570 PMCID: PMC10113423 DOI: 10.1186/s40348-023-00158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a multifactorial disease occurring as a consequence of premature birth, as well as antenatal and postnatal injury to the developing lung. BPD morbidity and severity depend on a complex interplay between prenatal and postnatal inflammation, mechanical ventilation, and oxygen therapy as well as associated prematurity-related complications. These initial hits result in ill-explored aberrant immune and reparative response, activation of pro-fibrotic and anti-angiogenic factors, which further perpetuate the injury. Histologically, the disease presents primarily by impaired lung development and an arrest in lung microvascular maturation. Consequently, BPD leads to respiratory complications beyond the neonatal period and may result in premature aging of the lung. While the numerous prenatal and postnatal stimuli contributing to BPD pathogenesis are relatively well known, the specific cell populations driving the injury, as well as underlying mechanisms are still not well understood. Recently, an effort to gain a more detailed insight into the cellular composition of the developing lung and its progenitor populations has unfold. Here, we provide an overview of the current knowledge regarding perinatal origin of BPD and discuss underlying mechanisms, as well as novel approaches to study the perturbed lung development.
Collapse
Affiliation(s)
- I Mižíková
- Experimental Pulmonology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - B Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Calthorpe RJ, Poulter C, Smyth AR, Sharkey D, Bhatt J, Jenkins G, Tatler AL. Complex roles of TGF-β signaling pathways in lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2023; 324:L285-L296. [PMID: 36625900 PMCID: PMC9988523 DOI: 10.1152/ajplung.00106.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
As survival of extremely preterm infants continues to improve, there is also an associated increase in bronchopulmonary dysplasia (BPD), one of the most significant complications of preterm birth. BPD development is multifactorial resulting from exposure to multiple antenatal and postnatal stressors. BPD has both short-term health implications and long-term sequelae including increased respiratory, cardiovascular, and neurological morbidity. Transforming growth factor β (TGF-β) is an important signaling pathway in lung development, organ injury, and fibrosis and is implicated in the development of BPD. This review provides a detailed account on the role of TGF-β in antenatal and postnatal lung development, the effect of known risk factors for BPD on the TGF-β signaling pathway, and how medications currently in use or under development, for the prevention or treatment of BPD, affect TGF-β signaling.
Collapse
Affiliation(s)
- Rebecca J Calthorpe
- Lifespan & Population Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Caroline Poulter
- Department of Pediatrics, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Alan R Smyth
- Lifespan & Population Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Don Sharkey
- Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jayesh Bhatt
- Department of Pediatrics, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Amanda L Tatler
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
8
|
Li Z, Chen X, Dan J, Hu T, Hu Y, Liu S, Chai Y, Shi Y, Wu J, Ni H, Zhu J, Wu Y, Li N, Yu Y, Wang Z, Zhao J, Zhong N, Ren X, Shen Z, Cao X. Innate immune imprints in SARS-CoV-2 Omicron variant infection convalescents. Signal Transduct Target Ther 2022; 7:377. [PMID: 36379915 PMCID: PMC9666472 DOI: 10.1038/s41392-022-01237-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 Omicron variant infection generally gives rise to asymptomatic to moderate COVID-19 in vaccinated people. The immune cells can be reprogrammed or "imprinted" by vaccination and infections to generate protective immunity against subsequent challenges. Considering the immune imprint in Omicron infection is unclear, here we delineate the innate immune landscape of human Omicron infection via single-cell RNA sequencing, surface proteome profiling, and plasma cytokine quantification. We found that monocyte responses predominated in immune imprints of Omicron convalescents, with IL-1β-associated and interferon (IFN)-responsive signatures with mild and moderate symptoms, respectively. Low-density neutrophils increased and exhibited IL-1β-associated and IFN-responsive signatures similarly. Mild convalescents had increased blood IL-1β, CCL4, IL-9 levels and PI3+ neutrophils, indicating a bias to IL-1β responsiveness, while moderate convalescents had increased blood CXCL10 and IFN-responsive monocytes, suggesting durative IFN responses. Therefore, IL-1β- or IFN-responsiveness of myeloid cells may indicate the disease severity of Omicron infection and mediate post-COVID conditions.
Collapse
Affiliation(s)
- Zhiqing Li
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Xiaosu Chen
- grid.216938.70000 0000 9878 7032Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Junyan Dan
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Tianju Hu
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Ye Hu
- grid.216938.70000 0000 9878 7032Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Shuxun Liu
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Yangyang Chai
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Yansong Shi
- grid.216938.70000 0000 9878 7032Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Jian Wu
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Hailai Ni
- grid.411525.60000 0004 0369 1599The Health Care Department, Shanghai Changhai Hospital, Shanghai, 200433 China
| | - Jiaqi Zhu
- grid.411525.60000 0004 0369 1599Department of Cardiology, Shanghai Changhai Hospital, Shanghai, 200433 China
| | - Yanfeng Wu
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Nan Li
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Yizhi Yu
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | | | - Jincun Zhao
- Guangzhou Laboratory, Guangzhou, 510300 China
| | | | | | - Zhongyang Shen
- grid.216938.70000 0000 9878 7032Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300192 China
| | - Xuetao Cao
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China ,grid.216938.70000 0000 9878 7032Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071 China ,grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005 China
| |
Collapse
|
9
|
Go H, Ono J, Ohto H, Nollet KE, Sato K, Kume Y, Maeda H, Chishiki M, Haneda K, Ichikawa H, Kashiwabara N, Kanai Y, Ogasawara K, Sato M, Hashimoto K, Nunomura S, Izuhara K, Hosoya M. Can serum periostin predict bronchopulmonary dysplasia in premature infants? Pediatr Res 2022; 92:1108-1114. [PMID: 34961784 DOI: 10.1038/s41390-021-01912-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common morbidity complicating preterm birth and affects long-term respiratory outcomes. The objectives of this study were to establish whether serum periostin at birth, day of life (DOL) 28, and corrected 36 weeks' gestational age could be potential biomarkers for BPD. METHODS A total of 98 preterm Japanese infants born at <32 weeks and comparing 41 healthy controls born at term, were divided into BPD (n = 44) and non-BPD (n = 54) cohorts. Serum periostin levels were measured using an enzyme-linked immunosorbent assay. RESULTS Among 98 preterm infants, the median serum periostin levels at birth were higher with BPD (338.0 ng/mL) than without (275.0 ng/mL, P < 0.001). Multivariate analysis revealed that serum periostin levels at birth were significantly associated with BPD (P = 0.013). Serum periostin levels at birth with moderate/severe BPD (345.0 ng/mL) were significantly higher than those with non-BPD/mild BPD (283.0 ng/mL, P = 0.006). CONCLUSIONS Serum periostin levels were significantly correlated with birth weight and gestational age, and serum periostin levels at birth in BPD infants were significantly higher than that in non-BPD infants. IMPACT This study found higher serum periostin levels at birth in preterm infants subsequently diagnosed with bronchopulmonary dysplasia. It also emerged that serum periostin levels at birth significantly correlated with gestational age and birth weight. The mechanism by which serum periostin is upregulated in BPD infants needs further investigation.
Collapse
Affiliation(s)
- Hayato Go
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Junya Ono
- Shino-Test Co., Ltd., Sagamihara, Japan
| | | | - Kenneth E Nollet
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kenichi Sato
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yohei Kume
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hajime Maeda
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Mina Chishiki
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kentaro Haneda
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirotaka Ichikawa
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Nozomi Kashiwabara
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuji Kanai
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kei Ogasawara
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Maki Sato
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
10
|
Gorgisen G, Aydin M, Mboma O, Gökyildirim MY, Chao CM. The Role of Insulin Receptor Substrate Proteins in Bronchopulmonary Dysplasia and Asthma: New Potential Perspectives. Int J Mol Sci 2022; 23:ijms231710113. [PMID: 36077511 PMCID: PMC9456457 DOI: 10.3390/ijms231710113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 01/12/2023] Open
Abstract
Insulin receptor substrates (IRSs) are proteins that are involved in signaling through the insulin receptor (IR) and insulin-like growth factor (IGFR). They can also interact with other receptors including growth factor receptors. Thus, they represent a critical node for the transduction and regulation of multiple signaling pathways in response to extracellular stimuli. In addition, IRSs play a central role in processes such as inflammation, growth, metabolism, and proliferation. Previous studies have highlighted the role of IRS proteins in lung diseases, in particular asthma. Further, the members of the IRS family are the common proteins of the insulin growth factor signaling cascade involved in lung development and disrupted in bronchopulmonary dysplasia (BPD). However, there is no study focusing on the relationship between IRS proteins and BPD yet. Unfortunately, there is still a significant gap in knowledge in this field. Thus, in this review, we aimed to summarize the current knowledge with the major goal of exploring the possible roles of IRS in BPD and asthma to foster new perspectives for further investigations.
Collapse
Affiliation(s)
- Gokhan Gorgisen
- Department of Medical Genetics, Faculty of Medicine, Van Yüzüncü Yil University, Van 65080, Turkey
| | - Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Olivier Mboma
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Mira Y. Gökyildirim
- Department of Pediatrics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
| | - Cho-Ming Chao
- Department of Pediatrics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35390 Giessen, Germany
- Correspondence: ; Tel.: +49-641-9946735
| |
Collapse
|
11
|
Jakimiuk K, Gesek J, Atanasov AG, Tomczyk M. Flavonoids as inhibitors of human neutrophil elastase. J Enzyme Inhib Med Chem 2021; 36:1016-1028. [PMID: 33980119 PMCID: PMC8128182 DOI: 10.1080/14756366.2021.1927006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 12/17/2022] Open
Abstract
Elastase is a proteolytic enzyme belonging to the family of hydrolases produced by human neutrophils, monocytes, macrophages, and endothelial cells. Human neutrophil elastase is known to play multiple roles in the human body, but an increase in its activity may cause a variety of diseases. Elastase inhibitors may prevent the development of psoriasis, chronic kidney disease, respiratory disorders (including COVID-19), immune disorders, and even cancers. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in herbal plants, have been revealed to influence elastase release and its action on human cells. This review focuses on elastase inhibitors that have been discovered from natural sources and are biochemically characterised as flavonoids. The inhibitory activity on elastase is a characteristic of flavonoid aglycones and their glycoside and methylated, acetylated and hydroxylated derivatives. The presented analysis of structure-activity relationship (SAR) enables the determination of the chemical groups responsible for evoking an inhibitory effect on elastase. Further study especially of the in vivo efficacy and safety of the described natural compounds is of interest in order to gain better understanding of their health-promoting potential.
Collapse
Affiliation(s)
- Katarzyna Jakimiuk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, Poland
| | - Jakub Gesek
- Department of Pharmacognosy, Medical University of Białystok, Student’s Scientific Association, Białystok, Poland
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
12
|
Wang SH, Tsao PN. Phenotypes of Bronchopulmonary Dysplasia. Int J Mol Sci 2020; 21:ijms21176112. [PMID: 32854293 PMCID: PMC7503264 DOI: 10.3390/ijms21176112] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/18/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic morbidity in preterm infants. In the absence of effective interventions, BPD is currently a major therapeutic challenge. Several risk factors are known for this multifactorial disease that results in disrupted lung development. Inflammation plays an important role and leads to persistent airway and pulmonary vascular disease. Since corticosteroids are potent anti-inflammatory agents, postnatal corticosteroids have been used widely for BPD prevention and treatment. However, the clinical responses vary to a great degree across individuals, and steroid-related complications remain major concerns. Emerging studies on the molecular mechanism of lung alveolarization during inflammatory stress will elucidate the complicated pathway and help discover novel therapeutic targets. Moreover, with the advances in metabolomics, there are new opportunities to identify biomarkers for early diagnosis and prognosis prediction of BPD. Pharmacometabolomics is another novel field aiming to identify the metabolomic changes before and after a specific drug treatment. Through this "metabolic signature," a more precise treatment may be developed, thereby avoiding unnecessary drug exposure in non-responders. In the future, more clinical, genetic, and translational studies would be required to improve the classification of BPD phenotypes and achieve individualized care to enhance the respiratory outcomes in preterm infants.
Collapse
Affiliation(s)
- Shih-Hsin Wang
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan;
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100225, Taiwan
- Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei 100226, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 71013)
| |
Collapse
|
13
|
Signaling Pathways Involved in the Development of Bronchopulmonary Dysplasia and Pulmonary Hypertension. CHILDREN-BASEL 2020; 7:children7080100. [PMID: 32824651 PMCID: PMC7465273 DOI: 10.3390/children7080100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/31/2022]
Abstract
The alveolar and vascular developmental arrest in the premature infants poses a major problem in the management of these infants. Although, with the current management, the survival rate has improved in these infants, but bronchopulmonary dysplasia (BPD) is a serious complication associated with a high mortality rate. During the neonatal developmental period, these infants are vulnerable to stress. Hypoxia, hyperoxia, and ventilation injury lead to oxidative and inflammatory stress, which induce further damage in the lung alveoli and vasculature. Development of pulmonary hypertension (PH) in infants with BPD worsens the prognosis. Despite considerable progress in the management of premature infants, therapy to prevent BPD is not yet available. Animal experiments have shown deregulation of multiple signaling factors such as transforming growth factorβ (TGFβ), connective tissue growth factor (CTGF), fibroblast growth factor 10 (FGF10), vascular endothelial growth factor (VEGF), caveolin-1, wingless & Int-1 (WNT)/β-catenin, and elastin in the pathogenesis of BPD. This article reviews the signaling pathways entailed in the pathogenesis of BPD associated with PH and the possible management.
Collapse
|
14
|
Dukinfield M, Maniati E, Reynolds LE, Aubdool A, Baliga RS, D'Amico G, Maiques O, Wang J, Bedi KC, Margulies KB, Sanz‐Moreno V, Hobbs A, Hodivala‐Dilke K. Repurposing an anti-cancer agent for the treatment of hypertrophic heart disease. J Pathol 2019; 249:523-535. [PMID: 31424556 PMCID: PMC6900130 DOI: 10.1002/path.5340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
Coronary microvascular dysfunction combined with maladaptive cardiomyocyte morphology and energetics is a major contributor to heart failure advancement. Thus, dually enhancing cardiac angiogenesis and targeting cardiomyocyte function to slow, or reverse, the development of heart failure is a logical step towards improved therapy. We present evidence for the potential to repurpose a former anti-cancer Arg-Gly-Asp (RGD)-mimetic pentapeptide, cilengitide, here used at low doses. Cilengitide targets αvβ3 integrin and this protein is upregulated in human dilated and ischaemic cardiomyopathies. Treatment of mice after abdominal aortic constriction (AAC) surgery with low-dose cilengitide (ldCil) enhances coronary angiogenesis and directly affects cardiomyocyte hypertrophy with an associated reduction in disease severity. At a molecular level, ldCil treatment has a direct effect on cardiac endothelial cell transcriptomic profiles, with a significant enhancement of pro-angiogenic signalling pathways, corroborating the enhanced angiogenic phenotype after ldCil treatment. Moreover, ldCil treatment of Angiotensin II-stimulated AngII-stimulated cardiomyocytes significantly restores transcriptomic profiles similar to those found in normal human heart. The significance of this finding is enhanced by transcriptional similarities between AngII-treated cardiomyocytes and failing human hearts. Taken together, our data provide evidence supporting a possible new strategy for improved heart failure treatment using low-dose RGD-mimetics with relevance to human disease. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Matthew Dukinfield
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Louise E Reynolds
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Aisah Aubdool
- William Harvey Research Institute, Queen Mary University of London, Charterhouse SquareLondonUK
| | - Reshma S Baliga
- William Harvey Research Institute, Queen Mary University of London, Charterhouse SquareLondonUK
| | - Gabriela D'Amico
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Kenneth C Bedi
- Perelman School of MedicineUniversity of Pennsylvania, Translational Research CenterPhiladelphiaPAUSA
| | - Kenneth B Margulies
- Perelman School of MedicineUniversity of Pennsylvania, Translational Research CenterPhiladelphiaPAUSA
| | - Victoria Sanz‐Moreno
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Adrian Hobbs
- William Harvey Research Institute, Queen Mary University of London, Charterhouse SquareLondonUK
| | - Kairbaan Hodivala‐Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| |
Collapse
|
15
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
16
|
Lal CV, Ambalavanan N. Mechanisms of Ventilator-induced Lung Injury: Is the Elafin in the Room? Am J Respir Cell Mol Biol 2019; 59:531-532. [PMID: 30095977 DOI: 10.1165/rcmb.2018-0205ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
Potey PM, Rossi AG, Lucas CD, Dorward DA. Neutrophils in the initiation and resolution of acute pulmonary inflammation: understanding biological function and therapeutic potential. J Pathol 2019; 247:672-685. [PMID: 30570146 PMCID: PMC6492013 DOI: 10.1002/path.5221] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is the often fatal sequelae of a broad range of precipitating conditions. Despite decades of intensive research and clinical trials there remain no therapies in routine clinical practice that target the dysregulated and overwhelming inflammatory response that characterises ARDS. Neutrophils play a central role in the initiation, propagation and resolution of this complex inflammatory environment by migrating into the lung and executing a variety of pro-inflammatory functions. These include degranulation with liberation of bactericidal proteins, release of cytokines and reactive oxygen species as well as production of neutrophil extracellular traps. Although these functions are advantageous in clearing bacterial infection, the consequence of associated tissue damage, the contribution to worsening acute inflammation and prolonged neutrophil lifespan at sites of inflammation are deleterious. In this review, the importance of the neutrophil will be considered, together with discussion of recent advances in understanding neutrophil function and the factors that influence them throughout the phases of inflammation in ARDS. From a better understanding of neutrophils in this context, potential therapeutic targets are identified and discussed. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Philippe Md Potey
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Christopher D Lucas
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - David A Dorward
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Alejandre Alcazar MA, Kaschwich M, Ertsey R, Preuss S, Milla C, Mujahid S, Masumi J, Khan S, Mokres LM, Tian L, Mohr J, Hirani DV, Rabinovitch M, Bland RD. Elafin Treatment Rescues EGFR-Klf4 Signaling and Lung Cell Survival in Ventilated Newborn Mice. Am J Respir Cell Mol Biol 2018; 59:623-634. [PMID: 29894205 PMCID: PMC6236693 DOI: 10.1165/rcmb.2017-0332oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 05/30/2018] [Indexed: 12/14/2022] Open
Abstract
Mechanical ventilation with O2-rich gas (MV-O2) inhibits alveologenesis and lung growth. We previously showed that MV-O2 increased elastase activity and apoptosis in lungs of newborn mice, whereas elastase inhibition by elafin suppressed apoptosis and enabled lung growth. Pilot studies suggested that MV-O2 reduces lung expression of prosurvival factors phosphorylated epidermal growth factor receptor (pEGFR) and Krüppel-like factor 4 (Klf4). Here, we sought to determine whether apoptosis and lung growth arrest evoked by MV-O2 reflect disrupted pEGFR-Klf4 signaling, which elafin treatment preserves, and to assess potential biomarkers of bronchopulmonary dysplasia (BPD). Five-day-old mice underwent MV with air or 40% O2 for 8-24 hours with or without elafin treatment. Unventilated pups served as controls. Immunoblots were used to assess lung pEGFR and Klf4 proteins. Cultured MLE-12 cells were exposed to AG1478 (EGFR inhibitor), Klf4 siRNA, or vehicle to assess effects on proliferation, apoptosis, and EGFR regulation of Klf4. Plasma elastase and elafin levels were measured in extremely premature infants. In newborn mice, MV with air or 40% O2 inhibited EGFR phosphorylation and suppressed Klf4 protein content in lungs (vs. unventilated controls), yielding increased apoptosis. Elafin treatment inhibited elastase, preserved lung pEGFR and Klf4, and attenuated the apoptosis observed in lungs of vehicle-treated mice. In MLE-12 studies, pharmacological inhibition of EGFR and siRNA suppression of Klf4 increased apoptosis and reduced proliferation, and EGFR inhibition decreased Klf4. Plasma elastase levels were more than twofold higher, without a compensating increase of plasma elafin, in infants with BPD, compared to infants without BPD. These findings indicate that pEGFR-Klf4 is a novel prosurvival signaling pathway in lung epithelium that MV disrupts. Elafin preserves pEGFR-Klf4 signaling and inhibits apoptosis, thereby enabling lung growth during MV. Together, our animal and human data raise the question: would elastase inhibition prevent BPD in high-risk infants exposed to MV-O2?
Collapse
Affiliation(s)
- Miguel A. Alejandre Alcazar
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
- Department of Pediatric and Adolescent Medicine, Center of Molecular Medicine Cologne, University Hospital of Cologne, Cologne, Germany
| | - Mark Kaschwich
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Robert Ertsey
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Stefanie Preuss
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Carlos Milla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Sana Mujahid
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Juliet Masumi
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Suleman Khan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Lucia M. Mokres
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Lu Tian
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Jasmine Mohr
- Department of Pediatric and Adolescent Medicine, Center of Molecular Medicine Cologne, University Hospital of Cologne, Cologne, Germany
| | - Dharmesh V. Hirani
- Department of Pediatric and Adolescent Medicine, Center of Molecular Medicine Cologne, University Hospital of Cologne, Cologne, Germany
| | - Marlene Rabinovitch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| | - Richard D. Bland
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California; and
| |
Collapse
|
19
|
Tang X. Interleukin-33 (IL-33) Increases Hyperoxia-Induced Bronchopulmonary Dysplasia in Newborn Mice by Regulation of Inflammatory Mediators. Med Sci Monit 2018; 24:6717-6728. [PMID: 30244258 PMCID: PMC6266634 DOI: 10.12659/msm.910851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Interleukin-33 (IL-33) has been reported to affect chronic inflammation of the lungs, but its impact on hyperoxia-injured lungs in newborns remains obscure. This study aimed to investigate the role of IL-33 in the lungs of neonatal mice with hyperoxia-induced bronchopulmonary dysplasia (BPD). Material/Methods Twenty-four C57BL/6 baby mice were randomly separated into three groups: the on-air group (N=16); the O2 group (N=8); and the O2 + anti-IL-33 group (N=8). Forced mechanical ventilation with oxygen-rich air (MV-O2) was used in 16 mouse pups. The mouse pups were incubated in containers with either air or 85% O2 for 1, 3, 7, 14, 21, and 28 days after birth. At the end of the treatment period, the mouse lungs were studied by histology, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) to examine the expression of the pro-inflammatory mediators, including interleukin (IL)-1β, chemokine (CC motif) ligand 1 (CXCL-1), and monocyte chemoattractant protein-1 (MCP-1). Results Following forced MV-O2, increased levels of IL-33 in whole mouse lungs were associated with impaired alveolar growth and with changes consistent with BPD, including reduced numbers of enlarged alveoli, increased apoptosis, and increased expression of IL-1β, CXCL-1, and MCP-1. IL-33 inhibition improved alveolar development in hyperoxia-impaired lungs and suppressed IL-1β and MCP-1 expression and was associated with increased transforming growth factor-β (TGF-β) signaling, reduced pulmonary NF-κB activity and decreased expression of the TGF-β inhibitor SMAD-7 in forced MV-O2 exposed mouse pups. Conclusions IL-33 increased hyperoxia-induced BPD in newborn mice by regulation of the expression of inflammatory mediators.
Collapse
Affiliation(s)
- Xiqin Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
20
|
Zhou Y, Horowitz JC, Naba A, Ambalavanan N, Atabai K, Balestrini J, Bitterman PB, Corley RA, Ding BS, Engler AJ, Hansen KC, Hagood JS, Kheradmand F, Lin QS, Neptune E, Niklason L, Ortiz LA, Parks WC, Tschumperlin DJ, White ES, Chapman HA, Thannickal VJ. Extracellular matrix in lung development, homeostasis and disease. Matrix Biol 2018. [PMID: 29524630 DOI: 10.1016/j.matbio.2018.03.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Alexandra Naba
- Department of Physiology & Biophysics, University of Illinois at Chicago, United States.
| | | | - Kamran Atabai
- Lung Biology Center, University of California, San Francisco, United States.
| | | | | | - Richard A Corley
- Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, United States.
| | - Bi-Sen Ding
- Weill Cornell Medical College, United States.
| | - Adam J Engler
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, United States.
| | - Kirk C Hansen
- Biochemistry & Molecular Genetics, University of Colorado Denver, United States.
| | - James S Hagood
- Pediatric Respiratory Medicine, University of California San Diego, United States.
| | - Farrah Kheradmand
- Division of Pulmonary and Critical Care, Baylor College of Medicine, United States.
| | - Qing S Lin
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, United States.
| | - Enid Neptune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, United States.
| | - Laura Niklason
- Department of Anesthesiology, Yale University, United States.
| | - Luis A Ortiz
- Division of Environmental and Occupational Health, University of Pittsburgh, United States.
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, United States.
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, United States.
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, University of Michigan, United States.
| | - Harold A Chapman
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, United States.
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States.
| |
Collapse
|
21
|
Oak P, Hilgendorff A. The BPD trio? Interaction of dysregulated PDGF, VEGF, and TGF signaling in neonatal chronic lung disease. Mol Cell Pediatr 2017; 4:11. [PMID: 29116547 PMCID: PMC5676585 DOI: 10.1186/s40348-017-0076-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022] Open
Abstract
The development of neonatal chronic lung disease (nCLD), i.e., bronchopulmonary dysplasia (BPD) in preterm infants, significantly determines long-term outcome in this patient population. Risk factors include mechanical ventilation and oxygen toxicity impacting on the immature lung resulting in impaired alveolarization and vascularization. Disease development is characterized by inflammation, extracellular matrix remodeling, and apoptosis, closely intertwined with the dysregulation of growth factor signaling. This review focuses on the causes and consequences of altered signaling in central pathways like transforming growth factor (TGF), platelet-derived growth factor (PDGF), and vascular endothelial growth factor (VEGF) driving these above indicated processes, i.e., inflammation, matrix remodeling, and vascular development. We emphasize the shared and distinct role of these pathways as well as their interconnection in disease initiation and progression, generating important knowledge for the development of future treatment strategies.
Collapse
Affiliation(s)
- Prajakta Oak
- Comprehensive Pneumology Center, University Hospital of the University of Munich and Helmholtz Zentrum Muenchen, Munich, Germany
| | - Anne Hilgendorff
- Comprehensive Pneumology Center, University Hospital of the University of Munich and Helmholtz Zentrum Muenchen, Munich, Germany.
- Department of Neonatology, Perinatal Center Grosshadern, Ludwig-Maximilians University, Munich, Germany.
- Center for Comprehensive Developmental Care, Dr. von Haunersches Children's Hospital University, Hospital Ludwig-Maximilians University, Munich, Germany.
| |
Collapse
|
22
|
Recombinant human elafin promotes alveologenesis in newborn mice exposed to chronic hyperoxia. Int J Biochem Cell Biol 2017; 92:173-182. [DOI: 10.1016/j.biocel.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/20/2023]
|
23
|
Alvira CM, Morty RE. Can We Understand the Pathobiology of Bronchopulmonary Dysplasia? J Pediatr 2017; 190:27-37. [PMID: 29144252 PMCID: PMC5726414 DOI: 10.1016/j.jpeds.2017.08.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/28/2017] [Accepted: 08/16/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Cristina M. Alvira
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California 94305
| | - Rory E. Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center campus of the German Center for Lung Research, Giessen, Germany,Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
24
|
Facilitated Diagnosis of Pneumothoraces in Newborn Mice Using X-ray Dark-Field Radiography. Invest Radiol 2017; 51:597-601. [PMID: 27603110 DOI: 10.1097/rli.0000000000000285] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the diagnostic value of x-ray dark-field imaging in projection radiography-based depiction of pneumothoraces in the neonatal murine lung, a potentially life-threatening medical condition that requires a timely and correct diagnosis. MATERIALS AND METHODS By the use of a unique preclinical model, 7-day-old C57Bl/6N mice received mechanical ventilation for 2 or 8 hours with oxygen-rich gas (FIO2 = 0.4; n = 24). Unventilated mice either spontaneously breathed oxygen-rich gas (FIO2 = 0.4) for 2 or 8 hours or room air (n = 22). At the end of the experiment, lungs were inflated with a standardized volume of air after a lethal dose of pentobarbital was administered to the pups. All lungs were imaged with a prototype grating-based small-animal scanner to acquire x-ray transmission and dark-field radiographs. Image contrast between the air-filled pleural space and lung tissue was quantified for both transmission and dark-field radiograms. After the independent expert's assessment, 2 blinded readers evaluated all dark-field and transmission images for the presence or absence of pneumothoraces. Contrast ratios, diagnostic accuracy, as well as reader's confidence and interreader agreement were recorded for both imaging modalities. RESULTS Evaluation of both x-ray transmission and dark-field radiographs by independent experts revealed the development of a total of 10 pneumothoraces in 8 mice. Here, the contrast ratio between the air-filled pleural space of the pneumothoraces and the lung tissue was significantly higher in the dark field (8.4 ± 3.5) when compared with the transmission images (5.1 ± 2.8; P < 0.05). Accordingly, the readers' diagnostic confidence for the diagnosis of pneumothoraces was significantly higher for dark-field compared with transmission images (P = 0.001). Interreader agreement improved from moderate for the analysis of transmission images alone (κ = 0.41) to very good when analyzing dark-field images alone (κ = 0.90) or in combination with transmission images (κ = 0.88). Diagnostic accuracy significantly improved for the analysis of dark-field images alone (P = 0.04) or in combination with transmission images (P = 0.02), compared with the analysis of transmission radiographs only. CONCLUSIONS The significant improvement in contrast ratios between lung parenchyma and free air in the dark-field images allows the facilitated detection of pneumothoraces in the newborn mouse. These preclinical experiments indicate the potential of the technique for future clinical applications.
Collapse
|
25
|
Durrani-Kolarik S, Pool CA, Gray A, Heyob KM, Cismowski MJ, Pryhuber G, Lee LJ, Yang Z, Tipple TE, Rogers LK. miR-29b supplementation decreases expression of matrix proteins and improves alveolarization in mice exposed to maternal inflammation and neonatal hyperoxia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L339-L349. [PMID: 28473324 PMCID: PMC5582933 DOI: 10.1152/ajplung.00273.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 02/06/2023] Open
Abstract
Even with advances in the care of preterm infants, chronic lung disease or bronchopulmonary dysplasia (BPD) continues to be a significant pulmonary complication. Among those diagnosed with BPD, a subset of infants develop severe BPD with disproportionate pulmonary morbidities. In addition to decreased alveolarization, these infants develop obstructive and/or restrictive lung function due to increases in or dysregulation of extracellular matrix proteins. Analyses of plasma obtained from preterm infants during the first week of life indicate that circulating miR-29b is suppressed in infants that subsequently develop BPD and that decreased circulating miR-29b is inversely correlated with BPD severity. Our mouse model mimics the pathophysiology observed in infants with severe BPD, and we have previously reported decreased pulmonary miR-29b expression in this model. The current studies tested the hypothesis that adeno-associated 9 (AAV9)-mediated restoration of miR-29b in the developing lung will improve lung alveolarization and minimize the deleterious changes in matrix deposition. Pregnant C3H/HeN mice received an intraperitoneal LPS injection on embryonic day 16 and newborn pups were exposed to 85% oxygen from birth to 14 days of life. On postnatal day 3, AAV9-miR-29b or AAV9-control was administered intranasally. Mouse lung tissues were then analyzed for changes in miR-29 expression, alveolarization, and matrix protein levels and localization. Although only modest improvements in alveolarization were detected in the AAV9-miR29b-treated mice at postnatal day 28, treatment completely attenuated defects in matrix protein expression and localization. Our data suggest that miR-29b restoration may be one component of a novel therapeutic strategy to treat or prevent severe BPD in prematurely born infants.
Collapse
Affiliation(s)
- Shaheen Durrani-Kolarik
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Caylie A Pool
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ashley Gray
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kathryn M Heyob
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Mary J Cismowski
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Gloria Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - L James Lee
- The Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio
| | - Zhaogang Yang
- The Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio
| | - Trent E Tipple
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Lynette K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio;
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
26
|
Ling R, Greenough A. Advances in emerging treatment options to prevent bronchopulmonary dysplasia. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1281736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Meiners S, Hilgendorff A. Early injury of the neonatal lung contributes to premature lung aging: a hypothesis. Mol Cell Pediatr 2016; 3:24. [PMID: 27406259 PMCID: PMC4942446 DOI: 10.1186/s40348-016-0052-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic lung disease of the newborn, also known as bronchopulmonary dysplasia (BPD), is the most common chronic lung disease in early infancy and results in an increased risk for long-lasting pulmonary impairment in the adult. BPD develops upon injury of the immature lung by oxygen toxicity, mechanical ventilation, and infections which trigger sustained inflammatory immune responses and extensive remodeling of the extracellular matrix together with dysregulated growth factor signaling. Histopathologically, BPD is characterized by impaired alveolarization, disrupted vascular development, and saccular wall fibrosis. Here, we explore the hypothesis that development of BPD involves disturbance of conserved pathways of molecular aging that may contribute to premature aging of the lung and an increased susceptibility to chronic lung diseases in adulthood.
Collapse
Affiliation(s)
- Silke Meiners
- Comprehensive Pneumology Center (CPC), Ludwig-Maximilians University, Helmholtz Zentrum München, German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377, München, Germany.
| | - Anne Hilgendorff
- Comprehensive Pneumology Center (CPC), Ludwig-Maximilians University, Helmholtz Zentrum München, German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377, München, Germany.,Perinatal Center Grosshadern, Dr. von Haunersches Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
28
|
Jagarapu J, Kelchtermans J, Rong M, Chen S, Hehre D, Hummler S, Faridi MH, Gupta V, Wu S. Efficacy of Leukadherin-1 in the Prevention of Hyperoxia-Induced Lung Injury in Neonatal Rats. Am J Respir Cell Mol Biol 2016; 53:793-801. [PMID: 25909334 DOI: 10.1165/rcmb.2014-0422oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lung inflammation plays a key role in the pathogenesis of bronchopulmonary dysplasia (BPD), a chronic lung disease of premature infants. The challenge in BPD management is the lack of effective and safe antiinflammatory agents. Leukadherin-1 (LA1) is a novel agonist of the leukocyte surface integrin CD11b/CD18 that enhances leukocyte adhesion to ligands and vascular endothelium and thus reduces leukocyte transendothelial migration and influx to the injury sites. Its functional significance in preventing hyperoxia-induced neonatal lung injury is unknown. We tested the hypothesis that administration of LA1 is beneficial in preventing hyperoxia-induced neonatal lung injury, an experimental model of BPD. Newborn rats were exposed to normoxia (21% O2) or hyperoxia (85% O2) and received twice-daily intraperitoneal injection of LA1 or placebo for 14 days. Hyperoxia exposure in the presence of the placebo resulted in a drastic increase in the influx of neutrophils and macrophages into the alveolar airspaces. This increased leukocyte influx was accompanied by decreased alveolarization and angiogenesis and increased pulmonary vascular remodeling and pulmonary hypertension (PH), the pathological hallmarks of BPD. However, administration of LA1 decreased macrophage infiltration in the lungs during hyperoxia. Furthermore, treatment with LA1 improved alveolarization and angiogenesis and decreased pulmonary vascular remodeling and PH. These data indicate that leukocyte recruitment plays an important role in the experimental model of BPD induced by hyperoxia. Targeting leukocyte trafficking using LA1, an integrin agonist, is beneficial in preventing lung inflammation and protecting alveolar and vascular structures during hyperoxia. Thus, targeting integrin-mediated leukocyte recruitment and inflammation may provide a novel strategy in preventing and treating BPD in preterm infants.
Collapse
Affiliation(s)
- Jawahar Jagarapu
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Jelte Kelchtermans
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Min Rong
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Shaoyi Chen
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Dorothy Hehre
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Stefanie Hummler
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Mohd Hafeez Faridi
- 2 Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Vineet Gupta
- 2 Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Shu Wu
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| |
Collapse
|
29
|
Ehrhardt H, Pritzke T, Oak P, Kossert M, Biebach L, Förster K, Koschlig M, Alvira CM, Hilgendorff A. Absence of TNF-α enhances inflammatory response in the newborn lung undergoing mechanical ventilation. Am J Physiol Lung Cell Mol Physiol 2016; 310:L909-18. [PMID: 27016588 DOI: 10.1152/ajplung.00367.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/18/2016] [Indexed: 12/25/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD), characterized by impaired alveolarization and vascularization in association with lung inflammation and apoptosis, often occurs after mechanical ventilation with oxygen-rich gas (MV-O2). As heightened expression of the proinflammatory cytokine TNF-α has been described in infants with BPD, we hypothesized that absence of TNF-α would reduce pulmonary inflammation, and attenuate structural changes in newborn mice undergoing MV-O2 Neonatal TNF-α null (TNF-α(-/-)) and wild type (TNF-α(+/+)) mice received MV-O2 for 8 h; controls spontaneously breathed 40% O2 Histologic, mRNA, and protein analysis in vivo were complemented by in vitro studies subjecting primary pulmonary myofibroblasts to mechanical stretch. Finally, TNF-α level in tracheal aspirates from preterm infants were determined by ELISA. Although MV-O2 induced larger and fewer alveoli in both, TNF-α(-/-) and TNF-α(+/+) mice, it caused enhanced lung apoptosis (TUNEL, caspase-3/-6/-8), infiltration of macrophages and neutrophils, and proinflammatory mediator expression (IL-1β, CXCL-1, MCP-1) in TNF-α(-/-) mice. These differences were associated with increased pulmonary transforming growth factor-β (TGF-β) signaling, decreased TGF-β inhibitor SMAD-7 expression, and reduced pulmonary NF-κB activity in ventilated TNF-α(-/-) mice. Preterm infants who went on to develop BPD showed significantly lower TNF-α levels at birth. Our results suggest a critical balance between TNF-α and TGF-β signaling in the developing lung, and underscore the critical importance of these key pathways in the pathogenesis of BPD. Future treatment strategies need to weigh the potential benefits of inhibiting pathologic cytokine expression against the potential of altering key developmental pathways.
Collapse
Affiliation(s)
- Harald Ehrhardt
- Department of General Pediatrics and Neonatology, University Hospital of Giessen and Marburg, Giessen, Germany
| | - Tina Pritzke
- Comprehensive Pneumology Center, Helmholtz Zentrum Muenchen, Munich, Germany
| | - Prajakta Oak
- Comprehensive Pneumology Center, Helmholtz Zentrum Muenchen, Munich, Germany
| | - Melina Kossert
- Comprehensive Pneumology Center, Helmholtz Zentrum Muenchen, Munich, Germany
| | - Luisa Biebach
- Department of Neonatology, Dr. von Haunersches Children's Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Kai Förster
- Department of Neonatology, Dr. von Haunersches Children's Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Markus Koschlig
- Comprehensive Pneumology Center, Helmholtz Zentrum Muenchen, Munich, Germany
| | | | - Anne Hilgendorff
- Comprehensive Pneumology Center, Helmholtz Zentrum Muenchen, Munich, Germany; Department of Neonatology, Dr. von Haunersches Children's Hospital, Ludwig-Maximilians University of Munich, Munich, Germany;
| |
Collapse
|
30
|
Joshi R, Liu S, Brown MD, Young SM, Batie M, Kofron JM, Xu Y, Weaver TE, Apsley K, Varisco BM. Stretch regulates expression and binding of chymotrypsin-like elastase 1 in the postnatal lung. FASEB J 2016; 30:590-600. [PMID: 26443822 PMCID: PMC6994241 DOI: 10.1096/fj.15-277350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/21/2015] [Indexed: 12/23/2022]
Abstract
Lung stretch is critical for normal lung development and for compensatory lung growth after pneumonectomy (PNX), but the mechanisms by which strain induces matrix remodeling are unclear. Our prior work demonstrated an association of chymotrypsin-like elastase 1 (Cela1) with lung elastin remodeling, and that strain triggered a near-instantaneous elastin-remodeling response. We sought to determine whether stretch regulates Cela1 expression and Cela1 binding to lung elastin. In C57BL/6J mice, Cela1 protein increased 176-fold during lung morphogenesis. Cela1 was covalently bound to serpin peptidase inhibitor, clade A, member 1, resulting in a higher molecular mass in lung homogenate compared to pancreas homogenate. Post-PNX, Cela1 mRNA increased 6-fold, protein 3-fold, and Cela1-positive cells 2-fold. Cela1 was expressed predominantly in alveolar type II cells in the embryonic lung and predominantly in CD90-positive lung fibroblasts postnatally. During compensatory lung growth, Cela1 expression was induced in nonproliferative mesenchymal cells. In ex vivo mouse lung sections, stretch increased Cela1 binding to lung tissue by 46%. Competitive inhibition with soluble elastin completely abrogated this increase. Areas of stretch-induced elastase activity and Cela1 binding colocalized. The stretch-dependent expression and binding kinetics of Cela1 indicate an important role in stretch-dependent remodeling of the peripheral lung during development and regeneration.
Collapse
Affiliation(s)
- Rashika Joshi
- *Division of Critical Care Medicine, Division of Developmental Biology, and Division of Pulmonary Biology, Department of Clinical Engineering, and Biomedical Research Internship for Minority Students Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; and Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Sheng Liu
- *Division of Critical Care Medicine, Division of Developmental Biology, and Division of Pulmonary Biology, Department of Clinical Engineering, and Biomedical Research Internship for Minority Students Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; and Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Montell D Brown
- *Division of Critical Care Medicine, Division of Developmental Biology, and Division of Pulmonary Biology, Department of Clinical Engineering, and Biomedical Research Internship for Minority Students Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; and Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Sarah M Young
- *Division of Critical Care Medicine, Division of Developmental Biology, and Division of Pulmonary Biology, Department of Clinical Engineering, and Biomedical Research Internship for Minority Students Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; and Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Matthew Batie
- *Division of Critical Care Medicine, Division of Developmental Biology, and Division of Pulmonary Biology, Department of Clinical Engineering, and Biomedical Research Internship for Minority Students Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; and Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - J Matthew Kofron
- *Division of Critical Care Medicine, Division of Developmental Biology, and Division of Pulmonary Biology, Department of Clinical Engineering, and Biomedical Research Internship for Minority Students Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; and Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Yan Xu
- *Division of Critical Care Medicine, Division of Developmental Biology, and Division of Pulmonary Biology, Department of Clinical Engineering, and Biomedical Research Internship for Minority Students Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; and Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Timmothy E Weaver
- *Division of Critical Care Medicine, Division of Developmental Biology, and Division of Pulmonary Biology, Department of Clinical Engineering, and Biomedical Research Internship for Minority Students Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; and Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Karen Apsley
- *Division of Critical Care Medicine, Division of Developmental Biology, and Division of Pulmonary Biology, Department of Clinical Engineering, and Biomedical Research Internship for Minority Students Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; and Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Brian M Varisco
- *Division of Critical Care Medicine, Division of Developmental Biology, and Division of Pulmonary Biology, Department of Clinical Engineering, and Biomedical Research Internship for Minority Students Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; and Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| |
Collapse
|
31
|
Mižíková I, Morty RE. The Extracellular Matrix in Bronchopulmonary Dysplasia: Target and Source. Front Med (Lausanne) 2015; 2:91. [PMID: 26779482 PMCID: PMC4688343 DOI: 10.3389/fmed.2015.00091] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/08/2015] [Indexed: 12/22/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth that contributes significantly to morbidity and mortality in neonatal intensive care units. BPD results from life-saving interventions, such as mechanical ventilation and oxygen supplementation used to manage preterm infants with acute respiratory failure, which may be complicated by pulmonary infection. The pathogenic pathways driving BPD are not well-delineated but include disturbances to the coordinated action of gene expression, cell-cell communication, physical forces, and cell interactions with the extracellular matrix (ECM), which together guide normal lung development. Efforts to further delineate these pathways have been assisted by the use of animal models of BPD, which rely on infection, injurious mechanical ventilation, or oxygen supplementation, where histopathological features of BPD can be mimicked. Notable among these are perturbations to ECM structures, namely, the organization of the elastin and collagen networks in the developing lung. Dysregulated collagen deposition and disturbed elastin fiber organization are pathological hallmarks of clinical and experimental BPD. Strides have been made in understanding the disturbances to ECM production in the developing lung, but much still remains to be discovered about how ECM maturation and turnover are dysregulated in aberrantly developing lungs. This review aims to inform the reader about the state-of-the-art concerning the ECM in BPD, to highlight the gaps in our knowledge and current controversies, and to suggest directions for future work in this exciting and complex area of lung development (patho)biology.
Collapse
Affiliation(s)
- Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Pulmonology, Department of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen, Germany
| |
Collapse
|
32
|
Balany J, Bhandari V. Understanding the Impact of Infection, Inflammation, and Their Persistence in the Pathogenesis of Bronchopulmonary Dysplasia. Front Med (Lausanne) 2015; 2:90. [PMID: 26734611 PMCID: PMC4685088 DOI: 10.3389/fmed.2015.00090] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
The concerted interaction of genetic and environmental factors acts on the preterm human immature lung with inflammation being the common denominator leading to the multifactorial origin of the most common chronic lung disease in infants – bronchopulmonary dysplasia (BPD). Adverse perinatal exposure to infection/inflammation with added insults like invasive mecha nical ventilation, exposure to hyperoxia, and sepsis causes persistent immune dysregulation. In this review article, we have attempted to analyze and consolidate current knowledge about the role played by persistent prenatal and postnatal inflammation in the pathogenesis of BPD. While some parameters of the early inflammatory response (neutrophils, cytokines, etc.) may not be detectable after days to weeks of exposure to noxious stimuli, they have already initiated the signaling pathways of the inflammatory process/immune cascade and have affected permanent defects structurally and functionally in the BPD lungs. Hence, translational research aimed at prevention/amelioration of BPD needs to focus on dampening the inflammatory response at an early stage to prevent the cascade of events leading to lung injury with impaired healing resulting in the pathologic pulmonary phenotype of alveolar simplification and dysregulated vascularization characteristic of BPD.
Collapse
Affiliation(s)
- Jherna Balany
- Section of Neonatology, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine , Philadelphia, PA , USA
| | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine , Philadelphia, PA , USA
| |
Collapse
|
33
|
Dénervaud V, Gremlich S, Trummer-Menzi E, Schittny JC, Roth-Kleiner M. Gene expression profile in newborn rat lungs after two days of recovery of mechanical ventilation. Pediatr Res 2015; 78:641-9. [PMID: 26353077 DOI: 10.1038/pr.2015.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/18/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Preterm infants having immature lungs often require respiratory support, potentially leading to bronchopulmonary dysplasia (BPD). Conventional BPD rodent models based on mechanical ventilation (MV) present outcome measured at the end of the ventilation period. A reversible intubation and ventilation model in newborn rats recently allowed discovering that different sets of genes modified their expression related to time after MV. In a newborn rat model, the expression profile 48 h after MV was analyzed with gene arrays to detect potentially interesting candidates with an impact on BPD development. METHODS Rat pups were injected P4-5 with 2 mg/kg lipopolysaccharide (LPS). One day later, MV with 21 or 60% oxygen was applied during 6 h. Animals were sacrified 48 h after end of ventilation. Affymetrix gene arrays assessed the total gene expression profile in lung tissue. RESULTS In fully treated animals (LPS + MV + 60% O(2)) vs. controls, 271 genes changed expression significantly. All modified genes could be classified in six pathways: tissue remodeling/wound repair, immune system and inflammatory response, hematopoiesis, vasodilatation, and oxidative stress. Major alterations were found in the MMP and complement system. CONCLUSION MMPs and complement factors play a central role in several of the pathways identified and may represent interesting targets for BPD treatment/prevention.Bronchopulmonary dysplasia (BPD) is a chronic lung disease occurring in ~30% of preterm infants born less than 30 wk of gestation (1). Its main risk factors include lung immaturity due to preterm delivery, mechanical ventilation (MV), oxygen toxicity, chorioamnionitis, and sepsis. The main feature is an arrest of alveolar and capillary formation (2). Models trying to decipher genes involved in the pathophysiology of BPD are mainly based on MV and oxygen application to young mammals with immature lungs of different species (3). In newborn rodent models, analyses of lung structure and gene and protein expression are performed for practical reasons directly at the end of MV (4,5,6). However, later appearing changes of gene expression might also have an impact on lung development and the evolution towards BPD and cannot be discovered by such models. Recently, we developed a newborn rat model of MV using an atraumatic (orotracheal) intubation technique that allows the weaning of the newborn animal off anesthesia and MV, the extubation to spontaneous breathing, and therefore allows the evaluation of effects of MV after a ventilation-free period of recovery (7). Indeed, applying this concept of atraumatic intubation by direct laryngoscopy, we recently were able to show significant differences between gene expression changes appearing directly after MV compared to those measured after a ventilation-free interval of 48 h. Immediately after MV, inflammation-related genes showed a transitory modified expression, while another set of more structurally related genes changed their expression only after a delay of 2 d (7). Lung structure, analyzed by conventional 2D histology and also by 3D reconstruction using synchrotron x-ray tomographic microscopy revealed, 48 h after end of MV, a reduced complexity of lung architecture compared to the nonventilated rat lungs, similar to the typical findings in BPD. To extend these observations about late gene expression modifications, we performed with a similar model a full gene expression profile of lung tissue 48 h after the end of MV with either room air or 60% oxygen. Essentially, we measured changes in the expression of genes related to the MMPs and complement system which played a role in many of the six identified mostly affected pathways.
Collapse
Affiliation(s)
- Valérie Dénervaud
- Department of Pediatrics, Clinic of Neonatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sandrine Gremlich
- Department of Pediatrics, Clinic of Neonatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Eliane Trummer-Menzi
- Department of Pediatrics, Clinic of Neonatology, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Matthias Roth-Kleiner
- Department of Pediatrics, Clinic of Neonatology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Kawakami S, Minamisawa S. Oxygenation decreases elastin secretion from rat ductus arteriosus smooth muscle cells. Pediatr Int 2015; 57:541-5. [PMID: 25970707 DOI: 10.1111/ped.12684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 12/09/2014] [Accepted: 01/23/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND The ductus arteriosus (DA), a fetal arterial connection between the main pulmonary artery and the descending aorta, normally closes immediately after birth. The oxygen concentration in the blood rises after birth, and in the DA this increase in oxygen concentration causes functional closure, which is induced by smooth muscle contraction. Previous studies have demonstrated that hypoxia and/or oxygenation affect vascular remodeling of various vessels. Therefore, we hypothesized that the rise in oxygen concentration would affect the vascular structure of the DA due to production of proteins secreted from DA smooth muscle cells (SMC). METHODS AND RESULTS Liquid chromatography-tandem mass spectrometry was used to comprehensively investigate the secreted proteins in the supernatant of rat DA SMC harvested under hypoxic conditions (1% oxygen) or under normoxic conditions (21% oxygen). We found that the rise in oxygen concentration reduced the secretion of elastin from DA SMC. On reverse transcription-polymerase chain reaction, the expression of elastin mRNA was not significantly changed in DA SMC from hypoxic to normoxic conditions. CONCLUSIONS Given that elastin forms internal elastic lamina and elastic fibers in the vascular muscle layers, and that a rise in oxygen concentration reduced the secretion of elastin, this suggests that the rise in blood oxygen concentration after birth reduces the secretion of elastin, and therefore may play a role in DA structural remodeling after birth.
Collapse
Affiliation(s)
- Shoji Kawakami
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Susumu Minamisawa
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Department of Cell Physiology, Jikei University, Tokyo, Japan
| |
Collapse
|
35
|
Jiang X, Nguyen TT, Tian W, Sung YK, Yuan K, Qian J, Rajadas J, Sallenave JM, Nickel NP, de Jesus Perez V, Rabinovitch M, Nicolls MR. Cyclosporine Does Not Prevent Microvascular Loss in Transplantation but Can Synergize With a Neutrophil Elastase Inhibitor, Elafin, to Maintain Graft Perfusion During Acute Rejection. Am J Transplant 2015; 15:1768-81. [PMID: 25727073 PMCID: PMC4474772 DOI: 10.1111/ajt.13189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/10/2014] [Accepted: 12/26/2014] [Indexed: 01/25/2023]
Abstract
The loss of a functional microvascular bed in rejecting solid organ transplants is correlated with fibrotic remodeling and chronic rejection; in lung allografts, this pathology is predicted by bronchoalveolar fluid neutrophilia which suggests a role for polymorphonuclear cells in microcirculatory injury. In a mouse orthotopic tracheal transplant model, cyclosporine, which primarily inhibits T cells, failed as a monotherapy for preventing microvessel rejection and graft ischemia. To target neutrophil action that may be contributing to vascular injury, we examined the effect of a neutrophil elastase inhibitor, elafin, on the microvascular health of transplant tissue. We showed that elafin monotherapy prolonged microvascular perfusion and enhanced tissue oxygenation while diminishing the infiltration of neutrophils and macrophages and decreasing tissue deposition of complement C3 and the membrane attack complex, C5b-9. Elafin was also found to promote angiogenesis through activation of the extracellular signal-regulated kinase (ERK) signaling pathway but was insufficient as a single agent to completely prevent tissue ischemia during acute rejection episodes. However, when combined with cyclosporine, elafin effectively preserved airway microvascular perfusion and oxygenation. The therapeutic strategy of targeting neutrophil elastase activity alongside standard immunosuppression during acute rejection episodes may be an effective approach for preventing the development of irreversible fibrotic remodeling.
Collapse
Affiliation(s)
- Xinguo Jiang
- Veterans’ Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA
| | - Tom T. Nguyen
- Veterans’ Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA
| | - Wen Tian
- Veterans’ Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA
| | - Yon K. Sung
- Veterans’ Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA
| | - Ke Yuan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA
| | - Jin Qian
- Veterans’ Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Jean-Michel Sallenave
- Unité de Défense Innée et Inflammation, Institut Pasteur, Paris, France,INSERM U884, Paris, France
| | - Nils P. Nickel
- Cardiovascular Institute and Department of Pediatrics, Stanford, CA
| | - Vinicio de Jesus Perez
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Mark R. Nicolls
- Veterans’ Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
36
|
Mižíková I, Ruiz-Camp J, Steenbock H, Madurga A, Vadász I, Herold S, Mayer K, Seeger W, Brinckmann J, Morty RE. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1145-58. [DOI: 10.1152/ajplung.00039.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/03/2015] [Indexed: 12/31/2022] Open
Abstract
Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia.
Collapse
Affiliation(s)
- Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jordi Ruiz-Camp
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany; and
| | - Alicia Madurga
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany; and
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Rory E. Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
37
|
Joss-Moore LA, Lane RH, Albertine KH. Epigenetic contributions to the developmental origins of adult lung disease. Biochem Cell Biol 2015; 93:119-27. [PMID: 25493710 PMCID: PMC5683896 DOI: 10.1139/bcb-2014-0093] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Perinatal insults, including intrauterine growth restriction, preterm birth, maternal exposure to toxins, or dietary deficiencies produce deviations in the epigenome of lung cells. Occurrence of perinatal insults often coincides with the final stages of lung development. The result of epigenome disruptions in response to perinatal insults during lung development may be long-term structural and functional impairment of the lung and development of lung disease. Understanding the contribution of epigenetic mechanisms to life-long lung disease following perinatal insults is the focus of the developmental origins of adult lung disease field. DNA methylation, histone modifications, and microRNA changes are all observed in various forms of lung disease. However, the perinatal contribution to such epigenetic mechanisms is poorly understood. Here we discuss the developmental origins of adult lung disease, the interplay between perinatal events, lung development and disease, and the role that epigenetic mechanisms play in connecting these events.
Collapse
Affiliation(s)
- Lisa A Joss-Moore
- Division of Neonatology, Department of Pediatrics, University of Utah, P.O. Box 581289, Salt Lake City, UT 84158, USA
| | | | | |
Collapse
|
38
|
Hilgendorff A, O'Reilly MA. Bronchopulmonary dysplasia early changes leading to long-term consequences. Front Med (Lausanne) 2015; 2:2. [PMID: 25729750 PMCID: PMC4325927 DOI: 10.3389/fmed.2015.00002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/05/2015] [Indexed: 12/05/2022] Open
Abstract
Neonatal chronic lung disease, i.e., bronchopulmonary dysplasia, is characterized by impaired pulmonary development resulting from the impact of different risk factors including infections, hyperoxia, and mechanical ventilation on the immature lung. Remodeling of the extracellular matrix, apoptosis as well as altered growth factor signaling characterize the disease. The immediate consequences of these early insults have been studied in different animal models supported by results from in vitro approaches leading to the successful application of some findings to the clinical setting in the past. Nonetheless, existing information about long-term consequences of the identified early and most likely sustained changes to the developing lung is limited. Interesting results point towards a tremendous impact of these early injuries on the pulmonary repair capacity as well as aging related processes in the adult lung.
Collapse
Affiliation(s)
- Anne Hilgendorff
- Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL) , Munich , Germany ; Neonatology, Perinatal Center Grosshadern, Dr. von Hauner Children's Hospital, Ludwig-Maximilians University , Munich , Germany
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, The University of Rochester , Rochester, NY , USA
| |
Collapse
|
39
|
Sureshbabu A, Syed MA, Boddupalli CS, Dhodapkar MV, Homer RJ, Minoo P, Bhandari V. Conditional overexpression of TGFβ1 promotes pulmonary inflammation, apoptosis and mortality via TGFβR2 in the developing mouse lung. Respir Res 2015; 16:4. [PMID: 25591994 PMCID: PMC4307226 DOI: 10.1186/s12931-014-0162-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022] Open
Abstract
Background Earlier studies have reported that transforming growth factor beta 1(TGFβ1) is a critical mediator of hyperoxia-induced acute lung injury (HALI) in developing lungs, leading to impaired alveolarization and a pulmonary phenotype of bronchopulmonary dysplasia (BPD). However, the mechanisms responsible for the TGFβ1-induced inflammatory signals that lead to cell death and abnormal alveolarization are poorly understood. We hypothesized that TGFβ1 signaling via TGFβR2 is necessary for the pathogenesis of the BPD pulmonary phenotype resulting from HALI. Methods We utilized lung epithelial cell-specific TGFβ1 overexpressing transgenic and TGFβR2 null mutant mice to evaluate the effects on neonatal mortality as well as pulmonary inflammation and apoptosis in developing lungs. Lung morphometry was performed to determine the impaired alveolarization and multicolor flow cytometry studies were performed to detect inflammatory macrophages and monocytes in lungs. Apoptotic cell death was measured with TUNEL assay, immunohistochemistry and western blotting and protein expression of angiogenic mediators were also analyzed. Results Our data reveals that increased TGFβ1 expression in newborn mice lungs leads to increased mortality, macrophage and immature monocyte infiltration, apoptotic cell death specifically in Type II alveolar epithelial cells (AECs), impaired alveolarization, and dysregulated angiogenic molecular markers. Conclusions Our study has demonstrated the potential role of inhibition of TGFβ1 signaling via TGFβR2 for improved survival, reduced inflammation and apoptosis that may provide insights for the development of potential therapeutic strategies targeted against HALI and BPD.
Collapse
Affiliation(s)
- Angara Sureshbabu
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Mansoor A Syed
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Chandra Sekhar Boddupalli
- Department of Medicine and Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Madhav V Dhodapkar
- Department of Medicine and Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - Robert J Homer
- Department of Pathology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| | - Parviz Minoo
- Department of Pediatrics, University of Southern California, 1200 North State Street, Los Angeles, CA, 90033, USA.
| | - Vineet Bhandari
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
40
|
Hilgendorff A, Parai K, Ertsey R, Navarro E, Jain N, Carandang F, Peterson J, Mokres L, Milla C, Preuss S, Alcazar MA, Khan S, Masumi J, Ferreira-Tojais N, Mujahid S, Starcher B, Rabinovitch M, Bland R. Lung matrix and vascular remodeling in mechanically ventilated elastin haploinsufficient newborn mice. Am J Physiol Lung Cell Mol Physiol 2014; 308:L464-78. [PMID: 25539853 DOI: 10.1152/ajplung.00278.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln(+/-)) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would accentuate lung growth arrest seen after prolonged MV of neonatal mice. We studied 5-day-old wild-type (Eln(+/+)) and Eln(+/-) littermates at baseline and after MV with air for 8-24 h. Lungs of unventilated Eln(+/-) mice contained ∼50% less elastin and ∼100% more collagen-1 and lysyl oxidase compared with Eln(+/+) pups. Eln(+/-) lungs contained fewer capillaries than Eln(+/+) lungs, without discernible differences in alveolar structure. In response to MV, lung tropoelastin and elastase activity increased in Eln(+/+) neonates, whereas tropoelastin decreased and elastase activity was unchanged in Eln(+/-) mice. Fibrillin-1 protein increased in lungs of both groups during MV, more in Eln(+/-) than in Eln(+/+) pups. In both groups, MV caused capillary loss, with larger and fewer alveoli compared with unventilated controls. Respiratory system elastance, which was less in unventilated Eln(+/-) compared with Eln(+/+) mice, was similar in both groups after MV. These results suggest that elastin haploinsufficiency adversely impacts pulmonary angiogenesis and that MV dysregulates elastic fiber integrity, with further loss of lung capillaries, lung growth arrest, and impaired respiratory function in both Eln(+/+) and Eln(+/-) mice. Paucity of lung capillaries in Eln(+/-) newborns might help explain subsequent development of pulmonary hypertension previously reported in adult Eln(+/-) mice.
Collapse
Affiliation(s)
- Anne Hilgendorff
- Department of Pediatrics, Stanford University, Stanford, California; Comprehensive Pneumology Center, Ludwig-Maximilian University, Munich, Germany; and
| | - Kakoli Parai
- Department of Pediatrics, Stanford University, Stanford, California
| | - Robert Ertsey
- Department of Pediatrics, Stanford University, Stanford, California
| | - Edwin Navarro
- Department of Pediatrics, Stanford University, Stanford, California
| | - Noopur Jain
- Department of Pediatrics, Stanford University, Stanford, California
| | | | - Joanna Peterson
- Department of Pediatrics, Stanford University, Stanford, California
| | - Lucia Mokres
- Department of Pediatrics, Stanford University, Stanford, California
| | - Carlos Milla
- Department of Pediatrics, Stanford University, Stanford, California
| | - Stefanie Preuss
- Department of Pediatrics, Stanford University, Stanford, California
| | | | - Suleman Khan
- Department of Pediatrics, Stanford University, Stanford, California
| | - Juliet Masumi
- Department of Pediatrics, Stanford University, Stanford, California
| | | | - Sana Mujahid
- Department of Pediatrics, Stanford University, Stanford, California
| | - Barry Starcher
- Department of Biochemistry, University of Texas, Tyler, Texas
| | | | - Richard Bland
- Department of Pediatrics, Stanford University, Stanford, California;
| |
Collapse
|
41
|
Aberrant elastin remodeling in the lungs of O2-exposed newborn mice; primarily results from perturbed interaction between integrins and elastin. Cell Tissue Res 2014; 359:589-603. [DOI: 10.1007/s00441-014-2035-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/13/2014] [Indexed: 01/06/2023]
|
42
|
Hilgendorff A, Reiss I, Ehrhardt H, Eickelberg O, Alvira CM. Chronic lung disease in the preterm infant. Lessons learned from animal models. Am J Respir Cell Mol Biol 2014; 50:233-45. [PMID: 24024524 DOI: 10.1165/rcmb.2013-0014tr] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neonatal chronic lung disease, also known as bronchopulmonary dysplasia (BPD), is the most common complication of premature birth, affecting up to 30% of very low birth weight infants. Improved medical care has allowed for the survival of the most premature infants and has significantly changed the pathology of BPD from a disease marked by severe lung injury to the "new" form characterized by alveolar hypoplasia and impaired vascular development. However, increased patient survival has led to a paucity of pathologic specimens available from infants with BPD. This, combined with the lack of a system to model alveolarization in vitro, has resulted in a great need for animal models that mimic key features of the disease. To this end, a number of animal models have been created by exposing the immature lung to injuries induced by hyperoxia, mechanical stretch, and inflammation and most recently by the genetic modification of mice. These animal studies have 1) allowed insight into the mechanisms that determine alveolar growth, 2) delineated factors central to the pathogenesis of neonatal chronic lung disease, and 3) informed the development of new therapies. In this review, we summarize the key findings and limitations of the most common animal models of BPD and discuss how knowledge obtained from these studies has informed clinical care. Future studies should aim to provide a more complete understanding of the pathways that preserve and repair alveolar growth during injury, which might be translated into novel strategies to treat lung diseases in infants and adults.
Collapse
Affiliation(s)
- Anne Hilgendorff
- 1 Department of Perinatology Grosshadern, Ludwig-Maximilian-University, Munich, Germany
| | | | | | | | | |
Collapse
|
43
|
Witsch TJ, Niess G, Sakkas E, Likhoshvay T, Becker S, Herold S, Mayer K, Vadász I, Roberts JD, Seeger W, Morty RE. Transglutaminase 2: a new player in bronchopulmonary dysplasia? Eur Respir J 2014; 44:109-21. [PMID: 24603819 DOI: 10.1183/09031936.00075713] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aberrant remodelling of the extracellular matrix in the developing lung may underlie arrested alveolarisation associated with bronchopulmonary dysplasia (BPD). Transglutaminases are regulators of extracellular matrix remodelling. Therefore, the expression and activity of transglutaminases were assessed in lungs from human neonates with BPD and in a rodent model of BPD. Transglutaminase expression and localisation were assessed by RT-PCR, immunoblotting, activity assay and immunohistochemical analyses of human and mouse lung tissues. Transglutaminase regulation by transforming growth factor (TGF)-β was investigated in lung cells by luciferase-based reporter assay and RT-PCR. TGF-β signalling was neutralised in vivo in an animal model of BPD, to determine whether TGF-β mediated the hyperoxia-induced changes in transglutaminase expression. Transglutaminase 2 expression was upregulated in the lungs of preterm infants with BPD and in the lungs of hyperoxia-exposed mouse pups, where lung development was arrested. Transglutaminase 2 localised to the developing alveolar septa. TGF-β was identified as a regulator of transglutaminase 2 expression in human and mouse lung epithelial cells. In vivo neutralisation of TGF-β signalling partially restored normal lung structure and normalised lung transglutaminase 2 mRNA expression. Our data point to a role for perturbed transglutaminase 2 activity in the arrested alveolarisation associated with BPD.
Collapse
Affiliation(s)
- Thilo J Witsch
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen
| | - Gero Niess
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elpidoforos Sakkas
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Tatyana Likhoshvay
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Simone Becker
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Susanne Herold
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen
| | - Konstantin Mayer
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen
| | - István Vadász
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen
| | - Jesse D Roberts
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Werner Seeger
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Dept of Internal Medicine, University of Giessen and Marburg Lung Center, Giessen Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
44
|
Bhandari V. Postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia. ACTA ACUST UNITED AC 2014; 100:189-201. [PMID: 24578018 DOI: 10.1002/bdra.23220] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 12/18/2022]
Abstract
Exposure to hyperoxia, invasive mechanical ventilation, and systemic/local sepsis are important antecedents of postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia (BPD). This review will summarize information obtained from animal (baboon, lamb/sheep, rat and mouse) models that pertain to the specific inflammatory agents and signaling molecules that predispose a premature infant to BPD.
Collapse
Affiliation(s)
- Vineet Bhandari
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
45
|
|
46
|
Bhandari V. Drug therapy trials for the prevention of bronchopulmonary dysplasia: current and future targets. Front Pediatr 2014; 2:76. [PMID: 25121076 PMCID: PMC4110623 DOI: 10.3389/fped.2014.00076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/06/2014] [Indexed: 12/31/2022] Open
Affiliation(s)
- Vineet Bhandari
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine , New Haven, CT , USA
| |
Collapse
|
47
|
Williams AE, Chambers RC. The mercurial nature of neutrophils: still an enigma in ARDS? Am J Physiol Lung Cell Mol Physiol 2013; 306:L217-30. [PMID: 24318116 DOI: 10.1152/ajplung.00311.2013] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is a life-threatening lung condition resulting from direct and indirect insults to the lung. It is characterized by disruption of the endothelial-epithelial barrier, alveolar damage, pulmonary edema, and respiratory failure. A key feature of ARDS is the accumulation of neutrophils in the lung microvasculature, interstitium, and alveolar space. Despite a clear association between neutrophil influx into the lung and disease severity, there is some debate as to whether neutrophils directly contribute to disease pathogenesis. The primary function of neutrophils is to provide immediate host defense against pathogenic microorganisms. Neutrophils release numerous antimicrobial factors such as reactive oxygen species, proteinases, and neutrophil extracellular traps. However, these factors are also toxic to host cells and can result in bystander tissue damage. The excessive accumulation of neutrophils in ARDS may therefore contribute to disease progression. Central to neutrophil recruitment is the release of chemokines, including the archetypal neutrophil chemoattractant IL-8, from resident pulmonary cells. However, the chemokine network in the inflamed lung is complex and may involve several other chemokines, including CXCL10, CCL2, and CCL7. This review will therefore focus on the experimental and clinical evidence supporting neutrophils as key players in ARDS and the chemokines involved in recruiting them into the lung.
Collapse
Affiliation(s)
- Andrew E Williams
- Centre for Inflammation and Tissue Repair, Univ. College London, Rayne Institute, 5 Univ. St., London WC1E 6JF, UK.
| | | |
Collapse
|
48
|
Witsch TJ, Turowski P, Sakkas E, Niess G, Becker S, Herold S, Mayer K, Vadász I, Roberts JD, Seeger W, Morty RE. Deregulation of the lysyl hydroxylase matrix cross-linking system in experimental and clinical bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2013; 306:L246-59. [PMID: 24285264 DOI: 10.1152/ajplung.00109.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common and serious complication of premature birth, characterized by a pronounced arrest of alveolar development. The underlying pathophysiological mechanisms are poorly understood although perturbations to the maturation and remodeling of the extracellular matrix (ECM) are emerging as candidate disease pathomechanisms. In this study, the expression and regulation of three members of the lysyl hydroxylase family of ECM remodeling enzymes (Plod1, Plod2, and Plod3) in clinical BPD, as well as in an experimental animal model of BPD, were addressed. All three enzymes were localized to the septal walls in developing mouse lungs, with Plod1 also expressed in the vessel walls of the developing lung and Plod3 expressed uniquely at the base of developing septa. The expression of plod1, plod2, and plod3 was upregulated in the lungs of mouse pups exposed to 85% O2, an experimental animal model of BPD. Transforming growth factor (TGF)-β increased plod2 mRNA levels and activated the plod2 promoter in vitro in lung epithelial cells and in lung fibroblasts. Using in vivo neutralization of TGF-β signaling in the experimental animal model of BPD, TGF-β was identified as the regulator of aberrant plod2 expression. PLOD2 mRNA expression was also elevated in human neonates who died with BPD or at risk for BPD, compared with neonates matched for gestational age at birth or chronological age at death. These data point to potential roles for lysyl hydroxylases in normal lung development, as well as in perturbed late lung development associated with BPD.
Collapse
Affiliation(s)
- Thilo J Witsch
- Dept. of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, D-61231 Bad Nauheim, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Madurga A, Mizíková I, Ruiz-Camp J, Morty RE. Recent advances in late lung development and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2013; 305:L893-905. [PMID: 24213917 DOI: 10.1152/ajplung.00267.2013] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In contrast to early lung development, a process exemplified by the branching of the developing airways, the later development of the immature lung remains very poorly understood. A key event in late lung development is secondary septation, in which secondary septa arise from primary septa, creating a greater number of alveoli of a smaller size, which dramatically expands the surface area over which gas exchange can take place. Secondary septation, together with architectural changes to the vascular structure of the lung that minimize the distance between the inspired air and the blood, are the objectives of late lung development. The process of late lung development is disturbed in bronchopulmonary dysplasia (BPD), a disease of prematurely born infants in which the structural development of the alveoli is blunted as a consequence of inflammation, volutrauma, and oxygen toxicity. This review aims to highlight notable recent developments in our understanding of late lung development and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Alicia Madurga
- Dept. of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, D-61231 Bad Nauheim, Germany.
| | | | | | | |
Collapse
|
50
|
Stocks J, Hislop A, Sonnappa S. Early lung development: lifelong effect on respiratory health and disease. THE LANCET RESPIRATORY MEDICINE 2013; 1:728-42. [PMID: 24429276 DOI: 10.1016/s2213-2600(13)70118-8] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Interest in the contribution of changes in lung development during early life to subsequent respiratory morbidity is increasing. Most evidence of an association between adverse intrauterine factors and structural effects on the developing lung is from animal studies. Such evidence has been augmented by epidemiological studies showing associations between insults to the developing lung during prenatal and early postnatal life and adult respiratory morbidity or reduced lung function, and by physiological studies that have elucidated mechanisms underlying these associations. The true effect of early insults on subsequent respiratory morbidity can be understood only if the many prenatal and postnatal factors that can affect lung development are taken into account. Adverse factors affecting lung development during fetal life and early childhood reduce the attainment of maximum lung function and accelerate lung function decline in adulthood, initiating or worsening morbidity in susceptible individuals. In this Review, we focus on factors that adversely affect lung development in utero and during the first 5 years after birth, thereby predisposing individuals to reduced lung function and increased respiratory morbidity throughout life. We focus particularly on asthma and COPD.
Collapse
Affiliation(s)
- Janet Stocks
- University College London, Institute of Child Health, London, UK.
| | - Alison Hislop
- University College London, Institute of Child Health, London, UK
| | - Samatha Sonnappa
- University College London, Institute of Child Health, London, UK
| |
Collapse
|