1
|
Koniari E, Hatziagapiou K, Nikola AO, Georgoulia K, Marinakis N, Bakakos P, Athanasopoulou A, Koromilias A, Rovina N, Efthymiou V, Papakonstantinou E, Vlachakis D, Mavrikou S, Koutsoukou A, Traeger-Synodinos J, Chrousos GP. ENaC gene variants and their involvement in Covid‑19 severity. Biomed Rep 2024; 21:176. [PMID: 39355526 PMCID: PMC11443493 DOI: 10.3892/br.2024.1864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/05/2024] [Indexed: 10/03/2024] Open
Abstract
Epidemiological studies report the association of diverse cardiovascular conditions with coronavirus disease 2019 (COVID-19), but the causality has remained to be established. Specific genetic factors and the extent to which they can explain variation in susceptibility or severity are largely elusive. The present study aimed to evaluate the link between 32 cardio-metabolic traits and COVID-19. A total of 60 participants were enrolled, who were categorized into the following 4 groups: A control group with no COVID-19 or any other underlying pathologies, a group of patients with a certain form of dyslipidemia and predisposition to atherosclerotic disease, a COVID-19 group with mild or no symptoms and a COVID-19 group with severe symptomatology hospitalized at the Intensive Care Unit of Sotiria Hospital (Athens, Greece). Demographic, clinical and laboratory data were recorded and genetic material was isolated, followed by simultaneous analysis of the genes related to dyslipidemia using a custom-made next-generation sequencing panel. In the COVID-19 group with mild or absent symptoms, the variant c.112C>T:p.P38S was detected in the sodium channel epithelial 1 subunit α (SCNN1A) gene, with a major allele frequency (Maf) of <0.01. In the COVID-19 group with severe symptoms, the variant c.786G>A:p.T262T was detected in the SCNN1B gene, which encodes for the β-subunit of the epithelial sodium channel ENaC, with a Maf <0.01. None of the two rare variants were detected in the control or dyslipidemia groups. In conclusion, the current study suggests that ENaC variants are likely associated with genetic susceptibility to COVID-19, supporting the rationale for the risk and protective genetic factors for the morbidity and mortality of COVID-19.
Collapse
Affiliation(s)
- Eleni Koniari
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Kyriaki Hatziagapiou
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Pediatrics, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
| | - Alexandra Olti Nikola
- First Department of Pediatrics, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
| | - Konstantina Georgoulia
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Marinakis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Petros Bakakos
- Intensive Care Unit, First Department of Pulmonary Medicine, National and Kapodistrian University of Athens and Sotiria Hospital, 11527 Athens, Greece
| | - Athanasia Athanasopoulou
- Intensive Care Unit, First Department of Pulmonary Medicine, National and Kapodistrian University of Athens and Sotiria Hospital, 11527 Athens, Greece
| | - Athanasios Koromilias
- Intensive Care Unit, First Department of Pulmonary Medicine, National and Kapodistrian University of Athens and Sotiria Hospital, 11527 Athens, Greece
| | - Nikoletta Rovina
- Intensive Care Unit, First Department of Pulmonary Medicine, National and Kapodistrian University of Athens and Sotiria Hospital, 11527 Athens, Greece
| | - Vasiliki Efthymiou
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 10447 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 10447 Athens, Greece
| | - Sophia Mavrikou
- Faculty of Applied Biology and Biotechnology, Department of Biotechnology, Agricultural University of Athens, 10447 Athens, Greece
| | - Antonia Koutsoukou
- Intensive Care Unit, First Department of Pulmonary Medicine, National and Kapodistrian University of Athens and Sotiria Hospital, 11527 Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Haywood LMB, Sheahan BJ. A Review of Epithelial Ion Transporters and Their Roles in Equine Infectious Colitis. Vet Sci 2024; 11:480. [PMID: 39453072 PMCID: PMC11512231 DOI: 10.3390/vetsci11100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/26/2024] Open
Abstract
Equine colitis is a devastating disease with a high mortality rate. Infectious pathogens associated with colitis in the adult horse include Clostridioides difficile, Clostridium perfringens, Salmonella spp., Neorickettsia risticii/findlaynesis, and equine coronavirus. Antimicrobial-associated colitis can be associated with the presence of infectious pathogens. Colitis can also be due to non-infectious causes, including non-steroidal anti-inflammatory drug administration, sand ingestion, and infiltrative bowel disease. Current treatments focus on symptomatic treatment (restoring fluid and electrolyte balance, preventing laminitis and sepsis). Intestinal epithelial ion channels are key regulators of electrolyte (especially sodium and chloride) and water movement into the lumen. Dysfunctional ion channels play a key role in the development of diarrhea. Infectious pathogens, including Salmonella spp. and C. difficile, have been shown to regulate ion channels in a variety of ways. In other species, there has been an increased interest in ion channel manipulation as an anti-diarrheal treatment. While targeting ion channels also represents a promising way to manage diarrhea associated with equine colitis, ion channels have not been well studied in the equine colon. This review provides an overview of what is known about colonic ion channels and their known or putative role in specific types of equine colitis due to various pathogens.
Collapse
Affiliation(s)
| | - Breanna J. Sheahan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA;
| |
Collapse
|
3
|
Magaña-Ávila GR, Moreno E, Plata C, Carbajal-Contreras H, Murillo-de-Ozores AR, García-Ávila K, Vázquez N, Syed M, Wysocki J, Batlle D, Gamba G, Castañeda-Bueno M. Effect of SARS-CoV-2 S protein on the proteolytic cleavage of the epithelial Na+ channel ENaC. PLoS One 2024; 19:e0302436. [PMID: 38662786 PMCID: PMC11045049 DOI: 10.1371/journal.pone.0302436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Severe cases of COVID-19 are characterized by development of acute respiratory distress syndrome (ARDS). Water accumulation in the lungs is thought to occur as consequence of an exaggerated inflammatory response. A possible mechanism could involve decreased activity of the epithelial Na+ channel, ENaC, expressed in type II pneumocytes. Reduced transepithelial Na+ reabsorption could contribute to lung edema due to reduced alveolar fluid clearance. This hypothesis is based on the observation of the presence of a novel furin cleavage site in the S protein of SARS-CoV-2 that is identical to the furin cleavage site present in the alpha subunit of ENaC. Proteolytic processing of αENaC by furin-like proteases is essential for channel activity. Thus, competition between S protein and αENaC for furin-mediated cleavage in SARS-CoV-2-infected cells may negatively affect channel activity. Here we present experimental evidence showing that coexpression of the S protein with ENaC in a cellular model reduces channel activity. In addition, we show that bidirectional competition for cleavage by furin-like proteases occurs between 〈ENaC and S protein. In transgenic mice sensitive to lethal SARS-CoV-2, however, a significant decrease in gamma ENaC expression was not observed by immunostaining of lungs infected as shown by SARS-CoV2 nucleoprotein staining.
Collapse
Affiliation(s)
- Germán Ricardo Magaña-Ávila
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Erika Moreno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Consuelo Plata
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, PECEM (MD/PhD), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adrian Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kevin García-Ávila
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma Vázquez
- Instituto de Investigaciones Biomédicas, Molecular Physiology Unit, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Syed
- Department of Medicine, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Jan Wysocki
- Department of Medicine, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Daniel Batlle
- Department of Medicine, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, PECEM (MD/PhD), Universidad Nacional Autónoma de México, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Molecular Physiology Unit, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
4
|
He C, Xu Y, Zhou Y, Fan J, Cheng C, Meng R, Gamazon ER, Zhou D. Integrating population-level and cell-based signatures for drug repositioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564079. [PMID: 37961219 PMCID: PMC10634827 DOI: 10.1101/2023.10.25.564079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Drug repositioning presents a streamlined and cost-efficient way to expand the range of therapeutic possibilities. Furthermore, drugs with genetic evidence are more likely to progress successfully through clinical trials towards FDA approval. Exploiting these developments, single gene-based drug repositioning methods have been implemented, but approaches leveraging the entire spectrum of molecular signatures are critically underexplored. Most multi-gene-based approaches rely on differential gene expression (DGE) analysis, which is prone to identify the molecular consequence of disease and renders causal inference challenging. We propose a framework TReD (Transcriptome-informed Reversal Distance) that integrates population-level disease signatures robust to reverse causality and cell-based drug-induced transcriptome response profiles. TReD embeds the disease signature and drug profile in a high-dimensional normed space, quantifying the reversal potential of candidate drugs in a disease-related cell screen assay. The robustness is ensured by evaluation in additional cell screens. For an application, we implement the framework to identify potential drugs against COVID-19. Taking transcriptome-wide association study (TWAS) results from four relevant tissues and three DGE results as disease features, we identify 37 drugs showing potential reversal roles in at least four of the seven disease signatures. Notably, over 70% (27/37) of the drugs have been linked to COVID-19 from other studies, and among them, eight drugs are supported by ongoing/completed clinical trials. For example, TReD identifies the well-studied JAK1/JAK2 inhibitor baricitinib, the first FDA-approved immunomodulatory treatment for COVID-19. Novel potential candidates, including enzastaurin, a selective inhibitor of PKC-beta which can be activated by SARS-CoV-2, are also identified. In summary, we propose a comprehensive genetics-anchored framework integrating population-level signatures and cell-based screens that can accelerate the search for new therapeutic strategies.
Collapse
|
5
|
Romero MJ, Yue Q, Singla B, Hamacher J, Sridhar S, Moseley AS, Song C, Mraheil MA, Fischer B, Zeitlinger M, Chakraborty T, Fulton D, Gan L, Annex BH, Csanyi G, Eaton DC, Lucas R. Direct endothelial ENaC activation mitigates vasculopathy induced by SARS-CoV2 spike protein. Front Immunol 2023; 14:1241448. [PMID: 37638055 PMCID: PMC10449264 DOI: 10.3389/fimmu.2023.1241448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Although both COVID-19 and non-COVID-19 ARDS can be accompanied by significantly increased levels of circulating cytokines, the former significantly differs from the latter by its higher vasculopathy, characterized by increased oxidative stress and coagulopathy in lung capillaries. This points towards the existence of SARS-CoV2-specific factors and mechanisms that can sensitize the endothelium towards becoming dysfunctional. Although the virus is rarely detected within endothelial cells or in the circulation, the S1 subunit of its spike protein, which contains the receptor binding domain (RBD) for human ACE2 (hACE2), can be detected in plasma from COVID-19 patients and its levels correlate with disease severity. It remains obscure how the SARS-CoV2 RBD exerts its deleterious actions in lung endothelium and whether there are mechanisms to mitigate this. Methods In this study, we use a combination of in vitro studies in RBD-treated human lung microvascular endothelial cells (HL-MVEC), including electrophysiology, barrier function, oxidative stress and human ACE2 (hACE2) surface protein expression measurements with in vivo studies in transgenic mice globally expressing human ACE2 and injected with RBD. Results We show that SARS-CoV2 RBD impairs endothelial ENaC activity, reduces surface hACE2 expression and increases reactive oxygen species (ROS) and tissue factor (TF) generation in monolayers of HL-MVEC, as such promoting barrier dysfunction and coagulopathy. The TNF-derived TIP peptide (a.k.a. solnatide, AP301) -which directly activates ENaC upon binding to its a subunit- can override RBD-induced impairment of ENaC function and hACE2 expression, mitigates ROS and TF generation and restores barrier function in HL-MVEC monolayers. In correlation with the increased mortality observed in COVID-19 patients co-infected with S. pneumoniae, compared to subjects solely infected with SARS-CoV2, we observe that prior intraperitoneal RBD treatment in transgenic mice globally expressing hACE2 significantly increases fibrin deposition and capillary leak upon intratracheal instillation of S. pneumoniae and that this is mitigated by TIP peptide treatment.
Collapse
Affiliation(s)
- Maritza J. Romero
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Qian Yue
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Bhupesh Singla
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jürg Hamacher
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital, Bern, Switzerland
- Lungen-und Atmungsstiftung, Bern, Switzerland
- Medical Clinic V—Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, Homburg, Germany
| | - Supriya Sridhar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Auriel S. Moseley
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Chang Song
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Mobarak A. Mraheil
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | | | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Trinad Chakraborty
- Institute for Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Faculty of Medicine, Justus-Liebig University, Giessen, Germany
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Lin Gan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Brian H. Annex
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Gabor Csanyi
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Douglas C. Eaton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Division of Pulmonary and Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
6
|
Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:49. [PMID: 37264452 PMCID: PMC10234254 DOI: 10.1186/s13223-023-00797-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
The effects of nicotine and cigarette smoke in many diseases, notably COVID-19 infection, are being debated more frequently. The current basic data for COVID-19 is increasing and indicating the higher risk of COVID-19 infections in smokers due to the overexpression of corresponding host receptors to viral entry. However, current multi-national epidemiological reports indicate a lower incidence of COVID-19 disease in smokers. Current data indicates that smokers are more susceptible to some diseases and more protective of some other. Interestingly, nicotine is also reported to play a dual role, being both inflammatory and anti-inflammatory. In the present study, we tried to investigate the effect of pure nicotine on various cells involved in COVID-19 infection. We followed an organ-based systematic approach to decipher the effect of nicotine in damaged organs corresponding to COVID-19 pathogenesis (12 related diseases). Considering that the effects of nicotine and cigarette smoke are different from each other, it is necessary to be careful in generalizing the effects of nicotine and cigarette to each other in the conducted researches. The generalization and the undifferentiation of nicotine from smoke is a significant bias. Moreover, different doses of nicotine stimulate different effects (dose-dependent response). In addition to further assessing the role of nicotine in COVID-19 infection and any other cases, a clever assessment of underlying diseases should also be considered to achieve a guideline for health providers and a personalized approach to treatment.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Weiss S, Waidha K, Rajendran S, Benharroch D, Khalilia J, Levy H, Bar-David E, Golan-Goldhirsh A, Gopas J, Ben-Shmuel A. In Vitro and In Vivo Therapeutic Potential of 6,6'-Dihydroxythiobinupharidine (DTBN) from Nuphar lutea on Cells and K18- hACE2 Mice Infected with SARS-CoV-2. Int J Mol Sci 2023; 24:ijms24098327. [PMID: 37176034 PMCID: PMC10179516 DOI: 10.3390/ijms24098327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
We have previously published research on the anti-viral properties of an alkaloid mixture extracted from Nuphar lutea, the major components of the partially purified mixture found by NMR analysis. These are mostly dimeric sesquiterpene thioalkaloids called thiobinupharidines and thiobinuphlutidines against the negative strand RNA measles virus (MV). We have previously reported that this extract inhibits the MV as well as its ability to downregulate several MV proteins in persistently MV-infected cells, especially the P (phospho)-protein. Based on our observation that the Nuphar extract is effective in vitro against the MV, and the immediate need that the coronavirus disease 2019 (COVID-19) pandemic created, we tested here the ability of 6,6'-dihydroxythiobinupharidine DTBN, an active small molecule, isolated from the Nuphar lutea extract, on COVID-19. As shown here, DTBN effectively inhibits SARS-CoV-2 production in Vero E6 cells at non-cytotoxic concentrations. The short-term daily administration of DTBN to infected mice delayed the occurrence of severe clinical outcomes, lowered virus levels in the lungs and improved survival with minimal changes in lung histology. The viral load on lungs was significantly reduced in the treated mice. DTBN is a pleiotropic small molecule with multiple targets. Its anti-inflammatory properties affect a variety of pathogens including SARS-CoV-2 as shown here. Its activity appears to target both pathogen specific (as suggested by docking analysis) as well as cellular proteins, such as NF-κB, PKCs, cathepsins and topoisomerase 2, that we have previously identified in our work. Thus, this combined double action of virus inhibition and anti-inflammatory activity may enhance the overall effectivity of DTBN. The promising results from this proof-of-concept in vitro and in vivo preclinical study should encourage future studies to optimize the use of DTBN and/or its molecular derivatives against this and other related viruses.
Collapse
Affiliation(s)
- Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Kamran Waidha
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Saravanakumar Rajendran
- Chemistry Division, SAS, Vellore Institute of Technology, Chennai Campus, Chennai 600127, India
| | - Daniel Benharroch
- Department of Pathology, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Jannat Khalilia
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Haim Levy
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Elad Bar-David
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Avi Golan-Goldhirsh
- The Jacob Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, Sede Boqer Campus, Sde Boker 8410501, Israel
| | - Jacob Gopas
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Amir Ben-Shmuel
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| |
Collapse
|
8
|
Sandle GI, Herod MR, Fontana J, Lippiat JD, Stockley PG. Is intestinal transport dysfunctional in COVID-19-related diarrhea? Am J Physiol Gastrointest Liver Physiol 2023; 324:G415-G418. [PMID: 36976797 PMCID: PMC10281778 DOI: 10.1152/ajpgi.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Diarrhea, often severe, is a recognized and frequently early symptom during acute COVID-19 infection and may persist or develop for the first time in patients with long-COVID, with socioeconomic consequences. Diarrheal mechanisms in these cases are poorly understood. There is evidence for disruption of intestinal epithelial barrier function and also for changes in the gut microbiome, which is critical for gut immunity and metabolism. Whether the SARS-CoV-2 virus has adverse effects on intestinal transport proteins is unclear. However, the ability of the virus to inhibit expression and activity of an aldosterone-regulated epithelial sodium (Na+) channel (ENaC) present in human distal colon, which is responsible for Na+ and water salvage, points to possible disruption of other intestinal transport proteins during COVID-19 infection. In this Perspective, we develop this idea by highlighting possible intestinal transport protein targets for the SARS-CoV-2 virus and discussing how their interactions might be explored in the laboratory.
Collapse
Affiliation(s)
- Geoffrey I Sandle
- Leeds Institute for Medical Research at St. James's, St. James's University Hospital, Leeds, United Kingdom
| | - Morgan R Herod
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Juan Fontana
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Jonathan D Lippiat
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
9
|
Lu H, Liu Z, Deng X, Chen S, Zhou R, Zhao R, Parandaman R, Thind A, Henley J, Tian L, Yu J, Comai L, Feng P, Yuan W. Potent NKT cell ligands overcome SARS-CoV-2 immune evasion to mitigate viral pathogenesis in mouse models. PLoS Pathog 2023; 19:e1011240. [PMID: 36961850 PMCID: PMC10128965 DOI: 10.1371/journal.ppat.1011240] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/25/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
One of the major pathogenesis mechanisms of SARS-CoV-2 is its potent suppression of innate immunity, including blocking the production of type I interferons. However, it is unknown whether and how the virus interacts with different innate-like T cells, including NKT, MAIT and γδ T cells. Here we reported that upon SARS-CoV-2 infection, invariant NKT (iNKT) cells rapidly trafficked to infected lung tissues from the periphery. We discovered that the envelope (E) protein of SARS-CoV-2 efficiently down-regulated the cell surface expression of the antigen-presenting molecule, CD1d, to suppress the function of iNKT cells. E protein is a small membrane protein and a viroporin that plays important roles in virion packaging and envelopment during viral morphogenesis. We showed that the transmembrane domain of E protein was responsible for suppressing CD1d expression by specifically reducing the level of mature, post-ER forms of CD1d, suggesting that it suppressed the trafficking of CD1d proteins and led to their degradation. Point mutations demonstrated that the putative ion channel function was required for suppression of CD1d expression and inhibition of the ion channel function using small chemicals rescued the CD1d expression. Importantly, we discovered that among seven human coronaviruses, only E proteins from highly pathogenic coronaviruses including SARS-CoV-2, SARS-CoV and MERS suppressed CD1d expression, whereas the E proteins of human common cold coronaviruses, HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1, did not. These results suggested that E protein-mediated evasion of NKT cell function was likely an important pathogenesis factor, enhancing the virulence of these highly pathogenic coronaviruses. Remarkably, activation of iNKT cells with their glycolipid ligands, both prophylactically and therapeutically, overcame the putative viral immune evasion, significantly mitigated viral pathogenesis and improved host survival in mice. Our results suggested a novel NKT cell-based anti-SARS-CoV-2 therapeutic approach.
Collapse
Affiliation(s)
- Hongjia Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Graduate Programs in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zhewei Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Xiangxue Deng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Siyang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ruiting Zhou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Rongqi Zhao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ramya Parandaman
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amarjot Thind
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jill Henley
- The Hastings and Wright Laboratories, Keck School of Medicine, University Southern California, California, United States of America
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, United States of America
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, United States of America
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- The Hastings and Wright Laboratories, Keck School of Medicine, University Southern California, California, United States of America
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
10
|
Abstract
Infection by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has posed a severe threat to global public health. The current study revealed that several inhibitors of protein kinases C (PKCs) possess protective activity against SARS-CoV-2 infection. Four pan-PKC inhibitors, Go 6983, bisindolylmaleimide I, enzastaurin, and sotrastaurin, reduced the replication of a SARS-CoV-2 replicon in both BHK-21 and Huh7 cells. A PKCδ-specific inhibitor, rottlerin, was also effective in reducing viral infection. The PKC inhibitors acted at an early step of SARS-CoV-2 infection. Finally, PKC inhibitors blocked the replication of wild-type SARS-CoV-2 in ACE2-expressing A549 cells. Our work highlights the importance of the PKC signaling pathway in infection by SARS-CoV-2 and provides evidence that PKC-specific inhibitors are potential therapeutic agents against SARS-CoV-2. IMPORTANCE There is an urgent need for effective therapeutic drugs to control the pandemic caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). We found that several inhibitors of protein kinases C (PKCs) dramatically decrease the replication of SARS-CoV-2 in cultured cells. These PKC inhibitors interfere with an early step of viral infection. Therefore, the rapid and prominent antiviral effect of PKC inhibitors underscores that they are promising antiviral agents and suggests that PKCs are important host factors involved in infection by SARS-CoV-2.
Collapse
|
11
|
Chen L, Hou Y, Du D, Cui Y, Nie H, Ding Y. MiR-199a-3p in mouse bone marrow mesenchymal stem cell exosomes increases epithelial sodium channel expression in lung injury. Fundam Clin Pharmacol 2022; 36:1011-1019. [PMID: 35667855 DOI: 10.1111/fcp.12807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/18/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022]
Abstract
Acute lung injury (ALI) causes significant morbidity and mortality in critically ill patients, which often presents with extensive accumulation of activated inflammatory cells and diffused alveolar damage accompanied by oxidative stress. Exosomes are nanovesicles, which have notable anti-inflammatory and repair properties, thus alleviating the symptoms of ALI. Epithelial sodium channel (ENaC) is essential for the transepithelial absorption of Na+ and fluid from alveolar spaces. We studied the effects of bone marrow mesenchymal stem cell exosomes (BMSC-exo) on the apoptosis and protein expression of ENaC in primary mouse alveolar epithelial type 2 cells (AT 2 cells). Moreover, the change of miR-199a-3p in AT 2 cells was detected by qRT-PCR, and we studied the regulation of miR-199a-3p on ENaC protein expression. Our results demonstrated that BMSC-exo could not only improve viability and reduce apoptosis in AT 2 cells, but also enhance the expression of ENaC protein and miR-199a-3p. Meanwhile, the upregulation of miR-199a-3p resulted in increased expression of ENaC protein. In summary, the BMSC-exo could participate in the regulation of ENaC through miR-199a-3p originated from BMSC-exo, thereby providing a new pharmacological tool for the treatment of ALI.
Collapse
Affiliation(s)
- Lei Chen
- China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Danni Du
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Brown EF, Mitaera T, Fronius M. COVID-19 and Liquid Homeostasis in the Lung—A Perspective through the Epithelial Sodium Channel (ENaC) Lens. Cells 2022; 11:cells11111801. [PMID: 35681496 PMCID: PMC9180030 DOI: 10.3390/cells11111801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 01/26/2023] Open
Abstract
Infections with a new corona virus in 2019 lead to the definition of a new disease known as Corona Virus Disease 2019 (COVID-19). The sever cases of COVID-19 and the main cause of death due to virus infection are attributed to respiratory distress. This is associated with the formation of pulmonary oedema that impairs blood oxygenation and hypoxemia as main symptoms of respiratory distress. An important player for the maintenance of a defined liquid environment in lungs needed for normal lung function is the epithelial sodium channel (ENaC). The present article reviews the implications of SARS-CoV-2 infections from the perspective of impaired function of ENaC. The rationale for this perspective is derived from the recognition that viral spike protein and ENaC share a common proteolytic cleavage site. This cleavage site is utilized by the protease furin, that is essential for ENaC activity. Furin cleavage of spike ‘activates’ the virus protein to enable binding to host cell membrane receptors and initiate cell infection. Based on the importance of proteolytic cleavage for ENaC function and activation of spike, it seems feasible to assume that virus infections are associated with impaired ENaC activity. This is further supported by symptoms of COVID-19 that are reminiscent of impaired ENaC function in the respiratory tract.
Collapse
Affiliation(s)
- Emily F. Brown
- Department of Physiology, University of Otago, Dunedin 9054, New Zealand; (E.F.B.); (T.M.)
- HeartOtago, University of Otago, Dunedin, New Zealand
| | - Tamapuretu Mitaera
- Department of Physiology, University of Otago, Dunedin 9054, New Zealand; (E.F.B.); (T.M.)
- HeartOtago, University of Otago, Dunedin, New Zealand
| | - Martin Fronius
- Department of Physiology, University of Otago, Dunedin 9054, New Zealand; (E.F.B.); (T.M.)
- HeartOtago, University of Otago, Dunedin, New Zealand
- Healthy Hearts for Aotearoa New Zealand, Centre of Research Excellence, New Zealand
- Maurice Wilkins Centre for Molecular Discovery, Centre of Research Excellence, New Zealand
- Correspondence: ; Tel.: +64-3-471-6081
| |
Collapse
|
13
|
Ahmad S, Matalon S, Kuebler WM. Understanding COVID-19 susceptibility and presentation based on its underlying physiology. Physiol Rev 2022; 102:1579-1585. [PMID: 35583178 PMCID: PMC9255705 DOI: 10.1152/physrev.00008.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | |
Collapse
|
14
|
Hou Y, Li J, Ding Y, Cui Y, Nie H. Luteolin attenuates lipopolysaccharide-induced acute lung injury/acute respiratory distress syndrome by activating alveolar epithelial sodium channels via cGMP/PI3K pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114654. [PMID: 34537283 DOI: 10.1016/j.jep.2021.114654] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Luteolin (Lut) was recently identified as the major active ingredient of Mosla scabra, which was a typical representative traditional Chinese medicine and had been used to treat pulmonary diseases for thousands of years. AIM OF THE STUDY This study was to explore the effects and relative mechanisms of Lut in LPS-induced acute lung injury/acute respiratory distress syndrome (ALI/ARDS). The main characteristic of ALI/ARDS is pulmonary edema, and epithelial sodium channel (ENaC) is a key factor in effective removal of excessive alveolar edematous fluid, which is essential for repairing gas exchange and minimizing damage to the peripheral tissues. However, whether the therapeutic effects of Lut on respiratory diseases are relative with ENaC is still unknown. MATERIALS AND METHODS Alveolar fluid clearance was calculated in BALB/c mice and ENaC function was measured in H441 cells. Moreover, ENaC membrane protein and mRNA were detected by Western blot and real-time PCR, respectively. We also studied the involvement of cGMP/PI3K pathway during the regulation of Lut on ENaC during LPS-induced ALI/ARDS by ELISA method and applying cGMP/PI3K inhibitors/siRNA. RESULTS The beneficial effects of Lut in ALI/ARDS were evidenced by the alleviation of pulmonary edema, and enhancement of both amiloride-sensitive alveolar fluid clearance and short-circuit currents. Lut could alleviate the LPS decreased expression levels of ENaC mRNA and membrane protein in H441 cells and mouse lung. In addition, cGMP concentration was increased after the administration of Lut in ALI/ARDS mice, while the inhibition of cGMP/PI3K pathway could abrogate the enhanced AFC and ENaC protein expression of Lut. CONCLUSION These results implied that Lut could attenuate pulmonary edema via enhancing the abundance of membrane ENaC at least partially through the cGMP/PI3K pathway, which could provide a promising therapeutic strategy for treating ALI/ARDS.
Collapse
Affiliation(s)
- Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Jun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Yong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China.
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
15
|
Wenzhong L, Hualan L. COVID-19: the CaMKII-like system of S protein drives membrane fusion and induces syncytial multinucleated giant cells. Immunol Res 2021; 69:496-519. [PMID: 34410575 PMCID: PMC8374125 DOI: 10.1007/s12026-021-09224-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/24/2021] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 S protein on the membrane of infected cells can promote receptor-dependent syncytia formation, relating to extensive tissue damage and lymphocyte elimination. In this case, it is challenging to obtain neutralizing antibodies and prevent them through antibodies effectively. Considering that, in the current study, structural domain search methods are adopted to analyze the SARS-CoV-2 S protein to find the fusion mechanism. The results show that after the EF-hand domain of S protein bound to calcium ions, S2 protein had CaMKII protein activities. Besides, the CaMKII_AD domain of S2 changed S2 conformation, facilitating the formation of HR1-HR2 six-helix bundles. Apart from that, the Ca2+-ATPase of S2 pumped calcium ions from the virus cytoplasm to help membrane fusion, while motor structures of S drove the CaATP_NAI and CaMKII_AD domains to extend to the outside and combined the viral membrane and the cell membrane, thus forming a calcium bridge. Furthermore, the phospholipid-flipping-ATPase released water, triggering lipid mixing and fusion and generating fusion pores. Then, motor structures promoted fusion pore extension, followed by the cytoplasmic contents of the virus being discharged into the cell cytoplasm. After that, the membrane of the virus slid onto the cell membrane along the flowing membrane on the gap of the three CaATP_NAI. At last, the HR1-HR2 hexamer would fall into the cytoplasm or stay on the cell membrane. Therefore, the CaMKII_like system of S protein facilitated membrane fusion for further inducing syncytial multinucleated giant cells.
Collapse
Affiliation(s)
- Liu Wenzhong
- School of Computer Science and Engineering, Sichuan University of Science & Engineering, Zigong, 643002, China.
- School of Life Science and Food Engineering, Yibin University, Yibin, 644000, China.
| | - Li Hualan
- School of Life Science and Food Engineering, Yibin University, Yibin, 644000, China
| |
Collapse
|
16
|
Ferreira G, Santander A, Savio F, Guirado M, Sobrevia L, Nicolson GL. SARS-CoV-2, Zika viruses and mycoplasma: Structure, pathogenesis and some treatment options in these emerging viral and bacterial infectious diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166264. [PMID: 34481867 PMCID: PMC8413106 DOI: 10.1016/j.bbadis.2021.166264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/22/2021] [Accepted: 08/30/2021] [Indexed: 01/28/2023]
Abstract
The molecular evolution of life on earth along with changing environmental, conditions has rendered mankind susceptible to endemic and pandemic emerging infectious diseases. The effects of certain systemic viral and bacterial infections on morbidity and mortality are considered as examples of recent emerging infections. Here we will focus on three examples of infections that are important in pregnancy and early childhood: SARS-CoV-2 virus, Zika virus, and Mycoplasma species. The basic structural characteristics of these infectious agents will be examined, along with their general pathogenic mechanisms. Coronavirus infections, such as caused by the SARS-CoV-2 virus, likely evolved from zoonotic bat viruses to infect humans and cause a pandemic that has been the biggest challenge for humanity since the Spanish Flu pandemic of the early 20th century. In contrast, Zika Virus infections represent an expanding infectious threat in the context of global climate change. The relationship of these infections to pregnancy, the vertical transmission and neurological sequels make these viruses highly relevant to the topics of this special issue. Finally, mycoplasmal infections have been present before mankind evolved, but they were rarely identified as human pathogens until recently, and they are now recognized as important coinfections that are able to modify the course and prognosis of various infectious diseases and other chronic illnesses. The infectious processes caused by these intracellular microorganisms are examined as well as some general aspects of their pathogeneses, clinical presentations, and diagnoses. We will finally consider examples of treatments that have been used to reduce morbidity and mortality of these infections and discuss briefly the current status of vaccines, in particular, against the SARS-CoV-2 virus. It is important to understand some of the basic features of these emerging infectious diseases and the pathogens involved in order to better appreciate the contributions of this special issue on how infectious diseases can affect human pregnancy, fetuses and neonates.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay.
| | - Axel Santander
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Florencia Savio
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Mariana Guirado
- Department of Infectious Diseases, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaeology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), 9713GZ Groningen, the Netherlands
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
17
|
Gupta Y, Maciorowski D, Zak SE, Jones KA, Kathayat RS, Azizi SA, Mathur R, Pearce CM, Ilc DJ, Husein H, Herbert AS, Bharti A, Rathi B, Durvasula R, Becker DP, Dickinson BC, Dye JM, Kempaiah P. Bisindolylmaleimide IX: A novel anti-SARS-CoV2 agent targeting viral main protease 3CLpro demonstrated by virtual screening pipeline and in-vitro validation assays. Methods 2021; 195:57-71. [PMID: 33453392 PMCID: PMC7807167 DOI: 10.1016/j.ymeth.2021.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/10/2021] [Indexed: 01/24/2023] Open
Abstract
SARS-CoV-2, the virus that causes COVID-19 consists of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs/compounds. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2'-O-MT. For virtual screening, energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard (Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs and investigational molecules (n = 5903). The screening was performed against viral targets using three sequential docking modes (i.e., HTVS, SP, and XP). Virtual screening identified ∼290 potential inhibitors based on the criteria of energy, docking parameters, ligand, and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. The top lead from each target pool was further subjected to molecular dynamics simulation using the Desmond module. The resulting top eight hits were tested for their SARS-CoV-2 anti-viral activity in-vitro. Among these, a known inhibitor of protein kinase C isoforms, Bisindolylmaleimide IX (BIM IX), was found to be a potent inhibitor of SARS-CoV-2. Further, target validation through enzymatic assays confirmed 3CLpro to be the target. This is the first study that has showcased BIM IX as a COVID-19 inhibitor thereby validating our pipeline.
Collapse
Affiliation(s)
- Yash Gupta
- Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | | | - Samantha E Zak
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA; The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA 98402, USA
| | - Krysten A Jones
- Department of Chemistry, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, USA
| | - Rahul S Kathayat
- Department of Chemistry, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, USA
| | - Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, USA
| | | | | | | | | | - Andrew S Herbert
- The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA 98402, USA
| | - Ajay Bharti
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Hansraj College, University of Delhi, India
| | | | | | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, USA
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA; The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA 98402, USA.
| | | |
Collapse
|
18
|
Machado RG, Glaser T, Araujo DB, Petiz LL, Oliveira DBL, Durigon GS, Leal AL, Pinho JR, Ferreira LCS, Ulrich H, Durigon EL, Guzzo CR. Inhibition of Severe Acute Respiratory Syndrome Coronavirus 2 Replication by Hypertonic Saline Solution in Lung and Kidney Epithelial Cells. ACS Pharmacol Transl Sci 2021; 4:1514-1527. [PMID: 34651104 PMCID: PMC8442612 DOI: 10.1021/acsptsci.1c00080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 12/27/2022]
Abstract
An unprecedented global health crisis has been caused by a new virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We performed experiments to test if a hypertonic saline solution was capable of inhibiting virus replication. Our data show that 1.2% NaCl inhibited virus replication by 90%, achieving 100% of inhibition at 1.5% in the nonhuman primate kidney cell line Vero, and 1.1% of NaCl was sufficient to inhibit the virus replication by 88% in human epithelial lung cell line Calu-3. Furthermore, our results indicate that the inhibition is due to an intracellular mechanism and not to the dissociation of the spike SARS-CoV-2 protein and its human receptor. NaCl depolarizes the plasma membrane causing a low energy state (high ADP/ATP concentration ratio) without impairing mitochondrial function, supposedly associated with the inhibition of the SARS-CoV-2 life cycle. Membrane depolarization and intracellular energy deprivation are possible mechanisms by which the hypertonic saline solution efficiently prevents virus replication in vitro assays.
Collapse
Affiliation(s)
- Rafael
R. G. Machado
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508, Brazil
| | - Talita Glaser
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508, Brazil
| | - Danielle B. Araujo
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508, Brazil
- Hospital
Israelita Albert Einstein, São Paulo 05652, Brazil
| | - Lyvia Lintzmaier Petiz
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508, Brazil
| | - Danielle B. L. Oliveira
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508, Brazil
- Hospital
Israelita Albert Einstein, São Paulo 05652, Brazil
- Development
and Innovation Center, Laboratory of Virology, Butantan Institute, São
Paulo 05503, Brazil
| | - Giuliana S. Durigon
- Medical
School Clinical Hospital, University of
São Paulo, São
Paulo 05508, Brazil
| | | | - João Renato
R. Pinho
- Hospital
Israelita Albert Einstein, São Paulo 05652, Brazil
- LIM-03, Central
Laboratories Division, Clinics Hospital, São Paulo School of
Medicine, University of São Paulo, São Paulo 05508, Brazil
- LIM-07,
Institute of Tropical Medicine, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo 05508, Brazil
| | - Luis C. S. Ferreira
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508, Brazil
- Scientific
Platform Pasteur USP, São
Paulo 05508, Brazil
| | - Henning Ulrich
- Department
of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508, Brazil
| | - Edison L. Durigon
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508, Brazil
- Scientific
Platform Pasteur USP, São
Paulo 05508, Brazil
| | - Cristiane Rodrigues Guzzo
- Department
of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508, Brazil
| |
Collapse
|
19
|
Grant SN, Lester HA. Regulation of epithelial sodium channel activity by SARS-CoV-1 and SARS-CoV-2 proteins. Biophys J 2021; 120:2805-2813. [PMID: 34197807 PMCID: PMC8238646 DOI: 10.1016/j.bpj.2021.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/21/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Severe acute respiratory syndrome (SARS) coronavirus (CoV) 2 (SARS-CoV-2), which causes the coronavirus disease 2019, encodes several proteins whose roles are poorly understood. We tested their ability either to directly form plasma membrane ion channels or to change functions of two mammalian plasma membrane ion channels, the epithelial sodium channel (ENaC) and the α3β4 nicotinic acetylcholine receptor. In mRNA-injected Xenopus oocytes, none of nine SARS-CoV-2 proteins or two SARS-CoV-1 proteins produced conductances, nor did co-injection of several combinations. Immunoblots for ORF8, spike (S), and envelope (E) proteins revealed that the proteins are expressed at appropriate molecular weights. In experiments on coexpression with ENaC, three tested SARS proteins (SARS-CoV-1 E, SARS-CoV-2 E, and SARS-CoV-2 S) markedly decrease ENaC currents. SARS-CoV-1 S protein decreases ENaC currents modestly. Coexpressing the E proteins but not the S proteins with α3β4 nicotinic acetylcholine receptors significantly reduces acetylcholine-induced currents. ENaC inhibition does not occur if the SARS-CoV protein mRNAs are injected 24 h after the ENaC mRNAs, suggesting that SARS-CoV proteins affect early step(s) in functional expression of channel proteins. Consistent with the hypothesis that the SARS-CoV-2 S protein-induced ENaC inhibition involves competition for available protease, mutating the furin cleavage site in SARS-CoV-2 S protein partially relieves inhibition of ENaC currents. Extending previous suggestions that SARS proteins affect ENaC currents via protein kinase C (PKC) activation, PKC activation via phorbol 12-myristate 13-acetate decreases ENaC and α3β4 activity. Phorbol 12-myristate 13-acetate application reduced membrane capacitance ∼5%, presumably via increased endocytosis, but this decrease is much smaller than the SARS proteins' effects on conductances. Also, incubating oocytes in Gö-6976, a PKCα and PKCβ inhibitor, did not alter E or S protein-induced channel inhibition. We conclude that SARS-CoV-1 and SARS-CoV-2 proteins alter the function of human plasma membrane channels, via incompletely understood mechanisms. These interactions may play a role in the coronavirus 2019 pathophysiology.
Collapse
Affiliation(s)
- Stephen N Grant
- Division of Chemistry and Chemical Engineering, Pasadena, California
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| |
Collapse
|
20
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Orr-Burks N, Murray J, Todd KV, Bakre A, Tripp RA. G-Protein-Coupled Receptor and Ion Channel Genes Used by Influenza Virus for Replication. J Virol 2021; 95:e02410-20. [PMID: 33536179 PMCID: PMC8104092 DOI: 10.1128/jvi.02410-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Influenza virus causes epidemics and sporadic pandemics resulting in morbidity, mortality, and economic losses. Influenza viruses require host genes to replicate. RNA interference (RNAi) screens can identify host genes coopted by influenza virus for replication. Targeting these proinfluenza genes can provide therapeutic strategies to reduce virus replication. Nineteen proinfluenza G-protein-coupled receptor (GPCR) and 13 proinfluenza ion channel genes were identified in human lung (A549) cells by use of small interfering RNAs (siRNAs). These proinfluenza genes were authenticated by testing influenza virus A/WSN/33-, A/CA/04/09-, and B/Yamagata/16/1988-infected A549 cells, resulting in the validation of 16 proinfluenza GPCR and 5 proinfluenza ion channel genes. These findings showed that several GPCR and ion channel genes are needed for the production of infectious influenza virus. These data provide potential targets for the development of host-directed therapeutic strategies to impede the influenza virus productive cycle so as to limit infection.IMPORTANCE Influenza epidemics result in morbidity and mortality each year. Vaccines are the most effective preventive measure but require annual reformulation, since a mismatch of vaccine strains can result in vaccine failure. Antiviral measures are desirable particularly when vaccines fail. In this study, we used RNAi screening to identify several GPCR and ion channel genes needed for influenza virus replication. Understanding the host genes usurped by influenza virus during viral replication can help identify host genes that can be targeted for drug repurposing or for the development of antiviral drugs. The targeting of host genes is refractory to drug resistance generated by viral mutations, as well as providing a platform for the development of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Nichole Orr-Burks
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Kyle V Todd
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Abhijeet Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
22
|
Kryvenko V, Vadász I. Molecular mechanisms of Na,K-ATPase dysregulation driving alveolar epithelial barrier failure in severe COVID-19. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1186-L1193. [PMID: 33689516 PMCID: PMC8238442 DOI: 10.1152/ajplung.00056.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A significant number of patients with coronavirus disease 2019 (COVID-19) develop acute respiratory distress syndrome (ARDS) that is associated with a poor outcome. The molecular mechanisms driving failure of the alveolar barrier upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remain incompletely understood. The Na,K-ATPase is an adhesion molecule and a plasma membrane transporter that is critically required for proper alveolar epithelial function by both promoting barrier integrity and resolution of excess alveolar fluid, thus enabling appropriate gas exchange. However, numerous SARS-CoV-2-mediated and COVID-19-related signals directly or indirectly impair the function of the Na,K-ATPase, thereby potentially contributing to disease progression. In this Perspective, we highlight some of the putative mechanisms of SARS-CoV-2-driven dysfunction of the Na,K-ATPase, focusing on expression, maturation, and trafficking of the transporter. A therapeutic mean to selectively inhibit the maladaptive signals that impair the Na,K-ATPase upon SARS-CoV-2 infection might be effective in reestablishing the alveolar epithelial barrier and promoting alveolar fluid clearance and thus advantageous in patients with COVID-19-associated ARDS.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany
| |
Collapse
|
23
|
Abdel Hameid R, Cormet-Boyaka E, Kuebler WM, Uddin M, Berdiev BK. SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport. Am J Physiol Lung Cell Mol Physiol 2021; 320:L430-L435. [PMID: 33434105 PMCID: PMC7938641 DOI: 10.1152/ajplung.00499.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic, toward the host cells is determined, at least in part, by the expression and distribution of its cell surface receptor, angiotensin-converting enzyme 2 (ACE2). The virus further exploits the host cellular machinery to gain access into the cells; its spike protein is cleaved by a host cell surface transmembrane serine protease 2 (TMPRSS2) shortly after binding ACE2, followed by its proteolytic activation at a furin cleavage site. The virus primarily targets the epithelium of the respiratory tract, which is covered by a tightly regulated airway surface liquid (ASL) layer that serves as a primary defense mechanism against respiratory pathogens. The volume and viscosity of this fluid layer is regulated and maintained by a coordinated function of different transport pathways in the respiratory epithelium. We argue that SARS-CoV-2 may potentially alter evolutionary conserved second-messenger signaling cascades via activation of G protein-coupled receptors (GPCRs) or by directly modulating G protein signaling. Such signaling may in turn adversely modulate transepithelial transport processes, especially those involving cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC), thereby shifting the delicate balance between anion secretion and sodium absorption, which controls homeostasis of this fluid layer. As a result, activation of the secretory pathways including CFTR-mediated Cl− transport may overwhelm the absorptive pathways, such as ENaC-dependent Na+ uptake, and initiate a pathophysiological cascade leading to lung edema, one of the most serious and potentially deadly clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- Reem Abdel Hameid
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bakhrom K Berdiev
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
24
|
Sui B, Chen D, Liu W, Tian B, Lv L, Pei J, Wu Q, Zhou M, Fu ZF, Zhang Y, Zhao L. Comparison of lncRNA and mRNA expression in mouse brains infected by a wild-type and a lab-attenuated Rabies lyssavirus. J Gen Virol 2020; 102. [PMID: 33284098 DOI: 10.1099/jgv.0.001538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies is a lethal disease caused by Rabies lyssavirus, commonly known as rabies virus (RABV), and results in nearly 100 % death once clinical symptoms occur in human and animals. Long non-coding RNAs (lncRNAs) have been reported to be associated with viral infection. But the role of lncRNAs involved in RABV infection is still elusive. In this study, we performed global transcriptome analysis of both of lncRNA and mRNA expression profiles in wild-type (WT) and lab-attenuated RABV-infected mouse brains by using next-generation sequencing. The differentially expressed lncRNAs and mRNAs were analysed by using the edgeR package. We identified 1422 differentially expressed lncRNAs and 4475 differentially expressed mRNAs by comparing WT and lab-attenuated RABV-infected brains. Then we predicted the enriched biological pathways by the Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) database based on the differentially expressed lncRNAs and mRNAs. Our analysis revealed the relationships between lncRNAs and RABV-infection-associated immune response and ion transport-related pathways, which provide a fresh insight into the potential role of lncRNA in immune evasion and neuron injury induced by WT RABV.
Collapse
Affiliation(s)
- Baokun Sui
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Dong Chen
- ABLife BioBigData Institute, Wuhan, 430075, PR China
| | - Wei Liu
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Bin Tian
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lei Lv
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jie Pei
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qiong Wu
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ming Zhou
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhen F Fu
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yi Zhang
- ABLife BioBigData Institute, Wuhan, 430075, PR China
| | - Ling Zhao
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
25
|
Molyvdas A, Matalon S. Cyclosporine: an old weapon in the fight against coronaviruses. Eur Respir J 2020; 56:2002484. [PMID: 32732332 PMCID: PMC7397953 DOI: 10.1183/13993003.02484-2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Coronaviruses have been known to cause respiratory infections in humans and intestinal infections in other mammals. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is the seventh virus of the Coronaviridae family that is known to infect humans. Until 2002, four Coronaviruses infecting humans were described (HCoV-NL63, HCoV-229E, HCoV-OC43 and HKU1). These viruses caused only mild respiratory diseases in immunocompetent hosts. Since 2002, three highly pathogenic viruses from this family have been identified. SARS-CoV (also referred to as SARS-CoV-1) is an enveloped, positive-sense, single-stranded RNA virus which infects the epithelial cells within the lungs. The virus enters the host cell by binding to angiotensin-converting enzyme 2 (ACE2) [1]. It infects humans, bats and palm civets [1]. Cyclosporine inhibits the replication of coronaviruses and could potentially suppress the cytokine storm associated with coronavirus infections https://bit.ly/39x2PSt
Collapse
Affiliation(s)
- Adam Molyvdas
- Depts of Anesthesiology and Perioperative Medicine, Division of Translational and Molecular Biomedicine and Pulmonary Injury and Repair Center, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - Sadis Matalon
- Depts of Anesthesiology and Perioperative Medicine, Division of Translational and Molecular Biomedicine and Pulmonary Injury and Repair Center, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| |
Collapse
|
26
|
Eisenhut M, Shin JI. Pathways in the Pathophysiology of Coronavirus 19 Lung Disease Accessible to Prevention and Treatment. Front Physiol 2020; 11:872. [PMID: 32922301 PMCID: PMC7457053 DOI: 10.3389/fphys.2020.00872] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background: In COVID 19 related lung disease, which is a leading cause of death from this disease, cytokines like tumor necrosis factor-alpha (TNF alpha) may be pivotal in the pathogenesis. TNF alpha reduces fluid absorption due to impairment of sodium and chloride transport required for building an osmotic gradient across epithelial cells, which in the airways maintains airway surface liquid helping to keep airways open and enabling bacterial clearance and aids water absorption from the alveolar spaces. TNF alpha can, through Rho-kinase, disintegrate the endothelial and epithelial cytoskeleton, and thus break up intercellular tight junctional proteins, breaching the intercellular barrier, which prevents flooding of the interstitial and alveolar spaces with fluid. Hypotheses: (1) Preservation and restoration of airway and alveolar epithelial sodium and chloride transport and the cytoskeleton dependent integrity of the cell barriers within the lung can prevent and treat COVID 19 lung disease. (2) TNF alpha is the key mediator of pulmonary edema in COVID 19 lung disease. Confirmation of hypothesis and implications: The role of a reduction in the function of epithelial sodium and chloride transport could with regards to chloride transport be tested by analysis of chloride levels in exhaled breath condensate and levels correlated with TNF alpha concentrations. Reduced levels would indicate a reduction of the function of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and a correlation with TNF alpha levels indicative of its involvement. Anti-TNF alpha treatment with antibodies is already available and needs to be tested in randomized controlled trials of COVID 19 lung disease. TNF alpha levels could also be reduced by statins, aspirin, and curcumin. Chloride transport could be facilitated by CFTR activators, including curcumin and phosphodiesterase-5 inhibitors. Sodium and chloride transport could be further regulated to prevent accumulation of alveolar fluid by use of Na(+)/K(+)/2Cl(-) cotransporter type 1 inhibitors, which have been associated with improved outcome in adults ventilated for acute respiratory distress syndrome (ARDS) in randomized controlled trials. Primary prevention of coronavirus infection and TNF alpha release in response to it could be improved by induction of antimicrobial peptides LL-37 and human beta defensin-2 and reduction of TNF alpha production by vitamin D prophylaxis for the population as a whole.
Collapse
Affiliation(s)
- Michael Eisenhut
- Children's & Adolescent Services, Luton & Dunstable University Hospital NHS Foundation Trust, Luton, United Kingdom
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
27
|
Shi X, Zhou X, Wang J, Zhang D, Huang K, Li X, Yang G. Tartronic acid promotes de novo lipogenesis and inhibits CPT-1β by upregulating acetyl-CoA and malonyl-CoA. Life Sci 2020; 258:118240. [PMID: 32781072 DOI: 10.1016/j.lfs.2020.118240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
As a dicarboxylic acid with the structural formula HOOCCH (OH) COOH, tartronic acid is considered as an inhibitor of the transformation of carbohydrates into fat under fat-deficient diet conditions. However, the effect of tartronic acid on lipogenesis under high-fat diet conditions has yet to be established. In this work, we investigated the regulatory role of tartronic acid in lipogenesis in 3T3-L1 adipocytes and C57BL/6J mice. The results confirmed that tartronic acid promoted weight gain (without affecting food intake) and induced adipocyte hypertrophy in epididymal white adipose tissue and lipid accumulation in the livers of high-fat diet-induced obese mice. In vitro, tartronic acid promoted 3T3-L1 adipocyte differentiation by increasing the protein expression of FABP-4, PPARγ and SREBP-1. Moreover, the contents of both acetyl-CoA and malonyl-CoA were significantly upregulated by treatment with tartronic acid, while the protein expression of CPT-1β were inhibited. In summary, we proved that tartronic acid promotes lipogenesis by serving as substrates for fatty acid synthesis and inhibiting CPT-1β, providing a new perspective for the study of tartronic acid.
Collapse
Affiliation(s)
- Xin'e Shi
- Laboratory of Animal Fat Deposition & Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University Yangling, Shaanxi 712100, China
| | - Xiaomin Zhou
- Laboratory of Animal Fat Deposition & Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University Yangling, Shaanxi 712100, China
| | - Jie Wang
- Laboratory of Animal Fat Deposition & Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University Yangling, Shaanxi 712100, China
| | - Deming Zhang
- Laboratory of Animal Fat Deposition & Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University Yangling, Shaanxi 712100, China
| | - Kuilong Huang
- Laboratory of Animal Fat Deposition & Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University Yangling, Shaanxi 712100, China
| | - Xiao Li
- Laboratory of Animal Fat Deposition & Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University Yangling, Shaanxi 712100, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition & Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University Yangling, Shaanxi 712100, China.
| |
Collapse
|
28
|
Ji HL, Zhao R, Matalon S, Matthay MA. Elevated Plasmin(ogen) as a Common Risk Factor for COVID-19 Susceptibility. Physiol Rev 2020; 100:1065-1075. [PMID: 32216698 PMCID: PMC7191627 DOI: 10.1152/physrev.00013.2020] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
Patients with hypertension, diabetes, coronary heart disease, cerebrovascular illness, chronic obstructive pulmonary disease, and kidney dysfunction have worse clinical outcomes when infected with SARS-CoV-2, for unknown reasons. The purpose of this review is to summarize the evidence for the existence of elevated plasmin(ogen) in COVID-19 patients with these comorbid conditions. Plasmin, and other proteases, may cleave a newly inserted furin site in the S protein of SARS-CoV-2, extracellularly, which increases its infectivity and virulence. Hyperfibrinolysis associated with plasmin leads to elevated D-dimer in severe patients. The plasmin(ogen) system may prove a promising therapeutic target for combating COVID-19.
Collapse
Affiliation(s)
- Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas; Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas; Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas; Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas; Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| | - Sadis Matalon
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas; Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas; Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| | - Michael A Matthay
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas; Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas; Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| |
Collapse
|
29
|
Qu R, Ling Y, Zhang YHZ, Wei LY, Chen X, Li XM, Liu XY, Liu HM, Guo Z, Ren H, Wang Q. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J Med Virol 2020; 92:1533-1541. [PMID: 32181903 PMCID: PMC7228291 DOI: 10.1002/jmv.25767] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
Since December 2019, novel coronavirus infected pneumonia emerged in Wuhan city and rapidly spread throughout China. In severe novel coronavirus pneumonia cases, the number of platelets, their dynamic changes during the treatment, platelet-to-lymphocyte ratio (PLR) were a concern. We sought to describe the platelet feature of these cases. Single-center case series of the 30 hospitalized patients with confirmed coronavirus disease (COVID)-19 in Huizhou municipal central hospital from January 2020 to February 2020 were retrospectively analyzed. Demographic, clinical, blood routine results, other laboratory results, and treatment data were collected and analyzed. Outcomes of severe patients and nonsevere patients were compared. Univariate analysis showed that: age, platelet peaks, and PLR at peak platelet were the influencing factors in severe patients, multivariate analysis showed that the PLR value at peak platelet during treatment was an independent influencing factor in severe patients. The average hospitalization day of patients with platelet peaks during treatment was longer than those without platelet peaks (P < .05). The average age of patients with platelet peaks during treatment was older than those without platelet peaks (P < .05). The patients with significantly elevated platelets during treatment had longer average hospitalization days. And the higher PLR of patients during treatment had longer average hospitalization days. Single-center case series of the 30 hospitalized patients with confirmed COVID-19 in Huizhou Municipal Central Hospital, presumed that the number of platelets and their dynamic changes during the treatment may have a suggestion on the severity and prognosis of the disease. The patient with markedly elevated platelets and longer average hospitalization days may be related to the cytokine storm. The PLR of patients means the degree of cytokine storm, which might provide a new indicator in the monitoring in patients with COVID-19.
Collapse
Affiliation(s)
- Rong Qu
- Department of Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, China
| | - Yun Ling
- Department of Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, China
| | - Yi-Hui-Zhi Zhang
- Department of Hematology and Oncology, National Cancer Center/National Clinical Research Cancer for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Li-Ya Wei
- Department of Hematology and Oncology, National Cancer Center/National Clinical Research Cancer for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xiao Chen
- Department of Hematology and Oncology, National Cancer Center/National Clinical Research Cancer for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xu-Mian Li
- Department of Hematology and Oncology, National Cancer Center/National Clinical Research Cancer for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xuan-Yong Liu
- Department of Hematology and Oncology, National Cancer Center/National Clinical Research Cancer for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Han-Mian Liu
- Department of Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, China
| | - Zhi Guo
- Department of Hematology and Oncology, National Cancer Center/National Clinical Research Cancer for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.,Institute of Infection, Immunology and Tumor Microenvironment, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Hua Ren
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Medical, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Medical College, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Abstract
Viroporins are short polypeptides encoded by viruses. These small membrane proteins assemble into oligomers that can permeabilize cellular lipid bilayers, disrupting the physiology of the host to the advantage of the virus. Consequently, efforts during the last few decades have been focused towards the discovery of viroporin channel inhibitors, but in general these have not been successful to produce licensed drugs. Viroporins are also involved in viral pathogenesis by engaging in critical interactions with viral proteins, or disrupting normal host cellular pathways through coordinated interactions with host proteins. These protein-protein interactions (PPIs) may become alternative attractive drug targets for the development of antivirals. In this sense, while thus far most antiviral molecules have targeted viral proteins, focus is moving towards targeting host proteins that are essential for virus replication. In principle, this largely would overcome the problem of resistance, with the possibility of using repositioned existing drugs. The precise role of these PPIs, their strain- and host- specificities, and the structural determination of the complexes involved, are areas that will keep the fields of virology and structural biology occupied for years to come. In the present review, we provide an update of the efforts in the characterization of the main PPIs for most viroporins, as well as the role of viroporins in these PPIs interactions.
Collapse
Affiliation(s)
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
31
|
Londino JD, Lazrak A, Collawn JF, Bebok Z, Harrod KS, Matalon S. Influenza virus infection alters ion channel function of airway and alveolar cells: mechanisms and physiological sequelae. Am J Physiol Lung Cell Mol Physiol 2017; 313:L845-L858. [PMID: 28775098 DOI: 10.1152/ajplung.00244.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) and the amiloride-sensitive epithelial sodium channels (ENaC) are located in the apical membranes of airway and alveolar epithelial cells. These transporters play an important role in the regulation of lung fluid balance across airway and alveolar epithelia by being the conduits for chloride (Cl-) and bicarbonate ([Formula: see text]) secretion and sodium (Na+) ion absorption, respectively. The functional role of these channels in the respiratory tract is to maintain the optimum volume and ionic composition of the bronchial periciliary fluid (PCL) and alveolar lining fluid (ALF) layers. The PCL is required for proper mucociliary clearance of pathogens and debris, and the ALF is necessary for surfactant homeostasis and optimum gas exchange. Dysregulation of ion transport may lead to mucus accumulation, bacterial infections, inflammation, pulmonary edema, and compromised respiratory function. Influenza (or flu) in mammals is caused by influenza A and B viruses. Symptoms include dry cough, sore throat, and is often followed by secondary bacterial infections, accumulation of fluid in the alveolar spaces and acute lung injury. The underlying mechanisms of flu symptoms are not fully understood. This review summarizes our present knowledge of how influenza virus infections alter airway and alveolar epithelial cell CFTR and ENaC function in vivo and in vitro and the role of these changes in influenza pathogenesis.
Collapse
Affiliation(s)
- James David Londino
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zsuzsanna Bebok
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
32
|
Hover S, Foster B, Barr JN, Mankouri J. Viral dependence on cellular ion channels - an emerging anti-viral target? J Gen Virol 2017; 98:345-351. [PMID: 28113044 DOI: 10.1099/jgv.0.000712] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The broad range of cellular functions governed by ion channels represents an attractive target for viral manipulation. Indeed, modulation of host cell ion channel activity by viral proteins is being increasingly identified as an important virus-host interaction. Recent examples have demonstrated that virion entry, virus egress and the maintenance of a cellular environment conducive to virus persistence are, in part, dependent on virus manipulation of ion channel activity. Most excitingly, evidence has emerged that targeting ion channels pharmacologically can impede virus life cycles. Here, we discuss current examples of virus-ion channel interactions and the potential of targeting ion channel function as a new, pharmacologically safe and broad-ranging anti-viral therapeutic strategy.
Collapse
Affiliation(s)
- Samantha Hover
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Becky Foster
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - John N Barr
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
33
|
Plasma membrane insertion of epithelial sodium channels occurs with dual kinetics. Pflugers Arch 2016; 468:859-70. [DOI: 10.1007/s00424-016-1799-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 01/05/2023]
|
34
|
Ji HL, Nie HG, Chang Y, Lian Q, Liu SL. CPT-cGMP Is A New Ligand of Epithelial Sodium Channels. Int J Biol Sci 2016; 12:359-66. [PMID: 27019621 PMCID: PMC4807156 DOI: 10.7150/ijbs.13764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/11/2015] [Indexed: 12/28/2022] Open
Abstract
Epithelial sodium channels (ENaC) are localized at the apical membrane of the epithelium, and are responsible for salt and fluid reabsorption. Renal ENaC takes up salt, thereby controlling salt content in serum. Loss-of-function ENaC mutations lead to low blood pressure due to salt-wasting, while gain-of-function mutations cause impaired sodium excretion and subsequent hypertension as well as hypokalemia. ENaC activity is regulated by intracellular and extracellular signals, including hormones, neurotransmitters, protein kinases, and small compounds. Cyclic nucleotides are broadly involved in stimulating protein kinase A and protein kinase G signaling pathways, and, surprisingly, also appear to have a role in regulating ENaC. Increasing evidence suggests that the cGMP analog, CPT-cGMP, activates αβγ-ENaC activity reversibly through an extracellular pathway in a dose-dependent manner. Furthermore, the parachlorophenylthio moiety and ribose 2'-hydroxy group of CPT-cGMP are essential for facilitating the opening of ENaC channels by this compound. Serving as an extracellular ligand, CPT-cGMP eliminates sodium self-inhibition, which is a novel mechanism for stimulating salt reabsorption in parallel to the traditional NO/cGMP/PKG signal pathway. In conclusion, ENaC may be a druggable target for CPT-cGMP, leading to treatments for kidney malfunctions in salt reabsorption.
Collapse
Affiliation(s)
- Hong-Long Ji
- 1. Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
| | - Hong-Guang Nie
- 2. Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang 110001, China
| | - Yongchang Chang
- 3. Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona, 85013, USA
| | - Qizhou Lian
- 4. Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shan-Lu Liu
- 5. Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
35
|
Matalon S, Bartoszewski R, Collawn JF. Role of epithelial sodium channels in the regulation of lung fluid homeostasis. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1229-38. [PMID: 26432872 DOI: 10.1152/ajplung.00319.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/25/2015] [Indexed: 01/11/2023] Open
Abstract
In utero, fetal lung epithelial cells actively secrete Cl(-) ions into the lung air spaces while Na(+) ions follow passively to maintain electroneutrality. This process, driven by an electrochemical gradient generated by the Na(+)-K(+)-ATPase, is responsible for the secretion of fetal fluid that is essential for normal lung development. Shortly before birth, a significant upregulation of amiloride-sensitive epithelial channels (ENaCs) on the apical side of the lung epithelial cells results in upregulation of active Na(+) transport. This process is critical for the reabsorption of fetal lung fluid and the establishment of optimum gas exchange. In the adult lung, active Na(+) reabsorption across distal lung epithelial cells limits the degree of alveolar edema in patients with acute lung injury and cardiogenic edema. Cl(-) ions are transported either paracellularly or transcellularly to preserve electroneutrality. An increase in Cl(-) secretion across the distal lung epithelium has been reported following an acute increase in left atrial pressure and may result in pulmonary edema. In contrast, airway epithelial cells secrete Cl(-) through apical cystic fibrosis transmembrane conductance regulator and Ca(2+)-activated Cl(-) channels and absorb Na(+). Thus the coordinated action of Cl(-) secretion and Na(+) absorption is essential for maintenance of the volume of epithelial lining fluid that, in turn, maximizes mucociliary clearance and facilitates clearance of bacteria and debris from the lungs. Any factor that interferes with Na(+) or Cl(-) transport or dramatically upregulates ENaC activity in airway epithelial cells has been associated with lung diseases such as cystic fibrosis or chronic obstructive lung disease. In this review we focus on the role of the ENaC, the mechanisms involved in ENaC regulation, and how ENaC dysregulation can lead to lung pathology.
Collapse
Affiliation(s)
- Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Gregory Fleming James Cystic Fibrosis Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
36
|
Nieto-Torres JL, Verdiá-Báguena C, Castaño-Rodriguez C, Aguilella VM, Enjuanes L. Relevance of Viroporin Ion Channel Activity on Viral Replication and Pathogenesis. Viruses 2015; 7:3552-73. [PMID: 26151305 PMCID: PMC4517115 DOI: 10.3390/v7072786] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/24/2015] [Accepted: 06/29/2015] [Indexed: 12/23/2022] Open
Abstract
Modification of host-cell ionic content is a significant issue for viruses, as several viral proteins displaying ion channel activity, named viroporins, have been identified. Viroporins interact with different cellular membranes and self-assemble forming ion conductive pores. In general, these channels display mild ion selectivity, and, eventually, membrane lipids play key structural and functional roles in the pore. Viroporins stimulate virus production through different mechanisms, and ion channel conductivity has been proved particularly relevant in several cases. Key stages of the viral cycle such as virus uncoating, transport and maturation are ion-influenced processes in many viral species. Besides boosting virus propagation, viroporins have also been associated with pathogenesis. Linking pathogenesis either to the ion conductivity or to other functions of viroporins has been elusive for a long time. This article summarizes novel pathways leading to disease stimulated by viroporin ion conduction, such as inflammasome driven immunopathology.
Collapse
Affiliation(s)
- Jose L Nieto-Torres
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Carmina Verdiá-Báguena
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071 Castellón, Spain.
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Vicente M Aguilella
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071 Castellón, Spain.
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
37
|
Torres J, Surya W, Li Y, Liu DX. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals? Viruses 2015; 7:2858-83. [PMID: 26053927 PMCID: PMC4488717 DOI: 10.3390/v7062750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/21/2015] [Accepted: 05/28/2015] [Indexed: 12/13/2022] Open
Abstract
Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i) the envelope protein in coronaviruses and (ii) the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.
Collapse
Affiliation(s)
- Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
38
|
Abstract
Determining the role of NADPH oxidases in the context of virus infection is an emerging area of research and our knowledge is still sparse. The expression of various isoforms of NOX/DUOX (NADPH oxidase/dual oxidase) in the epithelial cells (ECs) lining the respiratory tract renders them primary sites from which to orchestrate the host defence against respiratory viruses. Accumulating evidence reveals distinct facets of the involvement of NOX/DUOX in host antiviral and pro-inflammatory responses and in the control of the epithelial barrier integrity, with individual isoforms mediating co-operative, but surprisingly also opposing, functions. Although in vivo studies in mice are in line with some of these observations, a complete understanding of the specific functions of epithelial NOX/DUOX awaits lung epithelial-specific conditional knockout mice. The goal of the present review is to summarize our current knowledge of the role of individual NOX/DUOX isoforms expressed in the lung epithelium in the context of respiratory virus infections so as to highlight potential opportunities for therapeutic intervention.
Collapse
|
39
|
Abstract
Virus encoded ion channels, termed viroporins, are expressed by a diverse set of viruses and have been found to target nearly every host cell membrane and compartment, including endocytic/exocytic vesicles, ER, mitochondria, Golgi, and the plasma membrane. Viroporins are generally very small (<100 amino acids) integral membrane proteins that share common structure motifs (conserved cluster of basic residues adjacent to an amphipathic alpha-helix) but only limited sequence homology between viruses. Ion channel activity of viroporins is either required for replication or greatly enhances replication and pathogenesis. Channel characteristics have been investigated using standard electrophysiological techniques, including planar lipid bilayer, liposome patch clamp or whole-cell voltage clamp. In general, viroporins are voltage-independent non-specific monovalent cation channels, with the exception of the influenza A virus M2 channel that forms a highly specific proton channel due to a conserved HXXXW motif. Viroporin channel currents range between highly variable (‘burst-like’) fluctuations to well resolved unitary (‘square-top’) transitions, and emerging data indicates the quality of channel activity is influenced by many factors, including viroporin synthesis/solubilization, the lipid environment and the ionic composition of the buffers, as well as intrinsic differences between the viroporins themselves. Compounds that block viroporin channel activity are effective antiviral drugs both in vitro and in vivo. Surprisingly distinct viroporins are inhibited by the same compounds (e.g., amantadines and amiloride derivatives), despite wide sequence divergence, raising the possibility of broadly acting antiviral drugs that target viroporins. Electrophysiology of viroporins will continue to play a critical role in elucidating the functional roles viroporins play in pathogenesis and to develop new drugs to combat viroporin-encoding pathogens.
Collapse
Affiliation(s)
- Anne H. Delcour
- Dept. of Biology and Biochemistry, University of Houston, Houston, Texas USA
| |
Collapse
|
40
|
DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, Regla-Nava JA, Castaño-Rodriguez C, Fernandez-Delgado R, Usera F, Enjuanes L. Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res 2014; 194:124-37. [PMID: 25093995 PMCID: PMC4261026 DOI: 10.1016/j.virusres.2014.07.024] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022]
Abstract
Coronavirus (CoV) infection is usually detected by cellular sensors, which trigger the activation of the innate immune system. Nevertheless, CoVs have evolved viral proteins that target different signaling pathways to counteract innate immune responses. Some CoV proteins act as antagonists of interferon (IFN) by inhibiting IFN production or signaling, aspects that are briefly addressed in this review. After CoV infection, potent cytokines relevant in controlling virus infections and priming adaptive immune responses are also generated. However, an uncontrolled induction of these proinflammatory cytokines can lead to pathogenesis and disease severity as described for SARS-CoV and MERS-CoV. The cellular pathways mediated by interferon regulatory factor (IRF)-3 and -7, activating transcription factor (ATF)-2/jun, activator protein (AP)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NF-AT), are the main drivers of the inflammatory response triggered after viral infections, with NF-κB pathway the most frequently activated. Key CoV proteins involved in the regulation of these pathways and the proinflammatory immune response are revisited in this manuscript. It has been shown that the envelope (E) protein plays a variable role in CoV morphogenesis, depending on the CoV genus, being absolutely essential in some cases (genus α CoVs such as TGEV, and genus β CoVs such as MERS-CoV), but not in others (genus β CoVs such as MHV or SARS-CoV). A comprehensive accumulation of data has shown that the relatively small E protein elicits a strong influence on the interaction of SARS-CoV with the host. In fact, after infection with viruses in which this protein has been deleted, increased cellular stress and unfolded protein responses, apoptosis, and augmented host immune responses were observed. In contrast, the presence of E protein activated a pathogenic inflammatory response that may cause death in animal models and in humans. The modification or deletion of different motifs within E protein, including the transmembrane domain that harbors an ion channel activity, small sequences within the middle region of the carboxy-terminus of E protein, and its most carboxy-terminal end, which contains a PDZ domain-binding motif (PBM), is sufficient to attenuate the virus. Interestingly, a comprehensive collection of SARS-CoVs in which these motifs have been modified elicited full and long-term protection even in old mice, making those deletion mutants promising vaccine candidates. These data indicate that despite its small size, E protein drastically influences the replication of CoVs and their pathogenicity. Although E protein is not essential for CoV genome replication or subgenomic mRNA synthesis, it affects virus morphogenesis, budding, assembly, intracellular trafficking, and virulence. In fact, E protein is responsible in a significant proportion of the inflammasome activation and the associated inflammation elicited by SARS-CoV in the lung parenchyma. This exacerbated inflammation causes edema accumulation leading to acute respiratory distress syndrome (ARDS) and, frequently, to the death of infected animal models or human patients.
Collapse
Affiliation(s)
- Marta L DeDiego
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Jose L Nieto-Torres
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Jose M Jimenez-Guardeño
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Jose A Regla-Nava
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Fernando Usera
- Department of Biosafety, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain.
| |
Collapse
|
41
|
Shimko MJ, Zaccone EJ, Thompson JA, Schwegler-Berry D, Kashon ML, Fedan JS. Nerve growth factor reduces amiloride-sensitive Na+ transport in human airway epithelial cells. Physiol Rep 2014; 2:2/7/e12073. [PMID: 25347857 PMCID: PMC4187554 DOI: 10.14814/phy2.12073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nerve growth factor (NGF) is overexpressed in patients with inflammatory lung diseases, including virus infections. Airway surface liquid (ASL), which is regulated by epithelial cell ion transport, is essential for normal lung function. No information is available regarding the effect of NGF on ion transport of airway epithelium. To investigate whether NGF can affect ion transport, human primary air‐interface cultured epithelial cells were placed in Ussing chambers to obtain transepithelial voltage (−7.1 ± 3.4 mV), short‐circuit current (Isc, 5.9 ± 1.0 μA), and transepithelial resistance (750 Ω·cm2), and to measure responses to ion transport inhibitors. Amiloride (apical, 3.5 × 10−5 mol/L) decreased Isc by 55.3%. Apically applied NGF (1 ng/mL) reduced Isc by 5.3% in 5 min; basolaterally applied NGF had no effect. The response to amiloride was reduced (41.6%) in the presence of NGF. K‐252a (10 nmol/L, apical) did not itself affect Na+ transport, but it attenuated the NGF‐induced reduction in Na+ transport, indicating the participation of the trkA receptor in the NGF‐induced reduction in Na+ transport. PD‐98059 (30 μmol/L, apical and basolateral) did not itself affect Na+ transport, but attenuated the NGF‐induced reduction in Na+ transport, indicating that trkA activated the Erk 1/2 signaling cascade. NGF stimulated phosphorylation of Erk 1/2 and the β‐subunit of ENaC. K‐252a and PD‐98059 inhibited these responses. NGF had no effect on Isc in the presence of apical nystatin (50 μmol/L). These results indicate that NGF inhibits Na+ transport through a trkA‐Erk 1/2‐activated signaling pathway linked to ENaC phosphorylation. Nerve growth factor (apical, 1 ng/mL) reduced amiloride‐sensitive Na+ transport in human cultured bronchial epithelial cells. We determined that this reduction in Na+ transport occurred through NGF‐mediated activation of the trkA receptor and Erk 1/2 signaling cascade to cause phosphorylation of ENaC.
Collapse
Affiliation(s)
- Michael J Shimko
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia
| | - Eric J Zaccone
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia
| | - Janet A Thompson
- Pathology and Physiology Research Branch, NIOSH, Morgantown, West Virginia
| | | | - Michael L Kashon
- Pathology and Physiology Research Branch, NIOSH, Morgantown, West Virginia
| | - Jeffrey S Fedan
- Pathology and Physiology Research Branch, NIOSH, Morgantown, West Virginia
| |
Collapse
|
42
|
Yu L, Al-Khalili O, Duke BJ, Stockand JD, Eaton DC, Bao HF. The inhibitory effect of Gβγ and Gβ isoform specificity on ENaC activity. Am J Physiol Renal Physiol 2013; 305:F1365-73. [PMID: 23863469 DOI: 10.1152/ajprenal.00009.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial Na(+) channel (ENaC) activity, which determines the rate of renal Na(+) reabsorption, can be regulated by G protein-coupled receptors. Regulation of ENaC by Gα-mediated downstream effectors has been studied extensively, but the effect of Gβγ dimers on ENaC is unclear. A6 cells endogenously contain high levels of Gβ1 but low levels of Gβ3, Gβ4, and Gβ5 were detected by Q-PCR. We tested Gγ2 combined individually with Gβ1 through Gβ5 expressed in A6 cells, after which we recorded single-channel ENaC activity. Among the five β and γ2 combinations, β1γ2 strongly inhibits ENaC activity by reducing both ENaC channel number (N) and open probability (Po) compared with control cells. In contrast, the other four β-isoforms combined with γ2 have no significant effect on ENaC activity. By using various inhibitors to probe Gβ1γ2 effects on ENaC regulation, we found that Gβ1γ2-mediated ENaC inhibition involved activation of phospholipase C-β and its enzymatic products that induce protein kinase C and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Ling Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural Univ., Nanjing 210095, China.
| | | | | | | | | | | |
Collapse
|
43
|
Londino JD, Lazrak A, Jurkuvenaite A, Collawn JF, Noah JW, Matalon S. Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity. Am J Physiol Lung Cell Mol Physiol 2013; 304:L582-92. [PMID: 23457187 DOI: 10.1152/ajplung.00314.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The human cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride (Cl(-)) channel in the lung epithelium that helps regulate the thickness and composition of the lung epithelial lining fluid. We investigated whether influenza M2 protein, a pH-activated proton (H(+)) channel that traffics to the plasma membrane of infected cells, altered CFTR expression and function. M2 decreased CFTR activity in 1) Xenopus oocytes injected with human CFTR, 2) epithelial cells (HEK-293) stably transfected with CFTR, and 3) human bronchial epithelial cells (16HBE14o-) expressing native CFTR. This inhibition was partially reversed by an inhibitor of the ubiquitin-activating enzyme E1. Next we investigated whether the M2 inhibition of CFTR activity was due to an increase of secretory organelle pH by M2. Incubation of Xenopus oocytes expressing CFTR with ammonium chloride or concanamycin A, two agents that alkalinize the secretory pathway, inhibited CFTR activity in a dose-dependent manner. Treatment of M2- and CFTR-expressing oocytes with the M2 ion channel inhibitor amantadine prevented the loss in CFTR expression and activity; in addition, M2 mutants, lacking the ability to transport H(+), did not alter CFTR activity in Xenopus oocytes and HEK cells. Expression of an M2 mutant retained in the endoplasmic reticulum also failed to alter CFTR activity. In summary, our data show that M2 decreases CFTR activity by increasing secretory organelle pH, which targets CFTR for destruction by the ubiquitin system. Alteration of CFTR activity has important consequences for fluid regulation and may potentially modify the immune response to viral infection.
Collapse
Affiliation(s)
- James D Londino
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | | | | | | | | | | |
Collapse
|
44
|
Qiao X, Ye M, Xiang C, Wang Q, Liu CF, Miao WJ, Guo DA. Analytical strategy to reveal the in vivo process of multi-component herbal medicine: A pharmacokinetic study of licorice using liquid chromatography coupled with triple quadrupole mass spectrometry. J Chromatogr A 2012; 1258:84-93. [DOI: 10.1016/j.chroma.2012.08.041] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 11/26/2022]
|
45
|
Zhao RZ, Nie HG, Su XF, Han DY, Lee A, Huang Y, Chang Y, Matalon S, Ji HL. Characterization of a novel splice variant of δ ENaC subunit in human lungs. Am J Physiol Lung Cell Mol Physiol 2012; 302:L1262-72. [PMID: 22505667 DOI: 10.1152/ajplung.00331.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Salt absorption via apical epithelial sodium channels (ENaC) is a critical rate-limiting process in maintaining airway and lung lining fluid at the physiological level. δ ENaC (termed δ1 in this article) has been detected in human lung epithelial cells in addition to α, β, and γ subunits (Ji HL, Su XF, Kedar S, Li J, Barbry P, Smith PR, Matalon S, Benos DJ. J Biol Chem 281: 8233-8241, 2006; Nie HG, Chen L, Han DY, Li J, Song WF, Wei SP, Fang XH, Gu X, Matalon S, Ji HL, J Physiol 587: 2663-2676, 2009) and may contribute to the differences in the biophysical properties of amiloride-inhibitable cation channels in pulmonary epithelial cells. Here we cloned a splicing variant of the δ1 ENaC, namely, δ2 ENaC in human bronchoalveolar epithelial cells (16HBEo). δ2 ENaC possesses 66 extra amino acids attached to the distal amino terminal tail of the δ1 ENaC. δ2 ENaC was expressed in both alveolar type I and II cells of human lungs as revealed by in situ hybridization and real-time RT-PCR. To characterize the biophysical and pharmacological features of the splicing variant, we injected Xenopus oocytes with human ENaC cRNAs and measured whole cell and single channel currents of δ1βγ, δ2βγ, and αβγ channels. Oocytes injected with δ2βγ cRNAs exhibited whole cell currents significantly greater than those expressing δ1βγ and αβγ channels. Single channel activity, unitary conductance, and open probability of δ2βγ channels were significantly greater compared with δ1βγ and αβγ channels. In addition, δ2βγ and δ1βγ channels displayed significant differences in apparent Na(+) affinity, dissociation constant for amiloride (K(i)(amil)), the EC(50) for capsazepine activation, and gating kinetics by protons. Channels comprising of this novel splice variant may contribute to the diversities of native epithelial Na(+) channels.
Collapse
Affiliation(s)
- Run-Zhen Zhao
- Departments of Cellular and Molecular Biology, Texas Lung Injury Institute, Univ. of Texas Health Science Ctr. at Tyler, Tyler, TX 75708-3154, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.
Collapse
Affiliation(s)
- Yawar J Qadri
- Department of Physiology and Biophysics, University of Alabama at Birmingham, AL 35294, USA
| | | | | |
Collapse
|
47
|
Yang G, Hamacher J, Gorshkov B, White R, Sridhar S, Verin A, Chakraborty T, Lucas R. The Dual Role of TNF in Pulmonary Edema. J Cardiovasc Dis Res 2011; 1:29-36. [PMID: 21188088 PMCID: PMC3004168 DOI: 10.4103/0975-3583.59983] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
—Pulmonary edema, a major manifestation of left ventricular heart failure, renal insufficiency, shock, diffuse alveolar damage and lung hypersensitivity states, is a significant medical problem worldwide and can be life-threatening. The proinflammatory cytokine tumor necrosis factor (TNF) has been shown to contribute to the pathogenesis and development of pulmonary edema. However, some recent studies have demonstrated surprisingly that TNF can also promote alveolar fluid reabsorption in vivo and in vitro. This protective effect of the cytokine is mediated by the lectin-like domain of the cytokine, which is spatially distinct from the TNF receptor binding sites. The TIP peptide, a synthetic mimic of the lectin-like domain of TNF, can significantly increase alveolar fluid clearance and improve lung compliance in pulmonary edema models. In this review, we will discuss the dual role of TNF in pulmonary edema.
Collapse
Affiliation(s)
- Guang Yang
- Vascular Biology Center & Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA, 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Nieto-Torres JL, Dediego ML, Alvarez E, Jiménez-Guardeño JM, Regla-Nava JA, Llorente M, Kremer L, Shuo S, Enjuanes L. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology 2011; 415:69-82. [PMID: 21524776 PMCID: PMC4726981 DOI: 10.1016/j.virol.2011.03.029] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/10/2011] [Accepted: 03/31/2011] [Indexed: 11/28/2022]
Abstract
Severe acute respiratory syndrome (SARS) coronavirus (CoV) envelope (E) protein is a transmembrane protein. Several subcellular locations and topological conformations of E protein have been proposed. To identify the correct ones, polyclonal and monoclonal antibodies specific for the amino or the carboxy terminus of E protein, respectively, were generated. E protein was mainly found in the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) of cells transfected with a plasmid encoding E protein or infected with SARS-CoV. No evidence of E protein presence in the plasma membrane was found by using immunofluorescence, immunoelectron microscopy and cell surface protein labeling. In addition, measurement of plasma membrane voltage gated ion channel activity by whole-cell patch clamp suggested that E protein was not present in the plasma membrane. A topological conformation in which SARS-CoV E protein amino terminus is oriented towards the lumen of intracellular membranes and carboxy terminus faces cell cytoplasm is proposed.
Collapse
Affiliation(s)
- Jose L Nieto-Torres
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hee L, Dinudom A, Mitchell AJ, Grau GE, Cook DI, Hunt NH, Ball HJ. Reduced activity of the epithelial sodium channel in malaria-induced pulmonary oedema in mice. Int J Parasitol 2010; 41:81-8. [PMID: 20816846 PMCID: PMC7125784 DOI: 10.1016/j.ijpara.2010.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 07/22/2010] [Accepted: 07/23/2010] [Indexed: 11/05/2022]
Abstract
Lung complications during malaria infection can range from coughs and impairments in gas transfer to the development of acute respiratory distress syndrome (ARDS). Infecting C57BL/6 mice with Plasmodium berghei K173 strain (PbK) resulted in pulmonary oedema, capillaries congested with leukocytes and infected red blood cells (iRBCs), and leukocyte infiltration into the lungs. This new model of malaria-associated lung pathology, without any accompanying cerebral complications, allows the investigation of mechanisms leading to the lung disease. The activity of the amiloride-sensitive epithelial sodium channel (ENaC) in alveolar epithelial cells is decreased by several respiratory tract pathogens and this is suggested to contribute to pulmonary oedema. We show that PbK, a pathogen that remains in the circulation, also decreased the activity and expression of ENaC, suggesting that infectious agents can have indirect effects on ENaC activity in lung epithelial cells. The reduced ENaC activity may contribute to the pulmonary oedema induced by PbK malaria.
Collapse
Affiliation(s)
- Leia Hee
- Discipline of Pathology, School of Medical Sciences and Bosch Institute, University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
Nie HG, Zhang W, Han DY, Li QN, Li J, Zhao RZ, Su XF, Peng JB, Ji HL. 8-pCPT-cGMP stimulates alphabetagamma-ENaC activity in oocytes as an external ligand requiring specific nucleotide moieties. Am J Physiol Renal Physiol 2009; 298:F323-34. [PMID: 20007351 DOI: 10.1152/ajprenal.00307.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial sodium channels (ENaC) are regulated by protein kinase A, in addition to a broad spectrum of other protein kinases. It is not clear whether cGMP/PKG signaling might regulate ENaC activity. We examined the responses of alphabetagamma-ENaC channels expressed in Xenopus oocytes to 8-(4-chlorophenylthio)-cGMP (8-pCPT-cGMP), a cell-permeable cGMP analog. This compound stimulated human alphabetagamma-ENaC activity in a dose-dependent fashion, but cell-impermeable cGMP had no effect. Similar stimulatory effects of cGMP were observed in oocytes expressing either mouse or rat alphabetagamma-ENaC channels. The identical ion selectivity and amiloride sensitivity of the 8-pCPT-cGMP-activated currents to those of alphabetagamma-ENaC channels suggest that the cGMP-activated currents are associated with expressed ENaC. The PKGI activator Sp isomer of beta-phenyl-1,N(2)-etheno-8-bromo-cGMP did not elicit a rise in ENaC current and that the 8-pCPT-cGMP-induced activation of ENaC channels was blocked by incubating oocytes with a PKG inhibitor, but not with other cGMP-sensitive kinase inactivators for PKA, MEK, MAP, and PKC. Surprisingly, both site-directed mutation of putative consensus PKG phosphorylation sites and truncation of entire cytosolic NH(2)- and COOH-terminal tails did not alter the response to 8-pCPT-cGMP. The ENaC activity was activated to the same extent by 8-pCPT-cGMP in cells in which PKGII expression was knocked down using small interfering RNA. Analog to 8-CPT-cAMP, 8-pCPT-cGMP was capable of activating ENaC in the identical manner in cell-free outside-out patches. We conclude that the rapid upregulation of human alphabetagamma-ENaC activity in oocytes by external 8-pCPT-cGMP and 4-chlorothiolphenol-cAMP depends on the para-chlorophenylthiol and the hydroxy groups, and 8-pCPT-cGMP may serve as a novel ENaC ligand in addition to activating PKG signal.
Collapse
Affiliation(s)
- Hong-Guang Nie
- Department of Biochemistry, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|