1
|
Oizumi R, Sugimoto Y, Aibara H. The Potential of Exercise on Lifestyle and Skin Function: Narrative Review. JMIR DERMATOLOGY 2024; 7:e51962. [PMID: 38483460 PMCID: PMC10979338 DOI: 10.2196/51962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND The skin is an important organ of the human body and has moisturizing and barrier functions. Factors such as sunlight and lifestyle significantly affect these skin functions, with sunlight being extremely damaging. The effects of lifestyle habits such as smoking, diet, and sleep have been studied extensively. It has been found that smoking increases the risk of wrinkles, while excessive fat and sugar intake leads to skin aging. Lack of sleep and stress are also dangerous for the skin's barrier function. In recent years, the impact of exercise habits on skin function has been a focus of study. Regular exercise is associated with increased blood flow to the skin, elevated skin temperature, and improved skin moisture. Furthermore, it has been shown to improve skin structure and rejuvenate its appearance, possibly through promoting mitochondrial biosynthesis and affecting hormone secretion. Further research is needed to understand the effects of different amounts and content of exercise on the skin. OBJECTIVE This study aims to briefly summarize the relationship between lifestyle and skin function and the mechanisms that have been elucidated so far and introduce the expected effects of exercise on skin function. METHODS We conducted a review of the literature using PubMed and Google Scholar repositories for relevant literature published between 2000 and 2022 with the following keywords: exercise, skin, and life habits. RESULTS Exercise augments the total spectrum power density of cutaneous blood perfusion by a factor of approximately 8, and vasodilation demonstrates an enhancement of approximately 1.5-fold. Regular exercise can also mitigate age-related skin changes by promoting mitochondrial biosynthesis. However, not all exercise impacts are positive; for instance, swimming in chlorinated pools may harm the skin barrier function. Hence, the exercise environment should be considered for its potential effects on the skin. CONCLUSIONS This review demonstrates that exercise can potentially enhance skin function retention.
Collapse
Affiliation(s)
- Ryosuke Oizumi
- Faculty of Nursing, Shijonawate gakuen University, Daito-shi, Japan
| | | | | |
Collapse
|
2
|
Zhu T, Yang S, Mauro TM, Man MQ. Association of Epidermal Biophysical Properties with Obesity and Its Implications. Skin Pharmacol Physiol 2023; 36:165-173. [PMID: 37640014 DOI: 10.1159/000533587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Obesity is a condition defined by an excess amount of body fat, with body mass index (BMI) of 30 and higher. It is associated with a number of other medical conditions, including insulin resistance, diabetes mellitus, and cardiovascular diseases, as well as dyslipidemia, and it is also associated with several cutaneous disorders such as atopic dermatitis, psoriasis, intertriginous dermatitis, acanthosis nigricans and skin infections. SUMMARY Evidence suggests a link between obesity and epidermal dysfunction. Generally, individuals with obesity display higher transepidermal water loss rate and lower stratum corneum hydration levels, although no association of obesity with epidermal dysfunction has been documented. Results of skin surface pH are controversial. But study demonstrated a positive correlation of BMI with skin surface pH on both the forearm and the shin in males, suggesting that the changes in epidermal function vary with gender in individuals with obesity. KEY MESSAGES This review summarizes the association between obesity and epidermal function, and discusses possible underlying mechanisms. Individuals with obesity exhibit poor epidermal permeability barrier and lower stratum corneum hydration levels. Because of the pathogenic role of compromised epidermal function in inflammation, which is also linked to obesity, improvement in epidermal function could benefit individuals with obesity, particularly those with abnormalities in epidermal function.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuyun Yang
- Department of Dermatology, The People's Hospital of Baoshan, Baoshan, China
| | - Theodora M Mauro
- Department of Dermatology, Veterans Affairs Medical Center San Francisco, University of California San Francisco, San Francisco, California, USA
| | - Mao-Qiang Man
- Department of Dermatology, Veterans Affairs Medical Center San Francisco, University of California San Francisco, San Francisco, California, USA
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Takanami K, Morishita M, Sakamoto T, Sakamoto H. Chronic corticosterone exposure evokes itch hypersensitivity and sexual dysfunction in male rats: relationship between the two distinct gastrin-releasing peptide systems in the spinal cord. Gen Comp Endocrinol 2023; 339:114289. [PMID: 37094615 DOI: 10.1016/j.ygcen.2023.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
In today's society, people are subjected to many social stressors, and excessive chronic stress causes functional disruption of the neuroendocrine system and many diseases. Although the exacerbation of atopic dermatitis with symptoms of itching and erectile dysfunction is induced by chronic stress, the details of the mechanisms are unknown. Here, we examined the effects of chronic stress on itch sensation and male sexual function at the behavioral and molecular levels, focusing on two distinct gastrin-releasing peptide (GRP) systems that independently regulate itch transmission, i.e., the somatosensory GRP system, and male sexual function, i.e., the lumbosacral autonomic GRP system, in the spinal cord. In a rat model of chronic stress induced by chronic corticosterone (CORT) administration, we observed increased plasma CORT concentrations, decreased body weight, and increased anxiety-like behavior, similar to that observed in humans. Chronic CORT exposure induced hypersensitivity to itch and increased the Grp mRNA level in the spinal somatosensory system, but there was no change in pain or tactile sensitivity. Antagonists of the somatosensory GRP receptor, an itch-specific mediator, suppressed itch hypersensitivity induced by chronic CORT exposure. In contrast, chronic CORT exposure decreased male sexual behavior, ejaculated semen volume, vesicular gland weight, and plasma testosterone levels. However, there were no effects on the expression of Grp mRNA or protein in the lumbosacral autonomic GRP system, which regulates male sexual function. In summary, chronic stress model rats showed itch hypersensitivity and impaired sexual function in males, and the involvement of the spinal GRP systems was apparent in itch hypersensitivity.
Collapse
Affiliation(s)
- Keiko Takanami
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan; Mouse Genomics Resources Laboratory, National Institute of Genetics, Yata, Mishima, Shizuoka 411-8540, Japan; Department of Environmental Health, Faculty of Human Life and Environmental Sciences, Nara Women's University, Kitauoya Nishimachi, Nara 630-8506, Japan.
| | - Makoto Morishita
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| |
Collapse
|
4
|
Choo JH, Lee HG, Lee SY, Kang NG. Iris Pallida Extract Alleviates Cortisol-Induced Decrease in Type 1 Collagen and Hyaluronic Acid Syntheses in Human Skin Cells. Curr Issues Mol Biol 2023; 45:353-363. [PMID: 36661511 PMCID: PMC9857657 DOI: 10.3390/cimb45010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Excessive endogenous or exogenous levels of the stress hormone cortisol have negative effects on various tissues, including the skin. Iris pallida (IP), used in traditional medicine and perfumes, exhibits biological activities, such as antioxidant and anti-inflammatory activities. In this study, we aimed to investigate the inhibitory effect of IP extract (IPE) on cortisol activity in human skin cells. We found that IPE alleviated the cortisol-induced decrease in the levels of procollagen type 1 and hyaluronic acid (HA), which were significantly recovered by 106% and 31%, respectively, compared with cortisol-induced reductions. IPE also rescued the suppression of the gene expression of COL1A1 and the HA synthases HAS2 and HAS3 in cortisol-exposed cells. Moreover, IPE blocked the cortisol-induced translocation of the glucocorticoid receptor (GR) from the cytoplasm to the nucleus as effectively as the GR inhibitor mifepristone. Analysis using a high-performance liquid chromatography-diode-array detector system revealed that irigenin, an isoflavone, is the main component of IPE, which restored the cortisol-induced reduction in collagen type 1 levels by 82% relative to the cortisol-induced decrease. Our results suggest that IPE can act as an inhibitor of cortisol in human skin cells, preventing cortisol-induced collagen and HA degradation by blocking the nuclear translocation of the GR. Therefore, IPE may be used as a cosmetic material or herbal medicine to treat stress-related skin changes.
Collapse
|
5
|
Swindell WR, Bojanowski K, Singh P, Randhawa M, Chaudhuri RK. Bakuchiol and ethyl (linoleate/oleate) synergistically modulate endocannabinoid tone in keratinocytes and repress inflammatory pathway mRNAs. JID INNOVATIONS 2022; 3:100178. [PMID: 36992949 PMCID: PMC10041561 DOI: 10.1016/j.xjidi.2022.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 12/27/2022] Open
Abstract
The endocannabinoid (eCB) system plays an active role in epidermal homeostasis. Phytocannabinoids such as cannabidiol modulate this system but also act through eCB-independent mechanisms. This study evaluated the effects of cannabidiol, bakuchiol (BAK), and ethyl (linoleate/oleate) (ELN) in keratinocytes and reconstituted human epidermis. Molecular docking simulations showed that each compound binds the active site of the eCB carrier FABP5. However, BAK and ethyl linoleate bound this site with the highest affinity when combined 1:1 (w/w), and in vitro assays showed that BAK + ELN most effectively inhibited FABP5 and fatty acid amide hydrolase. In TNF-stimulated keratinocytes, BAK + ELN reversed TNF-induced expression shifts and uniquely downregulated type I IFN genes and PTGS2 (COX2). BAK + ELN also repressed expression of genes linked to keratinocyte differentiation but upregulated those associated with proliferation. Finally, BAK + ELN inhibited cortisol secretion in reconstituted human epidermis skin (not observed with cannabidiol). These results support a model in which BAK and ELN synergistically interact to inhibit eCB degradation, favoring eCB mobilization and inhibition of downstream inflammatory mediators (e.g., TNF, COX-2, type I IFN). A topical combination of these ingredients may thus enhance cutaneous eCB tone or potentiate other modulators, suggesting novel ways to modulate the eCB system for innovative skincare product development.
Collapse
Affiliation(s)
- William R. Swindell
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Correspondence: William R. Swindell, Department of Internal Medicine, UT Southwestern Medical Center, 5959 Harry Hines Boulevard, Ste 7.700, Dallas, Texas 75390-9175, USA.
| | | | - Parvesh Singh
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville, South Africa
| | | | | |
Collapse
|
6
|
Decker AM, Kapila YL, Wang HL. The psychobiological links between chronic stress-related diseases, periodontal/peri-implant diseases, and wound healing. Periodontol 2000 2021; 87:94-106. [PMID: 34463997 PMCID: PMC8459609 DOI: 10.1111/prd.12381] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic stress is a relevant disease to periodontal practice, encompassing 25%-28% of the US population (American Psychological Association 2015). While it is well established that chronic psychologic stress can have significant deleterious systemic effects, only in recent decades have we begun to explore the biochemical, microbial, and physiologic impacts of chronic stress diseases on oral tissues. Currently, chronic stress is classified as a "risk indicator" for periodontal disease. However, as the evidence in this field matures with additional clinically controlled trials, more homogeneous data collection methods, and a better grasp of the biologic underpinnings of stress-mediated dysbiosis, emerging evidence suggests that chronic stress and related diseases (depression, anxiety) may be significant contributing factors in periodontal/peri-implant disease progression and inconsistent wound healing following periodontal-related therapeutics. Ideal solutions for these patients include classification of the disease process and de-escalation of chronic stress conditions through coping strategies. This paper also summarizes periodontal/implant-related therapeutic approaches to ensure predictable results for this specific patient subpopulation.
Collapse
Affiliation(s)
- Ann M Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Yvonne L Kapila
- Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, California
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| |
Collapse
|
7
|
A novel mineralocorticoid receptor antagonist, 7,3',4'-trihydroxyisoflavone improves skin barrier function impaired by endogenous or exogenous glucocorticoids. Sci Rep 2021; 11:11920. [PMID: 34099793 PMCID: PMC8184959 DOI: 10.1038/s41598-021-91450-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/10/2021] [Indexed: 11/08/2022] Open
Abstract
Excess glucocorticoids (GCs) with either endogenous or exogenous origins deteriorate skin barrier function. GCs bind to mineralocorticoid and GC receptors (MRs and GRs) in normal human epidermal keratinocytes (NHEKs). Inappropriate MR activation by GCs mediates various GC-induced cutaneous adverse events. We examined whether MR antagonists can ameliorate GC-mediated skin barrier dysfunction in NHEKs, reconstructed human epidermis (RHE), and subjects under psychological stress (PS). In a preliminary clinical investigation, topical MR antagonists improved skin barrier function in topical GC-treated subjects. In NHEKs, cortisol induced nuclear translocation of GR and MR, and GR and MR antagonists inhibited cortisol-induced reductions of keratinocyte differentiation. We identified 7,3',4'-trihydroxyisoflavone (7,3',4'-THIF) as a novel compound that inhibits MR transcriptional activity by screening 30 cosmetic compounds. 7,3',4'-THIF ameliorated the cortisol effect which decreases keratinocyte differentiation in NHEKs and RHE. In a clinical study on PS subjects, 7,3',4'-THIF (0.1%)-containing cream improved skin barrier function, including skin surface pH, barrier recovery rate, and stratum corneum lipids. In conclusion, skin barrier dysfunction owing to excess GC is mediated by MR and GR; thus, it could be prevented by treatment with MR antagonists. Therefore, topical MR antagonists are a promising therapeutic option for skin barrier dysfunction after topical GC treatment or PS.
Collapse
|
8
|
Kim BJ, Lee NR, Lee CH, Lee YB, Choe SJ, Lee S, Hwang HJ, Kim E, Lavery GG, Shin KO, Park K, Choi EH. Increased Expression of 11β-Hydroxysteroid Dehydrogenase Type 1 Contributes to Epidermal Permeability Barrier Dysfunction in Aged Skin. Int J Mol Sci 2021; 22:ijms22115750. [PMID: 34072239 PMCID: PMC8198579 DOI: 10.3390/ijms22115750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Inactive cortisone is converted into active cortisol by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Excessive levels of active glucocorticoids could deteriorate skin barrier function; barrier impairment is also observed in aged skin. In this study, we aimed to determine whether permeability barrier impairment in the aged skin could be related to increased 11β-HSD1 expression. Aged humans (n = 10) showed increased cortisol in the stratum corneum (SC) and oral epithelium, compared to young subjects (n = 10). 11β-HSD1 expression (as assessed via immunohistochemical staining) was higher in the aged murine skin. Aged hairless mice (56-week-old, n = 5) manifested greater transepidermal water loss, lower SC hydration, and higher levels of serum inflammatory cytokines than the young mice (8-week-old, n = 5). Aged 11β-HSD1 knockout mice (n = 11), 11β-HSD1 inhibitor (INHI)-treated aged wild type (WT) mice (n = 5) and young WT mice (n = 10) exhibited reduced SC corticosterone level. Corneodesmosome density was low in WT aged mice (n = 5), but high in aged 11β-HSD1 knockout and aged INHI-treated WT mice. Aged mice exhibited lower SC lipid levels; this effect was reversed by INHI treatment. Therefore, upregulation of 11β-HSD1 in the aged skin increases the active-glucocorticoid levels; this suppresses SC lipid biosynthesis, leading to impaired epidermal permeability barrier.
Collapse
Affiliation(s)
- Beom Jun Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Noo Ri Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Chung Hyeok Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Young Bin Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Sung Jay Choe
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Solam Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Hyun Jee Hwang
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Eunjung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
| | - Gareth G. Lavery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Convergence Program of Materials Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (K.P.)
| | - Kyungho Park
- Department of Food Science and Nutrition, Convergence Program of Materials Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea; (K.-O.S.); (K.P.)
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (B.J.K.); (N.R.L.); (C.H.L.); (Y.B.L.); (S.J.C.); (S.L.); (H.J.H.); (E.K.)
- Correspondence: ; Tel.: +82-33-748-2650
| |
Collapse
|
9
|
Elias PM, Wakefield JS. Provozieren konvergierende zelluläre und Signalübertragungs‐Störungen die atopische Dermatitis? J Dtsch Dermatol Ges 2020; 18:1215-1224. [DOI: 10.1111/ddg.14232_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Peter M. Elias
- Dermatology Service Veterans Affairs Medical Center and Department of Dermatology University of California San Francisco CA USA
| | - Joan S. Wakefield
- Dermatology Service Veterans Affairs Medical Center and Department of Dermatology University of California San Francisco CA USA
| |
Collapse
|
10
|
Elias PM, Wakefield JS. Could cellular and signaling abnormalities converge to provoke atopic dermatitis? J Dtsch Dermatol Ges 2020; 18:1215-1223. [PMID: 33048449 PMCID: PMC11249044 DOI: 10.1111/ddg.14232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022]
Abstract
Diverse inherited and acquired abnormalities in epidermal structural and enzymatic proteins compromise permeability, barrier function and antimicrobial defense in atopic dermatitis (AD). Though several mutations in filaggrin (FLG) predominate, alterations in other S-100, cornified envelope precursor proteins (hornerin [HRNR], filaggrin 2 [FLG2], SPRR3, mattrin) which regulate lamellar body formation; SPINK5, which encodes the serine protease inhibitor, LEKTI1, and a fatty acid transporter, FATP4, are all separately associated with an AD phenotype. Exogenous and endogenous stressors, such as prolonged psychological stress, a low environmental humidity, or exposure to basic soaps and surfactants can further compromise barrier function and are often required to trigger disease. In the immunologists' view, the barrier abnormality is relevant only because it allows antigen and pathogen access, while stimulating Th2 cytokine production. These proteins in turn downregulate lipid synthetic enzyme and antimicrobial peptide levels, as well as multiple epidermal structural proteins, including filaggrin. Each inherited and acquired abnormality can independently compromise lamellar body secretion production, resulting in defective lamellar membrane organization and antimicrobial defense. Furthermore, elevated pH of the SC is critical for AD pathogenesis, compromising post-secretory lipid processing, while also enhancing inflammation. There are various therapeutic options that interdict different stages in this pathogenic paradigm.
Collapse
Affiliation(s)
- Peter M Elias
- Dermatology Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, CA, USA
| | - Joan S Wakefield
- Dermatology Service, Veterans Affairs Medical Center, and Department of Dermatology, University of California, San Francisco, CA, USA
| |
Collapse
|
11
|
The Skin Microbiota and Itch: Is There a Link? J Clin Med 2020; 9:jcm9041190. [PMID: 32331207 PMCID: PMC7230651 DOI: 10.3390/jcm9041190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Itch is an unpleasant sensation that emanates primarily from the skin. The chemical mediators that drive neuronal activity originate from a complex interaction between keratinocytes, inflammatory cells, nerve endings and the skin microbiota, relaying itch signals to the brain. Stress also exacerbates itch via the skin–brain axis. Recently, the microbiota has surfaced as a major player to regulate this axis, notably during stress settings aroused by actual or perceived homeostatic challenge. The routes of communication between the microbiota and brain are slowly being unraveled and involve neurochemicals (i.e., acetylcholine, histamine, catecholamines, corticotropin) that originate from the microbiota itself. By focusing on itch biology and by referring to the more established field of pain research, this review examines the possible means by which the skin microbiota contributes to itch.
Collapse
|
12
|
Pondeljak N, Lugović-Mihić L. Stress-induced Interaction of Skin Immune Cells, Hormones, and Neurotransmitters. Clin Ther 2020; 42:757-770. [PMID: 32276734 DOI: 10.1016/j.clinthera.2020.03.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Although scientific articles mention the impact of psychological stress on skin diseases, few review the latest research on factors involved in this correlation. The skin actively responds to psychological stress, with involvement of skin immune cells, hormones, neurotransmitters. Skin immune cells actively regulate tissue inflammation with their proinflammatory and anti-inflammatory effects. Stress-induced skin reactions primarily include cytokine secretion (e.g. interleukin-6, interleukin-1, interferon-γ) and activation of skins peripheral corticotropin-releasing hormone (CRH)-proopiomelanocortin (POMC)-adrenocorticotropic hormone (ACTH)-corticosteroids axis, which leads to acute/chronic secretion of corticosteroids in the skin. METHODS This narrative review presents the current knowledge and latest findings regarding the impact of psychological stress on skin diseases, including information concerning psychoneuroimmune factors in stress-induced skin responses. Recent articles published in English available through the PubMed database and other prominent literature are discussed. FINDINGS Stress mediators, including cortisol, ACTH, and CRH from hypothalamus-pituitary-adrenal axis activation, induce various skin immune responses. Skin cells themselves can secrete these hormones and participate in skin inflammation. Thus, the local skin CRH-POMC-ACTH-corticosteroids axis plays a prominent role in stress-induced responses. Also, keratinocytes and fibroblasts produce hypothalamic and pituitary signal peptides and express receptors for them (CRH with receptors and POMC degradation peptides with melanocortin receptors), which allows them to respond to CRH by activating the POMC gene, which is then followed by ACTH and subsequently corticosteroids excretion. In addition, keratinocytes can express receptors for neurotransmitters (e.g. adrenaline, noradrenaline, dopamine, histamine, acetylcholine), neurotrophins, and neuropeptides (e.g. substance P, nerve growth factor), which are important in linking psychoneuroimmunologic mechanisms. IMPLICATIONS Psychoneuroimmunology provides an understanding that the skin is target and source of stress mediators. This locally expressed complex stress-induced network has been confirmed as active in many skin diseases (e.g. vulgar psoriasis, atopic dermatitis, chronic urticaria, human papillomavirus infections/warts, hair loss, acne). Skin reactions to stress and its influence on skin diseases may have implications for disease severity and exacerbation frequency, given the effect of locally secreted corticosteroids and other mediators that affect skin integrity, inflammation, and healing potential. Studies have also shown that introducing psychiatric treatment (drugs or psychotherapeutic methods) can have positive effects on dermatologic diseases influenced by psychological stress exposure. We hope this review provides clinicians and scientists with more complete background for further research in this field of skin psychoneuroimmunology.
Collapse
Affiliation(s)
- Nives Pondeljak
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Liborija Lugović-Mihić
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia.
| |
Collapse
|
13
|
Jia T, Qiao W, Yao Q, Wu W, Kaku K. Treatment with Docosahexaenoic Acid Improves Epidermal Keratinocyte Differentiation and Ameliorates Inflammation in Human Keratinocytes and Reconstructed Human Epidermis Models. Molecules 2019; 24:molecules24173156. [PMID: 31480216 PMCID: PMC6749566 DOI: 10.3390/molecules24173156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that can cause skin barrier function damage. Although co-incubation with docosahexaenoic acid (DHA) exerts a positive effect on deficient skin models, no studies have investigated the effects of topical treatment with DHA in an inflammatory reconstructed human epidermis (RHE) model. The effects of DHA on monolayer normal human epidermal keratinocyte (NHEK) cells were evaluated using cell counting kit-8 (CCK-8), real-time quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA). The skin-related barrier function was assessed using hematoxylin–eosin (HE) staining, Western blot (WB), immunohistofluorescence (IF), and ELISA in normal and inflammatory RHE models. Docosahexaenoic acid upregulated filaggrin and loricrin expression at mRNA levels in addition to suppressing overexpression of tumor necrosis factor-α (TNF-α), interleukin-α (IL-1α), and interleukin-6 (IL-6) stimulated by polyinosinic–polycytidylic acid (poly I:C) plus lipopolysaccharide (LPS) (stimulation cocktail) in cultured NHEK cells. After topical treatment with DHA, cocktail-induced inflammatory characteristics of skin diseases, including barrier morphology, differentiation proteins, and thymic stromal lymphopoietin (TSLP) secretion, were alleviated in RHE models. Supplementation with DHA can improve related barrier function and have anti-inflammation effects in monolayer keratinocytes and RHE models, which indicates that DHA may have potential value for the treatment of inflammation-associated skin diseases.
Collapse
Affiliation(s)
- Tinghan Jia
- Pigeon Maternal & Infant Skin Care Research Institute, Shanghai 201700, China.
| | - Wu Qiao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qifeng Yao
- Pigeon Maternal & Infant Skin Care Research Institute, Shanghai 201700, China
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ken Kaku
- Pigeon Maternal & Infant Skin Care Research Institute, Shanghai 201700, China
| |
Collapse
|
14
|
Cho KA, Kim HJ, Kim YH, Park M, Woo SY. Dexamethasone Promotes Keratinocyte Proliferation by Triggering Keratinocyte Growth Factor in Mast Cells. Int Arch Allergy Immunol 2019; 179:53-61. [PMID: 30909282 DOI: 10.1159/000494624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The skin is a dynamic body organ that can be activated by both central and local hypothalamic-pituitary-adrenal axis systems. This phenomenon might be the crucial explanation why stress can cause relapse of chronic inflammatory skin diseases, such as psoriasis. Here, we determined the effects of mast cells on keratinocyte proliferation under stress hormone stimulation. METHODS We subcutaneously injected dexamethasone on the shaved back of mice and evaluated histological changes and keratinocyte growth factor (KGF) expression on dermal mast cells. Further, human mast cell line (HMC-1) and keratinocyte cell line (HaCaT) cells were treated with dexamethasone in vitro to observe the extent of proliferation and the expression of KGF. Finally, the supernatants of HMC-1 cells treated with dexamethasone were used for the culture of HaCaT cells to investigate the effect on proliferation. RESULTS We observed epidermal thickening in dexamethasone-injected mice, accompanied by an increase in the number of KGF-expressing dermal mast cells. Similar to mouse dermal mast cells, KGF was highly expressed in the human mast cell line HMC-1 following stimulation with dexamethasone. Further, dexamethasone-treated mast cells promoted keratinocyte proliferation in vitro. However, the effects of mast cells on keratinocytes were significantly diminished in the presence of anti-KGF-blocking antibodies. CONCLUSION Taken together, our results show that a stressful environment may disturb skin barrier homeostasis through mast cell-derived KGF expression.
Collapse
Affiliation(s)
- Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hye Ji Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yu-Hee Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Minhwa Park
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea,
| |
Collapse
|
15
|
Maarouf M, Maarouf CL, Yosipovitch G, Shi VY. The impact of stress on epidermal barrier function: an evidence-based review. Br J Dermatol 2019; 181:1129-1137. [PMID: 30614527 DOI: 10.1111/bjd.17605] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND The epidermal barrier functions to limit skin infection and inflammation by inhibiting irritant and immunogen invasion. Abundant evidence suggests that psychological stress stemming from crowding, isolation, nicotine smoking, insomnia, mental arithmetic tasks, physical pain, real-life stressors (examinations and marital strain) and lack of positive personality traits may impart both acute and chronic epidermal dysfunction. OBJECTIVES To review the relationship between stress and epidermal barrier dysfunction. METHODS A review of the PubMed and Embase databases was conducted to identify all English-language case-control, cross-sectional and randomized control trials that have reported the effect of stress on epidermal barrier function. The authors' conclusions are based on the available evidence from 21 studies that met the inclusion and exclusion criteria. RESULTS Psychological stressors upregulate the hypothalamic-pituitary-adrenal axis to stimulate local and systemic stress hormone production. This ultimately leads to aberrant barrier dysfunction, characterized by decreased epidermal lipid and structural protein production, decreased stratum corneum hydration and increased transepidermal water loss. CONCLUSIONS This evidence-based review explores the adverse effects of psychological stressors on epidermal barrier function. Future investigations using more real-life stressors are needed to elucidate further their impact on skin physiology and identify practical stress-relieving therapies that minimize and restore epidermal barrier dysfunction, particularly in at-risk populations. What's already known about this topic? The literature reports the negative effect of stress on prolonged wound healing. Less is known about the relationship between stress and epidermal barrier dysfunction, a chronic, superficial wound involving the upper epidermal layers. What does this study add? Psychological stressors impact epidermal barrier function by activating the hypothalamic-pituitary-adrenal axis to stimulate local and systemic stress hormone production. Stress hormones negatively affect the epidermal barrier by decreasing epidermal lipids and structural proteins, decreasing stratum corneum hydration and increasing transepidermal water loss. Identification of such stressors can promote stress-avoidance and stress-reduction behaviours that protect epidermal barrier function and prevent certain dermatological conditions.
Collapse
Affiliation(s)
- M Maarouf
- College of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - C L Maarouf
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, U.S.A
| | - G Yosipovitch
- Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, FL, U.S.A
| | - V Y Shi
- Department of Medicine, Division of Dermatology, University of Arizona, Tucson, AZ, U.S.A
| |
Collapse
|
16
|
Romana‐Souza B, Monte‐Alto‐Costa A. Olive oil inhibits ageing signs induced by chronic stress in
ex vivo
human skin via inhibition of extracellular‐signal‐related kinase 1/2 and c‐
JUN
pathways. Int J Cosmet Sci 2019; 41:156-163. [DOI: 10.1111/ics.12520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/07/2019] [Indexed: 01/01/2023]
Affiliation(s)
- B. Romana‐Souza
- Laboratory of Tissue Repair Department of Histology and Embryology State University of Rio de Janeiro Rio de Janeiro RJ 20950‐003 Brazil
| | - A. Monte‐Alto‐Costa
- Laboratory of Tissue Repair Department of Histology and Embryology State University of Rio de Janeiro Rio de Janeiro RJ 20950‐003 Brazil
| |
Collapse
|
17
|
Romana-Souza B, Monte-Alto-Costa A. Olive oil reduces chronic psychological stress-induced skin aging in mice through the NF-κB and NRF2 pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
18
|
Hiramoto K, Orita K, Yamate Y, Kasahara E, Yokoyama S, Sato EF. The Clock Genes Are Involved in The Deterioration of Atopic Dermatitis after Day-and-Night Reversed Physical Stress in NC/Nga Mice. Open Biochem J 2018; 12:87-102. [PMID: 30069250 PMCID: PMC6048832 DOI: 10.2174/1874091x01812010087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 11/22/2022] Open
Abstract
Background: In modern society, irregular lifestyles are a problem. It is well known that Atopic Dermatitis (AD) occurs during physical stress in people with an irregular lifestyle. We evaluated the influence that day-and-night reversal physical stress has on AD. Methods: Six-week-old specific-pathogen-free and conventional NC/Nga male mice were used. For the day-and-night reversal procedure, the mice ran on a treadmill at a slow speed of 10 m/min for 12 h (between 8:00 and 20:00). Then, between 20:00 and 8:00, we put the mice in a dark place. This treatment was repeated every day for two weeks. The behavioral circadian rhythm of the mice was evaluated with the open field test. Then, the mice were sacrificed and histological examinations of the tissues, the expression of peptide hormones, corticosterone, Immunoglobulin E, histamine, and cytokines was performed using an enzyme-linked immunosorbent assay. Results: In the treadmill-treated conventional NC/Nga mice, AD symptoms were deteriorated compared with the non-treated conventional NC/Nga mice. The levels of Period (Per) 2, Clock, and brain and muscle arnt-like protein 1 (Bmal1) in the skin were increased constantly in the treadmill-treated conventional mice. Furthermore, the expression of Retinoic Acid-related Orphan Receptor (ROR)α, which activates Bmal1, was increased in the treadmill-treated conventional mice compared with the non-treated conventional mice. In addition, when non-treated conventional mice were administrated by the agonist of RORα, AD symptoms were deteriorated similar to treadmill-treated conventional mice. Conclusion: In the day-and-night reversal mice, the clock genes were increased constantly, indicating that this is a factor that deteriorated AD.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Science, Suzuka University of Medical Science, 3500-3 Minamitamagakicho, Suzuka, Mie 513-8670, Japan
| | - Kumi Orita
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Yurika Yamate
- Department of Pharmaceutical Science, Suzuka University of Medical Science, 3500-3 Minamitamagakicho, Suzuka, Mie 513-8670, Japan
| | - Emiko Kasahara
- Department of Pharmaceutical Sciences, Osaka University Graduate School, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Yokoyama
- Department of Pharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu 501-1196, Japan
| | - Eisuke F Sato
- Department of Pharmaceutical Science, Suzuka University of Medical Science, 3500-3 Minamitamagakicho, Suzuka, Mie 513-8670, Japan.,Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.,Department of Pharmaceutical Sciences, Osaka University Graduate School, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Pharmaceutical Sciences, Gifu Pharmaceutical University, 1-25-4 Daigakunishi, Gifu 501-1196, Japan
| |
Collapse
|
19
|
Goto K, Hiramoto K, Kawakita M, Yamaoka M, Ooi K. The Influence of Reactive Oxygen Species and Glucocorticoids on Dry Skin in a Mouse Model of Arthritis. Skin Pharmacol Physiol 2018; 31:188-197. [PMID: 29698950 DOI: 10.1159/000488250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Dry skin induced by rheumatoid arthritis (RA) causes itching, which negatively influences a patient's quality of life. We previously reported that mast cells are related to dry skin in arthritic mice. However, the mechanism of mast cell activation is unclear. In this study, we examined the mechanism underlying the formation of dry skin induced by mast cells in arthritis that involves thymic stromal lymphopoietin (TSLP), neutrophils, reactive oxygen species (ROS), and glucocorticoids. METHODS Mice with DBA/1JJmsSlc collagen-induced arthritis were treated with inhibitors or neutralizing antibodies. We measured transepidermal water loss (TEWL) to examine the modulating signal of mast cells. RESULTS TEWL, the number of mast cells, and the plasma levels of TSLP, ROS, and corticosterone in the arthritic mice were increased when compared with the control mice. However, the mice treated with TSLP- and neutrophil-neutralizing antibodies and ROS and glucocorticoid receptor inhibitors (N-acetyl-L-cysteine [NAC] and RU-486, respectively) experienced an improvement. The ameliorating effect was most remarkable following treatment with NAC + RU-486. CONCLUSION This study suggested that inhibiting ROS and glucocorticoids is important to ameliorate dry skin in arthritis, which may provide a novel treatment option for dry skin in RA patients.
Collapse
Affiliation(s)
- Kenji Goto
- Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Keiichi Hiramoto
- Laboratory of Pathophysiology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Mayu Kawakita
- Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Miyu Yamaoka
- Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Kazuya Ooi
- Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| |
Collapse
|
20
|
Choe SJ, Kim D, Kim EJ, Ahn JS, Choi EJ, Son ED, Lee TR, Choi EH. Psychological Stress Deteriorates Skin Barrier Function by Activating 11β-Hydroxysteroid Dehydrogenase 1 and the HPA Axis. Sci Rep 2018; 8:6334. [PMID: 29679067 PMCID: PMC5910426 DOI: 10.1038/s41598-018-24653-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/03/2018] [Indexed: 01/04/2023] Open
Abstract
Psychological stress (PS) increases endogenous glucocorticoids (GC) by activating the hypothalamic-pituitary-adrenal axis. The negative effects of GC on skin barrier function under PS have been well-established. However, endogenous GC can also be active when cortisone (inactive form) is converted to cortisol (active form) by 11β-hydroxysteroid dehydrogenase type I (11ß-HSD1) in the peripheral tissue. Here, we evaluated the changes in 11ß-HSD1 and barrier function under PS. Elevated 11ß-HSD1 in oral mucosa correlated with increased cortisol in the stratum corneum and deteriorated barrier function. Expression of 11ß-HSD1 in the oral mucosa correlated with that in the epidermal keratinocytes. We further investigated whether barrier function improved when PS was relieved using a selective serotonin reuptake inhibitor (SSRI) in patients with anxiety. Decreased 11ß-HSD1 and improved barrier function were observed after SSRI treatment. The collective findings suggest that elevated 11ß-HSD1 under PS increases the level of cutaneous GC and eventually impairs barrier function. PS-alleviating drugs, such as SSRI, may help to treat PS-aggravated skin diseases.
Collapse
Affiliation(s)
- Sung Jay Choe
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Donghye Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Eun Jung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Joung-Sook Ahn
- Department of Psychiatry, Yonsei University Wonju College of Medicine, Wonju, Korea
| | | | | | | | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
21
|
Tiganescu A, Hupe M, Uchida Y, Mauro T, Elias PM, Holleran WM. Topical 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibition Corrects Cutaneous Features of Systemic Glucocorticoid Excess in Female Mice. Endocrinology 2018; 159:547-556. [PMID: 29087473 PMCID: PMC6459061 DOI: 10.1210/en.2017-00607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/23/2017] [Indexed: 01/13/2023]
Abstract
Glucocorticoid (GC) excess drives multiple cutaneous adverse effects, including skin thinning and poor wound healing. The ubiquitously expressed enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activates mouse corticosterone from 11-dehydrocorticosterone (and human cortisol from cortisone). We previously demonstrated elevated 11β-HSD1 activity during mouse wound healing, but the interplay between cutaneous 11β-HSD1 and systemic GC excess is unexplored. Here, we examined effects of 11β-HSD1 inhibition by carbenoxolone (CBX) in mice treated with corticosterone (CORT) or vehicle for 6 weeks. Mice were treated bidaily with topical CBX or vehicle (VEH) 7 days before wounding and during wound healing. CORT mice displayed skin thinning and impaired wound healing but also increased epidermal integrity. 11β-HSD1 activity was elevated in unwounded CORT skin and was inhibited by CBX. CORT mice treated with CBX displayed 51%, 59%, and 100% normalization of wound healing, epidermal thickness, and epidermal integrity, respectively. Gene expression studies revealed normalization of interleukin 6, keratinocyte growth factor, collagen 1, collagen 3, matrix metalloproteinase 9, and tissue inhibitor of matrix metalloproteinase 4 by CBX during wound healing. Importantly, proinflammatory cytokine expression and resolution of inflammation were unaffected by 11β-HSD1 inhibition. CBX did not regulate skin function or wound healing in the absence of CORT. Our findings demonstrate that 11β-HSD1 inhibition can limit the cutaneous effects of GC excess, which may improve the safety profile of systemic steroids and the prognosis of chronic wounds.
Collapse
Affiliation(s)
- Ana Tiganescu
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, England
- Department of Dermatology, University of California San Francisco, San Francisco, California
| | - Melanie Hupe
- Department of Dermatology, University of California San Francisco, San Francisco, California
| | - Yoshikazu Uchida
- Department of Dermatology, University of California San Francisco, San Francisco, California
| | - Theadora Mauro
- Department of Dermatology, University of California San Francisco, San Francisco, California
| | - Peter M Elias
- Department of Dermatology, University of California San Francisco, San Francisco, California
| | - Walter M Holleran
- Department of Dermatology, University of California San Francisco, San Francisco, California
| |
Collapse
|
22
|
Lee SE, Lee EY, Kang SJ, Lee SH. 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibition Attenuates the Adverse Effects of Glucocorticoids on Dermal Papilla Cells. Yonsei Med J 2017; 58:1204-1210. [PMID: 29047245 PMCID: PMC5653486 DOI: 10.3349/ymj.2017.58.6.1204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Glucocorticoids, stress-related hormones, inhibit hair growth. Intracellular glucocorticoid availability is regulated by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). 11β-HSD1 was recently detected in keratinocytes and fibroblasts. However, the expression of 11β-HSD1 in human hair follicles remains unknown. We aimed to examine 11β-HSD1 expression in human dermal papilla cells (DPCs) and to investigate whether modulation of 11β-HSD1 activity can regulate the negative effects of glucocorticoids on DPCs. MATERIALS AND METHODS 11β-HSD1 expression in normal human scalp skin was examined by immunohistochemistry. 11β-HSD1 protein was detected in Western blots of human DPCs. Cultured human DPCs were treated with cortisol with or without a selective 11β-HSD1 inhibitor and subsequently stained for Ki-67 antibody. Expression levels of 11β-HSD1, Wnt5a, alkaline phosphatase (ALP), and vascular endothelial growth factor (VEGF) were analyzed by Western blotting. RESULTS 11β-HSD1 was detected in dermal papilla in human scalp skin by immunohistochemistry. Human DPCs expressed 11β-HSD1 protein in vitro. Furthermore, cortisol stimulated the expression of 11β-HSD1 in DPCs. Glucocorticoids decreased cellular proliferation and the expression of Wnt5a, ALP, and VEGF in DPCs. A specific 11β-HSD1 inhibitor significantly attenuated the anti-proliferative effects of cortisol and reversed the cortisol-induced suppression of Wnt5a, ALP, and VEGF expression in DPCs. CONCLUSION Our data demonstrated the expression of 11β-HSD1 in human DPCs and revealed that inhibition of 11β-HSD1 activity can partially prevent the negative effect of glucocorticoids on DPCs, suggesting the possible application of 11β-HSD1 inhibitors for stress-related hair loss.
Collapse
Affiliation(s)
- Sang Eun Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Korea
| | - Eun Young Lee
- Department of Biotechnology, CHA University, Seongnam, Korea
| | - Sang Jin Kang
- Department of Biotechnology, CHA University, Seongnam, Korea
| | - Seung Hun Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Korea.
| |
Collapse
|
23
|
Lin TK, Zhong L, Santiago JL. Association between Stress and the HPA Axis in the Atopic Dermatitis. Int J Mol Sci 2017; 18:ijms18102131. [PMID: 29023418 PMCID: PMC5666813 DOI: 10.3390/ijms18102131] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
The hypothalamic–pituitary–adrenal (HPA) axis is one of the body’s neuroendocrine networks that responds to psychological stress (PS). In the skin, there exists a peripheral HPA axis similar to the central axis. Glucocorticoids (GCs) are key effector molecules of the HPA axis and are essential for cutaneous homeostasis. Atopic dermatitis (AD) is a condition typically characterized by a chronic relapsing course that often results in PS. HPA dysfunction is present in AD patients by the decreased response of GCs elevation to stress as compared to those unaffected by AD. Nevertheless, in skin, acute PS activates several metabolic responses that are of immediate benefit to the host. During the acute phase of PS, increased endogenous GCs have been shown to provide benefit rather than by aggravating cutaneous inflammatory dermatoses. However, a chronic T helper cell type 2 (Th2) predominant cytokine profile acts as a negative feedback loop to blunt the HPA axis response in AD. In this article, we reviewed the role of CRF, pro-opiomelanocortin (POMC)-derived peptides, GCs of the HPA, and 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in AD, with a discussion of the pathogenetic mechanisms of inflammation and skin barrier functions, including antimicrobial defense, and their association with PS.
Collapse
Affiliation(s)
- Tzu-Kai Lin
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Lily Zhong
- Citrus Valley Medical Center, West Covina, CA 91790, USA.
| | - Juan Luis Santiago
- Dermatology Service & Translational Research Unit (UIT), Hospital General Universitario de Ciudad Real, Ciudad Real 13005, Spain.
| |
Collapse
|
24
|
Man G, Hu LZ, Elias PM, Man MQ. Therapeutic Benefits of Natural Ingredients for Atopic Dermatitis. Chin J Integr Med 2017; 24:308-314. [PMID: 28861804 DOI: 10.1007/s11655-017-2769-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 01/04/2023]
Abstract
Although a variety of regimens are available for the treatment of atopic dermatitis (AD), severe adverse reactions and unpopular costs often limit their usage. In contrast, certain inexpensive, naturally-occurring ingredients are proven effective for AD with fewer side effects. The beneficial effects of these ingredients can be attributed to inhibition of cytokine and chemokine expression, IgE production, inflammatory cell infiltration, histamine release, and/or the enhancement of epidermal permeability barrier function. Since herbal medicines are widely available, inexpensive and generally safe, they could be valuable alternatives for the treatment of AD, particularly for those patients who are not suitable for the utilization of immune modulators. In this review, we summarize the therapeutic benefits of natural ingredients for the treatment of AD and the mechanisms of their actions.
Collapse
Affiliation(s)
- George Man
- Dermatology Services, Veterans Affairs Medical Center and University of California San Francisco, San Francisco, CA, 94121, USA
| | - Li-Zhi Hu
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Peter M Elias
- Dermatology Services, Veterans Affairs Medical Center and University of California San Francisco, San Francisco, CA, 94121, USA
| | - Mao-Qiang Man
- Dermatology Services, Veterans Affairs Medical Center and University of California San Francisco, San Francisco, CA, 94121, USA.
| |
Collapse
|
25
|
Dréno B, Araviiskaia E, Berardesca E, Gontijo G, Sanchez Viera M, Xiang LF, Martin R, Bieber T. Microbiome in healthy skin, update for dermatologists. J Eur Acad Dermatol Venereol 2016; 30:2038-2047. [PMID: 27735094 PMCID: PMC6084363 DOI: 10.1111/jdv.13965] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022]
Abstract
The skin is a complex barrier organ made of a symbiotic relationship between microbial communities and host tissue via complex signals provided by the innate and the adaptive immune systems. It is constantly exposed to various endogenous and exogenous factors which impact this balanced system potentially leading to inflammatory skin conditions comprising infections, allergies or autoimmune diseases. Unlike the gut and stool microbiome which has been studied and described for many years, investigations on the skin or scalp microbiome only started recently. Researchers in microbiology and dermatology started using modern methods such as pyrosequencing assays of bacterial 16S rRNA genes to identify and characterize the different microorganisms present on the skin, to evaluate the bacterial diversity and their relative abundance and to understand how microbial diversity may contribute to skin health and dermatological conditions. This article aims to provide an overview on the knowledge about the skin microbiota, the microbiome and their importance in dermatology.
Collapse
Affiliation(s)
- B Dréno
- Department of Dermato-cancerology, Nantes University, Nantes, France
| | - E Araviiskaia
- Department of Dermatology, First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - E Berardesca
- San Gallicano Dermatological Institute, Rome, Italy
| | - G Gontijo
- Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - M Sanchez Viera
- Institute for Dermatology, Skin Health, Aging and Cancer, Madrid, Spain
| | - L F Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - R Martin
- L'Oréal Research and Innovation, Tours, France
| | - T Bieber
- Department of Dermatology and Allergy, University Medical Center, Bonn, Germany
| |
Collapse
|
26
|
Terao M, Katayama I. Local cortisol/corticosterone activation in skin physiology and pathology. J Dermatol Sci 2016; 84:11-16. [PMID: 27431412 DOI: 10.1016/j.jdermsci.2016.06.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/12/2023]
Abstract
Cortisol and corticosterone are the endogenous glucocorticoids (GCs) in humans and rodents, respectively. Systemic GC is released through the hypothalamic-pituitary-adrenal (HPA) axis in response to various stressors. Over the last decade, extra-adrenal production/activation of cortisol/corticosterone has been reported in many tissues. The enzyme that catalyzes the conversion of hormonally inactive cortisone/11-dehydrocorticosterone (11-DHC) into active cortisol/corticosterone in cells is 11β-hydroxysteroid dehydrogenase (11β-HSD). The 11β-HSD1 isoform is predominantly a reductase, which catalyzes nicotinamide adenine dinucleotide phosphate hydrogen-dependent conversion of cortisone/11-DHC to cortisol/corticosterone, and is widely expressed and present at the highest levels in the liver, lungs, adipose tissues, ovaries, and central nervous system. The 11β-HSD2 isoform, which catalyzes nicotinamide adenine dinucleotide+-dependent inactivation of cortisol/corticosterone to cortisone/11-DHC, is highly expressed in distal nephrons, the colon, sweat glands, and the placenta. In healthy skin, 11β-HSD1 is expressed in the epidermis and in dermal fibroblasts. On the other hand, 11β-HSD2 is expressed in sweat glands but not in the epidermis. The role of 11β-HSD in skin physiology and pathology has been reported recently. In this review, we summarize the recently reported role of 11β-HSD in the skin, focusing on its function in cell proliferation, wound healing, inflammation, and aging.
Collapse
Affiliation(s)
- Mika Terao
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Ichiro Katayama
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
27
|
Bailey MT. Psychological Stress, Immunity, and the Effects on Indigenous Microflora. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:225-46. [PMID: 26589222 DOI: 10.1007/978-3-319-20215-0_11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Psychological stress is an intrinsic part of life that affects all organs of the body through direct nervous system innervation and the release of neuroendocrine hormones. The field of PsychoNeuroImmunology (PNI) has clearly demonstrated that the physiological response to psychological stressors can dramatically impact the functioning of the immune system, thus identifying one way in which susceptibility to or severity of diseases are exacerbated during stressful periods. This chapter describes research at the interface between the fields of PNI and Microbial Endocrinology to demonstrate that natural barrier defenses, such as those provided by the commensal microflora, can be disrupted by exposure to psychological stressors. These stress effects are evident in the development of the intestinal microflora in animals born from stressful pregnancy conditions, and in older animals with fully developed microbial populations. Moreover, data are presented demonstrating that exposure to different types of stressors results in the translocation of microflora from cutaneous and mucosal surfaces into regional lymph nodes. When considered together, a scenario emerges in which psychological stressors induce a neuroendocrine response that has the potential to directly or indirectly affect commensal microflora populations, the integrity of barrier defenses, and the internalization of microbes. Finally, a hypothesis is put forth in which stressor-induced alterations of the microflora contribute to the observed stressor-induced increases in inflammatory markers in the absence of overt infection.
Collapse
Affiliation(s)
- Michael T Bailey
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| |
Collapse
|
28
|
Romana-Souza B, Santos Lima-Cezar G, Monte-Alto-Costa A. Psychological stress-induced catecholamines accelerates cutaneous aging in mice. Mech Ageing Dev 2015; 152:63-73. [PMID: 26541702 DOI: 10.1016/j.mad.2015.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/15/2022]
Abstract
Psychological stress may be an important extrinsic factor which influences aging process. However, neither study demonstrated the mechanism by which chronic stress participates in skin aging. Aim of this study was to investigate the effects of chronic psychological stress on mice skin. Mice were daily submitted to rotational stress, for 28 days, until euthanasia. After 28 days, mice were killed and normal skin was analyzed. Macroscopically, dorsum skin of chronically stressed mice presented more wrinkled when compared to that of nonstressed mice. In mice skin, chronic stress increased lipid peroxidation, carbonyl protein content, nitrotyrosine levels, neutrophil infiltration, neutrophil elastase, tissue inhibitor of metalloproteinase-1 and metalloproteinase-8 levels. Nevertheless, chronic stress reduced dermis thickness, collagen type I, fibrilin-1 and elastin protein levels in mice skin. In in vitro assays, murine skin fibroblasts were exposed to elevated epinephrine levels plus inhibitors of reactive oxygen species (ROS) and reactive nitrogen species (RNS), fibroblast activity was evaluated in a short time. In skin fibroblast culture, treatment with inhibitors of ROS and RNS synthesis abolished the increase in carbonyl protein content and lipid peroxide accumulation induced by epinephrine. In conclusion, chronic psychological stress may be an important extrinsic factor, which contributes to skin aging in mice.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Andréa Monte-Alto-Costa
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
de Almeida TF, de Castro Pires T, Monte-Alto-Costa A. Blockade of glucocorticoid receptors improves cutaneous wound healing in stressed mice. Exp Biol Med (Maywood) 2015; 241:353-8. [PMID: 26515142 DOI: 10.1177/1535370215612940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022] Open
Abstract
Stress is an important condition of modern life. The successful wound healing requires the execution of three major overlapping phases: inflammation, proliferation, and remodeling, and stress can disturb this process. Chronic stress impairs wound healing through the activation of the hypothalamic-pituitary-adrenal axis, and the glucocorticoids (GCs) hormones have been shown to delay wound closure. Therefore, the aim of this study was to investigate the effects of a GC receptor antagonist (RU486) treatment on cutaneous healing in chronically stressed mice. Male mice were submitted to rotational stress, whereas control animals were not subjected to stress. Stressed and control animals were treated with RU486. A full-thickness excisional lesion was generated, and seven days later, lesions were recovered. The RU486 treatment improves wound healing since contraction takes place earlier in RU486-treated in comparison to non-treated mice, and the RU486 treatment also improves the angiogenesis in Stress+RU486 mice when compared to stressed animals. The Stress+RU486 group showed a decrease in inflammatory cell infiltration and in hypoxia-inducible factor-1α and inducible nitric oxide synthase expression; meanwhile, there was an increase in myofibroblasts quantity. In conclusion, blockade of GC receptors with RU486 partially ameliorates stress-impaired wound healing, suggesting that stress inhibits healing through more than one functional pathway.
Collapse
Affiliation(s)
| | - Taiza de Castro Pires
- Department of Histology and Embryology, State University of Rio de Janeiro, RJ 20950-003, Brazil
| | - Andréa Monte-Alto-Costa
- Department of Histology and Embryology, State University of Rio de Janeiro, RJ 20950-003, Brazil
| |
Collapse
|
30
|
Jozic I, Stojadinovic O, Kirsner RSF, Tomic-Canic M. Skin under the (Spot)-Light: Cross-Talk with the Central Hypothalamic-Pituitary-Adrenal (HPA) Axis. J Invest Dermatol 2015; 135:1469-1471. [PMID: 25964265 DOI: 10.1038/jid.2015.56] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UV radiation is among the most prevalent stressors in humans and diurnal rodents, exerting direct and indirect DNA damage, free-radical production, and interaction with specific chromophores that affects numerous biological processes. In addition to its panoply of effects, UVB (290-320 nm) radiation can specifically affect various local neuroendocrine activities by stimulating the expression of corticotropin-releasing hormone (CRH), urocortin, proopiomelanocortin (POMC), and POMC-derived peptides. Although very little is known about the interplay between the central hypothalamic-pituitary-adrenal (HPA) axis and the skin HPA axis analog, in the current issue Skobowiat and Slominski propose a novel mechanism by which exposure to UVB activates a local HPA axis in skin, which in turn activates the central HPA axis, with the requirement of a functional pituitary gland. This is the first evidence of the local HPA axis in skin contributing to the central neuroendocrine response. This raises intriguing possibilities regarding how local production of cortisol and other HPA axis molecules in skin influence overall systemic levels of cortisol and help regulate local and central HPA axes in the context of homeostasis, skin injury, and inflammatory skin disorders.
Collapse
Affiliation(s)
- Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida, USA
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida, USA
| | - Robert S F Kirsner
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, Miami, Florida, USA.
| |
Collapse
|
31
|
Abstract
Neuropeptides (NPs) and neurotransmitters are a heterogeneous group of soluble factors that make connections within the neuroendocrine and immune systems. NPs, including substance P (SP), vasoactive intestinal peptide (VIP), α melanocyte-stimulating hormone (α-MSH), and calcitonin gene-related peptide (CGRP), released by nerves that innervate the skin, can modulate the action of innate and adaptive skin immunity as well as the skin cells functions. Their role in several inflammatory skin diseases, such as atopic dermatitis, psoriasis, and vitiligo, and in the isotopic response has been reported. Further progress in understanding the various processes that modulate the interactions of the nervous and the skin immune system is essential to develop effective treatment for inflammatory skin conditions with neurogenic components and for understanding signs and symptoms in the isotopic response and, in general, in the control of global and regional immunity.
Collapse
Affiliation(s)
- Torello Lotti
- Chair of Department of Dermatology and Venereology, University of Rome "G. Marconi," Rome, Italy
| | - Angelo Massimiliano D'Erme
- Division of Dermatology, Department of Surgery and Translational Medicine, University of Florence, Italy.
| | - Jana Hercogová
- Department of Dermatology and Venereology, Second Faculty of Medicine, Charles University in Prague and Bulovka University Hospital, Prague, Czech Republic
| |
Collapse
|
32
|
Hunter HJA, Momen SE, Kleyn CE. The impact of psychosocial stress on healthy skin. Clin Exp Dermatol 2015; 40:540-6. [DOI: 10.1111/ced.12582] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2014] [Indexed: 12/01/2022]
Affiliation(s)
- H. J. A. Hunter
- Dermatological Sciences; Manchester Academic Health Science Centre; University of Manchester; Manchester UK
| | - S. E. Momen
- St John's Institute of Dermatology; Guys and St Thomas; London UK
| | - C. E. Kleyn
- Dermatological Sciences; Manchester Academic Health Science Centre; University of Manchester; Manchester UK
| |
Collapse
|
33
|
Chen Y, Lyga J. Brain-skin connection: stress, inflammation and skin aging. ACTA ACUST UNITED AC 2015; 13:177-90. [PMID: 24853682 PMCID: PMC4082169 DOI: 10.2174/1871528113666140522104422] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/07/2014] [Accepted: 05/20/2014] [Indexed: 02/06/2023]
Abstract
The intricate relationship between stress and skin conditions has been documented since ancient times. Recent clinical observations also link psychological stress to the onset or aggravation of multiple skin diseases. However, the exact underlying mechanisms have only been studied and partially revealed in the past 20 years or so. In this review, the authors will discuss the recent discoveries in the field of “Brain-Skin Connection”, summarizing findings from the overlapping fields of psychology, endocrinology, skin neurobiology, skin inflammation, immunology, and pharmacology.
Collapse
Affiliation(s)
| | - John Lyga
- Global R&D, Avon Products. 1 Avon Place, Suffern, NY 10901, USA.
| |
Collapse
|
34
|
Gillespie RMC, Brown SJ. From the outside-in: Epidermal targeting as a paradigm for atopic disease therapy. World J Dermatol 2015; 4:16-32. [DOI: 10.5314/wjd.v4.i1.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/29/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder which can precede asthma and allergic rhinitis in a disease trajectory known as the atopic march. The pathophysiology of AD includes cutaneous inflammation, disrupted epidermal barrier function, xerosis and propensity to secondary infections. AD had previously been thought to arise from the systemic atopic immune response and therapies are therefore directed towards ameliorating Th2-mediated inflammation. However in recent years the focus has shifted towards primary defects in the skin barrier as an initiating event in AD. Links between loss-of-function variants in the gene encoding filaggrin and disrupted activity of epidermal serine proteases and AD have been reported. Based on these observations, a mechanism has been described by which epidermal barrier dysfunction may lead to inflammation and allergic sensitization. Exogenous and endogenous stressors can further exacerbate inherited barrier abnormalities to promote disease activity. Pathways underlying progression of the atopic march remain unclear, but recent findings implicate thymic stromal lymphopoietin as a factor linking AD to subsequent airway inflammation in asthma. This new appreciation of the epidermis in the development of AD should lead to deployment of more specific strategies to restore barrier function in atopic patients and potentially halt the atopic march.
Collapse
|
35
|
Holmes CJ, Plichta JK, Gamelli RL, Radek KA. Dynamic Role of Host Stress Responses in Modulating the Cutaneous Microbiome: Implications for Wound Healing and Infection. Adv Wound Care (New Rochelle) 2015; 4:24-37. [PMID: 25566412 DOI: 10.1089/wound.2014.0546] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/01/2014] [Indexed: 01/06/2023] Open
Abstract
Significance: Humans are under constant bombardment by various stressors, including psychological anxiety and physiologic injury. Understanding how these stress responses influence the innate immune system and the skin microbiome remains elusive due to the complexity of the neuroimmune and stress response pathways. Both animal and human studies have provided critical information upon which to further elucidate the mechanisms by which mammalian stressors impair normal wound healing and/or promote chronic wound progression. Recent Advances: Development of high-throughput genomic and bioinformatic approaches has led to the discovery of both an epidermal and dermal microbiome with distinct characteristics. This technology is now being used to identify statistical correlations between specific microbiota profiles and clinical outcomes related to cutaneous wound healing and the response to pathogenic infection. Studies have also identified more prominent roles for typical skin commensal organisms in maintaining homeostasis and modulating inflammatory responses. Critical Issues: It is well-established that stress-induced factors, including catecholamines, acetylcholine, and glucocorticoids, increase the risk of impaired wound healing and susceptibility to infection. Despite the characterization of the cutaneous microbiome, little is known regarding the impact of these stress-induced molecules on the development and evolution of the cutaneous microbiome during wound healing. Future Directions: Further characterization of the mechanisms by which stress-induced molecules influence microbial proliferation and metabolism in wounds is necessary to identify altered microbial phenotypes that differentially influence host innate immune responses required for optimal healing. These mechanisms may yield beneficial as targets for manipulation of the microbiome to further benefit the host after cutaneous injury.
Collapse
Affiliation(s)
- Casey J. Holmes
- Department of Surgery, Loyola University Chicago, Health Sciences Division, Maywood, Illinois
- Burn Shock Trauma Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, Illinois
| | - Jennifer K. Plichta
- Department of Surgery, Loyola University Chicago, Health Sciences Division, Maywood, Illinois
| | - Richard L. Gamelli
- Department of Surgery, Loyola University Chicago, Health Sciences Division, Maywood, Illinois
- Burn Shock Trauma Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, Illinois
| | - Katherine A. Radek
- Department of Surgery, Loyola University Chicago, Health Sciences Division, Maywood, Illinois
- Burn Shock Trauma Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, Illinois
| |
Collapse
|
36
|
Vitamin C mitigates oxidative stress and tumor necrosis factor-alpha in severe community-acquired pneumonia and LPS-induced macrophages. Mediators Inflamm 2014; 2014:426740. [PMID: 25253919 PMCID: PMC4165740 DOI: 10.1155/2014/426740] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/16/2014] [Indexed: 01/09/2023] Open
Abstract
Oxidative stress is an important part of host innate immune response to foreign pathogens. However, the impact of vitamin C on oxidative stress and inflammation remains unclear in community-acquired pneumonia (CAP). We aimed to determine the effect of vitamin C on oxidative stress and inflammation. CAP patients were enrolled. Reactive oxygen species (ROS), DNA damage, superoxide dismutases (SOD) activity, tumor necrosis factor-alpha (TNF-α), and IL-6 were analyzed in CAP patients and LPS-stimulated macrophages cells. MH-S cells were transfected with RFP-LC3 plasmids. Autophagy was measured in LPS-stimulated macrophages cells. Severe CAP patients showed significantly increased ROS, DNA damage, TNF-α, and IL-6. SOD was significantly decreased in severe CAP. Vitamin C significantly decreased ROS, DNA damage, TNF-α, and IL-6. Vitamin C inhibited LPS-induced ROS, DNA damage, TNF-α, IL-6, and p38 in macrophages cells. Vitamin C inhibited autophagy in LPS-induced macrophages cells. These findings indicated that severe CAP exhibited significantly increased oxidative stress, DNA damage, and proinflammatory mediator. Vitamin C mitigated oxidative stress and proinflammatory mediator suggesting a possible mechanism for vitamin C in severe CAP.
Collapse
|
37
|
Elias PM, Wakefield JS. Mechanisms of abnormal lamellar body secretion and the dysfunctional skin barrier in patients with atopic dermatitis. J Allergy Clin Immunol 2014; 134:781-791.e1. [PMID: 25131691 DOI: 10.1016/j.jaci.2014.05.048] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/29/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022]
Abstract
I review how diverse inherited and acquired abnormalities in epidermal structural and enzymatic proteins converge to produce defective permeability barrier function and antimicrobial defense in patients with atopic dermatitis (AD). Although best known are mutations in filaggrin (FLG), mutations in other member of the fused S-100 family of proteins (ie, hornerin [hrn] and filaggrin 2 [flg-2]); the cornified envelope precursor (ie, SPRR3); mattrin, which is encoded by TMEM79 and regulates the assembly of lamellar bodies; SPINK5, which encodes the serine protease inhibitor lymphoepithelial Kazal-type trypsin inhibitor type 1; and the fatty acid transporter fatty acid transport protein 4 have all been linked to AD. Yet these abnormalities often only predispose to AD; additional acquired stressors that further compromise barrier function, such as psychological stress, low ambient humidity, or high-pH surfactants, often are required to trigger disease. T(H)2 cytokines can also compromise barrier function by downregulating expression of multiple epidermal structural proteins, lipid synthetic enzymes, and antimicrobial peptides. All of these inherited and acquired abnormalities converge on the lamellar body secretory system, producing abnormalities in lipid composition, secretion, and/or extracellular lamellar membrane organization, as well as antimicrobial defense. Finally, I briefly review therapeutic options that address this new pathogenic paradigm.
Collapse
Affiliation(s)
- Peter M Elias
- Dermatology Service, Veterans Affairs Medical Center, and the Department of Dermatology, University of California, San Francisco, Calif.
| | - Joan S Wakefield
- Dermatology Service, Veterans Affairs Medical Center, and the Department of Dermatology, University of California, San Francisco, Calif
| |
Collapse
|
38
|
Paradoxical benefits of psychological stress in inflammatory dermatoses models are glucocorticoid mediated. J Invest Dermatol 2014; 134:2890-2897. [PMID: 24991965 PMCID: PMC4227540 DOI: 10.1038/jid.2014.265] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 03/20/2014] [Accepted: 04/28/2014] [Indexed: 01/21/2023]
Abstract
Acute psychological stress (PS) mobilizes metabolic responses that are of immediate benefit to the host, but the current medical paradigm holds that PS exacerbates systemic and cutaneous inflammatory disorders. Although the adverse consequences of PS are usually attributed to neuroimmune mechanisms, PS also stimulates an increase in endogenous glucocorticoids (GCs) that compromises permeability barrier homeostasis, stratum corneum cohesion, wound healing, and epidermal innate immunity in normal skin. Yet, if such PS-induced increases in GC were uniformly harmful, natural selection should have eliminated this component of the stress response. Hence, we hypothesized here instead that stress-induced elevations in endogenous GC could benefit, rather than aggravate, cutaneous function and reduce inflammation in three immunologically diverse mouse models of inflammatory diseases. Indeed, superimposed exogenous (motion-restricted) stress reduced, rather than aggravated inflammation and improved epidermal function in all three models, even normalizing serum IgE levels in the atopic dermatitis model. Elevations in endogenous GC accounted for these apparent benefits, because coadministration of mifepristone prevented stress-induced disease amelioration. Thus, exogenous stress can benefit rather than aggravate cutaneous inflammatory dermatoses through the anti-inflammatory activity of increased endogenous GC.
Collapse
|
39
|
Kawashima R, Shimizu T, To M, Saruta J, Jinbu Y, Kusama M, Tsukinoki K. Effects of stress on mouse β-defensin-3 expression in the upper digestive mucosa. Yonsei Med J 2014; 55:387-94. [PMID: 24532508 PMCID: PMC3936613 DOI: 10.3349/ymj.2014.55.2.387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Gastrointestinal integrity and immune surveillance are affected by stress. Stress also adversely affects mucosal barrier function. β-defensins constitute an integral component of the innate immune system as antimicrobial peptides, serving as the first line of defense against microbial pathogens at the epithelial surfaces of the upper digestive mucosa. The primary objective of this study was to determine the effects of stress on the expression profile of mouse β-defensin-3 in the upper digestive mucosa of mice with diabetes. MATERIALS AND METHODS We established a mouse model of restraint stress by using NSY/Hos mice with type 2 diabetes mellitus. We used real-time polymerase chain reaction, in situ hybridization, and immunohistochemistry to investigate the effects of stress and glucocorticoid administration on mouse β-defensin-3 expression in the upper digestive mucosa of the gingiva, esophagus, and stomach. RESULTS Mouse β-defensin-3 mRNA expression was higher in the esophagus than in the gingiva or stomach (p<0.05). In the esophagus, mouse β-defensin-3 mRNA expression was lower in stressed mice than in non-stressed mice (p<0.05). Furthermore, immunoreactivity to mouse β-defensin-3 protein was lower in the esophagus of stressed mice than non-stressed mice, consistent with the results of mRNA expression analysis. Systemic glucocorticoid administration also downregulated esophageal mouse β-defensin-3 mRNA expression. CONCLUSION Our novel findings show that stress decreases mouse β-defensin-3 expression in the esophagus of mice with diabetes, possibly due to increased endogenous glucocorticoid production. It appears to be highly likely that stress management may normalize mucosal antimicrobial defenses in patients with diabetes.
Collapse
Affiliation(s)
- Rie Kawashima
- Department of Environmental Pathology and Research Institute of Salivary Gland Health Medicine, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Elias PM. Barrier-repair therapy for atopic dermatitis: corrective lipid biochemical therapy. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.3.4.441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
41
|
Elias PM, Sun R, Eder AR, Wakefield JS, Man MQ. Treating atopic dermatitis at the source: corrective barrier repair therapy based upon new pathogenic insights. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.12.73] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J. Key role of CRF in the skin stress response system. Endocr Rev 2013; 34:827-84. [PMID: 23939821 PMCID: PMC3857130 DOI: 10.1210/er.2012-1092] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 08/02/2013] [Indexed: 02/08/2023]
Abstract
The discovery of corticotropin-releasing factor (CRF) or CRH defining the upper regulatory arm of the hypothalamic-pituitary-adrenal (HPA) axis, along with the identification of the corresponding receptors (CRFRs 1 and 2), represents a milestone in our understanding of central mechanisms regulating body and local homeostasis. We focused on the CRF-led signaling systems in the skin and offer a model for regulation of peripheral homeostasis based on the interaction of CRF and the structurally related urocortins with corresponding receptors and the resulting direct or indirect phenotypic effects that include regulation of epidermal barrier function, skin immune, pigmentary, adnexal, and dermal functions necessary to maintain local and systemic homeostasis. The regulatory modes of action include the classical CRF-led cutaneous equivalent of the central HPA axis, the expression and function of CRF and related peptides, and the stimulation of pro-opiomelanocortin peptides or cytokines. The key regulatory role is assigned to the CRFR-1α receptor, with other isoforms having modulatory effects. CRF can be released from sensory nerves and immune cells in response to emotional and environmental stressors. The expression sequence of peptides includes urocortin/CRF→pro-opiomelanocortin→ACTH, MSH, and β-endorphin. Expression of these peptides and of CRFR-1α is environmentally regulated, and their dysfunction can lead to skin and systemic diseases. Environmentally stressed skin can activate both the central and local HPA axis through either sensory nerves or humoral factors to turn on homeostatic responses counteracting cutaneous and systemic environmental damage. CRF and CRFR-1 may constitute novel targets through the use of specific agonists or antagonists, especially for therapy of skin diseases that worsen with stress, such as atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Andrzej T Slominski
- MD, PhD, Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center; 930 Madison Avenue, Suite 500, Memphis, Tennessee 38163.
| | | | | | | | | | | |
Collapse
|
43
|
Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:280-94. [PMID: 24262790 DOI: 10.1016/j.bbalip.2013.11.007] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/01/2013] [Accepted: 11/10/2013] [Indexed: 12/18/2022]
Abstract
The major function of the skin is to form a barrier between the internal milieu and the hostile external environment. A permeability barrier that prevents the loss of water and electrolytes is essential for life on land. The permeability barrier is mediated primarily by lipid enriched lamellar membranes that are localized to the extracellular spaces of the stratum corneum. These lipid enriched membranes have a unique structure and contain approximately 50% ceramides, 25% cholesterol, and 15% free fatty acids with very little phospholipid. Lamellar bodies, which are formed during the differentiation of keratinocytes, play a key role in delivering the lipids from the stratum granulosum cells into the extracellular spaces of the stratum corneum. Lamellar bodies contain predominantly glucosylceramides, phospholipids, and cholesterol and following the exocytosis of lamellar lipids into the extracellular space of the stratum corneum these precursor lipids are converted by beta glucocerebrosidase and phospholipases into the ceramides and fatty acids, which comprise the lamellar membranes. The lipids required for lamellar body formation are derived from de novo synthesis by keratinocytes and from extra-cutaneous sources. The lipid synthetic pathways and the regulation of these pathways are described in this review. In addition, the pathways for the uptake of extra-cutaneous lipids into keratinocytes are discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Medicine Service and Dermatology Service, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA.
| | - Peter M Elias
- Metabolism Section, Medicine Service and Dermatology Service, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA
| |
Collapse
|
44
|
Youm JK, Park K, Uchida Y, Chan A, Mauro TM, Holleran WM, Elias PM. Local blockade of glucocorticoid activation reverses stress- and glucocorticoid-induced delays in cutaneous wound healing. Wound Repair Regen 2013; 21:715-22. [PMID: 23927023 DOI: 10.1111/wrr.12083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/01/2013] [Indexed: 12/24/2022]
Abstract
Stress slows cutaneous wound healing (WH) in an endogenous glucocorticoid (GC)-dependent fashion. We investigated whether stress/GC-induced delays in WH require further intracutaneous activation of endogenous GC; and whether blockade or down-regulation of peripheral activation normalizes WH in the face of stress. Delayed WH in our motion-restricted murine model of stress could be attributed to elevated systemic GC, because blockade of GC production (using corticotropin-releasing factor inhibitor, antalarmin), or of peripheral binding to the GC receptor [GCr], with an antagonist, Ru-486, normalized WH. We next investigated whether local blockade or down-regulation of the peripheral GC-activating enzyme, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), accelerates cutaneous WH. Topical applications of nonspecific (carbenoxolone) as well as an isoform-specific 11β-HSD1 inhibitor overcame stress and exogenous GC-induced delays in WH. Moreover, two liver X receptor ligands, TO901317 and GW3695, down-regulated expression of 11β-HSD1, attenuating stress-induced delays in WH. Combined inhibitor and liver X receptor ligand applications accelerated WH in the face of stress/systemic GC. Thus: (1) intracutaneous conversion of inactive-to-active GC accounts for stress (GC)-induced delays in WH; and (2) blockade or down-regulation of 11β-HSD1 and/or GCr normalize cutaneous WH in the face of stress/GC. Local blockade or down-regulation of cutaneous GC activation could help enhance WH in various clinical settings.
Collapse
Affiliation(s)
- Jong-Kyung Youm
- Department of Dermatology, Veterans Affairs Medical Center, San Francisco, California; Northern California Institute for Research and Education, University of California, San Francisco, California
| | | | | | | | | | | | | |
Collapse
|
45
|
Godoy-Gijón E, Qiang Man M, Thyssen J, Elias P. New Perspectives in the Treatment of Leg Ulcers. ACTAS DERMO-SIFILIOGRAFICAS 2013; 104:254-5. [DOI: 10.1016/j.ad.2012.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/04/2012] [Indexed: 10/27/2022] Open
|
46
|
Godoy-Gijón E, Qiang Man M, Thyssen J, Elias P. New Perspectives in the Treatment of Leg Ulcers. ACTAS DERMO-SIFILIOGRAFICAS 2013. [DOI: 10.1016/j.adengl.2012.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
47
|
Wang P, Wang X, Yang X, Liu Z, Wu M, Li G. Budesonide suppresses pulmonary antibacterial host defense by down-regulating cathelicidin-related antimicrobial peptide in allergic inflammation mice and in lung epithelial cells. BMC Immunol 2013; 14:7. [PMID: 23387852 PMCID: PMC3583690 DOI: 10.1186/1471-2172-14-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 02/04/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glucocorticoids are widely regarded as the most effective treatment for asthma. However, the direct impact of glucocorticoids on the innate immune system and antibacterial host defense during asthma remain unclear. Understanding the mechanisms underlying this process is critical to the clinical application of glucocorticoids for asthma therapy. After sensitization and challenge with ovalbumin (OVA), BALB/c mice were treated with inhaled budesonide and infected with Pseudomonas aeruginosa (P. aeruginosa). The number of viable bacteria in enflamed lungs was evaluated, and levels of interleukin-4 (IL-4) and interferon-γ (IFN-γ) in serum were measured. A lung epithelial cell line was pretreated with budesonide. Levels of cathelicidin-related antimicrobial peptide (CRAMP) were measured by immunohistochemistry and western blot analysis. Intracellular bacteria were observed in lung epithelial cells. RESULTS Inhaled budesonide enhanced lung infection in allergic mice exposed to P. aeruginosa and increased the number of viable bacteria in lung tissue. Higher levels of IL-4 and lower levels of IFN-γ were observed in the serum. Budesonide decreased the expression of CRAMP, increased the number of internalized P. aeruginosa in OVA-challenged mice and in lung epithelial cell lines. These data indicate that inhaled budesonide can suppress pulmonary antibacterial host defense by down-regulating CRAMP in allergic inflammation mice and in cells in vitro. CONCLUSIONS Inhaled budesonide suppressed pulmonary antibacterial host defense in an asthmatic mouse model and in lung epithelium cells in vitro. This effect was dependent on the down-regulation of CRAMP.
Collapse
Affiliation(s)
- Peng Wang
- Inflammations & Allergic Diseases Research Unit, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, 646000, China
- Bao Ji Central Hospital, Bao Ji, Shan Xi, 721008, China
| | - Xiaoyun Wang
- Inflammations & Allergic Diseases Research Unit, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, 646000, China
| | - Xiaoqiong Yang
- Department of Respiratory Disease, Affiliated Hospital of Luzhou Medical College, Luzhou, 646000, China
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong, 518060, PR China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, University of North Dakota, 501 N Columbia Rd, EJRF Building Room 2726, Grand Forks, North Dakota, 58203-9037, USA
| | - Guoping Li
- Inflammations & Allergic Diseases Research Unit, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, 646000, China
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
48
|
Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis. Dermatol Res Pract 2012; 2012:403908. [PMID: 22969795 PMCID: PMC3437281 DOI: 10.1155/2012/403908] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 01/17/2023] Open
Abstract
Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis.
Collapse
|
49
|
Abstract
A major function of the skin is to provide a barrier to the movement of water and electrolytes, which is required for life in a terrestrial environment. This permeability barrier is localized to the stratum corneum and is mediated by extracellular lipid-enriched lamellar membranes, which are delivered to the extracellular spaces by the secretion of lamellar bodies by stratum granulosum cells. A large number of factors have been shown to regulate the formation of this permeability barrier. Specifically, lamellar body secretion and permeability barrier formation are accelerated by decreases in the calcium content in the stratum granulosum layer of the epidermis. In addition, increased expression of cytokines and growth factors and the activation of nuclear hormone receptors (peroxisome proliferator-activated receptors, liver X receptors, vitamin D receptor) accelerate permeability barrier formation. In contrast, nitric oxide, protease-activated receptor 2 activation, glucocorticoids, and testosterone inhibit permeability barrier formation. The ability of a variety of factors to regulate permeability barrier formation allows for a more precise and nuanced regulation.
Collapse
|
50
|
Curtis BJ, Plichta JK, Blatt H, Droho S, Griffin TM, Radek KA. Nicotinic acetylcholine receptor stimulation impairs epidermal permeability barrier function and recovery and modulates cornified envelope proteins. Life Sci 2012; 91:1070-6. [PMID: 22940618 DOI: 10.1016/j.lfs.2012.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 08/04/2012] [Accepted: 08/08/2012] [Indexed: 10/28/2022]
Abstract
AIM To characterize how nicotinic acetylcholine receptors (nAChRs) influence epidermal barrier function and recovery following prolonged stress or direct nAChR activation or antagonism. MAIN METHODS Mice were subjected to psychological stress or treated topically with nAChR agonist or antagonist for 3 days. We assessed barrier permeability and recovery by measuring transepidermal water loss (TEWL) before and after barrier disruption. In parallel, we analyzed the production and localization of several epidermal cornified envelope proteins in mouse skin and in human EpiDerm™ organotypic constructs stimulated with a nAChR agonist (nicotine) and/or a nAChR selective antagonist (α-bungarotoxin). KEY FINDINGS We determined that psychological stress in mice impairs barrier permeability function and recovery, an effect that is reversed by application of the α7 selective nAChR antagonist, α-bungarotoxin (Bung). In the absence of stress, both topical nicotine or Bung treatment alone impaired barrier permeability. We further observed that stress, topical nicotine, or topical Bung treatment in mice influenced the abundance and/or localization of filaggrin, loricrin, and involucrin. Similar alterations in these three major cornified envelope proteins were observed in human EpiDerm™ cultures. SIGNIFICANCE Perceived psychological stress and nicotine usage can both initiate or exacerbate several dermatoses by altering the cutaneous permeability barrier. Modulation of nAChRs by topical agonists or antagonists may be used to improve epidermal barrier function in skin diseases associated with defects in epidermal barrier permeability.
Collapse
|