1
|
Murphy K, Fouragnan E. The future of transcranial ultrasound as a precision brain interface. PLoS Biol 2024; 22:e3002884. [PMID: 39471185 PMCID: PMC11521279 DOI: 10.1371/journal.pbio.3002884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024] Open
Abstract
Our understanding of brain circuit operations and disorders has rapidly outpaced our ability to intervene and restore them. Developing technologies that can precisely interface with any brain region and circuit may combine diagnostics with therapeutic intervention, expediting personalised brain medicine. Transcranial ultrasound stimulation (TUS) is a promising noninvasive solution to this challenge, offering focal precision and scalability. By exploiting the biomechanics of pressure waves on brain tissue, TUS enables multi-site targeted neuromodulation across distributed circuits in the cortex and deeper areas alike. In this Essay, we explore the emergent evidence that TUS can functionally test and modify dysfunctional regions, effectively serving as a search and rescue tool for the brain. We define the challenges and opportunities faced by TUS as it moves towards greater target precision and integration with advanced brain monitoring and interventional technology. Finally, we propose a roadmap for the evolution of TUS as it progresses from a research tool to a clinically validated therapeutic for brain disorders.
Collapse
Affiliation(s)
- Keith Murphy
- Department of Radiology, Stanford University, Stanford, California, United States of America
- Attune Neurosciences, San Francisco, California, United States of America
| | - Elsa Fouragnan
- Brain Research and Imaging Centre, University of Plymouth, Plymouth, United Kingdom
- School of psychology, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
2
|
Aloui L, Greene ES, Tabler T, Lassiter K, Thompson K, Bottje WG, Orlowski S, Dridi S. Effect of heat stress on the hypothalamic expression profile of water homeostasis-associated genes in low- and high-water efficient chicken lines. Physiol Rep 2024; 12:e15972. [PMID: 38467563 DOI: 10.14814/phy2.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
With climate change, selection for water efficiency and heat resilience are vitally important. We undertook this study to determine the effect of chronic cyclic heat stress (HS) on the hypothalamic expression profile of water homeostasis-associated markers in high (HWE)- and low (LWE)-water efficient chicken lines. HS significantly elevated core body temperatures of both lines. However, the amplitude was higher by 0.5-1°C in HWE compared to their LWE counterparts. HWE line drank significantly less water than LWE during both thermoneutral (TN) and HS conditions, and HS increased water intake in both lines with pronounced magnitude in LWE birds. HWE had better feed conversion ratio (FCR), water conversion ratio (WCR), and water to feed intake ratio. At the molecular level, the overall hypothalamic expression of aquaporins (AQP8 and AQP12), arginine vasopressin (AVP) and its related receptor AVP2R, angiotensinogen (AGT), angiotensin II receptor type 1 (AT1), and calbindin 2 (CALB2) were significantly lower; however, CALB1 mRNA and AQP2 protein levels were higher in HWE compared to LWE line. Compared to TN conditions, HS exposure significantly increased mRNA abundances of AQPs (8, 12), AVPR1a, natriuretic peptide A (NPPA), angiotensin I-converting enzyme (ACE), CALB1 and 2, and transient receptor potential cation channel subfamily V member 1 and 4 (TRPV1 and TRPV4) as well as the protein levels of AQP2, however it decreased that of AQP4 gene expression. A significant line by environment interaction was observed in several hypothalamic genes. Heat stress significantly upregulated AQP2 and SCT at mRNA levels and AQP1 and AQP3 at both mRNA and protein levels, but it downregulated that of AQP4 protein only in LWE birds. In HWE broilers, however, HS upregulated the hypothalamic expression of renin (REN) and AVPR1b genes and AQP5 proteins, but it downregulated that of AQP3 protein. The hypothalamic expression of AQP (5, 7, 10, and 11) genes was increased by HS in both chicken lines. In summary, this is the first report showing improvement of growth performances in HWE birds. The hypothalamic expression of several genes was affected in a line- and/or environment-dependent manner, revealing potential molecular signatures for water efficiency and/or heat tolerance in chickens.
Collapse
Affiliation(s)
- Loujain Aloui
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
- Higher School of Agriculture of Mograne, University of Carthage, Zaghouan, Tunisia
| | - Elizabeth S Greene
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Travis Tabler
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kentu Lassiter
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kevin Thompson
- Center for Agricultural Data Analyses, Divion of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Walter G Bottje
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sara Orlowski
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
3
|
Whalen AJ, Fried SI. Thermal safety considerations for implantable micro-coil design. J Neural Eng 2023; 20:10.1088/1741-2552/ace79a. [PMID: 37451256 PMCID: PMC10467159 DOI: 10.1088/1741-2552/ace79a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Micro magnetic stimulation of the brain via implantable micro-coils is a promising novel technology for neuromodulation. Careful consideration of the thermodynamic profile of such devices is necessary for effective and safe designs.Objective.We seek to quantify the thermal profile of bent wire micro-coils in order to understand and mitigate thermal impacts of micro-coil stimulation.Approach. In this study, we use fine wire thermocouples and COMSOL finite element modeling to examine the profile of the thermal gradients generated near bent wire micro-coils submerged in a water bath during stimulation. We tested a range of stimulation parameters previously reported in the literature such as voltage amplitude, stimulus frequency, stimulus repetition rate and coil wire materials.Main results. We found temperature increases ranging from <1 °C to 8.4 °C depending upon the stimulation parameters tested and coil wire materials used. Numerical modeling of the thermodynamics identified hot spots of the highest temperatures along the micro-coil contributing to the thermal gradients and demonstrated that these thermal gradients can be mitigated by the choice of wire conductor material and construction geometry.Significance. ISO standard 14708-1 designates a thermal safety limit of 2 °C temperature increase for active implantable medical devices. By switching the coil wire material from platinum/iridium to gold, our study achieved a 5-6-fold decrease in the thermal impact of coil stimulation. The thermal gradients generated from the gold wire coil were measured below the 2 °C safety limit for all stimulation parameters tested.
Collapse
Affiliation(s)
- Andrew J. Whalen
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Shelley I. Fried
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Boston VA Medical Center, Boston, USA
| |
Collapse
|
4
|
Razi O, Teixeira AM, Tartibian B, Zamani N, Knechtle B. Respiratory issues in patients with multiple sclerosis as a risk factor during SARS-CoV-2 infection: a potential role for exercise. Mol Cell Biochem 2023; 478:1533-1559. [PMID: 36411399 PMCID: PMC9684932 DOI: 10.1007/s11010-022-04610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus disease-2019 (COVID-19) is associated with cytokine storm and is characterized by acute respiratory distress syndrome (ARDS) and pneumonia problems. The respiratory system is a place of inappropriate activation of the immune system in people with multiple sclerosis (MS), and this may cause damage to the lung and worsen both MS and infections.The concerns for patients with multiple sclerosis are because of an enhance risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The MS patients pose challenges in this pandemic situation, because of the regulatory defect of autoreactivity of the immune system and neurological and respiratory tract symptoms. In this review, we first indicate respiratory issues associated with both diseases. Then, the main mechanisms inducing lung damages and also impairing the respiratory muscles in individuals with both diseases is discussed. At the end, the leading role of physical exercise on mitigating respiratory issues inducing mechanisms is meticulously evaluated.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Ana Maria Teixeira
- Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
- Medbase St. Gallen Am Vadianplatz, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| |
Collapse
|
5
|
Feketa P, Birkoben T, Noll M, Schaum A, Meurer T, Kohlstedt H. Artificial homeostatic temperature regulation via bio-inspired feedback mechanisms. Sci Rep 2023; 13:5003. [PMID: 36973355 PMCID: PMC10043278 DOI: 10.1038/s41598-023-31963-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Homeostasis comprises one of the main features of living organisms that enables their robust functioning by adapting to environmental changes. In particular, thermoregulation, as an instance of homeostatic behavior, allows mammals to maintain stable internal temperature with tightly controlled self-regulation independent of external temperatures. This is made by a proper reaction of the thermoeffectors (like skin blood vessels, brown adipose tissue (BAT), etc.) on a wide range of temperature perturbations that reflect themselves in the thermosensitive neurons' activity. This activity is being delivered to the respective actuation points and translated into thermoeffectors' actions, which bring the temperature of the organism to the desired level, called a set-point. However, it is still an open question whether these mechanisms can be implemented in an analog electronic device: both on a system theoretical and a hardware level. In this paper, we transfer this control loop into a real electric circuit by designing an analog electronic device for temperature regulation that works following bio-inspired principles. In particular, we construct a simplified single-effector regulation system and show how spiking trains of thermosensitive artificial neurons can be processed to realize an efficient feedback mechanism for the stabilization of the a priori unknown but system-inherent set-point. We also demonstrate that particular values of the set-point and its stability properties result from the interplay between the feedback control gain and activity patterns of thermosensitive artificial neurons, for which, on the one hand, the neuronal interconnections are generally not necessary. On the other hand, we show that such connections can be beneficial for the set-point regulation and hypothesize that the synaptic plasticity in real thermosensitive neuronal ensembles can play a role of an additional control layer empowering the robustness of thermoregulation. The electronic realization of temperature regulation proposed in this paper might be of interest for neuromorphic circuits which are bioinspired by taking the basal principle of homeostasis on board. In this way, a fundamental building block of life would be transferred to electronics and become a milestone for the future of neuromorphic engineering.
Collapse
Affiliation(s)
- Petro Feketa
- Chair of Automation and Control, Kiel University, Kaiserstraße 2, 24143, Kiel, Germany.
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, 24118, Kiel, Germany.
- School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand.
| | - Tom Birkoben
- Chair of Nanoelectronics, Kiel University, Kaiserstraße 2, 24143, Kiel, Germany
| | - Maximiliane Noll
- Chair of Nanoelectronics, Kiel University, Kaiserstraße 2, 24143, Kiel, Germany
| | - Alexander Schaum
- Chair of Automation and Control, Kiel University, Kaiserstraße 2, 24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
| | - Thomas Meurer
- Digital Process Engineering Group, Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Hermann Kohlstedt
- Chair of Nanoelectronics, Kiel University, Kaiserstraße 2, 24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
| |
Collapse
|
6
|
Razi O, Tartibian B, Teixeira AM, Zamani N, Govindasamy K, Suzuki K, Laher I, Zouhal H. Thermal dysregulation in patients with multiple sclerosis during SARS-CoV-2 infection. The potential therapeutic role of exercise. Mult Scler Relat Disord 2022; 59:103557. [PMID: 35092946 PMCID: PMC8785368 DOI: 10.1016/j.msard.2022.103557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022]
Abstract
Thermoregulation is a homeostatic mechanism that is disrupted in some neurological diseases. Patients with multiple sclerosis (MS) are susceptible to increases in body temperature, especially with more severe neurological signs. This condition can become intolerable when these patients suffer febrile infections such as coronavirus disease-2019 (COVID-19). We review the mechanisms of hyperthermia in patients with MS, and they may encounter when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finally, the thermoregulatory role and relevant adaptation to regular physical exercise are summarized.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Ana Maria Teixeira
- University of Coimbra, Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Karuppasamy Govindasamy
- Department of Physical Education & Sports Science, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, Rennes F-35000, France; Institut International des Sciences du Sport (2I2S), Irodouer 35850, France.
| |
Collapse
|
7
|
Rueda-Ruzafa L, Herrera-Pérez S, Campos-Ríos A, Lamas JA. Are TREK Channels Temperature Sensors? Front Cell Neurosci 2021; 15:744702. [PMID: 34690704 PMCID: PMC8526543 DOI: 10.3389/fncel.2021.744702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Internal human body normal temperature fluctuates between 36.5 and 37.5°C and it is generally measured in the oral cavity. Interestingly, most electrophysiological studies on the functioning of ion channels and their role in neuronal behavior are carried out at room temperature, which usually oscillates between 22 and 24°C, even when thermosensitive channels are studied. We very often forget that if the core of the body reached that temperature, the probability of death from cardiorespiratory arrest would be extremely high. Does this mean that we are studying ion channels in dying neurons? Thousands of electrophysiological experiments carried out at these low temperatures suggest that most neurons tolerate this aggression quite well, at least for the duration of the experiments. This also seems to happen with ion channels, although studies at different temperatures indicate large changes in both, neuron and channel behavior. It is known that many chemical, physical and therefore physiological processes, depend to a great extent on body temperature. Temperature clearly affects the kinetics of numerous events such as chemical reactions or conformational changes in proteins but, what if these proteins constitute ion channels and these channels are specifically designed to detect changes in temperature? In this review, we discuss the importance of the potassium channels of the TREK subfamily, belonging to the recently discovered family of two-pore domain channels, in the transduction of thermal sensitivity in different cell types.
Collapse
Affiliation(s)
- Lola Rueda-Ruzafa
- CINBIO, Laboratory of Neuroscience, University of Vigo, Vigo, Spain.,Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | - Salvador Herrera-Pérez
- CINBIO, Laboratory of Neuroscience, University of Vigo, Vigo, Spain.,Grupo de Neurofisiología Experimental y Circuitos Neuronales, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Ana Campos-Ríos
- CINBIO, Laboratory of Neuroscience, University of Vigo, Vigo, Spain.,Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | - J A Lamas
- CINBIO, Laboratory of Neuroscience, University of Vigo, Vigo, Spain.,Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| |
Collapse
|
8
|
Cerri M, Amici R. Thermoregulation and Sleep: Functional Interaction and Central Nervous Control. Compr Physiol 2021; 11:1591-1604. [PMID: 33792906 DOI: 10.1002/cphy.c140012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Each of the wake-sleep states is characterized by specific changes in autonomic activity and bodily functions. The goal of such changes is not always clear. During non-rapid eye movement (NREM) sleep, the autonomic outflow and the activity of the endocrine system, the respiratory system, the cardiovascular system, and the thermoregulatory system seem to be directed at increasing energy saving. During rapid eye movement (REM) sleep, the goal of the specific autonomic and regulatory changes is unclear, since a large instability of autonomic activity and cardiorespiratory function is observed in concomitance with thermoregulatory changes, which are apparently non-functional to thermal homeostasis. Reciprocally, the activation of thermoregulatory responses under thermal challenges interferes with sleep occurrence. Such a double-edged and reciprocal interaction between sleep and thermoregulation may be favored by the fact that the central network controlling sleep overlaps in several parts with the central network controlling thermoregulation. The understanding of the central mechanism behind the interaction between sleep and thermoregulation may help to understand the functionality of thermoregulatory sleep-related changes and, ultimately, the function(s) of sleep. © 2021 American Physiological Society. Compr Physiol 11:1591-1604, 2021.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and Neuromotor Sciences - Physiology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences - Physiology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
|
10
|
The Role of Thermosensitive Ion Channels in Mammalian Thermoregulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:355-370. [DOI: 10.1007/978-981-16-4254-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Manolis AS, Manolis SA, Manolis AA, Manolis TA, Apostolaki N, Melita H. Winter Swimming. Curr Sports Med Rep 2019; 18:401-415. [DOI: 10.1249/jsr.0000000000000653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Hypothalamic TRPV4 channels participate in the medial preoptic activation of warmth-defence responses in Wistar male rats. Pflugers Arch 2019; 471:1191-1203. [PMID: 31428866 DOI: 10.1007/s00424-019-02303-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 10/26/2022]
Abstract
Recently, we have described, in non-genetically modified rats, that peripheral transient receptor potential vanilloid-4 (TRPV4) channels are activated and trigger warmth-defence responses at ambient temperatures of 26-30 °C. Evidence points to the presence of TRPV4 in the medial preoptic area, a region described to be involved in the activation of thermoeffector pathways, including those involved in heat loss. Thus, we tested the hypothesis that TRPV4 in the medial preoptic area modulates thermoregulation under warm conditions. To this end, under two ambient temperatures (21 and 28 °C), body temperature was measured in rats following blockade of preoptic TRPV4 with two antagonists, HC-067047 and GSK 2193874. Oxygen consumption, heat loss index and preferred ambient temperature were also determined in order to assess thermoeffector activity. Antagonism of central TRPV4 caused an increase in body temperature in rats exposed to 28 °C, but not in those exposed to 21 °C. The body temperature increase at 28 °C was accompanied by an increase in oxygen consumption and an earlier reduction of the heat loss index. In behavioural experiments, control animals previously exposed to warm ambient temperatures (28-30 °C) for 2 h selected colder temperatures in a thermogradient compared to those injected with HC-067047. Our results support the idea that preoptic TRPV4 modulates thermoregulation in a warm environment by activating both autonomic and behavioural heat loss responses. Thus, according to the present study and to that published recently by our group, the activation of warmth-defence responses by TRPV4 seems to be dependent on the activity of both peripheral and central channels.
Collapse
|
13
|
Xu J, Tang Y, Qi H, Yu X, Liu M, Wang N, Lin Y, Zhang J. Electrophysiological properties of thermosensitive neurons in slices of rat lateral parabrachial nucleus. J Therm Biol 2019; 83:87-94. [DOI: 10.1016/j.jtherbio.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
|
14
|
Lamas JA, Rueda-Ruzafa L, Herrera-Pérez S. Ion Channels and Thermosensitivity: TRP, TREK, or Both? Int J Mol Sci 2019; 20:ijms20102371. [PMID: 31091651 PMCID: PMC6566417 DOI: 10.3390/ijms20102371] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022] Open
Abstract
Controlling body temperature is a matter of life or death for most animals, and in mammals the complex thermoregulatory system is comprised of thermoreceptors, thermosensors, and effectors. The activity of thermoreceptors and thermoeffectors has been studied for many years, yet only recently have we begun to obtain a clear picture of the thermosensors and the molecular mechanisms involved in thermosensory reception. An important step in this direction was the discovery of the thermosensitive transient receptor potential (TRP) cationic channels, some of which are activated by increases in temperature and others by a drop in temperature, potentially converting the cells in which they are expressed into heat and cold receptors. More recently, the TWIK-related potassium (TREK) channels were seen to be strongly activated by increases in temperature. Hence, in this review we want to assess the hypothesis that both these groups of channels can collaborate, possibly along with other channels, to generate the wide range of thermal sensations that the nervous system is capable of handling.
Collapse
Affiliation(s)
- J Antonio Lamas
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| | - Lola Rueda-Ruzafa
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| | - Salvador Herrera-Pérez
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| |
Collapse
|
15
|
Rivera-Meza M. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Ion Channels in the Rewarding Effects of Ethanol. NEUROSCIENCE OF ALCOHOL 2019:171-178. [DOI: 10.1016/b978-0-12-813125-1.00018-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Tang Y, Sun Y, Xu R, Huang X, Gu S, Hong C, Liu M, Jiang H, Yang Y, Shi J. Arginine vasopressin differentially modulates
GABA
ergic synaptic transmission onto temperature‐sensitive and temperature‐insensitive neurons in the rat preoptic area. Eur J Neurosci 2018; 47:866-886. [DOI: 10.1111/ejn.13868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Yu Tang
- Department of Neurobiology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
- Key Laboratory of Thermoregulatory and Inflammation of Sichuan Higher Education Institutes Chengdu Medical College Chengdu Sichuan China
- Department of Physiology Chengdu Medical College Chengdu Sichuan China
| | - Yan‐Ni Sun
- Department of Medical Laboratory Chengdu Medical College Chengdu Sichuan China
| | - Run Xu
- Department of Medical Laboratory Chengdu Medical College Chengdu Sichuan China
| | - Xiao Huang
- Department of Public Health Chengdu Medical College Chengdu Sichuan China
| | - Shuang Gu
- Department of Public Health Chengdu Medical College Chengdu Sichuan China
| | - Cheng‐Cheng Hong
- Department of Public Health Chengdu Medical College Chengdu Sichuan China
| | - Mi‐Jia Liu
- School of Clinical Medicine Chengdu Medical College Chengdu Sichuan China
| | - Heng Jiang
- Department of Medical Laboratory Chengdu Medical College Chengdu Sichuan China
| | - Yong‐Lu Yang
- Key Laboratory of Thermoregulatory and Inflammation of Sichuan Higher Education Institutes Chengdu Medical College Chengdu Sichuan China
| | - Jing Shi
- Department of Neurobiology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 China
| |
Collapse
|
17
|
Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center. Pflugers Arch 2018; 470:809-822. [DOI: 10.1007/s00424-017-2101-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
18
|
Yadav R, Jaryal AK, Mallick HN. Participation of preoptic area TRPV4 ion channel in regulation of body temperature. J Therm Biol 2017; 66:81-86. [DOI: 10.1016/j.jtherbio.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
|
19
|
Abstract
Autonomic thermoregulation is a recently acquired function, as it appears for the first time in mammals and provides the brain with the ability to control energy expenditure. The importance of such control can easily be highlighted by the ability of a heterogeneous group of mammals to actively reduce metabolic rate and enter a condition of regulated hypometabolism known as torpor. The central neural circuits of thermoregulatory cold defense have been recently unraveled and could in theory be exploited to reduce energy expenditure in species that do not normally use torpor, inducing a state called synthetic torpor. This approach may represent the first steps toward the development of a technology to induce a safe and reversible state of hypometabolism in humans, unlocking many applications ranging from new medical procedures to deep space travel.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, Physiology Division, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
20
|
Abstract
Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
21
|
Abstract
Thermoregulation is the maintenance of a relatively constant core body temperature. Humans normally maintain a body temperature at 37°C, and maintenance of this relatively high temperature is critical to human survival. This concept is so important that control of thermoregulation is often the principal example cited when teaching physiological homeostasis. A basic understanding of the processes underpinning temperature regulation is necessary for all undergraduate students studying biology and biology-related disciplines, and a thorough understanding is necessary for those students in clinical training. Our aim in this review is to broadly present the thermoregulatory process taking into account current advances in this area. First, we summarize the basic concepts of thermoregulation and subsequently assess the physiological responses to heat and cold stress, including vasodilation and vasoconstriction, sweating, nonshivering thermogenesis, piloerection, shivering, and altered behavior. Current research is presented concerning the body's detection of thermal challenge, peripheral and central thermoregulatory control mechanisms, including brown adipose tissue in adult humans and temperature transduction by the relatively recently discovered transient receptor potential channels. Finally, we present an updated understanding of the neuroanatomic circuitry supporting thermoregulation.
Collapse
Affiliation(s)
- Etain A Tansey
- Centre for Biomedical Sciences Education, Queen's University, Belfast, Northern Ireland
| | - Christopher D Johnson
- Centre for Biomedical Sciences Education, Queen's University, Belfast, Northern Ireland
| |
Collapse
|
22
|
Wang H, Siemens J. TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature (Austin) 2015; 2:178-87. [PMID: 27227022 PMCID: PMC4843888 DOI: 10.1080/23328940.2015.1040604] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
In humans, the TRP superfamily of cation channels includes 27 related molecules that respond to a remarkable variety of chemical and physical stimuli. While physiological roles for many TRP channels remain unknown, over the past years several have been shown to function as molecular sensors in organisms ranging from yeast to humans. In particular, TRP channels are now known to constitute important components of sensory systems, where they participate in the detection or transduction of osmotic, mechanical, thermal, or chemosensory stimuli. We here summarize our current understanding of the role individual members of this versatile receptor family play in thermosensation and thermoregulation, and also touch upon their immerging role in metabolic control.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pharmacology; University of Heidelberg ; Heidelberg, Germany
| | - Jan Siemens
- Department of Pharmacology; University of Heidelberg ; Heidelberg, Germany
| |
Collapse
|
23
|
Feketa VV, Marrelli SP. Induction of therapeutic hypothermia by pharmacological modulation of temperature-sensitive TRP channels: theoretical framework and practical considerations. Temperature (Austin) 2015; 2:244-57. [PMID: 27227027 PMCID: PMC4844121 DOI: 10.1080/23328940.2015.1024383] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 12/22/2022] Open
Abstract
Therapeutic hypothermia has emerged as a remarkably effective method of neuroprotection from ischemia and is being increasingly used in clinics. Accordingly, it is also a subject of considerable attention from a basic scientific research perspective. One of the fundamental problems, with which current studies are concerned, is the optimal method of inducing hypothermia. This review seeks to provide a broad theoretical framework for approaching this problem, and to discuss how a novel promising strategy of pharmacological modulation of the thermosensitive ion channels fits into this framework. Various physical, anatomical, physiological and molecular aspects of thermoregulation, which provide the foundation for this text, have been comprehensively reviewed and will not be discussed exhaustively here. Instead, the first part of the current review, which may be helpful for a broader readership outside of thermoregulation research, will build on this existing knowledge to outline possible opportunities and research directions aimed at controlling body temperature. The second part, aimed at a more specialist audience, will highlight the conceptual advantages and practical limitations of novel molecular agents targeting thermosensitive Transient Receptor Potential (TRP) channels in achieving this goal. Two particularly promising members of this channel family, namely TRP melastatin 8 (TRPM8) and TRP vanilloid 1 (TRPV1), will be discussed in greater detail.
Collapse
Key Words
- DMH, dorso-medial hypothalamus
- MPA, medial preoptic area of hypothalamus
- TRP, Transient Receptor Potential
- TRPA1, Transient Receptor Potential cation channel, subfamily A, member 1
- TRPM8, Transient Receptor Potential cation channel, subfamily M, member 8
- TRPV1, Transient Receptor Potential cation channel, subfamily V, member 1
- TRPV2, Transient Receptor Potential cation channel, subfamily V, member 2
- TRPV3, Transient Receptor Potential cation channel, subfamily V, member 3
- TRPV4, Transient Receptor Potential cation channel, subfamily V, member 4
- ThermoTRPs
- ThermoTRPs, Thermosensitive Transient Receptor Potential cation channels
- body temperature
- core temperature
- pharmacological hypothermia
- physical cooling
- rMR, rostral medullary raphe region
- therapeutic hypothermia
- thermopharmacology
- thermoregulation
- thermosensitive ion channels
Collapse
Affiliation(s)
- Viktor V Feketa
- Department of Molecular Physiology and Biophysics Graduate Program; Cardiovascular Sciences Track; Baylor College of Medicine , Houston, TX, USA
| | - Sean P Marrelli
- Department of Molecular Physiology and Biophysics Graduate Program; Cardiovascular Sciences Track; Baylor College of Medicine, Houston, TX, USA; Department of Anesthesiology; Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
24
|
Marder E, Haddad SA, Goeritz ML, Rosenbaum P, Kispersky T. How can motor systems retain performance over a wide temperature range? Lessons from the crustacean stomatogastric nervous system. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:851-6. [PMID: 25552317 PMCID: PMC4552768 DOI: 10.1007/s00359-014-0975-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 10/31/2022]
Abstract
Marine invertebrates, such as lobsters and crabs, deal with a widely and wildly fluctuating temperature environment. Here, we describe the effects of changing temperature on the motor patterns generated by the stomatogastric nervous system of the crab, Cancer borealis. Over a broad range of "permissive" temperatures, the pyloric rhythm increases in frequency but maintains its characteristic phase relationships. Nonetheless, at more extreme high temperatures, the normal triphasic pyloric rhythm breaks down, or "crashes". We present both experimental and computational approaches to understanding the stability of both single neurons and networks to temperature perturbations, and discuss data that shows that the "crash" temperatures themselves may be environmentally regulated. These approaches provide insight into how the nervous system can be stable to a global perturbation, such as temperature, in spite of the fact that all biological processes are temperature dependent.
Collapse
Affiliation(s)
- Eve Marder
- Volen Center and Biology Department, MS 013, Brandeis University, 415 South St., Waltham, MA, 02454, USA
| | | | | | | | | |
Collapse
|
25
|
Voronova IP, Tuzhikova AA, Kozyreva TV. Expression of Genes for Temperature-Sensitive TRP Channels in the Rat Hypothalamus in Normal Conditions and on Adaptation to Cold. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11055-014-9952-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Roemschied FA, Eberhard MJ, Schleimer JH, Ronacher B, Schreiber S. Cell-intrinsic mechanisms of temperature compensation in a grasshopper sensory receptor neuron. eLife 2014; 3:e02078. [PMID: 24843016 PMCID: PMC4012639 DOI: 10.7554/elife.02078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/03/2014] [Indexed: 02/02/2023] Open
Abstract
Changes in temperature affect biochemical reaction rates and, consequently, neural processing. The nervous systems of poikilothermic animals must have evolved mechanisms enabling them to retain their functionality under varying temperatures. Auditory receptor neurons of grasshoppers respond to sound in a surprisingly temperature-compensated manner: firing rates depend moderately on temperature, with average Q10 values around 1.5. Analysis of conductance-based neuron models reveals that temperature compensation of spike generation can be achieved solely relying on cell-intrinsic processes and despite a strong dependence of ion conductances on temperature. Remarkably, this type of temperature compensation need not come at an additional metabolic cost of spike generation. Firing rate-based information transfer is likely to increase with temperature and we derive predictions for an optimal temperature dependence of the tympanal transduction process fostering temperature compensation. The example of auditory receptor neurons demonstrates how neurons may exploit single-cell mechanisms to cope with multiple constraints in parallel.DOI: http://dx.doi.org/10.7554/eLife.02078.001.
Collapse
Affiliation(s)
- Frederic A Roemschied
- Institute of Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Monika Jb Eberhard
- Behavioral Physiology Group, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan-Hendrik Schleimer
- Institute of Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Bernhard Ronacher
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany Behavioral Physiology Group, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susanne Schreiber
- Institute of Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
27
|
Schneider ER, Anderson EO, Gracheva EO, Bagriantsev SN. Temperature sensitivity of two-pore (K2P) potassium channels. CURRENT TOPICS IN MEMBRANES 2014; 74:113-33. [PMID: 25366235 DOI: 10.1016/b978-0-12-800181-3.00005-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At normal body temperature, the two-pore potassium channels TREK-1 (K2P2.1/KCNK2), TREK-2 (K2P10.1/KCNK10), and TRAAK (K2P4.1/KCNK2) regulate cellular excitability by providing voltage-independent leak of potassium. Heat dramatically potentiates K2P channel activity and further affects excitation. This review focuses on the current understanding of the physiological role of heat-activated K2P current, and discusses the molecular mechanism of temperature gating in TREK-1, TREK-2, and TRAAK.
Collapse
Affiliation(s)
- Eve R Schneider
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Evan O Anderson
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Elena O Gracheva
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
28
|
Santin JM, Watters KC, Putnam RW, Hartzler LK. Temperature influences neuronal activity and CO2/pH sensitivity of locus coeruleus neurons in the bullfrog, Lithobates catesbeianus. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1451-64. [DOI: 10.1152/ajpregu.00348.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The locus coeruleus (LC) is a chemoreceptive brain stem region in anuran amphibians and contains neurons sensitive to physiological changes in CO2/pH. The ventilatory and central sensitivity to CO2/pH is proportional to the temperature in amphibians, i.e., sensitivity increases with increasing temperature. We hypothesized that LC neurons from bullfrogs, Lithobates catesbeianus, would increase CO2/pH sensitivity with increasing temperature and decrease CO2/pH sensitivity with decreasing temperature. Further, we hypothesized that cooling would decrease, while warming would increase, normocapnic firing rates of LC neurons. To test these hypotheses, we used whole cell patch-clamp electrophysiology to measure firing rate, membrane potential ( Vm), and input resistance ( Rin) in LC neurons in brain stem slices from adult bullfrogs over a physiological range of temperatures during normocapnia and hypercapnia. We found that cooling reduced chemosensitive responses of LC neurons as temperature decreased until elimination of CO2/pH sensitivity at 10°C. Chemosensitive responses increased at elevated temperatures. Surprisingly, chemosensitive LC neurons increased normocapnic firing rate and underwent membrane depolarization when cooled and decreased normocapnic firing rate and underwent membrane hyperpolarization when warmed. These responses to temperature were not observed in nonchemosensitive LC neurons or neurons in a brain stem slice 500 μm rostral to the LC. Our results indicate that modulation of cellular chemosensitivity within the LC during temperature changes may influence temperature-dependent respiratory drive during acid-base disturbances in amphibians. Additionally, cold-activated/warm-inhibited LC neurons introduce paradoxical temperature sensitivity in respiratory control neurons of amphibians.
Collapse
Affiliation(s)
- Joseph M. Santin
- Department of Biological Sciences, Wright State University, Dayton, Ohio; and
| | - Kayla C. Watters
- Department of Biological Sciences, Wright State University, Dayton, Ohio; and
| | - Robert W. Putnam
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio
| | - Lynn K. Hartzler
- Department of Biological Sciences, Wright State University, Dayton, Ohio; and
| |
Collapse
|
29
|
Sladek CD, Johnson AK. Integration of thermal and osmotic regulation of water homeostasis: the role of TRPV channels. Am J Physiol Regul Integr Comp Physiol 2013; 305:R669-78. [PMID: 23883678 PMCID: PMC3798796 DOI: 10.1152/ajpregu.00270.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/12/2013] [Indexed: 12/21/2022]
Abstract
Maintenance of body water homeostasis is critical for preventing hyperthermia, because evaporative cooling is the most efficient means of dissipating excess body heat. Water homeostasis is achieved by regulation of water intake and water loss by the kidneys. The former is achieved by sensations of thirst that motivate water acquisition, whereas the latter is regulated by the antidiuretic action of vasopressin. Vasopressin secretion and thirst are stimulated by increases in the osmolality of the extracellular fluid as well as decreases in blood pressure and/or blood volume, signals that are precipitated by water depletion associated with the excess evaporative water loss required to prevent hyperthermia. In addition, they are stimulated by increases in body temperature. The sites and molecular mechanisms involved in integrating thermal and osmotic regulation of thirst and vasopressin secretion are reviewed here with a focus on the role of the thermal and mechanosensitive transient receptor potential-vanilloid (TRPV) family of ion channels.
Collapse
Affiliation(s)
- Celia D Sladek
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; and
| | | |
Collapse
|
30
|
Boychuk CR, Zsombok A, Tasker JG, Smith BN. Rapid Glucocorticoid-Induced Activation of TRP and CB1 Receptors Causes Biphasic Modulation of Glutamate Release in Gastric-Related Hypothalamic Preautonomic Neurons. Front Neurosci 2013; 7:3. [PMID: 23386808 PMCID: PMC3560102 DOI: 10.3389/fnins.2013.00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/07/2013] [Indexed: 02/02/2023] Open
Abstract
Glucocorticoids rapidly regulate synaptic input to neuroendocrine cells in the hypothalamic paraventricular nucleus (PVN) by inducing the retrograde release of endogenous messengers. Here we investigated the rapid effects of dexamethasone (DEX) on excitatory synaptic input to feeding-related, preautonomic PVN neurons using whole-cell patch-clamp recordings. In ∼50% of identified gastric-related preautonomic PVN neurons, DEX elicited a biphasic synaptic response characterized by an initial rapid and transient increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs), followed by a decrease in mEPSC frequency within 9 min; remaining cells displayed only a decrease in mEPSC frequency. The late-phase decrease in mEPSC frequency was mimicked by the cannabinoid receptor agonists anandamide (AEA) and WIN 55,212-2, and it was blocked by the CB1 receptor antagonist AM251. The biphasic DEX effect was mimicked by AEA. The early increase in mEPSCs was mimicked by activation of transient receptor potential vanilloid type 1 (TRPV1) receptors with capsaicin and by activation of TRPV4 receptors with 4-α-PDD. The increase was reduced, but not blocked, by selective TRPV1 antagonists and in TRPV1 knockout mice; it was blocked completely by the broad-spectrum TRPV antagonist ruthenium red and by combined application of selective TRPV1 and TRPV4 antagonists. The DEX effects were prevented entirely by intracellular infusion of the G-protein inhibitor, GDPβS. Thus, DEX biphasically modulates synaptic glutamate onto a subset of gastric-related PVN neurons, which is likely mediated by induction of a retrograde messenger. The effect includes a TRPV1/4 receptor-mediated transient increase and subsequent CB1 receptor-mediated suppression of glutamate release. Multiphasic modulation of glutamate input to PVN neurons represents a previously unappreciated complexity of control of autonomic output by glucocorticoids and endogenous cannabinoids.
Collapse
Affiliation(s)
- Carie R Boychuk
- Department of Physiology, University of Kentucky College of Medicine Lexington, KY, USA
| | | | | | | |
Collapse
|
31
|
Tang Y, Yang YL, Wang N, Shen ZL, Zhang J, Hu HY. Effects of arginine vasopressin on firing activity and thermosensitivity of rat PO/AH area neurons. Neuroscience 2012; 219:10-22. [DOI: 10.1016/j.neuroscience.2012.05.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/25/2012] [Accepted: 05/25/2012] [Indexed: 11/28/2022]
|
32
|
|
33
|
Cai C, Meng X, He J, Wu H, Zou F. Effects of ZD7288 on firing pattern of thermosensitive neurons isolated from hypothalamus. Neurosci Lett 2011; 506:336-41. [PMID: 22155616 DOI: 10.1016/j.neulet.2011.11.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/09/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
The role of the hyperpolarization-activated current (Ih) mediated by HCN channels in temperature sensing by the hypothalamus was addressed. In warm-sensitive neurons (WSNs), exposure to ZD7288, an inhibitor of Ih mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, decreased their action potential amplitudes and frequencies significantly. By contrast, ZD7288 had little or no effect on temperature-insensitive neurons (TINs). Exposure of WSNs to ZD7288 led to a significant increase in the duration of the inter-spike interval and a reduction of Ih irreversibly. These results suggest that ZD7288 have the contrasting effects on the firing patterns of WSNs versus TINs, which implies HCN channels play a central role in temperature sensing by hypothalamic neurons.
Collapse
Affiliation(s)
- Chunqing Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
34
|
Nakamura K. Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1207-28. [PMID: 21900642 DOI: 10.1152/ajpregu.00109.2011] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Body temperature regulation is a fundamental homeostatic function that is governed by the central nervous system in homeothermic animals, including humans. The central thermoregulatory system also functions for host defense from invading pathogens by elevating body core temperature, a response known as fever. Thermoregulation and fever involve a variety of involuntary effector responses, and this review summarizes the current understandings of the central circuitry mechanisms that underlie nonshivering thermogenesis in brown adipose tissue, shivering thermogenesis in skeletal muscles, thermoregulatory cardiac regulation, heat-loss regulation through cutaneous vasomotion, and ACTH release. To defend thermal homeostasis from environmental thermal challenges, feedforward thermosensory information on environmental temperature sensed by skin thermoreceptors ascends through the spinal cord and lateral parabrachial nucleus to the preoptic area (POA). The POA also receives feedback signals from local thermosensitive neurons, as well as pyrogenic signals of prostaglandin E(2) produced in response to infection. These afferent signals are integrated and affect the activity of GABAergic inhibitory projection neurons descending from the POA to the dorsomedial hypothalamus (DMH) or to the rostral medullary raphe region (rMR). Attenuation of the descending inhibition by cooling or pyrogenic signals leads to disinhibition of thermogenic neurons in the DMH and sympathetic and somatic premotor neurons in the rMR, which then drive spinal motor output mechanisms to elicit thermogenesis, tachycardia, and cutaneous vasoconstriction. Warming signals enhance the descending inhibition from the POA to inhibit the motor outputs, resulting in cutaneous vasodilation and inhibited thermogenesis. This central thermoregulatory mechanism also functions for metabolic regulation and stress-induced hyperthermia.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Career-Path Promotion Unit for Young Life Scientists, Kyoto Univ., School of Medicine Bldg. E, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
35
|
Morrison SF, Nakamura K. Central neural pathways for thermoregulation. Front Biosci (Landmark Ed) 2011; 16:74-104. [PMID: 21196160 DOI: 10.2741/3677] [Citation(s) in RCA: 429] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction.
Collapse
Affiliation(s)
- Shaun F Morrison
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
36
|
Mujahid A. Acute cold-induced thermogenesis in neonatal chicks (Gallus gallus). Comp Biochem Physiol A Mol Integr Physiol 2010; 156:34-41. [DOI: 10.1016/j.cbpa.2009.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 10/20/2022]
|
37
|
Xu F, Lin M, Lu T. Modeling skin thermal pain sensation: Role of non-Fourier thermal behavior in transduction process of nociceptor. Comput Biol Med 2010; 40:478-86. [DOI: 10.1016/j.compbiomed.2010.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 02/07/2010] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
|
38
|
Abstract
Measurement of body temperature remains one of the most common ways to assess health. An increase in temperature above what is considered to be a normal value is inevitably regarded as a sure sign of disease and referred to with one simple word: fever. In this review, we summarize how research on fever allowed the identification of the exogenous and endogenous molecules and pathways mediating the fever response. We also show how temperature elevation is common to different pathologies and how the molecular components of the fever-generation pathway represent drug targets for antipyretics, such as acetylsalicylic acid, the first "blockbuster drug". We also show how fever research provided new insights into temperature and energy homeostasis, and into treatment of infection and inflammation.
Collapse
Affiliation(s)
- Tamas Bartfai
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA, USA.
| | | |
Collapse
|
39
|
Bosch MA, Hou J, Fang Y, Kelly MJ, Rønnekleiv OK. 17Beta-estradiol regulation of the mRNA expression of T-type calcium channel subunits: role of estrogen receptor alpha and estrogen receptor beta. J Comp Neurol 2009; 512:347-58. [PMID: 19003958 PMCID: PMC2821194 DOI: 10.1002/cne.21901] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Low-voltage-activated (T-type) calcium channels are responsible for burst firing and transmitter release in neurons and are important for exocytosis and hormone secretion in pituitary cells. T-type channels contain an alpha1 subunit, of which there are three subtypes, Cav3.1, -3.2, and -3.3, and each subtype has distinct kinetic characteristics. Although 17beta-estradiol (E2) modulates T-type calcium channel expression and function, little is known about the molecular mechanisms involved. We used real-time PCR quantification of RNA extracted from hypothalamic nuclei and pituitary in vehicle and E2-treated C57BL/6 mice to elucidate E2-mediated regulation of Cav3.1, -3.2, and -3.3 subunits. The three subunits were expressed in both the hypothalamus and the pituitary. E2 treatment increased the mRNA expression of Cav3.1 and -3.2, but not Cav3.3, in the medial preoptic area and the arcuate nucleus. In the pituitary, Cav3.1 was increased with E2 treatment, and Cav3.2 and -3.3 were decreased. To examine whether the classical estrogen receptors (ERs) were involved in the regulation, we used ERalpha- and ERbeta-deficient C57BL/6 mice and explored the effects of E2 on T-type channel subtypes. Indeed, we found that the E2-induced increase in Cav3.1 in the hypothalamus was dependent on ERalpha, whereas the E2 effect on Cav3.2 was dependent on both ERalpha and ERbeta. However, the E2-induced effects in the pituitary were dependent on only the expression of ERalpha. The robust E2 regulation of T-type calcium channels could be an important mechanism by which E2 increases the excitability of hypothalamic neurons and modulates pituitary secretion.
Collapse
Affiliation(s)
- Martha A Bosch
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature in mammals and birds during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. The primary sources of neurally regulated metabolic heat production are mitochondrial oxidation in brown adipose tissue, increases in heart rate and shivering in skeletal muscle. Thermogenesis is regulated in each of these tissues by parallel networks in the central nervous system, which respond to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate the appropriate sympathetic and somatic efferents. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates thermogenesis and discusses the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E(2), to increase body temperature. The cold thermal afferent circuit from cutaneous thermal receptors ascends via second-order thermosensory neurons in the dorsal horn of the spinal cord to activate neurons in the lateral parabrachial nucleus, which drive GABAergic interneurons in the preoptic area to inhibit warm-sensitive, inhibitory output neurons of the preoptic area. The resulting disinhibition of thermogenesis-promoting neurons in the dorsomedial hypothalamus and possibly of sympathetic and somatic premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, activates excitatory inputs to spinal sympathetic and somatic motor circuits to drive thermogenesis.
Collapse
Affiliation(s)
- Shaun F Morrison
- Neurological Sciences Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
41
|
|
42
|
Wright CL, Burgoon PW, Bishop GA, Boulant JA. Cyclic GMP alters the firing rate and thermosensitivity of hypothalamic neurons. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1704-15. [PMID: 18321955 DOI: 10.1152/ajpregu.00714.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rostral hypothalamus, especially the preoptic-anterior hypothalamus (POAH), contains temperature-sensitive and -insensitive neurons that form synaptic networks to control thermoregulatory responses. Previous studies suggest that the cyclic nucleotide cGMP is an important mediator in this neuronal network, since hypothalamic microinjections of cGMP analogs produce hypothermia in several species. In the present study, immunohistochemisty showed that rostral hypothalamic neurons contain cGMP, guanylate cyclase (necessary for cGMP synthesis), and CNG A2 (an important cyclic nucleotide-gated channel). Extracellular electrophysiological activity was recorded from different types of neurons in rat hypothalamic tissue slices. Each recorded neuron was classified according to its thermosensitivity as well as its firing rate response to 2-100 microM 8-bromo-cGMP (a membrane-permeable cGMP analog). cGMP has specific effects on different neurons in the rostral hypothalamus. In the POAH, the cGMP analog decreased the spontaneous firing rate in 45% of temperature-sensitive and -insensitive neurons, an effect that is likely due to cGMP-enhanced hyperpolarizing K(+) currents. This decreased POAH activity could attenuate thermoregulatory responses and produce hypothermia during exposures to cool or neutral ambient temperatures. Although 8-bromo-cGMP did not affect the thermosensitivity of most POAH neurons, it did increase the warm sensitivity of neurons in other hypothalamic regions located dorsal, lateral, and posterior to the POAH. This increased thermosensitivity may be due to pacemaker currents that are facilitated by cyclic nucleotides. If some of these non-POAH thermosensitive neurons promote heat loss or inhibit heat production, then their increased thermosensitivity could contribute to cGMP-induced decreases in body temperature.
Collapse
Affiliation(s)
- Chadwick L Wright
- Department of Physiology & Cell Biology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
43
|
Walter I, Seebacher F. Molecular mechanisms underlying the development of endothermy in birds (Gallus gallus): a new role of PGC-1α? Am J Physiol Regul Integr Comp Physiol 2007; 293:R2315-22. [PMID: 17898127 DOI: 10.1152/ajpregu.00505.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In endotherms, plasticity of internal heat production in response to environmental variability is an important component of thermoregulation. During embryogenesis endotherms cannot regulate their body temperature metabolically and are therefore similar to ectotherms. The transition from ectothermy to endothermy occurs by the development of metabolic capacity during embryogenesis. Here we test the hypothesis that the development of metabolism during embryogenesis in birds is under transcriptional control and that metabolic capacity is upregulated in colder environments. The peroxisome proliferator-activated receptor-γ (PPARγ) coactivator-1α (PGC-1α) is the major metabolic regulator in mammals. PGC-1α and its target PPARγ were significantly elevated during development in pectoral muscle and liver of chickens ( Gallus gallus) compared with adults. However, the timing of upregulation of PGC-1α and PPARγ was not in synchrony. In cool incubation temperatures (35°C) both PGC-1α and PPARγ gene expression was increased in liver but not in skeletal muscle, compared with a 38°C incubation treatment. Cytochrome c oxidase and citrate synthase enzyme activities and ATP synthase gene expression increased during embryonic development in liver and muscle, and there was a significant effect of incubation temperature on these parameters. Our findings suggest that PGC-1α might be important for establishing endothermic metabolic capacity during embryogenesis in birds.
Collapse
Affiliation(s)
- Isabel Walter
- Integrative Physiology, School of Biological Sciences A08, The Univ. of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
44
|
Romanovsky AA. Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol 2007; 292:R37-46. [PMID: 17008453 DOI: 10.1152/ajpregu.00668.2006] [Citation(s) in RCA: 428] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
While summarizing the current understanding of how body temperature (Tb) is regulated, this review discusses the recent progress in the following areas: central and peripheral thermosensitivity and temperature-activated transient receptor potential (TRP) channels; afferent neuronal pathways from peripheral thermosensors; and efferent thermoeffector pathways. It is proposed that activation of temperature-sensitive TRP channels is a mechanism of peripheral thermosensitivity. Special attention is paid to the functional architecture of the thermoregulatory system. The notion that deep Tb is regulated by a unified system with a single controller is rejected. It is proposed that Tb is regulated by independent thermoeffector loops, each having its own afferent and efferent branches. The activity of each thermoeffector is triggered by a unique combination of shell and core Tbs. Temperature-dependent phase transitions in thermosensory neurons cause sequential activation of all neurons of the corresponding thermoeffector loop and eventually a thermoeffector response. No computation of an integrated Tb or its comparison with an obvious or hidden set point of a unified system is necessary. Coordination between thermoeffectors is achieved through their common controlled variable, Tb. The described model incorporates Kobayashi’s views, but Kobayashi’s proposal to eliminate the term sensor is rejected. A case against the term set point is also made. Because this term is historically associated with a unified control system, it is more misleading than informative. The term balance point is proposed to designate the regulated level of Tb and to attract attention to the multiple feedback, feedforward, and open-loop components that contribute to thermal balance.
Collapse
Affiliation(s)
- Andrej A Romanovsky
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| |
Collapse
|
45
|
Glanville EJ, Seebacher F. Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behaviour in an ectotherm. J Exp Biol 2006; 209:4869-77. [PMID: 17142675 DOI: 10.1242/jeb.02585] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Thermoregulating animals are thought to have evolved a preferred body temperature at which thermally sensitive performance is optimised. Even during thermoregulation, however, many animals experience pronounced variability in body temperature, and may regulate to different body temperatures depending on environmental conditions. Here we test the hypothesis that there is a trade-off between regulating to lower body temperatures in cooler conditions and locomotory and metabolic performance. Animals (estuarine crocodiles, Crocodylus porosus) acclimated to cold (N=8) conditions had significantly lower maximum and mean daily body temperatures after 33 days than warm-acclimated animals (N=9), despite performing characteristic thermoregulatory behaviours. Concomitant with behavioural changes, maximum sustained swimming speed (Ucrit) shifted to the respective mean body temperatures during acclimation (cold=20°C, warm=29°C), but there was no difference in the maxima between acclimation groups. Mitochondrial oxygen consumption changed significantly during acclimation, and maximum respiratory control ratios coincided with mean body temperatures in liver, muscle and heart tissues. There were significant changes in the activities of regulatory metabolic enzymes (lactate dehydrogenase, citrate synthase, cytochrome c oxidase) and these were tissue specific. The extraordinary shift in behaviour and locomotory and metabolic performance shows that within individuals, behaviour and physiology covary to maximise performance in different environments.
Collapse
Affiliation(s)
- E J Glanville
- School of Biological Sciences A08, University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
46
|
Caterina MJ. Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am J Physiol Regul Integr Comp Physiol 2006; 292:R64-76. [PMID: 16973931 DOI: 10.1152/ajpregu.00446.2006] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Living organisms must evaluate changes in environmental and internal temperatures to mount appropriate physiological and behavioral responses conducive to survival. Classical physiology has provided a wealth of information regarding the specialization of thermosensory functions among subclasses of peripheral sensory neurons and intrinsically thermosensitive neurons within the hypothalamus. However, until recently, the molecular mechanisms by which these cells carry out thermometry have remained poorly understood. The demonstration that certain ion channels of the transient receptor potential (TRP) family can be activated by increases or decreases in ambient temperature, along with the recognition of their heterogeneous expression patterns and heterogeneous temperature sensitivities, has led investigators to evaluate these proteins as candidate endogenous thermosensors. Much of this work has involved one specific channel, TRP vanilloid 1 (TRPV1), which is both a receptor for capsaicin and related pungent vanilloid compounds and a "heat receptor," capable of directly depolarizing neurons in response to temperatures >42 degrees C. Evidence for a contribution of TRPV1 to peripheral thermosensation has come from pharmacological, physiological, and genetic approaches. In contrast, although capsaicin-sensitive mechanisms clearly influence core body temperature regulation, the specific contribution of TRPV1 to this process remains a matter of debate. Besides TRPV1, at least six additional thermally sensitive TRP channels have been identified in mammals, and many of these also appear to participate in thermosensation. Moreover, the identification of invertebrate TRP channels, whose genetic ablation alters thermally driven behaviors, makes it clear that thermosensation represents an evolutionarily conserved role of this ion channel family.
Collapse
Affiliation(s)
- Michael J Caterina
- Department of Biological Chemistry, Center for Sensory Biology, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
47
|
Persson PB. Temperature control: from molecular insights, regulation in king penguins and diving seals, to studies in humans. Am J Physiol Regul Integr Comp Physiol 2006. [DOI: 10.1152/ajpregu.00315.2006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Simon E. Ion channel proteins in neuronal temperature transduction: from inferences to testable theories of deep-body thermosensitivity. Am J Physiol Regul Integr Comp Physiol 2006; 291:R515-7. [PMID: 16614053 DOI: 10.1152/ajpregu.00239.2006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|