1
|
Hirobumi I. Autonomic Stimulation Action of EAT (Epipharyngeal Abrasive Therapy) on Chronic Epipharyngitis. Cureus 2024; 16:e63182. [PMID: 38933344 PMCID: PMC11200203 DOI: 10.7759/cureus.63182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigated the pathogenesis and pathophysiology of chronic epipharyngitis, which presents a variety of symptoms, with a focus on autonomic neuropathy symptoms, and also investigated the literature for information on EAT, which is useful as a treatment method. The mechanism of action of EAT has recently been clarified in terms of its immune system-stimulating and endocrine system-stimulating effects. However, the autonomic nerve-stimulating effects of EAT are still largely unexplained. This study was conducted to collect and integrate previous studies and papers focusing on the autonomic nerve-stimulating effects of EAT and to provide insight into the still not fully elucidated autonomic nerve-stimulating effects of EAT on chronic epipharyngitis. The local stimulating effects of zinc chloride and the bleeding and pain effects of EAT are also summarized, suggesting that EAT exerts its therapeutic effects through the interaction of the immune system, the endocrine system, and the autonomic nervous system. It is important to determine which mechanism is predominantly involved in each case of chronic epipharyngitis and to utilize it in treatment. Elucidating the effects of EAT on the autonomic nervous system will be an important guideline in determining the treatment strategy for chronic epipharyngitis.
Collapse
|
2
|
Moss A, Kuttippurathu L, Srivastava A, Schwaber JS, Vadigepalli R. Dynamic dysregulation of transcriptomic networks in brainstem autonomic nuclei during hypertension development in the female spontaneously hypertensive rat. Physiol Genomics 2024; 56:283-300. [PMID: 38145287 PMCID: PMC11283910 DOI: 10.1152/physiolgenomics.00073.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Neurogenic hypertension stems from an imbalance in autonomic function that shifts the central cardiovascular control circuits toward a state of dysfunction. Using the female spontaneously hypertensive rat and the normotensive Wistar-Kyoto rat model, we compared the transcriptomic changes in three autonomic nuclei in the brainstem, nucleus of the solitary tract (NTS), caudal ventrolateral medulla, and rostral ventrolateral medulla (RVLM) in a time series at 8, 10, 12, 16, and 24 wk of age, spanning the prehypertensive stage through extended chronic hypertension. RNA-sequencing data were analyzed using an unbiased, dynamic pattern-based approach that uncovered dominant and several subtle differential gene regulatory signatures. Our results showed a persistent dysregulation across all three autonomic nuclei regardless of the stage of hypertension development as well as a cascade of transient dysregulation beginning in the RVLM at the prehypertensive stage that shifts toward the NTS at the hypertension onset. Genes that were persistently dysregulated were heavily enriched for immunological processes such as antigen processing and presentation, the adaptive immune response, and the complement system. Genes with transient dysregulation were also largely region-specific and were annotated for processes that influence neuronal excitability such as synaptic vesicle release, neurotransmitter transport, and an array of neuropeptides and ion channels. Our results demonstrate that neurogenic hypertension is characterized by brainstem region-specific transcriptomic changes that are highly dynamic with significant gene regulatory changes occurring at the hypertension onset as a key time window for dysregulation of homeostatic processes across the autonomic control circuits.NEW & NOTEWORTHY Hypertension is a major disease and is the primary risk factor for cardiovascular complications and stroke. The gene expression changes in the central nervous system circuits driving hypertension are understudied. Here, we show that coordinated and region-specific gene expression changes occur in the brainstem autonomic circuits over time during the development of a high blood pressure phenotype in a rat model of human essential hypertension.
Collapse
Affiliation(s)
- Alison Moss
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Ankita Srivastava
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
3
|
Kola G, Clifford CW, Campanaro CK, Dhingra RR, Dutschmann M, Jacono FJ, Dick TE. Peritoneal sepsis caused by Escherichia coli triggers brainstem inflammation and alters the function of sympatho-respiratory control circuits. J Neuroinflammation 2024; 21:45. [PMID: 38331902 PMCID: PMC10854125 DOI: 10.1186/s12974-024-03025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Sepsis has a high mortality rate due to multiple organ failure. However, the influence of peripheral inflammation on brainstem autonomic and respiratory circuits in sepsis is poorly understood. Our working hypothesis is that peripheral inflammation affects central autonomic circuits and consequently contributes to multiorgan failure in sepsis. METHODS In an Escherichia coli (E. coli)-fibrin clot model of peritonitis, we first recorded ventilatory patterns using plethysmography before and 24 h after fibrin clot implantation. To assess whether peritonitis was associated with brainstem neuro-inflammation, we measured cytokine and chemokine levels in Luminex assays. To determine the effect of E. coli peritonitis on brainstem function, we assessed sympatho-respiratory nerve activities at baseline and during brief (20 s) hypoxemic ischemia challenges using in situ-perfused brainstem preparations (PBPs) from sham or infected rats. PBPs lack peripheral organs and blood, but generate vascular tone and in vivo rhythmic activities in thoracic sympathetic (tSNA), phrenic and vagal nerves. RESULTS Respiratory frequency was greater (p < 0.001) at 24 h post-infection with E. coli than in the sham control. However, breath-by-breath variability and total protein in the BALF did not differ. IL-1β (p < 0.05), IL-6 (p < 0.05) and IL-17 (p < 0.04) concentrations were greater in the brainstem of infected rats. In the PBP, integrated tSNA (p < 0.05) and perfusion pressure were greater (p < 0.001), indicating a neural-mediated pathophysiological high sympathetic drive. Moreover, respiratory frequency was greater (p < 0.001) in PBPs from infected rats than from sham rats. Normalized phase durations of inspiration and expiration were greater (p < 0.009, p < 0.015, respectively), but the post-inspiratory phase (p < 0.007) and the breath-by-breath variability (p < 0.001) were less compared to sham PBPs. Hypoxemic ischemia triggered a biphasic response, respiratory augmentation followed by depression. PBPs from infected rats had weaker respiratory augmentation (p < 0.001) and depression (p < 0.001) than PBPs from sham rats. In contrast, tSNA in E. coli-treated PBPs was enhanced throughout the entire response to hypoxemic ischemia (p < 0.01), consistent with sympathetic hyperactivity. CONCLUSION We show that peripheral sepsis caused brainstem inflammation and impaired sympatho-respiratory motor control in a single day after infection. We conclude that central sympathetic hyperactivity may impact vital organ systems in sepsis.
Collapse
Affiliation(s)
- Gjinovefa Kola
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 319, Cleveland, OH, 44106-1714, USA
| | - Caitlyn W Clifford
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 319, Cleveland, OH, 44106-1714, USA
| | - Cara K Campanaro
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 319, Cleveland, OH, 44106-1714, USA
| | - Rishi R Dhingra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 319, Cleveland, OH, 44106-1714, USA
| | - Mathias Dutschmann
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 319, Cleveland, OH, 44106-1714, USA
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 319, Cleveland, OH, 44106-1714, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, 44106, USA
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 319, Cleveland, OH, 44106-1714, USA.
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Lataro RM, Brognara F, Iturriaga R, Paton JFR. Inflammation of some visceral sensory systems and autonomic dysfunction in cardiovascular disease. Auton Neurosci 2024; 251:103137. [PMID: 38104365 DOI: 10.1016/j.autneu.2023.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The sensitization and hypertonicity of visceral afferents are highly relevant to the development and progression of cardiovascular and respiratory disease states. In this review, we described the evidence that the inflammatory process regulates visceral afferent sensitivity and tonicity, affecting the control of the cardiovascular and respiratory system. Some inflammatory mediators like nitric oxide, angiotensin II, endothelin-1, and arginine vasopressin may inhibit baroreceptor afferents and contribute to the baroreflex impairment observed in cardiovascular diseases. Cytokines may act directly on peripheral afferent terminals that transmit information to the central nervous system (CNS). TLR-4 receptors, which recognize lipopolysaccharide, were identified in the nodose and petrosal ganglion and have been implicated in disrupting the blood-brain barrier, which can potentiate the inflammatory process. For example, cytokines may cross the blood-brain barrier to access the CNS. Additionally, pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and some of their receptors have been identified in the nodose ganglion and carotid body. These pro-inflammatory cytokines also sensitize the dorsal root ganglion or are released in the nucleus of the solitary tract. In cardiovascular disease, pro-inflammatory mediators increase in the brain, heart, vessels, and plasma and may act locally or systemically to activate/sensitize afferent nervous terminals. Recent evidence demonstrated that the carotid body chemoreceptor cells might sense systemic pro-inflammatory molecules, supporting the novel proposal that the carotid body is part of the afferent pathway in the central anti-inflammatory reflexes. The exact mechanisms of how pro-inflammatory mediators affects visceral afferent signals and contribute to the pathophysiology of cardiovascular diseases awaits future research.
Collapse
Affiliation(s)
- R M Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - F Brognara
- Department of Nursing, General and Specialized, Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R Iturriaga
- Facultad de Ciencias Biológicas, Pontificia Universidad Catolica de Chile, Santiago, Chile; Centro de Investigación en Fisiología y Medicina en Altura - FIMEDALT, Universidad de Antofagasta, Antofagasta, Chile
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| |
Collapse
|
5
|
Hirobumi I. The Effect of Epipharyngeal Abrasive Therapy (EAT) on the Baroreceptor Reflex (BR). Cureus 2023; 15:e45080. [PMID: 37705568 PMCID: PMC10496426 DOI: 10.7759/cureus.45080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction Epipharyngeal Abrasive Therapy (EAT) has been used as a treatment for chronic epipharyngitis, and although autonomic nerve stimulation has been pointed out as one of the mechanisms by which EAT produces therapeutic effects, there have been few reports examining this mechanism of action. This study investigated the effects of repeated EAT on autonomic nervous system activity in chronic epipharyngitis patients over time, using heart rate variability analysis. In addition, we conducted a loading test using the active standing test (AS test) to examine the effects of EAT on the baroreceptor reflex (BR). Subjects and methods A retrospective study was conducted on 39 patients who visited our clinic between July 2017 and November 2019 and underwent autonomic function tests with a diagnosis of chronic nasopharyngeal inflammation. The subjects were divided into two groups: the improvement group and the invariant group for comparison. Electrocardiographic recordings and blood pressure measurements were made under the stress of the AS test. Heart rate, high-frequency (HF) component, low-frequency (LF) component, and Coefficient of Variation on R-R interval were evaluated as indices of autonomic function. Component coefficient of variance high frequency was used as an index of parasympathetic function. ccvLF/ccvHF ratio was calculated by dividing the component coefficient of variance low frequency by ccvHF. The AS test was conducted in phase 1 in the initial resting sitting position, in phase 2 in the standing position, in phase 3 in the standing and holding the standing position, and in phase 4 in the seated and holding the sitting position. Systolic blood pressure, mean arterial pressure, and diastolic blood pressure were obtained in each phase. A paired t-test was used to compare the improved and invariant groups before and after treatment. The post-treatment comparison between the improved group and the invariant group was performed by unpaired t-test. Variation of the evaluation index over time was evaluated by repeated measures ANOVA. Multiple comparisons were corrected by the Bonferroni method. Results The EAT showed that parasympathetic activity was significantly suppressed in the improvement group, while the AS test showed significant fluctuations over time for the improvement and invariant groups. The interaction between the time course and the two factors in the improvement and invariant groups was not statistically evident. Although no significant difference was found, the improvement group showed a tendency to suppress parasympathetic activity and a tendency to stimulate sympathetic activity compared to the invariant group. Blood pressure in the improvement group showed a tendency to decrease. Conclusions EAT was found to suppress parasympathetic activity over time, and the AS test did not reveal an interaction effect of EAT on BR. However, there was a trend toward suppression of parasympathetic activity and stimulation of sympathetic activity in the improved group compared to the invariant group. Blood pressure in the improved group tended to decrease. It is possible that EAT may have a positive effect on autonomic neuropathy symptoms such as orthostatic dysregulation (OD), postural orthostatic tachycardia syndrome (POTS), etc. by stimulating the BRs. It is thought that the autonomic nervous system stimulating action and the immune system stimulating action act synergistically to express the therapeutic effect of EAT.
Collapse
|
6
|
Babcock MC, DuBose LE, Hildreth KL, Stauffer BL, Cornwell WK, Kohrt WM, Moreau KL. Age-associated reductions in cardiovagal baroreflex sensitivity are exaggerated in middle-aged and older men with low testosterone. J Appl Physiol (1985) 2022; 133:403-415. [PMID: 35771224 PMCID: PMC9359637 DOI: 10.1152/japplphysiol.00245.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aging is associated with reductions in cardiovagal baroreflex sensitivity (cBRS), which increases cardiovascular disease risk. Preclinical data indicate that low testosterone reduces cBRS. We determined whether low testosterone is associated with reduced cBRS in healthy men. METHODS Twenty-six men categorized as young (N=6; age=31±4 years; testosterone=535±60 ng/dL), middle-aged/older with normal (N=10; aged 56±3 years; testosterone=493±85 ng/dL), or low (N=10; age=57±6 years; testosterone=262±31 ng/dL) testosterone underwent recordings of beat-by-beat blood pressure and R-R interval during rest and two Valsalva maneuvers, and measures of carotid artery compliance. IL-6, CRP, oxidized LDL cholesterol and TAS were measured. RESULTS Middle-aged/older men had lower cBRS compared to young men (17.0±6.5 ms/mmHg; p=0.028); middle-age/older men with low testosterone had lower cBRS (5.5±3.2 ms/mmHg; p=0.039) compared to age-matched men with normal testosterone (10.7±4.0 ms/mmHg). No differences existed among groups during Phase II of the Valsalva maneuver; middle-aged/older men with low testosterone had reduced cBRS (4.7±2.6 ms/mmHg) compared to both young (12.8±2.8ms/mmHg; p<0.001) and middle-aged/older men with normal testosterone (8.6±4.4ms/mmHg; p=0.046) during Phase IV of the Valsalva maneuver. There were no differences in oxidized LDL, (p=0.882) or TAS across groups (p=0.633). IL-6 was significantly higher in middle-aged/older men with low testosterone compared to the other groups (p<0.05 for all) and inversely correlated with cBRS (r=-0.594, p=0.007). Middle-aged/older men had reduced carotid artery compliance compared to young, regardless of testosterone status (p<0.001). CONCLUSIONS These observations indicate that low testosterone in middle-aged/older men may contribute to a reduction in cBRS; increased inflammation may also contribute to a reduction in cBRS.
Collapse
Affiliation(s)
- Matthew C Babcock
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Veterans Affairs Eastern Colorado Geriatric Research, Educational and Clinical Center, Denver, CO, United States
| | - Lyndsey E DuBose
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Veterans Affairs Eastern Colorado Geriatric Research, Educational and Clinical Center, Denver, CO, United States
| | - Kerry L Hildreth
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Brian L Stauffer
- Division of Cardiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Division of Cardiology, Denver Health Medical Center, Denver, CO, United States
| | - William K Cornwell
- Division of Cardiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Wendy M Kohrt
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Veterans Affairs Eastern Colorado Geriatric Research, Educational and Clinical Center, Denver, CO, United States
| | - Kerrie L Moreau
- Division of Geriatric Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Veterans Affairs Eastern Colorado Geriatric Research, Educational and Clinical Center, Denver, CO, United States
| |
Collapse
|
7
|
Orendáčová M, Kvašňák E. Possible Mechanisms Underlying Neurological Post-COVID Symptoms and Neurofeedback as a Potential Therapy. Front Hum Neurosci 2022; 16:837972. [PMID: 35431842 PMCID: PMC9010738 DOI: 10.3389/fnhum.2022.837972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
Theoretical considerations related to neurological post-COVID complications have become a serious issue in the COVID pandemic. We propose 3 theoretical hypotheses related to neurological post-COVID complications. First, pathophysiological processes responsible for long-term neurological complications caused by COVID-19 might have 2 phases: (1) Phase of acute Sars-CoV-2 infection linked with the pathogenesis responsible for the onset of COVID-19-related neurological complications and (2) the phase of post-acute Sars-CoV-2 infection linked with the pathogenesis responsible for long-lasting persistence of post-COVID neurological problems and/or exacerbation of another neurological pathologies. Second, post-COVID symptoms can be described and investigated from the perspective of dynamical system theory exploiting its fundamental concepts such as system parameters, attractors and criticality. Thirdly, neurofeedback may represent a promising therapy for neurological post-COVID complications. Based on the current knowledge related to neurofeedback and what is already known about neurological complications linked to acute COVID-19 and post-acute COVID-19 conditions, we propose that neurofeedback modalities, such as functional magnetic resonance-based neurofeedback, quantitative EEG-based neurofeedback, Othmer's method of rewarding individual optimal EEG frequency and heart rate variability-based biofeedback, represent a potential therapy for improvement of post-COVID symptoms.
Collapse
Affiliation(s)
- Mária Orendáčová
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
8
|
Donina ZA, Baranova EV, Aleksandrova NP. A Comparative Assessment of Effects of Major Mediators of Acute Phase Response (IL-1, TNF-α, IL-6) on Breathing Pattern and Survival Rate in Rats with Acute Progressive Hypoxia. J EVOL BIOCHEM PHYS+ 2021; 57:936-944. [PMID: 34456365 PMCID: PMC8383921 DOI: 10.1134/s0022093021040177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
A pressing issue of the day is the identification of therapeutic targets to suppress the "cytokine storm" in COVID-19 complicated by acute respiratory distress syndrome (ARDS) with concomitant hypoxemia. However, the key cytokine and its relative contribution to the pathogenesis of ARDS, which leads to high mortality, are unknown. A comparative assessment of the effect of elevated systemic levels of pro-inflammatory cytokines IL-1β, TNF-1α and IL-6 on the respiratory patterns and survival rate in rats was carried out under progressively increasing acute hypoxia. Increasing hypoxia was simulated by a rebreathing method (from normoxia to apnea). The recorded parameters were the breathing pattern components (tidal volume and respiratory rate), minute ventilation (MV), oxygen saturation, apnea onset time, and posthypoxic survival rate. A comparative analysis was carried out under mild, moderate and severe hypoxia (at FIO2 = 15, 12 and 8%, respectively). It was shown that increasing hypoxia was accompanied by an acute suppression of the compensatory elevation of MV in rats with increased systemic levels of IL-1β and TNF-1α. By contrast, IL-6 caused an intensive elevation of MV with increasing hypoxia. Acute hypoxia (FIO2 < 8%), in all experimental series, was accompanied by an impairment of the respiratory rhythm up to the development of apnea. Posthypoxic breathing restoration (survival rate) was 50% with IL-1β and TNF-1α and only 10% with IL-6. The obtained results indicate that the elevated IL-6 level, despite the absence of respiratory disorders at the initial stage of the developing pathologic process, leads to a higher mortality in rats compared to IL-1β and TNF-1α. This allows considering IL-6 as an early prognostic biomarker of a high risk of mortality under severe hypoxemia.
Collapse
Affiliation(s)
- Zh. A. Donina
- Pavlov Institute of Physiology,
Russian Academy of Sciences, St. Petersburg, Russia
| | - E. V. Baranova
- Pavlov Institute of Physiology,
Russian Academy of Sciences, St. Petersburg, Russia
| | - N. P. Aleksandrova
- Pavlov Institute of Physiology,
Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
9
|
Sallam MY, El-Gowilly SM, El-Mas MM. Androgenic modulation of arterial baroreceptor dysfunction and neuroinflammation in endotoxic male rats. Brain Res 2021; 1756:147330. [PMID: 33539800 DOI: 10.1016/j.brainres.2021.147330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/04/2021] [Accepted: 01/22/2021] [Indexed: 01/01/2023]
Abstract
Autonomic neuropathy contributes to cardiovascular derangements induced by endotoxemia. In this communication, we tested the hypothesis that androgenic hormones improve arterial baroreflex dysfunction and predisposing neuroinflammatory response caused by endotoxemia in male rats. Baroreflex curves relating changes in heart rate to increases or decreases in blood pressure evoked by phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious sham-operated, castrated, and testosterone-replaced castrated rats treated with or without lipopolysaccharide (LPS, 10 mg/kg i.v.). Slopes of baroreflex curves were taken as measures of baroreflex sensitivity (BRS). In sham rats, LPS significantly reduced reflex bradycardia (BRSPE) and tachycardia (BRSSNP) and increased immunohistochemical expression of nuclear factor kappa B (NFκB) in heart and brainstem neurons of nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM). The baroreflex depressant effect of LPS was maintained in castrated rats despite the remarkably attenuated inflammatory response. Testosterone replacement of castrated rats counteracted LPS-evoked BRSPE, but not BRSSNP, depression and increased cardiac, but not neuronal, NFκB expression. We also evaluated whether LPS responses could be affected following pharmacologic inhibition of androgenic biosynthetic pathways. Whereas none of LPS effects were altered in rats pretreated with formestane (aromatase inhibitor) or finasteride (5α-reductase inhibitor), the LPS-evoked BRSPE, but not BRSSNP, depression and cardiac and neuronal inflammation disappeared in rats pretreated with degarelix (gonadotropin-releasing hormone receptor blocker). Overall, despite the seemingly provocative role for the hypothalamic-pituitary-gonadal axis in the neuroinflammatory and baroreflex depressant effects of LPS, testosterone appears to distinctly modulate the two LPS effects.
Collapse
Affiliation(s)
- Marwa Y Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University Alexandria, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University Alexandria, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
10
|
Bakkar NMZ, Dwaib HS, Fares S, Eid AH, Al-Dhaheri Y, El-Yazbi AF. Cardiac Autonomic Neuropathy: A Progressive Consequence of Chronic Low-Grade Inflammation in Type 2 Diabetes and Related Metabolic Disorders. Int J Mol Sci 2020; 21:E9005. [PMID: 33260799 PMCID: PMC7730941 DOI: 10.3390/ijms21239005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiac autonomic neuropathy (CAN) is one of the earliest complications of type 2 diabetes (T2D), presenting a silent cause of cardiovascular morbidity and mortality. Recent research relates the pathogenesis of cardiovascular disease in T2D to an ensuing chronic, low-grade proinflammatory and pro-oxidative environment, being the hallmark of the metabolic syndrome. Metabolic inflammation emerges as adipose tissue inflammatory changes extending systemically, on the advent of hyperglycemia, to reach central regions of the brain. In light of changes in glucose and insulin homeostasis, dysbiosis or alteration of the gut microbiome (GM) emerges, further contributing to inflammatory processes through increased gut and blood-brain barrier permeability. Interestingly, studies reveal that the determinants of oxidative stress and inflammation progression exist at the crossroad of CAN manifestations, dictating their evolution along the natural course of T2D development. Indeed, sympathetic and parasympathetic deterioration was shown to correlate with markers of adipose, vascular, and systemic inflammation. Additionally, evidence points out that dysbiosis could promote a sympatho-excitatory state through differentially affecting the secretion of hormones and neuromodulators, such as norepinephrine, serotonin, and γ-aminobutyric acid, and acting along the renin-angiotensin-aldosterone axis. Emerging neuronal inflammation and concomitant autophagic defects in brainstem nuclei were described as possible underlying mechanisms of CAN in experimental models of metabolic syndrome and T2D. Drugs with anti-inflammatory characteristics provide potential avenues for targeting pathways involved in CAN initiation and progression. The aim of this review is to delineate the etiology of CAN in the context of a metabolic disorder characterized by elevated oxidative and inflammatory load.
Collapse
Affiliation(s)
- Nour-Mounira Z. Bakkar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon; (N.-M.Z.B.); (H.S.D.); (A.H.E.)
| | - Haneen S. Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon; (N.-M.Z.B.); (H.S.D.); (A.H.E.)
| | - Souha Fares
- Rafic Hariri School of Nursing, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon;
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon; (N.-M.Z.B.); (H.S.D.); (A.H.E.)
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Yusra Al-Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon; (N.-M.Z.B.); (H.S.D.); (A.H.E.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
11
|
Obstructive sleep apnea and susceptibility to sudden cardiac death: A single player for both conditions? Cardiovasc Pathol 2020; 47:107222. [DOI: 10.1016/j.carpath.2020.107222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/27/2022] Open
|
12
|
Ho CY, Lin YT, Chen HH, Ho WY, Sun GC, Hsiao M, Lu PJ, Cheng PW, Tseng CJ. CX3CR1-microglia mediates neuroinflammation and blood pressure regulation in the nucleus tractus solitarii of fructose-induced hypertensive rats. J Neuroinflammation 2020; 17:185. [PMID: 32532282 PMCID: PMC7291459 DOI: 10.1186/s12974-020-01857-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammation is a common pathophysiological trait found in both hypertension and cardiac vascular disease. Recent evidence indicates that fractalkine (FKN) and its receptor CX3CR1 have been linked to inflammatory response in the brain of hypertensive animal models. Here, we investigated the role of CX3CR1-microglia in nitric oxide (NO) generation during chronic inflammation and systemic blood pressure recovery in the nucleus tractus solitarii (NTS). METHODS The hypertensive rat model was used to study the role of CX3CR1-microglia in NTS inflammation following hypertension induction by oral administration of 10% fructose water. The systolic blood pressure was measured by tail-cuff method of non-invasive blood pressure. The CX3CR1 inhibitor AZD8797 was administered intracerebroventricularly (ICV) in the fructose-induced hypertensive rat. Using immunoblotting, we studied the nitric oxide synthase signaling pathway, NO concentration, and the levels of FKN and CX3CR1, and pro-inflammatory cytokines were analyzed by immunohistochemistry staining. RESULTS The level of pro-inflammatory cytokines IL-1β, IL-6, TNF-α, FKN, and CX3CR1 were elevated two weeks after fructose feeding. AZD8797 inhibited CX3CR1-microglia, which improved the regulation of systemic blood pressure and NO generation in the NTS. We also found that IL-1β, IL-6, and TNF-α levels were recovered by AZD8797 addition. CONCLUSION We conclude that CX3CR1-microglia represses the nNOS signaling pathway and promotes chronic inflammation in fructose-induced hypertension. Collectively, our results reveal the role of chemokines such as IL-1β, IL-6, and TNF-α in NTS neuroinflammation with the involvement of FKN and CX3CR1.
Collapse
Affiliation(s)
- Chiu-Yi Ho
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81300, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Yu-Te Lin
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Section of Neurology, Kaohsiung Veterans General Hospital, Kaohsiung, 81300, Taiwan
- Center for Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, 81300, Taiwan
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, 82144, Taiwan
| | - Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81300, Taiwan
| | - Wen-Yu Ho
- Division of General Internal Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Division of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, National Cheng-Kung University, Tainan, 70101, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81300, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81300, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
13
|
Fonkoue IT, Marvar PJ, Norrholm S, Li Y, Kankam ML, Jones TN, Vemulapalli M, Rothbaum B, Bremner JD, Le NA, Park J. Symptom severity impacts sympathetic dysregulation and inflammation in post-traumatic stress disorder (PTSD). Brain Behav Immun 2020; 83:260-269. [PMID: 31682970 PMCID: PMC6906238 DOI: 10.1016/j.bbi.2019.10.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is associated with a greater risk of incident hypertension and cardiovascular disease. Inflammation, impaired baroreflex sensitivity (BRS) decreased parasympathetic nervous system (PNS) and overactive sympathetic nervous system (SNS) activity are suggested as contributing mechanisms. Increasing severity of PTSD symptoms has been linked to greater cardiovascular risk; however, the impact of PTSD symptom severity on inflammation and autonomic control of blood pressure has not yet been explored. We hypothesized that increasing PTSD symptom severity is linked to higher inflammation, greater SNS activity, lower PNS reactivity and impaired BRS. Seventy Veterans participated in this study: 28 with severe PTSD ((Clinical Administered PTSD Scale (CAPS) > 60; S-PTSD), 16 with moderate PTSD (CAPS ≥ 45 ≤ 60; M-PTSD) and 26 Controls (CAPS < 45; NO-PTSD). We recorded continuous blood pressure (BP), heart rate (HR) via EKG, heart rate variability (HRV) markers reflecting PNS and muscle sympathetic nerve activity (MSNA) at rest, during arterial baroreflex sensitivity (BRS) testing via the modified Oxford technique, and during 3 min of mental stress via mental arithmetic. Blood samples were analyzed for 12 biomarkers of systemic and vascular inflammation. While BP was comparable between severity groups, HR tended to be higher (p = 0.055) in S-PTSD (76 ± 2 beats/min) than in Controls (67 ± 2 beats/min) but comparable to M-PTSD (70 ± 3 beats/min). There were no differences in resting HRV and MSNA between groups; however, cardiovagal BRS was blunted (p = 0.021) in S-PTSD (10 ± 1 ms/mmHg) compared to controls (16 ± 3 ms/mmHg) but comparable to M-PTSD (12 ± 2 ms/mmHg). Veterans in the S-PTSD group had a higher (p < 0.001) combined inflammatory score compared to both M-PTSD and NO-PTSD. Likewise, while mental stress induced similar SNS and cardiovascular responses between the groups, there was a greater reduction in HRV in S-PTSD compared to both M-PTSD and NO-PTSD. In summary, individuals with severe PTSD symptoms have higher inflammation, greater impairment of BRS, a trend towards higher resting HR and exaggerated PNS withdrawal at the onset of mental stress that may contribute to cardiovascular risk in severe PTSD.
Collapse
Affiliation(s)
- Ida T. Fonkoue
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA,Research Service Line, Atlanta Veterans Affairs Health Care System (VAHCS), Decatur, GA
| | - Paul J. Marvar
- Department of Pharmacology and Physiology, Institute for Neuroscience, George Washington University, Washington, DC
| | - Seth Norrholm
- Research Service Line, Atlanta Veterans Affairs Health Care System (VAHCS), Decatur, GA,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Yunxiao Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Melanie L. Kankam
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA,Research Service Line, Atlanta Veterans Affairs Health Care System (VAHCS), Decatur, GA
| | - Toure N. Jones
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA,Research Service Line, Atlanta Veterans Affairs Health Care System (VAHCS), Decatur, GA
| | - Monica Vemulapalli
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA,Research Service Line, Atlanta Veterans Affairs Health Care System (VAHCS), Decatur, GA
| | - Barbara Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - J. Douglas Bremner
- Research Service Line, Atlanta Veterans Affairs Health Care System (VAHCS), Decatur, GA,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA,Department of Radiology, Emory University School of Medicine, Atlanta, GA
| | - Ngoc-Anh Le
- Biomarker Core Laboratory, Atlanta VAHCS, Decatur, GA, USA
| | - Jeanie Park
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Research Service Line, Atlanta Veterans Affairs Health Care System (VAHCS), Decatur, GA, USA.
| |
Collapse
|
14
|
León-Ariza HH, Botero-Rosas DA, Acero-Mondragón EJ, Reyes-Cruz D. Soluble interleukin-6 receptor in young adults and its relationship with body composition and autonomic nervous system. Physiol Rep 2019; 7:e14315. [PMID: 31872577 PMCID: PMC6928246 DOI: 10.14814/phy2.14315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The immune system generates inflammatory responses through cytokines like Interleukin 6 (IL-6) and the Tumor Necrosis Factor alpha (TNF α); these cytokines mediate cellular responses aided by the presence of soluble receptors such as: Soluble Interleukin 6 Receptor (sIL6R) and Soluble Tumor Necrosis Factor Receptors Type 1 and 2 (sTNFR1, sTNFR2); the literature is limited about the relationship between this cytokines and the role of its soluble receptors. OBJECTIVES This study is to determine a possible relationship between specific inflammatory markers and their soluble receptors with the autonomic nervous system's activity and body composition. METHODS 27 subjects (13 men of 19.3 ± 1.6 years old and 14 women of 19.1 ± 1.7 years old) were evaluated. Body composition, autonomic nervous system activity and plasma concentration of inflammatory markers IL-6, TNF α, sIL6R, sTNFR1 and sTNFR2 were measured using bio-impedance, heart rate variability and ELISA respectively. RESULTS A positive association between body-fat percentage and the sIL6R (0.47, p = .013) as well as inverse relationship between muscular mass and the sIL6R (-0.45, p = .019) were found. The sIL6R was also positively correlated with sympathetic activity markers: Relation LF/HF (0.52, p = .006), cardiac sympathetic index (0.45, p = .008), and cardiac vagal index (-0.44, p = .022). CONCLUSION This study suggested that the IL-6 trans-signaling involving both the soluble receptor, sIL6R, and gp130 membrane co-receptor could produce inflammatory responses that generate an impact on the autonomic nervous system, possibly due to its direct action on the hypothalamus, the solitary tract nucleus, or the heart.
Collapse
Affiliation(s)
- Henry H León-Ariza
- Faculty of Medicine, Doctorate in Biosciences, PROSEIM Research Group, University of La Sabana, Chía, Colombia
| | - Daniel A Botero-Rosas
- Faculty of Medicine, Doctorate in Biosciences, PROSEIM Research Group, University of La Sabana, Chía, Colombia
| | | | - Dario Reyes-Cruz
- Faculty of Medicine, PROSEIM Research Group, University of La Sabana, Chía, Colombia
| |
Collapse
|
15
|
Fonkoue IT, Le N, Kankam ML, DaCosta D, Jones TN, Marvar PJ, Park J. Sympathoexcitation and impaired arterial baroreflex sensitivity are linked to vascular inflammation in individuals with elevated resting blood pressure. Physiol Rep 2019; 7:e14057. [PMID: 30968587 PMCID: PMC6456445 DOI: 10.14814/phy2.14057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 12/31/2022] Open
Abstract
Elevated Resting Blood Pressure (ERBP) in the prehypertensive range is associated with increased risk of hypertension and cardiovascular disease, the mechanisms of which remain unclear. Prior studies have suggested that ERBP may be associated with overactivation and dysregulation of the sympathetic nervous system (SNS). We hypothesized that compared to normotensives (≤120/80 mmHg), ERBP (120/80-139/89 mmHg) has higher SNS activity, impaired arterial baroreflex sensitivity (BRS), and increased vascular inflammation. Twenty-nine participants were studied: 16 otherwise healthy individuals with ERBP (blood pressure (BP) 130 ± 2/85 ± 2 mmHg) and 13 matched normotensive controls (mean BP 114 ± 2/73 ± 2 mmHg). We measured muscle sympathetic nerve activity (MSNA), beat-to-beat BP, and continuous electrocardiogram at rest and during arterial BRS testing via the modified Oxford technique. Blood was analyzed for the following biomarkers of vascular inflammation: lipoprotein-associated phospholipase A2 (Lp-PLA2), E-selectin, and intercellular adhesion molecule 1 (ICAM-1). Resting MSNA burst frequency (22 ± 2 vs. 16 ± 2 bursts/min, P = 0.036) and burst incidence (36 ± 3 vs. 25 ± 3 bursts/100 heart beats, P = 0.025) were higher in ERBP compared to controls. Cardiovagal BRS was blunted in ERBP compared to controls (13 ± 2 vs. 20 ± 3 msec/mmHg, P = 0.032), while there was no difference in sympathetic BRS between groups. Lp-PLA2 (169 ± 8 vs. 142 ± 9 nmol/min/mL, P = 0.020) and E-selectin (6.89 ± 0.6 vs. 4.45 ± 0.51 ng/mL, P = 0.004) were higher in ERBP versus controls. E-selectin (r = 0.501, P = 0.011) and ICAM-1 (r = 0.481, P = 0.015) were positively correlated with MSNA, while E-selectin was negatively correlated with cardiovagal BRS (r = -0.427, P = 0.030). These findings demonstrate that individuals with ERBP have SNS overactivity and impaired arterial BRS that are linked to biomarkers of vascular inflammation.
Collapse
Affiliation(s)
- Ida T. Fonkoue
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGeorgia
- Research Service LineAtlanta VA Healthcare SystemDecaturGeorgia
| | - Ngoc‐Anh Le
- Biomarker Core LaboratoryAtlanta VA Healthcare SystemDecaturGeorgia
| | - Melanie L. Kankam
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGeorgia
- Research Service LineAtlanta VA Healthcare SystemDecaturGeorgia
| | - Dana DaCosta
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGeorgia
- Research Service LineAtlanta VA Healthcare SystemDecaturGeorgia
| | - Toure N. Jones
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGeorgia
- Research Service LineAtlanta VA Healthcare SystemDecaturGeorgia
| | - Paul J. Marvar
- Department of Pharmacology and PhysiologyInstitute for NeuroscienceGeorge Washington UniversityWashingtonDistrict of Columbia
| | - Jeanie Park
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGeorgia
- Research Service LineAtlanta VA Healthcare SystemDecaturGeorgia
| |
Collapse
|
16
|
Importance of AT1 and AT2 receptors in the nucleus of the solitary tract in cardiovascular responses induced by a high-fat diet. Hypertens Res 2019; 42:439-449. [PMID: 30631157 PMCID: PMC7092339 DOI: 10.1038/s41440-018-0196-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/27/2018] [Accepted: 07/26/2018] [Indexed: 02/01/2023]
Abstract
A high-fat diet (HFD) induces an increase in arterial pressure and a decrease in baroreflex function, which may be associated with increased expression of angiotensin type 1 receptor (AT1R) and pro-inflammatory cytokine genes and reduced expression of the angiotensin type 2 receptor (AT2R) gene within the nucleus of the solitary tract (NTS), a key area of the brainstem involved in cardiovascular control. Thus, in the present study, we evaluated the changes in arterial pressure and gene expression of components of the renin-angiotensin system (RAS) and neuroinflammatory markers in the NTS of rats fed a HFD and treated with either an AT1R blocker or with virus-mediated AT2R overexpression in the NTS. Male Holtzman rats (300-320 g) were fed either a standard rat chow diet (SD) or HFD for 6 weeks before commencing the tests. AT1R blockade in the NTS of HFD-fed rats attenuated the increase in arterial pressure and the impairment of reflex bradycardia, whereas AT2R overexpression in the NTS only improved the baroreflex function. The HFD also increased the hypertensive and decreased the protective axis of the RAS and was associated with neuroinflammation within the NTS. The expression of angiotensin-converting enzyme and neuroinflammatory components, but not AT1R, in the NTS was reduced by AT2R overexpression in this site. Based on these data, AT1R and AT2R in the NTS are differentially involved in the cardiovascular changes induced by a HFD. Chronic inflammation and changes in the RAS in the NTS may also account for the cardiovascular responses observed in HFD-fed rats.
Collapse
|
17
|
Mormile R. Respiratory syncytial virus infection in cardiac patients: outcomes preordained by IL-6 gene polymorphism? Minerva Pediatr 2018; 71:218-219. [PMID: 30299023 DOI: 10.23736/s0026-4946.18.05236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Aversa, Caserta, Italy -
| |
Collapse
|
18
|
Silva TM, Chaar LJ, Silva RC, Takakura AC, Câmara NO, Antunes VR, Moreira TS. Minocycline alters expression of inflammatory markers in autonomic brain areas and ventilatory responses induced by acute hypoxia. Exp Physiol 2018. [DOI: 10.1113/ep086780] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Talita M. Silva
- Department of Physiology and Biophysics; University of São Paulo; 05508-000 São Paulo SP Brazil
| | - Laiali J. Chaar
- Department of Physiology and Biophysics; University of São Paulo; 05508-000 São Paulo SP Brazil
| | - Reinaldo C. Silva
- Department of Immunology; University of São Paulo; 05508-000 São Paulo SP Brazil
| | - Ana C. Takakura
- Department of Pharmacology; Institute of Biomedical Sciences, University of São Paulo; 05508-000 São Paulo SP Brazil
| | - Niels O. Câmara
- Department of Immunology; University of São Paulo; 05508-000 São Paulo SP Brazil
| | - Vagner R. Antunes
- Department of Physiology and Biophysics; University of São Paulo; 05508-000 São Paulo SP Brazil
| | - Thiago S. Moreira
- Department of Physiology and Biophysics; University of São Paulo; 05508-000 São Paulo SP Brazil
| |
Collapse
|
19
|
Adlan AM, Veldhuijzen van Zanten JJCS, Lip GYH, Paton JFR, Kitas GD, Fisher JP. Cardiovascular autonomic regulation, inflammation and pain in rheumatoid arthritis. Auton Neurosci 2017; 208:137-145. [PMID: 28927867 PMCID: PMC5744865 DOI: 10.1016/j.autneu.2017.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/20/2017] [Accepted: 09/11/2017] [Indexed: 12/20/2022]
Abstract
Background Rheumatoid arthritis (RA) is a chronic inflammatory condition characterised by reduced heart rate variability (HRV) of unknown cause. We tested the hypothesis that low HRV, indicative of cardiac autonomic cardiovascular dysfunction, was associated with systemic inflammation and pain. Given the high prevalence of hypertension (HTN) in RA, a condition itself associated with low HRV, we also assessed whether the presence of hypertension further reduced HRV in RA. Methods In RA-normotensive (n = 13), RA-HTN (n = 17), normotensive controls (NC; n = 17) and HTN (n = 16) controls, blood pressure and heart rate were recorded. Time and frequency domain measures of HRV along with serological markers of inflammation (high sensitivity C-reactive protein [hs-CRP], tumour necrosis factor-α [TNF-α] and interleukins [IL]) were determined. Reported pain was assessed using a visual analogue scale. Results Time (rMSSD, pNN50%) and frequency (high frequency power, low frequency power, total power) domain measures of HRV were lower in the RA, RA-HTN and HTN groups, compared to NC (p = 0.001). However, no significant differences in HRV were noted between the RA, RA-HTN and HTN groups. Inverse associations were found between time and frequency measures of HRV and inflammatory cytokines (IL-6 and IL-10), but were not independent after multivariable analysis. hs-CRP and pain were independently and inversely associated with time domain (rMMSD, pNN50%) parameters of HRV. Conclusions These findings suggest that lower HRV is associated with increased inflammation and independently associated with increased reported pain, but not compounded by the presence of HTN in patients with RA. Rheumatoid arthritis (RA) is a chronic inflammatory condition accompanied by low heart rate variability (HRV). Important autonomic-immune interactions are suggested, but have not been thoroughly examined in RA. We show that low HRV in RA is associated with increased serum inflammatory cytokine levels and patient-reported pain. In our patients with RA, reductions in HRV were not compounded by the presence of hypertension.
Collapse
Affiliation(s)
- Ahmed M Adlan
- College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Gregory Y H Lip
- University of Birmingham Centre of Cardiovascular Sciences, City Hospital, Birmingham B18 7QH, UK
| | - Julian F R Paton
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - George D Kitas
- Department of Rheumatology, Dudley Group NHS Foundation Trust, Russells Hall Hospital, Dudley, West Midlands DY1 2HQ, UK
| | - James P Fisher
- College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
20
|
Zubcevic J, Santisteban MM, Perez PD, Arocha R, Hiller H, Malphurs WL, Colon-Perez LM, Sharma RK, de Kloet A, Krause EG, Febo M, Raizada MK. A Single Angiotensin II Hypertensive Stimulus Is Associated with Prolonged Neuronal and Immune System Activation in Wistar-Kyoto Rats. Front Physiol 2017; 8:592. [PMID: 28912720 PMCID: PMC5583219 DOI: 10.3389/fphys.2017.00592] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/31/2017] [Indexed: 11/29/2022] Open
Abstract
Activation of autonomic neural pathways by chronic hypertensive stimuli plays a significant role in pathogenesis of hypertension. Here, we proposed that even a single acute hypertensive stimulus will activate neural and immune pathways that may be important in initiation of memory imprinting seen in chronic hypertension. We investigated the effects of acute angiotensin II (Ang II) administration on blood pressure, neural activation in cardioregulatory brain regions, and central and systemic immune responses, at 1 and 24 h post-injection. Administration of a single bolus intra-peritoneal (I.P.) injection of Ang II (36 μg/kg) resulted in a transient increase in the mean arterial pressure (MAP) (by 22 ± 4 mmHg vs saline), which returned to baseline within 1 h. However, in contrast to MAP, neuronal activity, as measured by manganese-enhanced magnetic resonance (MEMRI), remained elevated in several cardioregulatory brain regions over 24 h. The increase was predominant in autonomic regions, such as the subfornical organ (SFO; ~20%), paraventricular nucleus of the hypothalamus (PVN; ~20%) and rostral ventrolateral medulla (RVLM; ~900%), among others. Similarly, systemic and central immune responses, as evidenced by circulating levels of CD4+/IL17+ T cells, and increased IL17 levels and activation of microglia in the PVN, respectively, remained elevated at 24 h following Ang II challenge. Elevated Fos expression in the PVN was also present at 24 h (by 73 ± 11%) following Ang II compared to control saline injections, confirming persistent activation of PVN. Thus, even a single Ang II hypertensive stimulus will initiate changes in neuronal and immune cells that play a role in the developing hypertensive phenotype.
Collapse
Affiliation(s)
- Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of FloridaGainesville, FL, United States
| | - Monica M Santisteban
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Pablo D Perez
- Department of Psychiatry, College of Medicine, University of FloridaGainesville, FL, United States
| | - Rebeca Arocha
- Department of Physiological Sciences, College of Veterinary Medicine, University of FloridaGainesville, FL, United States
| | - Helmut Hiller
- Department of Pharmacodynamics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Wendi L Malphurs
- Department of Physiological Sciences, College of Veterinary Medicine, University of FloridaGainesville, FL, United States
| | - Luis M Colon-Perez
- Department of Psychiatry, College of Medicine, University of FloridaGainesville, FL, United States
| | - Ravindra K Sharma
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Annette de Kloet
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Eric G Krause
- Department of Pharmacodynamics, College of Medicine, University of FloridaGainesville, FL, United States
| | - Marcelo Febo
- Department of Psychiatry, College of Medicine, University of FloridaGainesville, FL, United States
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, United States
| |
Collapse
|
21
|
Rodrigues B, Feriani DJ, Gambassi BB, Irigoyen MC, Angelis KD, Hélio José Júnior C. Exercise training on cardiovascular diseases: Role of animal models in the elucidation of the mechanisms. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700si0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
22
|
Underwood CF, Hildreth CM, Wyse BF, Boyd R, Goodchild AK, Phillips JK. Uraemia: an unrecognized driver of central neurohumoral dysfunction in chronic kidney disease? Acta Physiol (Oxf) 2017; 219:305-323. [PMID: 27247097 DOI: 10.1111/apha.12727] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/21/2016] [Accepted: 05/31/2016] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) carries a large cardiovascular burden in part due to hypertension and neurohumoral dysfunction - manifesting as sympathetic overactivity, baroreflex dysfunction and chronically elevated circulating vasopressin. Alterations within the central nervous system (CNS) are necessary for the expression of neurohumoral dysfunction in CKD; however, the underlying mechanisms are poorly defined. Uraemic toxins are a diverse group of compounds that accumulate as a direct result of renal disease and drive dysfunction in multiple organs, including the brain. Intensive haemodialysis improves both sympathetic overactivity and cardiac baroreflex sensitivity in renal failure patients, indicating that uraemic toxins participate in the maintenance of autonomic dysfunction in CKD. In rodents exposed to uraemia, immediate early gene expression analysis suggests upregulated activity of not only pre-sympathetic but also vasopressin-secretory nuclei. We outline several potential mechanisms by which uraemia might drive neurohumoral dysfunction in CKD. These include superoxide-dependent effects on neural activity, depletion of nitric oxide and induction of low-grade systemic inflammation. Recent evidence has highlighted superoxide production as an intermediate for the depolarizing effect of some uraemic toxins on neuronal cells. We provide preliminary data indicating augmented superoxide production within the hypothalamic paraventricular nucleus in the Lewis polycystic kidney rat, which might be important for mediating the neurohumoral dysfunction exhibited in this CKD model. We speculate that the uraemic state might serve to sensitize the central actions of other sympathoexcitatory factors, including renal afferent nerve inputs to the CNS and angiotensin II, by way of recruiting convergent superoxide-dependent and pro-inflammatory pathways.
Collapse
Affiliation(s)
- C. F. Underwood
- Department of Biomedical Sciences; Macquarie University; Sydney NSW Australia
| | - C. M. Hildreth
- Department of Biomedical Sciences; Macquarie University; Sydney NSW Australia
| | - B. F. Wyse
- Department of Biomedical Sciences; Macquarie University; Sydney NSW Australia
| | - R. Boyd
- Department of Biomedical Sciences; Macquarie University; Sydney NSW Australia
| | - A. K. Goodchild
- Department of Biomedical Sciences; Macquarie University; Sydney NSW Australia
| | - J. K. Phillips
- Department of Biomedical Sciences; Macquarie University; Sydney NSW Australia
| |
Collapse
|
23
|
Ruchaya PJ, Speretta GF, Blanch GT, Li H, Sumners C, Menani JV, Colombari E, Colombari DSA. Overexpression of AT2R in the solitary-vagal complex improves baroreflex in the spontaneously hypertensive rat. Neuropeptides 2016; 60:29-36. [PMID: 27469059 DOI: 10.1016/j.npep.2016.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/20/2016] [Accepted: 06/05/2016] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the physiological effects of increased angiotensin II type 2 receptor (AT2R) expression in the solitary-vagal complex (nucleus of the solitary tract/dorsal motor nucleus of the vagus; NTS/DVM) on baroreflex function in non-anaesthetised normotensive (NT) and spontaneously hypertensive rats (SHR). Ten week old NT Holtzman and SHR were microinjected with either an adeno-associated virus expressing AT2R (AAV2-CBA-AT2R) or enhanced green fluorescent protein (control; AAV2-CBA-eGFP) into the NTS/DVM. Baroreflex and telemetry recordings were performed on four experimental groups: 1) NTeGFP, 2) NTAT2R, 3) SHReGFP and 4) SHRAT2R (n=4-7/group). Following in-vivo experimental procedures, brains were harvested for gene expression analysis. Impaired bradycardia in SHReGFP was restored in SHR rats overexpressing AT2R in the NTS/DMV. mRNA levels of angiotensin converting enzyme decreased and angiotensin converting enzyme 2 increased in the NTS/DMV of SHRAT2R compared to SHReGFP. Increased levels of pro-inflammatory cytokine mRNA levels in the SHReGFP group also decreased in the SHRAT2R group. AT2R overexpression did not elicit any significant change in mean arterial pressure (MAP) in all groups from baseline to 4weeks post viral transfection. Both SHReGFP and SHRAT2R showed a significant elevation in MAP compared to the NTeGFP and NTAT2R groups. Increased AT2R expression within the NTS/DMV of SHR was effective at improving baroreflex function but not MAP. We propose possible mediators involved in improving baroreflex are in the ANG II/ACE2 axis, suggesting a potential beneficial modulatory effect of AT2R overexpression in the NTS/DMV of neurogenic hypertensive rats.
Collapse
Affiliation(s)
- Prashant J Ruchaya
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Guilherme F Speretta
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Graziela Torres Blanch
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Hongwei Li
- School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Colin Sumners
- Department of Physiology and Functional Genomics and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil.
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil.
| |
Collapse
|
24
|
Adlan AM, Paton JFR, Lip GYH, Kitas GD, Fisher JP. Increased sympathetic nerve activity and reduced cardiac baroreflex sensitivity in rheumatoid arthritis. J Physiol 2016; 595:967-981. [PMID: 27561790 PMCID: PMC5285627 DOI: 10.1113/jp272944] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Rheumatoid arthritis (RA) is a chronic inflammatory condition associated with an increased risk of cardiovascular mortality. Increased sympathetic nerve activity and reduced cardiac baroreflex sensitivity heighten cardiovascular risk, althogh whether such autonomic dysfunction is present in RA is not known. In the present study, we observed an increased sympathetic nerve activity and reduced cardiac baroreflex sensitivity in patients with RA compared to matched controls. Pain was positively correlated with sympathetic nerve activity and negatively correlated with cardiac baroreflex sensitivity. The pattern of autonomic dysfunction that we describe may help to explain the increased cardiovascular risk in RA, and raises the possibility that optimizing pain management may resolve autonomic dysfunction in RA. ABSTRACT Rheumatoid arthritis (RA) is a chronic inflammatory condition associated with increased cardiovascular morbidity/mortality and an incompletely understood pathophysiology. In animal studies, central and blood borne inflammatory cytokines that can be elevated in RA evoke pathogenic increases in sympathetic activity and reductions in baroreflex sensitivity (BRS). We hypothesized that muscle sympathetic nerve activity (MSNA) was increased and BRS decreased in RA. MSNA, blood pressure and heart rate (HR) were recorded in age- and sex-matched RA-normotensive (n = 13), RA-hypertensive patients (RA-HTN; n = 17), normotensive (NC; n = 17) and hypertensive controls (HTN; n = 16). BRS was determined using the modified Oxford technique. Inflammation and pain were determined using serum high sensitivity C-reactive protein (hs-CRP) and a visual analogue scale (VAS), respectively. MSNA was elevated similarly in RA, RA-HTN and HTN patients (32 ± 9, 35 ± 14, 37 ± 8 bursts min-1 ) compared to NC (22 ± 9 bursts min-1 ; P = 0.004). Sympathetic BRS was similar between groups (P = 0.927), whereas cardiac BRS (cBRS) was reduced in RA, RA-HTN and HTN patients [5(3-8), 4 (2-7), 6 (4-9) ms mmHg-1 ] compared to NC [11 (8-15) ms mmHg-1 ; P = 0.002]. HR was independently associated with hs-CRP. Increased MSNA and reduced cBRS were associated with hs-CRP although confounded in multivariable analysis. VAS was independently associated with MSNA burst frequency, cBRS and HR. We provide the first evidence for heightened sympathetic outflow and reduced cBRS in RA that can be independent of hypertension. In RA patients, reported pain was positively correlated with MSNA and negatively correlated with cBRS. Future studies should assess whether therapies to ameliorate pain and inflammation in RA restores autonomic balance and reduces cardiovascular events.
Collapse
Affiliation(s)
- Ahmed M Adlan
- College of Life & Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Julian F R Paton
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Gregory Y H Lip
- University of Birmingham Centre of Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - George D Kitas
- Department of Rheumatology, Dudley Group NHS Foundation Trust, Russells Hall Hospital, Dudley, West Midlands, UK
| | - James P Fisher
- College of Life & Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Abstract
Diabetes mellitus is the commonest cause of an autonomic neuropathy in the developed world. Diabetic autonomic neuropathy causes a constellation of symptoms and signs affecting cardiovascular, urogenital, gastrointestinal, pupillomotor, thermoregulatory, and sudomotor systems. Several discrete syndromes associated with diabetes cause autonomic dysfunction. The most prevalent of these are: generalized diabetic autonomic neuropathy, autonomic neuropathy associated with the prediabetic state, treatment-induced painful and autonomic neuropathy, and transient hypoglycemia-associated autonomic neuropathy. These autonomic manifestations of diabetes are responsible for the most troublesome and disabling features of diabetic peripheral neuropathy and result in a significant proportion of the mortality and morbidity associated with the disease.
Collapse
Affiliation(s)
- Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Marvar PJ, Hendy EB, Cruise TD, Walas D, DeCicco D, Vadigepalli R, Schwaber JS, Waki H, Murphy D, Paton JFR. Systemic leukotriene B 4 receptor antagonism lowers arterial blood pressure and improves autonomic function in the spontaneously hypertensive rat. J Physiol 2016; 594:5975-5989. [PMID: 27230966 DOI: 10.1113/jp272065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/09/2016] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Evidence indicates an association between hypertension and chronic systemic inflammation in both human hypertension and experimental animal models. Previous studies in the spontaneously hypertensive rat (SHR) support a role for leukotriene B4 (LTB4 ), a potent chemoattractant involved in the inflammatory response, but its mode of action is poorly understood. In the SHR, we observed an increase in T cells and macrophages in the brainstem; in addition, gene expression profiling data showed that LTB4 production, degradation and downstream signalling in the brainstem of the SHR are dynamically regulated during hypertension. When LTB4 receptor 1 (BLT1) receptors were blocked with CP-105,696, arterial pressure was reduced in the SHR compared to the normotensive control and this reduction was associated with a significant decrease in systolic blood pressure (BP) indicators. These data provide new evidence for the role of LTB4 as an important neuro-immune pathway in the development of hypertension and therefore may serve as a novel therapeutic target for the treatment of neurogenic hypertension. ABSTRACT Accumulating evidence indicates an association between hypertension and chronic systemic inflammation in both human hypertension and experimental animal models. Previous studies in the spontaneously hypertensive rat (SHR) support a role for leukotriene B4 (LTB4 ), a potent chemoattractant involved in the inflammatory response. However, the mechanism for LTB4 -mediated inflammation in hypertension is poorly understood. Here we report in the SHR, increased brainstem infiltration of T cells and macrophages plus gene expression profiling data showing that LTB4 production, degradation and downstream signalling in the brainstem of the SHR are dynamically regulated during hypertension. Chronic blockade of the LTB4 receptor 1 (BLT1) receptor with CP-105,696, reduced arterial pressure in the SHR compared to the normotensive control and this reduction was associated with a significant decrease in low and high frequency spectra of systolic blood pressure, and an increase in spontaneous baroreceptor reflex gain (sBRG). These data provide new evidence for the role of LTB4 as an important neuro-immune pathway in the development of hypertension and therefore may serve as a novel therapeutic target for the treatment of neurogenic hypertension.
Collapse
Affiliation(s)
- Paul J Marvar
- Department of Pharmacology and Physiology Washington, The George Washington University School of Medical and Health Sciences, Washington, DC, USA
| | - Emma B Hendy
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Thomas D Cruise
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Dawid Walas
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Danielle DeCicco
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hidefumi Waki
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - David Murphy
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Julian F R Paton
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
27
|
Abstract
The central nervous system (CNS) in concert with the heart and vasculature is essential to maintaining cardiovascular (CV) homeostasis. In recent years, our understanding of CNS control of blood pressure regulation (and dysregulation leading to hypertension) has evolved substantially to include (i) the actions of signaling molecules that are not classically viewed as CV signaling molecules, some of which exert effects at CNS targets in a non-traditional manner, and (ii) CNS locations not traditionally viewed as central autonomic cardiovascular centers. This review summarizes recent work implicating immune signals and reproductive hormones, as well as gasotransmitters and reactive oxygen species in the pathogenesis of hypertension at traditional CV control centers. Additionally, recent work implicating non-conventional CNS structures in CV regulation is discussed.
Collapse
Affiliation(s)
- Pauline M Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L3N6, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L3N6, Canada
| |
Collapse
|
28
|
Gouraud SS, Takagishi M, Kohsaka A, Maeda M, Waki H. Altered neurotrophic factors' expression profiles in the nucleus of the solitary tract of spontaneously hypertensive rats. Acta Physiol (Oxf) 2016; 216:346-57. [PMID: 26485190 DOI: 10.1111/apha.12618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/19/2015] [Accepted: 10/10/2015] [Indexed: 01/09/2023]
Abstract
AIM Our previous findings suggest that the nucleus of the solitary tract (NTS), a pivotal region for regulating the set point of arterial pressure, exhibits abnormal inflammation in pre-hypertensive and spontaneously hypertensive rats (SHRs), with elevated anti-apoptotic and low apoptotic factor levels compared with that of normotensive Wistar-Kyoto (WKY) rats. Whether this chronic condition affects neuronal growth and plasticity in the NTS remains unknown. To unveil the characteristics of the neurodevelopmental environment in the NTS of SHRs, we investigated the expression of neurotrophic factors transcripts in SHRs. METHODS RT(2) Profiler PCR Array targeting rat neurotrophins and their receptors was used to screen for differentially expressed transcripts in the NTS of SHRs compared to that of WKY rats. Protein expression and physiological functions of some of the differentially expressed transcripts were also studied. RESULTS Gene and protein expressions of glial cell line-derived neurotrophic factor family receptor alpha-3 (Gfrα-3) factor were both upregulated in the NTS of adult SHRs. Gene expressions of corticotropin-releasing hormone-binding protein (Crhbp), interleukin-10 receptor alpha (Il-10ra) and hypocretin (Hcrt) were downregulated in the NTS of adult SHRs. The Gfrα-3 transcript was increased and the Hcrt transcript was decreased in the NTS of young pre-hypertensive SHRs, suggesting that these profiles are not secondary to hypertension. Moreover, microinjection in the NTS of hypocretin-1 decreased blood pressure in adult SHRs. CONCLUSION These results suggest that altered neurotrophic factors transcript profiles may affect the normal development and function of neuronal circuitry that regulates cardiovascular autonomic activity, thereby resulting in manifestations of neurogenic hypertension in SHRs.
Collapse
Affiliation(s)
- S. S. Gouraud
- Department of Biology; Faculty of Science; Ochanomizu University; Tokyo Japan
| | - M. Takagishi
- Department of Physiology; Wakayama Medical University; Wakayama Japan
| | - A. Kohsaka
- Department of Physiology; Wakayama Medical University; Wakayama Japan
| | - M. Maeda
- Department of Physiology; Wakayama Medical University; Wakayama Japan
| | - H. Waki
- Graduate School of Sport and Health Science; Juntendo University; Chiba Japan
| |
Collapse
|
29
|
Speretta GF, Silva AA, Vendramini RC, Zanesco A, Delbin MA, Menani JV, Bassi M, Colombari E, Colombari DSA. Resistance training prevents the cardiovascular changes caused by high-fat diet. Life Sci 2016; 146:154-62. [PMID: 26776833 DOI: 10.1016/j.lfs.2016.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/04/2015] [Accepted: 01/07/2016] [Indexed: 12/31/2022]
Abstract
AIMS Aerobic exercise is indicated for prevention and treatment of obesity-induced cardiovascular disorders. Although the resistance training (RT) may also produce effects similar to aerobic exercise, this is not completely clear yet. In the present study, we tested if RT in moderate intensity might prevent alterations in blood pressure (BP), sympathetic modulation of systolic blood pressure (SBP), baroreflex function and the changes in renin-angiotensin system (RAS) and cytokines mRNA expression within the nucleus of the tract solitary (NTS) in rats fed with high-fat diet (HFD). MAIN METHODS Male Holtzman rats (300-320 g) were divided into 4 groups: sedentary with standard chow diet (SED-SD); sedentary with high-fat diet (SED-HFD); RT with standard chow diet (RT-SD); and RT with high-fat diet (RT-HFD). The trained groups performed a total of 10 weeks of moderate intensity RT in a vertical ladder. In the first 3 weeks all experimental groups were fed with SD. In the next 7 weeks, the SED-HFD and RT-HFD groups were fed with HFD. KEY FINDINGS In SED-HFD, BP and sympathetic modulation of SBP increased, whereas baroreflex bradycardic responses were attenuated. RT prevented the cardiovascular and inflammatory responses (increases in tumoral necrosis factor-α and interleukin-1β) produced by HFD in SED rats. The anti-inflammatory interleukin-10, angiotensin type 2 receptor, Mas receptor and angiotensin converting enzyme 2 mRNA expressions in the NTS increased in the RT-HFD compared to SED-HFD. SIGNIFICANCE The data demonstrated that moderate intensity RT prevented obesity-induced cardiovascular disorders simultaneously with reduced inflammatory responses and modifications of RAS in the NTS.
Collapse
Affiliation(s)
- Guilherme F Speretta
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - André A Silva
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Regina C Vendramini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, UNESP, Araraquara, SP, Brazil
| | - Angelina Zanesco
- Department of Physical Education, Institute of Bioscience, UNESP, Rio Claro, SP, Brazil
| | - Maria A Delbin
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
30
|
DeCicco D, Zhu H, Brureau A, Schwaber JS, Vadigepalli R. MicroRNA network changes in the brain stem underlie the development of hypertension. Physiol Genomics 2015; 47:388-99. [PMID: 26126791 DOI: 10.1152/physiolgenomics.00047.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/29/2015] [Indexed: 01/12/2023] Open
Abstract
Hypertension is a major chronic disease whose molecular mechanisms remain poorly understood. We compared neuroanatomical patterns of microRNAs in the brain stem of the spontaneous hypertensive rat (SHR) to the Wistar Kyoto rat (WKY, control). We quantified 419 well-annotated microRNAs in the nucleus of the solitary tract (NTS) and rostral ventrolateral medulla (RVLM), from SHR and WKY rats, during three main stages of hypertension development. Changes in microRNA expression were stage- and region-dependent, with a majority of SHR vs. WKY differential expression occurring at the hypertension onset stage in NTS versus at the prehypertension stage in RVLM. Our analysis identified 24 microRNAs showing time-dependent differential expression in SHR compared with WKY in at least one brain region. We predicted potential gene regulatory targets corresponding to catecholaminergic processes, neuroinflammation, and neuromodulation using the miRWALK and RNA22 databases, and we tested those bioinformatics predictions using high-throughput quantitative PCR to evaluate correlations of differential expression between the microRNAs and their predicted gene targets. We found a novel regulatory network motif consisting of microRNAs likely downregulating a negative regulator of prohypertensive processes such as angiotensin II signaling and leukotriene-based inflammation. Our results provide new evidence on the dynamics of microRNA expression in the development of hypertension and predictions of microRNA-mediated regulatory networks playing a region-dependent role in potentially altering brain-stem cardiovascular control circuit function leading to the development of hypertension.
Collapse
Affiliation(s)
- Danielle DeCicco
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics/Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Haisun Zhu
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics/Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Anthony Brureau
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics/Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - James S Schwaber
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics/Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics/Computational Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Eyre ELJ, Duncan MJ, Birch SL, Fisher JP. The influence of age and weight status on cardiac autonomic control in healthy children: a review. Auton Neurosci 2014; 186:8-21. [PMID: 25458714 DOI: 10.1016/j.autneu.2014.09.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/12/2014] [Accepted: 09/25/2014] [Indexed: 01/01/2023]
Abstract
Heart rate variability (HRV) analyses can provide a non-invasive evaluation of cardiac autonomic activity. How autonomic control normally develops in childhood and how this is affected by obesity remain incompletely understood. In this review we examine the evidence that childhood age and weight status influence autonomic control of the heart as assessed using HRV. Electronic databases (Pubmed, EMBASE and Cochrane Library) were searched for studies examining HRV in healthy children from birth to 18 years who adhered to the Task Force (1996) guidelines. Twenty-four studies met our inclusion criteria. Seven examined childhood age and HRV. A reduction in 24-hour LF:HF was reported from birth to infancy (1 year), while overall HRV (SDNN) showed a marked and progressive increase. From infancy to early-to-late childhood (from 12 months to 15 years) LF:HF ratio was reported to decline further albeit at a slower rate, while RMSSD and SDNN increased. Twenty studies examined the effects of weight status and body composition on HRV. In a majority of studies, obese children exhibited reductions in RMSSD (n = 8/13), pNN50% (n = 7/9) and HF power (n = 14/18), no difference was reported for LF (n = 10/18), while LF:HF ratio was elevated (n = 10/15). HRV changes during childhood are consistent with a marked and progressive increase in cardiac parasympathetic activity relative to sympathetic activity. Obesity disrupts the normal maturation of cardiac autonomic control.
Collapse
Affiliation(s)
- E L J Eyre
- Department of Applied Science and Health, Biological and Exercise Sciences, Coventry University, James Starley Building, Priory Street, Coventry CV1 5FB, United Kingdom.
| | - M J Duncan
- Department of Applied Science and Health, Biological and Exercise Sciences, Coventry University, James Starley Building, Priory Street, Coventry CV1 5FB, United Kingdom
| | - S L Birch
- Department of Applied Science and Health, Biological and Exercise Sciences, Coventry University, James Starley Building, Priory Street, Coventry CV1 5FB, United Kingdom
| | - J P Fisher
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
32
|
Adlan AM, Lip GYH, Paton JFR, Kitas GD, Fisher JP. Autonomic function and rheumatoid arthritis: a systematic review. Semin Arthritis Rheum 2014; 44:283-304. [PMID: 25151910 DOI: 10.1016/j.semarthrit.2014.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/16/2014] [Accepted: 06/22/2014] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is a chronic inflammatory condition with increased all-cause and cardiovascular mortality. Accumulating evidence indicates that the immune and autonomic nervous systems (ANS) are major contributors to the pathogenesis of cardiovascular disease. We performed the first systematic literature review to determine the prevalence and nature of ANS dysfunction in RA and whether there is a causal relationship between inflammation and ANS function. METHODS Electronic databases (MEDLINE, Central and Cochrane Library) were searched for studies of RA patients where autonomic function was assessed. RESULTS A total of 40 studies were included. ANS function was assessed by clinical cardiovascular reflex tests (CCTs) (n = 18), heart rate variability (HRV) (n = 15), catecholamines (n = 5), biomarkers of sympathetic activity (n = 5), sympathetic skin responses (n = 5), cardiac baroreflex sensitivity (cBRS) (n = 2) and pupillary light reflexes (n = 2). A prevalence of ~60% (median, range: 20-86%) of ANS dysfunction (defined by abnormal CCTs) in RA was reported in 9 small studies. Overall, 73% of studies (n = 27/37) reported at least one of the following abnormalities in ANS function: parasympathetic dysfunction (n = 20/26, 77%), sympathetic dysfunction (n = 16/30, 53%) or reduced cBRS (n = 1/2, 50%). An association between increased inflammation and ANS dysfunction was found (n = 7/19, 37%), although causal relationships could not be elucidated from the studies available to date. CONCLUSIONS ANS dysfunction is prevalent in ~60% of RA patients. The main pattern of dysfunction is impairment of cardiovascular reflexes and altered HRV, indicative of reduced cardiac parasympathetic (strong evidence) activity and elevated cardiac sympathetic activity (limited evidence). The literature to date is underpowered to determine causal relationships between inflammation and ANS dysfunction in RA.
Collapse
Affiliation(s)
- Ahmed M Adlan
- College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2 TT, UK.
| | - Gregory Y H Lip
- University of Birmingham Centre of Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Julian F R Paton
- School of Physiology and Pharmacology, Bristol CardioVascular Medical Sciences Building, University of Bristol, Bristol, UK
| | - George D Kitas
- Department of Rheumatology, Dudley Group NHS Foundation Trust, Russells Hall Hospital, Dudley, West Midlands, UK
| | - James P Fisher
- College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2 TT, UK
| |
Collapse
|
33
|
Barnes JN, Charkoudian N, Matzek LJ, Johnson CP, Joyner MJ, Curry TB. Acute cyclooxygenase inhibition does not alter muscle sympathetic nerve activity or forearm vasodilator responsiveness in lean and obese adults. Physiol Rep 2014; 2:2/7/e12079. [PMID: 25347862 PMCID: PMC4187568 DOI: 10.14814/phy2.12079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Obesity is often characterized by chronic inflammation that may contribute to increased cardiovascular risk via sympathoexcitation and decreased vasodilator responsiveness. We hypothesized that obese individuals would have greater indices of inflammation compared with lean controls, and that cyclooxygenase inhibition using ibuprofen would reduce muscle sympathetic nerve activity (MSNA) and increase forearm blood flow in these subjects. We measured MSNA, inflammatory biomarkers (C‐reactive protein [CRP] and Interleukin‐6 [IL‐6]), and forearm vasodilator responses to brachial artery acetylcholine and sodium nitroprusside in 13 men and women (7 lean; 6 obese) on two separate study days: control (CON) and after 800 mg ibuprofen (IBU). CRP (1.7 ± 0.4 vs. 0.6 ± 0.3 mg/L; P < 0.05) and IL‐6 (4.1 ± 1.5 vs. 1.0 ± 0.1pg/mL; P < 0.05) were higher in the obese group during CON and tended to decrease with IBU (IL‐6: P < 0.05; CRP: P = 0.14). MSNA was not different between groups during CON (26 ± 4 bursts/100 heart beats (lean) versus 26 ± 4 bursts/100 heart beats (obese); P = 0.50) or IBU (25 ± 4 bursts/100 heart beats (lean) versus 30 ± 5 bursts/100 heart beats (obese); P = 0.25), and was not altered by IBU. Forearm vasodilator responses were unaffected by IBU in both groups. In summary, an acute dose of ibuprofen did not alter sympathetic nerve activity or forearm blood flow responses in healthy obese individuals, suggesting that the cyclooxygenase pathway is not a major contributor to these variables in this group. Obesity is often characterized by chronic inflammation that may contribute to increased cardiovascular risk via sympathoexcitation. However, an acute dose of the cyclooxygenase inhibitor ibuprofen did not alter blood pressure or muscle sympathetic nerve activity in lean and obese humans.
Collapse
Affiliation(s)
- Jill N Barnes
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Luke J Matzek
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Timothy B Curry
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
34
|
Time-dependent effects of training on cardiovascular control in spontaneously hypertensive rats: role for brain oxidative stress and inflammation and baroreflex sensitivity. PLoS One 2014; 9:e94927. [PMID: 24788542 PMCID: PMC4006803 DOI: 10.1371/journal.pone.0094927] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/20/2014] [Indexed: 12/26/2022] Open
Abstract
Baroreflex dysfunction, oxidative stress and inflammation, important hallmarks of hypertension, are attenuated by exercise training. In this study, we investigated the relationships and time-course changes of cardiovascular parameters, pro-inflammatory cytokines and pro-oxidant profiles within the hypothalamic paraventricular nucleus of the spontaneously hypertensive rats (SHR). Basal values and variability of arterial pressure and heart rate and baroreflex sensitivity were measured in trained (T, low-intensity treadmill training) and sedentary (S) SHR at weeks 0, 1, 2, 4 and 8. Paraventricular nucleus was used to determine reactive oxygen species (dihydroethidium oxidation products, HPLC), NADPH oxidase subunits and pro-inflammatory cytokines expression (Real time PCR), p38 MAPK and ERK1/2 expression (Western blotting), NF-κB content (electrophoretic mobility shift assay) and cytokines immunofluorescence. SHR-S vs. WKY-S (Wistar Kyoto rats as time control) showed increased mean arterial pressure (172±3 mmHg), pressure variability and heart rate (358±7 b/min), decreased baroreflex sensitivity and heart rate variability, increased p47phox and reactive oxygen species production, elevated NF-κB activity and increased TNF-α and IL-6 expression within the paraventricular nucleus of hypothalamus. Two weeks of training reversed all hypothalamic changes, reduced ERK1/2 phosphorylation and normalized baroreflex sensitivity (4.04±0.31 vs. 2.31±0.19 b/min/mmHg in SHR-S). These responses were followed by increased vagal component of heart rate variability (1.9-fold) and resting bradycardia (−13%) at the 4th week, and, by reduced vasomotor component of pressure variability (−28%) and decreased mean arterial pressure (−7%) only at the 8th week of training. Our findings indicate that independent of the high pressure levels in SHR, training promptly restores baroreflex function by disrupting the positive feedback between high oxidative stress and increased pro-inflammatory cytokines secretion within the hypothalamic paraventricular nucleus. These early adaptive responses precede the occurrence of training-induced resting bradycardia and blood pressure fall.
Collapse
|
35
|
Waki H, Gouraud SS. Brain inflammation in neurogenic hypertension. World J Hypertens 2014; 4:1-6. [DOI: 10.5494/wjh.v4.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/14/2013] [Accepted: 12/13/2013] [Indexed: 02/06/2023] Open
Abstract
One likely mechanism of essential hypertension (EH) is increased sympathoexcitation due to abnormal functions in the cardiovascular center of the brain. Recent findings obtained using experimental animal models of EH have shown that abnormal inflammation in the cardiovascular center may contribute to the onset of hypertension. Inflammatory molecules such as cytokines and reactive oxygen species released from the inflamed vasculature and glial cells in the medulla oblongata and hypothalamus might directly or indirectly affect neuronal functions. This in turn could increase sympathetic nerve activity and consequently arterial pressure. Abnormal inflammatory responses in the brain could also be central mechanisms underlying angiotensin II-related EH. In this review, we present the current understanding of EH mechanisms with regard to inflammatory responses in the cardiovascular center.
Collapse
|
36
|
Iliescu R, Tudorancea I, Irwin ED, Lohmeier TE. Chronic baroreflex activation restores spontaneous baroreflex control and variability of heart rate in obesity-induced hypertension. Am J Physiol Heart Circ Physiol 2013; 305:H1080-8. [PMID: 23913707 PMCID: PMC3798752 DOI: 10.1152/ajpheart.00464.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/27/2013] [Indexed: 12/21/2022]
Abstract
The sensitivity of baroreflex control of heart rate is depressed in subjects with obesity hypertension, which increases the risk for cardiac arrhythmias. The mechanisms are not fully known, and there are no therapies to improve this dysfunction. To determine the cardiovascular dynamic effects of progressive increases in body weight leading to obesity and hypertension in dogs fed a high-fat diet, 24-h continuous recordings of spontaneous fluctuations in blood pressure and heart rate were analyzed in the time and frequency domains. Furthermore, we investigated whether autonomic mechanisms stimulated by chronic baroreflex activation and renal denervation-current therapies in patients with resistant hypertension, who are commonly obese-restore cardiovascular dynamic control. Increases in body weight to ∼150% of control led to a gradual increase in mean arterial pressure to 17 ± 3 mmHg above control (100 ± 2 mmHg) after 4 wk on the high-fat diet. In contrast to the gradual increase in arterial pressure, tachycardia, attenuated chronotropic baroreflex responses, and reduced heart rate variability were manifest within 1-4 days on high-fat intake, reaching 130 ± 4 beats per minute (bpm) (control = 86 ± 3 bpm) and ∼45% and <20%, respectively, of control levels. Subsequently, both baroreflex activation and renal denervation abolished the hypertension. However, only baroreflex activation effectively attenuated the tachycardia and restored cardiac baroreflex sensitivity and heart rate variability. These findings suggest that baroreflex activation therapy may reduce the risk factors for cardiac arrhythmias as well as lower arterial pressure.
Collapse
Affiliation(s)
- Radu Iliescu
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | |
Collapse
|
37
|
Andresen MC, Fawley JA, Hofmann ME. Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus. Front Neurosci 2013; 6:191. [PMID: 23335875 PMCID: PMC3541483 DOI: 10.3389/fnins.2012.00191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/17/2012] [Indexed: 12/21/2022] Open
Abstract
The brainstem nucleus of the solitary tract (NTS) holds the first central neurons in major homeostatic reflex pathways. These homeostatic reflexes regulate and coordinate multiple organ systems from gastrointestinal to cardiopulmonary functions. The core of many of these pathways arise from cranial visceral afferent neurons that enter the brain as the solitary tract (ST) with more than two-thirds arising from the gastrointestinal system. About one quarter of ST afferents have myelinated axons but the majority are classed as unmyelinated C-fibers. All ST afferents release the fast neurotransmitter glutamate with remarkably similar, high-probability release characteristics. Second order NTS neurons receive surprisingly limited primary afferent information with one or two individual inputs converging on single second order NTS neurons. A- and C-fiber afferents never mix at NTS second order neurons. Many transmitters modify the basic glutamatergic excitatory postsynaptic current often by reducing glutamate release or interrupting terminal depolarization. Thus, a distinguishing feature of ST transmission is presynaptic expression of G-protein coupled receptors for peptides common to peripheral or forebrain (e.g., hypothalamus) neuron sources. Presynaptic receptors for angiotensin (AT1), vasopressin (V1a), oxytocin, opioid (MOR), ghrelin (GHSR1), and cholecystokinin differentially control glutamate release on particular subsets of neurons with most other ST afferents unaffected. Lastly, lipid-like signals are transduced by two key ST presynaptic receptors, the transient receptor potential vanilloid type 1 and the cannabinoid receptor that oppositely control glutamate release. Increasing evidence suggests that peripheral nervous signaling mechanisms are repurposed at central terminals to control excitation and are major sites of signal integration of peripheral and central inputs particularly from the hypothalamus.
Collapse
Affiliation(s)
- Michael C Andresen
- Department of Physiology and Pharmacology, Oregon Health and Science University Portland, OR, USA
| | | | | |
Collapse
|
38
|
Waki H, Hendy EB, Hindmarch CCT, Gouraud S, Toward M, Kasparov S, Murphy D, Paton JFR. Excessive leukotriene B4 in nucleus tractus solitarii is prohypertensive in spontaneously hypertensive rats. Hypertension 2012; 61:194-201. [PMID: 23172924 DOI: 10.1161/hypertensionaha.112.192252] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inflammation within the brain stem microvasculature has been associated with chronic cardiovascular diseases. We found that the expression of several enzymes involved in arachidonic acid-leukotriene B4 (LTB4) production was altered in nucleus tractus solitarii (NTS) of spontaneously hypertensive rat (SHR). LTB4 produced from arachidonic acid by 5-lipoxygenase is a potent chemoattractant of leukocytes. Leukotriene B4-12-hydroxydehydrogenase (LTB4-12-HD), which degrades LTB4, was downregulated in SHR rats compared with that in Wistar-Kyoto rats. Quantitative real-time PCR revealed that LTB4-12-HD was reduced by 63% and 58% in the NTS of adult SHR and prehypertensive SHR, respectively, compared with that in age-matched Wistar-Kyoto rats (n=6). 5-lipoxygenase gene expression was upregulated in the NTS of SHR (≈50%; n=6). LTB4 levels were increased in the NTS of the SHR, (17%; n=10, P<0.05). LTB4 receptors BLT1 (but not BLT2) were expressed on astroglia in the NTS but not neurons or vessels. Microinjection of LTB4 into the NTS of Wistar-Kyoto rats increased both leukocyte adherence and arterial pressure for over 4 days (peak: +15 mm Hg; P<0.01). In contrast, blockade of NTS BLT1 receptors lowered blood pressure in the SHR (peak: -13 mm Hg; P<0.05) but not in Wistar-Kyoto rats. Thus, excessive amounts of LTB4 in NTS of SHR, possibly as a result of upregulation of 5-lipoxygenase and downregulation of LTB4-12-HD, can induce inflammation. Because blockade of NTS BLT1 receptors lowered arterial pressure in the SHR, their endogenous activity may contribute to the hypertensive state of this rodent model. Thus, inflammatory reactions in the brain stem are causally associated with neurogenic hypertension.
Collapse
Affiliation(s)
- Hidefumi Waki
- School of Physiology and Pharmacology, Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Waki H, Gouraud SS, Bhuiyan MER, Takagishi M, Yamazaki T, Kohsaka A, Maeda M. Transcriptome of the NTS in exercise-trained spontaneously hypertensive rats: implications for NTS function and plasticity in regulating blood pressure. Physiol Genomics 2012; 45:58-67. [PMID: 23132760 DOI: 10.1152/physiolgenomics.00074.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The nucleus tractus solitarii (NTS) controls the cardiovascular system during exercise, and alteration of its function may underlie exercise-induced cardiovascular adaptation. To understand the molecular basis of the NTS's plasticity in regulating blood pressure (BP) and its potential contribution to the antihypertensive effects, we characterized the gene expression profiles at the level of the NTS after long-term daily wheel running in spontaneously hypertensive rats (SHRs). Genome-wide microarray analysis was performed to screen for differentially expressed genes in the NTS between exercise-trained (12 wk) and control SHRs. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes database revealed that daily exercise altered the expression levels of NTS genes that are functionally associated with metabolic pathways (5 genes), neuroactive ligand-receptor interactions (4 genes), cell adhesion molecules (3 genes), and cytokine-cytokine receptor interactions (3 genes). One of the genes that belonged to the neuroactive ligand-receptor interactions category was histamine receptor H(1). Since we confirmed that the pressor response induced by activation of this receptor is increased after long-term daily exercise, it is suggested that functional plasticity in the histaminergic system may mediate the facilitation of blood pressure control in response to exercise but may not be involved in the lowered basal BP level found in exercise-trained SHRs. Since abnormal inflammatory states in the NTS are known to be prohypertensive in SHRs, altered gene expression of the inflammatory molecules identified in this study may be related to the antihypertensive effects in exercise-trained SHRs, although such speculation awaits functional validation.
Collapse
Affiliation(s)
- Hidefumi Waki
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
McCully BH, Brooks VL, Andresen MC. Diet-induced obesity severely impairs myelinated aortic baroreceptor reflex responses. Am J Physiol Heart Circ Physiol 2012; 302:H2083-91. [PMID: 22408022 DOI: 10.1152/ajpheart.01200.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diet-induced obesity (DIO) attenuates the arterial cardiac baroreceptor reflex, but the mechanisms and sites of action are unknown. This study tested the hypothesis that DIO impairs central aortic baroreceptor pathways. Normal chow control (CON) and high-fat-chow obesity-resistant (OR) and obesity-prone (OP) rats were anesthetized (inactin, 120 mg/kg) and underwent sinoaortic denervation. The central end of the aortic depressor nerve (ADN) was electrically stimulated to generate frequency-dependent baroreflex curves (5-100 Hz) during selective activation of myelinated (A-fiber) or combined (A- and C-fiber) ADN baroreceptors. A mild stimulus (1 V) that activates only A-fiber ADN baroreceptors induced robust, frequency-dependent depressor and bradycardic responses in CON and OR rats, but these responses were completely abolished in OP rats. Maximal activation of A fibers (3 V) elicited frequency-dependent reflexes in all groups, but a dramatic deficit was still present in OP rats. Activation of all ADN baroreceptors (20 V) evoked even larger reflex responses. Depressor responses were nearly identical among groups, but OP rats still exhibited attenuated bradycardia. In separate groups of rats, the reduced heart rate (HR) response to maximal activation of ADN A fibers (3 V) persisted in OP rats following pharmacological blockade of β(1)-adrenergic or muscarinic receptors, suggesting deficits in both parasympathetic nervous system (PNS) and sympathetic nervous system (SNS) reflex pathways. However, the bradycardic responses to direct efferent vagal stimulation were similar among groups. Taken together, our data suggest that DIO severely impairs the central processing of myelinated aortic baroreceptor control of HR, including both PNS and SNS components.
Collapse
Affiliation(s)
- Belinda H McCully
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
41
|
Jacono FJ, Mayer CA, Hsieh YH, Wilson CG, Dick TE. Lung and brainstem cytokine levels are associated with breathing pattern changes in a rodent model of acute lung injury. Respir Physiol Neurobiol 2011; 178:429-38. [PMID: 21569869 PMCID: PMC3170447 DOI: 10.1016/j.resp.2011.04.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/22/2011] [Accepted: 04/27/2011] [Indexed: 02/07/2023]
Abstract
Acute lung injury evokes a pulmonary inflammatory response and changes in the breathing pattern. The inflammatory response has a centrally mediated component which depends on the vagi. We hypothesize that the central inflammatory response, complimentary to the pulmonary inflammatory response, is expressed in the nuclei tractus solitarii (nTS) and that the expression of cytokines in the nTS is associated with breathing pattern changes. Adult, male Sprague-Dawley rats (n=12) received intratracheal instillation of either bleomycin (3units in 120μl of saline) or saline (120μl). Respiratory pattern changed by 24h. At 48h, bronchoalveolar lavage fluid and lung tissue had increased IL-1β and TNF-α levels, but not IL-6. No changes in these cytokines were noted in serum. Immunocytochemical analysis of the brainstem indicated increased expression of IL-1β in the nTS commissural subnucleus that was localized to neurons. We conclude that breathing pattern changes in acute lung injury were associated with increased levels of IL-1β in brainstem areas which integrate cardio-respiratory sensory input.
Collapse
Affiliation(s)
- Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, CWRU School of Medicine and University Hospitals Case Medical Center, United States.
| | | | | | | | | |
Collapse
|
42
|
The sympathetic nervous system and blood pressure in humans: implications for hypertension. J Hum Hypertens 2011; 26:463-75. [PMID: 21734720 DOI: 10.1038/jhh.2011.66] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A neurogenic component to primary hypertension (hypertension) is now well established. Along with raised vasomotor tone and increased cardiac output, the chronic activation of the sympathetic nervous system in hypertension has a diverse range of pathophysiological consequences independent of any increase in blood pressure. This review provides a perspective on the actions and interactions of angiotensin II, inflammation and vascular dysfunction/brain hypoperfusion in the pathogenesis and progression of neurogenic hypertension. The optimisation of current treatment strategies and the exciting recent developments in the therapeutic targeting of the sympathetic nervous system to control hypertension (for example, catheter-based renal denervation and carotid baroreceptor stimulation) will be outlined.
Collapse
|
43
|
Down-regulation of chemokine Ccl5 gene expression in the NTS of SHR may be pro-hypertensive. J Hypertens 2011; 29:732-40. [PMID: 21358418 DOI: 10.1097/hjh.0b013e328344224d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Recent studies have demonstrated that pro-inflammatory molecules such as junctional adhesion molecules-1 are highly expressed in the nucleus tractus solitarii (NTS) of the spontaneously hypertensive rat (SHR), compared to normotensive rats (Wistar-Kyoto rats: WKY), suggesting that the NTS of SHR may exhibit an abnormal inflammatory state. In the present study, we tested whether gene expression of inflammatory markers such as cytokines and chemokines is altered in the NTS of SHR and whether this contributes to the hypertensive phenotype in the SHR. METHODS We have performed RT Profiler PCR arrays in the NTS of SHR and WKY, which were designed to specifically target major cytokines/chemokines and their receptors. To validate PCR array results quantitative RT-PCR was performed. Microinjection studies using anesthetized rats were also carried out to examine whether validated inflammatory molecules exhibit functional roles on cardiovascular regulation at the level of the NTS. RESULTS Five inter-related transcripts were identified to be differentially expressed between the NTS of SHR and WKY. They include chemokine (C-C motif) ligand 5 (Ccl5), and its receptors, chemokine (C-C motif) receptor 1 and 3. All of them were down-regulated in the NTS of SHR compared to WKY. Moreover, we found that the protein Ccl5 microinjected into the NTS significantly decreased baseline arterial pressure and that the response was greater in the SHR compared to the WKY (-33.2±3.2 vs. -8.8±1.6 mmHg, P<0.001), demonstrating that its down-regulation in the NTS may contribute to hypertension in the SHR. CONCLUSION We suggest that gene expression of specific chemokines may be down-regulated to protect further inflammatory reactions in the NTS of SHR at the expense of arterial hypertension.
Collapse
|
44
|
Bhuiyan ME, Waki H, Gouraud SS, Takagishi M, Kohsaka A, Maeda M. Histamine receptor H1 in the nucleus tractus solitarii regulates arterial pressure and heart rate in rats. Am J Physiol Heart Circ Physiol 2011; 301:H523-9. [PMID: 21622829 DOI: 10.1152/ajpheart.00263.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Axons of histamine (HA)-containing neurons are known to project from the posterior hypothalamus to many areas of the brain, including the nucleus tractus solitarii (NTS), a central brain structure that plays an important role in regulating arterial pressure. However, the functional significance of NTS HA is still not fully established. In this study, we microinjected HA or 2-pyridylethylamine, a HA-receptor H(1)-specific agonist, into the NTS of urethane-anesthetized Wister rats to identify the potential functions of NTS HA on cardiovascular regulation. When HA or H(1)-receptor-specific agonist was bilaterally microinjected into the NTS, mean arterial pressure (MAP) and heart rate (HR) were significantly increased, whereas pretreatment with the H(1)-receptor-specific antagonist cetirizine into the NTS significantly inhibited the cardiovascular responses. The maximal responses of MAP and HR changes induced by HA or H(1)-receptor-specific agonist were dose dependent. We also confirmed gene expression of HA receptors in the NTS and that the expression level of H(1) mRNA was higher than that of the other subtypes. In addition, we found that H(1) receptors are mainly expressed in neurons of the NTS. These findings suggested that HA within the NTS may play a role in regulating cardiovascular homeostasis via activation of H(1) receptors expressed in the NTS neurons.
Collapse
Affiliation(s)
- Mohammad E Bhuiyan
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Waki H, Gouraud SS, Maeda M, Raizada MK, Paton JFR. Contributions of vascular inflammation in the brainstem for neurogenic hypertension. Respir Physiol Neurobiol 2011; 178:422-8. [PMID: 21601658 DOI: 10.1016/j.resp.2011.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 02/07/2023]
Abstract
Essential hypertension is idiopathic although it is accepted as a complex polygenic trait with underlying genetic components, which remain unknown. Our supposition is that primary hypertension involves activation of the sympathetic nervous system. One pivotal region controlling arterial pressure set point is nucleus tractus solitarii (NTS). We recently identified that pro-inflammatory molecules, such as junctional adhesion molecule-1, were over expressed in endothelial cells of the microvasculature supplying the NTS in an animal model of human hypertension (the spontaneously hypertensive rat: SHR) compared to normotensive Wistar Kyoto (WKY) rats. We have also shown endogenous leukocyte accumulation inside capillaries within the NTS of SHR but not WKY rats. Despite the inflammatory state in the NTS of SHR, transcripts of some inflammatory molecules such as chemokine (C-C motif) ligand 5 (Ccl5), and its receptors, chemokine (C-C motif) receptor 1 and 3 were down-regulated in the NTS of SHR compared to WKY rats. This may be compensatory to avoid further strong inflammatory activity. More importantly, we found that down-regulation of Ccl5 in the NTS of SHR may be pro-hypertensive since microinjection of Ccl5 into the NTS of SHR decreased arterial pressure but was less effective in WKY rats. Leukocyte accumulation of the NTS microvasculature may also induce an increase in vascular resistance and hypoperfusion within the NTS; the latter may trigger release of pro-inflammatory molecules which via paracrine signaling may affect central neural cardiovascular activity conducive to neurogenic hypertension. All told, we suggest that vascular inflammation within the brainstem contributes to neurogenic hypertension by multiple pathways.
Collapse
Affiliation(s)
- Hidefumi Waki
- Department of Physiology, Wakayama Medical University School of Medicine, Wakayama 641-8509, Japan.
| | | | | | | | | |
Collapse
|
46
|
Zubcevic J, Waki H, Raizada MK, Paton JFR. Autonomic-immune-vascular interaction: an emerging concept for neurogenic hypertension. Hypertension 2011; 57:1026-33. [PMID: 21536990 DOI: 10.1161/hypertensionaha.111.169748] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jasenka Zubcevic
- Department of Physiology and Functional Genomics, McKnight Brain Institute, 1600 SW Archer Rd, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|