1
|
Gonzaga LA, Porto AA, Takahashi C, Gomes RL, Vanderlei LCM, Valenti VE. Acute effects of beetroot extract and resveratrol ingestion on cardiovascular and cardiac autonomic modulation recovery after moderate-intensity aerobic exercise in individuals with coronary artery disease: a triple-blinded, randomized, placebo-controlled trial. Eur J Nutr 2025; 64:67. [PMID: 39853480 DOI: 10.1007/s00394-025-03582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025]
Abstract
PURPOSE This study aimed to evaluate the acute effects of beetroot extract and resveratrol supplementation (isolated and combined) on cardiac autonomic modulation and cardiovascular parameters recovery after exercise in individuals with coronary artery disease (CAD). METHODS 14 males with CAD were submitted to 4 protocols consisting of 30 min (min) of rest, 30 min of aerobic exercise on a treadmill (60% of the heart rate reserve HRR), followed by 30 min of recovery. Before each protocol, the subjects consumed 500 mg of starch (placebo protocol), 500 mg of beetroot (beetroot protocol), or 500 mg of resveratrol (resveratrol protocol), or 500 mg of beetroot and 500 mg of resveratrol (combined protocol). Heart rate variability (HRV) indices and cardiorespiratory parameters were determined at different times during the protocols. RESULTS Regarding HR, significantly higher values about rest in the placebo protocol at all recovery moments (1st to 30th min) were observed. Significant differences were observed in the other protocols (beetroot, resveratrol and combined) from the first to the 20th min recovery. For SBP, significantly higher values concerning rest were observed at the first minute of recovery for all protocols. No differences were found for the HRV index between time and protocols. CONCLUSIONS The single supplementation of beetroot and resveratrol (isolated and combined) did not alter HRV and cardiovascular parameter responses between protocols. The consumption of beetroot extract and resveratrol enhanced vagal modulation and heart rate recovery compared to rest.
Collapse
Affiliation(s)
- Luana Almeida Gonzaga
- Postgraduate Program in Movement Sciences, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Andrey Alves Porto
- Postgraduate Program in Movement Sciences, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil.
| | - Carolina Takahashi
- Postgraduate Program in Movement Sciences, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Rayana Loch Gomes
- Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil
| | - Luiz Carlos Marques Vanderlei
- Postgraduate Program in Movement Sciences, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Vitor Engrácia Valenti
- Postgraduate Program in Movement Sciences, Universidade Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
2
|
Derella CC, Anderson KC, Woessner MN, Paterson C, Allen JD. Ergogenic Effect of Nitrate Supplementation in Clinical Populations: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:3832. [PMID: 39599618 PMCID: PMC11597481 DOI: 10.3390/nu16223832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Inorganic nitrate (NO3-) supplementation, via its conversion to nitric oxide (NO), has been purported to be ergogenic in healthy individuals. Many disease states are characterized by reduced NO bioavailability and are expected to derive a benefit from NO3-. This systematic review and meta-analysis evaluate the current literature on the ergogenic effect of NO3- supplementation in individuals with cardiopulmonary and metabolic diseases (CPMD). Methods: Relevant databases were searched up to December 2023 for randomized, placebo-controlled crossover trials for aerobic exercise outcome variables with CPMD. Results: Twenty-two studies were included, and 46% reported ergogenic benefits of inorganic nitrate supplementation. NO3- supplementation had no effect on aerobic performance with respect to maximal (SMD = 0.11, 95% CI: -0.12 to 0.34, p = 0.34) and submaximal (SMD = 0.16, 95% CI: -0.13 to 0.46, p = 0.27) TTE, VO2peak (SMD = 0.002, 95% CI: -0.37 to 0.38, p = 0.99), or 6MW (SMD = 0.01, 95% CI: -0.29 to 0.28, p = 0.96). When the studies were limited to only cardiovascular disease conditions, NO3- supplementation had trivial effects on aerobic performance with respect to Timed Trials (SMD = 0.14, 95% CI: -0.04 to 0.33, p = 0.13), VO2 (SMD = -0.02, 95% CI: -0.32 to 0.27, p = 0.87), and small effects on Distance Trials (SMD = 0.25, 95% CI: -0.18 to 0.69, p = 0.25). Sunset funnel plots revealed low statistical power in all trials. Conclusions: The results of this systematic review revealed that 46% of the individual studies showed a positive benefit from inorganic nitrate supplementation. However, the meta-analysis revealed a trivial effect on physical function in CPMD populations. This is likely due to the large heterogeneity and small sample sizes in the current literature.
Collapse
Affiliation(s)
- Cassandra C. Derella
- Department of Kinesiology, University of Virginia, Charlottesville, VA 22903, USA
| | - Kara C. Anderson
- Division of Endocrinology and Metabolism, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Mary N. Woessner
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
| | - Craig Paterson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Jason D. Allen
- Department of Kinesiology, University of Virginia, Charlottesville, VA 22903, USA
- Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
3
|
Kurhaluk N. Supplementation with l-arginine and nitrates vs age and individual physiological reactivity. Nutr Rev 2024; 82:1239-1259. [PMID: 37903373 DOI: 10.1093/nutrit/nuad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Ageing is a natural ontogenetic phenomenon that entails a decrease in the adaptive capacity of the organism, as a result of which the body becomes less adaptable to stressful conditions. Nitrate and nitrite enter the body from exogenous sources and from nitrification of ammonia nitrogen by intestinal microorganisms. This review considers the mechanisms of action of l-arginine, a known inducer of nitric oxide (NO) biosynthesis, and nitrates as supplements in the processes of ageing and aggravated stress states, in which mechanisms of individual physiological reactivity play an important role. This approach can be used as an element of individual therapy or prevention of premature ageing processes depending on the different levels of initial reactivity of the functional systems. A search was performed of the PubMed, Scopus, and Google Scholar databases (n = 181 articles) and the author's own research (n = 4) up to May 5, 2023. The review presents analyses of data on targeted treatment of NO generation by supplementation with l-arginine or nitrates, which is a promising means for prevention of hypoxic conditions frequently accompanying pathological processes in an ageing organism. The review clarifies the role of the individual state of physiological reactivity, using the example of individuals with a high predominance of cholinergic regulatory mechanisms who already have a significant reserve of adaptive capacity. In studies of the predominance of adrenergic influences, a poorly trained organism as well as an elderly organism correspond to low resistance, which is an additional factor of damage at increased energy expenditure. CONCLUSION It is suggested that the role of NO synthesis from supplementation of dietary nitrates and nitrites increases with age rather than from oxygen-dependent biosynthetic reactions from l-arginine supplementation.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
4
|
Mansoor T, Khalid SN, Bilal MI, Ijaz SH, Fudim M, Greene SJ, Warraich HJ, Nambi V, Virani SS, Fonarow GC, Abramov D, Minhas AMK. Ongoing and Future Clinical Trials of Pharmacotherapy for Heart Failure. Am J Cardiovasc Drugs 2024; 24:481-504. [PMID: 38907865 DOI: 10.1007/s40256-024-00658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/24/2024]
Abstract
Increasing knowledge of the processes leading to heart failure (HF) has allowed significant developments in therapies for HF over the past few decades. Despite the evolution of HF treatment, it still places a large burden on patients and health care systems across the world.We used clinicaltrials.gov to gather information about clinical trials as of August 2023 studying pharmacotherapy for HF. We included interventional trials that were "active, not recruiting", "recruiting", or looking for participants but "not yet recruiting". In total, 119 studies met our criteria of ongoing clinical trials studying novel as well as currently approved HF pharmacotherapies. The major interventions were novel medications/already approved medications for other diseases 29 % (34 trials), sodium-glucose co-transporter inhibitors 21 % (25 trials), angiotensin receptor blocker-neprilysin inhibitors 10 % (12 trials), diuretics 14 % (17 trials) and mineralocorticoid receptor antagonists 5 % (6 trials). Ongoing research will aid in reducing the impact of HF and we summarize clinical trials leading the way to better HF treatment in this review.
Collapse
Affiliation(s)
- Taha Mansoor
- Department of Internal Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, 1000 Oakland Drive, Kalamazoo, MI, 49008, USA.
| | - Subaina N Khalid
- Department of Internal Medicine, SUNY Upstate Medical University, Syracruse, NY, USA
| | | | | | - Marat Fudim
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Stephen J Greene
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Haider J Warraich
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Vijay Nambi
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey, Veterans Affair Medical Center, Houston, TX, USA
| | - Salim S Virani
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Gregg C Fonarow
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dmitry Abramov
- Division of Cardiology, Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | | |
Collapse
|
5
|
Coggan AR, Park LK, Racette SB, Davila-Roman VG, Lenzen P, Vehe K, Dore PM, Schechtman KB, Peterson LR. The inorganic NItrate and eXercise performance in Heart Failure (iNIX-HF) phase II clinical trial: Rationale and study design. Contemp Clin Trials Commun 2023; 36:101208. [PMID: 37842318 PMCID: PMC10568282 DOI: 10.1016/j.conctc.2023.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/16/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Background Heart failure (HF) is a debilitating and often fatal disease that affects millions of people worldwide. Diminished nitric oxide synthesis, signaling, and bioavailability are believed to contribute to poor skeletal muscle function and aerobic capacity. The aim of this clinical trial (iNIX-HF) is to determine the acute and longer-term effectiveness of inorganic nitrate supplementation on exercise performance in patients with HF with reduced ejection fraction (HFrEF). Methods This clinical trial is a double-blind, placebo-controlled, randomized, parallel-arm design study in which patients with HFrEF (n = 75) are randomized to receive 10 mmol potassium nitrate (KNO3) or a placebo capsule daily for 6 wk. Primary outcome measures are muscle power determined by isokinetic dynamometry and peak aerobic capacity (VO2peak) determined during an incremental treadmill exercise test. Endpoints include the acute effects of a single dose of KNO3 and longer-term effects of 6 wk of KNO3. The study is adequately powered to detect expected increases in these outcomes at P < 0.05 with 1-β>0.80. Discussion The iNIX-HF phase II clinical trial will evaluate the effectiveness of inorganic nitrate supplements as a new treatment to ameliorate poor exercise capacity in HFrEF. This study also will provide critical preliminary data for a future 'pivotal', phase III, multi-center trial of the effectiveness of nitrate supplements not only for improving exercise performance, but also for improving symptoms and decreasing other major cardiovascular endpoints. The potential public health impact of identifying a new, relatively inexpensive, safe, and effective treatment that improves overall exercise performance in patients with HFrEF is significant.
Collapse
Affiliation(s)
- Andrew R. Coggan
- Department of Kinesiology, School of Health & Human Sciences, And Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Lauren K. Park
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Susan B. Racette
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | | | - Pattie Lenzen
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Peter M. Dore
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kenneth B. Schechtman
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Linda R. Peterson
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
6
|
Tsigkou V, Oikonomou E, Anastasiou A, Lampsas S, Zakynthinos GE, Kalogeras K, Katsioupa M, Kapsali M, Kourampi I, Pesiridis T, Marinos G, Vavuranakis MA, Tousoulis D, Vavuranakis M, Siasos G. Molecular Mechanisms and Therapeutic Implications of Endothelial Dysfunction in Patients with Heart Failure. Int J Mol Sci 2023; 24:ijms24054321. [PMID: 36901752 PMCID: PMC10001590 DOI: 10.3390/ijms24054321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Heart failure is a complex medical syndrome that is attributed to a number of risk factors; nevertheless, its clinical presentation is quite similar among the different etiologies. Heart failure displays a rapidly increasing prevalence due to the aging of the population and the success of medical treatment and devices. The pathophysiology of heart failure comprises several mechanisms, such as activation of neurohormonal systems, oxidative stress, dysfunctional calcium handling, impaired energy utilization, mitochondrial dysfunction, and inflammation, which are also implicated in the development of endothelial dysfunction. Heart failure with reduced ejection fraction is usually the result of myocardial loss, which progressively ends in myocardial remodeling. On the other hand, heart failure with preserved ejection fraction is common in patients with comorbidities such as diabetes mellitus, obesity, and hypertension, which trigger the creation of a micro-environment of chronic, ongoing inflammation. Interestingly, endothelial dysfunction of both peripheral vessels and coronary epicardial vessels and microcirculation is a common characteristic of both categories of heart failure and has been associated with worse cardiovascular outcomes. Indeed, exercise training and several heart failure drug categories display favorable effects against endothelial dysfunction apart from their established direct myocardial benefit.
Collapse
Affiliation(s)
- Vasiliki Tsigkou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-69-4770-1299
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - George E. Zakynthinos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Katsioupa
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Kapsali
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Islam Kourampi
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Theodoros Pesiridis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Georgios Marinos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Michael-Andrew Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Skeletal muscle mitochondrial remodeling in heart failure: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2022; 155:113833. [DOI: 10.1016/j.biopha.2022.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
|
8
|
Park LK, Coggan AR, Peterson LR. Skeletal Muscle Contractile Function in Heart Failure With Reduced Ejection Fraction-A Focus on Nitric Oxide. Front Physiol 2022; 13:872719. [PMID: 35721565 PMCID: PMC9198547 DOI: 10.3389/fphys.2022.872719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Despite advances over the past few decades, heart failure with reduced ejection fraction (HFrEF) remains not only a mortal but a disabling disease. Indeed, the New York Heart Association classification of HFrEF severity is based on how much exercise a patient can perform. Moreover, exercise capacity-both aerobic exercise performance and muscle power-are intimately linked with survival in patients with HFrEF. This review will highlight the pathologic changes in skeletal muscle in HFrEF that are related to impaired exercise performance. Next, it will discuss the key role that impaired nitric oxide (NO) bioavailability plays in HFrEF skeletal muscle pathology. Lastly, it will discuss intriguing new data suggesting that the inorganic nitrate 'enterosalivary pathway' may be leveraged to increase NO bioavailability via ingestion of inorganic nitrate. This ingestion of inorganic nitrate has several advantages over organic nitrate (e.g., nitroglycerin) and the endogenous nitric oxide synthase pathway. Moreover, inorganic nitrate has been shown to improve exercise performance: both muscle power and aerobic capacity, in some recent small but well-controlled, cross-over studies in patients with HFrEF. Given the critical importance of better exercise performance for the amelioration of disability as well as its links with improved outcomes in patients with HFrEF, further studies of inorganic nitrate as a potential novel treatment is critical.
Collapse
Affiliation(s)
- Lauren K. Park
- Department of Medicine, Cardiology Division, Washington University School of Medicine, Saint Louis, MO, United States
| | - Andrew R. Coggan
- Department of Kinesiology, Indiana University Purdue University, Indianapolis, IN, United States
| | - Linda R. Peterson
- Department of Medicine, Cardiology Division, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
9
|
Proctor DN, Neely KA, Mookerjee S, Tucker J, Somani YB, Flanagan M, Kim-Shapiro DB, Basu S, Muller MD, Jin-Kwang Kim D. Inorganic nitrate supplementation and blood flow restricted exercise tolerance in post-menopausal women. Nitric Oxide 2022; 122-123:26-34. [PMID: 35240317 PMCID: PMC9062890 DOI: 10.1016/j.niox.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/12/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022]
Abstract
Exercise tolerance appears to benefit most from dietary nitrate (NO3-) supplementation when muscle oxygen (O2) availability is low. Using a double-blind, randomized cross-over design, we tested the hypothesis that acute NO3- supplementation would improve blood flow restricted exercise duration in post-menopausal women, a population with reduced endogenous nitric oxide bioavailability. Thirteen women (57-76 yr) performed rhythmic isometric handgrip contractions (10% MVC, 30 per min) during progressive forearm blood flow restriction (upper arm cuff gradually inflated 20 mmHg each min) on three study visits, with 7-10 days between visits. Approximately one week following the first (familiarization) visit, participants consumed 140 ml of NO3- concentrated (9.7 mmol, 0.6 gm NO3-) or NO3-depleted beetroot juice (placebo) on separate days (≥7 days apart), with handgrip exercise beginning 100 min post-consumption. Handgrip force recordings were analyzed to determine if NO3- supplementation enhanced force development as blood flow restriction progressed. Nitrate supplementation increased plasma NO3- (16.2-fold) and NO2- (4.2-fold) and time to volitional fatigue (61.8 ± 56.5 s longer duration vs. placebo visit; p = 0.03). Nitrate supplementation increased the rate of force development as forearm muscle ischemia progressed (p = 0.023 between 50 and 75% of time to fatigue) with non-significant effects thereafter (p = 0.052). No effects of nitrate supplementation were observed for mean duration of contraction or relaxation rates (all p > 0.150). These results suggest that acute NO3- supplementation prolongs time-to-fatigue and speeds grip force development during progressive forearm muscle ischemia in postmenopausal women.
Collapse
Affiliation(s)
- David N Proctor
- Penn State University, University Park, PA, USA; Penn State College of Medicine, Hershey, PA, USA.
| | | | | | | | | | - Michael Flanagan
- Penn State College of Medicine, Hershey, PA, USA; Penn State Health Family and Community Medicine, University Park, PA, USA
| | | | - Swati Basu
- Wake Forest University, Winston-Salem, NC, USA
| | - Matthew D Muller
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Danielle Jin-Kwang Kim
- Penn State University, University Park, PA, USA; Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
10
|
Keir DA, Notarius CF, Badrov MB, Millar PJ, Floras JS. Heart failure-specific inverse relationship between the muscle sympathetic response to dynamic leg exercise and V̇O2peak. Appl Physiol Nutr Metab 2021; 46:1119-1125. [DOI: 10.1139/apnm-2020-1074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During 1-leg cycling, contralateral muscle sympathetic nerve activity (MSNA) falls in healthy adults but increases in most with reduced ejection fraction heart failure (HFrEF). We hypothesized that their peak oxygen uptake (V̇O2peak) relates inversely to their MSNA response to exercise. Twenty-nine patients (6 women; 63 ± 9 years; left ventricular ejection fraction: 30 ± 7%; V̇O2peak: 78 ± 23 percent age-predicted (%V̇O2peak); mean ± SD) and 21 healthy adults (9 women; 58 ± 7 years; 115 ± 29%V̇O2peak) performed 2 min of mild- (“loadless”) and moderate-intensity (“loaded”) 1-leg cycling. Heart rate, blood pressure (BP), contralateral leg MSNA and perceived exertion rate (RPE) were recorded. Resting MSNA burst frequency (BF) was higher (p < 0.01) in HFrEF (51 ± 11 vs 44 ± 7 bursts·min−1). Exercise heart rate, BP and RPE responses at either intensity were similar between groups. In minute 2 of “loadless” and “loaded” cycling, group mean BF fell from baseline values in controls (−5 ± 6 and −7 ± 7 bursts·min−1, respectively) but rose in HFrEF (+5 ± 7 and +5 ± 10 bursts·min−1). However, in 10 of the latter cohort, BF fell, similarly to controls. An inverse relationship between ΔBF from baseline to “loaded” cycling and %V̇O2peak was present in patients (r = −0.43, p < 0.05) but absent in controls (r = 0.07, p = 0.77). In HFrEF, ∼18% of variance in %V̇O2peak can be attributed to the change in BF elicited by exercise. Novelty: Unlike healthy individuals, in the majority of heart failure patients with reduced ejection fraction (HFrEF), 1-leg cycling increases muscle sympathetic nerve activity (MSNA). In HFrEF, ∼18% of age-predicted peak oxygen uptake (V̇O2peak) can be attributed to changes in MSNA elicited by low-intensity exercise. This relationship is absent in healthy adults.
Collapse
Affiliation(s)
- Daniel A. Keir
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, and the Toronto General Research Institute, Toronto, Ontario, Canada
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Catherine F. Notarius
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, and the Toronto General Research Institute, Toronto, Ontario, Canada
| | - Mark B. Badrov
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, and the Toronto General Research Institute, Toronto, Ontario, Canada
| | - Philip J. Millar
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, and the Toronto General Research Institute, Toronto, Ontario, Canada
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - John S. Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, and the Toronto General Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Gee LC, Massimo G, Lau C, Primus C, Fernandes D, Chen J, Rathod KS, Hamers AJP, Filomena F, Nuredini G, Ibrahim AS, Khambata RS, Gupta AK, Moon JC, Kapil V, Ahluwalia A. Inorganic nitrate attenuates cardiac dysfunction: role for xanthine oxidoreductase and nitric oxide. Br J Pharmacol 2021; 179:4757-4777. [PMID: 34309015 DOI: 10.1111/bph.15636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022] Open
Abstract
Nitric oxide (NO) is a vasodilator and independent modulator of cardiac remodelling. Commonly, in cardiac disease (e.g. heart failure) endothelial dysfunction (synonymous with NO-deficiency) has been implicated in increased blood pressure (BP), cardiac hypertrophy and fibrosis. Currently no effective therapies replacing NO have succeeded in the clinic. Inorganic nitrate (NO3 - ), through chemical reduction to nitrite and then NO, exerts potent BP-lowering but whether it might be useful in treating undesirable cardiac remodelling is unknown. In a nested age- and sex-matched case-control study of hypertensive patients +/- left ventricular hypertrophy (NCT03088514) we show that lower plasma nitrite concentration and vascular dysfunction accompany cardiac hypertrophy and fibrosis in patients. In mouse models of cardiac remodelling, we also show that restoration of circulating nitrite levels using dietary nitrate improves endothelial dysfunction through targeting of xanthine oxidoreductase (XOR)-driven H2 O2 and superoxide, and reduces cardiac fibrosis through NO-mediated block of SMAD-phosphorylation leading to improvements in cardiac structure and function. We show that via these mechanisms dietary nitrate offers easily translatable therapeutic options for treatment of cardiac dysfunction.
Collapse
Affiliation(s)
- Lorna C Gee
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Gianmichele Massimo
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Clement Lau
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Christopher Primus
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Daniel Fernandes
- Departamento de Farmacologia, Federal University of Santa Catarina, Florianópolis, Santa Catarina,, Brazil
| | - Jianmin Chen
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Krishnaraj S Rathod
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Alexander Jozua Pedro Hamers
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Federica Filomena
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Gani Nuredini
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Abdiwahab Shidane Ibrahim
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Ajay K Gupta
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - James C Moon
- UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Vikas Kapil
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
Acute Effects of Dietary Nitrate on Exercise Tolerance, Muscle Oxygenation, and Cardiovascular Function in Patients With Peripheral Arterial Disease. Int J Sport Nutr Exerc Metab 2021; 31:385-396. [PMID: 34284348 DOI: 10.1123/ijsnem.2021-0054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/18/2022]
Abstract
Previous studies have used supplements to increase dietary nitrate intake in clinical populations. Little is known about whether effects can also be induced through vegetable consumption. Therefore, the aim of this study was to assess the impact of dietary nitrate, through nitrate-rich vegetables (NRV) and beetroot juice (BRJ) supplementation, on plasma nitrate and nitrite concentrations, exercise tolerance, muscle oxygenation, and cardiovascular function in patients with peripheral arterial disease. In a randomized crossover design, 18 patients with peripheral arterial disease (age: 73 ± 8 years) followed a nitrate intake protocol (∼6.5 mmol) through the consumption of NRV, BRJ, and nitrate-depleted BRJ (placebo). Blood samples were taken, blood pressure and arterial stiffness were measured in fasted state and 150 min after intervention. Each intervention was followed by a maximal walking exercise test to determine claudication onset time and peak walking time. Gastrocnemius oxygenation was measured by near-infrared spectroscopy. Blood samples were taken and blood pressure was measured 10 min after exercise. Mean plasma nitrate and nitrite concentrations increased (nitrate; Time × Intervention interaction; p < .001), with the highest concentrations after BRJ (494 ± 110 μmol/L) compared with NRV (202 ± 89 μmol/L) and placebo (80 ± 19 μmol/L; p < .001). Mean claudication onset time and peak walking time did not differ between NRV (413 ± 187 s and 745 ± 220 s, respectively), BRJ (392 ± 154 s and 746 ± 176 s), and placebo (403 ± 176 s and 696 ± 222 s) (p = .762 and p = .165, respectively). Gastrocnemius oxygenation, blood pressure, and arterial stiffness were not affected by the intervention. NRV and BRJ intake markedly increase plasma nitrate and nitrite, but this does not translate to improved exercise tolerance, muscle oxygenation, and/or cardiovascular function.
Collapse
|
13
|
Repeated administration of inorganic nitrate on blood pressure and arterial stiffness: a systematic review and meta-analysis of randomized controlled trials. J Hypertens 2021; 38:2122-2140. [PMID: 32723980 DOI: 10.1097/hjh.0000000000002524] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We aim to synthesize effects of repeated administration (≥3 days) of inorganic nitrate on blood pressure and arterial stiffness measures. METHODS We conducted a systematic review and meta-analysis of randomized controlled trials with at least 3 days treatment of inorganic nitrate on blood pressure and arterial stiffness in individuals with or without elevated cardiovascular disease risk. MEDLINE, EMBASE and the Cochrane Library were searched through 2 July 2019. Two independent reviewers extracted relevant study data. Data were pooled using the generic inverse variance method with random-effects model, and expressed as mean differences with 95% confidence intervals. Certainty in the evidence was assessed using GRADE. RESULTS Forty-seven trials were included (n = 1101). Administration of inorganic nitrate significantly lowered SBP [mean difference: -2.91 mmHg, 95% confidence interval (95% CI): -3.92 to -1.89, I = 76%], DBP (mean difference: -1.45 mmHg, 95% CI: -2.22 to -0.68, I = 78%], central SBP (mean difference: -1.56 mmHg, 95% CI: -2.62 to -0.50, I = 30%) and central DBP (mean difference: -1.99 mmHg, 95% CI: -2.37 to -1.60, I = 0%). There was no effect on 24-h blood pressure, augmentation index or pulse wave velocity. Certainty in the evidence was graded moderate for central blood pressure, pulse wave velocity and low for peripheral blood pressure, 24-h blood pressure and augmentation index. CONCLUSION Repeated administration (≥3 days) of inorganic nitrate lower peripheral and central blood pressure. Results appear to be driven by beneficial effects in healthy and hypertensive individuals. More studies are required to increase certainty in the evidence.
Collapse
|
14
|
Shannon OM, Easton C, Shepherd AI, Siervo M, Bailey SJ, Clifford T. Dietary nitrate and population health: a narrative review of the translational potential of existing laboratory studies. BMC Sports Sci Med Rehabil 2021; 13:65. [PMID: 34099037 PMCID: PMC8186051 DOI: 10.1186/s13102-021-00292-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dietary inorganic nitrate (NO3-) is a polyatomic ion, which is present in large quantities in green leafy vegetables and beetroot, and has attracted considerable attention in recent years as a potential health-promoting dietary compound. Numerous small, well-controlled laboratory studies have reported beneficial health effects of inorganic NO3- consumption on blood pressure, endothelial function, cerebrovascular blood flow, cognitive function, and exercise performance. Translating the findings from small laboratory studies into 'real-world' applications requires careful consideration. MAIN BODY This article provides a brief overview of the existing empirical evidence basis for the purported health-promoting effects of dietary NO3- consumption. Key areas for future research are then proposed to evaluate whether promising findings observed in small animal and human laboratory studies can effectively translate into clinically relevant improvements in population health. These proposals include: 1) conducting large-scale, longer duration trials with hard clinical endpoints (e.g. cardiovascular disease incidence); 2) exploring the feasibility and acceptability of different strategies to facilitate a prolonged increase in dietary NO3- intake; 3) exploitation of existing cohort studies to explore associations between NO3- intake and health outcomes, a research approach allowing larger samples sizes and longer duration follow up than is feasible in randomised controlled trials; 4) identifying factors which might account for individual differences in the response to inorganic NO3- (e.g. sex, genetics, habitual diet) and could assist with targeted/personalised nutritional interventions; 5) exploring the influence of oral health and medication on the therapeutic potential of NO3- supplementation; and 6) examining potential risk of adverse events with long term high- NO3- diets. CONCLUSION The salutary effects of dietary NO3- are well established in small, well-controlled laboratory studies. Much less is known about the feasibility and efficacy of long-term dietary NO3- enrichment for promoting health, and the factors which might explain the variable responsiveness to dietary NO3- supplementation between individuals. Future research focussing on the translation of laboratory data will provide valuable insight into the potential applications of dietary NO3- supplementation to improve population health.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, Scotland, UK
| | - Anthony I Shepherd
- School of Sport, Health & Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
15
|
Ferguson SK, Woessner MN, Holmes MJ, Belbis MD, Carlström M, Weitzberg E, Allen JD, Hirai DM. Effects of inorganic nitrate supplementation on cardiovascular function and exercise tolerance in heart failure. J Appl Physiol (1985) 2021; 130:914-922. [PMID: 33475460 PMCID: PMC8424551 DOI: 10.1152/japplphysiol.00780.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/11/2023] Open
Abstract
Heart failure (HF) results in a myriad of central and peripheral abnormalities that impair the ability to sustain skeletal muscle contractions and, therefore, limit tolerance to exercise. Chief among these abnormalities is the lowered maximal oxygen uptake, which is brought about by reduced cardiac output and exacerbated by O2 delivery-utilization mismatch within the active skeletal muscle. Impaired nitric oxide (NO) bioavailability is considered to play a vital role in the vascular dysfunction of both reduced and preserved ejection fraction HF (HFrEF and HFpEF, respectively), leading to the pursuit of therapies aimed at restoring NO levels in these patient populations. Considering the complementary role of the nitrate-nitrite-NO pathway in the regulation of enzymatic NO signaling, this review explores the potential utility of inorganic nitrate interventions to increase NO bioavailability in the HFrEF and HFpEF patient population. Although many preclinical investigations have suggested that enhanced reduction of nitrite to NO in low Po2 and pH environments may make a nitrate-based therapy especially efficacious in patients with HF, inconsistent results have been found thus far in clinical settings. This brief review provides a summary of the effectiveness (or lack thereof) of inorganic nitrate interventions on exercise tolerance in patients with HFrEF and HFpEF. Focus is also given to practical considerations and current gaps in the literature to facilitate the development of effective nitrate-based interventions to improve exercise tolerance in patients with HF.
Collapse
Affiliation(s)
- Scott K Ferguson
- Department of Kinesiology and Exercise Science, College of Natural and Health Sciences, University of Hawaii at Hilo, Hilo, Hawaii
| | - Mary N Woessner
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Michael J Holmes
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Michael D Belbis
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Jason D Allen
- Department of Kinesiology & Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia
| | - Daniel M Hirai
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
16
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
17
|
Coggan AR, Hoffman RL, Gray DA, Moorthi RN, Thomas DP, Leibowitz JL, Thies D, Peterson LR. A Single Dose of Dietary Nitrate Increases Maximal Knee Extensor Angular Velocity and Power in Healthy Older Men and Women. J Gerontol A Biol Sci Med Sci 2021; 75:1154-1160. [PMID: 31231758 DOI: 10.1093/gerona/glz156] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Aging results in reductions in maximal muscular strength, speed, and power, which often lead to functional limitations highly predictive of disability, institutionalization, and mortality in elderly adults. This may be partially due to reduced nitric oxide (NO) bioavailability. We, therefore, hypothesized that dietary nitrate (NO3-), a source of NO via the NO3- → nitrite (NO2-) → NO enterosalivary pathway, could increase muscle contractile function in older subjects. METHODS Twelve healthy older (age 71 ± 5 years) men and women were studied using a randomized, double-blind, placebo-controlled, crossover design. After fasting overnight, subjects were tested 2 hours after ingesting beetroot juice containing or devoid of 13.4 ± 1.6 mmol NO3-. Plasma NO3- and NO2- and breath NO were measured periodically, and muscle function was determined using isokinetic dynamometry. RESULTS N O 3 - ingestion increased (p < .001) plasma NO3-, plasma NO2-, and breath NO by 1,051% ± 433%, 138% ± 149%, and 111% ± 115%, respectively. Maximal velocity of knee extension increased (p < .01) by 10.9% ± 12.1%. Maximal knee extensor power increased (p < .05) by 4.4% ± 7.8%. CONCLUSIONS Acute dietary NO3- intake improves maximal knee extensor angular velocity and power in older individuals. These findings may have important implications for this population, in whom diminished muscle function can lead to functional limitations, dependence, and even premature death.
Collapse
Affiliation(s)
- Andrew R Coggan
- Department of Kinesiology, Indiana University-Purdue University Indianapolis.,Department of Cellular and Integrative Physiology, Indiana University-Purdue University Indianapolis
| | - Richard L Hoffman
- Department of Kinesiology, Indiana University-Purdue University Indianapolis
| | - Derrick A Gray
- Department of Kinesiology, Indiana University-Purdue University Indianapolis
| | - Ranjani N Moorthi
- Department of Internal Medicine, Indiana University-Purdue University Indianapolis
| | - Deepak P Thomas
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua L Leibowitz
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Dakkota Thies
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Linda R Peterson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
18
|
Poole DC, Behnke BJ, Musch TI. The role of vascular function on exercise capacity in health and disease. J Physiol 2021; 599:889-910. [PMID: 31977068 PMCID: PMC7874303 DOI: 10.1113/jp278931] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Three sentinel parameters of aerobic performance are the maximal oxygen uptake ( V ̇ O 2 max ), critical power (CP) and speed of the V ̇ O 2 kinetics following exercise onset. Of these, the latter is, perhaps, the cardinal test of integrated function along the O2 transport pathway from lungs to skeletal muscle mitochondria. Fast V ̇ O 2 kinetics demands that the cardiovascular system distributes exercise-induced blood flow elevations among and within those vascular beds subserving the contracting muscle(s). Ideally, this process must occur at least as rapidly as mitochondrial metabolism elevates V ̇ O 2 . Chronic disease and ageing create an O2 delivery (i.e. blood flow × arterial [O2 ], Q ̇ O 2 ) dependency that slows V ̇ O 2 kinetics, decreasing CP and V ̇ O 2 max , increasing the O2 deficit and sowing the seeds of exercise intolerance. Exercise training, in contrast, does the opposite. Within the context of these three parameters (see Graphical Abstract), this brief review examines the training-induced plasticity of key elements in the O2 transport pathway. It asks how structural and functional vascular adaptations accelerate and redistribute muscle Q ̇ O 2 and thus defend microvascular O2 partial pressures and capillary blood-myocyte O2 diffusion across a ∼100-fold range of muscle V ̇ O 2 values. Recent discoveries, especially in the muscle microcirculation and Q ̇ O 2 -to- V ̇ O 2 heterogeneity, are integrated with the O2 transport pathway to appreciate how local and systemic vascular control helps defend V ̇ O 2 kinetics and determine CP and V ̇ O 2 max in health and how vascular dysfunction in disease predicates exercise intolerance. Finally, the latest evidence that nitrate supplementation improves vascular and therefore aerobic function in health and disease is presented.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Brad J Behnke
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy I Musch
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
19
|
Carbone S, Billingsley HE, Rodriguez-Miguelez P, Kirkman DL, Garten R, Franco RL, Lee DC, Lavie CJ. Lean Mass Abnormalities in Heart Failure: The Role of Sarcopenia, Sarcopenic Obesity, and Cachexia. Curr Probl Cardiol 2020; 45:100417. [PMID: 31036371 PMCID: PMC11146283 DOI: 10.1016/j.cpcardiol.2019.03.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 02/07/2023]
Abstract
The role of body composition in patients with heart failure (HF) has been receiving much attention in the last few years. Particularly, reduced lean mass (LM), the best surrogate for skeletal muscle mass, is independently associated with abnormal cardiorespiratory fitness (CRF) and muscle strength, ultimately leading to reduced quality of life and worse prognosis. While in the past, reduced CRF in patients with HF was thought to result exclusively from cardiac dysfunction leading to reduced cardiac output at peak exercise, current evidence supports the concept that abnormalities in LM may also play a critical role. Abnormalities in the LM body composition compartment are associated with the development of sarcopenia, sarcopenic obesity, and cachexia. Such conditions have been implicated in the pathophysiology and progression of HF. However, identification of such conditions remains challenging, as universal definitions for sarcopenia, sarcopenic obesity, and cachexia are lacking. In this review article, we describe the most common body composition abnormalities related to the LM compartment, including skeletal and respiratory muscle mass abnormalities, and the consequences of such anomalies on CRF and muscle strength in patients with HF. Finally, we discuss the potential nonpharmacologic therapeutic strategies such as exercise training (ie, aerobic exercise and resistance exercise) and dietary interventions (ie, dietary supplementation and dietary patterns) that have been implemented to target body composition, with a focus on HF.
Collapse
|
20
|
Woessner MN, Levinger I, Allen JD, McIlvenna LC, Neil C. The Effect of Dietary Inorganic Nitrate Supplementation on Cardiac Function during Submaximal Exercise in Men with Heart Failure with Reduced Ejection Fraction (HFrEF): A Pilot Study. Nutrients 2020; 12:nu12072132. [PMID: 32709051 PMCID: PMC7400930 DOI: 10.3390/nu12072132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Heart failure with reduced ejection fraction (HFrEF) is a common end point for patients with coronary artery disease and it is characterized by exercise intolerance due, in part, to a reduction in cardiac output. Nitric oxide (NO) plays a vital role in cardiac function and patients with HFrEF have been identified as having reduced vascular NO. This pilot study aimed to investigate if nitrate supplementation could improve cardiac measures during acute, submaximal exercise. Five male participants (61 ± 3 years) with HFrEF (EF 32 ± 2.2%) completed this pilot study. All participants supplemented with inorganic nitrate (beetroot juice) or a nitrate-depleted placebo for ~13 days prior to testing. Participants completed a three-stage submaximal exercise protocol on a recumbent cycle ergometer with simultaneous echocardiography for calculation of cardiac output (Q), stroke volume (SV), and total peripheral resistance (TPR). Heart rate and blood pressure were measured at rest and during each stage. Both plasma nitrate (mean = ~1028%, p = 0.004) and nitrite (mean = ~109%, p = 0.01) increased following supplementation. There were no differences between interventions at rest, but the percent change in SV and Q from rest to stage two and stage three of exercise was higher following nitrate supplementation (all p > 0.05, ES > 0.8). Both interventions showed decreases in TPR during exercise, but the percent reduction TPR in stages two and three was greater following nitrate supplementation (p = 0.09, ES = 0.98 and p = 0.14, ES = 0.82, respectively). There were clinically relevant increases in cardiac function during exercise following supplementation with nitrate. The findings from this pilot study warrant further investigation in larger clinical trials.
Collapse
Affiliation(s)
- Mary N. Woessner
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia; (I.L.); (J.D.A.); (L.C.M.); (C.N.)
- Correspondence: ; Tel.: +61-04-2169-2161
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia; (I.L.); (J.D.A.); (L.C.M.); (C.N.)
- Australian Institute for Musculoskeletal Science (AIMSS), Western Health, St Albans, VIC 3021, Australia
| | - Jason D. Allen
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia; (I.L.); (J.D.A.); (L.C.M.); (C.N.)
- Department of Kinesiology & Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Luke C. McIlvenna
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia; (I.L.); (J.D.A.); (L.C.M.); (C.N.)
| | - Christopher Neil
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 3011, Australia; (I.L.); (J.D.A.); (L.C.M.); (C.N.)
- Department of Medicine-Western Health, University of Melbourne, St Albans, VIC 3021, Australia
- Western Health Chronic Disease Alliance, University of Melbourne, St Albans, VIC 3021 Australia
| |
Collapse
|
21
|
Kapil V, Khambata RS, Jones DA, Rathod K, Primus C, Massimo G, Fukuto JM, Ahluwalia A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol Rev 2020; 72:692-766. [PMID: 32576603 DOI: 10.1124/pr.120.019240] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
In contrast to nitric oxide, which has well established and important roles in the regulation of blood flow and thrombosis, neurotransmission, the normal functioning of the genitourinary system, and the inflammation response and host defense, its oxidized metabolites nitrite and nitrate have, until recently, been considered to be relatively inactive. However, this view has been radically revised over the past decade and more. Much evidence has now accumulated demonstrating that nitrite serves as a storage form of nitric oxide, releasing nitric oxide preferentially under acidic and/or hypoxic conditions but also occurring under physiologic conditions: a phenomenon that is catalyzed by a number of distinct mammalian nitrite reductases. Importantly, preclinical studies demonstrate that reduction of nitrite to nitric oxide results in a number of beneficial effects, including vasodilatation of blood vessels and lowering of blood pressure, as well as cytoprotective effects that limit the extent of damage caused by an ischemia/reperfusion insult, with this latter issue having been translated more recently to the clinical setting. In addition, research has demonstrated that the other main metabolite of the oxidation of nitric oxide (i.e., nitrate) can also be sequentially reduced through processing in vivo to nitrite and then nitrite to nitric oxide to exert a range of beneficial effects-most notably lowering of blood pressure, a phenomenon that has also been confirmed recently to be an effective method for blood pressure lowering in patients with hypertension. This review will provide a detailed description of the pathways involved in the bioactivation of both nitrate and nitrite in vivo, their functional effects in preclinical models, and their mechanisms of action, as well as a discussion of translational exploration of this pathway in diverse disease states characterized by deficiencies in bioavailable nitric oxide. SIGNIFICANCE STATEMENT: The past 15 years has seen a major revision in our understanding of the pathways for nitric oxide synthesis in the body with the discovery of the noncanonical pathway for nitric oxide generation known as the nitrate-nitrite-nitric oxide pathway. This review describes the molecular components of this pathway, its role in physiology, potential therapeutics of targeting this pathway, and their impact in experimental models, as well as the clinical translation (past and future) and potential side effects.
Collapse
Affiliation(s)
- V Kapil
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - R S Khambata
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - D A Jones
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - K Rathod
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - C Primus
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - G Massimo
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - J M Fukuto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| | - A Ahluwalia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.)
| |
Collapse
|
22
|
Berry MJ, Miller GD, Kim-Shapiro DB, Fletcher MS, Jones CG, Gauthier ZD, Collins SL, Basu S, Heinrich TM. A randomized controlled trial of nitrate supplementation in well-trained middle and older-aged adults. PLoS One 2020; 15:e0235047. [PMID: 32574223 PMCID: PMC7310701 DOI: 10.1371/journal.pone.0235047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Nitrate (NO3-), through its conversion to nitrite (NO2-) and nitric oxide, has been shown to increase exercise tolerance in healthy younger adults and older diseased patients. Nitrate’s effect in well-trained middle to older-aged adults has not been studied. Therefore, the purpose of this investigation was to examine the effects of a NO3- rich beverage on submaximal constant work rate exercise time in well-trained middle to older-aged adults. Methods This was a randomized controlled cross-over trial with 15 well-trained middle to older-aged adults, 41–64 year-old, who received one of two treatments (NO3- rich beverage then placebo or placebo then NO3- rich beverage), after which an exercise test at 75 percent of the subject’s maximal work rate was completed. Results The NO3- rich beverage increased plasma NO3- and NO2- levels by 260 μM and 0.47 μM, respectively (p<0.001). Exercise time was not significantly different (p = 0.31) between the NO3- rich versus placebo conditions (1130±151 vs 1060±132 sec, respectively). Changes in exercise time between the two conditions ranged from a 55% improvement to a 40% decrease with the NO3- rich beverage. Oxygen consumption and rating of perceived exertion were not significantly different between the two conditions. Conclusion In middle to older-aged well-trained adults, NO3- supplementation has non-significant, albeit highly variable, effects on exercise tolerance. ClinicalTrials.gov Identifier: NCT03371966
Collapse
Affiliation(s)
- Michael J. Berry
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
- * E-mail:
| | - Gary D. Miller
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Daniel B. Kim-Shapiro
- Physics Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Macie S. Fletcher
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Caleb G. Jones
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Zachary D. Gauthier
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Summer L. Collins
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Swati Basu
- Physics Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Timothy M. Heinrich
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
23
|
Woessner MN, Neil C, Saner NJ, Goodman CA, McIlvenna LC, Ortiz de Zevallos J, Garnham A, Levinger I, Allen JD. Effect of inorganic nitrate on exercise capacity, mitochondria respiration, and vascular function in heart failure with reduced ejection fraction. J Appl Physiol (1985) 2020; 128:1355-1364. [DOI: 10.1152/japplphysiol.00850.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This is the largest study to date to examine the effects of inorganic nitrate supplementation in patients with heart failure with reduced ejection fraction (HFrEF) and the first to include measures of vascular function and mitochondrial respiration. Although daily supplementation increased plasma nitrite, our data indicate that supplementation with inorganic nitrate as a standalone treatment is ineffective at improving exercise capacity, vascular function, or mitochondrial respiration in patients with HFrEF.
Collapse
Affiliation(s)
- Mary N. Woessner
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Western Health, St. Albans, Victoria, Australia
| | - Christopher Neil
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Western Health, St. Albans, Victoria, Australia
| | - Nicholas J. Saner
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Craig A. Goodman
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Western Health, St. Albans, Victoria, Australia
| | - Luke C. McIlvenna
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Joaquin Ortiz de Zevallos
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Department of Kinesiology and Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia
| | - Andrew Garnham
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Itamar Levinger
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, St. Albans, Victoria, Australia
| | - Jason D. Allen
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Department of Kinesiology and Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
24
|
Nutraceuticals in Patients With Heart Failure: A Systematic Review. J Card Fail 2020; 26:166-179. [DOI: 10.1016/j.cardfail.2019.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/07/2019] [Accepted: 10/29/2019] [Indexed: 01/09/2023]
|
25
|
Olsson H, Al-Saadi J, Oehler D, Pergolizzi J, Magnusson P. Physiological Effects of Beetroot in Athletes and Patients. Cureus 2019; 11:e6355. [PMID: 31938641 PMCID: PMC6952046 DOI: 10.7759/cureus.6355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dietary supplementation with beetroot juice (BRJ), a naturally rich source of nitrate, is an area of considerable interest to elite athletes as well as recreational exercisers. Nitrate and nitrite have previously been thought of as mainly final elimination products of nitric oxide (NO), but this view has been challenged and evidence indicates that these compounds can be converted to NO in vivo. We conducted a narrative review summarizing the literature regarding evidence of beetroot used as dietary supplement and its effects on training physiology and athletic performance in healthy and diseased populations. The databases PubMed and Web of Science were used to obtain articles. It was evident that BRJ supplementation had an effect on oxygen cost and consumption during exercise by more efficient adenosine triphosphate (ATP) production in combination with lower ATP consumption. However, the effect seems to be dependent on dose and duration. Effect on exercise performance is conflicting, time to exhaustion seems to increase but its effect on time-trial performance needs further elucidation. Ergogenic benefits might depend on individual aerobic fitness level, where individuals with lower fitness level may gain higher benefits regarding athletic performance. Dietary nitrate supplementation appears to have some effect on training performance in patients with peripheral artery disease, heart failure, and chronic pulmonary obstructive disease. However, larger randomized controlled trials are necessary to determine the overall utility of beetroot as a dietary supplement.
Collapse
Affiliation(s)
- Hanna Olsson
- Cardiology, Centre for Research and Development Region Gävleborg/Uppsala University, Gävle, SWE
| | - Jonathan Al-Saadi
- Cardiology, Centre for Research and Development Region Gävleborg/Uppsala University, Gävle, SWE
| | - Daniel Oehler
- Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, Düsseldorf, DEU
| | | | - Peter Magnusson
- Medicine, Cardiology Research Unit, Karolinska Institutet, Stockholm, SWE
| |
Collapse
|
26
|
Swartz MC, Allen K, Deer RR, Lyons EJ, Swartz MD, Clifford T. A Narrative Review on the Potential of Red Beetroot as an Adjuvant Strategy to Counter Fatigue in Children with Cancer. Nutrients 2019; 11:E3003. [PMID: 31817919 PMCID: PMC6949985 DOI: 10.3390/nu11123003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023] Open
Abstract
Cancer-related fatigue (CRF) is a debilitating adverse effect among children with cancer and a significant barrier to physical activity (PA) participation. PA interventions are effective at reducing fatigue and improving both quality of life (QOL) and functional outcomes in children with cancer. However, 50-70% of children with cancer do not meet PA guidelines. Thus, adjuvant methods are needed to increase PA participation. Given the growing interest in the use of beetroot juice to reduce exercise-induced fatigue, our narrative review evaluated the potential use of beetroot to improve PA participation to counter CRF and improve QOL. Our review of 249 articles showed a lack of published clinical trials of beetroot in children and adults with cancer. Trials of beetroot use had been conducted in a noncancer population (n = 198), and anticancer studies were primarily in the preclinical phase (n = 40). Although results are promising, with beetroot juice shown to counter exercise-induced fatigue in a variety of athletic and patient populations, its use to counter CRF in children with cancer is inconclusive. Pilot and feasibility studies are needed to examine the potential benefits of beetroot to counter CRF, increase PA participation, and improve QOL in children with cancer.
Collapse
Affiliation(s)
- Maria C. Swartz
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030-4009, USA
| | - Kaitlyn Allen
- Department of Nutrition and Metabolism, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1124, USA; (K.A.); (E.J.L.)
| | - Rachel R. Deer
- Division of Rehabilitation Sciences, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1137, USA;
| | - Elizabeth J. Lyons
- Department of Nutrition and Metabolism, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1124, USA; (K.A.); (E.J.L.)
| | - Michael D. Swartz
- Department of Biostatistics and Data Science, The University of Texas Health Science Center, School of Public Health, 1200 Pressler St., Houston, TX 77030, USA;
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire LE11 3TU, UK;
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle NE2 4HH, UK
| |
Collapse
|
27
|
Billingsley HE, Rodriguez-Miguelez P, Del Buono MG, Abbate A, Lavie CJ, Carbone S. Lifestyle Interventions with a Focus on Nutritional Strategies to Increase Cardiorespiratory Fitness in Chronic Obstructive Pulmonary Disease, Heart Failure, Obesity, Sarcopenia, and Frailty. Nutrients 2019; 11:nu11122849. [PMID: 31766324 PMCID: PMC6950118 DOI: 10.3390/nu11122849] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/03/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiorespiratory fitness (CRF) is an independent predictor for all-cause and disease-specific morbidity and mortality. CRF is a modifiable risk factor, and exercise training and increased physical activity, as well as targeted medical therapies, can improve CRF. Although nutrition is a modifiable risk factor for chronic noncommunicable diseases, little is known about the effect of dietary patterns and specific nutrients on modifying CRF. This review focuses specifically on trials that implemented dietary supplementation, modified dietary pattern, or enacted caloric restriction, with and without exercise training interventions, and subsequently measured the effect on peak oxygen consumption (VO2) or surrogate measures of CRF and functional capacity. Populations selected for this review are those recognized to have a reduced CRF, such as chronic obstructive pulmonary disease, heart failure, obesity, sarcopenia, and frailty. We then summarize the state of existing knowledge and explore future directions of study in disease states recently recognized to have an abnormal CRF.
Collapse
Affiliation(s)
- Hayley E. Billingsley
- Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23284, USA; (H.E.B.); (A.A.)
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Paula Rodriguez-Miguelez
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Antonio Abbate
- Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23284, USA; (H.E.B.); (A.A.)
| | - Carl J. Lavie
- Department of Cardiovascular Diseases, Ochsner Clinical School, New Orleans, LA 70121, USA;
| | - Salvatore Carbone
- Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23284, USA; (H.E.B.); (A.A.)
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Correspondence: ; Tel.: +1-804-628-3980
| |
Collapse
|
28
|
Abstract
Nitric oxide (NO) plays a plethora of important roles in the human body. Insufficient production of NO (for example, during older age and in various disease conditions) can adversely impact health and physical performance. In addition to its endogenous production through the oxidation of l-arginine, NO can be formed nonenzymatically via the reduction of nitrate and nitrite, and the storage of these anions can be augmented by the consumption of nitrate-rich foodstuffs such as green leafy vegetables. Recent studies indicate that dietary nitrate supplementation, administered most commonly in the form of beetroot juice, can ( a) improve muscle efficiency by reducing the O2 cost of submaximal exercise and thereby improve endurance exercise performance and ( b) enhance skeletal muscle contractile function and thereby improve muscle power and sprint exercise performance. This review describes the physiological mechanisms potentially responsible for these effects, outlines the circumstances in which ergogenic effects are most likely to be evident, and discusses the effects of dietary nitrate supplementation on physical performance in a range of human populations.
Collapse
Affiliation(s)
- Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Christopher Thompson
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Lee J Wylie
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Anni Vanhatalo
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| |
Collapse
|
29
|
Poole DC. Edward F. Adolph Distinguished Lecture. Contemporary model of muscle microcirculation: gateway to function and dysfunction. J Appl Physiol (1985) 2019; 127:1012-1033. [PMID: 31095460 DOI: 10.1152/japplphysiol.00013.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This review strikes at the very heart of how the microcirculation functions to facilitate blood-tissue oxygen, substrate, and metabolite fluxes in skeletal muscle. Contemporary evidence, marshalled from animals and humans using the latest techniques, challenges iconic perspectives that have changed little over the past century. Those perspectives include the following: the presence of contractile or collapsible capillaries in muscle, unitary control by precapillary sphincters, capillary recruitment at the onset of contractions, and the notion of capillary-to-mitochondrial diffusion distances as limiting O2 delivery. Today a wealth of physiological, morphological, and intravital microscopy evidence presents a completely different picture of microcirculatory control. Specifically, capillary red blood cell (RBC) and plasma flux is controlled primarily at the arteriolar level with most capillaries, in healthy muscle, supporting at least some flow at rest. In healthy skeletal muscle, this permits substrate access (whether carried in RBCs or plasma) to a prodigious total capillary surface area. Pathologies such as heart failure or diabetes decrease access to that exchange surface by reducing the proportion of flowing capillaries at rest and during exercise. Capillary morphology and function vary disparately among tissues. The contemporary model of capillary function explains how, following the onset of exercise, muscle O2 uptake kinetics can be extremely fast in health but slowed in heart failure and diabetes impairing contractile function and exercise tolerance. It is argued that adoption of this model is fundamental for understanding microvascular function and dysfunction and, as such, to the design and evaluation of effective therapeutic strategies to improve exercise tolerance and decrease morbidity and mortality in disease.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
30
|
Affiliation(s)
- Nathan S. Bryan
- Department of Molecular and Human GeneticsBaylor College of Medicine One Baylor Plaza Alkek Building for Biomedical Research R-850 Houston TX 77030
| |
Collapse
|
31
|
Mulkareddy V, Racette SB, Coggan AR, Peterson LR. Dietary nitrate's effects on exercise performance in heart failure with reduced ejection fraction (HFrEF). Biochim Biophys Acta Mol Basis Dis 2019; 1865:735-740. [PMID: 30261290 PMCID: PMC6401215 DOI: 10.1016/j.bbadis.2018.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Abstract
Heart failure with reduced ejection fraction (HFrEF) is a deadly and disabling disease. A key derangement contributing to impaired exercise performance in HFrEF is decreased nitric oxide (NO) bioavailability. Scientists recently discovered the inorganic nitrate pathway for increasing NO. This has advantages over organic nitrates and NO synthase production of NO. Small studies using beetroot juice as a source of inorganic nitrate demonstrate its power to improve exercise performance in HFrEF. A larger-scale trial is now underway to determine if inorganic nitrate may be a new arrow for physicians' quiver of HFrEF treatments.
Collapse
Affiliation(s)
- Vinaya Mulkareddy
- The Department of Medicine, 4960 Children's Place, Campus Box 8066, St. Louis, MO 63110, USA.
| | - Susan B Racette
- The Department of Medicine, 4960 Children's Place, Campus Box 8066, St. Louis, MO 63110, USA; Program in Physical Therapy, Washington University School of Medicine, Campus Box 8502, 4444 Forest Park Ave., St. Louis, MO 63108-2212, USA.
| | - Andrew R Coggan
- Department of Kinesiology, Indiana University Purdue University Indianapolis, 901 West New York Street, Indianapolis, IN 46202, USA; Department of Cellular and Integrative Physiology, Indiana University Purdue University Indianapolis, 901 West New York Street, Indianapolis, IN 46202, USA.
| | - Linda R Peterson
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
32
|
Craig JC, Colburn TD, Hirai DM, Musch TI, Poole DC. Sexual dimorphism in the control of skeletal muscle interstitial Po 2 of heart failure rats: effects of dietary nitrate supplementation. J Appl Physiol (1985) 2019; 126:1184-1192. [PMID: 30844332 DOI: 10.1152/japplphysiol.01004.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sex differences in the mechanisms underlying cardiovascular pathophysiology of O2 transport in heart failure (HF) remain to be explored. In HF, nitric oxide (NO) bioavailability is reduced and contributes to deficits in O2 delivery-to-utilization matching. Females may rely more on NO for cardiovascular control and as such experience greater decrements in HF. We tested the hypotheses that moderate HF induced by myocardial infarction would attenuate the skeletal muscle interstitial Po2 response to contractions (Po2is; determined by O2 delivery-to-utilization matching) compared with healthy controls and females would express greater dysfunction than male counterparts. Furthermore, we hypothesized that 5 days of dietary nitrate supplementation (Nitrate; 1 mmol·kg-1·day-1) would raise Po2is in HF rats. Forty-two Sprague-Dawley rats were randomly assigned to healthy, HF, or HF + Nitrate groups (each n = 14; 7 female/7 male). Spinotrapezius Po2is was measured via phosphorescence quenching during electrically induced twitch contractions (180 s; 1 Hz). HF reduced resting Po2is for both sexes compared with healthy controls (P < 0.01), and females were lower than males (14 ± 1 vs. 17 ± 2 mmHg) (P < 0.05). In HF both sexes expressed reduced Po2is amplitudes following the onset of muscle contractions compared with healthy controls (female: -41 ± 7%, male: -26 ± 12%) (P < 0.01). In HF rats, Nitrate elevated resting Po2is to values not different from healthy rats and removed the sex difference. Female HF + Nitrate rats expressed greater resting Po2is and amplitudes compared with female HF (P < 0.05). In this model of moderate HF, O2 delivery-to-utilization matching in the interstitial space is diminished in a sex-specific manner and dietary nitrate supplementation may serve to offset this reduction in HF rats with greater effects in females. NEW & NOTEWORTHY Interstitial Po2 (Po2is; indicative of O2 delivery-to-utilization matching) determines, in part, O2 flux into skeletal muscle. We show that heart failure (HF) reduces Po2is at rest and during skeletal muscle contractions in rats and this negative effect is amplified for females. However, elevating NO bioavailability with dietary nitrate supplementation increases resting Po2is and alters the dynamic response with greater efficacy in female HF rats, particularly at rest and following the onset of muscle contractions.
Collapse
Affiliation(s)
- Jesse C Craig
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Daniel M Hirai
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - David C Poole
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
33
|
Notarius CF. Why Would the Effect of Beet Root Juice on Exercise Capacity in HFrEF Vary With Etiology? J Card Fail 2019; 25:222. [DOI: 10.1016/j.cardfail.2019.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 11/29/2022]
|
34
|
Coggan AR, Peterson LR. [Reply to Notarius]. J Card Fail 2019; 25:223. [DOI: 10.1016/j.cardfail.2019.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
|
35
|
Bentley RF, Jones JH, Hirai DM, Zelt JT, Giles MD, Raleigh JP, Quadrilatero J, Gurd BJ, Neder JA, Tschakovsky ME. Do interindividual differences in cardiac output during submaximal exercise explain differences in exercising muscle oxygenation and ratings of perceived exertion? Physiol Rep 2019; 6. [PMID: 29368399 PMCID: PMC5789726 DOI: 10.14814/phy2.13570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 11/24/2022] Open
Abstract
Considerable interindividual differences in the Q˙-V˙O2 relationship during exercise have been documented but implications for submaximal exercise tolerance have not been considered. We tested the hypothesis that these interindividual differences were associated with differences in exercising muscle deoxygenation and ratings of perceived exertion (RPE) across a range of submaximal exercise intensities. A total of 31 (21 ± 3 years) healthy recreationally active males performed an incremental exercise test to exhaustion 24 h following a resting muscle biopsy. Cardiac output (Q˙ L/min; inert gas rebreathe), oxygen uptake (V˙O2 L/min; breath-by-breath pulmonary gas exchange), quadriceps saturation (near infrared spectroscopy) and exercise tolerance (6-20; Borg Scale RPE) were measured. The Q˙-V˙O2 relationship from 40 to 160 W was used to partition individuals post hoc into higher (n = 10; 6.3 ± 0.4) versus lower (n = 10; 3.7 ± 0.4, P < 0.001) responders. The Q˙-V˙O2 difference between responder types was not explained by arterial oxygen content differences (P = 0.5) or peripheral skeletal muscle characteristics (P from 0.1 to 0.8) but was strongly associated with stroke volume (P < 0.05). Despite considerable Q˙-V˙O2 difference between groups, no difference in quadriceps deoxygenation was observed during exercise (all P > 0.4). Lower cardiac responders had greater leg (P = 0.027) and whole body (P = 0.03) RPE only at 185 W, but this represented a higher %peak V˙O2 in lower cardiac responders (87 ± 15% vs. 66 ± 12%, P = 0.005). Substantially lower Q˙-V˙O2 in the lower responder group did not result in altered RPE or exercising muscle deoxygenation. This suggests substantial recruitment of blood flow redistribution in the lower responder group as part of protecting matching of exercising muscle oxygen delivery to demand.
Collapse
Affiliation(s)
- Robert F Bentley
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Joshua H Jones
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Daniel M Hirai
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Joel T Zelt
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Matthew D Giles
- Queen's Muscle Physiology Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - James P Raleigh
- Queen's Muscle Physiology Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Joe Quadrilatero
- Muscle Biology and Cell Death Laboratory, Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Brendon J Gurd
- Queen's Muscle Physiology Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - J Alberto Neder
- Laboratory of Clinical Exercise Physiology, Division of Respirology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Michael E Tschakovsky
- Human Vascular Control Laboratory, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
36
|
The effect of acute and 7-days dietary nitrate on mechanical efficiency, exercise performance and cardiac biomarkers in patients with chronic obstructive pulmonary disease. Clin Nutr 2018; 37:1852-1861. [DOI: 10.1016/j.clnu.2017.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/22/2017] [Accepted: 10/19/2017] [Indexed: 11/17/2022]
|
37
|
Aggarwal M, Bozkurt B, Panjrath G, Aggarwal B, Ostfeld RJ, Barnard ND, Gaggin H, Freeman AM, Allen K, Madan S, Massera D, Litwin SE. Lifestyle Modifications for Preventing and Treating Heart Failure. J Am Coll Cardiol 2018; 72:2391-2405. [DOI: 10.1016/j.jacc.2018.08.2160] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 08/07/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022]
|
38
|
National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand: Guidelines for the Prevention, Detection, and Management of Heart Failure in Australia 2018. Heart Lung Circ 2018; 27:1123-1208. [DOI: 10.1016/j.hlc.2018.06.1042] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Henrohn D, Björkstrand K, Lundberg JO, Granstam SO, Baron T, Ingimarsdóttir IJ, Hedenström H, Malinovschi A, Wernroth ML, Jansson M, Hedeland M, Wikström G. Effects of Oral Supplementation With Nitrate-Rich Beetroot Juice in Patients With Pulmonary Arterial Hypertension-Results From BEET-PAH, an Exploratory Randomized, Double-Blind, Placebo-Controlled, Crossover Study. J Card Fail 2018; 24:640-653. [PMID: 30244181 DOI: 10.1016/j.cardfail.2018.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND The nitrate-nitrite-nitric oxide (NO) pathway may represent a potential therapeutic target in patients with pulmonary arterial hypertension (PAH). We explored the effects of dietary nitrate supplementation, with the use of nitrate-rich beetroot juice (BRJ), in patients with PAH. METHODS AND RESULTS We prospectively studied 15 patients with PAH in an exploratory randomized, double-blind, placebo-controlled, crossover trial. The patients received nitrate-rich beetroot juice (∼16 mmol nitrate per day) and placebo in 2 treatment periods of 7 days each. The assessments included; exhaled NO and NO flow-independent parameters (alveolar NO and bronchial NO flux), plasma and salivary nitrate and nitrite, biomarkers and metabolites of the NO-system, N-terminal pro-B-type natriuretic peptide, echocardiography, ergospirometry, diffusing capacity of the lung for carbon monoxide, and the 6-minute walk test. Compared with placebo ingestion of BRJ resulted in increases in; fractional exhaled NO at all flow-rates, alveolar NO concentrations and bronchial NO flux, and plasma and salivary levels of nitrate and nitrite. Plasma ornithine levels decreased and indices of relative arginine availability increased after BRJ compared to placebo. A decrease in breathing frequency was observed during ergospirometry after BRJ. A tendency for an improvement in right ventricular function was observed after ingestion of BRJ. In addition a tendency for an increase in the peak power output to peak oxygen consumption ratio (W peak/VO2 peak) was observed, which became significant in patients reaching an increase of plasma nitrite >30% (responders). CONCLUSIONS BRJ administered for 1 week increases pulmonary NO production and the relative arginine bioavailability in patients with PAH, compared with placebo. An increase in the W peak/VO2 peak ratio was observed after BRJ ingestion in plasma nitrite responders. These findings indicate that supplementation with inorganic nitrate increase NO synthase-independent NO production from the nitrate-nitrite-NO pathway.
Collapse
Affiliation(s)
- Dan Henrohn
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden.
| | - Kristoffer Björkstrand
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Olof Granstam
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Tomasz Baron
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden; Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden; Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Inga J Ingimarsdóttir
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Hans Hedenström
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Andrei Malinovschi
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Mona-Lisa Wernroth
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden; Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Martin Jansson
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Mikael Hedeland
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute, (SVA), Uppsala, Sweden; Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Gerhard Wikström
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
40
|
Dietary patterns and components to prevent and treat heart failure: a comprehensive review of human studies. Nutr Res Rev 2018; 32:1-27. [DOI: 10.1017/s0954422418000148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractGrowing evidence has emerged about the role of dietary patterns and components in heart failure (HF) incidence and severity. The objective here is to provide a comprehensive summary of the current evidence regarding dietary patterns/components and HF. A comprehensive search of online databases was conducted using multiple relevant keywords to identify relevant human studies. The Dietary Approaches to Stop Hypertension (DASH) and Mediterranean diets have consistently been associated with decreased HF incidence and severity. Regarding specific dietary components, fruit, vegetables, legumes and whole grains appear beneficial. Current evidence suggests that red/processed meats, eggs and refined carbohydrates are harmful, while fish, dairy products and poultry remain controversial. However, there is a notable lack of human intervention trials. The existing but limited observational and interventional evidence from human studies suggests that a plant-based dietary pattern high in antioxidants, micronutrients, nitrate and fibre but low in saturated/trans-fat and Na may decrease HF incidence/severity. Potential mechanisms include decreased oxidative stress, homocysteine and inflammation but higher antioxidant defence and NO bioavailability and gut microbiome modulation. Randomised, controlled trials are urgently required.
Collapse
|
41
|
Horiuchi M, Endo J, Dobashi S, Handa Y, Kiuchi M, Koyama K. Muscle oxygenation profiles between active and inactive muscles with nitrate supplementation under hypoxic exercise. Physiol Rep 2018; 5:5/20/e13475. [PMID: 29066597 PMCID: PMC5661236 DOI: 10.14814/phy2.13475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/02/2022] Open
Abstract
Whether dietary nitrate supplementation improves exercise performance or not is still controversial. While redistribution of sufficient oxygen from inactive to active muscles is essential for optimal exercise performance, no study investigated the effects of nitrate supplementation on muscle oxygenation profiles between active and inactive muscles. Nine healthy males performed 25 min of submaximal (heart rate ~140 bpm; EXsub) and incremental cycling (EXmax) until exhaustion under three conditions: (A) normoxia without drink; (B) hypoxia (FiO2 = 13.95%) with placebo (PL); and (c) hypoxia with beetroot juice (BR). PL and BR were provided for 4 days. Oxygenated and deoxygenated hemoglobin (HbO2 and HHb) were measured in vastus lateralis (active) and biceps brachii (inactive) muscles, and the oxygen saturation of skeletal muscle (StO2; HbO2/total Hb) were calculated. During EXsub, BR suppressed the HHb increases in active muscles during the last 5 min of exercise. During EXmax, time to exhaustion with BR (513 ± 24 sec) was significantly longer than with PL (490 ± 39 sec, P < 0.05). In active muscles, BR suppressed the HHb increases at moderate work rates during EXmax compared to PL (P < 0.05). In addition, BR supplementation was associated with greater reductions in HbO2 and StO2 at higher work rates in inactive muscles during EXmax. Collectively, these findings indicate that short‐term dietary nitrate supplementation improved hypoxic exercise tolerance, perhaps, due to suppressed increases in HHb in active muscles at moderate work rates. Moreover, nitrate supplementation caused greater reductions in oxygenation in inactive muscle at higher work rates during hypoxic exercise.
Collapse
Affiliation(s)
- Masahiro Horiuchi
- Division of Human Environmental Science, Mt. Fuji Research Institute, Fuji-yoshida, Japan
| | - Junko Endo
- Division of Human Environmental Science, Mt. Fuji Research Institute, Fuji-yoshida, Japan
| | - Shohei Dobashi
- Graduate School Department of Interdisciplinary, University of Yamanashi, Kofu, Japan
| | - Yoko Handa
- Division of Human Environmental Science, Mt. Fuji Research Institute, Fuji-yoshida, Japan
| | - Masataka Kiuchi
- Graduate School Department of Interdisciplinary, University of Yamanashi, Kofu, Japan
| | - Katsuhiro Koyama
- Graduate School Department of Interdisciplinary, University of Yamanashi, Kofu, Japan
| |
Collapse
|
42
|
Woessner MN, Levinger I, Neil C, Smith C, Allen JD. Effects of Dietary Inorganic Nitrate Supplementation on Exercise Performance in Patients With Heart Failure: Protocol for a Randomized, Placebo-Controlled, Cross-Over Trial. JMIR Res Protoc 2018; 7:e86. [PMID: 29625952 PMCID: PMC5910532 DOI: 10.2196/resprot.8865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 01/22/2023] Open
Abstract
Background Chronic heart failure is characterized by an inability of the heart to pump enough blood to meet the demands of the body, resulting in the hallmark symptom of exercise intolerance. Chronic underperfusion of the peripheral tissues and impaired nitric oxide bioavailability have been implicated as contributors to the decrease in exercise capacity in these patients. nitric oxide bioavailability has been identified as an important mediator of exercise tolerance in healthy individuals, but there are limited studies examining the effects in patients with chronic heart failure. Objective The proposed trial is designed to determine the effects of chronic inorganic nitrate supplementation on exercise tolerance in both patients with heart failure preserved ejection fraction (HFpEF) and heart failure reduced ejection fraction (HFrEF) and to determine whether there are any differential responses between the 2 cohorts. A secondary objective is to provide mechanistic insights into the 2 heart failure groups’ exercise responses to the nitrate supplementation. Methods Patients with chronic heart failure (15=HFpEF and 15=HFrEF) aged 40 to 85 years will be recruited. Following an initial screen cardiopulmonary exercise test, participants will be randomly allocated in a double-blind fashion to consume either a nitrate-rich beetroot juice (16 mmol nitrate/day) or a nitrate-depleted placebo (for 5 days). Participants will continue daily dosing until the completion of the 4 testing visits (maximal cardiopulmonary exercise test, submaximal exercise test with echocardiography, vascular function assessment, and vastus lateralis muscle biopsy). There will then be a 2-week washout period after which the participants will cross over to the other treatment and complete the same 4 testing visits. Results This study is funded by National Heart Foundation of Australia and Victoria University. Enrolment has commenced and the data collection is expected to be completed in mid 2018. The initial results are expected to be submitted for publication by the end of 2018. Conclusions If inorganic nitrate supplementation can improve exercise tolerance in patients with chronic heart failure, it has the potential to aid in further refining the treatment of patients in this population. Trial Registration Australian New Zealand Clinical Trials Registry ACTRN12615000906550; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=368912 (Archived by WebCite at http://www.webcitation.org/6xymLMiFK)
Collapse
Affiliation(s)
- Mary N Woessner
- Institute of Health and Sport, Victoria University, Melbourne, Australia.,Western Center for Health and Research Education, Victoria University, St Albans, Australia
| | - Itamar Levinger
- Institute of Health and Sport, Victoria University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science, Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Christopher Neil
- Institute of Health and Sport, Victoria University, Melbourne, Australia.,Department of Medicine-Western Health, University of Melbourne, Melbourne, Australia
| | - Cassandra Smith
- Institute of Health and Sport, Victoria University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science, Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Jason D Allen
- Institute of Health and Sport, Victoria University, Melbourne, Australia.,Western Center for Health and Research Education, Victoria University, St Albans, Australia.,Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
43
|
McDonagh STJ, Wylie LJ, Thompson C, Vanhatalo A, Jones AM. Potential benefits of dietary nitrate ingestion in healthy and clinical populations: A brief review. Eur J Sport Sci 2018. [PMID: 29529987 DOI: 10.1080/17461391.2018.1445298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article provides an overview of the current literature relating to the efficacy of dietary nitrate (NO3-) ingestion in altering aspects of cardiovascular and metabolic health and exercise capacity in healthy and diseased individuals. The consumption of NO3--rich vegetables, such as spinach and beetroot, have been variously shown to promote nitric oxide bioavailability, reduce systemic blood pressure, enhance tissue blood flow, modulate muscle O2 utilisation and improve exercise tolerance both in normoxia and in hypoxia, as is commonly observed in a number of disease states. NO3- ingestion may, therefore, act as a natural means for augmenting performance and attenuating complications associated with limited O2 availability or transport, hypertension and the metabolic syndrome. Recent studies indicate that dietary NO3- might also augment intrinsic skeletal muscle contractility and improve the speed and power of muscle contraction. Moreover, several investigations suggest that NO3- supplementation may improve aspects of cognitive performance both at rest and during exercise. Collectively, these observations position NO3- as more than a putative ergogenic aid and suggest that increasing natural dietary NO3- intake may act as a prophylactic in countering the predations of senescence and certain cardiovascular-metabolic diseases.
Collapse
Affiliation(s)
- Sinead T J McDonagh
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Lee J Wylie
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Christopher Thompson
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Anni Vanhatalo
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Andrew M Jones
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| |
Collapse
|
44
|
Asgary S, Rastqar A, Keshvari M. Functional Food and Cardiovascular Disease Prevention and Treatment: A Review. J Am Coll Nutr 2018. [PMID: 29528772 DOI: 10.1080/07315724.2017.1410867] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease (CVD) is now the leading cause of death globally and is a growing health concern. Lifestyle factors, including nutrition, play an important role in the etiology and treatment of CVD. Functional foods based on their basic nutritional functions can decrease the risk of many chronic diseases and have some physiological benefits. They contain physiologically active components either from plant or animal sources, marketed with the claim of their ability to reduce heart disease risk, focusing primarily on established risk factors, which are hyperlipidemia, diabetes, metabolic syndrome, obesity/overweight, elevated lipoprotein A level, small dense low-density lipoprotein cholesterol (LDL-C), and elevated inflammatory marker levels. Functional foods are suspected to exert their cardioprotective effects mainly through blood lipid profile level and improve hypertension control, endothelial function, platelet aggregation, and antioxidant actions. Clinical and epidemiological observations indicate that vegetable and fruit fiber, nuts and seeds, sea foods, coffee, tea, and dark chocolate have cardioprotective potential in humans, as well whole-grain products containing intact grain kernels rich in fiber and trace nutrients. They are nutritionally more important because they contain phytoprotective substances that might work synergistically to reduce cardiovascular risk. This review will focus on the reciprocal interaction between functional foods and the potential link to cardiovascular health and the possible mechanisms of action.
Collapse
Affiliation(s)
- Sedigheh Asgary
- a Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Ali Rastqar
- b Department of Psychiatry and Neuroscience , Université Laval, Québec , Québec , Canada.,c Research Center of University Affiliated Québec Mental Health Institute, Québec , Québec , Canada
| | - Mahtab Keshvari
- a Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences , Isfahan , Iran
| |
Collapse
|
45
|
Chirinos JA. The Nitrate-Nitrite-NO Pathway as a Novel Therapeutic Target in Heart Failure with Reduced Ejection Fraction. J Card Fail 2018; 24:74-77. [DOI: 10.1016/j.cardfail.2017.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 11/26/2022]
|
46
|
Woessner MN, McIlvenna LC, Ortiz de Zevallos J, Neil CJ, Allen JD. Dietary nitrate supplementation in cardiovascular health: an ergogenic aid or exercise therapeutic? Am J Physiol Heart Circ Physiol 2018; 314:H195-H212. [DOI: 10.1152/ajpheart.00414.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oral consumption of inorganic nitrate, which is abundant in green leafy vegetables and roots, has been shown to increase circulating plasma nitrite concentration, which can be converted to nitric oxide in low oxygen conditions. The associated beneficial physiological effects include a reduction in blood pressure, modification of platelet aggregation, and increases in limb blood flow. There have been numerous studies of nitrate supplementation in healthy recreational and competitive athletes; however, the ergogenic benefits are currently unclear due to a variety of factors including small sample sizes, different dosing regimens, variable nitrate conversion rates, the heterogeneity of participants’ initial fitness levels, and the types of exercise tests used. In clinical populations, the study results seem more promising, particularly in patients with cardiovascular diseases who typically present with disruptions in the ability to transport oxygen from the atmosphere to working tissues and reduced exercise tolerance. Many of these disease-related, physiological maladaptations, including endothelial dysfunction, increased reactive oxygen species, reduced tissue perfusion, and muscle mitochondrial dysfunction, have been previously identified as potential targets for nitric oxide restorative effects. This review is the first of its kind to outline the current evidence for inorganic nitrate supplementation as a therapeutic intervention to restore exercise tolerance and improve quality of life in patients with cardiovascular diseases. We summarize the factors that appear to limit or maximize its effectiveness and present a case for why it may be more effective in patients with cardiovascular disease than as ergogenic aid in healthy populations.
Collapse
Affiliation(s)
- Mary N. Woessner
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
| | - Luke C. McIlvenna
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Joaquin Ortiz de Zevallos
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| | - Christopher J. Neil
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
| | - Jason D. Allen
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
- Western Health, Melbourne, Victoria, Australia
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Early interventional trials reported improvements in cardiac and exercise outcomes with inorganic nitrate ingestion. The current review aims to provide a brief update of recent evidence regarding ergogenic and cardiovascular effects of dietary nitrate and practical recommendations. RECENT FINDINGS Recent evidence has been inconsistent and questions remain regarding effective dose, duration, and source of nitrate and cohorts likely to benefit. Dietary nitrate may be most relevant to those with vascular/metabolic impairments, those engaging in short-term, intense exercise, deconditioned individuals, and those with a low dietary nitrate intake. SUMMARY The evidence for cardiovascular/exercise benefit is plausible but inconsistent. However, dietary nitrate, in contrast to pharmacological nitrate, has a high benefit-risk ratio. Although nitrate supplementation has grown in popularity, it is suggested that increased green vegetables consumption may provide similar/superior benefits to nitrate supplementation in a cheaper, safer, and potentially tastier context.
Collapse
Affiliation(s)
- Conor P Kerley
- Physicians Committee for Responsible Medicine, 5100 Wisconsin Avenue, N.W. Ste. 400, Washington, District of Columbia, USA
| |
Collapse
|
48
|
Wong BJ, Keen JT, Levitt EL. Cutaneous reactive hyperaemia is unaltered by dietary nitrate supplementation in healthy humans. Clin Physiol Funct Imaging 2017; 38:772-778. [DOI: 10.1111/cpf.12478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Brett J Wong
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA.,Department of Kinesiology & Health, Georgia State University, Atlanta, GA, USA
| | - Jeremy T Keen
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Erica L Levitt
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
49
|
Poole DC, Richardson RS, Haykowsky MJ, Hirai DM, Musch TI. Exercise limitations in heart failure with reduced and preserved ejection fraction. J Appl Physiol (1985) 2017; 124:208-224. [PMID: 29051336 DOI: 10.1152/japplphysiol.00747.2017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The hallmark symptom of chronic heart failure (HF) is severe exercise intolerance. Impaired perfusive and diffusive O2 transport are two of the major determinants of reduced physical capacity and lowered maximal O2 uptake in patients with HF. It has now become evident that this syndrome manifests at least two different phenotypic variations: heart failure with preserved or reduced ejection fraction (HFpEF and HFrEF, respectively). Unlike HFrEF, however, there is currently limited understanding of HFpEF pathophysiology, leading to a lack of effective pharmacological treatments for this subpopulation. This brief review focuses on the disturbances within the O2 transport pathway resulting in limited exercise capacity in both HFpEF and HFrEF. Evidence from human and animal research reveals HF-induced impairments in both perfusive and diffusive O2 conductances identifying potential targets for clinical intervention. Specifically, utilization of different experimental approaches in humans (e.g., small vs. large muscle mass exercise) and animals (e.g., intravital microscopy and phosphorescence quenching) has provided important clues to elucidating these pathophysiological mechanisms. Adaptations within the skeletal muscle O2 delivery-utilization system following established and emerging therapies (e.g., exercise training and inorganic nitrate supplementation, respectively) are discussed. Resolution of the underlying mechanisms of skeletal muscle dysfunction and exercise intolerance is essential for the development and refinement of the most effective treatments for patients with HF.
Collapse
|
50
|
Smith JR, Ferguson SK, Hageman KS, Harms CA, Poole DC, Musch TI. Dietary nitrate supplementation opposes the elevated diaphragm blood flow in chronic heart failure during submaximal exercise. Respir Physiol Neurobiol 2017; 247:140-145. [PMID: 29037770 DOI: 10.1016/j.resp.2017.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/13/2017] [Accepted: 09/29/2017] [Indexed: 02/05/2023]
Abstract
Chronic heart failure (CHF) results in a greater cost of breathing and necessitates an elevated diaphragm blood flow (BF). Dietary nitrate (NO3‾) supplementation lowers the cost of exercise. We hypothesized that dietary NO3‾ supplementation would attenuate the CHF-induced greater cost of breathing and thus the heightened diaphragm BF during exercise. CHF rats received either 5days of NO3‾-rich beetroot (BR) juice (CHF+BR, n=10) or a placebo (CHF, n=10). Respiratory muscle BFs (radiolabeled microspheres) were measured at rest and during submaximal exercise (20m/min, 5% grade). Infarcted left ventricular area and normalized lung weight were not significantly different between groups. During submaximal exercise, diaphragm BF was markedly lower for CHF+BR than CHF (CHF+BR: 195±28; CHF: 309±71mL/min/100g, p=0.04). The change in diaphragm BF from rest to exercise was less (p=0.047) for CHF+BR than CHF. These findings demonstrate that dietary NO3‾ supplementation reduces the elevated diaphragm BF during exercise in CHF rats thus providing additional support for this therapeutic intervention in CHF.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.
| | - Scott K Ferguson
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Craig A Harms
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|