1
|
Yu Y, Yao R, Liu Z, Lu Y, Zhu Y, Cao J. Feasibility and effectiveness of transcutaneous auricular vagus nerve stimulation (taVNS) in awake mice. CNS Neurosci Ther 2024; 30:e70043. [PMID: 39258798 PMCID: PMC11388527 DOI: 10.1111/cns.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
AIMS Transcutaneous auricular vagus nerve stimulation (taVNS) is widely used to treat a variety of disorders because it is noninvasive, safe, and well tolerated by awake patients. However, long-term and repetitive taVNS is difficult to achieve in awake mice. Therefore, developing a new taVNS method that fully mimics the method used in clinical settings and is well-tolerated by awake mice is greatly important for generalizing research findings related to the effects of taVNS. The study aimed to develop a new taVNS device for use in awake mice and to test its reliability and effectiveness. METHODS We demonstrated the reliability of this taVNS device through retrograde neurotropic pseudorabies virus (PRV) tracing and evaluated its effectiveness through morphological analysis. After 3 weeks of taVNS application, the open field test (OFT) and elevated plus maze (EPM) were used to evaluate anxiety-like behaviors, and the Y-maze test and novel object recognition test (NORT) were used to evaluate recognition memory behaviors, respectively. RESULTS We found that repetitive taVNS was well tolerated by awake mice, had no effect on anxiety-like behaviors, and significantly improved memory. CONCLUSION Our findings suggest that this new taVNS device for repetitive stimulation of awake mice is safe, tolerable, and effective.
Collapse
Affiliation(s)
- Yu‐Mei Yu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
| | - Rui Yao
- Department of AnesthesiologyXuzhou First People's HospitalXuzhouJiangsuChina
| | - Zhou‐Liang Liu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yao Lu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yang‐Zi Zhu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
- Department of AnesthesiologyXuzhou Central HospitalXuzhouJiangsuChina
| | - Jun‐Li Cao
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
- Department of AnesthesiologyAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
2
|
Ryu V, Gumerova AA, Witztum R, Korkmaz F, Cullen L, Kannangara H, Moldavski O, Barak O, Lizneva D, Goosens KA, Stanley S, Kim SM, Yuen T, Zaidi M. An atlas of brain-bone sympathetic neural circuits in mice. eLife 2024; 13:e95727. [PMID: 38963696 PMCID: PMC11245306 DOI: 10.7554/elife.95727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
There is clear evidence that the sympathetic nervous system (SNS) mediates bone metabolism. Histological studies show abundant SNS innervation of the periosteum and bone marrow-these nerves consist of noradrenergic fibers that immunostain for tyrosine hydroxylase, dopamine beta-hydroxylase, or neuropeptide Y. Nonetheless, the brain sites that send efferent SNS outflow to the bone have not yet been characterized. Using pseudorabies (PRV) viral transneuronal tracing, we report, for the first time, the identification of central SNS outflow sites that innervate bone. We find that the central SNS outflow to bone originates from 87 brain nuclei, sub-nuclei, and regions of six brain divisions, namely the midbrain and pons, hypothalamus, hindbrain medulla, forebrain, cerebral cortex, and thalamus. We also find that certain sites, such as the raphe magnus (RMg) of the medulla and periaqueductal gray (PAG) of the midbrain, display greater degrees of PRV152 infection, suggesting that there is considerable site-specific variation in the levels of central SNS outflow to the bone. This comprehensive compendium illustrating the central coding and control of SNS efferent signals to bone should allow for a greater understanding of the neural regulation of bone metabolism, and importantly and of clinical relevance, mechanisms for central bone pain.
Collapse
Affiliation(s)
- Vitaly Ryu
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anisa Azatovna Gumerova
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ronit Witztum
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Funda Korkmaz
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Liam Cullen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Hasni Kannangara
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ofer Moldavski
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Orly Barak
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Daria Lizneva
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ki A Goosens
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sarah Stanley
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Se-Min Kim
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Mone Zaidi
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
3
|
Lu M, Yu Z, Yang X, An L, Jing X, Xu T, Yuan M, Xu B, Yu Z. Remodelling the inguinal adipose sensory system to switch on the furnace: Electroacupuncture stimulation induces brown adipose thermogenesis. Diabetes Obes Metab 2024; 26:1430-1442. [PMID: 38229447 DOI: 10.1111/dom.15444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/18/2024]
Abstract
Brown and white adipose tissue mediate thermogenesis through the thermogenetic centre of the brain, but safe methods for activating thermogensis and knowledge of the associated molecular mechanisms are lacking. We investigated body surface electroacupuncture stimulation (ES) at ST25 (targeted at the abdomen) induction of brown adipose thermogenesis and the neural mechanism of this process. Inguinal white adipose tissue (iWAT) and interscapular brown adipose tissue (iBAT) were collected and the thermogenic protein expression levels were measured to evaluate iBAT thermogenesis capacity. The thermogenic centre activating region and sympathetic outflow were evaluated based on neural electrical activity and c-fos expression levels. iWAT sensory axon plasticity was analysed with whole-mount adipose tissue imaging. ES activated the sympathetic nerves in iBAT and the c-fos-positive cells induced sympathetic outflow activation to the iBAT from the medial preoptic area (MPA), the dorsomedial hypothalamus (DM) and the raphe pallidus nucleus (RPA). iWAT denervation mice exhibited decreased c-fos-positive cells in the DM and RPA, and lower recombinant uncoupling orotein 1 peroxisome proliferator-activated receptor, β3-adrenergic receptor, and tyrosine hydroxylase expression. Remodelling the iWAT sensory axons recovered the signal from the MPA to the RPA and induced iBAT thermogenesis. The sympathetic denervation attenuated sensory nerve density. ES induced sympathetic outflow from the thermogenetic centres to iBAT, which mediated thermogenesis. iWAT sensory axon remodelling induced the MPA-DM-RPA-iBAT thermogenesis pathway.
Collapse
Affiliation(s)
- Mengjiang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziwei Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingyu Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li An
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tiancheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengqian Yuan
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Naren Q, Lindsund E, Bokhari MH, Pang W, Petrovic N. Differential responses to UCP1 ablation in classical brown versus beige fat, despite a parallel increase in sympathetic innervation. J Biol Chem 2024; 300:105760. [PMID: 38367663 PMCID: PMC10944106 DOI: 10.1016/j.jbc.2024.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
In the cold, the absence of the mitochondrial uncoupling protein 1 (UCP1) results in hyper-recruitment of beige fat, but classical brown fat becomes atrophied. Here we examine possible mechanisms underlying this phenomenon. We confirm that in brown fat from UCP1-knockout (UCP1-KO) mice acclimated to the cold, the levels of mitochondrial respiratory chain proteins were diminished; however, in beige fat, the mitochondria seemed to be unaffected. The macrophages that accumulated massively not only in brown fat but also in beige fat of the UCP1-KO mice acclimated to cold did not express tyrosine hydroxylase, the norepinephrine transporter (NET) and monoamine oxidase-A (MAO-A). Consequently, they could not influence the tissues through the synthesis or degradation of norepinephrine. Unexpectedly, in the cold, both brown and beige adipocytes from UCP1-KO mice acquired an ability to express MAO-A. Adipose tissue norepinephrine was exclusively of sympathetic origin, and sympathetic innervation significantly increased in both tissues of UCP1-KO mice. Importantly, the magnitude of sympathetic innervation and the expression levels of genes induced by adrenergic stimulation were much higher in brown fat. Therefore, we conclude that no qualitative differences in innervation or macrophage character could explain the contrasting reactions of brown versus beige adipose tissues to UCP1-ablation. Instead, these contrasting responses may be explained by quantitative differences in sympathetic innervation: the beige adipose depot from the UCP1-KO mice responded to cold acclimation in a canonical manner and displayed enhanced recruitment, while the atrophy of brown fat lacking UCP1 may be seen as a consequence of supraphysiological adrenergic stimulation in this tissue.
Collapse
Affiliation(s)
- Qimuge Naren
- College of Animal Science and Technology, Northwest A&F University, Yangling, China; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Erik Lindsund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Muhammad Hamza Bokhari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Weijun Pang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
5
|
Ryu V, Gumerova A, Witztum R, Korkmaz F, Kannangara H, Moldavski O, Barak O, Lizneva D, Goosens KA, Stanley S, Kim SM, Yuen T, Zaidi M. An Atlas of Brain-Bone Sympathetic Neural Circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579382. [PMID: 38370676 PMCID: PMC10871366 DOI: 10.1101/2024.02.07.579382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
There is clear evidence that the sympathetic nervous system (SNS) mediates bone metabolism. Histological studies show abundant SNS innervation of the periosteum and bone marrow--these nerves consist of noradrenergic fibers that immunostain for tyrosine hydroxylase, dopamine beta hydroxylase, or neuropeptide Y. Nonetheless, the brain sites that send efferent SNS outflow to bone have not yet been characterized. Using pseudorabies (PRV) viral transneuronal tracing, we report, for the first time, the identification of central SNS outflow sites that innervate bone. We find that the central SNS outflow to bone originates from 87 brain nuclei, sub-nuclei and regions of six brain divisions, namely the midbrain and pons, hypothalamus, hindbrain medulla, forebrain, cerebral cortex, and thalamus. We also find that certain sites, such as the raphe magnus (RMg) of the medulla and periaqueductal gray (PAG) of the midbrain, display greater degrees of PRV152 infection, suggesting that there is considerable site-specific variation in the levels of central SNS outflow to bone. This comprehensive compendium illustrating the central coding and control of SNS efferent signals to bone should allow for a greater understanding of the neural regulation of bone metabolism, and importantly and of clinical relevance, mechanisms for central bone pain.
Collapse
Affiliation(s)
- Vitaly Ryu
- Center for Translational Medicine and Pharmacology (CeTMaP), Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Anisa Gumerova
- Center for Translational Medicine and Pharmacology (CeTMaP), Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ronit Witztum
- Center for Translational Medicine and Pharmacology (CeTMaP), Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Funda Korkmaz
- Center for Translational Medicine and Pharmacology (CeTMaP), Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Hasni Kannangara
- Center for Translational Medicine and Pharmacology (CeTMaP), Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ofer Moldavski
- Center for Translational Medicine and Pharmacology (CeTMaP), Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Orly Barak
- Center for Translational Medicine and Pharmacology (CeTMaP), Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Daria Lizneva
- Center for Translational Medicine and Pharmacology (CeTMaP), Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ki A. Goosens
- Center for Translational Medicine and Pharmacology (CeTMaP), Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sarah Stanley
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Se-Min Kim
- Center for Translational Medicine and Pharmacology (CeTMaP), Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology (CeTMaP), Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mone Zaidi
- Center for Translational Medicine and Pharmacology (CeTMaP), Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
6
|
Mishra G, Townsend KL. Sensory nerve and neuropeptide diversity in adipose tissues. Mol Cells 2024; 47:100030. [PMID: 38364960 PMCID: PMC10960112 DOI: 10.1016/j.mocell.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Both brown and white adipose tissues (BAT/WAT) are innervated by the peripheral nervous system, including efferent sympathetic nerves that communicate from the brain/central nervous system out to the tissue, and afferent sensory nerves that communicate from the tissue back to the brain and locally release neuropeptides to the tissue upon stimulation. This bidirectional neural communication is important for energy balance and metabolic control, as well as maintaining adipose tissue health through processes like browning (development of metabolically healthy brown adipocytes in WAT), thermogenesis, lipolysis, and adipogenesis. Decades of sensory nerve denervation studies have demonstrated the particular importance of adipose sensory nerves for brown adipose tissue and WAT functions, but far less is known about the tissue's sensory innervation compared to the better-studied sympathetic nerves and their neurotransmitter norepinephrine. In this review, we cover what is known and not yet known about sensory nerve activities in adipose, focusing on their effector neuropeptide actions in the tissue.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Münzberg H, Berthoud HR, Neuhuber WL. Sensory spinal interoceptive pathways and energy balance regulation. Mol Metab 2023; 78:101817. [PMID: 37806487 PMCID: PMC10590858 DOI: 10.1016/j.molmet.2023.101817] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Interoception plays an important role in homeostatic regulation of energy intake and metabolism. Major interoceptive pathways include gut-to-brain and adipose tissue-to brain signaling via vagal sensory nerves and hormones, such as leptin. However, signaling via spinal sensory neurons is rapidly emerging as an additional important signaling pathway. Here we provide an in-depth review of the known anatomy and functions of spinal sensory pathways and discuss potential mechanisms relevant for energy balance homeostasis in health and disease. Because sensory innervation by dorsal root ganglia (DRG) neurons goes far beyond vagally innervated viscera and includes adipose tissue, skeletal muscle, and skin, it is in a position to provide much more complete metabolic information to the brain. Molecular and anatomical identification of function specific DRG neurons will be important steps in designing pharmacological and neuromodulation approaches to affect energy balance regulation in disease states such as obesity, diabetes, and cancer.
Collapse
Affiliation(s)
- Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Winfried L Neuhuber
- Institute for Anatomy and Cell Biology, Friedrich-Alexander University, Erlangen, Germany.
| |
Collapse
|
8
|
Alex Thomas M, Cui X, Artinian LR, Cao Q, Jing J, Silva FC, Wang S, Zigman JM, Sun Y, Shi H, Xue B. Crosstalk between Gut Sensory Ghrelin Signaling and Adipose Tissue Sympathetic Outflow Regulates Metabolic Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.25.568689. [PMID: 38076894 PMCID: PMC10705268 DOI: 10.1101/2023.11.25.568689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The stomach-derived orexigenic hormone ghrelin is a key regulator of energy homeostasis and metabolism in humans. The ghrelin receptor, growth hormone secretagogue receptor 1a (GHSR), is widely expressed in the brain and gastrointestinal vagal sensory neurons, and neuronal GHSR knockout results in a profoundly beneficial metabolic profile and protects against diet-induced obesity (DIO) and insulin resistance. Here we show that in addition to the well characterized vagal GHSR, GHSR is robustly expressed in gastrointestinal sensory neurons emanating from spinal dorsal root ganglia. Remarkably, sensory neuron GHSR deletion attenuates DIO through increased energy expenditure and sympathetic outflow to adipose tissue independent of food intake. In addition, neuronal viral tract tracing reveals prominent crosstalk between gut non-vagal sensory afferents and adipose sympathetic outflow. Hence, these findings demonstrate a novel gut sensory ghrelin signaling pathway critical for maintaining energy homeostasis.
Collapse
Affiliation(s)
- M. Alex Thomas
- Department of Biology, Georgia State University, Atlanta, GA
| | - Xin Cui
- Department of Biology, Georgia State University, Atlanta, GA
| | | | - Qiang Cao
- Department of Biology, Georgia State University, Atlanta, GA
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, GA
| | - Felipe C. Silva
- Department of Biology, Georgia State University, Atlanta, GA
| | - Shirong Wang
- Department of Biology, Georgia State University, Atlanta, GA
| | - Jeffrey M. Zigman
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yuxiang Sun
- Department of Nutrition, Texas A & M University, College Station, TX
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA
| |
Collapse
|
9
|
Lorsignol A, Rabiller L, Labit E, Casteilla L, Pénicaud L. The nervous system and adipose tissues: a tale of dialogues. Am J Physiol Endocrinol Metab 2023; 325:E480-E490. [PMID: 37729026 DOI: 10.1152/ajpendo.00115.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
White, beige, and brown adipose tissues play a crucial role in maintaining energy homeostasis. Due to the heterogeneous and diffuse nature of fat pads, this balance requires a fine and coordinated control of many actors and therefore permanent dialogues between these tissues and the central nervous system. For about two decades, many studies have been devoted to describe the neuro-anatomical and functional complexity involved to ensure this dialogue. Thus, if it is now clearly demonstrated that there is an efferent sympathetic innervation of different fat depots controlling plasticity as well as metabolic functions of the fat pad, the crucial role of sensory innervation capable of detecting local signals informing the central nervous system of the metabolic state of the relevant pads is much more recent. The purpose of this review is to provide the current state of knowledge on this subject.
Collapse
Affiliation(s)
- Anne Lorsignol
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Lise Rabiller
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Elodie Labit
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Louis Casteilla
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| | - Luc Pénicaud
- RESTORE, CNRS, Inserm, Université de Toulouse, Toulouse, France
| |
Collapse
|
10
|
Sa M, Yoo ES, Koh W, Park MG, Jang HJ, Yang YR, Bhalla M, Lee JH, Lim J, Won W, Kwon J, Kwon JH, Seong Y, Kim B, An H, Lee SE, Park KD, Suh PG, Sohn JW, Lee CJ. Hypothalamic GABRA5-positive neurons control obesity via astrocytic GABA. Nat Metab 2023; 5:1506-1525. [PMID: 37653043 DOI: 10.1038/s42255-023-00877-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/25/2023] [Indexed: 09/02/2023]
Abstract
The lateral hypothalamic area (LHA) regulates food intake and energy balance. Although LHA neurons innervate adipose tissues, the identity of neurons that regulate fat is undefined. Here we show that GABRA5-positive neurons in LHA (GABRA5LHA) polysynaptically project to brown and white adipose tissues in the periphery. GABRA5LHA are a distinct subpopulation of GABAergic neurons and show decreased pacemaker firing in diet-induced obesity mouse models in males. Chemogenetic inhibition of GABRA5LHA suppresses fat thermogenesis and increases weight gain, whereas gene silencing of GABRA5 in LHA decreases weight gain. In the diet-induced obesity mouse model, GABRA5LHA are tonically inhibited by nearby reactive astrocytes releasing GABA, which is synthesized by monoamine oxidase B (Maob). Gene silencing of astrocytic Maob in LHA facilitates fat thermogenesis and reduces weight gain significantly without affecting food intake, which is recapitulated by administration of a Maob inhibitor, KDS2010. We propose that firing of GABRA5LHA suppresses fat accumulation and selective inhibition of astrocytic GABA is a molecular target for treating obesity.
Collapse
Affiliation(s)
- Moonsun Sa
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Eun-Seon Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Mingu Gordon Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Hyun-Jun Jang
- Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Yong Ryoul Yang
- Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Mridula Bhalla
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- IBS School, University of Science and Technology, Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
- IBS School, University of Science and Technology, Daejeon, Republic of Korea
| | - Woojin Won
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jea Kwon
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Joon-Ho Kwon
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Yejin Seong
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Byungeun Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Heeyoung An
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ki Duk Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Pann-Ghill Suh
- Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, Republic of Korea.
- IBS School, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Mishra G, Townsend KL. The metabolic and functional roles of sensory nerves in adipose tissues. Nat Metab 2023; 5:1461-1474. [PMID: 37709960 DOI: 10.1038/s42255-023-00868-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
Homeostatic regulation of adipose tissue is critical for the maintenance of energy balance and whole-body metabolism. The peripheral nervous system provides bidirectional neural communication between the brain and adipose tissue, thereby providing homeostatic control. Most research on adipose innervation and nerve functions has been limited to the sympathetic nerves and their neurotransmitter norepinephrine. In recent years, more work has focused on adipose sensory nerves, but the contributions of subsets of sensory nerves to metabolism and the specific roles contributed by sensory neuropeptides are still understudied. Advances in imaging of adipose innervation and newer tissue denervation techniques have confirmed that sensory nerves contribute to the regulation of adipose functions, including lipolysis and browning. Here, we summarize the historical and latest findings on the regulation, function and plasticity of adipose tissue sensory nerves that contribute to metabolically important processes such as lipolysis, vascular control and sympathetic axis cross-talk.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Liu H, Li X, Li P, Hai R, Li J, Fan Q, Wang X, Chen Y, Cao X, Zhang X, Gao R, Wang K, Du C. Glutamatergic melanocortin-4 receptor neurons regulate body weight. FASEB J 2023; 37:e22920. [PMID: 37078546 DOI: 10.1096/fj.202201786r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/22/2023] [Accepted: 03/30/2023] [Indexed: 04/21/2023]
Abstract
The locus coeruleus (LC), enriched in vesicular glutamate transporter 2 (VGlut2) neurons, is a potential homeostasis-regulating hub. However, the identity of melanocortin-4 receptor (MC4R) neurons in the paraventricular nucleus (PVN) of the hypothalamus, PVNVGlut2::MC4R and LCVGlut2::MC4R regulation of body weight, and axonal projections of LCVGlut2 neurons remain unclear. Conditional knockout of MC4R in chimeric mice was used to confirm the effects of VGlut2. Interscapular brown adipose tissue was injected with pseudorabies virus to study the central nervous system projections. We mapped the LCVGlut2 circuitry. Based on the Cre-LoxP recombination system, specific knockdown of MC4R in VGlut2 neurons resulted in weight gain in chimeric mice. Adeno-associated virus-mediated knockdown of MC4R expression in the PVN and LC had potential superimposed effects on weight gain, demonstrating the importance of VGlut2 neurons. Unlike these wide-ranging efferent projections, the PVN, hypothalamic arcuate nucleus, supraoptic nucleus of the lateral olfactory tegmental nuclei, and nucleus tractus solitarius send excitatory projections to LCVGlut2 neurons. The PVN → LC glutamatergic MC4R long-term neural circuit positively affected weight management and could help treat obesity.
Collapse
Affiliation(s)
- Haodong Liu
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaojing Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Penghui Li
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Rihan Hai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Jiacheng Li
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Fan
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Xing Wang
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yujie Chen
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Xiaojuan Cao
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Xiaoyu Zhang
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Ruifeng Gao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Kun Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Key Laboratory of Crop Cultivation Physiology and Green Production in Hebei Province, Shijiazhuang, China
| | - Chenguang Du
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| |
Collapse
|
13
|
Fischer KB, Collins HK, Pang Y, Roy DS, Zhang Y, Feng G, Li SJ, Kepecs A, Callaway EM. Monosynaptic restriction of the anterograde herpes simplex virus strain H129 for neural circuit tracing. J Comp Neurol 2023; 531:584-595. [PMID: 36606699 PMCID: PMC10040246 DOI: 10.1002/cne.25451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/09/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
Identification of synaptic partners is a fundamental task for systems neuroscience. To date, few reliable techniques exist for whole brain labeling of downstream synaptic partners in a cell-type-dependent and monosynaptic manner. Herein, we describe a novel monosynaptic anterograde tracing system based on the deletion of the gene UL6 from the genome of a cre-dependent version of the anterograde Herpes Simplex Virus 1 strain H129. Given that this knockout blocks viral genome packaging and thus viral spread, we reasoned that co-infection of a HSV H129 ΔUL6 virus with a recombinant adeno-associated virus expressing UL6 in a cre-dependent manner would result in monosynaptic spread from target cre-expressing neuronal populations. Application of this system to five nonreciprocal neural circuits resulted in labeling of neurons in expected projection areas. While some caveats may preclude certain applications, this system provides a reliable method to label postsynaptic partners in a brain-wide fashion.
Collapse
Affiliation(s)
- Kyle B Fischer
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Hannah K Collins
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Yan Pang
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Dheeraj S Roy
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ying Zhang
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA
| | - Shu-Jing Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Adam Kepecs
- Departments of Neuroscience and Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
14
|
Parallel Pathways Provide Hippocampal Spatial Information to Prefrontal Cortex. J Neurosci 2023; 43:68-81. [PMID: 36414405 PMCID: PMC9838712 DOI: 10.1523/jneurosci.0846-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/06/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
Long-range synaptic connections define how information flows through neuronal networks. Here, we combined retrograde and anterograde trans-synaptic viruses to delineate areas that exert direct and indirect influence over the dorsal and ventral prefrontal cortex (PFC) of the rat (both sexes). Notably, retrograde tracing using pseudorabies virus (PRV) revealed that both dorsal and ventral areas of the PFC receive prominent disynaptic input from the dorsal CA3 (dCA3) region of the hippocampus. The PRV experiments also identified candidate anatomical relays for this disynaptic pathway, namely, the ventral hippocampus, lateral septum, thalamus, amygdala, and basal forebrain. To determine the viability of each of these relays, we performed three additional experiments. In the first, we injected the retrograde monosynaptic tracer Fluoro-Gold into the PFC and the anterograde monosynaptic tracer Fluoro-Ruby into the dCA3 to confirm the first-order connecting areas and revealed several potential relay regions between the PFC and dCA3. In the second, we combined PRV injection in the PFC with polysynaptic anterograde viral tracer (HSV-1) in the dCA3 to reveal colabeled connecting neurons, which were evident only in the ventral hippocampus. In the third, we combined retrograde adeno-associated virus (AAV) injections in the PFC with an anterograde AAV in the dCA3 to reveal anatomical relay neurons in the ventral hippocampus and dorsal lateral septum. Together, these findings reveal parallel disynaptic pathways from the dCA3 to the PFC, illuminating a new anatomical framework for understanding hippocampal-prefrontal interactions. We suggest that the representation of context and space may be a universal feature of prefrontal function.SIGNIFICANCE STATEMENT The known functions of the prefrontal cortex are shaped by input from multiple brain areas. We used transneuronal viral tracing to discover multiple prominent disynaptic pathways through which the dorsal hippocampus (specifically, the dorsal CA3) has the potential to shape the actions of the prefrontal cortex. The demonstration of neuronal relays in the ventral hippocampus and lateral septum presents a new foundation for understanding long-range influences over prefrontal interactions, including the specific contribution of the dorsal CA3 to prefrontal function.
Collapse
|
15
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
16
|
Ye H, Feng B, Wang C, Saito K, Yang Y, Ibrahimi L, Schaul S, Patel N, Saenz L, Luo P, Lai P, Torres V, Kota M, Dixit D, Cai X, Qu N, Hyseni I, Yu K, Jiang Y, Tong Q, Sun Z, Arenkiel BR, He Y, Xu P, Xu Y. An estrogen-sensitive hypothalamus-midbrain neural circuit controls thermogenesis and physical activity. SCIENCE ADVANCES 2022; 8:eabk0185. [PMID: 35044814 PMCID: PMC8769556 DOI: 10.1126/sciadv.abk0185] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Estrogen receptor–α (ERα) expressed by neurons in the ventrolateral subdivision of the ventromedial hypothalamic nucleus (ERαvlVMH) regulates body weight in females, but the downstream neural circuits mediating this biology remain largely unknown. Here we identified a neural circuit mediating the metabolic effects of ERαvlVMH neurons. We found that selective activation of ERαvlVMH neurons stimulated brown adipose tissue (BAT) thermogenesis, physical activity, and core temperature and that ERαvlVMH neurons provide monosynaptic glutamatergic inputs to 5-hydroxytryptamine (5-HT) neurons in the dorsal raphe nucleus (DRN). Notably, the ERαvlVMH → DRN circuit responds to changes in ambient temperature and nutritional states. We further showed that 5-HTDRN neurons mediate the stimulatory effects of ERαvlVMH neurons on BAT thermogenesis and physical activity and that ERα expressed by DRN-projecting ERαvlVMH neurons is required for the maintenance of energy balance. Together, these findings support a model that ERαvlVMH neurons activate BAT thermogenesis and physical activity through stimulating 5-HTDRN neurons.
Collapse
Affiliation(s)
- Hui Ye
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana
State University System, Baton Rouge, LA 70808, USA
| | - Chunmei Wang
- Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
| | - Kenji Saito
- Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
| | - Yongjie Yang
- Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
| | - Lucas Ibrahimi
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Sarah Schaul
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Nirali Patel
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Leslie Saenz
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Pei Luo
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Penghua Lai
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Valeria Torres
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Maya Kota
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Devin Dixit
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
| | - Xing Cai
- Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
| | - Na Qu
- Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
| | - Ilirjana Hyseni
- Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
| | - Kaifan Yu
- Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, The
University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine,
University of Texas Health Science Center at Houston, Houston, TX 77030,
USA
| | - Zheng Sun
- Department of Internal Medicine, Baylor College of
Medicine, Houston, TX 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor
College of Medicine, Houston, TX 77030, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana
State University System, Baton Rouge, LA 70808, USA
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, The University of Illinois at Chicago, Chicago, IL
60612, USA
- Department of Physiology and Biophysics, The
University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yong Xu
- Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
Li Z, Li Z, Xu W, Li Y, Wang Q, Xu H, Manyande A, Wu D, Feng M, Xiang H. The connectome from the cerebral cortex to the viscera using viral transneuronal tracers. Am J Transl Res 2021; 13:12152-12167. [PMID: 34956443 PMCID: PMC8661218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/12/2021] [Indexed: 06/14/2023]
Abstract
As an emerging framework in neuroscience, brain connectomics is well suited for investigating key questions on brain complexity by combining viral transneuronal tracing and whole brain graphic methodologies using analytical tools of network science. Transsynaptic viral tract-tracing in the toolbox of neural labeling methods has been a significant development in the connectomics field to decipher the circuit-level architecture of the cerebral cortex. In the present work, we reviewed the current methods enabling structural connectivity from the viscera to the cerebral cortex mapping with viral transneuronal tracers and showed how such neuroanatomic connectomic data could be used to infer new structural and functional information in viscera-cerebral cortex circuits.
Collapse
Affiliation(s)
- Zhixiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Zhen Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Weiguo Xu
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Yujuan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Hui Xu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West LondonLondon W5 2NU, UK
| | - Duozhi Wu
- Department of Anesthesiology, People’s Hospital of Hainan ProvinceHaikou 570311, Hainan, China
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study CenterWuhan 430071, Hubei, China
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| |
Collapse
|
18
|
Dalmasso C, Leachman JR, Ghuneim S, Ahmed N, Schneider ER, Thibault O, Osborn JL, Loria AS. Epididymal Fat-Derived Sympathoexcitatory Signals Exacerbate Neurogenic Hypertension in Obese Male Mice Exposed to Early Life Stress. Hypertension 2021; 78:1434-1449. [PMID: 34601958 PMCID: PMC8516729 DOI: 10.1161/hypertensionaha.121.17298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/19/2021] [Indexed: 01/06/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Jacqueline R. Leachman
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Sundus Ghuneim
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Nermin Ahmed
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Eve R. Schneider
- Department of Biology, College of Arts and Sciences (E.R.S., J.L.O.), University of Kentucky, Lexington
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| | - Jeffrey L. Osborn
- Department of Biology, College of Arts and Sciences (E.R.S., J.L.O.), University of Kentucky, Lexington
| | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, College of Medicine (C.D., J.R.L., S.G., N.A., O.T., A.S.L.), University of Kentucky, Lexington
| |
Collapse
|
19
|
Bhave VM, Nectow AR. The dorsal raphe nucleus in the control of energy balance. Trends Neurosci 2021; 44:946-960. [PMID: 34663507 DOI: 10.1016/j.tins.2021.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/04/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023]
Abstract
Energy balance is orchestrated by an extended network of highly interconnected nuclei across the central nervous system. While much is known about the hypothalamic circuits regulating energy homeostasis, the 'extra-hypothalamic' circuits involved are relatively poorly understood. In this review, we focus on the brainstem's dorsal raphe nucleus (DRN), integrating decades of research linking this structure to the physiologic and behavioral responses that maintain proper energy stores. DRN neurons sense and respond to interoceptive and exteroceptive cues related to energy imbalance and in turn induce appropriate alterations in energy intake and expenditure. The DRN is also molecularly differentiable, with different populations playing distinct and often opposing roles in controlling energy balance. These populations are integrated into the extended circuit known to regulate energy balance. Overall, this review summarizes the key evidence demonstrating an important role for the DRN in regulating energy balance.
Collapse
Affiliation(s)
- Varun M Bhave
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Alexander R Nectow
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
20
|
The Medullary Targets of Neurally Conveyed Sensory Information from the Rat Hepatic Portal and Superior Mesenteric Veins. eNeuro 2021; 8:ENEURO.0419-20.2021. [PMID: 33495245 PMCID: PMC8114873 DOI: 10.1523/eneuro.0419-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Vagal and spinal sensory endings in the wall of the hepatic portal and superior mesenteric veins (PMV) provide the brain with chemosensory information important for energy balance and other functions. To determine their medullary neuronal targets, we injected the transsynaptic anterograde viral tracer HSV-1 H129-772 (H129) into the PMV wall or left nodose ganglion (LNG) of male rats, followed by immunohistochemistry (IHC) and high-resolution imaging. We also determined the chemical phenotype of H129-infected neurons, and potential vagal and spinal axon terminal appositions in the dorsal motor nucleus of the vagus (DMX) and the nucleus of the solitary tract (NTS). PMV wall injections generated H129-infected neurons in both nodose ganglia and in thoracic dorsal root ganglia (DRGs). In the medulla, cholinergic preganglionic parasympathetic neurons in the DMX were virtually the only targets of chemosensory information from the PMV wall. H129-infected terminal appositions were identified on H129-infected somata and dendrites in the DMX, and on H129-infected DMX dendrites that extend into the NTS. Sensory transmission via vagal and possibly spinal routes from the PMV wall therefore reaches DMX neurons via axo-somatic appositions in the DMX and axo-dendritic appositions in the NTS. However, the dearth of H129-infected NTS neurons indicates that sensory information from the PMV wall terminates on DMX neurons without engaging NTS neurons. These previously underappreciated direct sensory routes into the DMX enable a vago-vagal and possibly spino-vagal reflexes that can directly influence visceral function.
Collapse
|
21
|
Shi Z, Qin M, Huang L, Xu T, Chen Y, Hu Q, Peng S, Peng Z, Qu LN, Chen SG, Tuo QH, Liao DF, Wang XP, Wu RR, Yuan TF, Li YH, Liu XM. Human torpor: translating insights from nature into manned deep space expedition. Biol Rev Camb Philos Soc 2020; 96:642-672. [PMID: 33314677 DOI: 10.1111/brv.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
During a long-duration manned spaceflight mission, such as flying to Mars and beyond, all crew members will spend a long period in an independent spacecraft with closed-loop bioregenerative life-support systems. Saving resources and reducing medical risks, particularly in mental heath, are key technology gaps hampering human expedition into deep space. In the 1960s, several scientists proposed that an induced state of suppressed metabolism in humans, which mimics 'hibernation', could be an ideal solution to cope with many issues during spaceflight. In recent years, with the introduction of specific methods, it is becoming more feasible to induce an artificial hibernation-like state (synthetic torpor) in non-hibernating species. Natural torpor is a fascinating, yet enigmatic, physiological process in which metabolic rate (MR), body core temperature (Tb ) and behavioural activity are reduced to save energy during harsh seasonal conditions. It employs a complex central neural network to orchestrate a homeostatic state of hypometabolism, hypothermia and hypoactivity in response to environmental challenges. The anatomical and functional connections within the central nervous system (CNS) lie at the heart of controlling synthetic torpor. Although progress has been made, the precise mechanisms underlying the active regulation of the torpor-arousal transition, and their profound influence on neural function and behaviour, which are critical concerns for safe and reversible human torpor, remain poorly understood. In this review, we place particular emphasis on elaborating the central nervous mechanism orchestrating the torpor-arousal transition in both non-flying hibernating mammals and non-hibernating species, and aim to provide translational insights into long-duration manned spaceflight. In addition, identifying difficulties and challenges ahead will underscore important concerns in engineering synthetic torpor in humans. We believe that synthetic torpor may not be the only option for manned long-duration spaceflight, but it is the most achievable solution in the foreseeable future. Translating the available knowledge from natural torpor research will not only benefit manned spaceflight, but also many clinical settings attempting to manipulate energy metabolism and neurobehavioural functions.
Collapse
Affiliation(s)
- Zhe Shi
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.,Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Tao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qin Hu
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, 100024, China
| | - Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Li-Na Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shan-Guang Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xiao-Ping Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ren-Rong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
| | - Ying-Hui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xin-Min Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
22
|
Feng M, Xiang B, Fan L, Wang Q, Xu W, Xiang H. Interrogating autonomic peripheral nervous system neurons with viruses - A literature review. J Neurosci Methods 2020; 346:108958. [PMID: 32979424 DOI: 10.1016/j.jneumeth.2020.108958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022]
Abstract
How rich functionality emerges from the rather invariant structural architecture of the peripheral autonomic nervous system remains one of the major mysteries in neuroscience. The high incidence of patients with neural circuit-related autonomic nervous system diseases highlights the importance of fundamental research, among others with neurotracing methods, into autonomic neuron functionality. Due to the emergence of neurotropic virus-based tracing techniques in recent years the access to neuronal connectivity in the peripheral autonomic nervous system has greatly been improved. This review is devoted to the anatomical distribution of neural circuits in the periphery of the autonomous nervous system and to the interaction between the autonomic nervous system and vital peripheral organs or tissues. The experimental evidence available at present has greatly expanded our understanding of autonomic peripheral nervous system neurons.
Collapse
Affiliation(s)
- Maohui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan 430071, PR China
| | - Boqi Xiang
- University of California-Davis, Davis, CA 95616, USA
| | - Li Fan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Qian Wang
- Department Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Weiguo Xu
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - HongBing Xiang
- Department Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
23
|
Abstract
Since the discovery of functionally competent, energy-consuming brown adipose tissue (BAT) in adult humans, much effort has been devoted to exploring this tissue as a means for increasing energy expenditure to counteract obesity. However, despite promising effects on metabolic rate and insulin sensitivity, no convincing evidence for weight-loss effects of cold-activated human BAT exists to date. Indeed, increasing energy expenditure would naturally induce compensatory feedback mechanisms to defend body weight. Interestingly, BAT is regulated by multiple interactions with the hypothalamus from regions overlapping with centers for feeding behavior and metabolic control. Therefore, in the further exploration of BAT as a potential source of novel drug targets, we discuss the hypothalamic orchestration of BAT activity and the relatively unexplored BAT feedback mechanisms on neuronal regulation. With a holistic view on hypothalamic-BAT interactions, we aim to raise ideas and provide a new perspective on this circuit and highlight its clinical relevance.
Collapse
Affiliation(s)
- Jo B Henningsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| |
Collapse
|
24
|
Fan L, Xiang B, Xiong J, He Z, Xiang H. Use of viruses for interrogating viscera-specific projections in central nervous system. J Neurosci Methods 2020; 341:108757. [PMID: 32371062 DOI: 10.1016/j.jneumeth.2020.108757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
Each internal organ may perform many different functions under central regulation, yet how these processes are coordinated is poorly understood. The last three decades have witnessed a renaissance in tract tracing with genetically engineered strains of viruses that rapidly interrogate viscera-specific projections in the CNS. The application of novel methods to study cell type-specific projections through trans-synaptically transmitted virus 'label' highlights projections exclusively originating from neurons expressing a very specific molecular phenotype. This has opened the door to neuroanatomical studies interrogating organ-specific projections in the CNS at an unprecedented scale. In this contribution to the Special Issue we present an overview of the present state and of future opportunities in charting viscera-brain specific connectivity and in linking brain circuits to internal organ function.
Collapse
Affiliation(s)
- Li Fan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Boqi Xiang
- University of California-Davis, Davis, CA 95616, USA
| | - Jun Xiong
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Zhigang He
- Department of Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, PR China
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, PR China.
| |
Collapse
|
25
|
Dalmasso C, Leachman JR, Osborn JL, Loria AS. Sensory signals mediating high blood pressure via sympathetic activation: role of adipose afferent reflex. Am J Physiol Regul Integr Comp Physiol 2019; 318:R379-R389. [PMID: 31868518 DOI: 10.1152/ajpregu.00079.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood pressure regulation in health and disease involves a balance between afferent and efferent signals from multiple organs and tissues. Although there are numerous reviews focused on the role of sympathetic nerves in different models of hypertension, few have revised the contribution of afferent nerves innervating adipose tissue and their role in the development of obesity-induced hypertension. Both clinical and basic research support the beneficial effects of bilateral renal denervation in lowering blood pressure. However, recent studies revealed that afferent signals from adipose tissue, in an adipose-brain-peripheral pathway, could contribute to the increased sympathetic activation and blood pressure during obesity. This review focuses on the role of adipose tissue afferent reflexes and briefly describes a number of other afferent reflexes modulating blood pressure. A comprehensive understanding of how multiple afferent reflexes contribute to the pathophysiology of essential and/or obesity-induced hypertension may provide significant insights into improving antihypertensive therapeutic approaches.
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jacqueline R Leachman
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jeffrey L Osborn
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
26
|
Li J, Liu T, Dong Y, Kondoh K, Lu Z. Trans-synaptic Neural Circuit-Tracing with Neurotropic Viruses. Neurosci Bull 2019; 35:909-920. [PMID: 31004271 PMCID: PMC6754522 DOI: 10.1007/s12264-019-00374-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/15/2018] [Indexed: 12/19/2022] Open
Abstract
A central objective in deciphering the nervous system in health and disease is to define the connections of neurons. The propensity of neurotropic viruses to spread among synaptically-linked neurons makes them ideal for mapping neural circuits. So far, several classes of viral neuronal tracers have become available and provide a powerful toolbox for delineating neural networks. In this paper, we review the recent developments of neurotropic viral tracers and highlight their unique properties in revealing patterns of neuronal connections.
Collapse
Affiliation(s)
- Jiamin Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taian Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yun Dong
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kunio Kondoh
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Japan Science and Technology Agency, PRESTO, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Zhonghua Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
27
|
Blaszkiewicz M, Willows JW, Dubois AL, Waible S, DiBello K, Lyons LL, Johnson CP, Paradie E, Banks N, Motyl K, Michael M, Harrison B, Townsend KL. Neuropathy and neural plasticity in the subcutaneous white adipose depot. PLoS One 2019; 14:e0221766. [PMID: 31509546 PMCID: PMC6738614 DOI: 10.1371/journal.pone.0221766] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/14/2019] [Indexed: 12/30/2022] Open
Abstract
The difficulty in obtaining as well as maintaining weight loss, together with the impairment of metabolic control in conditions like diabetes and cardiovascular disease, may represent pathological situations of inadequate neural communication between the brain and peripheral organs and tissues. Innervation of adipose tissues by peripheral nerves provides a means of communication between the master metabolic regulator in the brain (chiefly the hypothalamus), and energy-expending and energy-storing cells in the body (primarily adipocytes). Although chemical and surgical denervation studies have clearly demonstrated how crucial adipose tissue neural innervation is for maintaining proper metabolic health, we have uncovered that adipose tissue becomes neuropathic (ie: reduction in neurites) in various conditions of metabolic dysregulation. Here, utilizing both human and mouse adipose tissues, we present evidence of adipose tissue neuropathy, or loss of proper innervation, under pathophysiological conditions such as obesity, diabetes, and aging, all of which are concomitant with insult to the adipose organ as well as metabolic dysfunction. Neuropathy is indicated by loss of nerve fiber protein expression, reduction in synaptic markers, and lower neurotrophic factor expression in adipose tissue. Aging-related adipose neuropathy particularly results in loss of innervation around the tissue vasculature, which cannot be reversed by exercise. Together with indications of neuropathy in muscle and bone, these findings underscore that peripheral neuropathy is not restricted to classic tissues like the skin of distal extremities, and that loss of innervation to adipose may trigger or exacerbate metabolic diseases. In addition, we have demonstrated stimulation of adipose tissue neural plasticity with cold exposure, which may ameliorate adipose neuropathy and be a potential therapeutic option to re-innervate adipose and restore metabolic health.
Collapse
Affiliation(s)
- Magdalena Blaszkiewicz
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono ME, United States of America
| | - Jake W. Willows
- School of Biology and Ecology, University of Maine, Orono ME, United States of America
| | - Amanda L. Dubois
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono ME, United States of America
| | - Stephen Waible
- School of Biology and Ecology, University of Maine, Orono ME, United States of America
| | - Kristen DiBello
- School of Biology and Ecology, University of Maine, Orono ME, United States of America
| | - Lila L. Lyons
- School of Biology and Ecology, University of Maine, Orono ME, United States of America
| | - Cory P. Johnson
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono ME, United States of America
| | - Emma Paradie
- School of Biology and Ecology, University of Maine, Orono ME, United States of America
| | - Nicholas Banks
- Maine Medical Center Research Institute, Scarborough ME, United States of America
| | - Katherine Motyl
- Maine Medical Center Research Institute, Scarborough ME, United States of America
| | - Merilla Michael
- University of New England, Biddeford ME, United States of America
| | | | - Kristy L. Townsend
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono ME, United States of America
- School of Biology and Ecology, University of Maine, Orono ME, United States of America
- * E-mail:
| |
Collapse
|
28
|
Zhu Q, Glazier BJ, Hinkel BC, Cao J, Liu L, Liang C, Shi H. Neuroendocrine Regulation of Energy Metabolism Involving Different Types of Adipose Tissues. Int J Mol Sci 2019; 20:E2707. [PMID: 31159462 PMCID: PMC6600468 DOI: 10.3390/ijms20112707] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022] Open
Abstract
Despite tremendous research efforts to identify regulatory factors that control energy metabolism, the prevalence of obesity has been continuously rising, with nearly 40% of US adults being obese. Interactions between secretory factors from adipose tissues and the nervous system innervating adipose tissues play key roles in maintaining energy metabolism and promoting survival in response to metabolic challenges. It is currently accepted that there are three types of adipose tissues, white (WAT), brown (BAT), and beige (BeAT), all of which play essential roles in maintaining energy homeostasis. WAT mainly stores energy under positive energy balance, while it releases fuels under negative energy balance. Thermogenic BAT and BeAT dissipate energy as heat under cold exposure to maintain body temperature. Adipose tissues require neural and endocrine communication with the brain. A number of WAT adipokines and BAT batokines interact with the neural circuits extending from the brain to cooperatively regulate whole-body lipid metabolism and energy homeostasis. We review neuroanatomical, histological, genetic, and pharmacological studies in neuroendocrine regulation of adipose function, including lipid storage and mobilization of WAT, non-shivering thermogenesis of BAT, and browning of BeAT. Recent whole-tissue imaging and transcriptome analysis of differential gene expression in WAT and BAT yield promising findings to better understand the interaction between secretory factors and neural circuits, which represents a novel opportunity to tackle obesity.
Collapse
Affiliation(s)
- Qi Zhu
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Bradley J Glazier
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Benjamin C Hinkel
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Jingyi Cao
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Lin Liu
- Program of Bioinformatics, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Chun Liang
- Program of Bioinformatics, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Haifei Shi
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
29
|
Doslikova B, Tchir D, McKinty A, Zhu X, Marks DL, Baracos VE, Colmers WF. Convergent neuronal projections from paraventricular nucleus, parabrachial nucleus, and brainstem onto gastrocnemius muscle, white and brown adipose tissue in male rats. J Comp Neurol 2019; 527:2826-2842. [PMID: 31045239 DOI: 10.1002/cne.24710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023]
Abstract
When energy balance is altered by aerobic exercise, starvation, and cold exposure, for example, there appears to be coordination of the responses of skeletal muscle, white adipose (WAT), and brown adipose (BAT) tissues. We hypothesized that WAT, BAT, and skeletal muscle may share an integrated regulation by the central nervous system (CNS); specifically, that neurons in brain regions associated with energy balance would possess neuroanatomical connections to permit coordination of multiple, complementary responses in these downstream tissues. To study this, we used trans-neuronal viral retrograde tract tracing, using isogenic strains of pseudorabies virus (PRV) with distinct fluorescent reporters (either eGFP or mRFP), injected pairwise into male rat gastrocnemius, subcutaneous WAT and interscapular BAT, coupled with neurochemical characterization of specific cell populations for cocaine- and amphetamine-related transcript (CART), oxytocin (OX), corticotrophin releasing hormone (CRH) and calcitonin gene-related peptide (CGRP). Cells in the paraventricular (PVN) and parabrachial (PBN) nuclei and brainstem showed dual projections to muscle + WAT, muscle + BAT, and WAT + BAT. Dual PRV-labeled cells were found in parvocellular, magnocellular and descending/pre-autonomic regions of the PVN, and multiple structural divisions of the PBN and brainstem. In most PBN subdivisions, more than 50% of CGRP cells dually projected to muscle + WAT and muscle + BAT. Similarly, 31-68% of CGRP cells projected both to WAT + BAT. However, dual PRV-labeled cells in PVN only occasionally expressed OX or CRH but not CART. These studies reveal for the first time both separate and shared outflow circuitries among skeletal muscle and subcutaneous WAT and BAT.
Collapse
Affiliation(s)
- Barbora Doslikova
- Department of Pharmacology, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Devan Tchir
- Department of Pharmacology, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda McKinty
- Department of Pharmacology, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon
| | - Vickie E Baracos
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - William F Colmers
- Department of Pharmacology, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Valdez G. Effects of disease-afflicted and aging neurons on the musculoskeletal system. Bone 2019; 122:31-37. [PMID: 30695738 PMCID: PMC6444351 DOI: 10.1016/j.bone.2019.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/09/2023]
Abstract
The musculoskeletal system includes skeletal muscles, bones and innervating axons from neurons in the central and peripheral nervous systems. Together, they form the largest structure in the body. They also initiate and coordinate locomotion, provide structural stability, and contribute to metabolism and homeostasis. Because of these functions, much effort has been devoted to ascertaining the impact of acute and chronic stress, such as disease, injury and aging, on the musculoskeletal system. This review will examine the role of the nervous system in the deleterious changes that accrue in skeletal muscles and bones during the progression of neurologic diseases and with advancing age.
Collapse
Affiliation(s)
- Gregorio Valdez
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
31
|
Guilherme A, Henriques F, Bedard AH, Czech MP. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat Rev Endocrinol 2019; 15:207-225. [PMID: 30733616 PMCID: PMC7073451 DOI: 10.1038/s41574-019-0165-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipose tissue comprises adipocytes and many other cell types that engage in dynamic crosstalk in a highly innervated and vascularized tissue matrix. Although adipose tissue has been studied for decades, it has been appreciated only in the past 5 years that extensive arborization of nerve fibres has a dominant role in regulating the function of adipose tissue. This Review summarizes the latest literature, which suggests that adipocytes signal to local sensory nerve fibres in response to perturbations in lipolysis and lipogenesis. Such adipocyte signalling to the central nervous system causes sympathetic output to distant adipose depots and potentially other metabolic tissues to regulate systemic glucose homeostasis. Paracrine factors identified in the past few years that mediate such adipocyte-neuron crosstalk are also reviewed. Similarly, immune cells and endothelial cells within adipose tissue communicate with local nerve fibres to modulate neurotransmitter tone, blood flow, adipocyte differentiation and energy expenditure, including adipose browning to produce heat. This understudied field of neurometabolism related to adipose tissue biology has great potential to reveal new mechanistic insights and potential therapeutic strategies for obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
32
|
Wee NKY, Lorenz MR, Bekirov Y, Jacquin MF, Scheller EL. Shared Autonomic Pathways Connect Bone Marrow and Peripheral Adipose Tissues Across the Central Neuraxis. Front Endocrinol (Lausanne) 2019; 10:668. [PMID: 31611846 PMCID: PMC6776593 DOI: 10.3389/fendo.2019.00668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022] Open
Abstract
Bone marrow adipose tissue (BMAT) is increased in both obesity and anorexia. This is unique relative to white adipose tissue (WAT), which is generally more attuned to metabolic demand. It suggests that there may be regulatory pathways that are common to both BMAT and WAT and also those that are specific to BMAT alone. The central nervous system (CNS) is a key mediator of adipose tissue function through sympathetic adrenergic neurons. Thus, we hypothesized that central autonomic pathways may be involved in BMAT regulation. To test this, we first quantified the innervation of BMAT by tyrosine hydroxylase (TH) positive nerves within the metaphysis and diaphysis of the tibia of B6 and C3H mice. We found that many of the TH+ axons were concentrated around central blood vessels in the bone marrow. However, there were also areas of free nerve endings which terminated in regions of BMAT adipocytes. Overall, the proportion of nerve-associated BMAT adipocytes increased from proximal to distal along the length of the tibia (from ~3-5 to ~14-24%), regardless of mouse strain. To identify the central pathways involved in BMAT innervation and compare to peripheral WAT, we then performed retrograde viral tract tracing with an attenuated pseudorabies virus (PRV) to infect efferent nerves from the tibial metaphysis (inclusive of BMAT) and inguinal WAT (iWAT) of C3H mice. PRV positive neurons were identified consistently from both injection sites in the intermediolateral horn of the spinal cord, reticular formation, rostroventral medulla, solitary tract, periaqueductal gray, locus coeruleus, subcoeruleus, Barrington's nucleus, and hypothalamus. We also observed dual-PRV infected neurons within the majority of these regions. Similar tracings were observed in pons, midbrain, and hypothalamic regions from B6 femur and tibia, demonstrating that these results persist across mouse strains and between skeletal sites. Altogether, this is the first quantitative report of BMAT autonomic innervation and reveals common central neuroanatomic pathways, including putative "command" neurons, involved in coordinating multiple aspects of sympathetic output and facilitation of parallel processing between bone marrow/BMAT and peripheral adipose tissue.
Collapse
Affiliation(s)
- Natalie K. Y. Wee
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Reconstructive Sciences, UConn Health, Farmington, CT, United States
| | - Madelyn R. Lorenz
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Yusuf Bekirov
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Mark F. Jacquin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Erica L. Scheller
| |
Collapse
|
33
|
Harris RBS. Denervation as a tool for testing sympathetic control of white adipose tissue. Physiol Behav 2018; 190:3-10. [PMID: 28694155 PMCID: PMC5758439 DOI: 10.1016/j.physbeh.2017.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
This review summarizes the evidence derived from studies utilizing denervation procedures to demonstrate sympathetic control of white adipose tissue metabolism and body fat mass. A majority of the work demonstrating neural control of white fat was performed in the Bartness laboratory with Siberian hamsters as the predominant experimental model. These animals experience dramatic changes in body fat mass in response to changes in photoperiod, however, the mechanisms identified in hamsters have been reproduced or further elucidated by experiments with other animal models. Evidence for the role of sympathetic innervation contributing to the control of white adipocyte lipolysis and preadipocyte proliferation is summarized. In addition, evidence from denervation experiments for neural communication between different white fat depots as well as for a feedback control loop between sensory afferents from individual fat depots and sympathetic efferents to the same or distant white fat depots is discussed.
Collapse
Affiliation(s)
- Ruth B S Harris
- Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
34
|
Nguyen NLT, Xue B, Bartness TJ. Sensory denervation of inguinal white fat modifies sympathetic outflow to white and brown fat in Siberian hamsters. Physiol Behav 2018; 190:28-33. [PMID: 29447836 DOI: 10.1016/j.physbeh.2018.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/10/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) have sympathetic nervous system (SNS) and sensory innervations. Previous studies from our laboratory revealed central neuroanatomical evidence of WAT sensory and BAT SNS crosstalk with double labeling of inguinal WAT (IWAT) sensory and interscapular BAT (IBAT) SNS neurons. We previously demonstrated that WAT lipolysis increases IBAT temperature, but this effect is absent when IWAT afferents are surgically denervated, which severs both sensory and SNS nerves. It is possible that WAT sensory feedback can regulate SNS drive to itself and other WAT and BAT depots, and thus contribute to the existence of differential SNS outflow to fat during different energy challenges. Here we selectively denervated IWAT sensory nerves in Siberian hamsters using capsaicin and measured norepinephrine turnover (NETO) i.e., SNS drive to WAT and BAT depots, IBAT uncoupling protein 1 (UCP1) expression, body mass, fat mass, blood glucose, and food consumed after a 24-h cold exposure. IWAT sensory denervation decreased both IWAT and IBAT NETO and IBAT UCP1 expression. IWAT sensory denervation, however, increased mesenteric WAT (MWAT) NETO after the 24-h cold exposure and did not modify epididymal WAT (EWAT) and retroperitoneal WAT (RWAT) NETO compared with respective controls. Body mass, fat mass, blood glucose, and food consumed were unchanged across groups. RWAT and EWAT mass decreased in capsaicin-injected hamsters, but did not in the vehicle hamsters. These results functionally demonstrate the existence of IWAT sensory and IBAT SNS crosstalk and that a disruption in this sensory-SNS feedback mechanism modifies SNS drive to IWAT, IBAT, and MWAT, but not EWAT and RWAT.
Collapse
Affiliation(s)
- Ngoc Ly T Nguyen
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30303, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30303, USA.
| | - Timothy J Bartness
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
35
|
François M, Qualls-Creekmore E, Berthoud HR, Münzberg H, Yu S. Genetics-based manipulation of adipose tissue sympathetic innervation. Physiol Behav 2017; 190:21-27. [PMID: 28859876 DOI: 10.1016/j.physbeh.2017.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 12/17/2022]
Abstract
There is renewed interest in leveraging the thermogenic capacity of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) to improve energy balance and prevent obesity. In addition to these effects on energy expenditure, both BAT and WAT secrete large numbers of hormones and cytokines that play important roles in maintaining metabolic health. Both BAT and WAT are densely innervated by the sympathetic nervous system (SNS) and this innervation is crucial for BAT thermogenesis and WAT browning, making it a potentially interesting target for manipulating energy balance and treatment of obesity and metabolic disease. Peripheral neuromodulation in the form of electrical manipulation of the SNS and parasympathetic nervous system (PSNS) has been used for the management of pain and many other conditions, but progress is hampered by lack of detailed knowledge of function-specific neurons and nerves innervating particular organs and tissues. Therefore, the goal of the National Institutes of Health (NIH) Common Fund project "Stimulating Peripheral Activity to Relieve Conditions (SPARC)" is to comprehensively map both anatomical and neurochemical aspects of the peripheral nervous system in animal model systems to ultimately guide optimal neuromodulation strategies in humans. Compared to electrical manipulation, neuron-specific opto- and chemogenetic manipulation, now being extensively used to decode the function of brain circuits, will further increase the functional specificity of peripheral neuromodulation.
Collapse
Affiliation(s)
- Marie François
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Emily Qualls-Creekmore
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Sangho Yu
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| |
Collapse
|