1
|
Valencia-Ortega J, Castillo-Santos A, Molerés-Orduña M, Solis-Paredes JM, Saucedo R, Estrada-Gutierrez G, Camacho-Arroyo I. Influence of Maternal Adipokines on Anthropometry, Adiposity, and Neurodevelopmental Outcomes of the Offspring. Int J Mol Sci 2024; 25:11655. [PMID: 39519203 PMCID: PMC11547085 DOI: 10.3390/ijms252111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Pregnancy is distinguished by a multitude of intricate interactions between the mother and the new individual, commencing at implantation and persisting until the maturation and integration of the fetal apparatus and systems. The physiological increase in fat mass during pregnancy and the association of maternal obesity with adverse neonatal outcomes have directed attention to the study of maternal adipokines as participants in fetal development. Interestingly, maternal concentrations of certain adipokines such as adiponectin, leptin, tumor necrosis factor-alpha, and interleukin-6 have been found to be associated with offspring anthropometry and adiposity at birth and at three months of age, even with neurodevelopmental alterations later in life. This is partly explained by the functions of these adipokines in the regulation of maternal metabolism and placental nutrient transport. This review compiles, organizes, and analyzes the most relevant studies on the association between maternal adipokines with anthropometry, adiposity, and neurodevelopmental outcomes of the offspring. Furthermore, it proposes the underlying mechanisms involved in this association.
Collapse
Affiliation(s)
- Jorge Valencia-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| | - Andrea Castillo-Santos
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (A.C.-S.); (M.M.-O.); (J.M.S.-P.)
| | - Miranda Molerés-Orduña
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (A.C.-S.); (M.M.-O.); (J.M.S.-P.)
| | - Juan Mario Solis-Paredes
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (A.C.-S.); (M.M.-O.); (J.M.S.-P.)
| | - Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Guadalupe Estrada-Gutierrez
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico;
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| |
Collapse
|
2
|
Wargent ET, Kępczyńska MA, Kaspersen MH, Ulven ER, Arch JRS, Ulven T, Stocker CJ. Chronic administration of hydrolysed pine nut oil to mice improves insulin sensitivity and glucose tolerance and increases energy expenditure via a free fatty acid receptor 4-dependent mechanism. Br J Nutr 2024; 132:13-20. [PMID: 38751244 DOI: 10.1017/s0007114524000965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
A healthy diet is at the forefront of measures to prevent type 2 diabetes. Certain vegetable and fish oils, such as pine nut oil (PNO), have been demonstrated to ameliorate the adverse metabolic effects of a high-fat diet. The present study investigates the involvement of the free fatty acid receptors 1 (FFAR1) and 4 (FFAR4) in the chronic activity of hydrolysed PNO (hPNO) on high-fat diet-induced obesity and insulin resistance. Male C57BL/6J wild-type, FFAR1 knockout (-/-) and FFAR4-/- mice were placed on 60 % high-fat diet for 3 months. Mice were then dosed hPNO for 24 d, during which time body composition, energy intake and expenditure, glucose tolerance and fasting plasma insulin, leptin and adiponectin were measured. hPNO improved glucose tolerance and decreased plasma insulin in the wild-type and FFAR1-/- mice, but not the FFAR4-/- mice. hPNO also decreased high-fat diet-induced body weight gain and fat mass, whilst increasing energy expenditure and plasma adiponectin. None of these effects on energy balance were statistically significant in FFAR4-/- mice, but it was not shown that they were significantly less than in wild-type mice. In conclusion, chronic hPNO supplementation reduces the metabolically detrimental effects of high-fat diet on obesity and insulin resistance in a manner that is dependent on the presence of FFAR4.
Collapse
Affiliation(s)
- Edward Taynton Wargent
- Institute of Translational Medicine, Clore Laboratory, University of Buckingham, Buckingham, MK18 1EG, UK
| | - Małgorzata A Kępczyńska
- Institute of Translational Medicine, Clore Laboratory, University of Buckingham, Buckingham, MK18 1EG, UK
| | - Mads H Kaspersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Elisabeth Rexen Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100Copenhagen, Denmark
| | - Jonathan R S Arch
- Institute of Translational Medicine, Clore Laboratory, University of Buckingham, Buckingham, MK18 1EG, UK
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100Copenhagen, Denmark
| | | |
Collapse
|
3
|
Donato J. Programming of metabolism by adipokines during development. Nat Rev Endocrinol 2023:10.1038/s41574-023-00828-1. [PMID: 37055548 DOI: 10.1038/s41574-023-00828-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/15/2023]
Abstract
The intrauterine and early postnatal periods represent key developmental stages in which an organism is highly susceptible to being permanently influenced by maternal factors and nutritional status. Strong evidence indicates that either undernutrition or overnutrition during development can predispose individuals to disease later in life, especially type 2 diabetes mellitus and obesity, a concept known as metabolic programming. Adipose tissue produces important signalling molecules that control energy and glucose homeostasis, including leptin and adiponectin. In addition to their well-characterized metabolic effects in adults, adipokines have been associated with metabolic programming by affecting different aspects of development. Therefore, alterations in the secretion or signalling of adipokines, caused by nutritional insults in early life, might lead to metabolic diseases in adulthood. This Review summarizes and discusses the potential role of several adipokines in inducing metabolic programming through their effects during development. The identification of the endocrine factors that act in early life to permanently influence metabolism represents a key step in understanding the mechanisms behind metabolic programming. Thus, future strategies aiming to prevent and treat these metabolic diseases can be designed, taking into consideration the relationship between adipokines and the developmental origins of health and disease.
Collapse
Affiliation(s)
- Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Thibonnier M, Ghosh S. Strategy for Pre-Clinical Development of Active Targeting MicroRNA Oligonucleotide Therapeutics for Unmet Medical Needs. Int J Mol Sci 2023; 24:ijms24087126. [PMID: 37108289 PMCID: PMC10138879 DOI: 10.3390/ijms24087126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
We present here an innovative modular and outsourced model of drug research and development for microRNA oligonucleotide therapeutics (miRNA ONTs). This model is being implemented by a biotechnology company, namely AptamiR Therapeutics, in collaboration with Centers of Excellence in Academic Institutions. Our aim is to develop safe, effective and convenient active targeting miRNA ONT agents for the metabolic pandemic of obesity and metabolic-associated fatty liver disease (MAFLD), as well as deadly ovarian cancer.
Collapse
Affiliation(s)
| | - Sujoy Ghosh
- Duke-NUS Medical School, Singapore and Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
5
|
Sinzato YK, Paula VG, Gallego FQ, Moraes-Souza RQ, Corrente JE, Volpato GT, Damasceno DC. Maternal Diabetes and Postnatal High-Fat Diet on Pregnant Offspring. Front Cell Dev Biol 2022; 10:818621. [PMID: 35706903 PMCID: PMC9189289 DOI: 10.3389/fcell.2022.818621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/12/2022] [Indexed: 12/22/2022] Open
Abstract
Maternal diabetes-induced fetal programming predisposes offspring to type 2 diabetes, cardiovascular disease, and obesity in adulthood. However, lifelong health and disease trajectories depend on several factors and nutrition is one of the main ones. We intend to understand the role of maternal diabetes-induced fetal programming and its association with a high-fat diet during lifelong in the female F1 generation focusing on reproductive outcomes and the possible changes in physiological systems during pregnancy as well as the repercussions on the F2 generation at birth. For this, we composed four groups: F1 female pups from control (OC) or from diabetic dams (OD) and fed with standard (SD) or high-fat diet from weaning to full-term pregnancy. During pregnancy, glucose intolerance and insulin sensitivity were evaluated. In a full-term pregnancy, the maternal blood and liver were collected to evaluate redox status markers. The maternal blood, placental tissue, and fetal blood (pool) were collected to evaluate adiponectin and leptin levels. Maternal reproductive parameters were evaluated as well. Maternal diabetes and high-fat diet consumption, in isolation, were both responsible for increased infertility rates and fasting glucose levels in the F1 generation and fetal growth restriction in the F2 generation. The association of both conditions showed, in addition to those, increased lipoperoxidation in maternal erythrocytes, regardless of the increased endogenous antioxidant enzyme activities, glucose intolerance, decreased number of implantation sites and live fetuses, decreased litter, fetal and placental weight, increased preimplantation losses, and increased fetal leptin serum levels. Thus, our findings show that fetal programming caused by maternal diabetes or lifelong high-fat diet consumption leads to similar repercussions in pregnant rats. In addition, the association of both conditions was responsible for glucose intolerance and oxidative stress in the first generation and increased fetal leptin levels in the second generation. Thus, our findings show both the F1 and F2 generations harmed health after maternal hyperglycemic intrauterine environment and exposure to a high-fat diet from weaning until the end of pregnancy.
Collapse
Affiliation(s)
- Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Verônyca Gonçalves Paula
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Franciane Quintanilha Gallego
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Rafaianne Q. Moraes-Souza
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Postgraduate Course on Tocogynecology, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, Brazil
- *Correspondence: Débora Cristina Damasceno,
| |
Collapse
|
6
|
Denisova EI, Savinkova MM, Makarova EN. Influence of leptin administration to pregnant female mice on obesity development, taste preferences, and gene expression in the liver and muscles of their male and female offspring. Vavilovskii Zhurnal Genet Selektsii 2021; 25:669-676. [PMID: 34782887 PMCID: PMC8558916 DOI: 10.18699/vj21.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022] Open
Abstract
. The consumption of food rich in sugar and fat provokes obesity. Prenatal conditions have an impact on taste preferences and metabolism in the adult offspring, and this impact may manifest differently in different sexes. An increase in blood leptin level in pregnant females reduces the risk of obesity and insulin resistance in the offspring, although the mechanisms mediating this effect are unknown. Neither is it known whether maternal leptin affects taste preferences. In this study, we investigated the effect of leptin administration to pregnant mice on the development of diet-induced obesity, food choice, and gene expression in the liver and muscles of the offspring with regard to sex. Leptin was administered to female mice on days 11, 12, and 13 of pregnancy. In male and female offspring, growth rate and intake of standard chow after weaning, obesity development, gene expression in the liver and muscles, and food choice when kept on a high-calorie diet (standard chow, lard, sweet cookies) were recorded. Leptin administration to pregnant females reduced body weight in the female offspring fed on the standard diet. When the offspring were given a high-calorie diet, leptin administration inhibited obesity development and reduced the consumption of cookies only in males. It also increased the consumption of standard chow and the mRNA levels of genes for the insulin receptor and glucose transporter type 4 in the muscles of both male and female offspring. The results demonstrate that an increase in blood leptin levels in pregnant females has a sex-specif ic effect on the metabolism of the offspring increasing resistance to obesity only in male offspring. The mechanism underlying this effect includes a shift in food preference in favor of a balanced diet and maintenance of insulin sensitivity in muscle tissues.
Collapse
Affiliation(s)
- E I Denisova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - E N Makarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
7
|
Wargent ET, Ahmad SJS, Lu QR, Kostenis E, Arch JRS, Stocker CJ. Leanness and Low Plasma Leptin in GPR17 Knockout Mice Are Dependent on Strain and Associated With Increased Energy Intake That Is Not Suppressed by Exogenous Leptin. Front Endocrinol (Lausanne) 2021; 12:698115. [PMID: 34646232 PMCID: PMC8503278 DOI: 10.3389/fendo.2021.698115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown that agonists of GPR17 stimulate, while antagonists inhibit feeding. However, whole body knockout of GPR17 in mice of the C57Bl/6 strain did not affect energy balance, whereas selective knockout in oligodendrocytes or pro-opiomelanocortin neurons provided protection from high fat diet-induced obesity and impaired glucose homeostasis. We reasoned that whole body knockout of GPR17 in mice of the 129 strain might elicit more marked effects because the 129 strain is more susceptible than the C57Bl/6 strain to increased sympathetic activity and less susceptible to high fat diet-induced obesity. Consistent with this hypothesis, compared to wild-type mice, and when fed on either a chow or a high fat diet, GPR17 -/- mice of the 129 strain displayed increased expression of uncoupling protein-1 in white adipose tissue, lower body weight and fat content, reduced plasma leptin, non-esterified fatty acids and triglycerides, and resistance to high fat diet-induced glucose intolerance. Not only energy expenditure, but also energy intake was raised. Administration of leptin did not suppress the increased food intake in GPR17 -/- mice of the 129 strain, whereas it did suppress food intake in GPR17 +/+ mice. The only difference between GPR17 +/- and GPR17 +/+ mice of the C57Bl/6 strain was that the body weight of the GPR17 -/- mice was lower than that of the GPR17 +/+ mice when the mice were fed on a standard chow diet. We propose that the absence of GPR17 raises sympathetic activity in mice of the 129 strain in response to a low plasma fuel supply, and that the consequent loss of body fat is partly mitigated by increased energy intake.
Collapse
Affiliation(s)
- Edward T. Wargent
- Institute of Translational Medicine, University of Buckingham, Buckingham, United Kingdom
| | - Suhaib J. S. Ahmad
- Department of Surgery, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Qing Richard Lu
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | | | - Jonathan R. S. Arch
- Institute of Translational Medicine, University of Buckingham, Buckingham, United Kingdom
| | | |
Collapse
|
8
|
Thibonnier M, Esau C, Ghosh S, Wargent E, Stocker C. Metabolic and energetic benefits of microRNA-22 inhibition. BMJ Open Diabetes Res Care 2020; 8:8/1/e001478. [PMID: 33004402 PMCID: PMC7534675 DOI: 10.1136/bmjdrc-2020-001478] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/02/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION We previously demonstrated in primary cultures of human subcutaneous adipocytes and in a mouse model of diet-induced obesity that specific microRNA-22-3p antagomirs produce a significant reduction of fat mass and an improvement of several metabolic parameters. These effects are related to the activation of target genes such as KDM3A, KDM6B, PPARA, PPARGC1B and SIRT1 involved in lipid catabolism, thermogenesis, insulin sensitivity and glucose homeostasis. RESEARCH DESIGN AND METHODS We now report a dedicated study exploring over the course of 3 months the metabolic and energetic effects of subcutaneous administration of our first miR-22-3p antagomir drug candidate (APT-110) in adult C57BL/6 male mice. Body composition, various blood parameters and energy expenditure were measured at several timepoints between week 12 and week 27 of age. RESULTS Weekly subcutaneous injections of APT-110 for 12 weeks produced a sustained increase of energy expenditure as early as day 11 of treatment, a significant fat mass reduction, but no change of appetite nor physical activity. Insulin sensitivity as well as circulating glucose, cholesterol and leptin were improved. There was a dramatic reduction of liver steatosis after 3 months of active treatment. RNA sequencing revealed an activation of lipid metabolism pathways in a tissue-specific manner. CONCLUSIONS These original findings suggest that microRNA-22-3p inhibition could lead to a potent treatment of fat accumulation, insulin resistance, and related complex metabolic disorders such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
| | | | - Sujoy Ghosh
- Centre for Computational Biology and Program in Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Edward Wargent
- Clore Laboratory, University of Buckingham, Buckingham, UK
| | - Claire Stocker
- Clore Laboratory, University of Buckingham, Buckingham, UK
| |
Collapse
|
9
|
Denisova EI, Kozhevnikova VV, Bazhan NM, Makarova EN. Sex-specific effects of leptin administration to pregnant mice on the placentae and the metabolic phenotypes of offspring. FEBS Open Bio 2019; 10:96-106. [PMID: 31703240 PMCID: PMC6943234 DOI: 10.1002/2211-5463.12757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/15/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity during pregnancy has been shown to increase the risk of metabolic diseases in the offspring. However, the factors within the maternal milieu which affect offspring phenotypes and the underlying mechanisms remain unknown. The adipocyte hormone leptin plays a key role in regulating energy homeostasis and is known to participate in sex‐specific developmental programming. To examine the action of leptin on fetal growth, placental gene expression and postnatal offspring metabolism, we injected C57BL mice with leptin or saline on gestational day 12 and then measured body weights (BWs) of offspring fed on a standard or obesogenic diet, as well as mRNA expression levels of insulin‐like growth factors and glucose and amino acid transporters. Male and female offspring born to leptin‐treated mothers exhibited growth retardation before and a growth surge after weaning. Mature male offspring, but not female offspring, exhibited increased BWs on a standard diet. Leptin administration prevented the development of hyperglycaemia in the obese offspring of both sexes. The placentas of the male and female foetuses differed in size and gene expression, and leptin injection decreased the fetal weights of both sexes, the placental weights of the male foetuses and placental gene expression of the GLUT1 glucose transporter in female foetuses. The data suggest that mid‐pregnancy is an ontogenetic window for the sex‐specific programming effects of leptin, and these effects may be exerted via fetal sex‐specific placental responses to leptin administration.
Collapse
Affiliation(s)
- Elena I Denisova
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valeria V Kozhevnikova
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nadezhda M Bazhan
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Physiology, Novosibirsk State University, Novosibirsk, Russia
| | - Elena N Makarova
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
10
|
Palou M, Picó C, Palou A. Leptin as a breast milk component for the prevention of obesity. Nutr Rev 2019; 76:875-892. [PMID: 30285146 DOI: 10.1093/nutrit/nuy046] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Leptin ingested as a component of breast milk is increasingly recognized to play a role in the postnatal programming of a healthy phenotype in adulthood. Besides its primary function in controlling body weight, leptin may be an essential nutrient required during lactation to ensure that the system controlling fat accumulation and body composition is well organized from the early stages of development. This review delves into the following topics: (1) the imprinted protective function of adequate leptin intake during lactation in future metabolic health; (2) the consequences of a lack of leptin intake or of alterations in leptin levels; and (3) the mechanisms described for the effects of leptin on postnatal programming. Furthermore, it highlights the importance of breastfeeding and the need to establish optimal or reference intake values for leptin during lactation to design patterns of personalized nutrition from early childhood.
Collapse
Affiliation(s)
- Mariona Palou
- Alimentómica SL, Palma de Mallorca, Spain.,Nutrigenomics and Obesity Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands, Palma de Mallorca, Spain.,Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Catalina Picó
- Nutrigenomics and Obesity Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands, Palma de Mallorca, Spain.,Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Andreu Palou
- Nutrigenomics and Obesity Group, Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands, Palma de Mallorca, Spain.,Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|
11
|
Buck CO, Eliot MN, Kelsey KT, Chen A, Kalkwarf H, Lanphear BP, Braun JM. Neonatal Adipocytokines and Longitudinal Patterns of Childhood Growth. Obesity (Silver Spring) 2019; 27:1323-1330. [PMID: 31199076 PMCID: PMC6656611 DOI: 10.1002/oby.22519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/17/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Adipocytokines are markers of fetal metabolism, but their association with childhood growth is unclear. This study examined associations of neonatal adipocytokines with longitudinal childhood adiposity measures in a prospective cohort of pregnant women and their children. METHODS Leptin and adiponectin concentrations at delivery and children's BMI z scores between age 4 weeks and 8 years were measured. Differences in BMI z scores and rates of BMI z score change by leptin (n = 257) and adiponectin (n = 271) terciles were estimated. RESULTS Children in the middle (mean difference: 0.2; 95% CI: -0.1 to 0.4) and highest (0.4; 95% CI: 0.1 to 0.6) leptin terciles had greater BMI z scores than children in the lowest tercile. Associations were null after adjustment for birth weight z score. Children in the lowest adiponectin tercile had greater gains in BMI z score (change per year: 0.10; 95% CI: 0.08 to 0.13) than children in the middle (0.07; 95% CI: 0.04 to 0.09) and highest terciles (0.04; 95% CI: -0.01 to 0.05) (adiponectin × age interaction P < 0.001). CONCLUSIONS Lower adiponectin levels were associated with increased rates of BMI gains in the first 8 years of life. Though leptin was positively associated with BMI, this association may be confounded by birth weight.
Collapse
Affiliation(s)
- Catherine O. Buck
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI
| | - Melissa N Eliot
- Department of Epidemiology, Brown University School of Public Health, Providence, RI
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University School of Public Health, Providence, RI
| | - Aimin Chen
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH
| | - Heidi Kalkwarf
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Bruce P. Lanphear
- Faculty of Health and Sciences, Simon Fraser University, Burnaby, Canada
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI
| |
Collapse
|
12
|
Reynolds CM, Vickers MH. The role of adipokines in developmental programming: evidence from animal models. J Endocrinol 2019. [DOI: 10.1530/joe-18-0686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alterations in the environment during critical periods of development, including altered maternal nutrition, can increase the risk for the development of a range of metabolic, cardiovascular and reproductive disorders in offspring in adult life. Following the original epidemiological observations of David Barker that linked perturbed fetal growth to adult disease, a wide range of experimental animal models have provided empirical support for the developmental programming hypothesis. Although the mechanisms remain poorly defined, adipose tissue has been highlighted as playing a key role in the development of many disorders that manifest in later life. In particular, adipokines, including leptin and adiponectin, primarily secreted by adipose tissue, have now been shown to be important mediators of processes underpinning several phenotypic features associated with developmental programming including obesity, insulin sensitivity and reproductive disorders. Moreover, manipulation of adipokines in early life has provided for potential strategies to ameliorate or reverse the adverse sequalae that are associated with aberrant programming and provided insight into some of the mechanisms involved in the development of chronic disease across the lifecourse.
Collapse
Affiliation(s)
- Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Paulsen ME, Rosario FJ, Wesolowski SR, Powell TL, Jansson T. Normalizing adiponectin levels in obese pregnant mice prevents adverse metabolic outcomes in offspring. FASEB J 2019; 33:2899-2909. [PMID: 30346829 PMCID: PMC6338628 DOI: 10.1096/fj.201801015r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022]
Abstract
Infants of obese mothers have an increased risk of developing obesity, insulin resistance, and type 2 diabetes. The underlying mechanisms remain elusive, and no effective interventions to limit the transmission of metabolic disease from the obese mother to her infant are currently available. Obese pregnant women have decreased circulating levels of adiponectin, which is associated with increased placental nutrient transport and fetal overgrowth. We have reported that normalization of adiponectin levels during late gestation reversed placental dysfunction and fetal overgrowth in a mouse model of maternal obesity in pregnancy. In the current study, we hypothesized that adiponectin supplementation during pregnancy in obese mice attenuates the adverse metabolic outcomes in adult offspring. Adult male offspring of obese mice developed obesity, fatty liver, and insulin resistance, with adult female offspring of obese mice having a less pronounced metabolic phenotype. These metabolic abnormalities in offspring born to obese mice were largely prevented by normalization of maternal adiponectin levels in late pregnancy. We provide evidence that low circulating maternal adiponectin is a critical mechanistic link between maternal obesity and the development of metabolic disease in offspring. Strategies aimed at improving maternal adiponectin levels may prevent long-term metabolic dysfunction in offspring of obese mothers.-Paulsen, M. E., Rosario, F. J., Wesolowski, S. R., Powell, T. L., Jansson, T. Normalizing adiponectin levels in obese pregnant mice prevents adverse metabolic outcomes in offspring.
Collapse
Affiliation(s)
- Megan E. Paulsen
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Fredrick J. Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Stephanie R. Wesolowski
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Theresa L. Powell
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
14
|
Makarova EN, Denisova EI, Kozhevnikova VV, Kuleshova AE. GENDER-SPECIFIC INFLUENCE OF Aу MUTATION ON PROGENY METABOLIC PHENOTYPE, FETAL GROWTH AND PLACENTAL GENE EXPRESSION IN MICE. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Obesity during pregnancy increases the risk of obesity in offspring. To correct the offspring development in obese mothers, it is necessary to reveal the molecular mechanisms that mediate the influence of the maternal environment on the offspring ontogenesis. Leptin levels increase with obesity. In C57Bl mice, the Ауmutation is associated with elevated blood levels of leptin in pregnant females and exerts a gender-specific effect on the metabolic phenotype of mature offspring. Aim: to study the influence of Ауmutation on sensitivity to diet-induced obesity in male and female offspring, on fetal and placental weight and on the expression of genes in the placentas of the fetuses of different sexes. Body weight and food intake on a standard and an obesogenic diet, fetal and placental weights on pregnancy days 13 and 18, and gene expression of glucose transporters (GLUT1, GLUT3), neutral amino acid transporters (SNAT1, SNAT2, SNAT4), insulin-like growth factor 2 IGF2 and its receptor IGF2R were measured in male and female offspring of и ɑ/ɑ (control) and Ау/ɑ mothers. Aymutation influenced the body weight only in male offspring, which consumed a standard diet, and did not influence obesity development in both male and female offspring. The weight of fetuses and placentas in Ау/ɑ as compared to ɑ/ɑ females was reduced on day 13 of pregnancy and was not different on day 18. On day 13 of pregnancy, the mRNA levels of the examined genes did not differ in placentas of male and female fetuses in ɑ/ɑ females. In Ау/ɑ females, the gene expression of GLUT1, GLUT3, SNAT1 and SNAT4 was reduced in female placentas compared to male placentas. The results suggest that the sex-specific transcription response of placentas to elevated leptin levels in pregnant Ау/ɑ females can mediate the gender-specific impact of Ауmutation on the offspring metabolism in postnatal life.
Collapse
|
15
|
Ben Khedher MR, Hammami M, Arch JRS, Hislop DC, Eze D, Wargent ET, Kępczyńska MA, Zaibi MS. Preventive effects of Salvia officinalis leaf extract on insulin resistance and inflammation in a model of high fat diet-induced obesity in mice that responds to rosiglitazone. PeerJ 2018; 6:e4166. [PMID: 29333341 PMCID: PMC5765810 DOI: 10.7717/peerj.4166] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/23/2017] [Indexed: 12/25/2022] Open
Abstract
Background Salvia officinalis (sage) is a native plant to the Mediterranean region and has been used for a long time in traditional medicine for various diseases. We investigated possible anti-diabetic, anti-inflammatory and anti-obesity effects of sage methanol (MetOH) extract in a nutritional mouse model of obesity, inflammation and insulin resistance, as well as its effects on lipolysis and lipogenesis in 3T3-L1 cells. Methods Diet-induced obese (DIO) mice were treated for five weeks with sage methanol extract (100 and 400 mg kg−1/day bid), or rosiglitazone (3 mg kg−1/day bid), as a positive control. Energy expenditure, food intake, body weight, fat mass, liver glycogen and lipid content were evaluated. Blood glucose, and plasma levels of insulin, lipids leptin and pro- and anti-inflammatory cytokines were measured throughout the experiment. The effects of sage MetOH extract on lipolysis and lipogenesis were tested in vitro in 3T3-L1 cells. Results After two weeks of treatment, the lower dose of sage MetOH extract decreased blood glucose and plasma insulin levels during an oral glucose tolerance test (OGTT). An insulin tolerance test (ITT), performed at day 29 confirmed that sage improved insulin sensitivity. Groups treated with low dose sage and rosiglitazone showed very similar effects on OGTT and ITT. Sage also improved HOMA-IR, triglycerides and NEFA. Treatment with the low dose increased the plasma levels of the anti-inflammatory cytokines IL-2, IL-4 and IL-10 and reduced the plasma level of the pro-inflammatory cytokines IL-12, TNF-α, and KC/GRO. The GC analysis revealed the presence of two PPARs agonist in sage MetOH extract. In vitro, the extract reduced in a dose-related manner the accumulation of lipid droplets; however no effect on lipolysis was observed. Conclusions Sage MetOH extract at low dose exhibits similar effects to rosiglitazone. It improves insulin sensitivity, inhibits lipogenesis in adipocytes and reduces inflammation as judged by plasma cytokines. Sage presents an alternative to pharmaceuticals for the treatment of diabetes and associated inflammation.
Collapse
Affiliation(s)
- Mohamed R Ben Khedher
- Biochemistry Department, Research Laboratory 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Mohamed Hammami
- Biochemistry Department, Research Laboratory 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Jonathan R S Arch
- Buckingham Institute for Translational Medicine (BITM), Clore Laboratory, University of Buckingham, Buckingham, United Kingdom
| | - David C Hislop
- Buckingham Institute for Translational Medicine (BITM), Clore Laboratory, University of Buckingham, Buckingham, United Kingdom
| | - Dominic Eze
- Medical School, University of Buckingham, Buckingham, United Kingdom
| | - Edward T Wargent
- Buckingham Institute for Translational Medicine (BITM), Clore Laboratory, University of Buckingham, Buckingham, United Kingdom
| | - Małgorzata A Kępczyńska
- Buckingham Institute for Translational Medicine (BITM), Clore Laboratory, University of Buckingham, Buckingham, United Kingdom
| | - Mohamed S Zaibi
- Buckingham Institute for Translational Medicine (BITM), Clore Laboratory, University of Buckingham, Buckingham, United Kingdom
| |
Collapse
|
16
|
Steinbrekera B, Roghair R. Modeling the impact of growth and leptin deficits on the neuronal regulation of blood pressure. J Endocrinol 2016; 231:R47-R60. [PMID: 27613336 PMCID: PMC5148679 DOI: 10.1530/joe-16-0273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022]
Abstract
The risk of hypertension is increased by intrauterine growth restriction (IUGR) and preterm birth. In the search for modifiable etiologies for this life-threatening cardiovascular morbidity, a number of pathways have been investigated, including excessive glucocorticoid exposure, nutritional deficiency and aberration in sex hormone levels. As a neurotrophic hormone that is intimately involved in the cardiovascular regulation and whose levels are influenced by glucocorticoids, nutritional status and sex hormones, leptin has emerged as a putative etiologic and thus a therapeutic agent. As a product of maternal and late fetal adipocytes and the placenta, circulating leptin typically surges late in gestation and declines after delivery until the infant consumes sufficient leptin-containing breast milk or accrues sufficient leptin-secreting adipose tissue to reestablish the circulating levels. The leptin deficiency seen in IUGR infants is a multifactorial manifestation of placental insufficiency, exaggerated glucocorticoid exposure and fetal adipose deficit. The preterm infant suffers from the same cascade of events, including separation from the placenta, antenatal steroid exposure and persistently underdeveloped adipose depots. Preterm infants remain leptin deficient beyond term gestation, rendering them susceptible to neurodevelopmental impairment and subsequent cardiovascular dysregulation. This pathologic pathway is efficiently modeled by placing neonatal mice into atypically large litters, thereby recapitulating the perinatal growth restriction-adult hypertension phenotype. In this model, neonatal leptin supplementation restores the physiologic leptin surge, attenuates the leptin-triggered sympathetic activation in adulthood and prevents leptin- or stress-evoked hypertension. Further pathway interrogation and clinical translation are needed to fully test the therapeutic potential of perinatal leptin supplementation.
Collapse
MESH Headings
- Adiposity
- Adult
- Animals
- Animals, Newborn
- Disease Models, Animal
- Female
- Fetal Growth Retardation/drug therapy
- Fetal Growth Retardation/metabolism
- Fetal Growth Retardation/physiopathology
- Hormone Replacement Therapy
- Humans
- Hypertension/etiology
- Hypertension/metabolism
- Hypertension/prevention & control
- Hypothalamus/metabolism
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/drug therapy
- Infant, Premature, Diseases/metabolism
- Infant, Premature, Diseases/physiopathology
- Leptin/deficiency
- Leptin/genetics
- Leptin/metabolism
- Leptin/therapeutic use
- Male
- Mice
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/metabolism
- Neurodevelopmental Disorders/drug therapy
- Neurodevelopmental Disorders/metabolism
- Neurodevelopmental Disorders/physiopathology
- Pregnancy
- Receptors, Leptin/agonists
- Receptors, Leptin/metabolism
- Recombinant Proteins/metabolism
- Recombinant Proteins/therapeutic use
- Signal Transduction
Collapse
Affiliation(s)
- Baiba Steinbrekera
- Stead Family Department of PediatricsCarver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robert Roghair
- Stead Family Department of PediatricsCarver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
17
|
Talton OO, Pennington KA, Pollock KE, Bates K, Ma L, Ellersieck MR, Schulz LC. Maternal Hyperleptinemia Improves Offspring Insulin Sensitivity in Mice. Endocrinology 2016; 157:2636-48. [PMID: 27145007 DOI: 10.1210/en.2016-1039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Maternal obesity and gestational diabetes are prevalent worldwide. Offspring of mothers with these conditions weigh more and are predisposed to metabolic syndrome. A hallmark of both conditions is maternal hyperleptinemia, but the role of elevated leptin levels during pregnancy on developmental programming is largely unknown. We previously found that offspring of hyperleptinemic mothers weighed less and had increased activity. The goal of this study was to determine whether maternal leptin affects offspring insulin sensitivity by investigating offspring glucose metabolism and lipid accumulation. Offspring from two maternal hyperleptinemic models were compared. The first model of hyperleptinemia is the Lepr(db/+) mouse, which has a mutation in one copy of the gene that encodes the leptin receptor, resulting in a truncated long form of the receptor, and hyperleptinemia. Wild-type females served as the control for the Lepr(db/+) females. For the second hyperleptinemic model, wild-type females were implanted with miniosmotic pumps, which released leptin (350 ng/h) or saline (as the control) just prior to mating and throughout gestation. In the offspring of these dams, we measured glucose tolerance; serum leptin, insulin, and triglyceride levels; liver triglycerides; pancreatic α- and β-cell numbers; body composition; incidence of nonalcoholic fatty liver disease; and the expression of key metabolic genes in the liver and adipose tissue. We found that the offspring of hyperleptinemic dams exhibited improved glucose tolerance, reduced insulin and leptin concentrations, reduced liver triglycerides, and a lower incidence of nonalcoholic fatty liver disease. Overall, maternal hyperleptinemia was beneficial for offspring glucose and lipid metabolism.
Collapse
Affiliation(s)
- Omonseigho O Talton
- Departments of Obstetrics, Gynecology, and Women's Health (O.O.T., K.A.P., K.E.P., K.B., L.C.S.) and Radiology (L.M.) and Divisions of Biological Sciences (O.O.T., K.B., L.C.S.) and Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65212; and Biomolecular Imaging Center (L.M.), Harry S. Truman Veterans Affairs Hospital, Columbia, Missouri 65201
| | - Kathleen A Pennington
- Departments of Obstetrics, Gynecology, and Women's Health (O.O.T., K.A.P., K.E.P., K.B., L.C.S.) and Radiology (L.M.) and Divisions of Biological Sciences (O.O.T., K.B., L.C.S.) and Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65212; and Biomolecular Imaging Center (L.M.), Harry S. Truman Veterans Affairs Hospital, Columbia, Missouri 65201
| | - Kelly E Pollock
- Departments of Obstetrics, Gynecology, and Women's Health (O.O.T., K.A.P., K.E.P., K.B., L.C.S.) and Radiology (L.M.) and Divisions of Biological Sciences (O.O.T., K.B., L.C.S.) and Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65212; and Biomolecular Imaging Center (L.M.), Harry S. Truman Veterans Affairs Hospital, Columbia, Missouri 65201
| | - Keenan Bates
- Departments of Obstetrics, Gynecology, and Women's Health (O.O.T., K.A.P., K.E.P., K.B., L.C.S.) and Radiology (L.M.) and Divisions of Biological Sciences (O.O.T., K.B., L.C.S.) and Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65212; and Biomolecular Imaging Center (L.M.), Harry S. Truman Veterans Affairs Hospital, Columbia, Missouri 65201
| | - Lixin Ma
- Departments of Obstetrics, Gynecology, and Women's Health (O.O.T., K.A.P., K.E.P., K.B., L.C.S.) and Radiology (L.M.) and Divisions of Biological Sciences (O.O.T., K.B., L.C.S.) and Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65212; and Biomolecular Imaging Center (L.M.), Harry S. Truman Veterans Affairs Hospital, Columbia, Missouri 65201
| | - Mark R Ellersieck
- Departments of Obstetrics, Gynecology, and Women's Health (O.O.T., K.A.P., K.E.P., K.B., L.C.S.) and Radiology (L.M.) and Divisions of Biological Sciences (O.O.T., K.B., L.C.S.) and Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65212; and Biomolecular Imaging Center (L.M.), Harry S. Truman Veterans Affairs Hospital, Columbia, Missouri 65201
| | - Laura C Schulz
- Departments of Obstetrics, Gynecology, and Women's Health (O.O.T., K.A.P., K.E.P., K.B., L.C.S.) and Radiology (L.M.) and Divisions of Biological Sciences (O.O.T., K.B., L.C.S.) and Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65212; and Biomolecular Imaging Center (L.M.), Harry S. Truman Veterans Affairs Hospital, Columbia, Missouri 65201
| |
Collapse
|
18
|
Pennington KA, Ramirez-Perez FI, Pollock KE, Talton OO, Foote CA, Reyes-Aldasoro CC, Wu HH, Ji T, Martinez-Lemus LA, Schulz LC. Maternal Hyperleptinemia Is Associated with Male Offspring's Altered Vascular Function and Structure in Mice. PLoS One 2016; 11:e0155377. [PMID: 27187080 PMCID: PMC4871503 DOI: 10.1371/journal.pone.0155377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/27/2016] [Indexed: 12/27/2022] Open
Abstract
Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT) offspring of hyperleptinemic, normoglycemic, Leprdb/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD) for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under a standard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post -natal environments to contribute to altered vascular function in offspring of diabetic pregnancies.
Collapse
Affiliation(s)
- Kathleen A. Pennington
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, United States of America
| | - Francisco I. Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, United States of America
| | - Kelly E. Pollock
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, United States of America
| | - Omonseigho O. Talton
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Christopher A. Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | | | - Ho-Hsiang Wu
- Department of Statistics, University of Missouri, Columbia, Missouri, United States of America
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, Missouri, United States of America
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (LAM); (LCS)
| | - Laura C. Schulz
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (LAM); (LCS)
| |
Collapse
|
19
|
Harzallah A, Hammami M, Kępczyńska MA, Hislop DC, Arch JRS, Cawthorne MA, Zaibi MS. Comparison of potential preventive effects of pomegranate flower, peel and seed oil on insulin resistance and inflammation in high-fat and high-sucrose diet-induced obesity mice model. Arch Physiol Biochem 2016; 122:75-87. [PMID: 26822470 DOI: 10.3109/13813455.2016.1148053] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The potentially beneficial effects of pomegranate peel (PPE), flower (PFE) and seed oil (PSO) extracts, in comparison with rosiglitazone, on adiposity, lipid profile, glucose homoeostasis, as well as on the underlying inflammatory mechanisms, were examined in high-fat and high-sucrose (HF/HS) diet-induced obese (DIO) mice. MEASUREMENTS Body weight, body fat, energy expenditure, food and liquid intake, blood glucose, and plasma levels of insulin, lipids and cytokines were measured. RESULTS After two weeks, PSO (2 ml/kg/day) and rosiglitazone (3 mg/kg/day) had not improved glucose intolerance. After 4 weeks, both treatments significantly reduced fasting blood glucose and an insulin tolerance test showed that they also improved insulin sensitivity. Treatment with PPE, PFE and PSO, reduced the plasma levels of the pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α), and PFE increased the level of the anti-inflammatory cytokine interleukin-10 (IL-10). CONCLUSION PPE, PFE and PSO have anti-inflammatory properties. PSO also improved insulin sensitivity.
Collapse
Affiliation(s)
- Arij Harzallah
- a Biochemistry Laboratory, Research Laboratory LR12ES05: Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Faculty of Medicine, University of Monastir , Monastir , Tunisia and
| | - Mohamed Hammami
- a Biochemistry Laboratory, Research Laboratory LR12ES05: Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Faculty of Medicine, University of Monastir , Monastir , Tunisia and
| | - Malgorzata A Kępczyńska
- b Buckingham Institute for Translational Medicine, Clore Laboratory, University of Buckingham , Buckingham , UK
| | - David C Hislop
- b Buckingham Institute for Translational Medicine, Clore Laboratory, University of Buckingham , Buckingham , UK
| | - Jonathan R S Arch
- b Buckingham Institute for Translational Medicine, Clore Laboratory, University of Buckingham , Buckingham , UK
| | - Michael A Cawthorne
- b Buckingham Institute for Translational Medicine, Clore Laboratory, University of Buckingham , Buckingham , UK
| | - Mohamed S Zaibi
- b Buckingham Institute for Translational Medicine, Clore Laboratory, University of Buckingham , Buckingham , UK
| |
Collapse
|
20
|
Pollock KE, Stevens D, Pennington KA, Thaisrivongs R, Kaiser J, Ellersieck MR, Miller DK, Schulz LC. Hyperleptinemia During Pregnancy Decreases Adult Weight of Offspring and Is Associated With Increased Offspring Locomotor Activity in Mice. Endocrinology 2015. [PMID: 26196541 DOI: 10.1210/en.2015-1247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pregnant women who are obese or have gestational diabetes mellitus have elevated leptin levels and their children have an increased risk for child and adult obesity. The goals of this study were to determine whether offspring weights are altered by maternal hyperleptinemia, and whether this occurs via behavioral changes that influence energy balance. We used 2 hyperleptinemic mouse models. The first was females heterozygous for a leptin receptor mutation (DB/+), which were severely hyperleptinemic, and that were compared with wild-type females. The second model was wild-type females infused with leptin (LEP), which were moderately hyperleptinemic, and were compared with wild-type females infused with saline (SAL). Total food consumption, food preference, locomotor activity, coordinated motor skills, and anxiety-like behaviors were assessed in wild-type offspring from each maternal group at 3 postnatal ages: 4-6, 11-13, and 19-21 weeks. Half the offspring from each group were then placed on a high-fat diet, and behaviors were reassessed. Adult offspring from both groups of hyperleptinemic dams weighed less than their respective controls beginning at 23 weeks of age, independent of diet or sex. Weight differences were not explained by food consumption or preference, because female offspring from hyperleptinemic dams tended to consume more food and had reduced preference for palatable, high-fat and sugar, food compared with controls. Offspring from DB/+ dams were more active than offspring of controls, as were female offspring of LEP dams. Maternal hyperleptinemia during pregnancy did not predispose offspring to obesity, and in fact, reduced weight gain.
Collapse
Affiliation(s)
- Kelly E Pollock
- Department of Obstetrics, Gynecology, and Women's Health (K.E.P., K.A.P., L.C.S.), University of Missouri, Columbia, Missouri 65212; Department of Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65211; Department of Health Sciences (D.S.), University of Missouri, Columbia, Missouri 65212; School of Medicine (R.T.), University of Missouri, Columbia, Missouri 65212; Division of Biological Sciences (J.K., L.C.S.), University of Missouri, Columbia, Missouri 65211; and Department of Psychological Sciences (D.K.M.), University of Missouri, Columbia, Missouri 65211
| | - Damaiyah Stevens
- Department of Obstetrics, Gynecology, and Women's Health (K.E.P., K.A.P., L.C.S.), University of Missouri, Columbia, Missouri 65212; Department of Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65211; Department of Health Sciences (D.S.), University of Missouri, Columbia, Missouri 65212; School of Medicine (R.T.), University of Missouri, Columbia, Missouri 65212; Division of Biological Sciences (J.K., L.C.S.), University of Missouri, Columbia, Missouri 65211; and Department of Psychological Sciences (D.K.M.), University of Missouri, Columbia, Missouri 65211
| | - Kathleen A Pennington
- Department of Obstetrics, Gynecology, and Women's Health (K.E.P., K.A.P., L.C.S.), University of Missouri, Columbia, Missouri 65212; Department of Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65211; Department of Health Sciences (D.S.), University of Missouri, Columbia, Missouri 65212; School of Medicine (R.T.), University of Missouri, Columbia, Missouri 65212; Division of Biological Sciences (J.K., L.C.S.), University of Missouri, Columbia, Missouri 65211; and Department of Psychological Sciences (D.K.M.), University of Missouri, Columbia, Missouri 65211
| | - Rose Thaisrivongs
- Department of Obstetrics, Gynecology, and Women's Health (K.E.P., K.A.P., L.C.S.), University of Missouri, Columbia, Missouri 65212; Department of Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65211; Department of Health Sciences (D.S.), University of Missouri, Columbia, Missouri 65212; School of Medicine (R.T.), University of Missouri, Columbia, Missouri 65212; Division of Biological Sciences (J.K., L.C.S.), University of Missouri, Columbia, Missouri 65211; and Department of Psychological Sciences (D.K.M.), University of Missouri, Columbia, Missouri 65211
| | - Jennifer Kaiser
- Department of Obstetrics, Gynecology, and Women's Health (K.E.P., K.A.P., L.C.S.), University of Missouri, Columbia, Missouri 65212; Department of Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65211; Department of Health Sciences (D.S.), University of Missouri, Columbia, Missouri 65212; School of Medicine (R.T.), University of Missouri, Columbia, Missouri 65212; Division of Biological Sciences (J.K., L.C.S.), University of Missouri, Columbia, Missouri 65211; and Department of Psychological Sciences (D.K.M.), University of Missouri, Columbia, Missouri 65211
| | - Mark R Ellersieck
- Department of Obstetrics, Gynecology, and Women's Health (K.E.P., K.A.P., L.C.S.), University of Missouri, Columbia, Missouri 65212; Department of Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65211; Department of Health Sciences (D.S.), University of Missouri, Columbia, Missouri 65212; School of Medicine (R.T.), University of Missouri, Columbia, Missouri 65212; Division of Biological Sciences (J.K., L.C.S.), University of Missouri, Columbia, Missouri 65211; and Department of Psychological Sciences (D.K.M.), University of Missouri, Columbia, Missouri 65211
| | - Dennis K Miller
- Department of Obstetrics, Gynecology, and Women's Health (K.E.P., K.A.P., L.C.S.), University of Missouri, Columbia, Missouri 65212; Department of Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65211; Department of Health Sciences (D.S.), University of Missouri, Columbia, Missouri 65212; School of Medicine (R.T.), University of Missouri, Columbia, Missouri 65212; Division of Biological Sciences (J.K., L.C.S.), University of Missouri, Columbia, Missouri 65211; and Department of Psychological Sciences (D.K.M.), University of Missouri, Columbia, Missouri 65211
| | - Laura Clamon Schulz
- Department of Obstetrics, Gynecology, and Women's Health (K.E.P., K.A.P., L.C.S.), University of Missouri, Columbia, Missouri 65212; Department of Animal Sciences (K.E.P., M.R.E., L.C.S.), University of Missouri, Columbia, Missouri 65211; Department of Health Sciences (D.S.), University of Missouri, Columbia, Missouri 65212; School of Medicine (R.T.), University of Missouri, Columbia, Missouri 65212; Division of Biological Sciences (J.K., L.C.S.), University of Missouri, Columbia, Missouri 65211; and Department of Psychological Sciences (D.K.M.), University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
21
|
Palei AC, Spradley FT, Granger JP. Chronic hyperleptinemia results in the development of hypertension in pregnant rats. Am J Physiol Regul Integr Comp Physiol 2015; 308:R855-61. [PMID: 25761697 DOI: 10.1152/ajpregu.00286.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 03/06/2015] [Indexed: 01/13/2023]
Abstract
Despite the fact that obesity is a major risk factor for preeclampsia (PE), the pathophysiological mechanisms whereby obesity and metabolic factors such as leptin increase this risk are unclear. While human data have shown that hyperleptinemia is associated with PE, the long-term effect of hyperleptinemia on blood pressure during pregnancy is unknown. Thus we tested the hypothesis whether chronic circulating leptin elevations in pregnant rats increase blood pressure and placental factors known to play a role in PE. On gestational day (GD)14, rats were assigned to the normal pregnant group with food intake ad libitum (control), leptin-treated (0.5 μg·kg(-1)·min(-1) ip) pregnant group with food intake ad libitum (pregnant+LEP), and normal pregnant group with food intake adjusted to the food intake of pregnant+LEP rats (pregnant-FR). On GD19, mean arterial pressure (MAP) was assessed and tissues were collected. Serum leptin concentration was elevated in pregnant+LEP compared with control and pregnant-FR (18.0 ± 2.8 vs. 0.8 ± 0.1 vs. 0.3 ± 0.1 ng/ml; P < 0.05), which was associated with increased MAP (121.3 ± 8.1 vs. 102.4 ± 2.4 vs. 101.3 ± 1.8 mmHg; P < 0.05). Food intake and body weight were reduced in pregnant+LEP and pregnant-FR by the end of gestation. Additionally, placentas and fetuses of these groups were lighter than those of control. However, placental expression of tumor necrosis factor-α was significantly greater in pregnant+LEP compared with controls (1.6 ± 0.1 vs. 1.1 ± 0.1 pg/mg; P < 0.05). In conclusion, leptin increases blood pressure and placental tumor necrosis factor-α during pregnancy despite its effect of reducing food intake and body weight, and represents a mechanism whereby obesity can promote the development of hypertension in PE.
Collapse
Affiliation(s)
- Ana C Palei
- Department of Physiology and Biophysics and Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Frank T Spradley
- Department of Physiology and Biophysics and Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joey P Granger
- Department of Physiology and Biophysics and Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
22
|
Mueller CA, Eme J, Burggren WW, Roghair RD, Rundle SD. Challenges and opportunities in developmental integrative physiology. Comp Biochem Physiol A Mol Integr Physiol 2015; 184:113-24. [PMID: 25711780 DOI: 10.1016/j.cbpa.2015.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 01/20/2023]
Abstract
This review explores challenges and opportunities in developmental physiology outlined by a symposium at the 2014 American Physiological Society Intersociety Meeting: Comparative Approaches to Grand Challenges in Physiology. Across animal taxa, adverse embryonic/fetal environmental conditions can alter morphological and physiological phenotypes in juveniles or adults, and capacities for developmental plasticity are common phenomena. Human neonates with body sizes at the extremes of perinatal growth are at an increased risk of adult disease, particularly hypertension and cardiovascular disease. There are many rewarding areas of current and future research in comparative developmental physiology. We present key mechanisms, models, and experimental designs that can be used across taxa to investigate patterns in, and implications of, the development of animal phenotypes. Intraspecific variation in the timing of developmental events can be increased through developmental plasticity (heterokairy), and could provide the raw material for selection to produce heterochrony--an evolutionary change in the timing of developmental events. Epigenetics and critical windows research recognizes that in ovo or fetal development represent a vulnerable period in the life history of an animal, when the developing organism may be unable to actively mitigate environmental perturbations. 'Critical windows' are periods of susceptibility or vulnerability to environmental or maternal challenges, periods when recovery from challenge is possible, and periods when the phenotype or epigenome has been altered. Developmental plasticity may allow survival in an altered environment, but it also has possible long-term consequences for the animal. "Catch-up growth" in humans after the critical perinatal window has closed elicits adult obesity and exacerbates a programmed hypertensive phenotype (one of many examples of "fetal programing"). Grand challenges for developmental physiology include integrating variation in developmental timing within and across generations, applying multiple stressor dosages and stressor exposure at different developmental timepoints, assessment of epigenetic and parental influences, developing new animal models and techniques, and assessing and implementing these designs and models in human health and development.
Collapse
Affiliation(s)
- C A Mueller
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - J Eme
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - W W Burggren
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA.
| | - R D Roghair
- Stead Family Department of Pediatrics, University of Iowa, 1270 CBRB JPP, Iowa City, IA 52242, USA.
| | - S D Rundle
- Marine Biology and Ecology Research Centre, Plymouth University, 611 Davy Building Drake Circus, Plymouth, Devon PL4 8AA, UK.
| |
Collapse
|
23
|
The effects of sarcolipin over-expression in mouse skeletal muscle on metabolic activity. Arch Biochem Biophys 2015; 569:26-31. [PMID: 25660043 PMCID: PMC4362768 DOI: 10.1016/j.abb.2015.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 11/24/2022]
Abstract
Sarcolipin is insufficient to affect thermogenic activity of SERCA in mouse muscle. The ratio of SLN to SERCA in total limb skeletal muscle is <0.0015 mol/mol. Knocking out this SLN in mice would have a small effect on SERCA function. Overexpressing SLN in transgenic mice only resulted in 0.037 mol SLN/mol SERCA. SLN+/+ mice showed no evidence of an increase in thermogenesis.
Studies in sarcolipin knockout mice have led to the suggestion that skeletal muscle sarcolipin plays a role in thermogenesis. The mechanism proposed is uncoupling of the sarcoplasmic reticulum calcium pump. However, in other work sarcolipin was not detected in mouse skeletal tissue. We have therefore measured sarcolipin levels in mouse skeletal muscle using semi-quantitative western blotting and synthetic mouse sarcolipin. Sarcolipin levels were so low that it is unlikely that knocking out sarcolipin would have a measurable effect on thermogenesis by SERCA. In addition, overexpression of neither wild type nor FLAG-tagged variants of mouse sarcolipin in transgenic mice had any major significant effects on body mass, energy expenditure, even when mice were fed on a high fat diet.
Collapse
|
24
|
Short- and long-term effects of maternal perinatal undernutrition are lowered by cross-fostering during lactation in the male rat. J Dev Orig Health Dis 2014; 5:109-20. [DOI: 10.1017/s2040174413000548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Undernutrition exposure during the perinatal period reduces the growth kinetic of the offspring and sensitizes it to the development of chronic adult metabolic diseases both in animals and in humans. Previous studies have demonstrated that a 50% maternal food restriction performed during the last week of gestation and during lactation has both short- and long-term consequences in the male rat offspring. Pups from undernourished mothers present a decreased intrauterine (IUGR) and extrauterine growth restriction. This is associated with a drastic reduction in their leptin plasma levels during lactation, and exhibit programming of their stress neuroendocrine systems (corticotroph axis and sympatho-adrenal system) in adulthood. In this study, we report that perinatally undernourished 6-month-old adult animals demonstrated increased leptinemia (at PND200), blood pressure (at PND180), food intake (from PND28 to PND168), locomotor activity (PND187) and altered regulation of glycemia (PND193). Cross-fostering experiments indicate that these alterations were prevented in IUGR offspring nursed by control mothers during lactation. Interestingly, the nutritional status of mothers during lactation (ad libitum feeding v. undernutrition) dictates the leptin plasma levels in pups, consistent with decreased leptin concentration in the milk of mothers subjected to perinatal undernutrition. As it has been reported that postnatal leptin levels in rodent neonates may have long-term metabolic consequences, restoration of plasma leptin levels in pups during lactation may contribute to the beneficial effects of cross-fostering IUGR offspring to control mothers. Collectively, our data suggest that modification of milk components may offer new therapeutic perspectives to prevent the programming of adult diseases in offspring from perinatally undernourished mothers.
Collapse
|
25
|
Benyshek DC. The “early life” origins of obesity-related health disorders: New discoveries regarding the intergenerational transmission of developmentally programmed traits in the global cardiometabolic health crisis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 152 Suppl 57:79-93. [DOI: 10.1002/ajpa.22393] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 09/17/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Daniel C. Benyshek
- Department of Anthropology, University of Nevada; Las Vegas Las Vegas, NV 89154-5003
| |
Collapse
|
26
|
Makarova EN, Chepeleva EV, Panchenko PE, Bazhan NM. Influence of abnormally high leptin levels during pregnancy on metabolic phenotypes in progeny mice. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1268-80. [PMID: 24089373 DOI: 10.1152/ajpregu.00162.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Maternal obesity increases the risk of obesity in offspring, and obesity is accompanied by an increase in blood leptin levels. The "yellow" mutation at the mouse agouti locus (A(y)) increases blood leptin levels in C57BL preobese pregnant mice without affecting other metabolic characteristics. We investigated the influence of the A(y) mutation or leptin injection at the end of pregnancy in C57BL mice on metabolic phenotypes and the susceptibility to diet-induced obesity (DIO) in offspring. In both C57BL-A(y) and leptin-treated mice, the maternal effect was more pronounced in male offspring. Compared with males born to control mothers, males born to A(y) mothers displayed equal food intake (FI) but decreased body weight (BW) gain after weaning, equal glucose tolerance, and enhanced FI-to-BW ratios on the standard diet but the same FI and BW on the high-fat diet. Males born to A(y) mothers were less responsive to the anorectic effect of exogenous leptin and less resistant to fasting (were not hyperphagic and gained less weight during refeeding after food deprivation) compared with males born to control mothers. However, all progeny displayed equal hypothalamic expression of Agouti gene-related protein (AgRP), neuropeptide Y (NPY), and proopiomelanocortin (POMC) and equal plasma leptin and glucose levels after food deprivation. Leptin injections in C57BL mice on day 17 of pregnancy decreased BW in both male and female offspring but inhibited FI and DIO only in male offspring. Our results show that hyperleptinemia during pregnancy has sex-specific long-term effects on energy balance regulation in progeny and does not predispose offspring to developing obesity.
Collapse
Affiliation(s)
- Elena N Makarova
- Laboratory of Physiological Genetics, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | |
Collapse
|
27
|
β2-adrenoceptor agonists can both stimulate and inhibit glucose uptake in mouse soleus muscle through ligand-directed signalling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2013; 386:761-73. [PMID: 23564017 DOI: 10.1007/s00210-013-0860-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
Abstract
The β-adrenoceptor agonists BRL37344 and clenbuterol have opposite effects on glucose uptake in mouse soleus muscle, even though the β2-adrenoceptor mediates both effects. Different agonists may direct the soleus muscle β2-adrenoceptor to different signalling mechanisms. Soleus muscles were incubated with 2-deoxy[1-(14)C]-glucose, β-adrenoceptor agonists, other modulators of cyclic AMP, and inhibitors of intracellular signalling. The adenylyl cyclase activator forskolin (1 μM), the phosphodiesterase inhibitor rolipram (10 μM) and BRL37344 (10, but not 100 or 1,000, nM) increased, whereas clenbuterol (100 nM) decreased, glucose uptake. Forskolin increased, whereas clenbuterol decreased, muscle cyclic AMP content. BRL37344 (10 nM) did not increase cyclic AMP. Nevertheless, protein kinase A (PKA) inhibitors prevented the stimulatory effect of BRL37344. Nanomolar but not micromolar concentrations of adrenaline stimulated glucose uptake. After preincubation of muscles with pertussis toxin (100 ng/ml), 100 nM clenbuterol, 0.1-10 μM adrenaline and 100 nM BRL37344 stimulated glucose uptake. Clenbuterol increased the proportion of phosphorylated to total β2-adrenoceptor. Inhibitors of phosphatidylinositol 3-kinase (PI3K) and the stress-activated mitogen-activated protein kinase (MAPK), but not of the classical MAPK pathway, prevented stimulation of glucose uptake by BRL37344. Elevation of the cyclic AMP content of soleus muscle stimulates glucose uptake. Clenbuterol, and high concentrations of adrenaline and BRL37344 direct the β2-adrenoceptor partly to Gαi, possibly mediated by β2-adrenoceptor phosphorylation. The stimulatory effect of 10 nM BRL37344 requires the activity of PKA, PI3K and p38 MAPK, consistent with BRL37344 directing the β2-adrenoceptor to Gαs. Ligand-directed signalling may explain why β2-adrenoceptor agonists have differing effects on glucose uptake in soleus muscle.
Collapse
|
28
|
Stolarczyk E, Vong C, Perucha E, Jackson I, Cawthorne M, Wargent E, Powell N, Canavan J, Lord G, Howard J. Improved insulin sensitivity despite increased visceral adiposity in mice deficient for the immune cell transcription factor T-bet. Cell Metab 2013; 17:520-33. [PMID: 23562076 PMCID: PMC3685808 DOI: 10.1016/j.cmet.2013.02.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/18/2012] [Accepted: 02/27/2013] [Indexed: 12/19/2022]
Abstract
Low-grade inflammation in fat is associated with insulin resistance, although the mechanisms are unclear. We report that mice deficient in the immune cell transcription factor T-bet have lower energy expenditure and increased visceral fat compared with wild-type mice, yet paradoxically are more insulin sensitive. This striking phenotype, present in young T-bet(-/-) mice, persisted with high-fat diet and increasing host age and was associated with altered immune cell numbers and cytokine secretion specifically in visceral adipose tissue. However, the favorable metabolic phenotype observed in T-bet-deficient hosts was lost in T-bet(-/-) mice also lacking adaptive immunity (T-bet(-/-)xRag2(-/-)), demonstrating that T-bet expression in the adaptive rather than the innate immune system impacts host glucose homeostasis. Indeed, adoptive transfer of T-bet-deficient, but not wild-type, CD4(+) T cells to Rag2(-/-) mice improved insulin sensitivity. Our results reveal a role for T-bet in metabolic physiology and obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Emilie Stolarczyk
- Division of Diabetes and Nutritional Sciences, King’s College London, London SE1 9RT, UK
| | - Chi Teng Vong
- Division of Diabetes and Nutritional Sciences, King’s College London, London SE1 9RT, UK
| | - Esperanza Perucha
- Department of Experimental Immunobiology, King’s College London, London SE1 9RT, UK
| | - Ian Jackson
- Department of Experimental Immunobiology, King’s College London, London SE1 9RT, UK
| | | | | | - Nick Powell
- Department of Experimental Immunobiology, King’s College London, London SE1 9RT, UK
- Centre for Immunology and Infectious Disease, Blizard Institute of Cell and Molecular Science, Bart’s and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - James B. Canavan
- Department of Experimental Immunobiology, King’s College London, London SE1 9RT, UK
- Centre for Immunology and Infectious Disease, Blizard Institute of Cell and Molecular Science, Bart’s and The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Graham M. Lord
- Department of Experimental Immunobiology, King’s College London, London SE1 9RT, UK
| | - Jane K. Howard
- Division of Diabetes and Nutritional Sciences, King’s College London, London SE1 9RT, UK
- Corresponding author
| |
Collapse
|
29
|
Samuelsson AM, Matthews PA, Jansen E, Taylor PD, Poston L. Sucrose feeding in mouse pregnancy leads to hypertension, and sex-linked obesity and insulin resistance in female offspring. Front Physiol 2013; 4:14. [PMID: 23423541 PMCID: PMC3575022 DOI: 10.3389/fphys.2013.00014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/18/2013] [Indexed: 11/13/2022] Open
Abstract
Eating an unbalanced diet during pregnancy may induce long-term health consequences in offspring, in particular obesity, insulin resistance, and hypertension. We tested the hypothesis that a maternal diet rich in simple sugars predispose mouse offspring to obesity, glucose intolerance, and cardiovascular diseases in adulthood. Female C57BL/6J mice were fed either a standard chow or a sucrose-rich diet (26% of total energy) 6 weeks prior to mating, throughout pregnancy and lactation. Offspring of control dams (OC) and high sucrose fed dams (OSF) were weaned onto standard control chow, and metabolic and cardiovascular parameters determined at 3 months of age. Both male and female OSF were hyperphagic by 4 weeks of age and females were heavier than OC at 6 weeks. At 3 months, female OSF showed a significant increase in inguinal fat pad mass, whereas skeletal muscle mass (tibialis anterior) and locomotor activity were decreased relative to OC. A 10-fold increase in fasting serum insulin in female OSF vs. OC at 3 months (Insulin [pmol/L] mean ± SEM, OSF, 200.3 ± 16.1, vs. OC, 20.3 ± 1.8, n = 6 P < 0.001), was associated with impaired glucose tolerance (AUC [mmol/L min] mean ± SEM, OSF 1437.4 ± 124.2 vs. OC, 1076.8 ± 83.9, n = 6, P < 0.05). Both male and female OSF were hypertensive as assessed by radiotelemetry (night-time systolic arterial pressure (SAP) [mmHg] mean ± SEM, male OSF, 128 ± 1 vs. OC, 109 ± 1, n = 6, P < 0.01; female OSF, 130 ± 1 vs. OC, 118 ± 1, n = 6, P < 0.05). Analysis of heart rate variability (HRV) demonstrated an increased low:high frequency ratio in male and female OSF (P < 0.05), indicative of heightened sympathetic efferent tone. Renal tissue noradrenaline (NA) content was markedly raised in the OSF vs. OC (NA [pg/ml/mg tissue] mean ± SEM, male OSF, 2.28 ± 0.19 vs. OC 0.84 ± 0.09, n = 6, P < 0.01). Exposure to a maternal diet rich in sucrose led to obesity and glucose intolerance in female mice offspring, and hypertension in both sexes.
Collapse
Affiliation(s)
- Anne-Maj Samuelsson
- Division of Women's Health, Women's Health Academic Center, King's College London and King's Health PartnersLondon, UK
| | - Phillippa A. Matthews
- Division of Women's Health, Women's Health Academic Center, King's College London and King's Health PartnersLondon, UK
| | - Eugene Jansen
- Laboratory for Health Protection Research, National Institute for Public Health and the EnvironmentBilthoven, Netherlands
| | - Paul D. Taylor
- Division of Women's Health, Women's Health Academic Center, King's College London and King's Health PartnersLondon, UK
| | - Lucilla Poston
- Division of Women's Health, Women's Health Academic Center, King's College London and King's Health PartnersLondon, UK
| |
Collapse
|
30
|
Wargent ET, O'Dowd JF, Zaibi MS, Gao D, Bing C, Trayhurn P, Cawthorne MA, Arch JRS, Stocker CJ. Contrasts between the effects of zinc-α2-glycoprotein, a putative β3/2-adrenoceptor agonist and the β3/2-adrenoceptor agonist BRL35135 in C57Bl/6 (ob/ob) mice. J Endocrinol 2013; 216:157-68. [PMID: 23151357 DOI: 10.1530/joe-12-0402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous studies by Tisdale et al. have reported that zinc-α(2)-glycoprotein (ZAG (AZGP1)) reduces body fat content and improves glucose homeostasis and the plasma lipid profile in Aston (ob/ob) mice. It has been suggested that this might be mediated via agonism of β(3)- and possibly β(2)-adrenoceptors. We compared the effects of dosing recombinant human ZAG (100 μg, i.v.) and BRL35135 (0.5 mg/kg, i.p.), which is in rodents a 20-fold selective β(3)- relative to β(2)-adrenoceptor agonist, given once daily for 10 days to male C57Bl/6 Lep(ob)/Lep(ob) mice. ZAG, but not BRL35135, reduced food intake. BRL35135, but not ZAG, increased energy expenditure acutely and after sub-chronic administration. Only BRL35135 increased plasma concentrations of glycerol and non-esterified fatty acid. Sub-chronic treatment with both ZAG and BRL35135 reduced fasting blood glucose and improved glucose tolerance, but the plasma insulin concentration 30 min after administration of glucose was lowered only by BRL35135. Both ZAG and BRL35135 reduced β(1)-adrenoceptor mRNA levels in white adipose tissue, but only BRL35135 reduced β(2)-adrenoceptor mRNA. Both ZAG and BRL35135 reduced β(1)-adrenoceptor mRNA levels in brown adipose tissue, but neither influenced β(2)-adrenoceptor mRNA, and only BRL35135 increased β(3)-adrenoceptor and uncoupling protein-1 (UCP1) mRNA levels in brown adipose tissue. Thus, ZAG and BRL35135 had similar effects on glycaemic control and shared some effects on β-adrenoceptor gene expression in adipose tissue, but ZAG did not display the thermogenic effects of the β-adrenoceptor agonist, nor did it increase β(3)-adrenoceptor or UCP1 gene expression in brown adipose tissue. ZAG does not behave as a typical β(3/2)-adrenoceptor agonist.
Collapse
Affiliation(s)
- Edward T Wargent
- Clore Laboratory, University of Buckingham, Hunter Street, Buckingham MK18 1EG, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. Br J Nutr 2012; 109:1755-64. [PMID: 23110765 DOI: 10.1017/s0007114512003923] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SCFA are produced in the gut by bacterial fermentation of undigested carbohydrates. Activation of the Gαi-protein-coupled receptor GPR41 by SCFA in β-cells and sympathetic ganglia inhibits insulin secretion and increases sympathetic outflow, respectively. A possible role in stimulating leptin secretion by adipocytes is disputed. In the present study, we investigated energy balance and glucose homoeostasis in GPR41 knockout mice fed on a standard low-fat or a high-fat diet. When fed on the low-fat diet, body fat mass was raised and glucose tolerance was impaired in male but not female knockout mice compared to wild-type mice. Soleus muscle and heart weights were reduced in the male mice, but total body lean mass was unchanged. When fed on the high-fat diet, body fat mass was raised in male but not female GPR41 knockout mice, but by no more in the males than when they were fed on the low-fat diet. Body lean mass and energy expenditure were reduced in male mice but not in female knockout mice. These results suggest that the absence of GPR41 increases body fat content in male mice. Gut-derived SCFA may raise energy expenditure and help to protect against obesity by activating GPR41.
Collapse
|
32
|
Rkhzay-Jaf J, O'Dowd JF, Stocker CJ. Maternal Obesity and the Fetal Origins of the Metabolic Syndrome. CURRENT CARDIOVASCULAR RISK REPORTS 2012; 6:487-495. [PMID: 23002417 PMCID: PMC3433666 DOI: 10.1007/s12170-012-0257-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over recent decades there has been a rapid rise in metabolic disorders throughout the world. Whilst lifestyle and societal habits have contributed to the obesity epidemic, there is now increasing evidence that the early developmental environment of an infant can play a pivotal role in the 'programming' of an adverse physiological phenotype in later life. Clinical evidence highlights that maternal over-nutrition and/or obesity during pregnancy presents not only adverse effects on maternal health, but also persistent and deleterious effects in the developing child. Animal models are providing essential information into the underlying cellular and molecular mechanisms that contribute to this adverse phenotype. The use of this information will aid our understanding of the programming signals related to maternal and paternal over-nutrition and the improved healthcare for both mother and infant.
Collapse
Affiliation(s)
- Jwan Rkhzay-Jaf
- Clore Laboratory, University of Buckingham, Hunter Street, Buckingham, MK18 1EG UK
| | | | | |
Collapse
|
33
|
Abstract
Considerable epidemiological, experimental and clinical data have amassed showing that the risk of developing disease in later life is dependent upon early life conditions. In particular, altered maternal nutrition, including undernutrition and overnutrition, can lead to metabolic disorders in offspring characterised by obesity and leptin resistance. The adipokine leptin has received significant interest as a potential programming factor; alterations in the profile of leptin in early life are associated with altered susceptibility to obesity and metabolic disorders in adulthood. Maintenance of a critical leptin level during early development facilitates the normal maturation of tissues and signalling pathways involved in metabolic homeostasis. A period of relative hypo- or hyperleptinemia during this window of development will induce some of the metabolic adaptations which underlie developmental programming. However, it remains unclear whether leptin alone is a critical factor for the programming of obesity. At least in animal experimental studies, developmental programming is potentially reversible by manipulating the concentration of circulating leptin during a critical window of developmental plasticity and offers an exciting new approach for therapeutic intervention.
Collapse
Affiliation(s)
- M H Vickers
- Liggins Institute and The National Research Centre for Growth and Development, University of Auckland, Grafton, Auckland, New
| | | |
Collapse
|
34
|
Stocker CJ, Wargent ET, Martin-Gronert MS, Cripps RL, O'Dowd JF, Zaibi MS, Cottrell EC, Mercer JG, Duncan JS, Cawthorne MA, Ozanne SE, Arch JRS. Leanness in postnatally nutritionally programmed rats is associated with increased sensitivity to leptin and a melanocortin receptor agonist and decreased sensitivity to neuropeptide Y. Int J Obes (Lond) 2012; 36:1040-6. [PMID: 22124449 PMCID: PMC3378483 DOI: 10.1038/ijo.2011.226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Pups of normally nourished dams that are cross-fostered after birth to dams fed a low-protein (8% by weight) diet (postnatal low protein (PLP)) grow slower during the suckling period and remain small and lean throughout adulthood. At weaning, they have increased expression in the arcuate nucleus (ARC) of the hypothalamus of the orexigenic neuropeptide Y (NPY) and decreased expression of pro-opiomelanocortin, the precursor of anorexigenic melanocortins. OBJECTIVES AND METHODS We investigated, using third ventricle administration, whether 3-month-old male PLP rats display altered sensitivity to leptin with respect to food intake, NPY and the melanocortin 3/4-receptor agonist MTII, and using in situ hybridization or laser capture microdissection of the ARC followed by RT-PCR, whether the differences observed were associated with changes in the hypothalamic expression of NPY or the leptin receptor, NPY receptors and melanocortin receptors. RESULTS PLP rats were smaller and had reduced percentage body fat content and plasma leptin concentration compared with control rats. Leptin (5 μg) reduced food intake over 0-48 h more in PLP than control rats (P<0.05). Submaximal doses of NPY increased the food intake less in PLP rats than in controls, whereas submaximal doses of MTII reduced the food intake more in PLP rats. Maximal responses did not differ between PLP and control rats. Leptin and melanocortin-3 receptor (MC3R) expression were increased in both ARC and ventromedial hypothalamic nuclei in PLP animals compared with the controls. MC4R, NPY Y1R, Y5R and NPY expression were unchanged. CONCLUSION Postnatal undernourishment results in food intake in adult rats being more sensitive to reduction by leptin and melanocortins, and less sensitive to stimulation by NPY. We propose that this contributes to increased leptin sensitivity and resistance to obesity. Increased expression of ObRb and MC3R may partly explain these findings but other downstream mechanisms must also be involved.
Collapse
Affiliation(s)
- C J Stocker
- Clore Laboratory, University of Buckingham, Buckingham, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vickers MH, Sloboda DM. Strategies for reversing the effects of metabolic disorders induced as a consequence of developmental programming. Front Physiol 2012; 3:242. [PMID: 22783205 PMCID: PMC3387724 DOI: 10.3389/fphys.2012.00242] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/13/2012] [Indexed: 01/21/2023] Open
Abstract
Obesity and the metabolic syndrome have reached epidemic proportions worldwide with far-reaching health care and economic implications. The rapid increase in the prevalence of these disorders suggests that environmental and behavioral influences, rather than genetic causes, are fueling the epidemic. The developmental origins of health and disease hypothesis has highlighted the link between the periconceptual, fetal, and early infant phases of life and the subsequent development of metabolic disorders in later life. In particular, the impact of poor maternal nutrition on susceptibility to later life metabolic disease in offspring is now well documented. Several studies have now shown, at least in experimental animal models, that some components of the metabolic syndrome, induced as a consequence of developmental programming, are potentially reversible by nutritional or targeted therapeutic interventions during windows of developmental plasticity. This review will focus on critical windows of development and possible therapeutic avenues that may reduce metabolic and obesogenic risk following an adverse early life environment.
Collapse
Affiliation(s)
- M H Vickers
- National Research Centre for Growth and Development, Liggins Institute, University of Auckland Auckland, New Zealand
| | | |
Collapse
|
36
|
Fuente-Martín E, Granado M, García-Cáceres C, Sanchez-Garrido MA, Frago LM, Tena-Sempere M, Argente J, Chowen JA. Early nutritional changes induce sexually dimorphic long-term effects on body weight gain and the response to sucrose intake in adult rats. Metabolism 2012; 61:812-22. [PMID: 22209665 DOI: 10.1016/j.metabol.2011.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/19/2011] [Accepted: 11/05/2011] [Indexed: 12/12/2022]
Abstract
Long-term metabolic effects induced by early nutritional changes are suspected to differ between males and females, but few studies have analyzed both sexes simultaneously. We analyzed the consequences of neonatal nutritional changes on body weight (BW) and the adult response to a sucrose-enriched diet in both male and female rats. Litter size was manipulated at birth to induce over- and undernutrition (4 pups: L4; 12 pups: L12; 20 pups: L20). From 50 to 65 days of age, half of each group received a 33% sucrose solution instead of water. Serum leptin, insulin, and ghrelin levels were analyzed at day 65. At weaning, rats from L4 weighed more and those from L20 weighed less than controls (L12). Body weight was greater in L4 rats throughout the study and increased further compared with controls in adult life. L20 males ate less and gained less weight throughout the study, but L20 females had a significant catch-up in BW. Sucrose intake increased total energy consumption in all groups, but not BW gain, with L4 males and L4 and L20 females reducing weight gain. Yet, sucrose intake increased serum leptin levels, with this increase being significant in L4 and L20 males. Our results suggest that females are more capable than males of recuperating and maintaining a normal BW after reduced neonatal nutrition. Furthermore, increased sucrose intake does not increase BW, but could alter body composition as reflected by leptin levels, with the percentage of calories consumed in the form of sucrose being affected by sex and neonatal nutrition.
Collapse
Affiliation(s)
- Esther Fuente-Martín
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology, Instituto de Investigación La Princesa, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
No evidence for a trade-off between reproductive investment and immunity in a rodent. PLoS One 2012; 7:e37182. [PMID: 22649512 PMCID: PMC3359356 DOI: 10.1371/journal.pone.0037182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/17/2012] [Indexed: 11/19/2022] Open
Abstract
Life history theory assumes there are trade-offs between competing functions such as reproduction and immunity. Although well studied in birds, studies of the trade-offs between reproduction and immunity in small mammals are scarce. Here we examined whether reduced immunity is a consequence of reproductive effort in lactating Brandt's voles (Lasiopodomys brandtii). Specifically, we tested the effects of lactation on immune function (Experiment I). The results showed that food intake and resting metabolic rate (RMR) were higher in lactating voles (6≤ litter size ≤8) than that in non-reproductive voles. Contrary to our expectation, lactating voles also had higher levels of serum total Immunoglobulin G (IgG) and anti-keyhole limpet hemocyanin (KLH) IgG and no change in phytohemagglutinin (PHA) response and anti-KLH Immunoglobulin M (IgM) compared with non-reproductive voles, suggesting improved rather than reduced immune function. To further test the effect of differences in reproductive investment on immunity, we compared the responses between natural large (n≥8) and small litter size (n≤6) (Experiment II) and manipulated large (11-13) and small litter size (2-3) (Experiment III). During peak lactation, acquired immunity (PHA response, anti-KLH IgG and anti-KLH IgM) was not significantly different between voles raising large or small litters in both experiments, despite the measured difference in reproductive investment (greater litter size, litter mass, RMR and food intake in the voles raising larger litters). Total IgG was higher in voles with natural large litter size than those with natural small litter size, but decreased in the enlarged litter size group compared with control and reduced group. Our results showed that immune function is not suppressed to compensate the high energy demands during lactation in Brandt's voles and contrasting the situation in birds, is unlikely to be an important aspect mediating the trade-off between reproduction and survival.
Collapse
|
38
|
Granado M, Fuente-Martín E, García-Cáceres C, Argente J, Chowen JA. Leptin in early life: a key factor for the development of the adult metabolic profile. Obes Facts 2012; 5:138-50. [PMID: 22433625 DOI: 10.1159/000336967] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/27/2011] [Indexed: 01/21/2023] Open
Abstract
Leptin levels during the perinatal period are important for the development of metabolic systems involved in energy homeostasis. In rodents, there is a postnatal leptin surge, with circulating leptin levels increasing around postnatal day (PND) 5 and peaking between PND 9 and PND 10. At this time circulating leptin acts as an important trophic factor for the development of hypothalamic circuits that control energy homeostasis and food seeking and reward behaviors. Blunting the postnatal leptin surge results in long-term leptin insensitivity and increased susceptibility to diet-induced obesity during adulthood. Pharmacologically increased leptin levels in the postnatal period also have long-term effects on metabolism. Nevertheless, this effect is controversial as postnatal hyperleptinemia is reported to both increase and decrease the predisposition to obesity in adulthood. The different effects reported in the literature could be explained by the different moments at which this hormone was administered, suggesting that modifications of the neonatal leptin surge at specific time points could selectively affect the development of central and peripheral systems that are undergoing modifications at this moment resulting in different metabolic and behavioral outcomes. In addition, maternal nutrition and the hormonal environment during pregnancy and lactation may also modulate the offspring's response to postnatal modifications in leptin levels. This review highlights the importance of leptin levels during the perinatal period in the development of metabolic systems that control energy homeostasis and how modifications of these levels may induce long-lasting and potentially irreversible effects on metabolism.
Collapse
Affiliation(s)
- Miriam Granado
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid and CIBER Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | | | | | | | | |
Collapse
|
39
|
Król E, Martin SAM, Huhtaniemi IT, Douglas A, Speakman JR. Negative correlation between milk production and brown adipose tissue gene expression in lactating mice. J Exp Biol 2011; 214:4160-70. [DOI: 10.1242/jeb.061382] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SUMMARY
It has been proposed that the performance of lactating animals is limited by the capacity of the female to dissipate body heat – the heat dissipation limit (HDL) theory. This theory predicts that milk production might be constrained not by intrinsic properties of the mammary glands but rather by competitive heat production such as thermogenesis in brown adipose tissue (BAT). To test this prediction, we measured the expression of genes linked to thermogenesis in BAT of lactating laboratory mice. The applicability of BAT gene expression to reflect thermogenic activity of BAT was confirmed by a positive relationship between expression levels of several BAT genes (summarised by the first principal component following principal component analysis) and daily energy expenditure in virgin mice. Milk production at peak lactation was strongly and negatively associated with the expression of thermogenic genes in BAT. Downregulation of these genes during lactation was correlated with low levels of circulating leptin and high levels of circulating prolactin. Our results are consistent with the HDL theory. However, we cannot discount the converse interpretation that milk production may reduce BAT activity. If the reduction in BAT activity does facilitate increased milk production, then reducing the heat generated by competitive processes may be a more productive route to increase lactational performance than attempts to improve mammary gland performance in isolation from the other body systems.
Collapse
Affiliation(s)
- Elzbieta Król
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
- Mammal Research Institute PAS, 17-230 Białowieza, Poland
| | - Samuel A. M. Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Ilpo T. Huhtaniemi
- Institute of Reproductive and Developmental Biology, Imperial College London, London W12 0NN, UK
- Department of Physiology, University of Turku, FIN-20520 Turku, Finland
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - John R. Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| |
Collapse
|
40
|
Remacle C, Bieswal F, Bol V, Reusens B. Developmental programming of adult obesity and cardiovascular disease in rodents by maternal nutrition imbalance. Am J Clin Nutr 2011; 94:1846S-1852S. [PMID: 21543546 DOI: 10.3945/ajcn.110.001651] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Studies on fetal undernutrition have generated the hypothesis that fetal programming corresponds to an attempt of the fetus to adapt to adverse conditions encountered in utero. These adaptations would be beneficial if these conditions prevail later in life, but they become detrimental in the case of normal or plentiful nutrition and favor the appearance of the metabolic syndrome. In this article, the discussion is limited to the developmental programming of obesity and cardiovascular disorders caused by an early mismatched nutrition, particularly intrauterine growth retardation followed by postnatal catch-up growth. Selected data in humans are reviewed before evoking some mechanisms revealed or suggested by experiments in rodents. A variety of physiologic mechanisms are implicated in obesity programming, 2 of which are detailed. In some, but not all observations, hyperphagia resulting namely from perturbed development of the hypothalamic circuitry devoted to appetite regulation may contribute to obesity. Another contribution may be the developmental changes in the population of fat cell precursors in adipose tissue. Even if the link between obesity and cardiovascular disease is well established, alteration of blood pressure regulation may appear independently of obesity. A loss of diurnal variation in heart rate and blood pressure in adulthood has resulted from maternal undernutrition followed by postnatal overnutrition. Further research should clarify the effect of mismatched early nutrition on the development of brain centers regulating energy intake, energy expenditure, and circadian rhythms.
Collapse
Affiliation(s)
- Claude Remacle
- Université Catholique de Louvain, Life Sciences Institute, Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
41
|
Pico C, Jilkova ZM, Kus V, Palou A, Kopecky J. Perinatal programming of body weight control by leptin: putative roles of AMP kinase and muscle thermogenesis. Am J Clin Nutr 2011; 94:1830S-1837S. [PMID: 21543529 DOI: 10.3945/ajcn.110.000752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Breastfeeding, compared with infant-formula feeding, confers later protection against obesity. Leptin represents a candidate for the programming of the lean phenotype as suggested by 1) the presence of leptin in breast milk and its absence in infant formula, 2) a human study that showed a negative correlation between leptin concentrations in breast milk and body weights of infants until 2 y of age, and 3) intervention studies in animals. Milk-borne leptin and leptin synthesized in adipose tissue and the stomach may contribute to leptinemia in newborns. Studies in rodents suggested that early leptin treatment may program either a lean or obese phenotype, probably depending on the dose, route of administration, and timing of exposure to high leptin concentrations, whereas these studies also suggested the importance of the physiologic postnatal surge in leptinemia for the programming effect. Leptin oral administration at physiologic doses to neonate rats during the entire lactation period had later positive effects that prevented the animals from overweight and obesity and other metabolic alterations, which were particularly associated with feeding of a high-fat diet. High leptin sensitivity, which is associated with leanness, and leptin resistance in obesity may be programmed by the early life environment. The differential sensitivity to leptin implies a contribution of leptin-inducible energy expenditure to the adult phenotype. Available data have suggested the involvement of nonshivering thermogenesis induced by a leptin-AMP-activated protein kinase axis in oxidative muscles, which is based on lipid metabolism. Additional studies on the programming effects of leptin, mainly in response to the oral intake of leptin, are required.
Collapse
Affiliation(s)
- Catalina Pico
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Palma de Mallorca, Spain
| | | | | | | | | |
Collapse
|
42
|
Ngala RA, Stocker CJ, Roy AG, Hislop D, Wargent E, Bell R, Hassall DG, Harling JD, Billin AN, Willson TM, Arch JRS, Cawthorne MA. A new, highly selective murine peroxisome proliferator-activated receptor δ agonist increases responsiveness to thermogenic stimuli and glucose uptake in skeletal muscle in obese mice. Diabetes Obes Metab 2011; 13:455-64. [PMID: 21272187 DOI: 10.1111/j.1463-1326.2011.01371.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM We investigated how GW800644, the first pharmacologically selective murine peroxisome proliferator-activated receptor δ (PPARδ) agonist, affects energy balance, glucose homeostasis and fuel utilization by muscle in obese mice. METHODS Potencies were determined in transactivation assays. Oral glucose tolerance was determined after 14 and 22 days' administration (10 mg/kg body weight, twice daily) to Lep(ob)/Lep(ob) mice. Food intake and energy expenditure were measured during a 26-day experiment, and plasma metabolites and 2-deoxyglucose uptake in vivo at termination. Palmitate oxidation and 2-deoxyglucose uptake by isolated soleus muscles were measured after 14 (in lean and obese mice) and 26 days. RESULTS GW800644 activated murine PPARδ (EC(50) 2 nM), but caused little to no activation of PPARα or PPARγ up to 10 µM. It did not increase liver weight. GW800644 reduced food intake and body weight in obese mice after 8 days. It did not affect resting energy expenditure, but, compared to pair-fed mice, it increased the response to a β(3)-adrenoceptor agonist. It improved glucose tolerance. GW800644, but not pair-feeding, reduced plasma glucose, insulin and triglyceride concentrations. It increased 2-deoxyglucose uptake in vivo in adipose tissue, soleus muscle, heart, brain and liver, and doubled 2-deoxyglucose uptake and palmitate oxidation in isolated soleus muscle from obese but not lean mice. CONCLUSIONS PPARδ agonism reduced food intake and independently elicited metabolic effects that included increased responsiveness to β(3)-adrenoceptor stimulation, increased glucose utilization and fat oxidation in soleus muscle of Lep(ob)/Lep(ob) but not lean mice and increased glucose utilization in vivo in Lep(ob)/Lep(ob) mice.
Collapse
Affiliation(s)
- R A Ngala
- Clore Laboratory, University of Buckingham, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Remmers F, Delemarre-van de Waal HA. Developmental programming of energy balance and its hypothalamic regulation. Endocr Rev 2011; 32:272-311. [PMID: 21051592 DOI: 10.1210/er.2009-0028] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Developmental programming is an important physiological process that allows different phenotypes to originate from a single genotype. Through plasticity in early life, the developing organism can adopt a phenotype (within the limits of its genetic background) that is best suited to its expected environment. In humans, together with the relative irreversibility of the phenomenon, the low predictive value of the fetal environment for later conditions in affluent countries makes it a potential contributor to the obesity epidemic of recent decades. Here, we review the current evidence for developmental programming of energy balance. For a proper understanding of the subject, knowledge about energy balance is indispensable. Therefore, we first present an overview of the major hypothalamic routes through which energy balance is regulated and their ontogeny. With this background, we then turn to the available evidence for programming of energy balance by the early nutritional environment, in both man and rodent models. A wealth of studies suggest that energy balance can indeed be permanently affected by the early-life environment. However, the direction of the effects of programming appears to vary considerably, both between and within different animal models. Because of these inconsistencies, a comprehensive picture is still elusive. More standardization between studies seems essential to reach veritable conclusions about the role of developmental programming in adult energy balance and obesity.
Collapse
Affiliation(s)
- Floor Remmers
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | | |
Collapse
|
44
|
Unexpected long-term protection of adult offspring born to high-fat fed dams against obesity induced by a sucrose-rich diet. PLoS One 2011; 6:e18043. [PMID: 21464991 PMCID: PMC3064582 DOI: 10.1371/journal.pone.0018043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/21/2011] [Indexed: 12/02/2022] Open
Abstract
Background Metabolic and endocrine environment during early life is crucial for
metabolic imprinting. When dams were fed a high fat diet (HF diet), rat
offspring developed hypothalamic leptin resistance with lean phenotype when
weaned on a normal diet. Interestingly, when grown on the HF diet, they
appeared to be protected against the effects of HF diet as compared to
offspring of normally fed dams. The mechanisms involved in the protective
effect of maternal HF diet are unclear. Methodology/Principal Findings We thus investigated the impact of maternal high fat diet on offspring
subjected to normal or high palatable diet (P diet) on metabolic and
endocrine parameters. We compared offspring born to dams fed P or HF diet.
Offspring born to dams fed control or P diet, when fed P diet exhibited a
higher body weight, altered hypothalamic leptin sensitivity and metabolic
parameters suggesting that maternal P diet has no protective effect on
offspring. Whereas, maternal HF diet reduces body weight gain and
circulating triglycerides, and ameliorates corpulence index of offspring,
even when subjected to P diet. Interestingly, this protective effect is
differently expressed in male and female offspring. Male offspring exhibited
higher energy expenditure as mirrored by increased hypothalamic UCP-2 and
liver AdipoR1/R2 expression, and a profound change in the arcuate nucleus
astrocytic organization. In female offspring, the most striking impact of
maternal HF diet is the reduced hypothalamic expression of NPY and POMC. Conclusions/Significance HF diet given during gestation and lactation protects, at least partially,
offspring from excessive weight gain through several mechanisms depending
upon gender including changes in arcuate nucleus astrocytic organization and
increased hypothalamic UCP-2 and liver AdipoR1/2 expression in males and
reduced hypothalamic expression of NPY and POMC in females. Taken together
our results reveal new mechanisms involved in the protective effect of
maternal HF diet.
Collapse
|
45
|
Liu XY, Wang DH. Effects of leptin supplementation to lactating Brandt’s voles (Lasiopodomys brandtii) on the developmental responses of their offspring to a high-fat diet. J Comp Physiol B 2011; 181:829-39. [DOI: 10.1007/s00360-011-0560-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 02/04/2011] [Accepted: 02/10/2011] [Indexed: 01/21/2023]
|
46
|
Levin BE. Developmental gene x environment interactions affecting systems regulating energy homeostasis and obesity. Front Neuroendocrinol 2010; 31:270-83. [PMID: 20206200 PMCID: PMC2903638 DOI: 10.1016/j.yfrne.2010.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 11/25/2022]
Abstract
Most human obesity is inherited as a polygenic trait which is largely refractory to medical therapy because obese individuals avidly defend their elevated body weight set-point. This set-point is mediated by an integrated neural network that controls energy homeostasis. Epidemiological studies suggest that perinatal and pre-pubertal environmental factors can promote offspring obesity. Rodent studies demonstrate the important interactions between genetic predisposition and environmental factors in promoting obesity. This review covers issues of development and function of neural systems involved in the regulation of energy homeostasis and the roles of leptin and insulin in these processes, the ways in which interventions at various phases from gestation, lactation and pre-pubertal stages of development can favorably and unfavorably alter the development of obesity n offspring. These studies suggest that early identification of obesity-prone humans and of the factors that can prevent them from becoming obese could provide an effective strategy for preventing the world-wide epidemic of obesity.
Collapse
Affiliation(s)
- Barry E Levin
- Neurology Service, VA Medical Center, E. Orange, NJ 07018-1095, USA.
| |
Collapse
|
47
|
Effects of maternal hyperleptinaemia during lactation on short-term memory/learning, anxiety-like and novelty-seeking behavioral traits of adult male rats. Behav Brain Res 2010; 206:147-50. [DOI: 10.1016/j.bbr.2009.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/20/2009] [Accepted: 08/24/2009] [Indexed: 11/22/2022]
|
48
|
Postnatal Development of Hypothalamic Leptin Receptors. HORMONES OF THE LIMBIC SYSTEM 2010; 82:201-17. [DOI: 10.1016/s0083-6729(10)82011-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Morris MJ. Early life influences on obesity risk: maternal overnutrition and programming of obesity. Expert Rev Endocrinol Metab 2009; 4:625-637. [PMID: 30780787 DOI: 10.1586/eem.09.45] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While adult lifestyle factors undoubtedly contribute to the incidence of obesity and its attendant disorders, mounting evidence suggests that programming of obesity may occur following over-nutrition during development. As hypothalamic control of appetite and energy expenditure is set early in life and can be perturbed by certain exposures, such as undernutrition and altered metabolic and hormonal signals, in utero exposure to maternal obesity-related changes may contribute to programming of obesity in offspring. Data from animal studies indicate both intrauterine and postnatal environments are critical determinants of the development of pathways regulating energy homeostasis. This review summarizes recent evidence of the impact of maternal obesity on subsequent obesity risk, paying particular attention to the hypothalamic regulation of appetite and markers of metabolic control. The extraordinary rise in the rates of maternal obesity underlines an urgent need to investigate the mechanisms contributing to its transgenerational effects.
Collapse
Affiliation(s)
- Margaret J Morris
- a Department of Pharmacology, School of Medical Sciences, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
50
|
White CL, Purpera MN, Morrison CD. Maternal obesity is necessary for programming effect of high-fat diet on offspring. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1464-72. [PMID: 19244583 DOI: 10.1152/ajpregu.91015.2008] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We tested the hypothesis that maternal consumption of dietary fat, independent from obesity, increases serum leptin in neonatal pups and predisposes them to adult obesity. Female rats either were fed a high-fat (HF) diet or a low-fat (LF) diet or were fed the HF diet but pair fed (PF) to the caloric intake of the LF group for 4 wk before breeding and throughout gestation and lactation. Dams consuming the HF diet had increased adiposity and were hyperphagic. At weaning, pups born to obese dams had significantly higher body fat and serum leptin levels and reduced insulin tolerance compared with offspring of LF-fed dams. Pups were weaned onto a chow diet until 8 wk of age, when they were then fed either HF or LF diet. At 18 wk of age, offspring from obese HF dams weighed more than offspring from nonobese LF or PF dams, and offspring eating HF diet weighed significantly more than those eating LF diet. Consequently, HF-fed offspring of obese HF dams weighed the most and LF-fed offspring from obese HF dams were similar in weight to HF-fed offspring from nonobese LF dams. These data suggest that maternal obesity exerts an independent effect on offspring body weight that is of similar magnitude as the effect of the offspring's adult diet. Furthermore, there was no difference in body weight between the nonobese LF and PF offspring on either diet. Together, these data suggest that maternal adiposity, and not dietary fat per se, induces hyperleptinemia and insulin resistance in offspring, as well as an increased body weight that persists into adulthood.
Collapse
Affiliation(s)
- Christy L White
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | | | |
Collapse
|