1
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
2
|
Hanscom M, Morales-Soto W, Watts SW, Jackson WF, Gulbransen BD. Innervation of adipocytes is limited in mouse perivascular adipose tissue. Am J Physiol Heart Circ Physiol 2024; 327:H155-H181. [PMID: 38787382 PMCID: PMC11380956 DOI: 10.1152/ajpheart.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Perivascular adipose tissue (PVAT) regulates vascular tone by releasing anticontractile factors. These anticontractile factors are driven by processes downstream of adipocyte stimulation by norepinephrine; however, whether norepinephrine originates from neural innervation or other sources is unknown. The goal of this study was to test the hypothesis that neurons innervating PVAT provide the adrenergic drive to stimulate adipocytes in aortic and mesenteric perivascular adipose tissue (aPVAT and mPVAT), and white adipose tissue (WAT). Healthy male and female mice (8-13 wk) were used in all experiments. Expression of genes associated with synaptic transmission were quantified by qPCR and adipocyte activity in response to neurotransmitters and neuron depolarization was assessed in AdipoqCre+;GCaMP5g-tdTf/WT mice. Immunostaining, tissue clearing, and transgenic reporter lines were used to assess anatomical relationships between nerves and adipocytes. Although synaptic transmission component genes are expressed in adipose tissues (aPVAT, mPVAT, and WAT), strong nerve stimulation with electrical field stimulation does not significantly trigger calcium responses in adipocytes. However, norepinephrine consistently elicits strong calcium responses in adipocytes from all adipose tissues studied. Bethanechol induces minimal adipocyte responses. Imaging neural innervation using various techniques reveals that nerve fibers primarily run alongside blood vessels and rarely branch into the adipose tissue. Although nerve fibers are associated with blood vessels in adipose tissue, they demonstrate limited anatomical and functional interactions with adjacent adipocytes, challenging the concept of classical innervation. These findings dispute the significant involvement of neural input in regulating PVAT adipocyte function and emphasize alternative mechanisms governing adrenergic-driven anticontractile functions of PVAT.NEW & NOTEWORTHY This study challenges prevailing views on neural innervation in perivascular adipose tissue (PVAT) and its role in adrenergic-driven anticontractile effects on vasculature. Contrary to existing paradigms, limited anatomical and functional connections were found between PVAT nerve fibers and adipocytes, underscoring the importance of exploring alternative mechanistic pathways. Understanding the mechanisms involved in PVAT's anticontractile effects is critical for developing potential therapeutic interventions against dysregulated vascular tone, hypertension, and cardiovascular disease.
Collapse
Affiliation(s)
- Marie Hanscom
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Wilmarie Morales-Soto
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
3
|
Abstract
Neuronal innervation in the adipose tissues plays a crucial role in regulating adipose thermogenic capacity and metabolic homeostasis. The tissue-wide nerves display a large extent of structural plasticity under physiological and pathological conditions that alter the neuronal control of metabolic states. We find here that neuronal plasticity is regulated by immune cells, which constitutes an appealing way to reshape neural-controlled energy balance by targeting immune components. Sympathetic innervation regulates energy balance, and the nerve density in the adipose tissues changes under various metabolic states, resulting in altered neuronal control and conferring resilience to metabolic challenges. However, the impact of the immune milieu on neuronal innervation is not known. Here, we examined the regulatory role on nerve plasticity by eosinophils and found they increased cell abundance in response to cold and produced nerve growth factor (NGF) in the white adipose tissues (WAT). Deletion of Ngf from eosinophils or depletion of eosinophils impairs cold-induced axonal outgrowth and beiging process. The spatial proximity between sympathetic nerves, IL-33–expressing stromal cells, and eosinophils was visualized in both human and mouse adipose tissues. At the cellular level, the sympathetic adrenergic signal induced calcium flux in the stromal cells and subsequent release of IL-33, which drove the up-regulation of IL-5 from group 2 innate lymphoid cells (ILC2s), leading to eosinophil accretion. We propose a feed-forward loop between sympathetic activity and type 2 immunity that coordinately enhances sympathetic innervation and promotes energy expenditure.
Collapse
|
4
|
Willows JW, Blaszkiewicz M, Lamore A, Borer S, Dubois AL, Garner E, Breeding WP, Tilbury KB, Khalil A, Townsend KL. Visualization and analysis of whole depot adipose tissue neural innervation. iScience 2021; 24:103127. [PMID: 34622172 PMCID: PMC8479257 DOI: 10.1016/j.isci.2021.103127] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/11/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
Little is known about the diversity and function of adipose tissue nerves, due in part to the inability to effectively visualize the tissue’s diverse nerve subtypes and the patterns of innervation across an intact depot. The tools to image and quantify adipose tissue innervation are currently limited. Here, we present a method of tissue processing that decreases tissue thickness in the z-axis while leaving cells intact for subsequent immunostaining. This was combined with autofluorescence quenching techniques to permit intact whole tissues to be mounted on slides and imaged by confocal microscopy, with a complementary means to perform whole tissue neurite density quantification after capture of tiled z-stack images. Additionally, we demonstrate how to visualize nerve terminals (the neuro-adipose nexus) in intact blocks of adipose tissue without z-depth reduction. We have included examples of data demonstrating nerve subtypes, neurovascular interactions, label-free imaging of collagen, and nerve bundle digital cross-sections. Whole depot adipose tissue innervation was imaged and quantified by a novel method Numerous aspects of adipose nerve heterogeneity were observed by microscopy We have identified a nerve terminal in adipose, the neuro-adipose nexus
Collapse
Affiliation(s)
- Jake W Willows
- School of Biology and Ecology, University of Maine, Orono, ME, USA.,Department of Neurological Surgery, The Ohio State University, 1014 Biomedical Research Tower, 460 W. 12 Avenue, Columbus, OH, USA
| | - Magdalena Blaszkiewicz
- School of Biology and Ecology, University of Maine, Orono, ME, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.,Department of Neurological Surgery, The Ohio State University, 1014 Biomedical Research Tower, 460 W. 12 Avenue, Columbus, OH, USA
| | - Amy Lamore
- School of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Samuel Borer
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Amanda L Dubois
- School of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Emma Garner
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - William P Breeding
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Karissa B Tilbury
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Andre Khalil
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.,CompuMAINE Laboratory, University of Maine, Orono, ME, USA
| | - Kristy L Townsend
- School of Biology and Ecology, University of Maine, Orono, ME, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.,School of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA.,Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.,Department of Neurological Surgery, The Ohio State University, 1014 Biomedical Research Tower, 460 W. 12 Avenue, Columbus, OH, USA
| |
Collapse
|
5
|
Van Drunen R, Eckel-Mahan K. Circadian Rhythms of the Hypothalamus: From Function to Physiology. Clocks Sleep 2021; 3:189-226. [PMID: 33668705 PMCID: PMC7931002 DOI: 10.3390/clockssleep3010012] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The nearly ubiquitous expression of endogenous 24 h oscillations known as circadian rhythms regulate the timing of physiological functions in the body. These intrinsic rhythms are sensitive to external cues, known as zeitgebers, which entrain the internal biological processes to the daily environmental changes in light, temperature, and food availability. Light directly entrains the master clock, the suprachiasmatic nucleus (SCN) which lies in the hypothalamus of the brain and is responsible for synchronizing internal rhythms. However, recent evidence underscores the importance of other hypothalamic nuclei in regulating several essential rhythmic biological functions. These extra-SCN hypothalamic nuclei also express circadian rhythms, suggesting distinct regions that oscillate either semi-autonomously or independent of SCN innervation. Concurrently, the extra-SCN hypothalamic nuclei are also sensitized to fluctuations in nutrient and hormonal signals. Thus, food intake acts as another powerful entrainer for the hypothalamic oscillators' mediation of energy homeostasis. Ablation studies and genetic mouse models with perturbed extra-SCN hypothalamic nuclei function reveal their critical downstream involvement in an array of functions including metabolism, thermogenesis, food consumption, thirst, mood and sleep. Large epidemiological studies of individuals whose internal circadian cycle is chronically disrupted reveal that disruption of our internal clock is associated with an increased risk of obesity and several neurological diseases and disorders. In this review, we discuss the profound role of the extra-SCN hypothalamic nuclei in rhythmically regulating and coordinating body wide functions.
Collapse
Affiliation(s)
- Rachel Van Drunen
- MD Anderson UTHealth School Graduate School of Biomedical Sciences, Houston TX 77030, USA;
- Brown Foundation Institute of Molecular Medicine University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Kristin Eckel-Mahan
- MD Anderson UTHealth School Graduate School of Biomedical Sciences, Houston TX 77030, USA;
- Brown Foundation Institute of Molecular Medicine University of Texas McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
6
|
Nakashima A, Yasuda K, Murata A, Suzuki K, Miura N. Effects of Euglena gracilis Intake on Mood and Autonomic Activity under Mental Workload, and Subjective Sleep Quality: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2020; 12:nu12113243. [PMID: 33113956 PMCID: PMC7690740 DOI: 10.3390/nu12113243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
While the human body maintains homeostasis by altering the balance in the autonomic nervous, endocrine, and immune systems, a prolonged imbalance in these systems can result in physical and mental symptoms, including a decline in sleep quality and work efficiency. Euglena gracilis (Euglena) is a single-celled microalga with the properties of both plants and animals and contains abundant nutrients, such as vitamins, minerals, amino acids, and fatty acids, which have various beneficial health effects. This study evaluated the effects of Euglena intake on the mood states and stress coping under mental workload tasks, and subjective sleep quality. We assigned men and women aged 20 to 64 years to Euglena and placebo intake groups, and measured indices related to the autonomic nervous system, psychological states, and sleep quality together with the application of workload stress before food intake, and 4, 8, and 12 weeks after commencing intake. Euglena intake regulated the autonomic nervous system under a workload and improved psychological parameters and sleep conditions. These results indicate that the consumption of Euglena may regulate the balance of the autonomic nervous system during stress and may have a favorable effect on psychological status and sleep quality.
Collapse
Affiliation(s)
- Ayaka Nakashima
- Euglena Co. Ltd., Tokyo 108-0014, Japan; (K.Y.); (A.M.); (K.S.)
- Correspondence: ; Tel.: +81-3-5442-4907
| | - Kosuke Yasuda
- Euglena Co. Ltd., Tokyo 108-0014, Japan; (K.Y.); (A.M.); (K.S.)
| | - Ako Murata
- Euglena Co. Ltd., Tokyo 108-0014, Japan; (K.Y.); (A.M.); (K.S.)
| | - Kengo Suzuki
- Euglena Co. Ltd., Tokyo 108-0014, Japan; (K.Y.); (A.M.); (K.S.)
| | - Naoki Miura
- Miura Clinic, Medical Corporation Kanonkai, Osaka 530-0044, Japan;
| |
Collapse
|
7
|
Eichwald T, Talbot S. Neuro-Immunity Controls Obesity-Induced Pain. Front Hum Neurosci 2020; 14:181. [PMID: 32581740 PMCID: PMC7295985 DOI: 10.3389/fnhum.2020.00181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
The prevalence of obesity skyrocketed over the past decades to become a significant public health problem. Obesity is recognized as a low-grade inflammatory disease and is linked with several comorbidities such as diabetes, circulatory disease, common neurodegenerative diseases, as well as chronic pain. Adipocytes are a major neuroendocrine organ that continually, and systemically, releases pro-inflammatory factors. While the exact mechanisms driving obesity-induced pain remain poorly defined, nociceptor hypersensitivity may result from the systemic state of inflammation characteristic of obesity as well as weight surplus-induced mechanical stress. Obesity and pain also share various genetic mutations, lifestyle risk factors, and metabolic pathways. For instance, fat pads are often found hyper-innervated and rich in immune cell types of multiple origins. These immunocytes release cytokines, amplifying nociceptor function, which, in turn, via locally released neuropeptides, sustain immunocytes' function. Here, we posit that along with mechanical stress stemming from extra weight, the local neuro-immune interplay occurring within the fat pads maintains the state of chronic low-grade inflammation and heightens sensory hypersensitivity. Overall, stopping such harmful neuro-immune crosstalk may constitute a novel pathway to prevent obesity-associated comorbidities, including neuronal hypersensitivity.
Collapse
Affiliation(s)
- Tuany Eichwald
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Sebastien Talbot
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
8
|
Whole transcriptome analysis and validation of metabolic pathways in subcutaneous adipose tissues during FGF21-induced weight loss in non-human primates. Sci Rep 2020; 10:7287. [PMID: 32350364 PMCID: PMC7190698 DOI: 10.1038/s41598-020-64170-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 04/09/2020] [Indexed: 01/01/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) induces weight loss in mouse, monkey, and human studies. In mice, FGF21 is thought to cause weight loss by stimulating thermogenesis, but whether FGF21 increases energy expenditure (EE) in primates is unclear. Here, we explore the transcriptional response and gene networks active in adipose tissue of rhesus macaques following FGF21-induced weight loss. Genes related to thermogenesis responded inconsistently to FGF21 treatment and weight loss. However, expression of gene modules involved in triglyceride (TG) synthesis and adipogenesis decreased, and this was associated with greater weight loss. Conversely, expression of innate immune cell markers was increased post-treatment and was associated with greater weight loss. A lipogenesis gene module associated with weight loss was evaluated by testing the function of member genes in mice. Overexpression of NRG4 reduced weight gain in diet-induced obese mice, while overexpression of ANGPTL8 resulted in elevated TG levels in lean mice. These observations provide evidence for a shifting balance of lipid storage and metabolism due to FGF21-induced weight loss in the non-human primate model, and do not fully recapitulate increased EE seen in rodent and in vitro studies. These discrepancies may reflect inter-species differences or complex interplay of FGF21 activity and counter-regulatory mechanisms.
Collapse
|
9
|
Zhu Q, Weng J, Shen M, Fish J, Shen Z, Coschigano KT, Davidson WS, Tso P, Shi H, Lo CC. Apolipoprotein A-IV Enhances Fatty Acid Uptake by Adipose Tissues of Male Mice via Sympathetic Activation. Endocrinology 2020; 161:5802681. [PMID: 32157301 PMCID: PMC7100924 DOI: 10.1210/endocr/bqaa042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/04/2020] [Indexed: 12/31/2022]
Abstract
Apolipoprotein A-IV (ApoA-IV) synthesized by the gut regulates lipid metabolism. Sympathetic innervation of adipose tissues also controls lipid metabolism. We hypothesized that ApoA-IV required sympathetic innervation to increase fatty acid (FA) uptake by adipose tissues and brown adipose tissue (BAT) thermogenesis. After 3 weeks feeding of either a standard chow diet or a high-fat diet (HFD), mice with unilateral denervation of adipose tissues received intraperitoneal administration of recombinant ApoA-IV protein and intravenous infusion of lipid mixture with radioactive triolein. In chow-fed mice, ApoA-IV administration increased FA uptake by intact BAT but not the contralateral denervated BAT or intact white adipose tissue (WAT). Immunoblots showed that, in chow-fed mice, ApoA-IV increased expression of lipoprotein lipase and tyrosine hydroxylase in both intact BAT and inguinal WAT (IWAT), while ApoA-IV enhanced protein levels of β3 adrenergic receptor, adipose triglyceride lipase, and uncoupling protein 1 in the intact BAT only. In HFD-fed mice, ApoA-IV elevated FA uptake by intact epididymal WAT (EWAT) but not intact BAT or IWAT. ApoA-IV increased sympathetic activity assessed by norepinephrine turnover (NETO) rate in BAT and EWAT of chow-fed mice, whereas it elevated NETO only in EWAT of HFD-fed mice. These observations suggest that, in chow-fed mice, ApoA-IV activates sympathetic activity of BAT and increases FA uptake by BAT via innervation, while in HFD-fed mice, ApoA-IV stimulates sympathetic activity of EWAT to shunt FAs into the EWAT.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Biology, Miami University, Oxford, OH
| | - Jonathan Weng
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - Minqian Shen
- Department of Biology, Miami University, Oxford, OH
| | - Jace Fish
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - Zhujun Shen
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - Karen T Coschigano
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH
| | - Chunmin C Lo
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
- Correspondence: Chunmin C Lo, Department of Biomedical Sciences, Irvine Hall 228, 1 Ohio University, Athens, OH 45701-2979. E-mail:
| |
Collapse
|
10
|
Metabolic regulation and the anti-obesity perspectives of brown adipose tissue (BAT); a systematic review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.obmed.2019.100163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Dalmasso C, Leachman JR, Osborn JL, Loria AS. Sensory signals mediating high blood pressure via sympathetic activation: role of adipose afferent reflex. Am J Physiol Regul Integr Comp Physiol 2019; 318:R379-R389. [PMID: 31868518 DOI: 10.1152/ajpregu.00079.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Blood pressure regulation in health and disease involves a balance between afferent and efferent signals from multiple organs and tissues. Although there are numerous reviews focused on the role of sympathetic nerves in different models of hypertension, few have revised the contribution of afferent nerves innervating adipose tissue and their role in the development of obesity-induced hypertension. Both clinical and basic research support the beneficial effects of bilateral renal denervation in lowering blood pressure. However, recent studies revealed that afferent signals from adipose tissue, in an adipose-brain-peripheral pathway, could contribute to the increased sympathetic activation and blood pressure during obesity. This review focuses on the role of adipose tissue afferent reflexes and briefly describes a number of other afferent reflexes modulating blood pressure. A comprehensive understanding of how multiple afferent reflexes contribute to the pathophysiology of essential and/or obesity-induced hypertension may provide significant insights into improving antihypertensive therapeutic approaches.
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jacqueline R Leachman
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jeffrey L Osborn
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
12
|
Long-term effects of prior diets, dietary transition and pregnancy on adipose gene expression in dairy heifers. PLoS One 2019; 14:e0218723. [PMID: 31269511 PMCID: PMC6609222 DOI: 10.1371/journal.pone.0218723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/09/2019] [Indexed: 01/05/2023] Open
Abstract
Adipose tissue is highly involved in whole-body metabolism and is the main site for lipid synthesis, storage and mobilization in ruminants. Therefore, knowledge about adipose tissue responses to different diets is important, especially in growing heifers as the feeding regimes of replacement heifers affect their future success as dairy cows. However, at gene expression level such knowledge is limited. As part of a larger feed trial, adipose tissue biopsies from 24 Norwegian Red heifers were collected at 12 months of age (12MO) and at month seven of gestation (PREG) and analyzed by next-generation mRNA sequencing. Between these two sampling points, all heifers had gone through a successful conception and a feed change from four dietary treatments of high or low energy (HE/LE) and protein (HP/LP) content (treatments LPHE, HPHE, LPLE and HPLE) to a low-energy, low-protein pregnancy feed given to all animals. Gene expression differences between different feed treatments at 12MO are described in an earlier publication from our group. The main objectives of this study were to investigate the long-term effects of diets differing in protein and energy density level on gene expression in adipose tissue of growing replacement dairy heifers. To achieve this, we examined the post-treatment effects between the treatment groups at month seven of gestation; 6 months after the termination of experimental feeding, and the long-term gene expression changes occurring in the adipose tissue between 12MO and PREG. Post-treatment group comparisons showed evidence of long-term effects of dietary treatment on adipose gene expression. Differences between protein treatments were smaller than between energy treatments. Adipose gene expression changes from 12MO to PREG were much larger for the HE than the LE treatments and seemed to mostly be explained by the characteristics of the diet change. 97 genes displayed a unidirectional expression change for all groups from 12MO to PREG, and are considered to be treatment-independent, possibly caused by pregnancy or increased age. This study provides candidate genes and key regulators for further studies on pregnancy preservation (TGFB1, CFD) and metabolic regulation and efficiency (PI3K, RICTOR, MAP4K4,) in dairy cattle.
Collapse
|
13
|
White JD, Dewal RS, Stanford KI. The beneficial effects of brown adipose tissue transplantation. Mol Aspects Med 2019; 68:74-81. [PMID: 31228478 DOI: 10.1016/j.mam.2019.06.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/20/2019] [Accepted: 06/18/2019] [Indexed: 01/02/2023]
Abstract
Obesity is a disease that results from an imbalance between energy intake and energy expenditure. Brown adipose tissue (BAT) is a potential therapeutic target to improve the comorbidities associated with obesity due to its inherent thermogenic capacity and its ability to improve glucose metabolism. Multiple studies have shown that activation of BAT using either pharmacological treatments or cold exposure had an acute effect to increase metabolic function and reduce adiposity. Recent preclinical investigations have explored whether increasing BAT mass or activation through transplantation models could improve glucose metabolism and metabolic health. Successful BAT transplantation models have shown improvements in glucose metabolism and insulin sensitivity, as well as reductions in body mass and decreased adiposity in recipients. BAT transplantation may confer its beneficial effects through several different mechanisms, including endocrine effects via the release of 'batokines'. More recent studies have demonstrated that beige and brown adipocytes isolated from human progenitor cells and transplanted into mouse models result in metabolic improvements similar to transplantation of whole BAT; this could represent a clinically translatable model. In this review we will discuss the impetus for both early and recent investigations utilizing BAT transplantation models, the outcomes of these studies, and review the mechanisms associated with the beneficial effects of BAT transplant to confer improvements in metabolic health.
Collapse
Affiliation(s)
- Joseph D White
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Revati S Dewal
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
14
|
Zhu Q, Glazier BJ, Hinkel BC, Cao J, Liu L, Liang C, Shi H. Neuroendocrine Regulation of Energy Metabolism Involving Different Types of Adipose Tissues. Int J Mol Sci 2019; 20:E2707. [PMID: 31159462 PMCID: PMC6600468 DOI: 10.3390/ijms20112707] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022] Open
Abstract
Despite tremendous research efforts to identify regulatory factors that control energy metabolism, the prevalence of obesity has been continuously rising, with nearly 40% of US adults being obese. Interactions between secretory factors from adipose tissues and the nervous system innervating adipose tissues play key roles in maintaining energy metabolism and promoting survival in response to metabolic challenges. It is currently accepted that there are three types of adipose tissues, white (WAT), brown (BAT), and beige (BeAT), all of which play essential roles in maintaining energy homeostasis. WAT mainly stores energy under positive energy balance, while it releases fuels under negative energy balance. Thermogenic BAT and BeAT dissipate energy as heat under cold exposure to maintain body temperature. Adipose tissues require neural and endocrine communication with the brain. A number of WAT adipokines and BAT batokines interact with the neural circuits extending from the brain to cooperatively regulate whole-body lipid metabolism and energy homeostasis. We review neuroanatomical, histological, genetic, and pharmacological studies in neuroendocrine regulation of adipose function, including lipid storage and mobilization of WAT, non-shivering thermogenesis of BAT, and browning of BeAT. Recent whole-tissue imaging and transcriptome analysis of differential gene expression in WAT and BAT yield promising findings to better understand the interaction between secretory factors and neural circuits, which represents a novel opportunity to tackle obesity.
Collapse
Affiliation(s)
- Qi Zhu
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Bradley J Glazier
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Benjamin C Hinkel
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Jingyi Cao
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Lin Liu
- Program of Bioinformatics, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Chun Liang
- Program of Bioinformatics, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Haifei Shi
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
15
|
Cao Q, Zhang J, Yu Q, Wang J, Dai M, Zhang Y, Luo Q, Bao M. Carotid baroreceptor stimulation in obese rats affects white and brown adipose tissues differently in metabolic protection. J Lipid Res 2019; 60:1212-1224. [PMID: 31126973 DOI: 10.1194/jlr.m091256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/23/2019] [Indexed: 11/20/2022] Open
Abstract
The sympathetic nervous system (SNS) regulates the functions of white adipose tissue (WAT) and brown adipose tissue (BAT) tightly. Carotid baroreceptor stimulation (CBS) efficiently inhibits SNS activation. We hypothesized that CBS would protect against obesity. We administered CBS to obese rats and measured sympathetic and AMP-activated protein kinase (AMPK)/ PPAR pathway responses as well as changes in perirenal WAT (PWAT), epididymal WAT (EWAT), and interscapular BAT (IBAT). CBS alleviated obesity-related metabolic changes, improving insulin resistance; reducing adipocyte hypertrophy, body weight, and adipose tissue weights; and decreasing norepinephrine but increasing acetylcholine in plasma, PWAT, EWAT, and IBAT. CBS also downregulated fatty acid translocase (CD36), fatty acid transport protein (FATP), phosphorylated and total hormone sensitive lipase, phosphorylated and total protein kinase A, and PPARγ in obese rats. Simultaneously, CBS upregulated phosphorylated adipose triglyceride lipase, phosphorylated and total AMPK, and PPARα in PWAT, EWAT, and IBAT. However, BAT and WAT responses differed; although many responses were more sensitive in IBAT, responses of CD36, FATP, and PPARγ were more sensitive in PWAT and EWAT. Overall, CBS decreased chronically activated SNS and ameliorated obesity-related metabolic disorders by regulating the AMPK/PPARα/γ pathway.
Collapse
Affiliation(s)
- Quan Cao
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Junxia Zhang
- Department of Endocrinology, Wuhan General Hospital of the Chinese People's Liberation Army, Wuhan 430060, China
| | - Qiao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Jing Wang
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Mingyan Dai
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University
| | - Yijie Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Qiang Luo
- Department of Cardiology, Renmin Hospital of Wuhan University.,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| | - Mingwei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University .,Cardiovascular Research Institute Wuhan University.,Hubei Key Laboratory of Cardiology Wuhan 430060, China
| |
Collapse
|
16
|
Abstract
Perivascular adipose tissue (PVAT) refers to the local aggregate of adipose tissue surrounding the vascular tree, exhibiting phenotypes from white to brown and beige adipocytes. Although PVAT has long been regarded as simply a structural unit providing mechanical support to vasculature, it is now gaining reputation as an integral endocrine/paracrine component, in addition to the well-established modulator endothelium, in regulating vascular tone. Since the discovery of anti-contractile effect of PVAT in 1991, the use of multiple rodent models of reduced amounts of PVAT has revealed its regulatory role in vascular remodeling and cardiovascular implications, including atherosclerosis. PVAT does not only release PVAT-derived relaxing factors (PVRFs) to activate multiple subsets of endothelial and vascular smooth muscle potassium channels and anti-inflammatory signals in the vasculature, but it does also provide an interface for neuron-adipocyte interactions in the vascular wall to regulate arterial vascular tone. In this review, we outline our current understanding towards PVAT and attempt to provide hints about future studies that can sharpen the therapeutic potential of PVAT against cardiovascular diseases and their complications.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hamidah Abu Bakar
- Health Sciences Department, Universiti Selangor, 40000, Shah Alam, Selangor, Malaysia
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC)-a joint cooperation between the Charité-University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
- Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
17
|
Guilherme A, Henriques F, Bedard AH, Czech MP. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat Rev Endocrinol 2019; 15:207-225. [PMID: 30733616 PMCID: PMC7073451 DOI: 10.1038/s41574-019-0165-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipose tissue comprises adipocytes and many other cell types that engage in dynamic crosstalk in a highly innervated and vascularized tissue matrix. Although adipose tissue has been studied for decades, it has been appreciated only in the past 5 years that extensive arborization of nerve fibres has a dominant role in regulating the function of adipose tissue. This Review summarizes the latest literature, which suggests that adipocytes signal to local sensory nerve fibres in response to perturbations in lipolysis and lipogenesis. Such adipocyte signalling to the central nervous system causes sympathetic output to distant adipose depots and potentially other metabolic tissues to regulate systemic glucose homeostasis. Paracrine factors identified in the past few years that mediate such adipocyte-neuron crosstalk are also reviewed. Similarly, immune cells and endothelial cells within adipose tissue communicate with local nerve fibres to modulate neurotransmitter tone, blood flow, adipocyte differentiation and energy expenditure, including adipose browning to produce heat. This understudied field of neurometabolism related to adipose tissue biology has great potential to reveal new mechanistic insights and potential therapeutic strategies for obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
18
|
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
19
|
Abstract
Interactions between the brain and distinct adipose depots have a key role in maintaining energy balance, thereby promoting survival in response to metabolic challenges such as cold exposure and starvation. Recently, there has been renewed interest in the specific central neuronal circuits that regulate adipose depots. Here, we review anatomical, genetic and pharmacological studies on the neural regulation of adipose function, including lipolysis, non-shivering thermogenesis, browning and leptin secretion. In particular, we emphasize the role of leptin-sensitive neurons and the sympathetic nervous system in modulating the activity of brown, white and beige adipose tissues. We provide an overview of advances in the understanding of the heterogeneity of the brain regulation of adipose tissues and offer a perspective on the challenges and paradoxes that the community is facing regarding the actions of leptin on this system.
Collapse
Affiliation(s)
- Alexandre Caron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel K. Elmquist
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
20
|
Nguyen NLT, Xue B, Bartness TJ. Sensory denervation of inguinal white fat modifies sympathetic outflow to white and brown fat in Siberian hamsters. Physiol Behav 2018; 190:28-33. [PMID: 29447836 DOI: 10.1016/j.physbeh.2018.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/10/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) have sympathetic nervous system (SNS) and sensory innervations. Previous studies from our laboratory revealed central neuroanatomical evidence of WAT sensory and BAT SNS crosstalk with double labeling of inguinal WAT (IWAT) sensory and interscapular BAT (IBAT) SNS neurons. We previously demonstrated that WAT lipolysis increases IBAT temperature, but this effect is absent when IWAT afferents are surgically denervated, which severs both sensory and SNS nerves. It is possible that WAT sensory feedback can regulate SNS drive to itself and other WAT and BAT depots, and thus contribute to the existence of differential SNS outflow to fat during different energy challenges. Here we selectively denervated IWAT sensory nerves in Siberian hamsters using capsaicin and measured norepinephrine turnover (NETO) i.e., SNS drive to WAT and BAT depots, IBAT uncoupling protein 1 (UCP1) expression, body mass, fat mass, blood glucose, and food consumed after a 24-h cold exposure. IWAT sensory denervation decreased both IWAT and IBAT NETO and IBAT UCP1 expression. IWAT sensory denervation, however, increased mesenteric WAT (MWAT) NETO after the 24-h cold exposure and did not modify epididymal WAT (EWAT) and retroperitoneal WAT (RWAT) NETO compared with respective controls. Body mass, fat mass, blood glucose, and food consumed were unchanged across groups. RWAT and EWAT mass decreased in capsaicin-injected hamsters, but did not in the vehicle hamsters. These results functionally demonstrate the existence of IWAT sensory and IBAT SNS crosstalk and that a disruption in this sensory-SNS feedback mechanism modifies SNS drive to IWAT, IBAT, and MWAT, but not EWAT and RWAT.
Collapse
Affiliation(s)
- Ngoc Ly T Nguyen
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30303, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30303, USA.
| | - Timothy J Bartness
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
21
|
Ryu V, Zarebidaki E, Albers HE, Xue B, Bartness TJ. Short photoperiod reverses obesity in Siberian hamsters via sympathetically induced lipolysis and Browning in adipose tissue. Physiol Behav 2017; 190:11-20. [PMID: 28694154 DOI: 10.1016/j.physbeh.2017.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
Changes in photoperiod length are transduced into neuroendocrine signals by melatonin (MEL) secreted by the pineal gland triggering seasonally adaptive responses in many animal species. Siberian hamsters, transferred from a long-day 'summer-like' photoperiod (LD) to a short-day 'winter-like' photoperiod (SD), exhibit a naturally-occurring reversal in obesity. Photoperiod-induced changes in adiposity are mediated by the duration of MEL secretion and can be mimicked by exogenously administered MEL into animals housed in LD. Evidence suggests that MEL increases the sympathetic nervous system (SNS) drive to white adipose tissue (WAT). Here, we investigated whether MEL-driven seasonally adaptive losses in body fat are associated with WAT lipolysis and browning. Hamsters were subcutaneously administered vehicle (LD+VEH) or 0.4mg/kg MEL (LD+MEL) daily for 10weeks while animals housed in SD served as a positive control. MEL and SD exposure significantly decreased the retroperitoneal (RWAT), inguinal (IWAT), epididymal (EWAT) WAT, food intake and caused testicular regression compared with the LD+VEH group. MEL/SD induced lipolysis in the IWAT and EWAT, browning of the RWAT, IWAT, and EWAT, and increased UCP1 expression in the IBAT. Additionally, MEL/SD significantly increased the number of shared MEL receptor 1a and dopamine beta-hydroxylase-immunoreactive neurons in discrete brain sites, notably the paraventricular hypothalamic nucleus, dorsomedial hypothalamic nucleus, arcuate nucleus, locus coeruleus and dorsal motor nucleus of vagus. Collectively, these findings support our hypothesis that SD-exposed Siberian hamsters undergo adaptive decreases in body adiposity due to SNS-stimulated lipid mobilization and generalized WAT browning.
Collapse
Affiliation(s)
- Vitaly Ryu
- Department of Biology, Center for Obesity Reversal, Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA.
| | - Eleen Zarebidaki
- Department of Biology, Center for Obesity Reversal, Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA
| | - H Elliott Albers
- Department of Biology, Center for Obesity Reversal, Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Bingzhong Xue
- Department of Biology, Center for Obesity Reversal, Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Timothy J Bartness
- Department of Biology, Center for Obesity Reversal, Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA
| |
Collapse
|
22
|
Loesch A, Dashwood MR. Nerve-perivascular fat communication as a potential influence on the performance of blood vessels used as coronary artery bypass grafts. J Cell Commun Signal 2017; 12:181-191. [PMID: 28601937 PMCID: PMC5842173 DOI: 10.1007/s12079-017-0393-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
Perivascular fat, the cushion of adipose tissue surrounding blood vessels, possesses dilator, anti-contractile and constrictor actions. The majority of these effects have been demonstrated in vitro and may depend on the vessel and/or the experimental method or species used. In general, the relaxant effect of perivascular adipose tissue is local and may be either endothelium-dependent or endothelium-independent. However, nerve stimulation studies show that, in general, perivascular adipose tissue (PVAT) has an anti-contractile vascular effect likely to involve an action of the autonomic vascular nerves. Apart from a direct effect of perivascular fat-derived factors on bypass conduits, an interaction with a number of neurotransmitters and other agents may play an important role in graft performance. Although the vascular effects of PVAT are now well-established there is a lack of information regarding the role and/or involvement of peripheral nerves including autonomic nerves. For example, are perivascular adipocytes innervated and does PVAT affect neuronal control of vessels used as grafts? To date there is a paucity of electrophysiological studies into nerve-perivascular fat control. This review provides an overview of the vascular actions of PVAT, focussing on its potential relevance on blood vessels used as bypass grafts. In particular, the anatomical relationship between the perivascular nerves and fat are considered and the role of the perivascular-nerve/fat axis in the performance of bypass grafts is also discussed.
Collapse
Affiliation(s)
- Andrzej Loesch
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London Medical School, Royal Free Campus, Rowland Hill Street, NW3 2PF, London, UK.
| | - Michael R Dashwood
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London Medical School, Royal Free Campus, Rowland Hill Street, NW3 2PF, London, UK
| |
Collapse
|
23
|
Ryu V, Watts AG, Xue B, Bartness TJ. Bidirectional crosstalk between the sensory and sympathetic motor systems innervating brown and white adipose tissue in male Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 2017; 312:R324-R337. [PMID: 28077392 DOI: 10.1152/ajpregu.00456.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/28/2016] [Accepted: 12/31/2016] [Indexed: 01/31/2023]
Abstract
The brain networks connected to the sympathetic motor and sensory innervations of brown (BAT) and white (WAT) adipose tissues were originally described using two transneuronally transported viruses: the retrogradely transported pseudorabies virus (PRV), and the anterogradely transported H129 strain of herpes simplex virus-1 (HSV-1 H129). Further complexity was added to this network organization when combined injections of PRV and HSV-1 H129 into either BAT or WAT of the same animal generated sets of coinfected neurons in the brain, spinal cord, and sympathetic and dorsal root ganglia. These neurons are well positioned to act as sensorimotor links in the feedback circuits that control each fat pad. We have now determined the extent of sensorimotor crosstalk between interscapular BAT (IBAT) and inguinal WAT (IWAT). PRV152 and HSV-1 H129 were each injected into IBAT or IWAT of the same animal: H129 into IBAT and PRV152 into IWAT. The reverse configuration was applied in a different set of animals. We found single-labeled neurons together with H129+PRV152 coinfected neurons in multiple brain sites, with lesser numbers in the sympathetic and dorsal root ganglia that innervate IBAT and IWAT. We propose that these coinfected neurons mediate sensory-sympathetic motor crosstalk between IBAT and IWAT. Comparing the relative numbers of coinfected neurons between the two injection configurations showed a bias toward IBAT-sensory and IWAT-sympathetic motor feedback loops. These coinfected neurons provide a neuroanatomical framework for functional interactions between IBAT thermogenesis and IWAT lipolysis that occurs with cold exposure, food restriction/deprivation, exercise, and more generally with alterations in adiposity.
Collapse
Affiliation(s)
- Vitaly Ryu
- Department of Biology, Obesity Reversal Center, Georgia State University, Atlanta, Georgia; and
| | - Alan G Watts
- Department of Biological Sciences, University of Southern California, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
| | - Bingzhong Xue
- Department of Biology, Obesity Reversal Center, Georgia State University, Atlanta, Georgia; and
| | - Timothy J Bartness
- Department of Biology, Obesity Reversal Center, Georgia State University, Atlanta, Georgia; and
| |
Collapse
|
24
|
Mul Fedele ML, Galiana MD, Golombek DA, Muñoz EM, Plano SA. Alterations in Metabolism and Diurnal Rhythms following Bilateral Surgical Removal of the Superior Cervical Ganglia in Rats. Front Endocrinol (Lausanne) 2017; 8:370. [PMID: 29375476 PMCID: PMC5767240 DOI: 10.3389/fendo.2017.00370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022] Open
Abstract
Mammalian circadian rhythms are controlled by a master pacemaker located in the suprachiasmatic nuclei (SCN), which is synchronized to the environment by photic and nonphotic stimuli. One of the main functions of the SCN is to regulate peripheral oscillators to set temporal variations in the homeostatic control of physiology and metabolism. In this sense, the SCN coordinate the activity/rest and feeding/fasting rhythms setting the timing of food intake, energy expenditure, thermogenesis, and active and basal metabolism. One of the major time cues to the periphery is the nocturnal melatonin, which is synthesized and secreted by the pineal gland. Under SCN control, arylalkylamine N-acetyltransferase (AA-NAT)-the main enzyme regulating melatonin synthesis in vertebrates-is activated at night by sympathetic innervation that includes the superior cervical ganglia (SCG). Bilateral surgical removal of the superior cervical ganglia (SCGx) is considered a reliable procedure to completely prevent the nocturnal AA-NAT activation, irreversibly suppressing melatonin rhythmicity. In the present work, we studied the effects of SCGx on rat metabolic parameters and diurnal rhythms of feeding and locomotor activity. We found a significant difference between SCGx and sham-operated rats in metabolic variables such as an increased body weight/food intake ratio, increased adipose tissue, and decreased glycemia with a normal glucose tolerance. An analysis of locomotor activity and feeding rhythms showed an increased daytime (lights on) activity (including food consumption) in the SCGx group. These alterations suggest that superior cervical ganglia-related feedback mechanisms play a role in SCN-periphery phase coordination and that SCGx is a valid model without brain-invasive surgery to explore how sympathetic innervation affects daily (24 h) patterns of activity, food consumption and, ultimately, its role in metabolism homeostasis.
Collapse
Affiliation(s)
- Malena L. Mul Fedele
- Science and Technology, Universidad Nacional de Quilmes (UNQ), Bernal, Argentina
| | - Maria D. Galiana
- Institute of Histology and Embryology of Mendoza (IHEM—CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego A. Golombek
- Science and Technology, Universidad Nacional de Quilmes (UNQ), Bernal, Argentina
- *Correspondence: Diego A. Golombek, ; Estela M. Muñoz, ; Santiago A. Plano,
| | - Estela M. Muñoz
- Institute of Histology and Embryology of Mendoza (IHEM—CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
- *Correspondence: Diego A. Golombek, ; Estela M. Muñoz, ; Santiago A. Plano,
| | - Santiago A. Plano
- Science and Technology, Universidad Nacional de Quilmes (UNQ), Bernal, Argentina
- Chronophysiology Laboratory, Institute for Biomedical Research (BIOMED—CONICET), UCA Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- *Correspondence: Diego A. Golombek, ; Estela M. Muñoz, ; Santiago A. Plano,
| |
Collapse
|
25
|
Chusyd DE, Wang D, Huffman DM, Nagy TR. Relationships between Rodent White Adipose Fat Pads and Human White Adipose Fat Depots. Front Nutr 2016; 3:10. [PMID: 27148535 PMCID: PMC4835715 DOI: 10.3389/fnut.2016.00010] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/26/2016] [Indexed: 01/09/2023] Open
Abstract
The objective of this review was to compare and contrast the physiological and metabolic profiles of rodent white adipose fat pads with white adipose fat depots in humans. Human fat distribution and its metabolic consequences have received extensive attention, but much of what has been tested in translational research has relied heavily on rodents. Unfortunately, the validity of using rodent fat pads as a model of human adiposity has received less attention. There is a surprisingly lack of studies demonstrating an analogous relationship between rodent and human adiposity on obesity-related comorbidities. Therefore, we aimed to compare known similarities and disparities in terms of white adipose tissue (WAT) development and distribution, sexual dimorphism, weight loss, adipokine secretion, and aging. While the literature supports the notion that many similarities exist between rodents and humans, notable differences emerge related to fat deposition and function of WAT. Thus, further research is warranted to more carefully define the strengths and limitations of rodent WAT as a model for humans, with a particular emphasis on comparable fat depots, such as mesenteric fat.
Collapse
Affiliation(s)
- Daniella E Chusyd
- Department of Nutrition Science, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Donghai Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tim R Nagy
- Department of Nutrition Science, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
26
|
Eimar H, Alebrahim S, Manickam G, Al-Subaie A, Abu-Nada L, Murshed M, Tamimi F. Donepezil regulates energy metabolism and favors bone mass accrual. Bone 2016; 84:131-138. [PMID: 26719214 DOI: 10.1016/j.bone.2015.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 11/20/2022]
Abstract
The autonomous nervous system regulates bone mass through the sympathetic and parasympathetic arms. The sympathetic nervous system (SNS) favors bone loss whereas the parasympathetic nervous system (PNS) promotes bone mass accrual. Donepezil, a central-acting cholinergic agonist, has been shown to down-regulate SNS and up-regulate PNS signaling tones. Accordingly, we hypothesize that the use of donepezil could have beneficial effects in regulating bone mass. To test our hypothesis, two groups of healthy female mice were treated either with donepezil or saline. Differences in body metabolism and bone mass of the treated groups were compared. Body and visceral fat weights as well as serum leptin level were increased in donepezil-treated mice compared to control, suggesting that donepezil effects on SNS influenced metabolic activity. Donepezil-treated mice had better bone quality than controls due to a decrease in osteoclasts number. These results indicate that donepezil is able to affect whole body energy metabolism and favors bone mass in young female WT mice.
Collapse
Affiliation(s)
- Hazem Eimar
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Sharifa Alebrahim
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Garthiga Manickam
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Ahmed Al-Subaie
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Lina Abu-Nada
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Monzur Murshed
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 0C7, Canada; Faculty of Medicine, McGill University, Montreal, Quebec H3G 1Y6, Canada; Genetics Unit, Shriners Hospital for Children, Montreal, Quebec H3G 1A6, Canada.
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 0C7, Canada.
| |
Collapse
|
27
|
Hirako S, Wada N, Kageyama H, Takenoya F, Izumida Y, Kim H, Iizuka Y, Matsumoto A, Okabe M, Kimura A, Suzuki M, Yamanaka S, Shioda S. Autonomic nervous system-mediated effects of galanin-like peptide on lipid metabolism in liver and adipose tissue. Sci Rep 2016; 6:21481. [PMID: 26892462 PMCID: PMC4759810 DOI: 10.1038/srep21481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/18/2016] [Indexed: 01/21/2023] Open
Abstract
Galanin-like peptide (GALP) is a neuropeptide involved in the regulation of feeding behavior and energy metabolism in mammals. While a weight loss effect of GALP has been reported, its effects on lipid metabolism have not been investigated. The aim of this study was to determine if GALP regulates lipid metabolism in liver and adipose tissue via an action on the sympathetic nervous system. The respiratory exchange ratio of mice administered GALP intracerebroventricularly was lower than that of saline-treated animals, and fatty acid oxidation-related gene mRNA levels were increased in the liver. Even though the respiratory exchange ratio was reduced by GALP, this change was not significant when mice were treated with the sympatholytic drug, guanethidine. Lipolysis-related gene mRNA levels were increased in the adipose tissue of GALP-treated mice compared with saline-treated animals. These results show that GALP stimulates fatty acid β-oxidation in liver and lipolysis in adipose tissue, and suggest that the anti-obesity effect of GALP may be due to anorexigenic actions and improvement of lipid metabolism in peripheral tissues via the sympathetic nervous system.
Collapse
Affiliation(s)
- Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Saitama, Japan
| | - Nobuhiro Wada
- Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Fumiko Takenoya
- Department of Exercise and Sports Physiology, Hoshi University School of Pharmacy and Pharmaceutical Science, Tokyo, Japan
| | - Yoshihiko Izumida
- Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hyounju Kim
- Department of Clinical Dietetics &Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Yuzuru Iizuka
- Department of Clinical Dietetics &Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Akiyo Matsumoto
- Department of Clinical Dietetics &Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Mai Okabe
- Tokyo Shokuryo Dietitian Academy, Tokyo, Japan
| | - Ai Kimura
- Hoshi University School of Pharmacy and Pharmaceutical Sciences Global Research Center for Innovative Life Science Peptide Drug Innovation, Tokyo, Japan
| | - Mamiko Suzuki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Satoru Yamanaka
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Seiji Shioda
- Hoshi University School of Pharmacy and Pharmaceutical Sciences Global Research Center for Innovative Life Science Peptide Drug Innovation, Tokyo, Japan
| |
Collapse
|
28
|
Bischoff SJ, Schmidt M, Lehmann T, Schwab M, Matziolis G, Saemann A, Schiffner R. Renal glucose release during hypoglycemia is partly controlled by sympathetic nerves - a study in pigs with unilateral surgically denervated kidneys. Physiol Rep 2015; 3:3/11/e12603. [PMID: 26564063 PMCID: PMC4673633 DOI: 10.14814/phy2.12603] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Catecholamines are known to increase renal glucose release during hypoglycemia. The specific extent of the contribution of different sources of catecholamines, endocrine delivery via circulation or release from autonomous sympathetic renal nerves, though, is unknown. We tested the hypothesis that sympathetic renal innervation plays a major role in the regulation of renal gluconeogenesis. For this purpose, instrumented adolescent pigs had one kidney surgically denervated while the other kidney served as a control. A hypoglycemic clamp with arterial blood glucose below 2 mmol/L was maintained for 75 min. Arteriovenous blood glucose difference, inulin clearance, p-aminohippurate clearance, and sodium excretion were measured in intervals of 15 min separately for both kidneys. Blood glucose was lowered to 0.84 ± 0.33 mmol/L for 75 min. The side-dependent renal net glucose release (SGN) decreased significantly after the unilateral ablation of renal nerves. In the linear mixed model, renal denervation had a significant inhibitory effect on renal net glucose release (P = 0.036). The SGN of the ablated kidney decreased by 0.02 mmol/min and was equivalent to 43.3 ± 23.2% of the control (nonablated) kidney in the pigs. This allows the conclusion that renal glucose release is partly controlled by sympathetic nerves. This may be relevant in humans as well, and could explain the increased risk of severe hypoglycemia of patients with diabetes mellitus and autonomous neuropathy. The effects of denervation on renal glucose metabolism should be critically taken into account when considering renal denervation as a therapy in diabetic patients.
Collapse
Affiliation(s)
- Sabine J Bischoff
- Institute for Laboratory Animals and Welfare, Jena University Hospital, Jena, Germany
| | - Martin Schmidt
- Institute for Biochemistry II, Jena University Hospital, Jena, Germany
| | - Thomas Lehmann
- Institute of Medical Statistics, Computer Sciences and Documentation Science, Jena University Hospital, Jena, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Georg Matziolis
- Orthopaedic Department, Jena University Hospital, Jena, Germany
| | - Alexander Saemann
- Department of Internal Medicine II, Helios Hospital, Erfurt, Germany
| | - René Schiffner
- Department of Neurology, Jena University Hospital, Jena, Germany Orthopaedic Department, Jena University Hospital, Jena, Germany
| |
Collapse
|
29
|
Dubon MJ, Byeon Y, Park KS. Substance P enhances the activation of AMPK and cellular lipid accumulation in 3T3‑L1 cells in response to high levels of glucose. Mol Med Rep 2015; 12:8048-54. [PMID: 26499365 PMCID: PMC4758299 DOI: 10.3892/mmr.2015.4453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/25/2015] [Indexed: 12/25/2022] Open
Abstract
The rescue of glucose tolerance and insulin-sensitivity in peripheral tissues, including adipose tissue, is essential in therapeutic strategies for diabetes. The present study demonstrated that substance P (SP) increases the accumulation of lipids in 3T3-L1 cells during their differentiation into adipocytes in response to a high concentration of glucose. SP reciprocally regulated the activities of AMP-activated protein kinase (AMPK) and Akt: SP enhanced the activation of AMPK, although the activity of Akt was downregulated. Notably, SP induced an increase in the expression level of glucose transporter 4 in the 3T3-L1 adipocytes. Therefore, it is possible that SP leads to an increase in glucose uptake and the accumulation of lipids in adipocytes, and may contribute towards the rescue of insulin-sensitivity in diabetes.
Collapse
Affiliation(s)
- Maria Jose Dubon
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| | - Yeji Byeon
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| | - Ki-Sook Park
- East‑West Medical Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
30
|
Bartness TJ, Ryu V. Neural control of white, beige and brown adipocytes. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2015; 5:S35-9. [PMID: 27152173 DOI: 10.1038/ijosup.2015.9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reports of brown-like adipocytes in traditionally white adipose tissue (WAT) depots occurred ~30 years ago, but interest in white adipocyte 'browning' only has gained attention more recently. We integrate some of what is known about the sympathetic nervous system (SNS) innervation of WAT and brown adipose tissue (BAT) with the few studies focusing on the sympathetic innervation of the so-called 'brite' or 'beige' adipocytes that appear when WAT sympathetic drive increases (for example, cold exposure and food deprivation). Only one brain site, the dorsomedial hypothalamic nucleus (DMH), selectively browns some (inguinal WAT (IWAT) and dorsomedial subcutaneous WAT), but not all WAT depots and only when DMH neuropeptide Y gene expression is knocked down, a browning effect is mediated by WAT SNS innervation. Other studies show that WAT sympathetic fiber density is correlated with the number of brown-like adipocytes (multilocular lipid droplets, uncoupling protein-1 immunoreactivity) at both warm and cold ambient temperatures. WAT and BAT have sensory innervation, the latter important for acute BAT cold-induced temperature increases, therefore suggesting the possible importance of sensory neural feedback from brite/beige cells for heat production. Only one report shows browned WAT capable of producing heat in vivo. Collectively, increases in WAT sympathetic drive and the phenotype of these stimulated adipocytes seems critical for the production of new and/or transdifferentiation of white to brite/beige adipocytes. Selective harnessing of WAT SNS drive to produce browning or selective browning independent of the SNS to counter increases in adiposity by increasing expenditure appears to be extremely challenging.
Collapse
Affiliation(s)
- T J Bartness
- Department of Biology, Obesity Reversal Center, Georgia State University , Atlanta, GA, USA
| | - V Ryu
- Department of Biology, Obesity Reversal Center, Georgia State University , Atlanta, GA, USA
| |
Collapse
|
31
|
Long M, Zhou J, Li D, Zheng L, Xu Z, Zhou S. Long-Term Over-Expression of Neuropeptide Y in Hypothalamic Paraventricular Nucleus Contributes to Adipose Tissue Insulin Resistance Partly via the Y5 Receptor. PLoS One 2015; 10:e0126714. [PMID: 25993471 PMCID: PMC4436377 DOI: 10.1371/journal.pone.0126714] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/07/2015] [Indexed: 11/18/2022] Open
Abstract
Intracerebroventricular injection and overexpression of Neuropeptide Y (NPY) in the paraventricular nucleus (PVN) has been shown to induce obesity and glucose metabolism disorder in rodents; however, the underlying mechanisms are still unclear. The aim of this study was to investigate the mechanism contributing to glucose metabolic disturbance induced by NPY. Recombinant lentiviral NPY vectors were injected into the PVN of rats fed a high fat (HFD) or low-fat diet. 8 weeks later, in vivo intravenous glucose tolerance tests and euglycemic-hyperinsulinemic clamp revealed that insulin resistance of adipose tissue were induced by NPY overexpression with or without HFD. NPY increased food intake, but did not change blood glucose, glycated hemoglobin A1c (HbA1c) or lipid levels. However, NPY decreased the expression of pGSK3β, PI3K p85 and pAKTSer473 in adipose tissue of rats. In vitro, 3T3-L1 adipocytes were treated with NPY, NPY Y1 and Y5 receptor antagonists. Glucose consumption and 2-deoxy-D-[3H] glucose uptake were partly inhibited by NPY, while a decrease in PI3K-AKT pathway signaling and a decreased expression of pGSK3α and pGSK3β were observed. Nevertheless, a Y5 receptor antagonist (L-152,804) reversed the effects of NPY on glucose uptake and consumption. These data suggest that long-term over-expression of NPY in PVN contributes to the establishment of adipose tissue insulin resistance, at least partly via the Y5 Receptor.
Collapse
Affiliation(s)
- Min Long
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China
- Base for Drug Clinical Trial, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China
| | - Jiyin Zhou
- Base for Drug Clinical Trial, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China
| | - Dandan Li
- Base for Drug Clinical Trial, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China
| | - Lu Zheng
- Department of hepatobiliary surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China
| | - Zihui Xu
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China
| | - Shiwen Zhou
- Base for Drug Clinical Trial, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P.R. China
- * E-mail:
| |
Collapse
|
32
|
Chabowska-Kita A, Trabczynska A, Korytko A, Kaczmarek MM, Kozak LP. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes. FASEB J 2015; 29:3238-52. [PMID: 25896784 PMCID: PMC4511198 DOI: 10.1096/fj.15-271395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/31/2015] [Indexed: 01/24/2023]
Abstract
The brown adipocyte phenotype (BAP) in white adipose tissue (WAT) is transiently induced in adult mammals in response to reduced ambient temperature. Since it is unknown whether a cold challenge can permanently induce brown adipocytes (BAs), we reared C57BL/6J (B6) and AxB8/PgJ (AxB8) mice at 17 or 29°C from birth to weaning, to assess the BAP in young and adult mice. Energy balance measurements showed that 17°C reduced fat mass in the preweaning mice by increasing energy expenditure and suppressed diet-induced obesity in adults. Microarray analysis of global gene expression of inguinal fat (ING) from 10-day-old (D) mice indicates that expression at 17°C vs. 29°C was not different. Between 10 and 21 days of age, the BAP was induced coincident with morphologic remodeling of ING and marked changes in expression of neural development genes (e.g., Akap 12 and Ngfr). Analyses of Ucp1 mRNA and protein showed that 17°C transiently increased the BAP in ING from 21D mice; however, BAs were unexpectedly present in mice reared at 29°C. The involution of the BAP in WAT occurred after weaning in mice reared at 23°C. Therefore, the capacity to stimulate thermogenically competent BAs in WAT is set by a temperature-independent, genetically controlled program between birth and weaning.—Chabowska-Kita, A., Trabczynska, A., Korytko, A., Kaczmarek, M. M., Kozak, L. P. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes.
Collapse
Affiliation(s)
| | - Anna Trabczynska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Agnieszka Korytko
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Monika M Kaczmarek
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Leslie P Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
33
|
Konieczna J, Palou M, Sánchez J, Picó C, Palou A. Leptin intake in suckling rats restores altered T3 levels and markers of adipose tissue sympathetic drive and function caused by gestational calorie restriction. Int J Obes (Lond) 2015; 39:959-66. [PMID: 25869480 DOI: 10.1038/ijo.2015.22] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Maternal calorie restriction during gestation in rats has been associated with altered white adipose tissue (WAT) sympathetic innervation and function in offspring. Here, we aimed to investigate whether supplementation with oral leptin (a breast milk component) throughout the lactation period may revert the aforementioned adverse programming effects. METHODS Three groups of male and female rats were studied at the postnatal day 25: the offspring of control dams, the offspring of 20% calorie-restricted dams during pregnancy (CR) and CR rats supplemented with physiological doses of leptin throughout lactation (CR-Leptin). Tyrosine hydroxylase (TH) levels and its immunoreactive area, and mRNA expression levels of lipid metabolism-related genes and of deiodinase iodothyronine type II (Dio2) were determined in WAT. Triiodothyronine (T3) levels were determined in the blood. RESULTS In CR males, leptin treatment restored the decreased TH levels and its immunoreactive area in WAT, and partially normalized expression levels of genes related to lipolysis and fatty acid oxidation (adipose triglyceride lipase, hormone-sensitive lipase, carnitine palmitoyltransferase 1b and peroxisome proliferator-activated receptor gamma coactivator 1-alpha). Leptin treatment also reverted the decreased T3 plasma levels and WAT lipoprotein lipase mRNA levels occurring in CR males and females, and the decreased Dio2 mRNA levels in CR females. CONCLUSIONS Leptin supplementation throughout the lactation period reverts the malprogrammed effects on WAT structure and function induced by undernutrition during pregnancy. These findings support the relevance of the intake of leptin during lactation, bearing clear characteristics of essential nutrient, and provide a strategy to treat and/or prevent the programmed trend to obesity acquired by inadequate fetal nutrition.
Collapse
Affiliation(s)
- J Konieczna
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB) and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - M Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB) and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - J Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB) and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - C Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB) and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - A Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB) and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| |
Collapse
|
34
|
Bartness TJ, Liu Y, Shrestha YB, Ryu V. Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 2014; 35:473-93. [PMID: 24736043 PMCID: PMC4175185 DOI: 10.1016/j.yfrne.2014.04.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/10/2014] [Accepted: 04/04/2014] [Indexed: 01/22/2023]
Abstract
White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS) and its activation is necessary for lipolysis. WAT parasympathetic innervation is not supported. Fully-executed SNS-norepinephrine (NE)-mediated WAT lipolysis is dependent on β-adrenoceptor stimulation ultimately hinging on hormone sensitive lipase and perilipin A phosphorylation. WAT sympathetic drive is appropriately measured electrophysiologically and neurochemically (NE turnover) in non-human animals and this drive is fat pad-specific preventing generalizations among WAT depots and non-WAT organs. Leptin-triggered SNS-mediated lipolysis is weakly supported, whereas insulin or adenosine inhibition of SNS/NE-mediated lipolysis is strongly supported. In addition to lipolysis control, increases or decreases in WAT SNS drive/NE inhibit and stimulate white adipocyte proliferation, respectively. WAT sensory nerves are of spinal-origin and sensitive to local leptin and increases in sympathetic drive, the latter implicating lipolysis. Transsynaptic viral tract tracers revealed WAT central sympathetic and sensory circuits including SNS-sensory feedback loops that may control lipolysis.
Collapse
Affiliation(s)
- Timothy J Bartness
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA.
| | - Yang Liu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA; Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yogendra B Shrestha
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vitaly Ryu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA; Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Meng X, Zheng R, Zhang Y, Qiao M, Liu L, Jing P, Wang L, Liu J, Gao Y. An activated sympathetic nervous system affects white adipocyte differentiation and lipolysis in a rat model of Parkinson's disease. J Neurosci Res 2014; 93:350-60. [PMID: 25257318 DOI: 10.1002/jnr.23488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/13/2014] [Accepted: 09/04/2014] [Indexed: 01/25/2023]
Abstract
Weight loss is an important nonmotor symptom associated with Parkinson's disease (PD). However, the cellular factors responsible for PD-induced weight loss remain unclear. Because the sympathetic nervous system plays an important role in lipid metabolism and fat cell differentiation, this study investigates whether PD-induced changes to this system are associated with weight loss in a rat model of PD. Body weight and food intake were measured in control and PD-model rats. After 10 weeks, retroperitoneal white adipose tissues (RWAT) were removed and weighed. Markers of the sympathetic nervous system were measured in the brainstem dorsal medulla and RWAT. Free fat acids (FFA), triglycerides (TG), adipocyte differentiation-related genes, and lipolysis-related molecules in the RWAT and serum were analyzed. Differences in body weight and food intake were insignificant in PD-model rats and control rats; however, relative RWAT weight and adipocyte surface area were significantly reduced in the PD group. Changes in markers of the sympathetic nervous system were observed in the brainstem dorsal medulla and RWAT of PD rats. Decreased mRNA expression levels of genes involved in adipocyte differentiation, decreased TG levels in RWAT, increased FFA in RWAT, and increased lipolysis-related molecules in RWAT and serum FFA were observed in PD rats. This study demonstrates that degenerated dopaminergic neurons in the nigrostriatal system correlate with increases in sympathetic nervous system function, resulting in lipolysis and inhibition of fat cell differentiation. These factors ultimately result in the decrease of RWAT in PD-model rats.
Collapse
Affiliation(s)
- XiangZhi Meng
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ryu V, Bartness TJ. Short and long sympathetic-sensory feedback loops in white fat. Am J Physiol Regul Integr Comp Physiol 2014; 306:R886-900. [PMID: 24717676 PMCID: PMC4159734 DOI: 10.1152/ajpregu.00060.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/03/2014] [Indexed: 01/06/2023]
Abstract
We previously demonstrated white adipose tissue (WAT) innervation using the established WAT retrograde sympathetic nervous system (SNS)-specific transneuronal viral tract tracer pseudorabies virus (PRV152) and showed its role in the control of lipolysis. Conversely, we demonstrated WAT sensory innervation using the established anterograde sensory system (SS)-specific transneuronal viral tracer, the H129 strain of herpes simplex virus-1, with sensory nerves showing responsiveness with increases in WAT SNS drive. Several brain areas were part of the SNS outflow to and SS inflow from WAT between these studies suggesting SNS-SS feedback loops. Therefore, we injected both PRV152 and H129 into inguinal WAT (IWAT) of Siberian hamsters. Animals were perfused on days 5 and 6 postinoculation after H129 and PRV152 injections, respectively, and brains, spinal cords, sympathetic, and dorsal root ganglia (DRG) were processed for immunohistochemical detection of each virus across the neuroaxis. The presence of H129+PRV152-colocalized neurons (~50%) in the spinal segments innervating IWAT suggested short SNS-SS loops with significant coinfections (>60%) in discrete brain regions, signifying long SNS-SS loops. Notably, the most highly populated sites with the double-infected neurons were the medial part of medial preoptic nucleus, medial preoptic area, hypothalamic paraventricular nucleus, lateral hypothalamus, periaqueductal gray, oral part of the pontine reticular nucleus, and the nucleus of the solitary tract. Collectively, these results strongly indicate the neuroanatomical reality of the central SNS-SS feedback loops with short loops in the spinal cord and long loops in the brain, both likely involved in the control of lipolysis or other WAT pad-specific functions.
Collapse
Affiliation(s)
- Vitaly Ryu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - Timothy J Bartness
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| |
Collapse
|
37
|
Silver R, Kriegsfeld LJ. Circadian rhythms have broad implications for understanding brain and behavior. Eur J Neurosci 2014; 39:1866-80. [PMID: 24799154 DOI: 10.1111/ejn.12593] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 12/28/2022]
Abstract
Circadian rhythms are generated by an endogenously organized timing system that drives daily rhythms in behavior, physiology and metabolism. In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is the locus of a master circadian clock. The SCN is synchronized to environmental changes in the light:dark cycle by direct, monosynaptic innervation via the retino-hypothalamic tract. In turn, the SCN coordinates the rhythmic activities of innumerable subordinate clocks in virtually all bodily tissues and organs. The core molecular clockwork is composed of a transcriptional/post-translational feedback loop in which clock genes and their protein products periodically suppress their own transcription. This primary loop connects to downstream output genes by additional, interlocked transcriptional feedback loops to create tissue-specific 'circadian transcriptomes'. Signals from peripheral tissues inform the SCN of the internal state of the organism and the brain's master clock is modified accordingly. A consequence of this hierarchical, multilevel feedback system is that there are ubiquitous effects of circadian timing on genetic and metabolic responses throughout the body. This overview examines landmark studies in the history of the study of circadian timing system, and highlights our current understanding of the operation of circadian clocks with a focus on topics of interest to the neuroscience community.
Collapse
Affiliation(s)
- Rae Silver
- Department of Psychology, Barnard College, Columbia University, New York, NY, USA; Department of Psychology, Columbia University, Mail Code 5501, 1190 Amsterdam Avenue, New York, NY, 10027, USA; Department of Pathology and Cell Biology, Columbia University Health Sciences, New York, NY, USA
| | | |
Collapse
|
38
|
Zhu Z, Spicer EG, Gavini CK, Goudjo-Ako AJ, Novak CM, Shi H. Enhanced sympathetic activity in mice with brown adipose tissue transplantation (transBATation). Physiol Behav 2014; 125:21-9. [PMID: 24291381 PMCID: PMC3896387 DOI: 10.1016/j.physbeh.2013.11.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/19/2013] [Indexed: 12/22/2022]
Abstract
Brown adipose tissue (BAT) burns calories to produce heat, and is thus relevant to energy balance. Interscapular BAT (IBAT) of donor mice was transplanted into recipient mice (transBATation). To test whether transBATation counteracts high-fat diet (HFD)-induced obesity, some sham-operated and recipient mice were fed a HFD (HFD-sham, HFD-trans) while others remained on a standard chow (chow-sham, chow-trans). HFD-trans mice had lower body weight and fat and greater energy expenditure, but similar caloric intake compared with HFD-sham mice. We hypothesized that HFD-trans mice had elevated sympathetic activity compared with HFD-sham mice, contributing to increased energy expenditure and fuel mobilization. This was supported by findings that HFD-trans mice had greater energy expenditure during a norepinephrine challenge test and higher core temperatures after cold exposure than did HFD-sham mice, implicating enhanced whole-body metabolic response and elevated sympathetic activity. Additionally, transBATation selectively increased sympathetic drive to some, but not all, white adipose tissue depots and skeletal muscles, as well as the endogenous IBAT, heart, and liver. Collectively, transBATation confers resistance to HFD-induced obesity via increase in whole-body sympathetic activity, and differential activation of sympathetic drive to some of the tissues involved in energy expenditure and fuel mobilization.
Collapse
Affiliation(s)
- Zheng Zhu
- Physiology and Neuroscience, Department of Biology, Miami University, OH, United States; Department of Statistics, Miami University, OH, United States
| | - Elizabeth G Spicer
- Physiology and Neuroscience, Department of Biology, Miami University, OH, United States; Department of Nursing, School of Engineering and Applied Sciences, Miami University, OH, United States
| | | | - Ashley J Goudjo-Ako
- Physiology and Neuroscience, Department of Biology, Miami University, OH, United States
| | - Colleen M Novak
- Department of Biological Sciences, Kent State University, OH, United States
| | - Haifei Shi
- Physiology and Neuroscience, Department of Biology, Miami University, OH, United States.
| |
Collapse
|
39
|
Rein S, Manthey S, Zwipp H, Witt A. Distribution of sensory nerve endings around the human sinus tarsi: a cadaver study. J Anat 2014; 224:499-508. [PMID: 24472004 DOI: 10.1111/joa.12157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2013] [Indexed: 01/30/2023] Open
Abstract
The aim of this study was to analyse the pattern of sensory nerve endings and blood vessels around the sinus tarsi. The superficial and deep parts of the fat pads at the inferior extensor retinaculum (IER) as well as the subtalar joint capsule inside the sinus tarsi from 13 cadaver feet were dissected. The distribution of the sensory nerve endings and blood vessels were analysed in the resected specimens as the number per cm(2) after staining with haematoxylin-eosin, S100 protein, low-affinity neurotrophin receptor p75, and protein gene product 9.5 using the classification of Freeman and Wyke. Free nerve endings were the predominant sensory ending (P < 0.001). Ruffini and Golgi-like endings were rarely found and no Pacini corpuscles were seen. Significantly more free nerve endings (P < 0.001) and blood vessels (P = 0.01) were observed in the subtalar joint capsule than in the superficial part of the fat pad at the IER. The deep part of the fat pad at the IER had significantly more blood vessels than the superficial part of the fat pad at the IER (P = 0.012). Significantly more blood vessels than free nerve endings were seen in all three groups (P < 0.001). No significant differences in distribution were seen in terms of right or left side, except for free nerve endings in the superficial part of the fat pad at the IER (P = 0.003). A greater number of free nerve endings correlated with a greater number of blood vessels. The presence of sensory nerve endings between individual fat cells supports the hypothesis that the fat pad has a proprioceptive role monitoring changes and that it is a source of pain in sinus tarsi syndrome due to the abundance of free nerve endings.
Collapse
Affiliation(s)
- Susanne Rein
- Center for Orthopaedic and Trauma Surgery, University Hospital 'Carl Gustav Carus', Dresden, Germany
| | | | | | | |
Collapse
|
40
|
Nguyen NLT, Randall J, Banfield BW, Bartness TJ. Central sympathetic innervations to visceral and subcutaneous white adipose tissue. Am J Physiol Regul Integr Comp Physiol 2014; 306:R375-86. [PMID: 24452544 DOI: 10.1152/ajpregu.00552.2013] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is a link between visceral white adipose tissue (WAT) and the metabolic syndrome in humans, with health improvements produced with small visceral WAT reduction. By contrast, subcutaneous WAT provides a site for lipid storage that is rather innocuous relative to ectopic lipid storage in muscle or liver. The sympathetic nervous system (SNS) is the principal initiator for lipolysis in WAT by mammals. Nothing is known, however, about the central origins of the SNS circuitry innervating the only true visceral WAT in rodents, mesenteric WAT (MWAT), which drains into the hepatic portal vein. We tested whether the central sympathetic circuits to subcutaneous [inguinal WAT (IWAT)] and visceral WAT (MWAT) are separate or shared and whether they possess differential sympathetic drives with food deprivation in Siberian hamsters. Using two isogenic strains of pseudorabies virus, a retrograde transneuronal viral tract tracer within the same hamsters, we found some overlap (∼20-55% doubly infected neurons) between the two circuitries across the neural axis with lesser overlap proximal to the depots (spinal cord and sympathetic chain) and with more neurons involved in the innervation of IWAT than MWAT in some brain regions. Food deprivation triggered a greater sympathetic drive to subcutaneous (IWAT) than visceral (MWAT) depots. Collectively, we demonstrated both shared and separate populations of brain, spinal cord, and sympathetic chain neurons ultimately project to a subcutaneous WAT depot (IWAT) and the only visceral WAT depot in rodents (MWAT). In addition, the lipolytic stimulus of food deprivation only increased SNS drive to subcutaneous fat (IWAT).
Collapse
Affiliation(s)
- Ngoc Ly T Nguyen
- Department of Biology, Obesity Reversal Center, Georgia State University, Atlanta, Georgia
| | | | | | | |
Collapse
|
41
|
Murphy KT, Schwartz GJ, Nguyen NLT, Mendez JM, Ryu V, Bartness TJ. Leptin-sensitive sensory nerves innervate white fat. Am J Physiol Endocrinol Metab 2013; 304:E1338-47. [PMID: 23612999 PMCID: PMC3680695 DOI: 10.1152/ajpendo.00021.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Leptin, the primary white adipose tissue (WAT) adipokine, is thought to convey lipid reserve information to the brain via the circulation. Because WAT responds to environmental/internal signals in a fat pad-specific (FPS) manner, systemic signals such as leptin would fail to communicate such distinctive information. Saturation of brain leptin transport systems also would fail to convey increased lipid levels beyond that point. WAT possesses sensory innervation exemplified by proven sensory-associated peptides in nerves within the tissue and by viral sensory nerve-specific transneuronal tract tracer, H129 strain of herpes simplex virus 1 labeling of dorsal root ganglia (DRG) pseudounipolar neurons, spinal cord and central sensory circuits. Leptin as a paracrine factor activating WAT sensory innervation could supply the brain with FPS information. Therefore, we tested for and found the presence of the long form of the leptin receptor (Ob-Rb) on DRG pseudounipolar neurons immunohistochemically labeled after injections of Fluorogold, a retrograde tract tracer, into inguinal WAT (IWAT). Intra-IWAT leptin injections (300 ng) significantly elevated IWAT nerve spike rate within 5 min and persisted for at least 30 min. Intra-IWAT leptin injections also induced significant c-Fos immunoreactivity (ir), indicating neural activation across DRG pseudounipolar sensory neurons labeled with Fluorogold IWAT injections. Intraperitoneal leptin injection did not increase c-Fos-ir in DRG or the arcuate nucleus, nor did it increase arcuate signal transducer and activator of transcription 3 phosphorylation-ir. Collectively, these results strongly suggest that endogenous leptin secreted from white adipocytes functions as a paracrine factor to activate spinal sensory nerves innervating the tissue.
Collapse
Affiliation(s)
- Keegan T Murphy
- Department of Biology, Obesity Reversal Center, Georgia State University, Atlanta, Georgia; and
| | | | | | | | | | | |
Collapse
|
42
|
Mul JD, O’Duibhir E, Shrestha YB, Koppen A, Vargoviç P, Toonen PW, Zarebidaki E, Kvetnansky R, Kalkhoven E, Cuppen E, Bartness TJ. Pmch-deficiency in rats is associated with normal adipocyte differentiation and lower sympathetic adipose drive. PLoS One 2013; 8:e60214. [PMID: 23555928 PMCID: PMC3608591 DOI: 10.1371/journal.pone.0060214] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 02/22/2013] [Indexed: 02/01/2023] Open
Abstract
The orexigenic neuropeptide melanin-concentrating hormone (MCH), a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS) drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively). MCH binds to MCH receptor 1 (MCH1R), which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number) throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive) in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood.
Collapse
Affiliation(s)
- Joram D. Mul
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eoghan O’Duibhir
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yogendra B. Shrestha
- Department of Biology, Neurobiology and Behavior Program, and Exploring and Testing Strategies for Obesity Reversal Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Arjen Koppen
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter Vargoviç
- Laboratory for Stress Research, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - Pim W. Toonen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eleen Zarebidaki
- Department of Biology, Neurobiology and Behavior Program, and Exploring and Testing Strategies for Obesity Reversal Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Richard Kvetnansky
- Laboratory for Stress Research, Institute of Experimental Endocrinology, Bratislava, Slovakia
| | - Eric Kalkhoven
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Timothy J. Bartness
- Department of Biology, Neurobiology and Behavior Program, and Exploring and Testing Strategies for Obesity Reversal Center, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
43
|
Davis RT, Stabley JN, Dominguez JM, Ramsey MW, McCullough DJ, Lesniewski LA, Delp MD, Behnke BJ. Differential effects of aging and exercise on intra-abdominal adipose arteriolar function and blood flow regulation. J Appl Physiol (1985) 2013; 114:808-15. [PMID: 23349454 DOI: 10.1152/japplphysiol.01358.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adipose tissue (AT), which typically comprises an increased percentage of body mass with advancing age, receives a large proportion of resting cardiac output. During exercise, an old age-associated inability to increase vascular resistance within the intra-abdominal AT may compromise the ability of the cardiovascular system to redistribute blood flow to the active musculature, contributing to the decline in exercise capacity observed in this population. We tested the hypotheses that 1) there would be an elevated perfusion of AT during exercise with old age that was associated with diminished vasoconstrictor responses of adipose-resistance arteries, and 2) chronic exercise training would mitigate the age-associated alterations in AT blood flow and vascular function. Young (6 mo; n = 40) and old (24 mo; n = 28) male Fischer 344 rats were divided into young sedentary (YSed), old sedentary (OSed), young exercise trained (YET), or old exercise trained (OET) groups, where training consisted of 10-12 wk of treadmill exercise. In vivo blood flow at rest and during exercise and in vitro α-adrenergic and myogenic vasoconstrictor responses in resistance arteries from AT were measured in all groups. In response to exercise, there was a directionally opposite change in AT blood flow in the OSed group (≈ 150% increase) and YSed (≈ 55% decrease) vs. resting values. Both α-adrenergic and myogenic vasoconstriction were diminished in OSed vs. YSed AT-resistance arteries. Exercise training resulted in a similar AT hyperemic response between age groups during exercise (YET, 9.9 ± 0.5 ml · min(-1) · 100(-1) g; OET, 8.1 ± 0.9 ml · min(-1) · 100(-1) g) and was associated with enhanced myogenic and α-adrenergic vasoconstriction of AT-resistance arteries from the OET group relative to OSed. These results indicate that there is an inability to increase vascular resistance in AT during exercise with old age, due, in part, to a diminished vasoconstriction of AT arteries. Furthermore, the results indicate that exercise training can augment vasoconstriction of AT arteries and mitigate age-related alterations in the regulation of AT blood flow during exercise.
Collapse
Affiliation(s)
- Robert T Davis
- Department of Applied Physiology and Kinesiology and Center for Exercise Science, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The main parenchymal cells of the adipose organ are adipocytes. White adipocytes store energy, whereas brown adipocytes dissipate energy for thermogenesis. These two cell types with opposing functions can both originate from endothelial cells, and co-exist in the multiple fat depots of the adipose organ - a feature that I propose is crucial for this organ's plasticity. This poster review provides an overview of the adipose organ, describing its anatomy, cytology, physiological function and histopathology in obesity. It also highlights the remarkable plasticity of the adipose organ, explaining theories of adipocyte transdifferentiation during chronic cold exposure, physical exercise or lactation, as well as in obesity. White-to-brown adipocyte transdifferentiation is of particular medical relevance, because animal data indicate that higher amounts of brown adipose tissue are positively associated with resistance to obesity and its co-morbidities, and that 'browning' of the adipose organ curbs these disorders.
Collapse
Affiliation(s)
- Saverio Cinti
- Department of Experimental and Clinical Medicine, Azienda Ospedali Riuniti-University of Ancona (Politecnica delle Marche), 60020 Ancona, Italy.
| |
Collapse
|
45
|
Bi S, Kim YJ, Zheng F. Dorsomedial hypothalamic NPY and energy balance control. Neuropeptides 2012; 46:309-14. [PMID: 23083763 PMCID: PMC3508095 DOI: 10.1016/j.npep.2012.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/04/2012] [Accepted: 09/11/2012] [Indexed: 12/15/2022]
Abstract
Neuropeptide Y (NPY) is a potent hypothalamic orexigenic peptide. Within the hypothalamus, Npy is primarily expressed in the arcuate nucleus (ARC) and the dorsomedial hypothalamus (DMH). While the actions of ARC NPY in energy balance control have been well studied, a role for DMH NPY is still being unraveled. In contrast to ARC NPY that serves as one of downstream mediators of actions of leptin in maintaining energy homeostasis, DMH NPY is not under the control of leptin. Npy gene expression in the DMH is regulated by brain cholecystokinin (CCK) and other yet to be identified molecules. The findings of DMH NPY overexpression or induction in animals with increased energy demands and in certain rodent models of obesity implicate a role for DMH NPY in maintaining energy homeostasis. In support of this view, adeno-associated virus (AAV)-mediated overexpression of NPY in the DMH causes increases in food intake and body weight and exacerbates high-fat diet-induced hyperphagia and obesity. Knockdown of NPY in the DMH via AAV-mediated RNAi ameliorates hyperphagia, obesity and glucose intolerance of Otsuka Long-Evans Tokushima Fatty rats in which DMH NPY overexpression has been proposed to play a causal role. NPY knockdown in the DMH also prevents high-fat diet-induced hyperphagia, obesity and impaired glucose homeostasis. A detailed examination of actions of DMH NPY reveals that DMH NPY specifically affects nocturnal meal size and produces an inhibitory action on within meal satiety signals. In addition, DMH NPY modulates energy expenditure likely through affecting brown adipocyte formation and thermogenic activity. Overall, the recent findings provide clear evidence demonstrating critical roles for DMH NPY in energy balance control, and also imply a potential role for DMH NPY in maintaining glucose homeostasis.
Collapse
Affiliation(s)
- Sheng Bi
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
46
|
Picó C, Palou M, Priego T, Sánchez J, Palou A. Metabolic programming of obesity by energy restriction during the perinatal period: different outcomes depending on gender and period, type and severity of restriction. Front Physiol 2012. [PMID: 23189059 PMCID: PMC3504314 DOI: 10.3389/fphys.2012.00436] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epidemiological studies in humans and controlled intervention studies in animals have shown that nutritional programming in early periods of life is a phenomenon that affects metabolic and physiological functions throughout life. The phenotypes of health or disease are hence the result of the interaction between genetic and environmental factors, starting right from conception. In this sense, gestation and lactation are disclosed as critical periods. Continuous food restriction during these stages may lead to permanent adaptations with lasting effects on the metabolism of the offspring and may influence the propensity to develop different chronic diseases associated with obesity. However, the different outcomes of these adaptations on later health may depend on factors such as the type, duration, period, and severity of the exposure to energy restriction conditions, and they are, in part, gender specific. A better understanding of the factors and mechanisms involved in metabolic programming, and their effects, may contribute significantly to the prevention of obesity, which is considered to be one of the major health concerns of our time. Here, the different outcomes of maternal food restriction during gestation and lactation in the metabolic health of offspring, as well as potential mechanisms underlying these effects are reviewed.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands, and CIBER de Fisiopatología de la Obesidad y Nutrición Spain
| | | | | | | | | |
Collapse
|
47
|
Sassu ED, McDermott JE, Keys BJ, Esmaeili M, Keene AC, Birnbaum MJ, DiAngelo JR. Mio/dChREBP coordinately increases fat mass by regulating lipid synthesis and feeding behavior in Drosophila. Biochem Biophys Res Commun 2012; 426:43-8. [PMID: 22910416 DOI: 10.1016/j.bbrc.2012.08.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/07/2012] [Indexed: 01/23/2023]
Abstract
During nutrient excess, triglycerides are synthesized and stored to provide energy during times of famine. The presence of high glucose leads to the activation of carbohydrate response element binding protein (ChREBP), a transcription factor that induces the expression of a number of glycolytic and lipogenic enzymes. ChREBP is expressed in major metabolic tissues and while we have a basic understanding of ChREBP function in liver, in vivo genetic systems to study the function of ChREBP in other tissues are lacking. In this study, we characterized the role of the Drosophila homolog of ChREBP, Mlx interactor (Mio), in controlling fat accumulation in larvae and adult flies. In Mio mutants, high sugar-induced lipogenic enzyme mRNA expression is blunted and lowering Mio levels specifically in the fat body using RNA interference leads to a lean phenotype. A lean phenotype is also observed when the gene bigmax, the fly homolog of ChREBP's binding partner Mlx, is decreased in the larval fat body. Interestingly, depleting Mio in the fat body results in decreased feeding providing a potential cause of the lowered triglycerides observed in these animals. However, Mio does not seem to function as a general regulator of hunger-induced behaviors as decreasing fat body Mio levels has no effect on sleep under fed or starved conditions. Together, these data implicate a role for Mio in controlling fat accumulation in Drosophila and suggests that it may act as a nutrient sensor in the fat body to coordinate feeding behavior with nutrient availability.
Collapse
Affiliation(s)
- Eric D Sassu
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Patterson-Buckendahl P, Sowinska A, Yee S, Patel D, Pagkalinawan S, Shahid M, Shah A, Franz C, Benjamin DE, Pohorecky LA. Decreased sensory responses in osteocalcin null mutant mice imply neuropeptide function. Cell Mol Neurobiol 2012; 32:879-89. [PMID: 22350212 DOI: 10.1007/s10571-012-9810-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/23/2012] [Indexed: 11/25/2022]
Abstract
Osteocalcin, the most abundant member of the family of extracellular mineral binding gamma-carboxyglutamic acid proteins is synthesized primarily by osteoblasts. Its affinity for calcium ions is believed to limit bone mineralization. Several of the numerous hormones that regulate synthesis of osteocalcin, including glucocorticoids and parathyroid hormone, are also affected by stressful stimuli that require energy for an appropriate response. Based on our observations of OC responding to stressful sensory stimuli, the expression of OC in mouse and rat sensory ganglia was confirmed. It was thus hypothesized that the behavioral responses of the OC knockout mouse to stressful sensory stimuli would be abnormal. To test this hypothesis, behaviors related to sensory aspects of the stress response were quantified in nine groups of mice, aged 4-14 months, comparing knockout with their wild-type counterparts in six distinctly different behavioral tests. Resulting data indicated the following statistically significant differences: open field grooming frequency following saline injection, wild-type > knockout; paw stimulation with Von Frey fibers, knockout < wild-type; balance beam, knockout mobility < WT; thermal sensitivity to heat (tail flick), knockout < wild-type; and cold, knockout < wild-type. Insignificant differences in hanging wire test indicate that these responses are unrelated to reduced muscle strength. Each of these disparate environmental stimuli provided data indicating alterations of responses in knockout mice that suggest participation of osteocalcin in transmission of information about those sensory stimuli.
Collapse
|
49
|
Kvetnansky R, Ukropec J, Laukova M, Manz B, Pacak K, Vargovic P. Stress stimulates production of catecholamines in rat adipocytes. Cell Mol Neurobiol 2012; 32:801-13. [PMID: 22402834 PMCID: PMC3419009 DOI: 10.1007/s10571-012-9822-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/17/2012] [Indexed: 11/28/2022]
Abstract
The sympathoadrenal system is the main source of catecholamines (CAs) in adipose tissues and therefore plays the key role in the regulation of adipose tissue metabolism. We recently reported existence of an alternative CA-producing system directly in adipose tissue cells, and here we investigated effect of various stressors-physical (cold) and emotional stress (immobilization) on dynamics of this system. Acute or chronic cold exposure increased intracellular norepinephrine (NE) and epinephrine (EPI) concentration in isolated rat mesenteric adipocytes. Gene expression of CA biosynthetic enzymes did not change in adipocytes but was increased in stromal vascular fraction (SVF) after 28 day cold. Exposure of rats to a single IMO stress caused increases in NE and EPI levels, and also gene expression of CA biosynthetic enzymes in adipocytes. In SVF changes were similar but more pronounced. Animals adapted to a long-term cold exposure (28 days, 4°C) did not show those responses found after a single IMO stress either in adipocytes or SVF. Our data indicate that gene machinery accommodated in adipocytes, which is able to synthesize NE and EPI de novo, is significantly activated by stress. Cold-adapted animals keep their adaptation even after an exposure to a novel stressor. These findings suggest the functionality of CAs produced endogenously in adipocytes. Taken together, the newly discovered CA synthesizing system in adipocytes is activated in stress situations and might significantly contribute to regulation of lipolysis and other metabolic or thermogenetic processes.
Collapse
Affiliation(s)
- R Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
50
|
Speaker KJ, Fleshner M. Interleukin-1 beta: a potential link between stress and the development of visceral obesity. BMC PHYSIOLOGY 2012; 12:8. [PMID: 22738239 PMCID: PMC3404929 DOI: 10.1186/1472-6793-12-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 06/27/2012] [Indexed: 12/22/2022]
Abstract
Background A disproportionate amount of body fat within the abdominal cavity, otherwise known as visceral obesity, best predicts the negative health outcomes associated with high levels body fat. Growing evidence suggests that repeated activation of the stress response can favor visceral fat deposition and that visceral obesity may induce low-grade, systemic inflammation which is etiologically linked to the pathogenesis of obesity related diseases such as cardiovascular disease and type 2 diabetes. While the obesity epidemic has fueled considerable interest in these obesity-related inflammatory diseases, surprisingly little research is currently focused on understanding the functions of inflammatory proteins in healthy, non-obese white adipose tissue (WAT) and their possible role in modulating stress-induced shifts in body fat distribution. Hypothesis The current review presents evidence in support the novel hypothesis that stress-evoked interleukin-1 beta (IL-1β) signaling within subcutaneous adipose tissue, when repeatedly induced, contributes toward the development of visceral obesity. It is suggested that because acute stressor exposure differentially increases IL-1β levels within subcutaneous adipose relative to visceral adipose tissue in otherwise healthy, non-obese rats, repeated induction of this response may impair the ability of subcutaneous adipose tissue to uptake energy substrates, synthesize and retain triglycerides, and/or adapt to positive energy balance via hyperplasia. Consequently, circulating energy substrates may be disproportionately shunted to visceral adipose tissue for storage, thus driving the development of visceral obesity. Conclusions This review establishes the following key points: 1) body fat distribution outweighs the importance of total body fat when predicting obesity-related disease risk; 2) repeated exposure to stress can drive the development of visceral obesity independent of changes in body weight; 3) because of the heterogeneity of WAT composition and function, an accurate understanding of WAT responses requires sampling multiple WAT depots; 4) acute, non-pathogenic stressor exposure increases WAT IL-1β concentrations in a depot specific manner suggesting an adaptive, metabolic role for this cytokine; however, when repeated, stress-induced IL-1β in non-visceral WAT may result in functional impairments that drive the development of stress-induced visceral obesity.
Collapse
Affiliation(s)
- Kristin J Speaker
- Department of Integrative Physiology, University of Colorado at Boulder, 80309, USA
| | | |
Collapse
|