1
|
Jardine DL, Pointon R, Frampton C, Wright I, Buckenham T, Stewart J. Mesenteric blood flow and muscle sympathetic nerve activity during vasovagal syncope. Clin Auton Res 2024:10.1007/s10286-024-01068-7. [PMID: 39417948 DOI: 10.1007/s10286-024-01068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Vasovagal syncope is thought to be mediated by a progressive fall in cardiac output secondary to venous pooling of blood in the splanchnic circulation. How and when this occurs before syncope has not been determined. METHODS A total of 20 patients who became hypotensive during head-up tilt (age 40.9 ± 3.4 years; 10 females) were divided into two groups-the glyceryl trinitrate (GTN) group (n = 12) and the vasovagal syncope (VVS) group (n = 8) - on the basis of whether or not nitroglycerine provocation was required. They were compared with a control group (age 38.6 ± 3.3; 8 females; n = 13). Hemodynamics, including superior mesenteric artery blood flow (SMABF) and muscle sympathetic nerve activity (MSNA) were recorded continuously during early tilt, presyncope and recovery. We used pixel-weighting to calculate average velocity from the pulsed Doppler velocity envelope. RESULTS During baseline and early tilt, resistance to mesenteric blood flow was lower in the VVS group: 0.30 ± 0.02 to 0.30 ± 0.02 mmHg/ml/min versus controls 0.30 ± 0.03 to 0.38 ± 0.04 mmHg/ml/min (p = 0.05). During presyncope, as blood pressure and stroke volume gradually fell, SMABF was higher in the VVS group, falling from 370 ± 46 to 248 ± 35 ml/min, versus controls, falling from 342 ± 51 to 233 ± 19 (p = 0.03). At this time, MSNA was lower in the VVS group than controls: 39 ± 4 to 34 ± 3 bursts/min versus 45 ± 2 to 48 ± 3 (p = 0.001). CONCLUSION During presyncope, increased splanchnic blood flow may pool more blood in capacitance vessels resulting in decreased venous return and cardiac output. This may be secondary to decreased vasoconstrictor sympathetic activity.
Collapse
Affiliation(s)
- D L Jardine
- Department of General Medicine, Christchurch Hospital, Christchurch, New Zealand.
- Department of Medicine, Christchurch School of Medicine, University of Otago, Dunedin, New Zealand.
| | - R Pointon
- Department of Medical Physics, Christchurch Hospital, Christchurch, New Zealand
| | - C Frampton
- Department of Medicine, Christchurch School of Medicine, University of Otago, Dunedin, New Zealand
| | - I Wright
- Department of Radiology, Christchurch Hospital, Christchurch, New Zealand
| | - T Buckenham
- Department of Radiology, Christchurch Hospital, Christchurch, New Zealand
| | - J Stewart
- Department of Paediatrics, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
2
|
Wang T, Teng B, Yao DR, Gao W, Oka Y. Organ-specific Sympathetic Innervation Defines Visceral Functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613934. [PMID: 39345605 PMCID: PMC11430017 DOI: 10.1101/2024.09.19.613934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The autonomic nervous system orchestrates the brain and body functions through the sympathetic and parasympathetic pathways. However, our understanding of the autonomic system, especially the sympathetic system, at the cellular and molecular levels is severely limited. Here, we show unique topological representations of individual visceral organs in the major abdominal sympathetic ganglion complex. Using multi-modal transcriptomic analyses, we identified distinct sympathetic populations that are both molecularly and spatially separable in the celiac-superior mesenteric ganglia (CG-SMG). Notably, individual CG-SMG populations exhibit selective and mutually exclusive axonal projections to visceral organs, targeting either the gastrointestinal (GI) tract or secretory areas including the pancreas and bile tract. This combinatorial innervation pattern suggests functional segregation between different CG-SMG populations. Indeed, our neural perturbation experiments demonstrated that one class of neurons selectively regulates GI food transit. Another class of neurons controls digestion and glucagon secretion independent of gut motility. These results reveal the molecularly diverse sympathetic system and suggest modular regulations of visceral organ functions through distinct sympathetic populations.
Collapse
|
3
|
Ernsberger U, Rohrer H. The sympathetic nervous system arose in the earliest vertebrates. Nature 2024; 629:46-48. [PMID: 38632426 DOI: 10.1038/d41586-024-01017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
|
4
|
Mannozzi J, Massoud L, Stavres J, Al-Hassan MH, O’Leary DS. Altered Autonomic Function in Metabolic Syndrome: Interactive Effects of Multiple Components. J Clin Med 2024; 13:895. [PMID: 38337589 PMCID: PMC10856260 DOI: 10.3390/jcm13030895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Metabolic syndrome (MetS) describes a set of disorders that collectively influence cardiovascular health, and includes hypertension, obesity, insulin resistance, diabetes, and dyslipidemia. All these components (hypertension, obesity, dyslipidemia, and prediabetes/diabetes) have been shown to modify autonomic function. The major autonomic dysfunction that has been documented with each of these components is in the control of sympathetic outflow to the heart and periphery at rest and during exercise through modulation of the arterial baroreflex and the muscle metaboreflex. Many studies have described MetS components in singularity or in combination with the other major components of metabolic syndrome. However, many studies lack the capability to study all the factors of metabolic syndrome in one model or have not focused on studying the effects of how each component as it arises influences overall autonomic function. The goal of this review is to describe the current understanding of major aspects of metabolic syndrome that most likely contribute to the consequent/associated autonomic alterations during exercise and discuss their effects, as well as bring light to alternative mechanisms of study.
Collapse
Affiliation(s)
- Joseph Mannozzi
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48001, USA
| | - Louis Massoud
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48001, USA
| | - Jon Stavres
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | | - Donal S. O’Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48001, USA
| |
Collapse
|
5
|
Coovadia Y, Schwende BK, Taylor CE, Usselman CW. Limb-specific muscle sympathetic nerve activity responses to the cold pressor test. Auton Neurosci 2024; 251:103146. [PMID: 38181550 DOI: 10.1016/j.autneu.2023.103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Recent studies have demonstrated that muscle sympathetic nerve activity (MSNA) responses to isometric exercise differs between active and inactive limbs. Whether limb-dependent responses are characteristic of responses to the cold pressor test (CPT) remains to be established. Therefore, we tested the hypothesis that CPT-induced MSNA responses differ between affected and unaffected limbs such that MSNA in the affected lower limb is greater than MSNA responses in the contralateral lower limb and the upper limb. Integrated peroneal MSNA (microneurography) was measured in young healthy individuals (n = 10) at rest and during three separate 3-min CPTs: the microneurography foot, opposite foot, and opposite hand. Peak MSNA responses were extracted for further analysis, as well as corresponding hemodynamic outcomes including mean arterial pressure (MAP; Finometer). MSNA responses were greater when the microneurography foot was immersed in ice water than when the opposite foot was immersed (38 ± 18 vs 28 ± 16 bursts/100hb: P < 0.01). MSNA responses when the opposite hand was immersed were greater than both the microneurography foot (46 ± 22 vs 38 ± 18 bursts/100hb: P < 0.01) and opposite foot (46 ± 22 vs 28 ± 16 bursts/100hb: P ≤0.01). Likewise, MAP responses were greater during the hand CPT than the microneurography foot (99 ± 9 vs 96 ± 8 mmHg: P < 0.01) and opposite foot CPT (99 ± 9 vs 96 ± 9 mmHg: P < 0.01). These data indicate that (a) upper limbs and (b) immersed limbs elicit greater MSNA responses to the CPT than lower and/or non-immersed limbs.
Collapse
Affiliation(s)
- Yasmine Coovadia
- Cardiovascular Health and Autonomic Regulation Laboratory, McGill University, Montreal, Quebec, Canada
| | - Brittany K Schwende
- Cardiovascular Health and Autonomic Regulation Laboratory, McGill University, Montreal, Quebec, Canada
| | - Chloe E Taylor
- School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| | - Charlotte W Usselman
- Cardiovascular Health and Autonomic Regulation Laboratory, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Xu Z, Anai R, Hirano H, Soh Z, Tsuji T. Noninvasive characterization of peripheral sympathetic activation across sensory stimuli using a peripheral arterial stiffness index. Front Physiol 2024; 14:1294239. [PMID: 38260092 PMCID: PMC10801023 DOI: 10.3389/fphys.2023.1294239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: The peripheral arterial stiffness index has been proposed and validated as a noninvasive measure quantifying stimulus intensity based on amplitude changes induced by sympathetic innervation of vascular tone. However, its temporal response characteristics remain unclear, thus hindering continuous and accurate monitoring of the dynamic process of sympathetic activation. This paper presents a study aimed at modeling the transient response of the index across sensory stimuli to characterize the corresponding peripheral sympathetic activation. Methods: The index was measured using a continuous arterial pressure monitor and a pulse oximeter during experiments with local pain and local cooling stimuli designed to elicit different patterns of sympathetic activation. The corresponding response of the index was modeled to clarify its transient response characteristics across stimuli. Results: The constructed transfer function accurately depicted the transient response of the index to local pain and local cooling stimuli (Fit percentage: 78.4% ± 11.00% and 79.92% ± 8.79%). Differences in dead time (1.17 ± 0.67 and 0.99 ± 0.56 s, p = 0.082), peak time (2.89 ± 0.81 and 2.64 ± 0.68 s, p = 0.006), and rise time (1.81 ± 0.50 and 1.65 ± 0.48 s, p = 0.020) revealed different response patterns of the index across stimuli. The index also accurately characterized similar vasomotor velocities at different normalized peak amplitudes (0.19 ± 0.16 and 0.16 ± 0.19 a.u., p = 0.007). Discussion: Our findings flesh out the characterization of peripheral arterial stiffness index responses to different sensory stimuli and demonstrate its validity in characterizing peripheral sympathetic activation. This study valorizes a noninvasive method to characterize peripheral sympathetic activation, with the potential to use this index to continuously and accurately track sympathetic activators.
Collapse
Affiliation(s)
- Ziqiang Xu
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Reiji Anai
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Harutoyo Hirano
- Department of Medical Equipment Engineering, Clinical Collaboration Unit, School of Medical Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Zu Soh
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Toshio Tsuji
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Ritz T. Putting back respiration into respiratory sinus arrhythmia or high-frequency heart rate variability: Implications for interpretation, respiratory rhythmicity, and health. Biol Psychol 2024; 185:108728. [PMID: 38092221 DOI: 10.1016/j.biopsycho.2023.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Research on respiratory sinus arrhythmia, or high-frequency heart rate variability (its frequency-domain equivalent), has been popular in psychology and the behavioral sciences for some time. It is typically interpreted as an indicator of cardiac vagal activity. However, as research has shown for decades, the respiratory pattern can influence the amplitude of these noninvasive measures substantially, without necessarily reflecting changes in tonic cardiac vagal activity. Although changes in respiration are systematically associated with experiential and behavioral states, this potential confound in the interpretation of RSA, or HF-HRV, is rarely considered. Interpretations of within-individual changes in these parameters are therefore only conclusive if undertaken relative to the breathing pattern. The interpretation of absolute levels of these parameters between individuals is additionally burdened with the problem of residual inspiratory cardiac vagal activity in humans. Furthermore, multiple demographic, anthropometric, life-style, health, and medication variables can act as relevant third variables that might explain associations of RSA or HF-HRV with experiential and behavioral variables. Because vagal activity measured by these parameters only represents the portion of cardiac vagal outflow that is modulated by the respiratory rhythm, alternative interpretations beyond cardiac vagal activity should be considered. Accumulating research shows that activity of multiple populations of neurons in the brain and the periphery, and with that organ activity and function, are modulated rhythmically by respiratory activity. Thus, observable health benefits ascribed to the cardiac vagal system through RSA or HF-HRV may actually reflect beneficial effects of respiratory modulation. Respiratory rhythmicity may ultimately provide the mechanism that integrates central, autonomic, and visceral activities.
Collapse
Affiliation(s)
- Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, TX, USA.
| |
Collapse
|
8
|
Zsombok A, Desmoulins LD, Derbenev AV. Sympathetic circuits regulating hepatic glucose metabolism: where we stand. Physiol Rev 2024; 104:85-101. [PMID: 37440208 PMCID: PMC11281813 DOI: 10.1152/physrev.00005.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023] Open
Abstract
The prevalence of metabolic disorders, including type 2 diabetes mellitus, continues to increase worldwide. Although newer and more advanced therapies are available, current treatments are still inadequate and the search for solutions remains. The regulation of energy homeostasis, including glucose metabolism, involves an exchange of information between the nervous systems and peripheral organs and tissues; therefore, developing treatments to alter central and/or peripheral neural pathways could be an alternative solution to modulate whole body metabolism. Liver glucose production and storage are major mechanisms controlling glycemia, and the autonomic nervous system plays an important role in the regulation of hepatic functions. Autonomic nervous system imbalance contributes to excessive hepatic glucose production and thus to the development and progression of type 2 diabetes mellitus. At cellular levels, change in neuronal activity is one of the underlying mechanisms of autonomic imbalance; therefore, modulation of the excitability of neurons involved in autonomic outflow governance has the potential to improve glycemic status. Tissue-specific subsets of preautonomic neurons differentially control autonomic outflow; therefore, detailed information about neural circuits and properties of liver-related neurons is necessary for the development of strategies to regulate liver functions via the autonomic nerves. This review provides an overview of our current understanding of the hypothalamus-ventral brainstem-liver pathway involved in the sympathetic regulation of the liver, outlines strategies to identify organ-related neurons, and summarizes neuronal plasticity during diabetic conditions with a particular focus on liver-related neurons in the paraventricular nucleus.
Collapse
Affiliation(s)
- Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
9
|
Hartmann S, Yasmeen S, Jacobs BM, Denaxas S, Pirmohamed M, Gamazon ER, Caulfield MJ, Hemingway H, Pietzner M, Langenberg C. ADRA2A and IRX1 are putative risk genes for Raynaud's phenomenon. Nat Commun 2023; 14:6156. [PMID: 37828025 PMCID: PMC10570309 DOI: 10.1038/s41467-023-41876-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Raynaud's phenomenon (RP) is a common vasospastic disorder that causes severe pain and ulcers, but despite its high reported heritability, no causal genes have been robustly identified. We conducted a genome-wide association study including 5,147 RP cases and 439,294 controls, based on diagnoses from electronic health records, and identified three unreported genomic regions associated with the risk of RP (p < 5 × 10-8). We prioritized ADRA2A (rs7090046, odds ratio (OR) per allele: 1.26; 95%-CI: 1.20-1.31; p < 9.6 × 10-27) and IRX1 (rs12653958, OR: 1.17; 95%-CI: 1.12-1.22, p < 4.8 × 10-13) as candidate causal genes through integration of gene expression in disease relevant tissues. We further identified a likely causal detrimental effect of low fasting glucose levels on RP risk (rG = -0.21; p-value = 2.3 × 10-3), and systematically highlighted drug repurposing opportunities, like the antidepressant mirtazapine. Our results provide the first robust evidence for a strong genetic contribution to RP and highlight a so far underrated role of α2A-adrenoreceptor signalling, encoded at ADRA2A, as a possible mechanism for hypersensitivity to catecholamine-induced vasospasms.
Collapse
Affiliation(s)
- Sylvia Hartmann
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Summaira Yasmeen
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Benjamin M Jacobs
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Spiros Denaxas
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
- British Heart Foundation Data Science Centre, London, UK
- National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, The Wolfson Centre for Personalised Medicine, University Liverpool, Liverpool, UK
| | - Eric R Gamazon
- Division of Genetic Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mark J Caulfield
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Harry Hemingway
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
- National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Maik Pietzner
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
| | - Claudia Langenberg
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
10
|
Campeau S, McNulty C, Stanley JT, Gerber AN, Sasse SK, Dowell RD. Determination of steady-state transcriptome modifications associated with repeated homotypic stress in the rat rostral posterior hypothalamic region. Front Neurosci 2023; 17:1173699. [PMID: 37360161 PMCID: PMC10288150 DOI: 10.3389/fnins.2023.1173699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Chronic stress is epidemiologically correlated with physical and psychiatric disorders. Whereas many animal models of chronic stress induce symptoms of psychopathology, repeated homotypic stressors to moderate intensity stimuli typically reduce stress-related responses with fewer, if any, pathological symptoms. Recent results indicate that the rostral posterior hypothalamic (rPH) region is a significant component of the brain circuitry underlying response reductions (habituation) associated with repeated homotypic stress. To test whether posterior hypothalamic transcriptional regulation associates with the neuroendocrine modifications induced by repeated homotypic stress, RNA-seq was performed in the rPH dissected from adult male rats that experienced either no stress, 1, 3, or 7 stressful loud noise exposures. Plasma samples displayed reliable increases of corticosterone in all stressed groups, with the smallest increase in the group exposed to 7 loud noises, indicating significant habituation compared to the other stressed groups. While few or no differentially expressed genes were detected 24-h after one or three loud noise exposures, relatively large numbers of transcripts were differentially expressed between the group exposed to 7 loud noises when compared to the control or 3-stress groups, respectively, which correlated with the corticosterone response habituation observed. Gene ontology analyses indicated multiple significant functional terms related to neuron differentiation, neural membrane potential, pre- and post-synaptic elements, chemical synaptic transmission, vesicles, axon guidance and projection, glutamatergic and GABAergic neurotransmission. Some of the differentially expressed genes (Myt1l, Zmat4, Dlx6, Csrnp3) encode transcription factors that were independently predicted by transcription factor enrichment analysis to target other differentially regulated genes in this study. A similar experiment employing in situ hybridization histochemical analysis in additional animals validated the direction of change of the 5 transcripts investigated (Camk4, Gabrb2, Gad1, Grin2a and Slc32a) with a high level of temporal and regional specificity for the rPH. In aggregate, the results suggest that distinct patterns of gene regulation are obtained in response to a repeated homotypic stress regimen; they also point to a significant reorganization of the rPH region that may critically contribute to the phenotypic modifications associated with repeated homotypic stress habituation.
Collapse
Affiliation(s)
- Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
| | - Connor McNulty
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States
| | - Jacob T. Stanley
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States
- BioFrontiers Institute, University of Colorado, Boulder, CO, United States
| | - Anthony N. Gerber
- Department of Medicine, National Jewish Health, Denver, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Sarah K. Sasse
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Robin D. Dowell
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States
- BioFrontiers Institute, University of Colorado, Boulder, CO, United States
- Department of Computer Science, University of Colorado, Boulder, CO, United States
| |
Collapse
|
11
|
You Z, Liu B, Qi H. Neuronal regulation of B-cell immunity: Anticipatory immune posturing? Neuron 2022; 110:3582-3596. [PMID: 36327899 DOI: 10.1016/j.neuron.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022]
Abstract
The brain may sense, evaluate, modulate, and intervene in the operation of immune system, which would otherwise function autonomously in defense against pathogens. Antibody-mediated immunity is one arm of adaptive immunity that may achieve sterilizing protection against infection. Lymphoid organs are densely innervated. Immune cells supporting the antigen-specific antibody response express receptors for neurotransmitters and glucocorticoid hormones, and they are subjected to collective regulation by the neuroendocrine and the autonomic nervous system. Emerging evidence reveals a brain-spleen axis that regulates antigen-specific B cell responses and antibody-mediated immunity. In this article, we provide a synthesis of those studies as pertinent to neuronal regulation of B cell responses in secondary lymphoid organs. We propose the concept of defensive immune posturing as a brain-initiated top-down reaction in anticipation of potential tissue injury that requires immune protection.
Collapse
Affiliation(s)
- Zhiwei You
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Katayama PL, Leirão IP, Kanashiro A, Luiz JPM, Cunha FQ, Navegantes LCC, Menani JV, Zoccal DB, Colombari DSA, Colombari E. The carotid body detects circulating tumor necrosis factor-alpha to activate a sympathetic anti-inflammatory reflex. Brain Behav Immun 2022; 102:370-386. [PMID: 35339628 DOI: 10.1016/j.bbi.2022.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Recent evidence has suggested that the carotid bodies might act as immunological sensors, detecting pro-inflammatory mediators and signalling to the central nervous system, which, in turn, orchestrates autonomic responses. Here, we confirmed that the TNF-α receptor type I is expressed in the carotid bodies of rats. The systemic administration of TNF-α increased carotid body afferent discharge and activated glutamatergic neurons in the nucleus tractus solitarius (NTS) that project to the rostral ventrolateral medulla (RVLM), where many pre-sympathetic neurons reside. The activation of these neurons was accompanied by an increase in splanchnic sympathetic nerve activity. Carotid body ablation blunted the TNF-α-induced activation of RVLM-projecting NTS neurons and the increase in splanchnic sympathetic nerve activity. Finally, plasma and spleen levels of cytokines after TNF-α administration were higher in rats subjected to either carotid body ablation or splanchnic sympathetic denervation. Collectively, our findings indicate that the carotid body detects circulating TNF-α to activate a counteracting sympathetic anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Pedro L Katayama
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil.
| | - Isabela P Leirão
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João P M Luiz
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz C C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jose V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil.
| |
Collapse
|
13
|
Miki K, Ikegame S, Yoshimoto M. Regional Differences in Sympathetic Nerve Activity Are Generated by Multiple Arterial Baroreflex Loops Arranged in Parallel. Front Physiol 2022; 13:858654. [PMID: 35444564 PMCID: PMC9014290 DOI: 10.3389/fphys.2022.858654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, by evaluating the responses during freezing, rapid eye movement (REM) sleep, and treadmill exercise, we discuss how multiple baroreflex loops arranged in parallel act on different organs to modulate sympathetic nerve activity (SNA) in a region-specific and coordinated manner throughout the body. During freezing behaviors, arterial pressure (AP) remains unchanged, heart rate (HR) persistently decreases, renal SNA (RSNA) increases, and lumbar SNA (LSNA) remains unchanged. The baroreflex curve for RSNA shifts upward; that for LSNA remains unchanged; and that for HR shifts to the left. These region-specific changes in baroreflex curves are responsible for the region-specific changes in RSNA, LSNA, and HR during freezing. The decreased HR could allow the heart to conserve energy, which is offset by the increased RSNA caused by decreased vascular conductance, resulting in an unchanged AP. In contrast, the unchanged LSNA leaves the muscles in readiness for fight or flight. During REM sleep, AP increases, RSNA and HR decrease, while LSNA is elevated. The baroreflex curve for RSNA during REM sleep is vertically compressed in comparison with that during non-REM sleep. Cerebral blood flow is elevated while cardiac output is decreased during REM sleep. To address this situation, the brain activates the LSNA selectively, causing muscle vasoconstriction, which overcomes vasodilation of the kidneys as a result of the decreased RSNA and cardiac output. Accordingly, AP can be maintained during REM sleep. During treadmill exercise, AP, HR, and RSNA increase simultaneously. The baroreflex curve for RSNA shifts right-upward with the increased feedback gain, allowing maintenance of a stable AP with significant fluctuations in the vascular conductance of working muscles. Thus, the central nervous system may employ behavior-specific scenarios for modulating baroreflex loops for differential control of SNA, changing the SNA in a region-specific and coordinated manner, and then optimizing circulatory regulation corresponding to different behaviors.
Collapse
Affiliation(s)
- Kenju Miki
- Autonomic Physiology Laboratory, Faculty of Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, Japan
| | - Shizuka Ikegame
- Autonomic Physiology Laboratory, Faculty of Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, Japan
| | - Misa Yoshimoto
- Autonomic Physiology Laboratory, Faculty of Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, Japan
| |
Collapse
|
14
|
Souza GMPR, Stornetta RL, Stornetta DS, Guyenet PG, Abbott SBG. Adrenergic C1 neurons monitor arterial blood pressure and determine the sympathetic response to hemorrhage. Cell Rep 2022; 38:110480. [PMID: 35263582 DOI: 10.1016/j.celrep.2022.110480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/16/2021] [Accepted: 02/11/2022] [Indexed: 11/03/2022] Open
Abstract
Hemorrhage initially triggers a rise in sympathetic nerve activity (SNA) that maintains blood pressure (BP); however, SNA is suppressed following severe blood loss causing hypotension. We hypothesized that adrenergic C1 neurons in the rostral ventrolateral medulla (C1RVLM) drive the increase in SNA during compensated hemorrhage, and a reduction in C1RVLM contributes to hypotension during decompensated hemorrhage. Using fiber photometry, we demonstrate that C1RVLM activity increases during compensated hemorrhage and falls at the onset of decompensated hemorrhage. Using optogenetics combined with direct recordings of SNA, we show that C1RVLM activation mediates the rise in SNA and contributes to BP stability during compensated hemorrhage, whereas a suppression of C1RVLM activity is associated with cardiovascular collapse during decompensated hemorrhage. Notably, re-activating C1RVLM during decompensated hemorrhage restores BP to normal levels. In conclusion, C1 neurons are a nodal point for the sympathetic response to blood loss.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, USA
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, USA
| | - Patrice G Guyenet
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, USA.
| |
Collapse
|
15
|
Nakashima R, Inagaki N, Kasaoka S. Exploration of autonomic regulation reflecting on pathophysiological change of sepsis: a prospective observational study. Acute Med Surg 2022; 9:e776. [PMID: 35949315 PMCID: PMC9353857 DOI: 10.1002/ams2.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
Aim It remains unclear how autonomic regulation modulates pathophysiological changes of sepsis. This study aims to analyze and clarify those in patients with suspected sepsis. Methods In this single‐centered, prospective, observational study, adult patients who had an infection, a quick Sequential Organ Failure Assessment score of 2 or more at the emergency department, and underwent intensive care were screened. Heart rate variability (HRV) and serum adrenaline were measured immediately after arrival. The primary outcome was defined as vasopressor dependence during 48 h after arrival. Results A total of 63 patients were included. All the patients had SOFA score of 2 or more on admission. Vasopressor dependence, renal replacement therapy, and in‐hospital mortality were associated with higher adrenaline (which reflects sympathetic adrenergic system activity). Bacteremia was associated with lower high‐frequency components of HRV (parasympathetic nerve activity). The HRV parameter of sympathetic nerve activity had no significant association with the outcomes. In the multivariate logistic regression model adjusted for age and sex, vasopressor dependence remained associated with higher adrenaline (cut‐off 0.11 ng/mL, odds ratio 9.71, 95% confidence interval 2.55–37; P = 0.000874), and lower high‐frequency components with bacteremia (17.2 ms2, odds ratio 4.86, 95% confidence interval 1.36–17.4; P = 0.0152). There were no significant correlations between parameters of HRV and serum adrenaline. Conclusion Hypoperfusion, organ dysfunction, and in‐hospital mortality were associated with an increased sympathetic adrenergic activity. Bacteremia was associated with decreased parasympathetic nerve activity. The autonomic regulator may involve a multilayered and differentiated modulating process for sepsis.
Collapse
Affiliation(s)
- Ryuta Nakashima
- Graduate School of Medical Sciences Kumamoto University Kumamoto City Kumamoto Japan
- Department of Emergency and Intensive Care Medicine Oita City Medical Association's Almeida Memorial Hospital Oita City Oita Japan
- Department of Emergency Medicine Oita Prefecture Saiseikai Hita Hospital Hita City Oita Japan
| | - Nobuhiro Inagaki
- Department of Emergency and Intensive Care Medicine Oita City Medical Association's Almeida Memorial Hospital Oita City Oita Japan
| | - Shunji Kasaoka
- Disaster Medical Education and Research Center Kumamoto University Hospital Kumamoto City Kumamoto Japan
| |
Collapse
|
16
|
Thuptimdang W, Shah P, Khaleel M, Sunwoo J, Veluswamy S, Kato RM, Coates TD, Khoo MCK. Vasoconstriction Response to Mental Stress in Sickle Cell Disease: The Role of the Cardiac and Vascular Baroreflexes. Front Physiol 2021; 12:698209. [PMID: 34803725 PMCID: PMC8599360 DOI: 10.3389/fphys.2021.698209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have shown that individuals with sickle cell disease (SCD) exhibit greater vasoconstriction responses to physical autonomic stressors, such as heat pain and cold pain than normal individuals, but this is not the case for mental stress (MTS). We sought to determine whether this anomalous finding for MTS is related to inter-group differences in baseline cardiac and vascular autonomic function. Fifteen subjects with SCD and 15 healthy volunteers participated in three MTS tasks: N-back, Stroop, and pain anticipation (PA). R-R interval (RRI), arterial blood pressure and finger photoplethysmogram (PPG) were continuously monitored before and during these MTS tasks. The magnitude of vasoconstriction was quantified using change in PPG amplitude (PPGa) from the baseline period. To represent basal autonomic function, we assessed both cardiac and vascular arms of the baroreflex during the baseline period. Cardiac baroreflex sensitivity (BRSc) was estimated by applying both the "sequence" and "spectral" techniques to beat-to-beat measurements of systolic blood pressure and RRIs. The vascular baroreflex sensitivity (BRSv) was quantified using the same approaches, modified for application to beat-to-beat diastolic blood pressure and PPGa measurements. Baseline BRSc was not different between SCD and non-SCD subjects, was not correlated with BRSv, and was not associated with the vasoconstriction responses to MTS tasks. BRSv in both groups was correlated with mean PPGa, and since both baseline PPGa and BRSv were lower in SCD, these results suggested that the SCD subjects were in a basal state of higher sympathetically mediated vascular tone. In both groups, baseline BRSv was positively correlated with the vasoconstriction responses to N-back, Stroop, and PA. After adjusting for differences in BRSv within and between groups, we found no difference in the vasoconstriction responses to all three mental tasks between SCD and non-SCD subjects. The implications of these findings are significant in subjects with SCD since vasoconstriction reduces microvascular flow and prolongs capillary transit time, increasing the likelihood for vaso-occlusive crisis (VOC) to be triggered by exposure to stressful events.
Collapse
Affiliation(s)
- Wanwara Thuptimdang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Payal Shah
- Hematology Section, Children's Center for Cancer, Blood Disease and Bone Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Maha Khaleel
- Hematology Section, Children's Center for Cancer, Blood Disease and Bone Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - John Sunwoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Saranya Veluswamy
- Hematology Section, Children's Center for Cancer, Blood Disease and Bone Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Roberta M Kato
- Division of Pulmonology, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Thomas D Coates
- Hematology Section, Children's Center for Cancer, Blood Disease and Bone Marrow Transplantation, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| | - Michael C K Khoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
17
|
Ernsberger U, Deller T, Rohrer H. The sympathies of the body: functional organization and neuronal differentiation in the peripheral sympathetic nervous system. Cell Tissue Res 2021; 386:455-475. [PMID: 34757495 PMCID: PMC8595186 DOI: 10.1007/s00441-021-03548-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
During the last 30 years, our understanding of the development and diversification of postganglionic sympathetic neurons has dramatically increased. In parallel, the list of target structures has been critically extended from the cardiovascular system and selected glandular structures to metabolically relevant tissues such as white and brown adipose tissue, lymphoid tissues, bone, and bone marrow. A critical question now emerges for the integration of the diverse sympathetic neuron classes into neural circuits specific for these different target tissues to achieve the homeostatic regulation of the physiological ends affected.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany.
| | - Thomas Deller
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany
| | - Hermann Rohrer
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany.
| |
Collapse
|
18
|
Kondo N, Yoshimoto M, Ikegame S, Miki K. Differential shifts in baroreflex control of renal and lumbar sympathetic nerve activity induced by freezing behaviour in rats. Exp Physiol 2021; 106:2060-2069. [PMID: 34333800 DOI: 10.1113/ep089742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/29/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is the arterial baroreflex involved in causing patterned, region-specific changes in sympathetic nerve activity during freezing behaviour in conscious rats? What is the main finding and its importance? Freezing behaviour is accompanied by differential shifts in the baroreflex control of renal and lumbar sympathetic nerve activity and heart rate. It is noteworthy that baroreflex pathways may be discretely separated, allowing differential modification of baroreflex curves that may generate differential changes in sympathetic nerve activity during freezing behaviour. ABSTRACT The present study was designed to test whether the baroreflex stimulus-response curves for renal sympathetic nerve activity (RSNA), lumbar sympathetic nerve activity (LSNA) and heart rate (HR) were shifted in a regionally specific manner during freezing behaviour in conscious rats. Male Wistar rats were chronically instrumented with electrodes and arterial and venous catheters for measurement of RSNA, LSNA and electrocardiogram. After a 60-min control period, freezing behaviour in conscious rats was induced by exposure to loud white noise (90 dB) for 10 min. The baroreflex curves for RSNA, LSNA and HR were generated by changing systemic arterial pressure using rapid intravenous infusions of vasoactive drugs and then fitted to an inverse sigmoid function curve. During the freezing behaviour, the baroreflex curve for RSNA was expanded upward with a significant (P < 0.001) increase (by 153% compared with the control level) in the upper plateau (maximum capacity of RSNA drive), whereas the baroreflex curve for LSNA remained unchanged. Conversely, the baroreflex curve for HR was shifted leftward with a significant (P = 0.004) decrease (by 11 mmHg relative to the control level) in the midpoint pressure. Our results indicate that baroreflex curve shifts for RSNA, LSNA and HR occur in a regionally specific manner during freezing behaviour. This indicates that baroreflex pathways may be discretely separated, allowing differential modification of baroreflex curves that may generate differential changes in sympathetic nerve activity during freezing behaviour.
Collapse
Affiliation(s)
- Naomi Kondo
- Department of Environmental Health, Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, Japan
| | - Misa Yoshimoto
- Department of Environmental Health, Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, Japan
| | - Shizuka Ikegame
- Department of Environmental Health, Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, Japan
| | - Kenju Miki
- Department of Environmental Health, Life Science and Human Technology, Nara Women's University, Kita-Uoya Nishimachi, Nara, Japan
| |
Collapse
|
19
|
Torres H, Huesing C, Burk DH, Molinas AJR, Neuhuber WL, Berthoud HR, Münzberg H, Derbenev AV, Zsombok A. Sympathetic innervation of the mouse kidney and liver arising from prevertebral ganglia. Am J Physiol Regul Integr Comp Physiol 2021; 321:R328-R337. [PMID: 34231420 DOI: 10.1152/ajpregu.00079.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sympathetic nervous system (SNS) plays a crucial role in the regulation of renal and hepatic functions. Although sympathetic nerves to the kidney and liver have been identified in many species, specific details are lacking in the mouse. In the absence of detailed information of sympathetic prevertebral innervation of specific organs, selective manipulation of a specific function will remain challenging. Despite providing major postganglionic inputs to abdominal organs, limited data are available about the mouse celiac-superior mesenteric complex. We used tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DbH) reporter mice to visualize abdominal prevertebral ganglia. We found that both the TH and DbH reporter mice are useful models for identification of ganglia and nerve bundles. We further tested if the celiac-superior mesenteric complex provides differential inputs to the mouse kidney and liver. The retrograde viral tracer, pseudorabies virus (PRV)-152 was injected into the cortex of the left kidney or the main lobe of the liver to identify kidney-projecting and liver-projecting neurons in the celiac-superior mesenteric complex. iDISCO immunostaining and tissue clearing were used to visualize unprecedented anatomical detail of kidney-related and liver-related postganglionic neurons in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia compared with TH-positive neurons. Kidney-projecting neurons were restricted to the suprarenal and aorticorenal ganglia, whereas only sparse labeling was observed in the celiac-superior mesenteric complex. In contrast, liver-projecting postganglionic neurons were observed in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia, suggesting spatial separation between the sympathetic innervation of the mouse kidney and liver.
Collapse
Affiliation(s)
- Hayden Torres
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Clara Huesing
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - David H Burk
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Adrien J R Molinas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana
| | | | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana.,Brain Institute, Tulane University, New Orleans, Louisiana
| | - Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana.,Brain Institute, Tulane University, New Orleans, Louisiana
| |
Collapse
|
20
|
Incognito AV, Teixeira AL, Shafer BM, Nardone M, Vermeulen TD, Foster GE, Millar PJ. Muscle sympathetic single-unit responses during rhythmic handgrip exercise and isocapnic hypoxia in males: the role of sympathoexcitation magnitude. J Neurophysiol 2021; 126:170-180. [PMID: 34133241 DOI: 10.1152/jn.00678.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A small proportion of postganglionic muscle sympathetic single units can be inhibited during sympathoexcitatory stressors in humans. However, whether these responses are dependent on the specific stressor or the level of sympathoexcitation remains unclear. We hypothesize that, when matched by sympathoexcitatory magnitude, different stressors can evoke similar proportions of inhibited single units. Multiunit and single-unit muscle sympathetic nerve activity (MSNA) were recorded in seven healthy young males at baseline and during 1) rhythmic handgrip exercise (40% of maximum voluntary contraction) and 2) acute isocapnic hypoxia (partial pressure of end-tidal O2 47 ± 3 mmHg). Single units were classified as activated, nonresponsive, or inhibited if the spike frequency was above, within, or below the baseline variability, respectively. By design, rhythmic handgrip and isocapnic hypoxia similarly increased multiunit total MSNA [Δ273 ± 208 vs. Δ254 ± 193 arbitrary units (AU), P = 0.84] and single-unit spike frequency (Δ8 ± 10 vs. Δ12 ± 13 spikes/min, P = 0.12). Among 19 identified single units, the proportions of activated (47% vs. 68%), nonresponsive (32% vs. 16%), and inhibited (21% vs. 16%) single units were not different between rhythmic handgrip and isocapnic hypoxia (P = 0.42). However, only 9 (47%) single units behaved with concordant response patterns across both stressors (7 activated, 1 nonresponsive, and 1 inhibited during both stressors). During the 1-min epoch with the highest increase in total MSNA during hypoxia (Δ595 ± 282 AU, P < 0.01) only one single unit was inhibited. These findings suggest that the proportions of muscle sympathetic single units inhibited during stress are associated with the level of sympathoexcitation and not the stressor per se in healthy young males.NEW & NOTEWORTHY Subpopulations of muscle sympathetic single units can be inhibited during mild sympathoexcitatory stress. We demonstrate that rhythmic handgrip exercise and isocapnic hypoxia, when matched by multiunit sympathoexcitation, induce similar proportions of single-unit inhibition, highlighting that heterogeneous single-unit response patterns are related to the level of sympathoexcitation independent of the stressor type. Interestingly, only 47% of single units behaved with concordant response patterns between stressors, suggesting the potential for functional specificity within the postganglionic neuronal pool.
Collapse
Affiliation(s)
- Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - André L Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Rouabhi M, Guo DF, Morgan DA, Zhu Z, López M, Zingman L, Grobe JL, Rahmouni K. BBSome ablation in SF1 neurons causes obesity without comorbidities. Mol Metab 2021; 48:101211. [PMID: 33722691 PMCID: PMC8065214 DOI: 10.1016/j.molmet.2021.101211] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES The hypothalamic ventromedial nucleus (VMH) plays a major role in metabolic control, but the molecular mechanisms involved remain poorly defined. We analyzed the relevance of the BBSome, a protein complex composed of 8 Bardet-Biedl syndrome (BBS) proteins including BBS1, in VMH steroidogenic factor 1 (SF1) neurons for the control of energy homeostasis and related physiological processes. METHODS We generated mice bearing selective BBSome disruption, through Bbs1 gene deletion, in SF1 neurons (SF1Cre/Bbs1fl/fl). We analyzed the consequence on body weight, glucose homeostasis, and cardiovascular autonomic function of BBSome loss in SF1 neurons. RESULTS SF1Cre/Bbs1fl/fl mice had increased body weight and adiposity under normal chow conditions. Food intake, energy absorption, and digestive efficiency were not altered by Bbs1 gene deletion in SF1 neurons. SF1Cre/Bbs1fl/fl mice exhibited lower energy expenditure, particularly during the dark cycle. Consistent with this finding, SF1Cre/Bbs1fl/fl mice displayed reduced sympathetic nerve traffic and expression of markers of thermogenesis in brown adipose tissue. SF1Cre/Bbs1fl/fl mice also had lower sympathetic nerve activity to subcutaneous white adipose tissue that was associated with a protein expression profile that promotes lipid accumulation. Notably, despite obesity and hyperinsulinemia, SF1Cre/Bbs1fl/fl mice did not exhibit significant changes in glucose metabolism, insulin sensitivity, blood pressure, and baroreflex sensitivity. CONCLUSIONS Our findings demonstrate that the SF1 neuron BBSome is necessary for the regulation of energy homeostasis through modulation of the activity of the sympathetic nervous system and that the SF1 neuron BBSome is required for the development of obesity-related comorbidities.
Collapse
Affiliation(s)
- Mohamed Rouabhi
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Veterans Affairs Health Care System, Iowa City, IA, USA
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Veterans Affairs Health Care System, Iowa City, IA, USA
| | - Zhiyong Zhu
- Veterans Affairs Health Care System, Iowa City, IA, USA; Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Leonid Zingman
- Veterans Affairs Health Care System, Iowa City, IA, USA; Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Justin L Grobe
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Veterans Affairs Health Care System, Iowa City, IA, USA; Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
22
|
Polichnowski AJ, Williamson GA, Blair TE, Hoover DB. Autonomic and cholinergic mechanisms mediating cardiovascular and temperature effects of donepezil in conscious mice. Am J Physiol Regul Integr Comp Physiol 2021; 320:R871-R884. [PMID: 33851543 DOI: 10.1152/ajpregu.00360.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Donepezil is a centrally acting acetylcholinesterase (AChE) inhibitor with therapeutic potential in inflammatory diseases; however, the underlying autonomic and cholinergic mechanisms remain unclear. Here, we assessed effects of donepezil on mean arterial pressure (MAP), heart rate (HR), HR variability, and body temperature in conscious adult male C57BL/6 mice to investigate the autonomic pathways involved. Central versus peripheral cholinergic effects of donepezil were assessed using pharmacological approaches including comparison with the peripherally acting AChE inhibitor, neostigmine. Drug treatments included donepezil (2.5 or 5 mg/kg sc), neostigmine methyl sulfate (80 or 240 μg/kg ip), atropine sulfate (5 mg/kg ip), atropine methyl bromide (5 mg/kg ip), or saline. Donepezil, at 2.5 and 5 mg/kg, decreased HR by 36 ± 4% and 44 ± 3% compared with saline (n = 10, P < 0.001). Donepezil, at 2.5 and 5 mg/kg, decreased temperature by 13 ± 2% and 22 ± 2% compared with saline (n = 6, P < 0.001). Modest (P < 0.001) increases in MAP were observed with donepezil after peak bradycardia occurred. Atropine sulfate and atropine methyl bromide blocked bradycardic responses to donepezil, but only atropine sulfate attenuated hypothermia. The pressor response to donepezil was similar in mice coadministered atropine sulfate; however, coadministration of atropine methyl bromide potentiated the increase in MAP. Neostigmine did not alter HR or temperature, but did result in early increases in MAP. Despite the marked bradycardia, donepezil did not increase normalized high-frequency HR variability. We conclude that donepezil causes marked bradycardia and hypothermia in conscious mice via the activation of muscarinic receptors while concurrently increasing MAP via autonomic and cholinergic pathways that remain to be elucidated.
Collapse
Affiliation(s)
- Aaron J Polichnowski
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| | - Geoffrey A Williamson
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Tesha E Blair
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
23
|
Osborn JW, Tyshynsky R, Vulchanova L. Function of Renal Nerves in Kidney Physiology and Pathophysiology. Annu Rev Physiol 2021; 83:429-450. [PMID: 33566672 DOI: 10.1146/annurev-physiol-031620-091656] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Renal sympathetic (efferent) nerves play an important role in the regulation of renal function, including glomerular filtration, sodium reabsorption, and renin release. The kidney is also innervated by sensory (afferent) nerves that relay information to the brain to modulate sympathetic outflow. Hypertension and other cardiometabolic diseases are linked to overactivity of renal sympathetic and sensory nerves, but our mechanistic understanding of these relationships is limited. Clinical trials of catheter-based renal nerve ablation to treat hypertension have yielded promising results. Therefore, a greater understanding of how renal nerves control the kidney under physiological and pathophysiological conditions is needed. In this review, we provide an overview of the current knowledge of the anatomy of efferent and afferent renal nerves and their functions in normal and pathophysiological conditions. We also suggest further avenues of research for development of novel therapies targeting the renal nerves.
Collapse
Affiliation(s)
- John W Osborn
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA;
| | - Roman Tyshynsky
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
24
|
Alkatout I, Wedel T, Pape J, Possover M, Dhanawat J. Review: Pelvic nerves - from anatomy and physiology to clinical applications. Transl Neurosci 2021; 12:362-378. [PMID: 34707906 PMCID: PMC8500855 DOI: 10.1515/tnsci-2020-0184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
A prerequisite for nerve-sparing pelvic surgery is a thorough understanding of the topographic anatomy of the fine and intricate pelvic nerve networks, and their connections to the central nervous system. Insights into the functions of pelvic nerves will help to interpret disease symptoms correctly and improve treatment. In this article, we review the anatomy and physiology of autonomic pelvic nerves, including their topography and putative functions. The aim is to achieve a better understanding of the mechanisms of pelvic pain and functional disorders, as well as improve their diagnosis and treatment. The information will also serve as a basis for counseling patients with chronic illnesses. A profound understanding of pelvic neuroanatomy will permit complex surgery in the pelvis without relevant nerve injury.
Collapse
Affiliation(s)
- Ibrahim Alkatout
- Department of Gynecology and Obstetrics, University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller Str. 3, Building 24, 24105 Kiel, Germany
| | - Thilo Wedel
- Department of Anatomy, Institute of Anatomy, Center of Clinical Anatomy, University Hospitals Schleswig-Holstein, Campus Kiel, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Julian Pape
- Department of Gynecology and Obstetrics, University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller Str. 3, Building 24, 24105 Kiel, Germany
| | - Marc Possover
- Possover International Medical Center, Zürich, Switzerland
- Department of Gynecology, University of Aarhus, Aarhus, Denmark
| | - Juhi Dhanawat
- Department of Gynecology and Obstetrics, University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller Str. 3, Building 24, 24105 Kiel, Germany
| |
Collapse
|
25
|
Stens NA, Hisdal J, Bakke EF, Kaur N, Sharma A, Stranden E, Thijssen DHJ, Høiseth LØ. Factors mediating the pressor response to isometric muscle contraction: An experimental study in healthy volunteers during lower body negative pressure. PLoS One 2020; 15:e0243627. [PMID: 33296410 PMCID: PMC7725372 DOI: 10.1371/journal.pone.0243627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Whilst both cardiac output (CO) and total peripheral resistance (TPR) determine mean arterial blood pressure (MAP), their relative importance in the pressor response to isometric exercise remains unclear. This study aimed to elucidate the relative importance of these two different factors by examining pressor responses during cardiopulmonary unloading leading to step-wise reductions in CO. Hemodynamics were investigated in 11 healthy individuals before, during and after two-minute isometric exercise during lower body negative pressure (LBNP; -20mmHg and -40mmHg). The blood pressure response to isometric exercise was similar during normal and reduced preload, despite a step-wise reduction in CO during LBNP (-20mmHg and -40mmHg). During -20mmHg LBNP, the decreased stroke volume, and consequently CO, was counteracted by an increased TPR, while heart rate (HR) was unaffected. HR was increased during -40 mmHg LBNP, although insufficient to maintain CO; the drop in CO was perfectly compensated by an increased TPR to maintain MAP. Likewise, transient application of LBNP (-20mmHg and -40mmHg) resulted in a short transient drop in MAP, caused by a decrease in CO, which was compensated by an increase in TPR. This study suggests that, in case of reductions of CO, changes in TPR are primarily responsible for maintaining the pressor response during isometric exercise. This highlights the relative importance of TPR compared to CO in mediating the pressor response during isometric exercise.
Collapse
Affiliation(s)
- Niels A. Stens
- Department of Physiology, Research Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Vascular Surgery, Division of Cardiovascular and Pulmonary Diseases, Section of Vascular Investigations, Oslo University Hospital, Oslo, Norway
| | - Jonny Hisdal
- Department of Vascular Surgery, Division of Cardiovascular and Pulmonary Diseases, Section of Vascular Investigations, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Espen F. Bakke
- Institute of Aviation Medicine, Norwegian Armed Forces Medical Service, Oslo, Norway
| | - Narinder Kaur
- Department of Vascular Surgery, Division of Cardiovascular and Pulmonary Diseases, Section of Vascular Investigations, Oslo University Hospital, Oslo, Norway
- Dermatology Center Telemark, Porsgrunn, Norway
| | - Archana Sharma
- Department of Endocrinology, Oslo University Hospital, Oslo, Norway
- Department of Anesthesiology, Oslo University Hospital, Oslo, Norway
| | - Einar Stranden
- Department of Vascular Surgery, Division of Cardiovascular and Pulmonary Diseases, Section of Vascular Investigations, Oslo University Hospital, Oslo, Norway
| | - Dick H. J. Thijssen
- Department of Physiology, Research Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lars Øivind Høiseth
- Department of Anesthesiology, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
26
|
Ritz T, Schulz SM, Rosenfield D, Wright RJ, Bosquet Enlow M. Cardiac sympathetic activation and parasympathetic withdrawal during psychosocial stress exposure in 6-month-old infants. Psychophysiology 2020; 57:e13673. [PMID: 33048371 PMCID: PMC8548071 DOI: 10.1111/psyp.13673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/23/2020] [Accepted: 06/15/2020] [Indexed: 01/28/2023]
Abstract
Infant autonomic reactivity to stress is a potential predictor of later life health complications, but research has not sufficiently examined sympathetic activity, controlled for effects of physical activity and respiration, or studied associations among autonomic adjustments, cardiac activity, and affect in infants. We studied 278 infants during the repeated Still-Face Paradigm, a standardized stressor, while monitoring cardiac activity (ECG) and respiratory pattern (respiratory inductance plethysmography). Video ratings of physical activity and affect were also performed. Respiratory sinus arrhythmia (RSA) and T-wave amplitude (TWA) served as noninvasive indicators of cardiac parasympathetic and sympathetic activity, respectively. Responses were compared between infants who completed two still-face exposures and those who terminated after one exposure due to visible distress. Findings, controlled for physical activity, showed robust reductions in respiration-adjusted RSA and TWA, with more tonic attenuation of TWA. Infants completing only one still-face trial showed more pronounced autonomic changes and less recovery from stress. They also showed elevated minute ventilation, suggesting hyperventilation. Both reductions in adjusted RSA and TWA contributed equally to heart rate changes and were associated with higher negative and lower positive affect. These associations were more robust in the group of distressed infants unable to complete both still-face trials. Thus, cardiac sympathetic activation and parasympathetic withdrawal are part of the infant stress response, beyond associated physical activity and respiration changes. Their association with cardiac chronotropy and affect increases as infants' distress level increases. This excess reactivity to social stress should be examined as a predictor of future cardiovascular disease.
Collapse
Affiliation(s)
- Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, Texas, USA
| | - Stefan M. Schulz
- Clinical Psychology, Psychotherapy, and Experimental Psychopathology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - David Rosenfield
- Department of Psychology, Southern Methodist University, Dallas, Texas, USA
| | - Rosalind J. Wright
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Michelle Bosquet Enlow
- Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Pachen M, Abukar Y, Shanks J, Lever N, Ramchandra R. Activation of the carotid body increases directly recorded cardiac sympathetic nerve activity and coronary blood flow in conscious sheep. Am J Physiol Regul Integr Comp Physiol 2020; 320:R203-R212. [PMID: 33206558 DOI: 10.1152/ajpregu.00246.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activation of the carotid body (CB) using intracarotid potassium cyanide (KCN) injection increases coronary blood flow (CoBF). This increase in CoBF is considered to be mediated by co-activation of both the sympathetic and parasympathetic nerves to the heart. However, whether cardiac sympathetic nerve activity (cardiac SNA) actually increases during CB activation has not been determined previously. We hypothesized that activation of the CB would increase directly recorded cardiac SNA, which would cause coronary vasodilatation. Experiments were conducted in conscious sheep implanted with electrodes to record cardiac SNA and diaphragmatic electromyography (dEMG), flow probes to record CoBF and cardiac output, and a catheter to record arterial pressure. Intracarotid KCN injection was used to activate the CB. To eliminate the contribution of metabolic demand on coronary flow, the heart was paced at a constant rate during CB chemoreflex stimulation. Intracarotid KCN injection resulted in a significant increase in directly recorded cardiac SNA frequency (from 24 ± 2 to 40 ± 4 bursts/min; P < 0.05) as well as a dose-dependent increase in mean arterial pressure (79 ± 15 to 88 ± 14 mmHg; P < 0.01) and CoBF (75 ± 37 vs. 86 ± 42 mL/min; P < 0.05). The increase in CoBF and coronary vascular conductance to intracarotid KCN injection was abolished after propranolol infusion, suggesting that the increased cardiac SNA mediates coronary vasodilatation. The pressor response to activation of the CB was abolished by pretreatment with intravenous atropine, but there was no change in the coronary flow response. Our results indicate that CB activation increases directly recorded cardiac SNA, which mediates vasodilatation of the coronary vasculature.
Collapse
Affiliation(s)
- Mridula Pachen
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Yonis Abukar
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Julia Shanks
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Nigel Lever
- Department of Medicine, University of Auckland and Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand
| | - Rohit Ramchandra
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Daches S, Vine V, George CJ, Jennings JR, Kovacs M. Sympathetic arousal during the processing of dysphoric affect by youths at high and low familial risk for depression. Psychophysiology 2020; 57:e13664. [PMID: 32797632 DOI: 10.1111/psyp.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/18/2020] [Accepted: 04/29/2020] [Indexed: 11/28/2022]
Abstract
Youths at high risk for depression have been shown to have problems in repairing their own sad mood. Given that sympathetic arousal has been implicated both in the experience and regulation of affect, an atypical pattern of arousal may be one of the factors that contribute to mood repair problems. In the current study, we measured sympathetic arousal of never-depressed youths at high (n = 56) and low (n = 67) familial risk for depression during sad mood induction and instructed mood repair. Sympathetic arousal was indexed by skin conductance level (SCL) and cardiac pre-ejection period (PEP); mood repair outcome was indexed by self-rated affect. High-risk youths demonstrated increased SCL during sadness induction, which persisted during mood repair; low-risk youths evidenced increased SCL only during mood repair. Shortened PEP was evident only among high-risk youths and only during mood repair. Furthermore, shortened PEP during mood induction predicted less successful mood repair in the low-risk but not in the high-risk group. The findings suggest that: (a) depression-prone youths differ from control peers in patterns of sympathetic responses to emotional stimuli, which may impair their ability to relieve sadness, and (b) activation patterns differ across subsystems (SCL vs. PEP) of sympathetic activity, in conjunction with depression risk status.
Collapse
Affiliation(s)
- Shimrit Daches
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel
| | - Vera Vine
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Charles J George
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - J Richard Jennings
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Maria Kovacs
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Incognito AV, Nardone M, Teixeira AL, Lee JB, Kathia MM, Millar PJ. Muscle sympathetic single-unit response patterns during progressive muscle metaboreflex activation in young healthy adults. J Neurophysiol 2020; 124:682-690. [PMID: 32727266 DOI: 10.1152/jn.00305.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Muscle sympathetic single units can respond differentially to stress, but whether these responses are linked to the degree of sympathoexcitation is unclear. Fifty-three muscle sympathetic single units (microneurography) were recorded in 17 participants (8 women; 24 ± 3 yr). Five 40-s bouts of 10% static handgrip were performed during a 10-min forearm ischemia to progressively increase metabolite accumulation. Each static handgrip was separated by a 75-s ischemic rest [postexercise circulatory occlusion (PECO)] to assess the isolated action of the muscle metaboreflex. During each set of PECO, individual single units were classified as activated, nonresponsive, or inhibited if the spike frequency was above, within, or below the baseline variability, respectively. From sets 1-5 of PECO, the proportion of single units with activated (34, 45, 68, 87, and 89%), nonresponsive (43, 44, 23, 7, and 9%), or inhibited (23, 11, 9, 6, and 2%) responses changed (P < 0.001) as total muscle sympathoexcitation increased. A total of 51/53 (96%) single units were activated in at least one set of PECO, 16 (31%) initially inhibited before activation. This response pattern delayed the activation onset compared with noninhibited units (set 3 ± 1 vs. 2 ± 1, P < 0.001). Once activated, the spike-frequency rate of rise was similar (8.5 ± 6.5 vs. 7.1 ± 6.0 spikes/min per set, P = 0.48). Muscle sympathetic single-unit firing demonstrated differential control during muscle metaboreflex activation. Single units that were initially inhibited during progressive metaboreflex activation were capable of being activated in later sets. These findings reveal that single-unit activity is influenced by convergent neural inputs (i.e., both inhibitory and excitatory), which yield heterogenous single-unit activation thresholds.NEW & NOTEWORTHY Muscle sympathetic single units respond differentially to sympathoexcitatory stress such that single units can increase firing to contribute to the sympathoexcitatory response or can be nonresponsive or even inhibited. We observed a subgroup of single units that can respond bidirectionally, being first inhibited before activated by progressive increases in forearm muscle metaboreflex activation. These results suggest convergent neural inputs (i.e., inhibitory and excitatory), which yield heterogenous muscle sympathetic single-unit activation thresholds.
Collapse
Affiliation(s)
- Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - André L Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jordan B Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Muhammad M Kathia
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,Toronto General Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Zhu Q, Weng J, Shen M, Fish J, Shen Z, Coschigano KT, Davidson WS, Tso P, Shi H, Lo CC. Apolipoprotein A-IV Enhances Fatty Acid Uptake by Adipose Tissues of Male Mice via Sympathetic Activation. Endocrinology 2020; 161:5802681. [PMID: 32157301 PMCID: PMC7100924 DOI: 10.1210/endocr/bqaa042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/04/2020] [Indexed: 12/31/2022]
Abstract
Apolipoprotein A-IV (ApoA-IV) synthesized by the gut regulates lipid metabolism. Sympathetic innervation of adipose tissues also controls lipid metabolism. We hypothesized that ApoA-IV required sympathetic innervation to increase fatty acid (FA) uptake by adipose tissues and brown adipose tissue (BAT) thermogenesis. After 3 weeks feeding of either a standard chow diet or a high-fat diet (HFD), mice with unilateral denervation of adipose tissues received intraperitoneal administration of recombinant ApoA-IV protein and intravenous infusion of lipid mixture with radioactive triolein. In chow-fed mice, ApoA-IV administration increased FA uptake by intact BAT but not the contralateral denervated BAT or intact white adipose tissue (WAT). Immunoblots showed that, in chow-fed mice, ApoA-IV increased expression of lipoprotein lipase and tyrosine hydroxylase in both intact BAT and inguinal WAT (IWAT), while ApoA-IV enhanced protein levels of β3 adrenergic receptor, adipose triglyceride lipase, and uncoupling protein 1 in the intact BAT only. In HFD-fed mice, ApoA-IV elevated FA uptake by intact epididymal WAT (EWAT) but not intact BAT or IWAT. ApoA-IV increased sympathetic activity assessed by norepinephrine turnover (NETO) rate in BAT and EWAT of chow-fed mice, whereas it elevated NETO only in EWAT of HFD-fed mice. These observations suggest that, in chow-fed mice, ApoA-IV activates sympathetic activity of BAT and increases FA uptake by BAT via innervation, while in HFD-fed mice, ApoA-IV stimulates sympathetic activity of EWAT to shunt FAs into the EWAT.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Biology, Miami University, Oxford, OH
| | - Jonathan Weng
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - Minqian Shen
- Department of Biology, Miami University, Oxford, OH
| | - Jace Fish
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - Zhujun Shen
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - Karen T Coschigano
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH
| | - Chunmin C Lo
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
- Correspondence: Chunmin C Lo, Department of Biomedical Sciences, Irvine Hall 228, 1 Ohio University, Athens, OH 45701-2979. E-mail:
| |
Collapse
|
31
|
Incognito AV, Samora M, Shepherd AD, Cartafina RA, Guimarães GMN, Daher M, Millar PJ, Vianna LC. Arterial baroreflex regulation of muscle sympathetic single-unit activity in men: influence of resting blood pressure. Am J Physiol Heart Circ Physiol 2020; 318:H937-H946. [DOI: 10.1152/ajpheart.00700.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The arterial baroreflex has dominant control over multiunit muscle sympathetic nerve activity (MSNA) burst occurrence, but whether this extends to all single units or is influenced by resting blood pressure status is unclear. In 22 men (32 ± 8 yr), we assessed 68 MSNA single units during sequential bolus injections of nitroprusside and phenylephrine (modified Oxford). Sympathetic baroreflex sensitivity (sBRS) was quantified as the weighted negative linear regression slope between diastolic blood pressure (DBP) and single-unit spike firing probability and multiple spike firing. Strong negative linear relationships ( r ≥ −0.50) between DBP and spike firing probability were observed in 63/68 (93%) single units (−2.27 ± 1.27%·cardiac cycle−1·mmHg−1 [operating range, 18 ± 8 mmHg]). In contrast, only 45/68 (66%) single units had strong DBP-multiple spike firing relationships (−0.13 ± 0.18 spikes·cardiac cycle−1·mmHg−1 [operating range, 14 ± 7 mmHg]). Participants with higher resting DBP (65 ± 3 vs. 77 ± 3 mmHg, P < 0.001) had similar spike firing probability sBRS (low vs. high, −2.08 ± 1.08 vs. −2.46 ± 1.42%·cardiac cycle−1·mmHg−1, P = 0.33), but a smaller sBRS operating range (20 ± 6 vs. 16 ± 9 mmHg, P = 0.01; 86 ± 24 vs. 52 ± 25% of total range, P < 0.001) and a higher proportion of single units without arterial baroreflex control outside this range [6/31 (19%) vs. 21/32 (66%), P < 0.001]. Participants with higher resting DBP also had fewer single units with arterial baroreflex control of multiple spike firing (79 vs. 53%, P = 0.04). The majority of MSNA single units demonstrate strong arterial baroreflex control over spike firing probability during pharmacological manipulation of blood pressure. Changes in single-unit sBRS operating range and control of multiple spike firing may represent altered sympathetic recruitment patterns associated with the early development of hypertension. NEW & NOTEWORTHY Muscle sympathetic single units can be differentially controlled during stress. In contrast, we demonstrate that 93% of single units maintain strong arterial baroreflex control during pharmacological manipulation of blood pressure. Interestingly, the operating range and proportion of single units that lose arterial baroreflex control outside of this range are influenced by resting blood pressure levels. Altered single unit, but not multiunit, arterial baroreflex control may represent changes in sympathetic recruitment patterns in early stage development of hypertension.
Collapse
Affiliation(s)
- Anthony V. Incognito
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Milena Samora
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Andrew D. Shepherd
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Roberta A. Cartafina
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | | | - Mauricio Daher
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Philip J. Millar
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lauro C. Vianna
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| |
Collapse
|
32
|
Simpson LL, Meah VL, Steele A, Thapamagar S, Gasho C, Anholm JD, Drane AL, Dawkins TG, Busch SA, Oliver SJ, Lawley JS, Tymko MM, Ainslie PN, Steinback CD, Stembridge M, Moore JP. Evidence for a physiological role of pulmonary arterial baroreceptors in sympathetic neural activation in healthy humans. J Physiol 2020; 598:955-965. [PMID: 31977069 DOI: 10.1113/jp278731] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS In an anaesthetised animal model, independent stimulation of baroreceptors in the pulmonary artery elicits reflex sympathoexcitation. In humans, pulmonary arterial pressure is positively related to basal muscle sympathetic nerve activity (MSNA) under conditions where elevated pulmonary pressure is evident (e.g. high altitude); however, a causal link is not established. Using a novel experimental approach, we demonstrate that reducing pulmonary arterial pressure lowers basal MSNA in healthy humans. This response is distinct from the negative feedback reflex mediated by aortic and carotid sinus baroreceptors when systemic arterial pressure is lowered. Afferent input from pulmonary arterial baroreceptors may contribute to sympathetic neural activation in healthy lowland natives exposed to high altitude. ABSTRACT In animal models, distension of baroreceptors located in the pulmonary artery induces a reflex increase in sympathetic outflow; however, this has not been examined in humans. Therefore, we investigated whether reductions in pulmonary arterial pressure influenced sympathetic outflow and baroreflex control of muscle sympathetic nerve activity (MSNA). Healthy lowlanders (n = 13; 5 females) were studied 4-8 days following arrival at high altitude (4383 m; Cerro de Pasco, Peru), a setting that increases both pulmonary arterial pressure and sympathetic outflow. MSNA (microneurography) and blood pressure (BP; photoplethysmography) were measured continuously during ambient air breathing (Amb) and a 6 min inhalation of the vasodilator nitric oxide (iNO; 40 ppm in 21% O2 ), to selectively lower pulmonary arterial pressure. A modified Oxford test was performed under both conditions. Pulmonary artery systolic pressure (PASP) was determined using Doppler echocardiography. iNO reduced PASP (24 ± 3 vs. 32 ± 5 mmHg; P < 0.001) compared to Amb, with a similar reduction in MSNA total activity (1369 ± 576 to 994 ± 474 a.u min-1 ; P = 0.01). iNO also reduced the MSNA operating point (burst incidence; 39 ± 16 to 33 ± 17 bursts·100 Hb-1 ; P = 0.01) and diastolic operating pressure (82 ± 8 to 80 ± 8 mmHg; P < 0.001) compared to Amb, without changing heart rate (P = 0.6) or vascular-sympathetic baroreflex gain (P = 0.85). In conclusion, unloading of pulmonary arterial baroreceptors reduced basal sympathetic outflow to the skeletal muscle vasculature and reset vascular-sympathetic baroreflex control of MSNA downward and leftward in healthy humans at high altitude. These data suggest the existence of a lesser-known reflex input involved in sympathetic activation in humans.
Collapse
Affiliation(s)
- Lydia L Simpson
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Wales, UK
| | - Victoria L Meah
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada
| | - Andrew Steele
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada
| | - Suman Thapamagar
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - James D Anholm
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Aimee L Drane
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Wales, UK
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Wales, UK
| | - Stephen A Busch
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada
| | - Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Wales, UK
| | - Justin S Lawley
- Department of Sport Science, Division of Physiology, University of Innsbruck, Austria
| | - Michael M Tymko
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Phillip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, Canada
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Wales, UK
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Wales, UK
| |
Collapse
|
33
|
Lee HJ, White JM, Chung J, Malone P, DeWeerth SP, Tansey KE. Differential cardiovascular responses to cutaneous afferent subtypes in a nociceptive intersegmental spinal reflex. Sci Rep 2019; 9:19049. [PMID: 31836817 PMCID: PMC6911054 DOI: 10.1038/s41598-019-54072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/08/2019] [Indexed: 11/24/2022] Open
Abstract
Electrical stimulation to segmental dorsal cutaneous nerves (DCNs) activates a nociceptive sensorimotor reflex and the same afferent stimulation also evokes blood pressure (BP) and heart rate (HR) responses in rats. To investigate the relationship between those cardiovascular responses and the activation of nociceptive afferents, we analyzed BP and HR responses to electrical stimulations at each DCN from T6 to L1 at 0.5 mA to activate A-fiber alone or 5 mA to activate both A- and C-fibers at different frequencies. Evoked cardiovascular responses showed a decrease and then an increase in BP and an increase and then a plateau in HR. Segmentally, both cardiovascular responses tended to be larger when evoked from the more rostral DCNs. Stimulation frequency had a larger effect on cardiovascular responses than the rostrocaudal level of the DCN input. Stimulation strength showed a large effect on BP changes dependent on C-fibers whereas HR changes were dependent on A-fibers. Additional A-fiber activation by stimulating up to 4 adjacent DCNs concurrently, but only at 0.5 mA, affected HR but not BP. These data support that cutaneous nociceptive afferent subtypes preferentially contribute to different cardiovascular responses, A-fibers to HR and C-fibers to BP, with temporal (stimulation frequency) and spatial (rostrocaudal level) dynamics.
Collapse
Affiliation(s)
- Hyun Joon Lee
- Departments of Neurology and Physiology, Emory University, Atlanta, GA, USA.,Departments of Neurology, University of Mississippi Medical Center, Jackson, MS, USA.,Departments of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.,G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA
| | - Jason M White
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA
| | - Jumi Chung
- Departments of Neurology and Physiology, Emory University, Atlanta, GA, USA.,Departments of Neurology, University of Mississippi Medical Center, Jackson, MS, USA.,G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA
| | - Patrick Malone
- Departments of Neurology and Physiology, Emory University, Atlanta, GA, USA
| | - Stephen P DeWeerth
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA.,School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Keith E Tansey
- Departments of Neurology and Physiology, Emory University, Atlanta, GA, USA. .,Spinal Cord Injury Clinic, Atlanta VA Medical Center, Atlanta, GA, USA. .,Departments of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA. .,Departments of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, USA. .,G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA. .,NeuroRobotics Lab, Methodist Rehabilitation Center, Jackson, MS, USA.
| |
Collapse
|
34
|
Sinh V, Ootsuka Y. Blockade of 5-HT2A receptors inhibits emotional hyperthermia in mice. J Physiol Sci 2019; 69:1097-1102. [PMID: 31432430 PMCID: PMC10717664 DOI: 10.1007/s12576-019-00703-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 08/09/2019] [Indexed: 01/20/2023]
Abstract
This study determined whether blockade of 5-hydroxytryptamine 2A (5-HT2A) receptors attenuated hyperthermia and tachycardia responses to psychological stress in mice. For this purpose, male mice (C57BL/6N) were pre-instrumented with a telemetric probe to measure core body temperature and heart rate prior to experimentation. Vehicle or 5-HT2A antagonist, eplivanserin hemifumarate (SR-46349B) ((1Z,2E)-1-(2-fluorophenyl)-3-(4-hydroxyphenyl)-2-propen-1-one O-[2-(dimethylamino) ethyl] oxime hemifumarate) (0.5, 1.0, 5.0 mg/kg), was injected intraperitoneally. To elicit psychological stress, an intruder male mouse confined to a small cage was introduced into the resident mouse's cage 30 min after administration of the injection. The application of this psychological stress increased body temperature by ~ 1.0 °C and heart rate by ~ 150 bpm in the vehicle group. In contrast, SR-46349B was shown to reduce this psychological stress-induced increase in body temperature in a dose-dependent manner (P < 0.05). However, the SR-46349B treatment groups had no influence on the intruder-elicited increase in heart rate. This study, therefore, suggests that 5-HT2A receptors play a significant role in mediating hyperthermia, but not tachycardia, during intruder-elicited psychological stress.
Collapse
Affiliation(s)
- Vanshika Sinh
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Youichirou Ootsuka
- Centre for Neuroscience, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
| |
Collapse
|
35
|
Zhu Q, Liu X, Glazier BJ, Krolick KN, Yang S, He J, Lo CC, Shi H. Differential Sympathetic Activation of Adipose Tissues by Brain-Derived Neurotrophic Factor. Biomolecules 2019; 9:biom9090452. [PMID: 31492038 PMCID: PMC6769916 DOI: 10.3390/biom9090452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/17/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Centrally administered brain-derived neurotrophic factor (BDNF) decreases body adiposity beyond what can be accounted for by decreased food intake, implying enhanced lipid metabolism by BDNF. Consistent with this notion, intracerebroventricular (icv) injection of BDNF in rats increased the expression of lipolytic enzymes in white adipose tissues (WAT) and increased circulating concentrations of lipolytic products without changing the levels of adrenal gland hormones. This suggests that central BDNF-induced lipid mobilization is likely due to sympathetic neural activation, rather than activation of the adrenocortical or adrenomedullary system. We hypothesized that BDNF activated sympathetic innervation of adipose tissues to regulate lipolysis. Rats with unilateral denervation of interscapular brown adipose tissue (BAT) and different WAT depots received icv injections of saline or BDNF. Both intact and denervated adipose tissues were exposed to the same circulating factors, but denervated adipose tissues did not receive neural signals. Norepinephrine (NE) turnover (NETO) of BAT and WAT was assessed as a measure of sympathetic activity. Findings revealed that central BDNF treatment induced a change in NETO in some but not all the adipose tissues tested. Specifically, greater NETO rates were found in BAT and gonadal epididymal WAT (EWAT), but not in inguinal WAT (IWAT) or retroperitoneal WAT (RWAT), of BDNF-treated rats compared to saline-treated rats. Furthermore, intact innervation was necessary for BDNF-induced NETO in BAT and EWAT. In addition, BDNF increased the expression of lipolytic enzymes in both intact and denervated EWAT and IWAT, suggesting that BDNF-induced WAT lipolysis was independent of intact innervation. To summarize, centrally administered BDNF selectively provoked sympathetic drives to BAT and EWAT that was dependent on intact innervation, while BDNF also increased lipolysis in a manner independent of intact innervation.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Xian Liu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | | | | - Shangyuwen Yang
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Jingyan He
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Chunmin C Lo
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
36
|
Doom JR, Lumeng JC, Sturza J, Kaciroti N, Vazquez DM, Miller AL. Longitudinal associations between overweight/obesity and stress biology in low-income children. Int J Obes (Lond) 2019; 44:646-655. [PMID: 31477784 PMCID: PMC7050333 DOI: 10.1038/s41366-019-0447-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/01/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023]
Abstract
Background/Objectives Associations between overweight and altered stress biology have been reported cross-sectionally during childhood, but it is unclear whether overweight precedes altered stress biology or if altered stress biology predicts greater likelihood of overweight over time. The current longitudinal study investigates associations between overweight/obesity, salivary alpha amylase and cortisol morning intercept, diurnal slope, and reactivity to social stress in a cohort of low-income children during preschool and middle childhood. Subjects/Methods Children were recruited through Head Start and were observed and followed into middle childhood (N = 257; M = 8.0 years). Height and weight were measured at both time points. Saliva samples were collected across the day and in response to a social challenge at both ages for alpha amylase and cortisol determination. Results Cross-lagged panel analyses indicated that overweight/obesity at preschool predicted lower morning alpha amylase (β = −0.18, 95% CI: −0.34, −0.03; p = .023), lower morning cortisol (β = −0.22, 95% CI: −0.38, −0.06; p = .006), lower sAA diurnal slope (β = −0.18, 95% CI: −0.34, −0.03; p = .021), and lower cortisol stress reactivity (β = −0.19, 95% CI: −0.35, −0.02; p = .031) in middle childhood. Lower alpha amylase reactivity at preschool was the only biological factor that predicted higher likelihood of overweight/obesity at middle childhood (β = −0.20, 95% CI: −0.38, −0.01; p = .035). Conclusions These findings suggest that overweight/obesity may be driving changes in stress biology across early to middle childhood, particularly in down-regulation of morning levels of stress hormones, diurnal sAA slope, and cortisol reactivity to stress, rather than stress biology driving overweight/obesity.
Collapse
Affiliation(s)
- Jenalee R Doom
- Department of Psychology, University of Denver, Denver, CO, USA. .,Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA. .,Center for Human Growth & Development, University of Michigan, Ann Arbor, MI, USA.
| | - Julie C Lumeng
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA.,Center for Human Growth & Development, University of Michigan, Ann Arbor, MI, USA.,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Julie Sturza
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA.,Center for Human Growth & Development, University of Michigan, Ann Arbor, MI, USA
| | - Niko Kaciroti
- Center for Human Growth & Development, University of Michigan, Ann Arbor, MI, USA.,Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Delia M Vazquez
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA.,Center for Human Growth & Development, University of Michigan, Ann Arbor, MI, USA
| | - Alison L Miller
- Center for Human Growth & Development, University of Michigan, Ann Arbor, MI, USA.,Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Credeur DP, Jones R, Stanford D, Stoner L, McCoy S, Jessee M. Central cardiovascular hemodynamic response to unilateral handgrip exercise with blood flow restriction. Eur J Appl Physiol 2019; 119:2255-2263. [PMID: 31420736 DOI: 10.1007/s00421-019-04209-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022]
Abstract
AIM Exercise training with blood flow restriction (BFR) increases muscle size and strength. However, there is limited investigation into the effects of BFR on cardiovascular health, particularly central hemodynamic load. PURPOSE To determine the effects of BFR exercise on central hemodynamic load (heart rate-HR, central pressures, arterial wave reflection, and aortic stiffness). METHODS Fifteen males (age = 25 ± 2 years; BMI = 27 ± 2 kg/m2, handgrip max voluntary contraction-MVC = 50 ± 2 kg) underwent 5-min bouts (counter-balanced, 10 min rest between) of rhythmic unilateral handgrip (1 s squeeze, 2 s relax) performed with a moderate-load (60% MVC) with and without BFR (i.e., 71 ± 5% arterial inflow flow reduction, assessed via Doppler ultrasound), and also with a low-load (40% MVC) with BFR. Outcomes included HR, central mean arterial pressure (cMAP), arterial wave reflection (augmentation index, AIx; wave reflection magnitude, RM%), aortic arterial stiffness (pulse wave velocity, aPWV), and peripheral (vastus lateralis) microcirculatory response (tissue saturation index, TSI%). RESULTS HR increased above baseline and time control for all handgrip bouts, but was similar between the moderate load with and without BFR conditions (moderate-load with BFR = + 9 ± 2; moderate-load without BFR = + 8 ± 2 bpm, p < 0.001). A similar finding was noted for central pressure (e.g., moderate load with BFR, cMAP = + 14 ± 1 mmHg, p < 0.001). No change occurred for RM% or AIx (p > 0.05) for any testing stage. TSI% increased during the moderate-load conditions (p = 0.01), and aPWV increased above baseline following moderate-load handgrip with BFR only (p = 0.012). CONCLUSIONS Combined with BFR, moderate load handgrip training with BFR does not significantly augment central hemodynamic load during handgrip exercise in young healthy men.
Collapse
Affiliation(s)
- Daniel P Credeur
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA.
| | - Raymond Jones
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Daphney Stanford
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Lee Stoner
- Department of Exercise and Sports Science, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie McCoy
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Matthew Jessee
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
38
|
Farmer DGS, Pracejus N, Dempsey B, Turner A, Bokiniec P, Paton JFR, Pickering AE, Burguet J, Andrey P, Goodchild AK, McAllen RM, McMullan S. On the presence and functional significance of sympathetic premotor neurons with collateralized spinal axons in the rat. J Physiol 2019; 597:3407-3423. [DOI: 10.1113/jp277661] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/23/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- David G. S. Farmer
- Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville VIC Australia
| | - Natasha Pracejus
- Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville VIC Australia
| | - Bowen Dempsey
- Neuroscience Paris‐Saclay Institute (Neuro‐PSI) CNRS Gif‐Sur‐Yvette France
| | - Anita Turner
- Faculty of Medicine & Health Science Macquarie University North Ryde NSW Australia
| | - Phillip Bokiniec
- Department of Neuroscience Max Delbrück Center for Molecular Medicine (MDC) Berlin‐Buch, Germany Neuroscience Research Center and Cluster of Excellence NeuroCure Charité‐Universitätsmedizin Berlin Germany
| | - Julian F. R. Paton
- Department of Physiology Faculty of Medical & Health Sciences University of Auckland Park Road Grafton Auckland New Zealand
| | - Anthony E. Pickering
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences University of Bristol Bristol UK
| | - Jasmine Burguet
- Institut Jean‐Pierre Bourgin INRA AgroParisTech CNRS Université Paris‐Saclay Versailles France
| | - Philippe Andrey
- Institut Jean‐Pierre Bourgin INRA AgroParisTech CNRS Université Paris‐Saclay Versailles France
| | - Ann K. Goodchild
- Faculty of Medicine & Health Science Macquarie University North Ryde NSW Australia
| | - Robin M. McAllen
- Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville VIC Australia
| | - Simon McMullan
- Faculty of Medicine & Health Science Macquarie University North Ryde NSW Australia
| |
Collapse
|
39
|
Kasos K, Zimonyi S, Gonye B, Köteles F, Kasos E, Kotyuk E, Varga K, Veres A, Szekely A. Obimon: An open-source device enabling group measurement of electrodermal activity. Psychophysiology 2019; 56:e13374. [PMID: 30950524 DOI: 10.1111/psyp.13374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/19/2018] [Accepted: 01/25/2019] [Indexed: 11/28/2022]
Abstract
Electrodermal activity (EDA) provides the means to gauge the activity of the sympathetic nervous system. Assessment of EDA for research purposes requires measurement systems that are sensitive to small changes in arousal in the full measurement range, collecting, storing, and monitoring data. The objective behind designing a new open-source device was to be able to measure EDA simultaneously on many subjects, monitoring their activity in real time remotely and collecting high precision data suitable for analyses. To assure feasibility of simultaneous measurements on multiple subjects, the devices must be compact and wearable, without compromising data quality. Experiments were carried out using synchronized devices in group and single subject environments. Validity of EDA measurements of Obimon was demonstrated compared to a reference system (Nexus) during a breathing exercise, a short movie, and while exposed to loud computer-generated tones, using Pearson correlation, Passing-Bablok regression, and Bland-Altman analysis. Seamless management of several Obimons and real-time visualization of EDA via Android phone/tablet application from a large number of participants was demonstrated. Based on analyses of the data collected, we conclude that the Obimon device presented here is a valid and feasible tool for collecting EDA in single or multisubject environments.
Collapse
Affiliation(s)
- Krisztian Kasos
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Szabolcs Zimonyi
- MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bianka Gonye
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Köteles
- Institute of Health Promotion and Sport Sciences, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Eniko Kasos
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Eszter Kotyuk
- MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Katalin Varga
- MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | - Anna Szekely
- MTA-ELTE Lendület Adaptation Research Group, Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
40
|
Hashemi MM, Gladwin TE, de Valk NM, Zhang W, Kaldewaij R, van Ast V, Koch SBJ, Klumpers F, Roelofs K. Neural Dynamics of Shooting Decisions and the Switch from Freeze to Fight. Sci Rep 2019; 9:4240. [PMID: 30862811 PMCID: PMC6414631 DOI: 10.1038/s41598-019-40917-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/21/2019] [Indexed: 11/09/2022] Open
Abstract
Real-life shooting decisions typically occur under acute threat and require fast switching between vigilant situational assessment and immediate fight-or-flight actions. Recent studies suggested that freezing facilitates action preparation and decision-making but the neurocognitive mechanisms remain unclear. We applied functional magnetic resonance imaging, posturographic and autonomic measurements while participants performed a shooting task under threat of shock. Two independent studies, in unselected civilians (N = 22) and police recruits (N = 54), revealed that preparation for shooting decisions under threat is associated with postural freezing, bradycardia, midbrain activity (including the periaqueductal gray-PAG) and PAG-amygdala connectivity. Crucially, stronger activity in the midbrain/PAG during this preparatory stage of freezing predicted faster subsequent accurate shooting. Finally, the switch from preparation to active shooting was associated with tachycardia, perigenual anterior cingulate cortex (pgACC) activity and pgACC-amygdala connectivity. These findings suggest that threat-anticipatory midbrain activity centred around the PAG supports decision-making by facilitating action preparation and highlight the role of the pgACC when switching from preparation to action. These results translate animal models of the neural switch from freeze-to-action. In addition, they reveal a core neural circuit for shooting performance under threat and provide empirical evidence for the role of defensive reactions such as freezing in subsequent action decision-making.
Collapse
Affiliation(s)
- Mahur M Hashemi
- Donders Institute for Brain Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, 6525EN, Netherlands.
- Behavioural Science Institute, Radboud University, Nijmegen, 6526HR, Netherlands.
| | - Thomas E Gladwin
- Donders Institute for Brain Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, 6525EN, Netherlands
- Department of Psychology and Counselling, University of Chichester, Chichester, West Sussex, P019 6PE, United Kingdom
| | - Naomi M de Valk
- Donders Institute for Brain Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, 6525EN, Netherlands
| | - Wei Zhang
- Donders Institute for Brain Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, 6525EN, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, 6526HR, Netherlands
| | - Reinoud Kaldewaij
- Donders Institute for Brain Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, 6525EN, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, 6526HR, Netherlands
| | - Vanessa van Ast
- Donders Institute for Brain Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, 6525EN, Netherlands
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, 1018WT, Netherlands
| | - Saskia B J Koch
- Donders Institute for Brain Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, 6525EN, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, 6526HR, Netherlands
| | - Floris Klumpers
- Donders Institute for Brain Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, 6525EN, Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, 6526HR, Netherlands
| | - Karin Roelofs
- Donders Institute for Brain Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, 6525EN, Netherlands.
- Behavioural Science Institute, Radboud University, Nijmegen, 6526HR, Netherlands.
| |
Collapse
|
41
|
Incognito AV, Doherty CJ, Nardone M, Lee JB, Notay K, Seed JD, Millar PJ. Evidence for differential control of muscle sympathetic single units during mild sympathoexcitation in young, healthy humans. Am J Physiol Heart Circ Physiol 2019; 316:H13-H23. [DOI: 10.1152/ajpheart.00675.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two subpopulations of muscle sympathetic single units with opposite discharge characteristics have been identified during low-level cardiopulmonary baroreflex loading and unloading in middle-aged adults and patients with heart failure. The present study sought to determine whether similar subpopulations are present in young healthy adults during cardiopulmonary baroreflex unloading ( study 1) and rhythmic handgrip exercise ( study 2). Continuous hemodynamic and multiunit and single unit muscle sympathetic nerve activity (MSNA) data were collected at baseline and during nonhypotensive lower body negative pressure (LBNP; n = 12) and 40% maximal voluntary contraction rhythmic handgrip exercise (RHG; n = 24). Single unit MSNA responses were classified as anticipated or paradoxical based on whether changes were concordant or discordant with the multiunit MSNA response, respectively. LBNP and RHG both increased multiunit MSNA burst frequency (∆5 ± 3 bursts/min, P < 0.001; ∆5 ± 8 bursts/min, P = 0.005), burst amplitude (∆5 ± 7%, P = 0.04; ∆13 ± 14%, P < 0.001), and total MSNA (∆302 ± 191 AU/min, P = 0.001; ∆585 ± 556 AU/min, P < 0.001). During LBNP and RHG, 43 and 64 muscle single units were identified, respectively, which increased spike frequency (∆9 ± 11 spikes/min, P < 0.001; ∆10 ± 19 spikes/min, P < 0.001) and the probability of multiple spike firing (∆10 ± 12%, P < 0.001; ∆11 ± 26%, P = 0.001). During LBNP and RHG, 36 (84%) and 39 (61%) single units possessed anticipated firing responses (∆12 ± 10 spikes/min, P < 0.001; ∆19 ± 19 spikes/min, P < 0.001), whereas 7 (16%) and 25 (39%) single units exhibited paradoxical reductions (∆−3 ± 1 spikes/min, P = 0.003; ∆−4 ± 5 spikes/min, P < 0.001). The observation of divergent subpopulations of muscle sympathetic single units in healthy young humans during two mild sympathoexcitatory stressors supports differential control at the fiber level as a fundamental characteristic of human sympathetic regulation. NEW & NOTEWORTHY The activity of muscle sympathetic single units was recorded during cardiopulmonary baroreceptor unloading and rhythmic handgrip exercise in young healthy humans. During both stressors, the majority of single units (84% and 61%) exhibited anticipated behavior concordant with the integrated muscle sympathetic response, whereas a smaller proportion (16% and 39%) exhibited paradoxical sympathoinhibition. These results support differential control of postganglionic muscle sympathetic fibers as a characteristic of human sympathetic regulation during mild sympathoexcitatory stress. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/differential-control-of-sympathetic-outflow-in-young-humans/ .
Collapse
Affiliation(s)
- Anthony V. Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Connor J. Doherty
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Massimo Nardone
- Department of Kinesiology, University of Guelph-Humber, Toronto, Ontario, Canada
| | - Jordan B. Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Karambir Notay
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy D. Seed
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J. Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- Toronto General Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Abstract
It is from the discovery of leptin and the central nervous system as a regulator of bone remodeling that the presence of autonomic nerves within the skeleton transitioned from a mere histological observation to the mechanism whereby neurons of the central nervous system communicate with cells of the bone microenvironment and regulate bone homeostasis. This shift in paradigm sparked new preclinical and clinical investigations aimed at defining the contribution of sympathetic, parasympathetic, and sensory nerves to the process of bone development, bone mass accrual, bone remodeling, and cancer metastasis. The aim of this article is to review the data that led to the current understanding of the interactions between the autonomic and skeletal systems and to present a critical appraisal of the literature, bringing forth a schema that can put into physiological and clinical context the main genetic and pharmacological observations pointing to the existence of an autonomic control of skeletal homeostasis. The different types of nerves found in the skeleton, their functional interactions with bone cells, their impact on bone development, bone mass accrual and remodeling, and the possible clinical or pathophysiological relevance of these findings are discussed.
Collapse
Affiliation(s)
- Florent Elefteriou
- Department of Molecular and Human Genetics and Orthopedic Surgery, Center for Skeletal Medicine and Biology, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
43
|
Oga Y, Saku K, Nishikawa T, Kishi T, Tobushi T, Hosokawa K, Tohyama T, Sakamoto T, Sunagawa K, Tsutsui H. The impact of volume loading-induced low pressure baroreflex activation on arterial baroreflex-controlled sympathetic arterial pressure regulation in normal rats. Physiol Rep 2018; 6:e13887. [PMID: 30307125 PMCID: PMC6180297 DOI: 10.14814/phy2.13887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Although low pressure baroreflex (LPB) has been shown to elicit various cardiovascular responses, its impact on sympathetic nerve activity (SNA) and arterial baroreflex (ABR) function has not been fully elucidated. The aim of this study was to clarify how volume loading-induced acute LPB activation impacts on SNA and ABR function in normal rats. In 20 anesthetized Sprague-Dawley rats, we isolated bilateral carotid sinuses, controlled carotid sinus pressure (CSP), and measured central venous pressure (CVP), splanchnic SNA, and arterial pressure (AP). We infused blood stepwise (3 mL/kg/step) to activate volume loading-induced LPB. Under the ABR open-loop condition, stepwise volume loading markedly increased SNA by 76.8 ± 21.6% at CVP of 3.6 ± 0.2 mmHg. In contrast, further volume loading suppressed SNA toward the baseline condition. Bilateral vagotomy totally abolished the changes in SNA by volume loading. To assess the impact of LPB on ABR function, we changed CSP stepwise. Low volume loading (CVP = 3.6 ± 0.4 mmHg) significantly shifted the sigmoidal CSP-SNA relationship (central arc) upward from baseline, whereas high volume loading (CVP = 5.4 ± 0.4 mmHg) returned it to the baseline level. Volume loading shifted the linear SNA-AP relationship (peripheral arc) upward without significant changes in slope. In conclusions, volume loading-induced acute LPB activation evoked two-phase changes, an initial increase followed by decline from baseline value, in SNA via resetting of the ABR central arc. LPB may contribute greatly to stabilize AP in response to volume status.
Collapse
Affiliation(s)
- Yasuhiro Oga
- Department of Cardiovascular MedicineKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Keita Saku
- Department of Advanced Risk Stratification for Cardiovascular DiseasesCenter for Disruptive Cardiovascular MedicineKyushu UniversityFukuokaJapan
| | - Takuya Nishikawa
- Department of Cardiovascular MedicineKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Takuya Kishi
- Department of Advanced Risk Stratification for Cardiovascular DiseasesCenter for Disruptive Cardiovascular MedicineKyushu UniversityFukuokaJapan
| | - Tomoyuki Tobushi
- Department of Cardiovascular MedicineKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Kazuya Hosokawa
- Department of Cardiovascular MedicineKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Takeshi Tohyama
- Department of Cardiovascular MedicineKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Takafumi Sakamoto
- Department of Cardiovascular MedicineKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular HomeostasisCenter for Disruptive Cardiovascular MedicineKyushu UniversityFukuokaJapan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular MedicineKyushu University Graduate School of Medical SciencesFukuokaJapan
| |
Collapse
|
44
|
Stanford KR, Taylor-Clark TE. Mitochondrial modulation-induced activation of vagal sensory neuronal subsets by antimycin A, but not CCCP or rotenone, correlates with mitochondrial superoxide production. PLoS One 2018; 13:e0197106. [PMID: 29734380 PMCID: PMC5937758 DOI: 10.1371/journal.pone.0197106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/26/2018] [Indexed: 11/19/2022] Open
Abstract
Inflammation causes nociceptive sensory neuron activation, evoking debilitating symptoms and reflexes. Inflammatory signaling pathways are capable of modulating mitochondrial function, resulting in reactive oxygen species (ROS) production, mitochondrial depolarization and calcium release. Previously we showed that mitochondrial modulation with antimycin A, a complex III inhibitor, selectively stimulated nociceptive bronchopulmonary C-fibers via the activation of transient receptor potential (TRP) ankyrin 1 (A1) and vanilloid 1 (V1) cation channels. TRPA1 is ROS-sensitive, but there is little evidence that TRPV1 is activated by ROS. Here, we used dual imaging of dissociated vagal neurons to investigate the correlation of mitochondrial superoxide production (mitoSOX) or mitochondrial depolarization (JC-1) with cytosolic calcium (Fura-2AM), following mitochondrial modulation by antimycin A, rotenone (complex I inhibitor) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP, mitochondrial uncoupling agent). Mitochondrial modulation by all agents selectively increased cytosolic calcium in a subset of TRPA1/TRPV1-expressing (A1/V1+) neurons. There was a significant correlation between antimycin A-induced calcium responses and mitochondrial superoxide in wild-type 'responding' A1/V1+ neurons, which was eliminated in TRPA1-/- neurons, but not TRPV1-/- neurons. Nevertheless, antimycin A-induced superoxide production did not always increase calcium in A1/V1+ neurons, suggesting a critical role of an unknown factor. CCCP caused both superoxide production and mitochondrial depolarization but neither correlated with calcium fluxes in A1/V1+ neurons. Rotenone-induced calcium responses in 'responding' A1/V1+ neurons correlated with mitochondrial depolarization but not superoxide production. Our data are consistent with the hypothesis that mitochondrial dysfunction causes calcium fluxes in a subset of A1/V1+ neurons via ROS-dependent and ROS-independent mechanisms.
Collapse
Affiliation(s)
- Katherine R. Stanford
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Thomas E. Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| |
Collapse
|
45
|
Coates AM, INCOGNITO ANTHONYV, SEED JEREMYD, DOHERTY CONNORJ, MILLAR PHILIPJ, BURR JAMIEF. Three Weeks of Overload Training Increases Resting Muscle Sympathetic Activity. Med Sci Sports Exerc 2018; 50:928-937. [DOI: 10.1249/mss.0000000000001514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Tromp TR, Mahesh D, Joles JA, Ramchandra R. Direct Recording of Cardiac and Renal Sympathetic Nerve Activity Shows Differential Control in Renovascular Hypertension. Hypertension 2018; 71:1108-1116. [PMID: 29686011 DOI: 10.1161/hypertensionaha.117.10749] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/27/2017] [Accepted: 03/21/2018] [Indexed: 02/07/2023]
Abstract
There is increasing evidence that hypertension is initiated and maintained by elevated sympathetic tone. Increased sympathetic drive to the heart is linked to cardiac hypertrophy in hypertension and worsens prognosis. However, cardiac sympathetic nerve activity (SNA) has not previously been directly recorded in hypertension. We hypothesized that directly recorded cardiac SNA levels would be elevated during hypertension and that baroreflex control of cardiac SNA would be impaired during hypertension. Adult ewes either underwent unilateral renal artery clipping (n=12) or sham surgery (n=15). Two weeks later, electrodes were placed in the contralateral renal and cardiac nerves to record SNA. Baseline levels of SNA and baroreflex control of heart rate and sympathetic drive were examined. Unilateral renal artery clipping induced hypertension (mean arterial pressure 109±2 versus 91±3 mm Hg in shams; P<0.001). The heart rate baroreflex curve was shifted rightward but remained intact. In the hypertensive group, cardiac sympathetic burst incidence (bursts/100 beats) was increased (39±14 versus 25±9 in normotensives; P<0.05), whereas renal sympathetic burst incidence was decreased (69±20 versus 93±8 in normotensives; P<0.01). The renal sympathetic baroreflex curve was shifted rightward and showed increased gain, but there was no change in the cardiac sympathetic baroreflex gain. Renovascular hypertension is associated with differential control of cardiac and renal SNA; baseline cardiac SNA is increased, whereas renal SNA is decreased.
Collapse
Affiliation(s)
- Tycho R Tromp
- From the Department of Physiology, The University of Auckland, New Zealand (T.R.T., D.M., R.R.)
| | - Darvina Mahesh
- From the Department of Physiology, The University of Auckland, New Zealand (T.R.T., D.M., R.R.)
| | - Jaap A Joles
- and Department of Nephrology and Hypertension, University Medical Centre Utrecht, The Netherlands (T.R.T., J.A.J.)
| | - Rohit Ramchandra
- From the Department of Physiology, The University of Auckland, New Zealand (T.R.T., D.M., R.R.);
| |
Collapse
|
47
|
Indo Y. NGF-dependent neurons and neurobiology of emotions and feelings: Lessons from congenital insensitivity to pain with anhidrosis. Neurosci Biobehav Rev 2018; 87:1-16. [PMID: 29407522 DOI: 10.1016/j.neubiorev.2018.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
NGF is a well-studied neurotrophic factor, and TrkA is a receptor tyrosine kinase for NGF. The NGF-TrkA system supports the survival and maintenance of NGF-dependent neurons during development. Congenital insensitivity to pain with anhidrosis (CIPA) is an autosomal recessive genetic disorder due to loss-of-function mutations in the NTRK1 gene encoding TrkA. Individuals with CIPA lack NGF-dependent neurons, including NGF-dependent primary afferents and sympathetic postganglionic neurons, in otherwise intact systems. Thus, the pathophysiology of CIPA can provide intriguing findings to elucidate the unique functions that NGF-dependent neurons serve in humans, which might be difficult to evaluate in animal studies. Preceding studies have shown that the NGF-TrkA system plays critical roles in pain, itching and inflammation. This review focuses on the clinical and neurobiological aspects of CIPA and explains that NGF-dependent neurons in the peripheral nervous system play pivotal roles in interoception and homeostasis of our body, as well as in the stress response. Furthermore, these NGF-dependent neurons are likely requisite for neurobiological processes of 'emotions and feelings' in our species.
Collapse
Affiliation(s)
- Yasuhiro Indo
- Department of Pediatrics, Kumamoto University Hospital, Honjo 1-1-1, Chuou-ku, Kumamoto 860-8556, Japan.
| |
Collapse
|
48
|
Barretto-de-Souza L, Adami MB, Oliveira LA, Gomes-de-Souza L, Duarte JO, Almeida J, Crestani CC. Nitric oxide-cGMP-PKG signaling in the bed nucleus of the stria terminalis modulates the cardiovascular responses to stress in male rats. Eur Neuropsychopharmacol 2018; 28:75-84. [PMID: 29169825 DOI: 10.1016/j.euroneuro.2017.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/29/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) constitutes an important component of neural substrates of physiological and behavioral responses to aversive stimuli, and it has been implicated on cardiovascular responses evoked by stress. Nevertheless, the local neurochemical mechanisms involved in BNST control of cardiovascular responses during aversive threats are still poorly understood. Thus, the aim of the present study was to assess the involvement of activation in the BNST of the neuronal isoform of the enzyme nitric oxide synthase (nNOS), as well as of signaling mechanisms related to nitric oxide effects such as soluble guanylate cyclase (sGC) and protein kinase G (PKG) on cardiovascular responses induced by an acute session of restraint stress in male rats. We observed that bilateral microinjection of either the nonselective NOS inhibitor Nω-Nitro-L-arginine methyl ester (L-NAME), the selective nNOS inhibitor Nω-Propyl-L-arginine (NPLA) or the sGC inhibitor 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) into the BNST enhanced the tachycardic response and decreased the drop in tail cutaneous temperature evoked by acute restraint stress, but without affecting the increase on blood pressure. Bilateral BNST treatment with the selective PKG inhibitor KT5823 also facilitated the heart rate increase and decreased the drop in cutaneous temperature, in addition to enhancing the blood pressure increase. Taken together, these results provide evidence that NO released from nNOS and activation of sGC and PKG within the BNST play an inhibitory influence on tachycardia to stress, whereas this signaling mechanism mediates the sympathetic-mediated cutaneous vasoconstriction.
Collapse
Affiliation(s)
- Lucas Barretto-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Mariane B Adami
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Leandro A Oliveira
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Lucas Gomes-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Josiane O Duarte
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Jeferson Almeida
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
49
|
Barman SM, Yates BJ. Deciphering the Neural Control of Sympathetic Nerve Activity: Status Report and Directions for Future Research. Front Neurosci 2017; 11:730. [PMID: 29311801 PMCID: PMC5743742 DOI: 10.3389/fnins.2017.00730] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/14/2017] [Indexed: 12/15/2022] Open
Abstract
Sympathetic nerve activity (SNA) contributes appreciably to the control of physiological function, such that pathological alterations in SNA can lead to a variety of diseases. The goal of this review is to discuss the characteristics of SNA, briefly review the methodology that has been used to assess SNA and its control, and to describe the essential role of neurophysiological studies in conscious animals to provide additional insights into the regulation of SNA. Studies in both humans and animals have shown that SNA is rhythmic or organized into bursts whose frequency varies depending on experimental conditions and the species. These rhythms are generated by brainstem neurons, and conveyed to sympathetic preganglionic neurons through several pathways, including those emanating from the rostral ventrolateral medulla. Although rhythmic SNA is present in decerebrate animals (indicating that neurons in the brainstem and spinal cord are adequate to generate this activity), there is considerable evidence that a variety of supratentorial structures including the insular and prefrontal cortices, amygdala, and hypothalamic subnuclei provide inputs to the brainstem regions that regulate SNA. It is also known that the characteristics of SNA are altered during stress and particular behaviors such as the defense response and exercise. While it is a certainty that supratentorial structures contribute to changes in SNA during these behaviors, the neural underpinnings of the responses are yet to be established. Understanding how SNA is modified during affective responses and particular behaviors will require neurophysiological studies in awake, behaving animals, including those that entail recording activity from neurons that generate SNA. Recent studies have shown that responses of neurons in the central nervous system to most sensory inputs are context-specific. Future neurophysiological studies in conscious animals should also ascertain whether this general rule also applies to sensory signals that modify SNA.
Collapse
Affiliation(s)
- Susan M Barman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
50
|
Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice. Sci Rep 2017; 7:16082. [PMID: 29167565 PMCID: PMC5700117 DOI: 10.1038/s41598-017-16463-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023] Open
Abstract
Obesity is associated with severe metabolic diseases such as type 2 diabetes, insulin resistance, cardiovascular disease and some forms of cancer. The pathophysiology of obesity-induced metabolic diseases has been strongly related to white adipose tissue (WAT) dysfunction through several mechanisms such as fibrosis, apoptosis, inflammation, ER and oxidative stress. However, little is known of whether these processes are also present in brown adipose tissue (BAT) during obesity, and the potential consequences on mitochondrial activity. Here we characterized the BAT of obese and hyperglycemic mice treated with a high-fat diet (HFD) for 20 weeks. The hypertrophic BAT from obese mice showed no signs of fibrosis nor apoptosis, but higher levels of inflammation, ER stress, ROS generation and antioxidant enzyme activity than the lean counterparts. The response was attenuated compared with obesity-induced WAT derangements, which suggests that BAT is more resistant to the obesity-induced insult. In fact, mitochondrial respiration in BAT from obese mice was enhanced, with a 2-fold increase in basal oxygen consumption, through the upregulation of complex III of the electron transport chain and UCP1. Altogether, our results show that obesity is accompanied by an increase in BAT mitochondrial activity, inflammation and oxidative damage.
Collapse
|