1
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Jia G, Hill MA, Sowers JR. Vascular endothelial mineralocorticoid receptors and epithelial sodium channels in metabolic syndrome and related cardiovascular disease. J Mol Endocrinol 2023; 71:e230066. [PMID: 37610001 PMCID: PMC10502958 DOI: 10.1530/jme-23-0066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
Metabolic syndrome is a group of risk factors that increase the risk of developing metabolic and cardiovascular disease (CVD) and include obesity, dyslipidemia, insulin resistance, atherosclerosis, hypertension, coronary artery disease, and heart failure. Recent research indicates that excessive production of aldosterone and associated activation of mineralocorticoid receptors (MR) impair insulin metabolic signaling, promote insulin resistance, and increase the risk of developing metabolic syndrome and CVD. Moreover, activation of specific epithelial sodium channels (ENaC) in endothelial cells (EnNaC), which are downstream targets of endothelial-specific MR (ECMR) signaling, are also believed to play a crucial role in the development of metabolic syndrome and CVD. These adverse effects of ECMR/EnNaC activation are mediated by increased oxidative stress, inflammation, and lipid metabolic disorders. It is worth noting that ECMR/EnNaC activation and the pathophysiology underlying metabolic syndrome and CVD appears to exhibit sexual dimorphism. Targeting ECMR/EnNaC signaling may have a beneficial effect in preventing insulin resistance, diabetes, metabolic syndrome, and related CVD. This review aims to examine our current understanding of the relationship between MR activation and increased metabolic syndrome and CVD, with particular emphasis placed on the role for endothelial-specific ECMR/EnNaC signaling in these pathological processes.
Collapse
Affiliation(s)
- Guanghong Jia
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - James R Sowers
- Department of Medicine-Endocrinology and Metabolism, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
3
|
Soleimani M, Barone S, Luo H, Zahedi K. Pathogenesis of Hypertension in Metabolic Syndrome: The Role of Fructose and Salt. Int J Mol Sci 2023; 24:4294. [PMID: 36901725 PMCID: PMC10002086 DOI: 10.3390/ijms24054294] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Metabolic syndrome is manifested by visceral obesity, hypertension, glucose intolerance, hyperinsulinism, and dyslipidemia. According to the CDC, metabolic syndrome in the US has increased drastically since the 1960s leading to chronic diseases and rising healthcare costs. Hypertension is a key component of metabolic syndrome and is associated with an increase in morbidity and mortality due to stroke, cardiovascular ailments, and kidney disease. The pathogenesis of hypertension in metabolic syndrome, however, remains poorly understood. Metabolic syndrome results primarily from increased caloric intake and decreased physical activity. Epidemiologic studies show that an enhanced consumption of sugars, in the form of fructose and sucrose, correlates with the amplified prevalence of metabolic syndrome. Diets with a high fat content, in conjunction with elevated fructose and salt intake, accelerate the development of metabolic syndrome. This review article discusses the latest literature in the pathogenesis of hypertension in metabolic syndrome, with a specific emphasis on the role of fructose and its stimulatory effect on salt absorption in the small intestine and kidney tubules.
Collapse
Affiliation(s)
- Manoocher Soleimani
- Research Services, New Mexico Veterans Health Care Medical Center, Albuquerque, NM 87108, USA
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Sharon Barone
- Research Services, New Mexico Veterans Health Care Medical Center, Albuquerque, NM 87108, USA
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Henry Luo
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Kamyar Zahedi
- Research Services, New Mexico Veterans Health Care Medical Center, Albuquerque, NM 87108, USA
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| |
Collapse
|
4
|
Effect of Chronic Western Diets on Non-Alcoholic Fatty Liver of Male Mice Modifying the PPAR-γ Pathway via miR-27b-5p Regulation. Int J Mol Sci 2021; 22:ijms22041822. [PMID: 33673073 PMCID: PMC7917964 DOI: 10.3390/ijms22041822] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/21/2020] [Accepted: 02/07/2021] [Indexed: 12/23/2022] Open
Abstract
Western diets contribute to metabolic diseases. However, the effects of various diets and epigenetic mechanisms are mostly unknown. Here, six week-old C57BL/6J male and female mice were fed with a low-fat diet (LFD), high-fat diet (HFD), and high-fat high-fructose diet (HFD-HF) for 20 weeks. We determined that HFD-HF or HFD mice experienced significant metabolic dysregulation compared to the LFD. HFD-HF and HFD-fed male mice showed significantly increased body weight, liver size, and fasting glucose levels with downregulated PPARγ, SCD1, and FAS protein expression. In contrast, female mice were less affected by HFD and HFD-HF. As miR-27b contains a seed sequence in PPARγ, it was discovered that these changes are accompanied by male-specific upregulation of miR-27b-5p, which is even more pronounced in the HFD-HF group (p < 0.01 vs. LFD) compared to the HFD group (p < 0.05 vs. LFD). Other miR-27 subtypes were increased but not significantly. HFD-HF showed insignificant changes in fibrosis markers when compared to LFD. Interestingly, fat ballooning in hepatocytes was increased in HFD-fed mice compared to HFD-HF fed mice, however, the HFD-HF liver showed an increase in the number of small cells. Here, we concluded that chronic Western diet-composition administered for 20 weeks may surpass the non-alcoholic fatty liver (NAFL) stage but may be at an intermediate stage between fatty liver and fibrosis via miR-27b-5p-induced PPARγ downregulation.
Collapse
|
5
|
Wang H, Tian Y, Chen Y, Shen X, Pan L, Li G. Hyperinsulinemia rather than insulin resistance itself induces blood pressure elevation in high fat diet-fed rats. Clin Exp Hypertens 2020; 42:614-621. [PMID: 32349626 DOI: 10.1080/10641963.2020.1756316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To investigate if insulin resistance per se or the accompanying hyperinsulinemia induced hypertension and its underlying mechanisms. METHODS Sprague-Dawley rats were randomized into normal diet-fed group (ND group) and high-fat diet-fed group (HFD group). Then, the HFD group was further randomly divided into the control group (HFD_C group), the PIO group (treated with pioglitazone), the STZ_DM group (to induce diabetes with streptozotocin) and the DM+Ins group (streptozotocin injection followed by insulin treatment). Insulin sensitivity, plasma insulin, endothelin-1, norepinephrine, aldosterone, angiotensinⅡ and 24-h urinary sodium excretion (USE) levels of the groups were measured and analyzed. A multiple stepwise regression analysis method was applied to exam our hypothesis. RESULTS Compared to HFD_C group, the groups with lower plasma insulin, the PIO group and STZ_DM group, showed higher USE and lower blood pressure. The groups with higher plasma insulin (but same level of insulin resistance), the HFD_C group and DM+Ins group, showed lower USE and higher blood pressure. The 24-h urinary sodium excretion was the most important contributor to the significant changes of blood pressure with an R2 of 25.2% in this animal experiment. CONCLUSIONS It is the compensatory hyperinsulinemia rather than insulin resistance per se that causes blood pressure elevation. The urinary sodium excretion is the key mediator among the multiple mechanisms. Therapies targeting hyperinsulinemia and restricting salt intake may favor a better control of hypertension associated with insulin resistance.
Collapse
Affiliation(s)
- Hui Wang
- Department of Endocrinology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Yaqiang Tian
- Department of Endocrinology, Liaocheng People's Hospital , Liaocheng, Shandong Province, China
| | - Yanyan Chen
- Department of Endocrinology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Xiaoxia Shen
- Department of Endocrinology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Lin Pan
- Department of Endocrinology, China-Japan Friendship Hospital , Beijing, China
| | - Guangwei Li
- Department of Endocrinology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China.,Department of Endocrinology, China-Japan Friendship Hospital , Beijing, China
| |
Collapse
|
6
|
Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol 2020; 15:367-385. [PMID: 31015582 DOI: 10.1038/s41581-019-0145-4] [Citation(s) in RCA: 304] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excessive adiposity raises blood pressure and accounts for 65-75% of primary hypertension, which is a major driver of cardiovascular and kidney diseases. In obesity, abnormal kidney function and associated increases in tubular sodium reabsorption initiate hypertension, which is often mild before the development of target organ injury. Factors that contribute to increased sodium reabsorption in obesity include kidney compression by visceral, perirenal and renal sinus fat; increased renal sympathetic nerve activity (RSNA); increased levels of anti-natriuretic hormones, such as angiotensin II and aldosterone; and adipokines, particularly leptin. The renal and neurohormonal pathways of obesity and hypertension are intertwined. For example, leptin increases RSNA by stimulating the central nervous system proopiomelanocortin-melanocortin 4 receptor pathway, and kidney compression and RSNA contribute to renin-angiotensin-aldosterone system activation. Glucocorticoids and/or oxidative stress may also contribute to mineralocorticoid receptor activation in obesity. Prolonged obesity and progressive renal injury often lead to the development of treatment-resistant hypertension. Patient management therefore often requires multiple antihypertensive drugs and concurrent treatment of dyslipidaemia, insulin resistance, diabetes and inflammation. If more effective strategies for the prevention and control of obesity are not developed, cardiorenal, metabolic and other obesity-associated diseases could overwhelm health-care systems in the future.
Collapse
Affiliation(s)
- John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA. .,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
7
|
Weiskirchen S, Weiper K, Tolba RH, Weiskirchen R. All You Can Feed: Some Comments on Production of Mouse Diets Used in Biomedical Research with Special Emphasis on Non-Alcoholic Fatty Liver Disease Research. Nutrients 2020; 12:nu12010163. [PMID: 31936026 PMCID: PMC7019265 DOI: 10.3390/nu12010163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
The laboratory mouse is the most common used mammalian research model in biomedical research. Usually these animals are maintained in germ-free, gnotobiotic, or specific-pathogen-free facilities. In these facilities, skilled staff takes care of the animals and scientists usually don’t pay much attention about the formulation and quality of diets the animals receive during normal breeding and keeping. However, mice have specific nutritional requirements that must be met to guarantee their potential to grow, reproduce and to respond to pathogens or diverse environmental stress situations evoked by handling and experimental interventions. Nowadays, mouse diets for research purposes are commercially manufactured in an industrial process, in which the safety of food products is addressed through the analysis and control of all biological and chemical materials used for the different diet formulations. Similar to human food, mouse diets must be prepared under good sanitary conditions and truthfully labeled to provide information of all ingredients. This is mandatory to guarantee reproducibility of animal studies. In this review, we summarize some information on mice research diets and general aspects of mouse nutrition including nutrient requirements of mice, leading manufacturers of diets, origin of nutrient compounds, and processing of feedstuffs for mice including dietary coloring, autoclaving and irradiation. Furthermore, we provide some critical views on the potential pitfalls that might result from faulty comparisons of grain-based diets with purified diets in the research data production resulting from confounding nutritional factors.
Collapse
Affiliation(s)
- Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (S.W.); (K.W.)
| | - Katharina Weiper
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (S.W.); (K.W.)
- Institute of Laboratory Animal Science and Experimental Surgery, RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - René H. Tolba
- Institute of Laboratory Animal Science and Experimental Surgery, RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (S.W.); (K.W.)
- Correspondence: ; Tel.: +49-(0)241-80-88683
| |
Collapse
|
8
|
Cardiovascular and hidroelectrolytic changes in rats fed with high-fat diet. Behav Brain Res 2019; 373:112075. [PMID: 31284013 DOI: 10.1016/j.bbr.2019.112075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/14/2019] [Accepted: 07/05/2019] [Indexed: 01/18/2023]
Abstract
Obesity activates the renin-angiotensin and sympathetic systems facilitating hypertension and changes in the hydroelectrolytic balance. In the present study, in rats fed with high-fat diet (HFD), we investigated daily water intake and urinary excretion, prandial consumption of water and the changes in blood pressure and water intake to intracerebroventricular (icv) angiotensin II (ANG II). Male Holtzman rats (290-320 g) were fed with standard diet (SD, 11% calories from fat) or HFD (45% calories from fat) for 6 weeks. Part of the animals received a stainless steel cannula in the lateral ventricle (LV) at the 6th week after the beginning of the diets and the experiments were performed at the 7th week. The pressor effect, but not the dipsogenic response to acute icv injection of ANG II, was potentiated in the HFD rats. Daily water intake and urinary volume were reduced in rats fed with HFD with no significant changes in sodium excretion. Prandial water consumption was also reduced in rats ingesting HFD, an effect almost totally reverted blocking salivation with atropine. These results show a potentiation of the pressor response to icv ANG II in HFD-fed rats, without changing icv ANG II-induced water intake. In addition, prandial and daily water intake and urinary volume were reduced in HFD-fed rats, without changing sodium excretion. Salivation in rats ingesting HFD may play a role in the reduced prandial and daily water intake.
Collapse
|
9
|
Spires D, Manis AD, Staruschenko A. Ion channels and transporters in diabetic kidney disease. CURRENT TOPICS IN MEMBRANES 2019; 83:353-396. [PMID: 31196609 PMCID: PMC6815098 DOI: 10.1016/bs.ctm.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 1 and 2 diabetes mellitus are major medical epidemics affecting millions of patients worldwide. Diabetes mellitus is the leading cause of diabetic kidney disease (DKD), which is the most common cause of end-stage renal disease (ESRD). DKD is associated with significant changes in renal hemodynamics and electrolyte transport. Alterations in renal ion transport triggered by pathophysiological conditions in diabetes can exacerbate hypertension, accelerate renal injury, and are integral to the development of DKD. Renal ion transporters and electrolyte homeostasis play a fundamental role in functional changes and injury to the kidney during DKD. With the large number of ion transporters involved in DKD, understanding the roles of individual transporters as well as the complex cascades through which they interact is essential in the development of effective treatments for patients suffering from this disease. This chapter aims to gather current knowledge of the major renal ion transporters with altered expression and activity under diabetic conditions, and provide a comprehensive overview of their interactions and collective functions in DKD.
Collapse
Affiliation(s)
- Denisha Spires
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anna D Manis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States; Clement J. Zablocki VA Medical Center, Milwaukee, WI, United States.
| |
Collapse
|
10
|
McPherson KC, Shields CA, Poudel B, Fizer B, Pennington A, Szabo-Johnson A, Thompson WL, Cornelius DC, Williams JM. Impact of obesity as an independent risk factor for the development of renal injury: implications from rat models of obesity. Am J Physiol Renal Physiol 2018; 316:F316-F327. [PMID: 30539649 DOI: 10.1152/ajprenal.00162.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diabetes and hypertension are the major causes of chronic kidney disease (CKD). Epidemiological studies within the last few decades have revealed that obesity-associated renal disease is an emerging epidemic and that the increasing prevalence of obesity parallels the increased rate of CKD. This has led to the inclusion of obesity as an independent risk factor for CKD. A major complication when studying the relationship between obesity and renal injury is that cardiovascular and metabolic disorders that may result from obesity including hyperglycemia, hypertension, and dyslipidemia, or the cluster of these disorders [defined as the metabolic syndrome, (MetS)] also contribute to the development and progression of renal disease. The associations between hyperglycemia and hypertension with renal disease have been reported extensively in patients suffering from obesity. Currently, there are several obese rodent models (high-fat diet-induced obesity and leptin signaling dysfunction) that exhibit characteristics of MetS. However, the available obese rodent models currently have not been used to investigate the impact of obesity alone on the development of renal injury before hypertension and/or hyperglycemia. Therefore, the aim of this review is to describe the incidence and severity of renal disease in these rodent models of obesity and determine which models are suitable to study the independent effects obesity on the development and progression of renal disease.
Collapse
Affiliation(s)
- Kasi C McPherson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Corbin A Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bibek Poudel
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Brianca Fizer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alyssa Pennington
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ashley Szabo-Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Willie L Thompson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Emergency Medicine, University of Mississippi Medical Center , Jackson, Mississippi
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
11
|
Irsik DL, Brands MW. Physiological hyperinsulinemia caused by acute hyperglycemia minimizes renal sodium loss by direct action on kidneys. Am J Physiol Regul Integr Comp Physiol 2018; 315:R547-R552. [PMID: 29791205 DOI: 10.1152/ajpregu.00016.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study used acute, renal artery insulin infusion in conscious rats to test the hypothesis that hyperinsulinemia attenuates glucose-induced natriuresis by a direct renal mechanism. We reported previously that hyperinsulinemia was required to prevent ad libitum eating or an acute glucose bolus from causing excessive renal sodium loss. Rats were instrumented with renal artery, aortic, and femoral vein catheters and Data Sciences International blood pressure telemeters and were housed in metabolic cages. Insulin was clamped chronically at normal levels in two groups [vehicle infused (irV) and insulin infused (irI)] by administering streptozotocin and then infusing insulin intravenously 24 h/day to maintain normal blood glucose. Bolus glucose administration was used as a meal substitute to produce hyperglycemia that was not different between groups, and urinary sodium excretion (UNaV) was measured over the next 4 h. In the irV and control (C) rats, vehicle was infused in the renal artery during that period, whereas insulin was infused in the renal artery of the irI rats. Plasma insulin increased significantly in C rats but not in either of the clamped groups. UNaV in the irV rats, which could not increase circulating insulin levels, was approximately threefold greater than in C rats, similar to our previous report. However, allowing the kidney of irI rats to experience hyperinsulinemia via the renal artery insulin infusion completely prevented this, with no blood pressure differences. These data support our hypothesis that meal-induced increases in plasma insulin are a major component of normal sodium homeostasis, and that this occurs by direct action of insulin on the kidney.
Collapse
Affiliation(s)
- Debra L Irsik
- Department of Physiology, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Michael W Brands
- Department of Physiology, Medical College of Georgia, Augusta University , Augusta, Georgia
| |
Collapse
|
12
|
Nizar JM, Shepard BD, Vo VT, Bhalla V. Renal tubule insulin receptor modestly promotes elevated blood pressure and markedly stimulates glucose reabsorption. JCI Insight 2018; 3:95107. [PMID: 30135311 DOI: 10.1172/jci.insight.95107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/03/2018] [Indexed: 12/25/2022] Open
Abstract
Although the cause of hypertension among individuals with obesity and insulin resistance is unknown, increased plasma insulin, acting in the kidney to increase sodium reabsorption, has been proposed as a potential mechanism. Insulin may also stimulate glucose uptake, but the contributions of tubular insulin signaling to sodium or glucose transport in the setting of insulin resistance is unknown. To directly study the role of insulin signaling in the kidney, we generated inducible renal tubule-specific insulin receptor-KO mice and used high-fat feeding and mineralocorticoids to model obesity and insulin resistance. Insulin receptor deletion did not alter blood pressure or sodium excretion in mice on a high-fat diet alone, but it mildly attenuated the increase in blood pressure with mineralocorticoid supplementation. Under these conditions, KO mice developed profound glucosuria. Insulin receptor deletion significantly reduced SGLT2 expression and increased urinary glucose excretion and urine flow. These data demonstrate a direct role for insulin receptor-stimulated sodium and glucose transport and a functional interaction of insulin signaling with mineralocorticoids in vivo. These studies uncover a potential mechanistic link between preserved insulin sensitivity and renal glucose handling in obesity and insulin resistance.
Collapse
Affiliation(s)
- Jonathan M Nizar
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, DC
| | - Vianna T Vo
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
13
|
Nizar JM, Bouby N, Bankir L, Bhalla V. Improved protocols for the study of urinary electrolyte excretion and blood pressure in rodents: use of gel food and stepwise changes in diet composition. Am J Physiol Renal Physiol 2018; 314:F1129-F1137. [PMID: 29357416 PMCID: PMC6032076 DOI: 10.1152/ajprenal.00474.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/28/2017] [Accepted: 12/31/2017] [Indexed: 11/22/2022] Open
Abstract
Many experimental protocols in rodents require the comparison of groups that are fed different diets. Changes in dietary electrolyte and/or fat content can influence food intake, which can potentially introduce bias or confound the results. Unpalatable diets slow growth or cause weight loss, which is exacerbated by housing the animals in individual metabolic cages or by surgery. For balance studies in mice, small changes in body weight and food intake and low urinary flow can amplify these challenges. Powder food can be administered as gel with the addition of a desired amount of water, electrolytes, drugs (if any), and a small amount of agar. We describe here how the use of gel food to vary water, Na, K, and fat content can reduce weight loss and improve reproducibility of intake, urinary excretion, and blood pressure in rodents. In addition, mild food restriction reduces the interindividual variability and intergroup differences in food intake and associated variables, thus improving the statistical power of an experiment. Finally, we also demonstrate the advantages of using gel food for weight-based drug dosing. These protocols can improve the accuracy and reproducibility of experimental data where dietary manipulations are needed and are especially advisable in rodent studies related to water balance, obesity, and blood pressure.
Collapse
Affiliation(s)
- Jonathan M Nizar
- Department of Medicine, Division of Nephrology, Stanford University School of Medicine , Palo Alto, California
| | - Nadine Bouby
- Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherché des Cordeliers , Paris , France
- Université Pierre et Marie Curie , Paris , France
| | - Lise Bankir
- Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherché des Cordeliers , Paris , France
- Université Pierre et Marie Curie , Paris , France
| | - Vivek Bhalla
- Department of Medicine, Division of Nephrology, Stanford University School of Medicine , Palo Alto, California
| |
Collapse
|
14
|
Nizar JM, Bhalla V. Insights from direct renal insulin infusion: a new hammer for an age-old nail. Am J Physiol Renal Physiol 2018; 314:F926-F927. [PMID: 29141941 PMCID: PMC6031914 DOI: 10.1152/ajprenal.00532.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Jonathan M Nizar
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine , Palo Alto, California
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine , Palo Alto, California
| |
Collapse
|
15
|
Abstract
The metabolic syndrome describes a clustering of risk factors—visceral obesity, dyslipidaemia, insulin resistance, and salt-sensitive hypertension—that increases mortality related to cardiovascular disease, type 2 diabetes, cancer, and non-alcoholic fatty liver disease. The prevalence of these concurrent comorbidities is ~ 25–30% worldwide, and metabolic syndrome therefore presents a significant global public health burden. Evidence from clinical and preclinical studies indicates that glucocorticoid excess is a key causal feature of metabolic syndrome. This is not increased systemic in circulating cortisol, rather increased bioavailability of active glucocorticoids within tissues. This review examines the role of covert glucocorticoid excess on the hypertension of the metabolic syndrome. Here, the role of the 11β-hydroxysteroid dehydrogenase enzymes, which exert intracrine and paracrine control over glucocorticoid signalling, is examined. 11βHSD1 amplifies glucocorticoid action in cells and contributes to hypertension through direct and indirect effects on the kidney and vasculature. The deactivation of glucocorticoid by 11βHSD2 controls ligand access to glucocorticoid and mineralocorticoid receptors: loss of function promotes salt retention and hypertension. As for hypertension in general, high blood pressure in the metabolic syndrome reflects a complex interaction between multiple systems. The clear association between high dietary salt, glucocorticoid production, and metabolic disorders has major relevance for human health and warrants systematic evaluation.
Collapse
Affiliation(s)
- Matthew A Bailey
- The British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
16
|
Molecular Mechanisms of Sodium-Sensitive Hypertension in the Metabolic Syndrome. Curr Hypertens Rep 2017; 19:60. [DOI: 10.1007/s11906-017-0759-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Samson R, Qi A, Jaiswal A, Le Jemtel TH, Oparil S. Obesity-Associated Hypertension: the Upcoming Phenotype in African-American Women. Curr Hypertens Rep 2017; 19:41. [DOI: 10.1007/s11906-017-0738-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Pao AC. There and back again: insulin, ENaC, and the cortical collecting duct. Physiol Rep 2016; 4:4/10/e12809. [PMID: 27233302 PMCID: PMC4886174 DOI: 10.14814/phy2.12809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 01/02/2023] Open
Abstract
Cell culture models suggest mechanisms by which insulin stimulates ENaC in the cortical collecting duct. These mechanisms still need to be tested for physiological significance in animal models of insulin resistance.![]()
Collapse
Affiliation(s)
- Alan C Pao
- Department of Medicine Stanford University, Stanford, California
| |
Collapse
|
19
|
Cerecedo D, Martínez-Vieyra I, Sosa-Peinado A, Cornejo-Garrido J, Ordaz-Pichardo C, Benítez-Cardoza C. Alterations in plasma membrane promote overexpression and increase of sodium influx through epithelial sodium channel in hypertensive platelets. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1891-903. [PMID: 27137675 DOI: 10.1016/j.bbamem.2016.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/31/2016] [Accepted: 04/27/2016] [Indexed: 12/30/2022]
Abstract
Platelets are small, anucleated cell fragments that activate in response to a wide variety of stimuli, triggering a complex series of intracellular pathways leading to a hemostatic thrombus formation at vascular injury sites. However, in essential hypertension, platelet activation contributes to causing myocardial infarction and ischemic stroke. Reported abnormalities in platelet functions, such as platelet hyperactivity and hyperaggregability to several agonists, contribute to the pathogenesis and complications of thrombotic events associated with hypertension. Platelet membrane lipid composition and fluidity are determining for protein site accessibility, structural arrangement of platelet surface, and response to appropriate stimuli. The present study aimed to demonstrate whether structural and biochemical abnormalities in lipid membrane composition and fluidity characteristic of platelets from hypertensive patients influence the expression of the Epithelial Sodium Channel (ENaC), fundamental for sodium influx during collagen activation. Wb, cytometry and quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) assays demonstrated ENaC overexpression in platelets from hypertensive subjects and in relation to control subjects. Additionally, our results strongly suggest a key role of β-dystroglycan as a scaffold for the organization of ENaC and associated proteins. Understanding of the mechanisms of platelet alterations in hypertension should provide valuable information for the pathophysiology of hypertension.
Collapse
Affiliation(s)
- D Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional (IPN), México City, México.
| | - Ivette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional (IPN), México City, México
| | - Alejandro Sosa-Peinado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), P.O. Box 70-159, 04510, D.F., México City, México
| | - Jorge Cornejo-Garrido
- Laboratorio de Biología Celular y Productos Naturales, ENMH, IPN, México City, México
| | | | | |
Collapse
|
20
|
Ecelbarger CM. Metabolic syndrome, hypertension, and the frontier between. Am J Physiol Renal Physiol 2016; 310:F1175-7. [PMID: 26911845 DOI: 10.1152/ajprenal.00095.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 12/20/2022] Open
|
21
|
Lopes HF, Corrêa-Giannella ML, Consolim-Colombo FM, Egan BM. Visceral adiposity syndrome. Diabetol Metab Syndr 2016; 8:40. [PMID: 27437032 PMCID: PMC4950710 DOI: 10.1186/s13098-016-0156-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/10/2016] [Indexed: 02/08/2023] Open
Abstract
The association of anthropometric (waist circumference) and hemodynamic (blood pressure) changes with abnormalities in glucose and lipid metabolism has been motivation for a lot of discussions in the last 30 years. Nowadays, blood pressure, body mass index/abdominal circumference, glycemia, triglyceridemia, and HDL-cholesterol concentrations are considered in the definition of Metabolic syndrome, referred as Visceral adiposity syndrome (VAS) in the present review. However, more than 250 years ago an association between visceral and mediastinal obesity with hypertension, gout, and obstructive apnea had already been recognized. Expansion of visceral adipose tissue secondary to chronic over-consumption of calories stimulates the recruitment of macrophages, which assume an inflammatory phenotype and produce cytokines that directly interfere with insulin signaling, resulting in insulin resistance. In turn, insulin resistance (IR) manifests itself in various tissues, contributing to the overall phenotype of VAS. For example, in white adipose tissue, IR results in lipolysis, increased free fatty acids release and worsening of inflammation, since fatty acids can bind to Toll-like receptors. In the liver, IR results in increased hepatic glucose production, contributing to hyperglycemia; in the vascular endothelium and kidney, IR results in vasoconstriction, sodium retention and, consequently, arterial hypertension. Other players have been recognized in the development of VAS, such as genetic predisposition, epigenetic factors associated with exposure to an unfavourable intrauterine environment and the gut microbiota. More recently, experimental and clinical studies have shown the autonomic nervous system participates in modulating visceral adipose tissue. The sympathetic nervous system is related to adipose tissue function and differentiation through beta1, beta2, beta3, alpha1, and alpha2 adrenergic receptors. The relation is bidirectional: sympathetic denervation of adipose tissue blocks lipolysis to a variety of lipolytic stimuli and adipose tissue send inputs to the brain. An imbalance of sympathetic/parasympathetic and alpha2 adrenergic/beta3 receptor is related to visceral adipose tissue storage and insulin sensitivity. Thus, in addition to the well-known factors classically associated with VAS, abnormal autonomic activity also emerges as an important factor regulating white adipose tissue, which highlights complex role of adipose tissue in the VAS.
Collapse
Affiliation(s)
- Heno F. Lopes
- />Universidade Nove de Julho-UNINOVE, Rua Vergueiro 235/249, 2 subsolo, Liberdade, São Paulo, CEP: 01504-001 Brazil
- />Instituto do Coração do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria Lúcia Corrêa-Giannella
- />Laboratório de Investigação Médica (LIM-18) e Centro de Terapia Celular e Molecular (NUCEL/NETCEM) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP Brazil
| | - Fernanda M. Consolim-Colombo
- />Universidade Nove de Julho-UNINOVE, Rua Vergueiro 235/249, 2 subsolo, Liberdade, São Paulo, CEP: 01504-001 Brazil
- />Instituto do Coração do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Brent M. Egan
- />Greenville Health System and Department of Medicine, Care Coordination Institute, University of South Carolina-Greenville, Greenville, SC USA
| |
Collapse
|