1
|
Kiyoyama H, Tanabe M, Higashi M, Kamamura N, Kawano Y, Ihara K, Hideura K, Ito K. Association of visceral fat obesity with structural change in abdominal organs: fully automated three-dimensional volumetric computed tomography measurement using deep learning. Abdom Radiol (NY) 2025:10.1007/s00261-025-04834-x. [PMID: 39937214 DOI: 10.1007/s00261-025-04834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 02/02/2025] [Indexed: 02/13/2025]
Abstract
The purpose of this study was to explore the association between structural changes in abdominal organs and visceral fat obesity (VFO) using a fully automated three-dimensional (3D) volumetric computed tomography (CT) measurement method based on deep learning algorithm. A total of 610 patients (295 men and 315 women; mean age, 68.4 years old) were included. Fully automated 3D volumetric CT measurements of the abdominal organs were performed to determine the volume and average CT attenuation values of each organ. All patients were divided into 2 groups based on the measured visceral fat area: the VFO group (≥ 100 cm2) and non-VFO group (< 100 cm2), and the structural changes in abdominal organs were compared between these groups. The volumes of all organs were significantly higher in the VFO group than in the non-VFO group (all of p < 0.001). Conversely, the CT attenuation values of all organs in the VFO group were significantly lower than those in the non-VFO group (all of p < 0.001). Pancreatic CT values (r = - 0.701, p < 0.001) were most strongly associated with the visceral fat, followed by renal CT values (r = - 0.525, p < 0.001) and hepatic CT values (r = - 0.510, p < 0.001). Fully automated 3D volumetric CT measurement using a deep learning algorithm has the potential to detect the structural changes in the abdominal organs, especially the pancreas, such as an increase in the volumes and a decrease in CT attenuation values, probably due to increased ectopic fat accumulation in patients with VFO. This technique may provide valuable imaging support for the early detection and intervention of metabolic-related diseases.
Collapse
Affiliation(s)
- Haruka Kiyoyama
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masahiro Tanabe
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Mayumi Higashi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Naohiko Kamamura
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yosuke Kawano
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kenichiro Ihara
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Keiko Hideura
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Katsuyoshi Ito
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
2
|
Gupta H, Bhandari U. Molecular Insight into Obesity-Associated Nephropathy: Clinical Implications and Possible Strategies for its Management. Curr Drug Targets 2025; 26:188-202. [PMID: 39411934 DOI: 10.2174/0113894501314788241008115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 04/11/2025]
Abstract
Obesity is a significant health concern due to its rapid increase worldwide. It has been linked to the pathogenic factors of renal diseases, cancer, cardiovascular diseases, hypertension, dyslipidemia, and type 2 diabetes. Notably, obesity raises the likelihood of developing chronic kidney disease (CKD), leading to higher adult mortality and morbidity rates. This study explores the molecular mechanisms that underlie obesity-associated nephropathy and its clinical implications. Obesity-Associated Nephropathy (OAN) develops and worsens due to insulin resistance and hyperinsulinemia, which promote renal sodium reabsorption, glomerular hyperfiltration, and hypertension, leading to progressive kidney damage. Renal damage is further aggravated by persistent inflammation and redox damage, mediated by adipokines and proinflammatory cytokines, such as TNF-α and IL-6. Furthermore, stimulation of the sympathetic nervous system and the renin-angiotensin- aldosterone system (RAAS) intensifies glomerular hypertension and fibrosis. These elements cause glomerular hyperfiltration, renal hypertrophy, and progressive kidney damage. Clinical manifestations of obesity-associated nephropathy include proteinuria, reduced glomerular filtration rate (GFR), and ultimately, CKD. Management strategies currently focus on lifestyle modifications, such as weight loss through diet and exercise, which have been effective in reducing proteinuria and improving GFR. Pharmacological treatments targeting metabolic pathways, including GLP-1 receptor agonists and SGLT2 inhibitors, have shown renoprotective properties. Additionally, traditional RAAS inhibitors offer therapeutic benefits. Early detection and comprehensive management of OAN are essential to prevent its progression and lessen the burden of CKD.
Collapse
Affiliation(s)
- Himani Gupta
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Uma Bhandari
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
3
|
Jang KW, Hur J, Lee DW, Kim SR. Metabolic Syndrome, Kidney-Related Adiposity, and Kidney Microcirculation: Unraveling the Damage. Biomedicines 2024; 12:2706. [PMID: 39767613 PMCID: PMC11673429 DOI: 10.3390/biomedicines12122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Metabolic syndrome (MetS) is a cluster of interrelated risk factors, including insulin resistance, hypertension, dyslipidemia, and visceral adiposity, all of which contribute to kidney microvascular injury and the progression of chronic kidney disease (CKD). However, the specific impact of each component of MetS on kidney microcirculation remains unclear. Given the increasing prevalence of obesity, understanding how visceral fat-particularly fat surrounding the kidneys-affects kidney microcirculation is critical. This review examines the consequences of visceral obesity and other components of MetS on renal microcirculation. These kidney-related fat deposits can contribute to the mechanical compression of renal vasculature, promote inflammation and oxidative stress, and induce endothelial dysfunction, all of which accelerate kidney damage. Each factor of MetS initiates a series of hemodynamic and metabolic disturbances that impair kidney microcirculation, leading to vascular remodeling and microvascular rarefaction. The review concludes by discussing therapeutic strategies targeting the individual components of MetS, which have shown promise in alleviating inflammation and oxidative stress. Integrated approaches that address both of the components of MetS and kidney-related adiposity may improve renal outcomes and slow the progression of CKD.
Collapse
Affiliation(s)
- Kyu Won Jang
- Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (K.W.J.); (J.H.); (D.W.L.)
| | - Jin Hur
- Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (K.W.J.); (J.H.); (D.W.L.)
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Dong Won Lee
- Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (K.W.J.); (J.H.); (D.W.L.)
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Seo Rin Kim
- Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (K.W.J.); (J.H.); (D.W.L.)
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
4
|
Qiu X, Lan X, Li L, Chen H, Zhang N, Zheng X, Xie X. The role of perirenal adipose tissue deposition in chronic kidney disease progression: Mechanisms and therapeutic implications. Life Sci 2024; 352:122866. [PMID: 38936605 DOI: 10.1016/j.lfs.2024.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Chronic kidney disease (CKD) represents a significant and escalating global health challenge, with morbidity and mortality rates rising steadily. Evidence increasingly implicates perirenal adipose tissue (PRAT) deposition as a contributing factor in the pathogenesis of CKD. This review explores how PRAT deposition may exert deleterious effects on renal structure and function. The anatomical proximity of PRAT to the kidneys not only potentially causes mechanical compression but also leads to the dysregulated secretion of adipokines and inflammatory mediators, such as adiponectin, leptin, visfatin, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and exosomes. Additionally, PRAT deposition may contribute to renal lipotoxicity through elevated levels of free fatty acids (FFA), triglycerides (TAG), diacylglycerol (DAG), and ceramides (Cer). PRAT deposition is also linked to the hyperactivation of the renin-angiotensin-aldosterone system (RAAS), which further exacerbates CKD progression. Recognizing PRAT deposition as an independent risk factor for CKD underscores the potential of targeting PRAT as a novel strategy for the prevention and management of CKD. This review further discusses interventions that could include measuring PRAT thickness to establish a baseline, managing metabolic risk factors that promote its deposition, and inhibiting key PRAT-induced signaling pathways.
Collapse
Affiliation(s)
- Xiang Qiu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Xin Lan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Langhui Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Ningjuan Zhang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaoli Zheng
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Jiang Y, Zhu X, Jordan K, Li Y, Conley S, Tang H, Lerman A, Eirin A, Ou T, Lerman LO. Dyslipidemia-induced renal fibrosis related to ferroptosis and endoplasmic reticulum stress. J Lipid Res 2024; 65:100610. [PMID: 39094771 PMCID: PMC11401224 DOI: 10.1016/j.jlr.2024.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024] Open
Abstract
Dyslipidemia may induce chronic kidney disease and trigger both ferroptosis and endoplasmic reticulum (ER) stress, but the instigating factors are incompletely understood. We tested the hypothesis that different models of dyslipidemia engage distinct kidney injury mechanisms. Wild-type (WT) or proprotein-convertase subtilisin/kexin type-9 (PCSK9)-gain-of-function (GOF) Ossabaw pigs were fed with a 6-month normal diet (ND) or high-fat diet (HFD) (n = 5-6 each). Renal function and fat deposition were studied in vivo using CT, and blood and kidney tissue studied ex-vivo for lipid profile, systemic and renal vein FFAs levels, and renal injury mechanisms including lipid peroxidation, ferroptosis, and ER stress. Compared with WT-ND pigs, both HFD and PCSK9-GOF elevated triglyceride levels, which were highest in WT-HFD, whereas total and LDL cholesterol levels rose only in PCSK9-GOF pigs, particularly in PCSK9-GOF/HFD. The HFD groups had worse kidney function than the ND groups. The WT-HFD kidneys retained more FFA than other groups, but all kidneys developed fibrosis. Furthermore, HFD-induced ferroptosis in WT-HFD indicated by increased free iron, lipid peroxidation, and decreased glutathione peroxidase-4 mRNA expression, while PCSK9-GOF induced ER stress with upregulated GRP94 and CHOP protein expression. In vitro, pig kidney epithelial cells treated with palmitic acid and oxidized LDL to mimic HFD and PCSK9-GOF showed similar trends to those observed in vivo. Taken together, HFD-induced hypertriglyceridemia promotes renal FFA retention and ferroptosis, whereas PCSK9-GOF-induced hypercholesterolemia elicits ER stress, both resulting in renal fibrosis. These observations suggest different targets for preventing and treating renal fibrosis in subjects with specific types of dyslipidemia.
Collapse
Affiliation(s)
- Yamei Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA; Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Kyra Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Yongxin Li
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sabena Conley
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Sato R, von Haehling S. Targeting obesity for therapeutic intervention in heart failure patients. Expert Rev Cardiovasc Ther 2024; 22:217-230. [PMID: 38864827 DOI: 10.1080/14779072.2024.2363395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
INTRODUCTION Heart failure with preserved ejection fraction (HFpEF) is a highly heterogeneous syndrome, making it challenging to improve prognosis with pharmacotherapy. Obesity is one of the leading phenotypes of HFpEF, and its prevalence continues to grow worldwide. Consequently, obesity-targeted interventions have attracted attention as a novel treatment strategy for HFpEF. AREAS COVERED The authors review the association between the pathogenesis of obesity and HFpEF and the potential for obesity-targeted pharmacotherapeutic strategies in HFpEF, together with the latest evidence. The literature search was conducted in PubMed up to April 2024. EXPERT OPINION The STEP HFpEF (Semaglutide Treatment Effect in People with obesity and HFpEF) and SELECT (Semaglutide Effects on Cardiovascular Outcomes in People with Overweight or Obesity) trials recently demonstrated that the glucagon-like peptide 1 analogue, semaglutide, improves various aspects of clinical outcomes in obese HFpEF patients and significantly reduces cardiovascular and heart failure events in non-diabetic obese patients, along with a substantial weight loss. Future clinical trials with other incretin mimetics with more potent weight loss and sub-analyses of the SELECT trial may further emphasize the importance of the obesity phenotype-based approach in the treatment of HFpEF.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Lower Saxony, Göttingen, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Lower Saxony, Göttingen, Germany
| |
Collapse
|
7
|
Sun JY, Su Z, Yang J, Sun W, Kong X. The potential mechanisms underlying the modulating effect of perirenal adipose tissue on hypertension: Physical compression, paracrine, and neurogenic regulation. Life Sci 2024; 342:122511. [PMID: 38387699 DOI: 10.1016/j.lfs.2024.122511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Hypertension, a prevalent global cardiovascular disease, affects approximately 45.4 % of adults worldwide. Despite advances in therapy, hypertension continues to pose a significant health risk due to inadequate management. It has been established that excessive adiposity contributes majorly to hypertension, accounting for 65 to 75 % of primary cases. Fat depots can be categorised into subcutaneous and visceral adipose tissue based on anatomical and physiological characteristics. The metabolic impact and the risk of hypertension are determined more significantly by visceral fat. Perirenal adipose tissue (PRAT), a viscera enveloping the kidney, is known for its superior vascularisation and abundant innervation. Although traditionally deemed as a mechanical support tissue, recent studies have indicated its contributing potential to hypertension. Hypertensive patients tend to have increased PRAT thickness compared to those without, and there is a positive correlation between PRAT thickness and elevated systolic blood pressure. This review encapsulates the anatomical characteristics and biogenesis of PRAT. We provide an overview of the potential mechanisms where PRAT may modulate blood pressure, including physical compression, paracrine effects, and neurogenic regulation. PRAT has become a promising target for hypertension management, and continuous effort is required to further explore the underlying mechanisms.
Collapse
Affiliation(s)
- Jin-Yu Sun
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Zhenyang Su
- Medical School of Southeast University, Nanjing 21000, China
| | - Jiaming Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Wei Sun
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China.
| | - Xiangqing Kong
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China.
| |
Collapse
|
8
|
Badawy M, Elsayes KM, Lubner MG, Shehata MA, Fowler K, Kaoud A, Pickhardt PJ. Metabolic syndrome: imaging features and clinical outcomes. Br J Radiol 2024; 97:292-305. [PMID: 38308038 DOI: 10.1093/bjr/tqad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 02/04/2024] Open
Abstract
Metabolic syndrome, which affects around a quarter of adults worldwide, is a group of metabolic abnormalities characterized mainly by insulin resistance and central adiposity. It is strongly correlated with cardiovascular and all-cause mortality. Early identification of the changes induced by metabolic syndrome in target organs and timely intervention (eg, weight reduction) can decrease morbidity and mortality. Imaging can monitor the main components of metabolic syndrome and identify early the development and progression of its sequelae in various organs. In this review, we discuss the imaging features across different modalities that can be used to evaluate changes due to metabolic syndrome, including fatty deposition in different organs, arterial stiffening, liver fibrosis, and cardiac dysfunction. Radiologists can play a vital role in recognizing and following these target organ injuries, which in turn can motivate lifestyle modification and therapeutic intervention.
Collapse
Affiliation(s)
- Mohamed Badawy
- Department of Diagnostic Radiology, Wayne State University, Detroit, MI, 48202, United States
| | - Khaled M Elsayes
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Meghan G Lubner
- Department of Diagnostic Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, United States
| | - Mostafa A Shehata
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Kathryn Fowler
- Department of Diagnostic Radiology, University of California San Diego, San Diego, CA, 92093, United States
| | - Arwa Kaoud
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Perry J Pickhardt
- Department of Diagnostic Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, United States
| |
Collapse
|
9
|
Carullo N, Zicarelli M, Michael A, Faga T, Battaglia Y, Pisani A, Perticone M, Costa D, Ielapi N, Coppolino G, Bolignano D, Serra R, Andreucci M. Childhood Obesity: Insight into Kidney Involvement. Int J Mol Sci 2023; 24:17400. [PMID: 38139229 PMCID: PMC10743690 DOI: 10.3390/ijms242417400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
This review examines the impact of childhood obesity on the kidney from an epidemiological, pathogenetic, clinical, and pathological perspective, with the aim of providing pediatricians and nephrologists with the most current data on this topic. The prevalence of childhood obesity and chronic kidney disease (CKD) is steadily increasing worldwide, reaching epidemic proportions. While the impact of obesity in children with CKD is less pronounced than in adults, recent studies suggest a similar trend in the child population. This is likely due to the significant association between obesity and the two leading causes of end-stage renal disease (ESRD): diabetes mellitus (DM) and hypertension. Obesity is a complex, systemic disease that reflects interactions between environmental and genetic factors. A key mechanism of kidney damage is related to metabolic syndrome and insulin resistance. Therefore, we can speculate about an adipose tissue-kidney axis in which neurohormonal and immunological mechanisms exacerbate complications resulting from obesity. Adipose tissue, now recognized as an endocrine organ, secretes cytokines called adipokines that may induce adaptive or maladaptive responses in renal cells, leading to kidney fibrosis. The impact of obesity on kidney transplant-related outcomes for both donors and recipients is also significant, making stringent preventive measures critical in the pre- and post-transplant phases. The challenge lies in identifying renal involvement as early as possible, as it is often completely asymptomatic and not detectable through common markers of kidney function. Ongoing research into innovative technologies, such as proteomics and metabolomics, aims to identify new biomarkers and is constantly evolving. Many aspects of pediatric disease progression in the population of children with obesity still require clarification. However, the latest scientific evidence in the field of nephrology offers glimpses into various new perspectives, such as genetic factors, comorbidities, and novel biomarkers. Investigating these aspects early could potentially improve the prognosis of these young patients through new diagnostic and therapeutic strategies. Hence, the aim of this review is to provide a comprehensive exploration of the pathogenetic mechanisms and prevalent pathological patterns of kidney damage observed in children with obesity.
Collapse
Affiliation(s)
- Nazareno Carullo
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (N.C.); (M.Z.); (A.M.); (T.F.); (G.C.)
| | - Mariateresa Zicarelli
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (N.C.); (M.Z.); (A.M.); (T.F.); (G.C.)
| | - Ashour Michael
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (N.C.); (M.Z.); (A.M.); (T.F.); (G.C.)
| | - Teresa Faga
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (N.C.); (M.Z.); (A.M.); (T.F.); (G.C.)
| | - Yuri Battaglia
- Department of Medicine, University of Verona, 37129 Verona, Italy;
| | - Antonio Pisani
- Department of Public Health, University Federico II of Naples, 80131 Naples, Italy;
| | - Maria Perticone
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.P.); (D.C.); (D.B.)
| | - Davide Costa
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.P.); (D.C.); (D.B.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy;
| | - Nicola Ielapi
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy;
- Department of Public Health and Infectious Disease, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Giuseppe Coppolino
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (N.C.); (M.Z.); (A.M.); (T.F.); (G.C.)
| | - Davide Bolignano
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.P.); (D.C.); (D.B.)
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.P.); (D.C.); (D.B.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy;
| | - Michele Andreucci
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (N.C.); (M.Z.); (A.M.); (T.F.); (G.C.)
| |
Collapse
|
10
|
Zhang K, Zhang J, Kan C, Tian H, Ma Y, Huang N, Han F, Hou N, Sun X. Role of dysfunctional peri-organ adipose tissue in metabolic disease. Biochimie 2023; 212:12-20. [PMID: 37019205 DOI: 10.1016/j.biochi.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Metabolic disease is a complex disorder defined by a group with interrelated factors. There is growing evidence that obesity can lead to a variety of metabolic diseases, including diabetes and cardiovascular disease. Excessive adipose tissue (AT) deposition and ectopic accumulation can lead to increased peri-organ AT thickness. Dysregulation of peri-organ (perivascular, perirenal, and epicardial) AT is strongly associated with metabolic disease and its complications. The mechanisms include secretion of cytokines, activation of immunocytes, infiltration of inflammatory cells, involvement of stromal cells, and abnormal miRNA expression. This review discusses the associations and mechanisms by which various types of peri-organ AT affect metabolic diseases while addressing it as a potential future treatment strategy.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongzhan Tian
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Na Huang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
11
|
Remer T, Kalotai N, Amini AM, Lehmann A, Schmidt A, Bischoff-Ferrari HA, Egert S, Ellinger S, Kroke A, Kühn T, Lorkowski S, Nimptsch K, Schwingshackl L, Zittermann A, Watzl B, Siener R. Protein intake and risk of urolithiasis and kidney diseases: an umbrella review of systematic reviews for the evidence-based guideline of the German Nutrition Society. Eur J Nutr 2023; 62:1957-1975. [PMID: 37133532 PMCID: PMC10349749 DOI: 10.1007/s00394-023-03143-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/03/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE Changes in dietary protein intake metabolically affect kidney functions. However, knowledge on potential adverse consequences of long-term higher protein intake (HPI) for kidney health is lacking. To summarise and evaluate the available evidence for a relation between HPI and kidney diseases, an umbrella review of systematic reviews (SR) was conducted. METHODS PubMed, Embase and Cochrane Database of SRs published until 12/2022 were searched for the respective SRs with and without meta-analyses (MA) of randomised controlled trials or cohort studies. For assessments of methodological quality and of outcome-specific certainty of evidence, a modified version of AMSTAR 2 and the NutriGrade scoring tool were used, respectively. The overall certainty of evidence was assessed according to predefined criteria. RESULTS Six SRs with MA and three SRs without MA on various kidney-related outcomes were identified. Outcomes were chronic kidney disease, kidney stones and kidney function-related parameters: albuminuria, glomerular filtration rate, serum urea, urinary pH and urinary calcium excretion. Overall certainty of evidence was graded as 'possible' for stone risk not to be associated with HPI and albuminuria not to be elevated through HPI (above recommendations (> 0.8 g/kg body weight/day)) and graded as 'probable' or 'possible' for most other kidney function-related parameters to be physiologically increased with HPI. CONCLUSION Changes of the assessed outcomes may have reflected mostly physiological (regulatory), but not pathometabolic responses to higher protein loads. For none of the outcomes, evidence was found that HPI does specifically trigger kidney stones or diseases. However, for potential recommendations long-term data, also over decades, are required.
Collapse
Affiliation(s)
- Thomas Remer
- DONALD Study Center Dortmund, Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, Heinstück 11, 44225, Dortmund, Germany.
| | | | | | | | | | - Heike A Bischoff-Ferrari
- Department of Aging Medicine and Aging Research, University Hospital Zurich, University of Zurich, and City Hospital Zurich, Zurich, Switzerland
| | - Sarah Egert
- Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany
| | - Sabine Ellinger
- Department of Nutrition and Food Science, Human Nutrition, University of Bonn, Bonn, Germany
| | - Anja Kroke
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany
| | - Tilman Kühn
- The Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg, Germany
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller, University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular, Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Lukas Schwingshackl
- Faculty of Medicine, Institute for Evidence in Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Herz- Und Diabeteszentrum Nordrhein-Westfalen, Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Roswitha Siener
- Department of Urology, University Stone Center, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
12
|
Christoffersen BØ, Kristensen CA, Lindgaard R, Kirk RK, Viuff BM, Kvist PH, Pedersen HD, Ludvigsen TP, Skovgaard T, Fels JJ, Martinussen T, Christiansen LB, Cirera S, Olsen LH. Functional and morphological renal changes in a Göttingen Minipig model of obesity-related and diabetic nephropathy. Sci Rep 2023; 13:6017. [PMID: 37045950 PMCID: PMC10097698 DOI: 10.1038/s41598-023-32674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Obesity-related glomerulopathy and diabetic nephropathy (DN) are serious complications to metabolic syndrome and diabetes. The purpose was to study effects of a fat, fructose and cholesterol-rich (FFC) diet with and without salt in order to induce hypertension on kidney function and morphology in Göttingen Minipigs with and without diabetes. Male Göttingen Minipigs were divided into 4 groups: SD (standard diet, n = 8), FFC (FFC diet, n = 16), FFC-DIA (FFC diet + diabetes, n = 14), FFC-DIA + S (FFC diet with extra salt + diabetes, n = 14). Blood and urine biomarkers, glomerular filtration rate (GFR), blood pressure (BP) and resistive index (RI) were evaluated after 6-7 months (T1) and 12-13 months (T2). Histology, electron microscopy and gene expression (excluding FFC-DIA + S) were evaluated at T2. All groups fed FFC-diet displayed obesity, increased GFR and RI, glomerulomegaly, mesangial expansion (ME) and glomerular basement membrane (GBM) thickening. Diabetes on top of FFC diet led to increased plasma glucose and urea and proteinuria and tended to exacerbate the glomerulomegaly, ME and GBM thickening. Four genes (CDKN1A, NPHS2, ACE, SLC2A1) were significantly deregulated in FFC and/or FFC-DIA compared to SD. No effects on BP were observed. Göttingen Minipigs fed FFC diet displayed some of the renal early changes seen in human obesity. Presence of diabetes on top of FFC diet exacerbated the findings and lead to changes resembling the early phases of human DN.
Collapse
Affiliation(s)
| | - Camilla Aarup Kristensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- AJ Vaccines A/S, Copenhagen S, Denmark
| | - Rikke Lindgaard
- Novo Nordisk A/S, Måløv, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- AniCura ApS, Herlev, Denmark
| | | | | | | | | | | | - Tine Skovgaard
- Novo Nordisk A/S, Måløv, Denmark
- Unilabs, Copenhagen, Denmark
| | | | - Torben Martinussen
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liselotte Bruun Christiansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Novo Nordisk A/S, Søborg, Denmark
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
13
|
Borlaug BA, Jensen MD, Kitzman DW, Lam CSP, Obokata M, Rider OJ. Obesity and heart failure with preserved ejection fraction: new insights and pathophysiological targets. Cardiovasc Res 2023; 118:3434-3450. [PMID: 35880317 PMCID: PMC10202444 DOI: 10.1093/cvr/cvac120] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity and heart failure with preserved ejection fraction (HFpEF) represent two intermingling epidemics driving perhaps the greatest unmet health problem in cardiovascular medicine in the 21st century. Many patients with HFpEF are either overweight or obese, and recent data have shown that increased body fat and its attendant metabolic sequelae have widespread, protean effects systemically and on the cardiovascular system leading to symptomatic HFpEF. The paucity of effective therapies in HFpEF underscores the importance of understanding the distinct pathophysiological mechanisms of obese HFpEF to develop novel therapies. In this review, we summarize the current understanding of the cardiovascular and non-cardiovascular features of the obese phenotype of HFpEF, how increased adiposity might pathophysiologically contribute to the phenotype, and how these processes might be targeted therapeutically.
Collapse
Affiliation(s)
- Barry A Borlaug
- Department of Cardiovascular Diseases, Mayo Clinic Rochester, 200 First Street SW, Rochester, MN 55905, USA
| | | | - Dalane W Kitzman
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Masaru Obokata
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Oliver J Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Gjela M, Askeland A, Frøkjær JB, Mellergaard M, Handberg A. MRI-based quantification of renal fat in obese individuals using different image analysis approaches. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:3546-3553. [PMID: 35849166 DOI: 10.1007/s00261-022-03603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE The purpose of this study was to evaluate different renal proton density fat fraction (PDFF) analysis approaches. Additionally, we assessed renal fat in obese individuals and lean individuals. METHODS This was a retrospective observational case-control study. Twenty-eight obese individuals and 14 lean controls underwent MRI with multi-point Dixon technique for PDFF maps. The following renal PDFF image analysis approaches were performed and compared: (1) five circular regions of interest (ROIs) in six slices, (2) three circular ROIs in one slice, (3) freehand segmentation of renal parenchyma in one slice, and (4) freehand segmentation of renal parenchyma avoiding the renal border in one slice. Furthermore, renal PDFF was compared between obese and lean individuals. RESULTS Methods 1, 2, and 4 were positively correlated (r ≥ 0.498, p ≤ 0.001). Renal PDFF values varied more with regards to ROI placement within slices than mean PDFF between slices. Using all methods, the obese individuals had significantly higher renal PDFF values compared with the lean controls. CONCLUSION Renal PDFF should be measured covering large areas of the kidney while excluding artifacts. This can be achieved using multiple circular ROIs. Increased lipid accumulation in the kidneys was related to obesity.
Collapse
Affiliation(s)
- Mimoza Gjela
- Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark. .,Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.
| | - Anders Askeland
- Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark
| |
Collapse
|
15
|
Zeitler EM, Jennette JC, Flythe JE, Falk RJ, Poulton JS. High-calorie diet results in reversible obesity-related glomerulopathy in adult zebrafish regardless of dietary fat. Am J Physiol Renal Physiol 2022; 322:F527-F539. [PMID: 35224994 PMCID: PMC8977181 DOI: 10.1152/ajprenal.00018.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Obesity is a risk factor for the development of kidney disease. The role of diet in this association remains undetermined, in part due to practical limitations in studying nutrition in humans. In particular, the relative importance of calorie excess versus dietary macronutrient content is poorly understood. For example, it is unknown if calorie restriction modulates obesity-related kidney pathology. To study the effects of diet-induced obesity in a novel animal model, we treated zebrafish for 8 wk with diets varied in both calorie and fat content. Kidneys were evaluated by light and electron microscopy. We evaluated glomerular filtration barrier function using a dextran permeability assay. We assessed the effect of diet on podocyte sensitivity to injury using an inducible podocyte injury model. We then tested the effect of calorie restriction on the defects caused by diet-induced obesity. Fish fed a high-calorie diet developed glomerulomegaly (mean: 1,211 vs. 1,010 µm2 in controls, P = 0.007), lower podocyte density, foot process effacement, glomerular basement membrane thickening, tubular enlargement (mean: 1,038 vs. 717 µm2 in controls, P < 0.0001), and ectopic lipid deposition. Glomerular filtration barrier dysfunction and increased susceptibility to podocyte injury were observed with high-calorie feeding regardless of dietary fat content. These pathological changes resolved with 4 wk of calorie restriction. Our findings suggest that calorie excess rather than dietary fat drives obesity-related kidney dysfunction and that inadequate podocyte proliferation in response to glomerular enlargement may cause podocyte dysfunction. We also demonstrate the value of zebrafish as a novel model for studying diet in obesity-related kidney disease.NEW & NOTEWORTHY Obesity is a risk factor for kidney disease. The role of diet in this association is difficult to study in humans. In this study, zebrafish fed a high-calorie diet, regardless of fat macronutrient composition, developed glomerulomegaly, foot process effacement, and filtration barrier dysfunction, recapitulating the changes seen in humans with obesity. Calorie restriction reversed the changes. This work suggests that macronutrient composition may be less important than total calories in the development of obesity-related kidney disease.
Collapse
Affiliation(s)
- Evan M Zeitler
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J Charles Jennette
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Nephropathology Division, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer E Flythe
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ronald J Falk
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John S Poulton
- Division of Nephrology and Hypertension, Department of Medicine, UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
16
|
Bier A, Shapira E, Khasbab R, Sharabi Y, Grossman E, Leibowitz A. High-Fructose Diet Increases Renal ChREBPβ Expression, Leading to Intrarenal Fat Accumulation in a Rat Model with Metabolic Syndrome. BIOLOGY 2022; 11:biology11040618. [PMID: 35453816 PMCID: PMC9027247 DOI: 10.3390/biology11040618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 01/07/2023]
Abstract
Simple Summary Fructose consumption leads to the development of metabolic syndrome. Fatty liver and chronic kidney disease are closely related to metabolic syndrome. Lately, a transcription factor that regulates fructose metabolism in the liver, named ChREBPβ, which is responsible for de-novo lipogenesis and intra-hepatic fat accumulation (“fatty liver”), was described. In this study, we demonstrate that the effect of fructose consumption on the kidneys resembles its liver effect. Rats fed with a high-fructose diet exhibit bigger kidneys with higher triglycerides content, compared to control rats. The expression of ChREBPβ and its downstream genes was upregulated as well. Treating kidney-origin cells with fructose increased the expression of this factor as well, showing the direct effect of fructose on this factor. Thus, the appearance of fatty kidney in response to high-fructose consumption revealed a new mechanism linking metabolic syndrome to chronic kidney disease. Abstract Fructose consumption is associated with metabolic syndrome (MeS). Dysregulated lipid metabolism and ectopic lipid accumulation, such as in “fatty liver’’, are pivotal components of the syndrome. MeS is also associated with chronic kidney disease (CKD). The aim of this study was to evaluate kidney fructose metabolism and whether the addition of fructose leads to intrarenal fat accumulation. Sprague Dawley rats were fed either normal chow (Ctrl) or a high-fructose diet (HFrD). MeS features such as blood pressure and metabolic parameters in blood were measured. The kidneys were harvested for ChREBPβ and de novo lipogenesis (DNL) gene expression, triglyceride content and histopathology staining. HK2 (human kidney) cells were treated with fructose for 48 h and gene expression for ChREBPβ and DNL were determined. The HFrD rats exhibited higher blood pressure, glucose and triglyceride levels. The kidney weight of the HFrD rats was significantly higher than Ctrl rats. The difference can be explained by the higher triglyceride content in the HFrD kidneys. Oil red staining revealed lipid droplet formation in the HFrD kidneys, which was also supported by increased adipophilin mRNA expression. For ChREBPβ and its downstream genes, scd and fasn, mRNA expression was elevated in the HFrD kidneys. Treating HK2 cells with 40 mM fructose increased the expression of ChREBPβ. This study demonstrates that fructose consumption leads to intrarenal lipid accumulation and to the formation of a “fatty kidney”. This suggests a potential mechanism that can at least partially explain CKD development in fructose-induced MeS.
Collapse
Affiliation(s)
- Ariel Bier
- Medicine D, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel; (A.B.); (E.S.); (Y.S.); (E.G.)
| | - Eliyahu Shapira
- Medicine D, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel; (A.B.); (E.S.); (Y.S.); (E.G.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Rawan Khasbab
- Hypertension Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel;
| | - Yehonatan Sharabi
- Medicine D, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel; (A.B.); (E.S.); (Y.S.); (E.G.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Hypertension Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel;
| | - Ehud Grossman
- Medicine D, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel; (A.B.); (E.S.); (Y.S.); (E.G.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Hypertension Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel;
| | - Avshalom Leibowitz
- Medicine D, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel; (A.B.); (E.S.); (Y.S.); (E.G.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Hypertension Unit, The Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 5262000, Israel;
- Correspondence: ; Tel.: +972-35302834; Fax: +972-35302835
| |
Collapse
|
17
|
Yim HE, Yoo KH. Obesity and chronic kidney disease: prevalence, mechanism, and management. Clin Exp Pediatr 2021; 64:511-518. [PMID: 33831296 PMCID: PMC8498012 DOI: 10.3345/cep.2021.00108] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/19/2021] [Indexed: 11/27/2022] Open
Abstract
The prevalence of childhood obesity is increasing worldwide at an alarming rate. While obesity is known to increase a variety of cardiovascular and metabolic diseases, it also acts as a risk factor for the development and progression of chronic kidney disease (CKD). During childhood and adolescence, severe obesity is associated with an increased prevalence and incidence of the early stages of kidney disease. Importantly, children born to obese mothers are also at increased risk of developing obesity and CKD later in life. The potential mechanisms underlying the association between obesity and CKD include hemodynamic factors, metabolic effects, and lipid nephrotoxicity. Weight reduction via increased physical activity, caloric restriction, treatment with angiotensin-converting enzyme inhibitors, and judicious bariatric surgery can be used to control obesity and obesity-related kidney disease. Preventive strategies to halt the obesity epidemic in the healthcare community are needed to reduce the widespread deleterious consequences of obesity including CKD development and progression.
Collapse
Affiliation(s)
- Hyung Eun Yim
- Department of Pediatrics, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Kee Hwan Yoo
- Department of Pediatrics, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Song T, Zhao Y, Zhu X, Eirin A, Krier JD, Tang H, Jordan KL, Lerman A, Lerman LO. Superimposition of metabolic syndrome magnifies post-stenotic kidney injury in dyslipidemic pigs. Am J Transl Res 2021; 13:8965-8976. [PMID: 34540008 PMCID: PMC8430139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Dyslipidemia aggravates kidney injury distal to atherosclerotic renal artery stenosis (ARAS). Besides dyslipidemia, metabolic syndrome (MetS) also involves development of obesity and insulin-resistance (IR). We hypothesized that concurrent obesity and IR magnify swine stenotic-kidney damage beyond dyslipidemia. METHODS Pigs with unilateral RAS were studied after 16 weeks of atherogenic diets without (ARAS) or with (MetS + RAS) development of obesity/IR (n=6 each). Additional pigs on normal diet served as normal or non-dyslipidemic RAS controls (n=6 each). Stenotic-kidney renal blood flow (RBF), glomerular filtration rate (GFR), and microvascular architecture were studied using CT, and oxygenation was studied using blood oxygen level-dependent magnetic-resonance-imaging. We further compared kidney adiposity, oxidative stress, inflammation, apoptosis, fibrosis, and systemic levels of oxidative and inflammatory cytokines. RESULTS ARAS and MetS + RAS developed hypertension and dyslipidemia, and MetS + RAS also developed obesity and IR. RBF and GFR were similarly decreased in all post-stenotic pig kidneys compared to normal pig kidneys, yet MetS + RAS aggravated and expanded medullary hypoxia and microvascular loss. RAS and ARAS increased systemic levels of tumor necrosis factor (TNF)-α, which were further elevated in MetS + RAS. Renal oxidative stress and TNF-α expression increased in ARAS and further in MetS + RAS, which also upregulated expression of anti-angiogenic angiostatin, and magnified apoptosis, tubular injury, and fibrosis. CONCLUSION Beyond dyslipidemia, obesity and insulin-resistance aggravate damage in the post-stenotic kidney in MetS, despite relative hyperfiltration-related preservation of renal function. These observations underscore the need to control systemic metabolic disturbances in order to curb renal damage in subjects with ischemic kidney disease.
Collapse
Affiliation(s)
- Turun Song
- Division of Nephrology and Hypertension, Mayo ClinicRochester, MN 55905, The United States
- Urology Department, Urology Research Institute, Organ Transplantation Center, West China Hospital, Sichuan UniversitySichuan, China
| | - Yu Zhao
- Division of Nephrology and Hypertension, Mayo ClinicRochester, MN 55905, The United States
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Mayo ClinicRochester, MN 55905, The United States
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo ClinicRochester, MN 55905, The United States
| | - James D Krier
- Division of Nephrology and Hypertension, Mayo ClinicRochester, MN 55905, The United States
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo ClinicRochester, MN 55905, The United States
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Mayo ClinicRochester, MN 55905, The United States
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo ClinicRochester, MN 55905, The United States
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo ClinicRochester, MN 55905, The United States
| |
Collapse
|
19
|
Sharma I, Liao Y, Zheng X, Kanwar YS. New Pandemic: Obesity and Associated Nephropathy. Front Med (Lausanne) 2021; 8:673556. [PMID: 34268323 PMCID: PMC8275856 DOI: 10.3389/fmed.2021.673556] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Incidence of obesity related renal disorders have increased 10-folds in recent years. One of the consequences of obesity is an increased glomerular filtration rate (GFR) that leads to the enlargement of the renal glomerulus, i.e., glomerulomegaly. This heightened hyper-filtration in the setting of type 2 diabetes irreparably damages the kidney and leads to progression of end stage renal disease (ESRD). The patients suffering from type 2 diabetes have progressive proteinuria, and eventually one third of them develop chronic kidney disease (CKD) and ESRD. For ameliorating the progression of CKD, inhibitors of renin angiotensin aldosterone system (RAAS) seemed to be effective, but on a short-term basis only. Long term and stable treatment strategies like weight loss via restricted or hypo-caloric diet or bariatric surgery have yielded better promising results in terms of amelioration of proteinuria and maintenance of normal GFR. Body mass index (BMI) is considered as a traditional marker for the onset of obesity, but apparently, it is not a reliable indicator, and thus there is a need for more precise evaluation of regional fat distribution and amount of muscle mass. With respect to the pathogenesis, recent investigations have suggested perturbation in fatty acid and cholesterol metabolism as the critical mediators in ectopic renal lipid accumulation associated with inflammation, increased generation of ROS, RAAS activation and consequential tubulo-interstitial injury. This review summarizes the renewed approaches for the obesity assessment and evaluation of the pathogenesis of CKD, altered renal hemodynamics and potential therapeutic targets.
Collapse
Affiliation(s)
- Isha Sharma
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States
| | - Yingjun Liao
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States.,Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Zheng
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States.,Department of Urology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
20
|
Arterial stiffness in regards to kidney function in middle-aged subjects with metabolic syndrome: Lithuanian high-risk cohort. Blood Press Monit 2021; 26:191-195. [PMID: 33491995 DOI: 10.1097/mbp.0000000000000510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The current study aimed to check whether early vascular aging, measured as carotid-femoral pulse wave velocity (cfPWV), is related to kidney function, measured as creatinine-based estimated glomerular filtration (eGFR) and urinary albumin-to-creatinine ratio (UACR), in middle-aged subjects with metabolic syndrome. METHODS Participants were recruited from Lithuanian high-risk cohort (LitHiR). The cohort consists of middle-aged individuals with high cardiovascular risk but without overt cardiovascular disease. Participants underwent baseline and second visit hemodynamics measurement, including aortic mean arterial pressure (MAP), cfPWV, crPWV, carotid-intima media thickness measurement (CIMT) and biochemical analysis and all fulfilled NCEP/ATPIII criteria for metabolic syndrome diagnosis. First of all, we had determined correlations among hemodynamic measurement and eGFR together with albuminuria, expressed as UACR. Then we compared subjects who experienced significant eGFR decline with the remaining population and determining factors influencing this. RESULTS A total of 689 subject data were eligible for analysis. We observed relationship between cfPWV and MAP, crPWV, glucose, BMI, C-reactive protein, waist circumference except kidney function measured as eGFR at the baseline and at the second visit. eGFR was not associated with MAP or albuminuria. Baseline but not second visit UACR significantly positively correlated with cfPWV (r-spearman = 0.146, P = 0.003) and MAP (r-spearman = 0.142, P = 0.005). eGFR decline was mainly observed in subjects with higher baseline eGFR and was independently influenced by increase in cfPWV. CONCLUSION In middle-aged subjects with prevalent metabolic syndrome eGFR decline is related to aortic and not peripheral arterial stiffening. Better baseline kidney function could be possibly an effect of glomerular hyperfiltration, and it allows us to conclude that this phenomenon indicates early vascular damage and it should be addressed seriously in metabolic syndrome patients with normal kidney function.
Collapse
|
21
|
Yu S, Kim SR, Jiang K, Ogrodnik M, Zhu XY, Ferguson CM, Tchkonia T, Lerman A, Kirkland JL, Lerman LO. Quercetin Reverses Cardiac Systolic Dysfunction in Mice Fed with a High-Fat Diet: Role of Angiogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8875729. [PMID: 33688395 PMCID: PMC7914089 DOI: 10.1155/2021/8875729] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/11/2021] [Accepted: 02/07/2021] [Indexed: 12/20/2022]
Abstract
Global consumption of high-fat diets (HFD) is associated with an increased incidence of cardiometabolic syndrome and cardiac injury, warranting identification of cardioprotective strategies. Cardioprotective effects of quercetin (Q) have mostly been evaluated in ischemic heart disease models and attributed to senolysis. We hypothesized that Q could alleviate murine cardiac damage caused by HFD by restoring the myocardial microcirculation. C57BL/6J mice were fed standard chow or HFD for 6 months and then treated with Q (50 mg/kg) or vehicle 5-day biweekly for 10 additional weeks. Left ventricular (LV) cardiac function was studied in vivo using magnetic resonance imaging, and intramyocardial fat deposition, microvascular density, oxidative stress, and senescence were analyzed ex vivo. Additionally, direct angiogenic effects of Q were studied in vitro in HUVECs. HFD increased body weight, heart weight, total cholesterol, and triglyceride levels, whereas Q normalized heart weight and triglycerides. LV ejection fraction was lower in HFD vs. control mice (56.20 ± 15.8% vs. 73.38 ± 5.04%, respectively, P < 0.05), but improved in HFD + Q mice (67.42 ± 7.50%, P < 0.05, vs. HFD). Q also prevented cardiac fat accumulation and reduced HFD-induced cardiac fibrosis, cardiomyocyte hypertrophy, oxidative stress, and vascular rarefaction. Cardiac senescence was not observed in any group. In vitro, ox-LDL reduced HUVEC tube formation activity, which Q effectively improved. Quercetin may directly induce angiogenesis and decrease myocardial oxidative stress, which might account for its cardioprotective effects in the murine HFD-fed murine heart independently from senolytic activity. Furthermore, its beneficial effects might be partly attributed to a decrease in plasma triglycerides and intramyocardial fat deposition.
Collapse
Affiliation(s)
- Shasha Yu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Seo Rin Kim
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Department of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology Donaueschingenstraße 13, A-1200 Vienna, Austria
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiang Y. Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
22
|
Hammoud SH, AlZaim I, Al-Dhaheri Y, Eid AH, El-Yazbi AF. Perirenal Adipose Tissue Inflammation: Novel Insights Linking Metabolic Dysfunction to Renal Diseases. Front Endocrinol (Lausanne) 2021; 12:707126. [PMID: 34408726 PMCID: PMC8366229 DOI: 10.3389/fendo.2021.707126] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
A healthy adipose tissue (AT) is indispensable to human wellbeing. Among other roles, it contributes to energy homeostasis and provides insulation for internal organs. Adipocytes were previously thought to be a passive store of excess calories, however this view evolved to include an endocrine role. Adipose tissue was shown to synthesize and secrete adipokines that are pertinent to glucose and lipid homeostasis, as well as inflammation. Importantly, the obesity-induced adipose tissue expansion stimulates a plethora of signals capable of triggering an inflammatory response. These inflammatory manifestations of obese AT have been linked to insulin resistance, metabolic syndrome, and type 2 diabetes, and proposed to evoke obesity-induced comorbidities including cardiovascular diseases (CVDs). A growing body of evidence suggests that metabolic disorders, characterized by AT inflammation and accumulation around organs may eventually induce organ dysfunction through a direct local mechanism. Interestingly, perirenal adipose tissue (PRAT), surrounding the kidney, influences renal function and metabolism. In this regard, PRAT emerged as an independent risk factor for chronic kidney disease (CKD) and is even correlated with CVD. Here, we review the available evidence on the impact of PRAT alteration in different metabolic states on the renal and cardiovascular function. We present a broad overview of novel insights linking cardiovascular derangements and CKD with a focus on metabolic disorders affecting PRAT. We also argue that the confluence among these pathways may open several perspectives for future pharmacological therapies against CKD and CVD possibly by modulating PRAT immunometabolism.
Collapse
Affiliation(s)
- Safaa H. Hammoud
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Departmment of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yusra Al-Dhaheri
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt
- *Correspondence: Ahmed F. El-Yazbi,
| |
Collapse
|
23
|
Capillary Rarefaction in Obesity and Metabolic Diseases-Organ-Specificity and Possible Mechanisms. Cells 2020; 9:cells9122683. [PMID: 33327460 PMCID: PMC7764934 DOI: 10.3390/cells9122683] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity and its comorbidities like diabetes, hypertension and other cardiovascular disorders are the leading causes of death and disability worldwide. Metabolic diseases cause vascular dysfunction and loss of capillaries termed capillary rarefaction. Interestingly, obesity seems to affect capillary beds in an organ-specific manner, causing morphological and functional changes in some tissues but not in others. Accordingly, treatment strategies targeting capillary rarefaction result in distinct outcomes depending on the organ. In recent years, organ-specific vasculature and endothelial heterogeneity have been in the spotlight in the field of vascular biology since specialized vascular systems have been shown to contribute to organ function by secreting varying autocrine and paracrine factors and by providing niches for stem cells. This review summarizes the recent literature covering studies on organ-specific capillary rarefaction observed in obesity and metabolic diseases and explores the underlying mechanisms, with multiple modes of action proposed. It also provides a glimpse of the reported therapeutic perspectives targeting capillary rarefaction. Further studies should address the reasons for such organ-specificity of capillary rarefaction, investigate strategies for its prevention and reversibility and examine potential signaling pathways that can be exploited to target it.
Collapse
|
24
|
Chakkera HA, Denic A, Kremers WK, Stegall MD, Larson JJ, Ravipati H, Taler SJ, Lieske JC, Lerman LO, Augustine JJ, Rule AD. Comparison of high glomerular filtration rate thresholds for identifying hyperfiltration. Nephrol Dial Transplant 2020; 35:1017-1026. [PMID: 30403810 DOI: 10.1093/ndt/gfy332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND High glomerular filtration rate (GFR) is often used as a surrogate for single-nephron hyperfiltration. Our objective was to determine the definition for high GFR that best reflects clinical and structural characteristics of hyperfiltration. METHODS We studied living kidney donors at the Mayo Clinic and Cleveland Clinic. Potential donors underwent evaluations that included measured GFR (mGFR) by iothalamate clearance and estimated GFR (eGFR) by the serum creatinine-based Chronic Kidney Disease-Epidemiology collaboration (CKD-EPI) equation. High GFR was defined by the 95th percentile for each method (mGFR or eGFR) using either overall or age-specific thresholds. High mGFR was defined as both corrected and uncorrected for body surface area. The association of high GFR by each definition with clinical characteristics and radiologic findings (kidney volume) was assessed. In the subset that donated, the association of high GFR with kidney biopsy findings (nephron number and glomerular volume) and single-nephron GFR was assessed. RESULTS We studied 3317 potential donors, including 2125 actual donors. The overall 95th percentile for corrected mGFR was 134 mL/min/1.73 m2 and for eGFR was 118 mL/min/1.73 m2. The age-based threshold for uncorrected mGFR was 198 mL/min - 0.943×Age, for corrected mGFR it was 164 mL/min/1.73 m2 - 0.730×Age and for eGFR it was 146 mL/min/1.73 m2 - 0.813×Age. High age-based uncorrected mGFR had the strongest associations with higher single-nephron GFR, larger glomerular volume, larger kidney volume, male gender, higher body mass index and higher 24-h urine albumin, but also had the strongest association with high nephron number. A high age-height-gender-based uncorrected mGFR definition performed almost as well but had a weaker association with nephron number and did not associate with male gender. CONCLUSIONS High age-based uncorrected mGFR showed the most consistent associations reflective of hyperfiltration. However, high age-based uncorrected mGFR has limited clinical utility because it does not distinguish between hyperfiltration and high nephron number.
Collapse
Affiliation(s)
- Harini A Chakkera
- Division of Nephrology and Hypertension, Mayo Clinic, Scottsdale, AZ, USA
| | - Aleksandar Denic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Walter K Kremers
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | | - Joseph J Larson
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Harish Ravipati
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sandra J Taler
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Andrew D Rule
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
25
|
Coexisting renal artery stenosis and metabolic syndrome magnifies mitochondrial damage, aggravating poststenotic kidney injury in pigs. J Hypertens 2020; 37:2061-2073. [PMID: 31465309 DOI: 10.1097/hjh.0000000000002129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Renovascular disease (RVD) produces chronic underperfusion of the renal parenchyma and progressive ischemic injury. Metabolic abnormalities often accompany renal ischemia, and are linked to poorer renal outcomes. However, the mechanisms of injury in kidneys exposed to the ischemic and metabolic components of RVD are incompletely understood. We hypothesized that coexisting renal artery stenosis (RAS) and metabolic syndrome (MetS) would exacerbate mitochondrial damage, aggravating poststenotic kidney injury in swine. METHODS Domestic pigs were studied after 16 weeks of either standard diet (Lean) or high-fat/high-fructose (MetS) with or without superimposed RAS (n = 6 each). Single-kidney renal blood flow (RBF) and glomerular filtration rate (GFR) were assessed in vivo with multidetector-CT, and renal tubular mitochondrial structure, homeostasis and function and renal injury ex vivo. RESULTS Both RAS groups achieved significant stenosis. Single-kidney RBF and GFR were higher in MetS compared with Lean, but decreased in Lean+RAS and MetS+RAS vs. their respective controls. MetS and RAS further induced changes in mitochondrial structure, dynamics, and function, and their interaction (diet × ischemia) decreased matrix density, mitophagy, and ATP production, and lead to greater renal fibrosis. CONCLUSION Coexisting RAS and MetS synergistically aggravate mitochondrial structural damage and dysfunction, which may contribute to structural injury and dysfunction in the poststenotic kidney. These observations suggest that mitochondrial damage precedes loss of renal function in experimental RVD, and position mitochondria as novel therapeutic targets in these patients.
Collapse
|
26
|
Shen FC, Cheng BC, Chen JF. Peri-renal fat thickness is positively associated with the urine albumin excretion rate in patients with type 2 diabetes. Obes Res Clin Pract 2020; 14:345-349. [PMID: 32653293 DOI: 10.1016/j.orcp.2020.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUNDS Albuminuria, the earliest clinical manifestation of diabetic kidney disease (DKD), is a major prognostic indicator of renal progression. Obesity itself is associated with the development of DKD and accelerates its progression. Accumulation of peri-renal fat on the kidneys can damage kidney function. Measuring the perirenal fat thickness (PFT) by ultrasound is a non-invasive method to measure ectopic fat deposition on the kidney. In this study, we aim to obtain the association between albuminuria and PFT. METHODS Eighty-nine subjects with type 2 diabetes mellitus (T2DM) were enrolled. Albuminuria was defined as a urine albumin-to-creatinine ratio (UACR) ≧30 mg/g. Measurement of the PFT was performed by B-mode ultrasound (Toshiba SSA-680A) and determined from the surface of the abdominal musculature to the surface of kidney. Pearson correlation coefficients were determined to test the significant independent relationship between the PFT and demographic, anthropometric and laboratory parameters. RESULTS Patients were divided into those with (n = 66) and without (n = 23) albuminuria. PFT (odds ratio [OR], 19.3; 95% CI, 2.25-165.00; p = 0.01) was significantly correlated with albuminuria based on multiple logistic regression analysis. Additionally, linear regression confirmed that degree of albuminuria has a positive association with the PFT (r = 0.233; p = 0.03). CONCLUSIONS Our study showed that an increased PFT is positively associated with the albuminuria among patients with T2DM. Our findings suggest that measurement of the PFT may represent a helpful tool to assess the risk of developing albuminuria in patients with T2DM.
Collapse
Affiliation(s)
- Feng-Chih Shen
- Division of Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Mitochondrial Research and Medicine, Departments of Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ben-Chung Cheng
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jung-Fu Chen
- Division of Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
27
|
Pei K, Gui T, Li C, Zhang Q, Feng H, Li Y, Wu J, Gai Z. Recent Progress on Lipid Intake and Chronic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3680397. [PMID: 32382547 PMCID: PMC7196967 DOI: 10.1155/2020/3680397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022]
Abstract
The incidence of chronic kidney disease (CKD) is associated with major abnormalities in circulating lipoproteins and renal lipid metabolism. This article elaborates on the mechanisms of CKD and lipid uptake abnormalities. The viewpoint we supported is that lipid abnormalities directly cause CKD, resulting in forming a vicious cycle. On the theoretical and experiment fronts, this inference has been verified by elaborately elucidating the role of lipid intake and accumulation as well as their influences on CKD. Taken together, these findings suggest that further understanding of lipid metabolism in CKD may lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Ke Pei
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chao Li
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huichao Feng
- Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunlun Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
28
|
Liu DJX, Stock E, Broeckx BJG, Daminet S, Meyer E, Delanghe JR, Croubels S, Devreese M, Nguyen P, Bogaerts E, Hesta M, Vanderperren K. Weight-gain induced changes in renal perfusion assessed by contrast-enhanced ultrasound precede increases in urinary protein excretion suggestive of glomerular and tubular injury and normalize after weight-loss in dogs. PLoS One 2020; 15:e0231662. [PMID: 32315336 PMCID: PMC7173781 DOI: 10.1371/journal.pone.0231662] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Early detection of obesity-related glomerulopathy in humans is challenging as it might not be detected by routine biomarkers of kidney function. This study's aim was to use novel kidney biomarkers and contrast-enhanced ultrasound (CEUS) to evaluate the effect of obesity development and weight-loss on kidney function, perfusion, and injury in dogs. Sixteen healthy lean adult beagles were assigned randomly but age-matched to a control group (CG) (n = 8) fed to maintain a lean body weight (BW) for 83 weeks; or to a weight-change group (WCG) (n = 8) fed the same diet to induce obesity (week 0-47), to maintain stable obese weight (week 47-56) and to lose BW (week 56-83). At 8 time points, values of systolic blood pressure (sBP); serum creatinine (sCr); blood urea nitrogen (BUN); serum cystatin C (sCysC); urine protein-to-creatinine ratio (UPC); and urinary biomarkers of glomerular and tubular injury were measured. Glomerular filtration rate (GFR) and renal perfusion using CEUS were assayed (except for week 68). For CEUS, intensity- and time-related parameters representing blood volume and velocity were derived from imaging data, respectively. At 12-22% weight-gain, cortical time-to-peak, representing blood velocity, was shorter in the WCG vs. the CG. After 37% weight-gain, sCysC, UPC, glomerular and tubular biomarkers of injury, urinary immunoglobulin G and urinary neutrophil gelatinase-associated lipocalin, respectively, were higher in the WCG. sBP, sCr, BUN and GFR were not significantly different. After 23% weight-loss, all alterations were attenuated. Early weight-gain in dogs induced renal perfusion changes measured with CEUS, without hyperfiltration, preceding increased urinary protein excretion with potential glomerular and tubular injury. The combined use of routine biomarkers of kidney function, CEUS and site-specific urinary biomarkers might be valuable in assessing kidney health of individuals at risk for obesity-related glomerulopathy in a non-invasive manner.
Collapse
Affiliation(s)
- Daisy J. X. Liu
- Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Emmelie Stock
- Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart J. G. Broeckx
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sylvie Daminet
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joris R. Delanghe
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Health Medicine and Life Sciences, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Patrick Nguyen
- Oniris, National College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Evelien Bogaerts
- Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Myriam Hesta
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien Vanderperren
- Department of Medical Imaging of Domestic Animals and Orthopedics of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- * E-mail:
| |
Collapse
|
29
|
Huang N, Mao EW, Hou NN, Liu YP, Han F, Sun XD. Novel insight into perirenal adipose tissue: A neglected adipose depot linking cardiovascular and chronic kidney disease. World J Diabetes 2020; 11:115-125. [PMID: 32313610 PMCID: PMC7156295 DOI: 10.4239/wjd.v11.i4.115] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/13/2020] [Accepted: 03/22/2020] [Indexed: 02/05/2023] Open
Abstract
Obesity is associated with adverse metabolic diseases including cardiovascular disease (CVD) and chronic kidney disease (CKD). These obesity-related diseases are highly associated with excess fat accumulation in adipose tissue. However, emerging evidence indicates that visceral adiposity associates more with metabolic and cardiovascular risk factors. Perirenal adipose tissue, surrounding the kidney, is originally thought to provides only mechanical support for kidney. However, more studies demonstrated perirenal adipose tissue have a closer association with renal disease than other visceral fat deposits in obesity. Additionally, perirenal adipose tissue is also an independent risk factor for CKD and even associated more with CVD. Thus, perirenal adipose tissue may be a connection of CVD with CKD. Here, we will provide an overview of the perirenal adipose tissue, a neglected visceral adipose tissue, and the roles of perirenal adipose tissue linking with CVD and CKD and highlight the perirenal adipose tissue as a potential strategy for future therapeutics against obesity-related disease.
Collapse
Affiliation(s)
- Na Huang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - En-Wen Mao
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Ning-Ning Hou
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Yong-Ping Liu
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| | - Xiao-Dong Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province, China
| |
Collapse
|
30
|
Abstract
Swine disease models are essential for mimicry of human metabolic and vascular pathophysiology, thereby enabling high-fidelity translation to human medicine. The worldwide epidemic of obesity, metabolic disease, and diabetes has prompted the focus on these diseases in this review. We highlight the remarkable similarity between Ossabaw miniature swine and humans with metabolic syndrome and atherosclerosis. Although the evidence is strongest for swine models of coronary artery disease, findings are generally applicable to any vascular bed. We discuss the major strengths and weaknesses of swine models. The development of vascular imaging is an example of optimal vascular engineering in swine. Although challenges regarding infrastructure and training of engineers in the use of swine models exist, opportunities are ripe for gene editing, studies of molecular mechanisms, and use of swine in coronary artery imaging and testing of devices that can move quickly to human clinical studies.
Collapse
Affiliation(s)
- Michael Sturek
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA; .,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 46907, USA
| | - Mouhamad Alloosh
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA;
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| |
Collapse
|
31
|
McPherson KC, Shields CA, Poudel B, Johnson AC, Taylor L, Stubbs C, Nichols A, Cornelius DC, Garrett MR, Williams JM. Altered renal hemodynamics is associated with glomerular lipid accumulation in obese Dahl salt-sensitive leptin receptor mutant rats. Am J Physiol Renal Physiol 2020; 318:F911-F921. [PMID: 32068459 DOI: 10.1152/ajprenal.00438.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The present study examined whether development of renal injury in the nondiabetic obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) strain is associated with elevations in glomerular filtration rate and renal lipid accumulation. Baseline mean arterial pressure at 6 wk of age was similar between Dahl salt-sensitive wild-type (SSWT) and SSLepRmutant rats. However, by 18 wk of age, the SSLepRmutant strain developed hypertension, while the elevation in mean arterial pressure was not as severe in SSWT rats (192 ± 4 and 149 ± 6 mmHg, respectively). At baseline, proteinuria was fourfold higher in SSLepRmutant than SSWT rats and remained elevated throughout the study. The early development of progressive proteinuria was associated with renal hyperfiltration followed by a decline in renal function over the course of study in the SSLepRmutant compared with SSWT rats. Kidneys from the SSLepRmutant strain displayed more glomerulosclerosis and glomerular lipid accumulation than SSWT rats. Glomeruli were isolated from the renal cortex of both strains at 6 and 18 wk of age, and RNA sequencing was performed to identify genes and pathways driving glomerular injury. We observed significant increases in expression of the influx lipid transporters, chemokine (C-X-C motif) ligand 16 (Cxcl16) and scavenger receptor and fatty acid translocase (Cd36), respectively, and a significant decrease in expression of the efflux lipid transporter, ATP-binding cassette subfamily A member 2 (Abca2; cholesterol efflux regulatory protein 2), in SSLepRmutant compared with SSWT rats at 6 and 18 wk of age, which were validated by RT-PCR analysis. These data suggest an association between glomerular hyperfiltration and glomerular lipid accumulation during the early development of proteinuria associated with obesity.
Collapse
Affiliation(s)
- Kasi C McPherson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Corbin A Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bibek Poudel
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ashley C Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lateia Taylor
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Cassandra Stubbs
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alyssa Nichols
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
32
|
Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell Tissue Res 2020; 380:341-378. [PMID: 31932949 DOI: 10.1007/s00441-019-03158-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
The worldwide prevalence of diabetes mellitus and obesity is rapidly increasing not only in adults but also in children and adolescents. Diabetes is associated with macrovascular complications increasing the risk for cardiovascular disease and stroke, as well as microvascular complications leading to diabetic nephropathy, retinopathy and neuropathy. Animal models are essential for studying disease mechanisms and for developing and testing diagnostic procedures and therapeutic strategies. Rodent models are most widely used but have limitations in translational research. Porcine models have the potential to bridge the gap between basic studies and clinical trials in human patients. This article provides an overview of concepts for the development of porcine models for diabetes and obesity research, with a focus on genetically engineered models. Diabetes-associated ocular, cardiovascular and renal alterations observed in diabetic pig models are summarized and their similarities with complications in diabetic patients are discussed. Systematic multi-organ biobanking of porcine models of diabetes and obesity and molecular profiling of representative tissue samples on different levels, e.g., on the transcriptome, proteome, or metabolome level, is proposed as a strategy for discovering tissue-specific pathomechanisms and their molecular key drivers using systems biology tools. This is exemplified by a recent study providing multi-omics insights into functional changes of the liver in a transgenic pig model for insulin-deficient diabetes mellitus. Collectively, these approaches will provide a better understanding of organ crosstalk in diabetes mellitus and eventually reveal new molecular targets for the prevention, early diagnosis and treatment of diabetes mellitus and its associated complications.
Collapse
|
33
|
Pérez-López L, Boronat M, Melián C, Brito-Casillas Y, Wägner AM. Animal Models and Renal Biomarkers of Diabetic Nephropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1307:521-551. [PMID: 32329028 DOI: 10.1007/5584_2020_527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus (DM) is the first cause of end stage chronic kidney disease (CKD). Animal models of the disease can shed light on the pathogenesis of the diabetic nephropathy (DN) and novel and earlier biomarkers of the condition may help to improve diagnosis and prognosis. This review summarizes the most important features of animal models used in the study of DN and updates the most recent progress in biomarker research.
Collapse
Affiliation(s)
- Laura Pérez-López
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Mauro Boronat
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Carlos Melián
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
- Department of Animal Pathology, Veterinary Faculty, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Arucas, Las Palmas, Spain
| | - Yeray Brito-Casillas
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Ana M Wägner
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
34
|
Ferguson CM, Eirin A, Michalak GJ, Hedayat AF, Abumoawad AM, Saad A, Zhu X, Textor SC, McCollough CH, Lerman LO. Renal Adiposity Does not Preclude Quantitative Assessment of Renal Function Using Dual-Energy Multidetector CT in Mildly Obese Human Subjects. Acad Radiol 2019; 26:1488-1494. [PMID: 30655055 DOI: 10.1016/j.acra.2018.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022]
Abstract
RATIONALE AND OBJECTIVES Multidetector computed tomography (MDCT) is useful for measuring in the research setting single-kidney perfusion and function using iodinated contrast time-attenuation curves. Obesity promotes deposition of intrarenal fat, which might decrease tissue attenuation and thereby interfere with quantification of renal function using MDCT. The purpose of this study was to test the hypothesis that background subtraction adequately accounts for intrarenal fat deposition in mildly obese human subjects during renal contrast enhanced dynamic CT. MATERIALS AND METHODS We prospectively recruited seventeen human subjects stratified as lean or mildly obese based on body mass index below or over 30 kg/m2, respectively. Renal perfusion was quantified from CT-derived indicator-dilution curves after background subtraction. Dual-energy MDCT images were postprocessed to generate iodine and virtual-noncontrast datasets, and the ratios between kidney/aorta CT numbers and iodine values calculated as surrogates of renal function. RESULTS Subcutaneous adipose tissue was increased in obese subjects. Virtual-noncontrast maps revealed in obese patients a decrease in basal cortical and medullary attenuation. Overall, basal attenuation inversely correlated with body mass index, in line with renal fat deposition. Contrarily, the kidney/aorta CT attenuation (after background subtraction) and kidney/aorta iodine ratios were similar between lean and obese subjects and correlated directly. These observations show that following background subtraction, the CT number reliably reflects basal tissue attenuation. CONCLUSION Therefore, our findings support our hypothesis that background subtraction enables reliable assessment of kidney function in mildly obese subjects using MDCT, despite decreased basal attenuation due to renal adiposity.
Collapse
Affiliation(s)
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN
| | | | - Ahmad F Hedayat
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN
| | | | - Ahmed Saad
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN
| | - Stephen C Textor
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN
| | | | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First St SW, Rochester, MN.
| |
Collapse
|
35
|
Rodríguez RR, González-Bulnes A, Garcia-Contreras C, Elena Rodriguez-Rodriguez A, Astiz S, Vazquez-Gomez M, Luis Pesantez J, Isabel B, Salido-Ruiz E, González J, Donate Correa J, Luis-Lima S, Porrini E. The Iberian pig fed with high-fat diet: a model of renal disease in obesity and metabolic syndrome. Int J Obes (Lond) 2019; 44:457-465. [PMID: 31636376 DOI: 10.1038/s41366-019-0434-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/07/2019] [Accepted: 05/28/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND The pathogenesis of renal disease in the context of overweight/obesity, metabolic syndrome, and insulin resistance is not completely understood. This may be due to the lack of a definitive animal model of disease, which limits our understanding of obesity-induced renal damage. We evaluated the changes in renal histology and lipid deposits induced by obesity in a model of insulin resistance: the Iberian swine fed with fat-enriched food. METHODS Twenty-eight female sows were randomized to standard (SD) or high-fat diet (HFD: 6.8% of saturated fat) for 100 days. Weight, adiposity, analytics, oral glucose tolerance tests, and measured renal function were determined. Renal histology and lipid deposits in renal tissue were analyzed. RESULTS Animals on HFD developed obesity, hypertension, high levels of LDL cholesterol, triglycerides, insulin resistance, and glomerular hyperfiltration. No animal developed overt diabetes. Animals on HFD showed "diabetoid changes", including mesangial expansion [21.40% ± 4 vs.13.20% ± 4.0, p < 0.0001], nodular glomerulosclerosis [7.40% ± 7, 0.75 vs. 2.40% ± 4.7, p = 0.02], and glomerulomegaly (18% vs. 10%, p = 0.010) than those on SD. Tubular atrophy, interstitial fibrosis, inflammation, arteriolar hyalinosis, or fibrointimal thickening were mild and similar between groups. Triglyceride content in renal tissue was higher in animals on HFD than in SD (15.4% ± 0.5 vs. 12.7% ± 0.7; p < 0.01). CONCLUSIONS Iberian pigs fed with fat-enriched food showed diabetoid changes and glomerulomegaly as observed in obese humans making this model suitable to study obesity-induced renal disease.
Collapse
Affiliation(s)
- Rosa Rodríguez Rodríguez
- Pathology Department, Hospital Universitario de Canarias, Tenerife, Spain.,University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Antonio González-Bulnes
- Comparative Physiology Group, SGIT-INIA, Madrid, Spain.,Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | - Susana Astiz
- Comparative Physiology Group, SGIT-INIA, Madrid, Spain
| | | | | | | | - Eduardo Salido-Ruiz
- Pathology Department, Hospital Universitario de Canarias, Tenerife, Spain.,University of La Laguna, Santa Cruz de Tenerife, Spain.,Instituto Tecnologías Biomédicas (ITB), Tenerife, Spain
| | | | - Javier Donate Correa
- Nephrology Department, Research Unit Hospital Universitario de Canarias, Tenerife, Spain
| | - Sergio Luis-Lima
- Instituto Tecnologías Biomédicas (ITB), Tenerife, Spain.,Nephrology Department, Research Unit Hospital Universitario de Canarias, Tenerife, Spain
| | - Esteban Porrini
- University of La Laguna, Santa Cruz de Tenerife, Spain. .,Instituto Tecnologías Biomédicas (ITB), Tenerife, Spain. .,Nephrology Department, Research Unit Hospital Universitario de Canarias, Tenerife, Spain.
| |
Collapse
|
36
|
Lizarraga-Mollinedo E, Martínez-Calcerrada JM, Padrós-Fornieles C, Mas-Pares B, Xargay-Torrent S, Riera-Pérez E, Prats-Puig A, Carreras-Badosa G, de Zegher F, Ibáñez L, Bassols J, López-Bermejo A. Renal size and cardiovascular risk in prepubertal children. Sci Rep 2019; 9:5265. [PMID: 30918295 PMCID: PMC6437212 DOI: 10.1038/s41598-019-41757-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/14/2019] [Indexed: 11/21/2022] Open
Abstract
Renal size is an important parameter for the evaluation and diagnosis of kidney disease and has been associated with several cardiovascular risk factors in patients with kidney failure. These results are however discordant and studies in healthy children are lacking. We aimed to study the association between renal size (length and volume) and cardiovascular risk parameters in healthy children. Clinical, analytical and ultrasound parameters [renal length, renal volume, perirenal fat and carotid intima-media thickness (cIMT)] were determined in 515 healthy prepubertal children (176 lean, 208 overweight and 131 obese). Renal length and volume associated significantly and positively with several anthropometric and cardiovascular risk parameters including cIMT and systolic blood pressure (SBP) (all p < 0.001). Renal length and volume associated with cIMT and SBP in all study subgroups, but these associations were predominant in obese children, in whom these associations were independent after adjusting for age, gender and BSA (all p < 0.05). In multivariate analyses in the study subjects as a whole, renal length was an independent predictor of cIMT (β = 0.310, p < 0.0001) and SBP (β = 0.116, p = 0.03). Renal size associates with cIMT and SBP, independent of other well-established cardiovascular risk factors, and may represent helpful parameters for the early assessment of cardiovascular risk in children.
Collapse
Affiliation(s)
| | | | | | - Berta Mas-Pares
- Maternal-Fetal Metabolic Group, [Girona Biomedical Research Institute] IDIBGI, Salt, 17190, Spain
| | - Silvia Xargay-Torrent
- Pediatric Endocrinology Group, [Girona Biomedical Research Institute] IDIBGI, Salt, 17190, Spain
| | | | - Anna Prats-Puig
- Department of Physical Therapy, EUSES University School, Salt, 17190, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology Group, [Girona Biomedical Research Institute] IDIBGI, Salt, 17190, Spain
| | - Francis de Zegher
- Department of Development & Regeneration, University of Leuven, Leuven, 3000, Belgium
| | - Lourdes Ibáñez
- Endocrinology, Pediatric Research Institute Sant Joan de Déu, 08950, Esplugues, Spain.,[Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders] CIBERDEM, ISCIII, Madrid, 28029, Spain
| | - Judit Bassols
- Maternal-Fetal Metabolic Group, [Girona Biomedical Research Institute] IDIBGI, Salt, 17190, Spain.
| | - Abel López-Bermejo
- Pediatric Endocrinology Group, [Girona Biomedical Research Institute] IDIBGI, Salt, 17190, Spain. .,Pediatrics, Dr. Trueta University Hospital, Girona, 17007, Spain.
| |
Collapse
|
37
|
Lim RR, Grant DG, Olver TD, Padilla J, Czajkowski AM, Schnurbusch TR, Mohan RR, Hainsworth DP, Walters EM, Chaurasia SS. Young Ossabaw Pigs Fed a Western Diet Exhibit Early Signs of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2019; 59:2325-2338. [PMID: 29847637 PMCID: PMC5937800 DOI: 10.1167/iovs.17-23616] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Recent clinical data suggest an increasing prevalence of obesity and type 2 diabetes in adolescents, placing them at high risk of developing diabetic retinopathy during adult working years. The present study was designed to characterize the early retinal and microvascular alterations in young Ossabaw pigs fed a Western diet, described as a model of metabolic syndrome genetically predisposed to type 2 diabetes. Methods Four-month-old Ossabaw miniature pigs were divided into two groups, lean and diet-induced obesity. Obese pigs were fed a Western diet with high-fat/high-fructose corn syrup/high-choleric content for 10 weeks. Blood and retina were collected for biochemical profiling, trypsin digest, flatmounts, Fluoro-Jade C staining, electron microscopy, quantitative PCR, immunohistochemistry, and Western blots. Results Young Ossabaw pigs had elevated fasting blood glucose after feeding on a Western diet for 10 weeks. Their retina showed disrupted cellular architecture across neural layers, with numerous large vacuoles seen in cell bodies of the inner nuclear layer. Microvessels in the obese animals exhibited thickened basement membrane, along with pericyte ghosts and acellular capillaries. The pericyte to endothelial ratio decreased significantly. Retina flatmounts from obese pigs displayed reduced capillary density, numerous terminal capillary loops, and string vessels, which stained collagen IV but not isolectin IB4. Quantitative PCR and Western blots showed significantly high levels of basement membrane proteins collagen IV and fibronectin in obese pigs. Conclusions This is the first study to describe the ultrastructural neuronal and vascular changes in the retina of young Ossabaw pigs fed a Western diet, simulating early signs of diabetic retinopathy pathogenesis.
Collapse
Affiliation(s)
- Rayne R Lim
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, Missouri, United States.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States.,Harry S. Truman Memorial Veteran Hospital, Columbia, Missouri, United States
| | - DeAna G Grant
- Electron Microscopy Core, University of Missouri, Columbia, Missouri, United States
| | - T Dylan Olver
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States.,Child Health, University of Missouri, Columbia, Missouri, United States
| | - Alana M Czajkowski
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, United States
| | - Teagan R Schnurbusch
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, United States
| | - Rajiv R Mohan
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, Missouri, United States.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States.,Harry S. Truman Memorial Veteran Hospital, Columbia, Missouri, United States.,Mason Eye Institute, University of Missouri, Columbia, Missouri, United States
| | - Dean P Hainsworth
- Mason Eye Institute, University of Missouri, Columbia, Missouri, United States
| | - Eric M Walters
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, United States
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, Missouri, United States.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States.,Harry S. Truman Memorial Veteran Hospital, Columbia, Missouri, United States
| |
Collapse
|
38
|
Martin-Del-Campo F, Batis-Ruvalcaba C, Ordaz-Medina SM, Martínez-Ramírez HR, Vizmanos-Lamotte B, Romero-Velarde E, Cortes-Sanabria L, Cueto-Manzano AM. Frequency and Risk Factors of Kidney Alterations in Children and Adolescents who Are Overweight and Obese in a Primary Health-care Setting. J Ren Nutr 2019; 29:370-376. [PMID: 30679077 DOI: 10.1053/j.jrn.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/29/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Obesity is clearly associated to kidney disease in adult population; however, there is scarce evidence in children and adolescents. The aim was to compare frequency of renal damage according to the presence of overweight-obesity in children and adolescents, as well as to compare nutritional and biochemical risk factors, according to the presence of kidney alterations. METHODS Cross-sectional study; 172 children and adolescents, 6-16 years old, without malnutrition, diabetes mellitus, hypertension and independent comorbid conditions associated to obesity or kidney disease, as well as transitory causes of microalbuminuria (MA) from a Primary Health-Care Unit were included. Clinical, biochemical, anthropometric and dietetic evaluations were measured in all subjects; subsequently they were classified as normal weight, overweight and obesity groups according to sex- and age-adjusted body mass index (BMI). Glomerular filtration rate (GFR, estimated by Schwartz equation) and albuminuria (albumin/creatinine ratio) were determined. Presence of kidney alterations was measured as decreased GFR (<90 mL/min/1.73m2), hyperfiltration (>170 mL/min/1.73m2) and MA (30-300 mg/g). RESULTS Compared with controls, subjects with overweight-obesity had significantly (P<.05) abdominal obesity (0 vs 69%), hypertension (19 vs 26%), hypertriglyceridemia (11 vs 47%), high low-density lipoprotein cholesterol (2 vs 8%) and low high-density lipoprotein cholesterol (HDL-cholesterol; 2 vs 28%), hyperuricemia (11 vs 28%) and hyperinsulinemia (8 vs 70%). Hyperfiltration and MA were present in 5 and 4 subjects with overweight/obesity, respectively, whereas decreased GFR was present in only 1 subject with obesity. Normal weight subjects had no kidney alterations. In multivariate analysis, kidney alterations were significantly predicted by higher BMI and lower HDL-cholesterol. CONCLUSIONS Kidney alterations were observed only in subjects with overweight (3.6%) and obesity (9.9%), who additionally, displayed cardiometabolic and kidney disease risk factors more frequently than normal weight subjects.
Collapse
Affiliation(s)
- Fabiola Martin-Del-Campo
- Unit of Medical Research in Renal Diseases, Hospital de Especialidades, CMNO, IMSS, Guadalajara, Mexico
| | - Carolina Batis-Ruvalcaba
- Unit of Medical Research in Renal Diseases, Hospital de Especialidades, CMNO, IMSS, Guadalajara, Mexico
| | - Susan M Ordaz-Medina
- Unit of Medical Research in Renal Diseases, Hospital de Especialidades, CMNO, IMSS, Guadalajara, Mexico
| | - Héctor R Martínez-Ramírez
- Unit of Medical Research in Renal Diseases, Hospital de Especialidades, CMNO, IMSS, Guadalajara, Mexico
| | - Bárbara Vizmanos-Lamotte
- Institute of Human Nutrition, Department of Human Reproduction, Growth and Child Development, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Enrique Romero-Velarde
- Institute of Human Nutrition, Department of Human Reproduction, Growth and Child Development, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Laura Cortes-Sanabria
- Unit of Medical Research in Renal Diseases, Hospital de Especialidades, CMNO, IMSS, Guadalajara, Mexico
| | - Alfonso M Cueto-Manzano
- Unit of Medical Research in Renal Diseases, Hospital de Especialidades, CMNO, IMSS, Guadalajara, Mexico.
| |
Collapse
|
39
|
Zhang X, Kim SR, Ferguson CM, Ebrahimi B, Hedayat AF, Lerman A, Lerman LO. The Metabolic Syndrome Does Not Affect Development of Collateral Circulation in the Poststenotic Swine Kidney. Am J Hypertens 2018; 31:1307-1316. [PMID: 30107490 DOI: 10.1093/ajh/hpy127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The collateral circulation is important in maintenance of blood supply to the ischemic kidney distal to renal artery stenosis (RAS). Obesity metabolic syndrome (MetS) preserves renal blood flow (RBF) in the stenotic kidney, but whether this is related to an increase of collateral vessel growth is unknown. We hypothesized that MetS increased collateral circulation around the renal artery. METHODS Twenty-one domestic pigs were randomly divided into unilateral RAS fed an atherogenic (high-fat/high-fructose, MetS-RAS) or standard diet, or controls (n = 7 each). RBF, glomerular filtration rate (GFR), and the peristenotic collateral circulation were assessed after 10 weeks using multidetector computed tomography (CT) and the intrarenal microcirculation by micro-CT. Vascular endothelial growth factor (VEGF) expression was studied in the renal artery wall, kidney, and perirenal fat. Renal fibrosis and stiffness were examined by trichrome and magnetic resonance elastography. RESULTS Compared with controls, RBF and GFR were decreased in RAS, but not in MetS-RAS. MetS-RAS formed peristenotic collaterals to the same extent as RAS pigs but induced greater intrarenal microvascular loss, fibrosis, stiffness, and inflammation. MetS-RAS also attenuated VEGF expression in the renal tissue compared with RAS, despite increased expression in the perirenal fat. CONCLUSIONS MetS does not interfere with collateral vessel formation in the stenotic kidney, possibly because decreased renal arterial VEGF expression offsets its upregulation in perirenal fat, arguing against a major contribution of the collateral circulation to preserve renal function in MetS-RAS. Furthermore, preserved renal function does not protect the poststenotic kidney from parenchymal injury.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Seo Rin Kim
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher M Ferguson
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Behzad Ebrahimi
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Ahmad F Hedayat
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Amir Lerman
- Department of Cardiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lilach O Lerman
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Department of Cardiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
40
|
Geraci G, Zammuto MM, Mattina A, Zanoli L, Geraci C, Granata A, Nardi E, Fatuzzo PM, Cottone S, Mulè G. Para-perirenal distribution of body fat is associated with reduced glomerular filtration rate regardless of other indices of adiposity in hypertensive patients. J Clin Hypertens (Greenwich) 2018; 20:1438-1446. [PMID: 30218482 DOI: 10.1111/jch.13366] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/07/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022]
Abstract
Obesity is a well-known risk factor for the development and progression of chronic kidney disease. Recently, para-perirenal ultrasonographic fat thickness (PUFT) has shown to correlate with both total and visceral fat better than body mass index (BMI), waist circumference (WC), and other indices of obesity. Moreover, a local paracrine and mechanical action of the PUFT on kidney has been described in recent studies. Aim of our study was to assess the relationship between glomerular filtration rate (GFR) and PUFT in comparison with other anthropometric and ultrasonographic indices of adiposity. Two hundred and ninety-six hypertensive patients were enrolled. PUFT, cutis-rectis thickness and rectis-aorta thickness were obtained by ultrasonography. Anthropometric measures of adiposity were also measured. Estimated GFR was calculated using the CKD-EPI equation. Higher PUFT values were observed in patients with impaired renal function (P < 0.001), whereas no differences in BMI and WC were shown between groups divided by GFR. PUFT significantly correlated with GFR in all patients (r = -0.284; P < 0.001), with no differences in groups divided by sex, diabetes, or BMI. This association held in multivariate analyses also after correction for confounding factors, including other adiposity indices (P < 0.001). When receiver operating characteristic curves were built to detect a eGFR < 60 mL/minutes per 1.73 m2 , a PUFT value ≤3.725 cm showed a negative predictive value of 94.0%, with the largest area under the curve (AUC: 0.700) among the variables considered. In conclusion, the relationship between PUFT and GFR seems to be more accurate and less influenced by the bias affecting traditional indices of adiposity.
Collapse
Affiliation(s)
- Giulio Geraci
- Dipartimento Biomedico di Medicina Interna e Specialistica, Unit of Nephrology and Hypertension, European Society of Hypertension Excellence Center, University of Palermo, Palermo, Italy
| | - Marta Maria Zammuto
- Dipartimento Biomedico di Medicina Interna e Specialistica, Unit of Nephrology and Hypertension, European Society of Hypertension Excellence Center, University of Palermo, Palermo, Italy
| | - Alessandro Mattina
- Dipartimento Biomedico di Medicina Interna e Specialistica, Unit of Internal Medicine, University of Palermo, Palermo, Italy.,IRCCS Centro Neurolesi "Bonibo-Pulejo", via Provinciale Palermo, Messina, Italy
| | - Luca Zanoli
- Clinical and Experimental Medicine, Section of Nephrology, University of Catania, Italy
| | - Calogero Geraci
- Dipartimento Biomedico di Medicina Interna e Specialistica, Unit of Nephrology and Hypertension, European Society of Hypertension Excellence Center, University of Palermo, Palermo, Italy
| | - Antonio Granata
- Unit of Nephrology and Dialysis, San Giovanni di Dio" Hospital, Agrigento, Italy
| | - Emilio Nardi
- Dipartimento Biomedico di Medicina Interna e Specialistica, Unit of Internal Medicine, University of Palermo, Palermo, Italy.,IRCCS Centro Neurolesi "Bonibo-Pulejo", via Provinciale Palermo, Messina, Italy
| | | | - Santina Cottone
- Dipartimento Biomedico di Medicina Interna e Specialistica, Unit of Nephrology and Hypertension, European Society of Hypertension Excellence Center, University of Palermo, Palermo, Italy
| | - Giuseppe Mulè
- Dipartimento Biomedico di Medicina Interna e Specialistica, Unit of Nephrology and Hypertension, European Society of Hypertension Excellence Center, University of Palermo, Palermo, Italy
| |
Collapse
|
41
|
Rodriguez-Poncelas A, Coll-de-Tuero G, Blanch J, Comas-Cufí M, Saez M, Barceló MA. Prediabetes is associated with glomerular hyperfiltration in a European Mediterranean cohort study. J Nephrol 2018; 31:743-749. [PMID: 30151699 DOI: 10.1007/s40620-018-0524-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/12/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Glomerular hyperfiltration is well recognized as an early renal alteration in subjects with diabetes mellitus. However, what is not well-known is whether hyperfiltration also occurs in the early stages of hyperglycaemia, for instance in prediabetes. Identifying subjects with glomerular hyperfiltration from among those with prediabetes might be helpful to implement preventive and therapeutic strategies. This study aimed to investigate the association of prediabetes with glomerular hyperfiltration and its associated variables. METHODS A representative sample of 9238 people aged ≥ 30 years and whose entire clinical and laboratory data were available, were included in this study. Hyperfiltration was defined as an estimated glomerular filtration rate (eGFR) above the age- and gender-specific 95th percentile. The eGFR was assessed using the Chronic Kidney Disease Epidemiology Collaboration equation. RESULTS After adjustment for age, gender, body mass index, systolic blood pressure and diastolic blood pressure, cholesterol, log (triglycerides), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, serum uric acid, smoking status, hypertension, and use of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, fasting plasma glucose (FPG) was found to be independently positively associated with eGFR. The hazard ratios (95% confidence interval) for hyperfiltration were 1.61 (1.28-2.03) and 2.30 (1.89-2.79) for prediabetes and diabetes, respectively, when compared with participants with normoglycemia. CONCLUSION Prediabetes was associated with glomerular hyperfiltration. Longitudinal studies are needed to investigate whether hyperfiltration in prediabetes is associated with a later decline in eGFR.
Collapse
Affiliation(s)
| | - Gabriel Coll-de-Tuero
- METHARISC Group, USR Girona, IdIAP Gol i Gorina, Girona, Spain.,Department of Medical Sciences, University of Girona, Girona, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jordi Blanch
- METHARISC Group, USR Girona, IdIAP Gol i Gorina, Girona, Spain
| | - Marc Comas-Cufí
- METHARISC Group, USR Girona, IdIAP Gol i Gorina, Girona, Spain
| | - Marc Saez
- METHARISC Group, USR Girona, IdIAP Gol i Gorina, Girona, Spain. .,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain. .,Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Carrer de la Universitat de Girona 10, Campus de Montilivi, 17003, Girona, Spain.
| | - Maria Antònia Barceló
- METHARISC Group, USR Girona, IdIAP Gol i Gorina, Girona, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain.,Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Carrer de la Universitat de Girona 10, Campus de Montilivi, 17003, Girona, Spain
| |
Collapse
|
42
|
Eirin A, Hedayat AF, Ferguson CM, Textor SC, Lerman A, Lerman LO. Mitoprotection preserves the renal vasculature in porcine metabolic syndrome. Exp Physiol 2018; 103:1020-1029. [PMID: 29714040 DOI: 10.1113/ep086988] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? We hypothesized that chronic mitoprotection would decrease renal vascular remodelling and dysfunction in swine metabolic syndrome. What is the main finding and its importance? This study shows that experimental metabolic syndrome exerts renal microvascular and endothelial cell mitochondrial injury, which were attenuated by mitoprotection, underscoring the contribution of mitochondrial injury to the pathogenesis of metabolic syndrome-induced vascular damage. ABSTRACT The metabolic syndrome (MetS) induces intrarenal microvascular disease, which may involve mitochondrial injury. The mitochondrial cardiolipin-targeting peptide elamipretide (ELAM) improves the microcirculation in post-stenotic kidneys, but its ability to attenuate MetS-induced renal vascular damage is unknown. We hypothesized that chronic treatment with ELAM would decrease renal vascular remodelling and function in swine MetS. Pigs were studied after 16 weeks of diet-induced MetS, MetS treated for the last 4 weeks with daily injections of ELAM (0.1 mg kg-1 ), and lean control (Lean) animals (n = 6 each). Single-kidney regional perfusion, blood flow and glomerular filtration rate were measured with multi-detector computed tomography (CT). Peritubular capillary (PTC) endothelial cell (EC) mitochondrial density and cardiolipin content were assessed in situ, as were PTC-EC apoptosis and oxidative stress. The spatial density of PTCs (Haematoxylin and Eosin staining) and renal microvessels (micro-CT), and renal artery endothelial function (organ bath) were characterized. Regional perfusion and serum creatinine were preserved in MetS pigs, but renal blood flow and glomerular filtration rate were higher compared with Lean. Mitochondrial density and cardiolipin content were diminished in MetS PTC-ECs, but improved in ELAM-treated pigs, as did PTC density. Elamipretide also attenuated PTC-EC oxidative stress and apoptosis. Furthermore, ELAM improved renal microvascular density, decreased microvascular remodelling and restored endothelial nitric oxide expression and endothelium-dependent relaxation of renal artery segments. In conclusion, MetS-induced mitochondrial alterations might contribute to renal PTC and microvascular loss and might impair renal artery endothelial function in pigs. Mitoprotection with ELAM preserved a hierarchy of renal vessels, underscoring its potential to ameliorate renal vascular injury in MetS.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Ahmad F Hedayat
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Stephen C Textor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.,Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
43
|
Renal Adiposity Confounds Quantitative Assessment of Markers of Renal Diffusion With MRI: A Proposed Correction Method. Invest Radiol 2018; 52:672-679. [PMID: 28562413 DOI: 10.1097/rli.0000000000000389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Recent studies have indicated that excessive fat may confound assessment of diffusion in organs with high fat content, such as the liver and breast. However, the extent of this effect in the kidney, which is not considered a major fat deposition site, remains unclear. This study tested the hypothesis that renal fat may impact diffusion-weighted imaging (DWI) parameters, and proposes a 3-compartment model (TCM) to circumvent this effect. METHODS Using computer simulations, we investigated the effect of fat on assessment of apparent diffusion coefficient (ADC), intravoxel incoherent motion (IVIM), and TCM-derived pure-diffusivity. We also investigated the influence of magnetic resonance repetition (TR) and echo time (TE) on DWI parameters as a result of variation in the relative contribution of the fat signal. Apparent diffusion coefficient, IVIM and TCM DWI parameters were calculated in domestic pigs fed a high-cholesterol (obese group) or normal diet (lean group), and correlated to renal histology. Intravoxel incoherent motion-derived pure-diffusivity was also compared among 15 essential hypertension patients classified by body mass index (BMI) (high vs normal). Finally, pure-diffusivity was calculated and compared in 8 patients with atherosclerotic renal artery stenosis (ARAS) and 5 healthy subjects using IVIM and TCM. RESULTS Simulations showed that unaccounted fat results in the underestimation of IVIM-derived pure diffusivity. The underestimation increases as the fat fraction increases, with higher pace at lower fat contents. The underestimation was larger for shorter TR and longer TE values due to the enhancement of the relative contribution of the fat signal. Moreover, TCM, which incorporates highly diffusion-weighted images (b > 2500 s/mm), could correct for fat-dependent underestimation. Animal studies in the lean and obese groups confirmed lower ADC and IVIM pure-diffusivity in obese versus lean pigs with otherwise healthy kidneys, whereas pure-diffusivity calculated using TCM were not different between the 2 groups. Similarly, essential hypertension patients with high BMI had lower ADC (1.9 vs 2.1 × 10 mm/s) and pure-diffusivity (1.7 vs 1.9 × 10 mm/s) than those with normal BMI. Pure-diffusivity calculated using IVIM was not different between the ARAS and healthy subjects, but TCM revealed significantly lower diffusivity in ARAS. CONCLUSIONS Excessive renal fat may cause underestimation of renal ADC and IVIM-derived pure-diffusivity, which may hinder detection of renal pathology. Models accounting for fat contribution may help reduce the variability of diffusivity calculated using DWI.
Collapse
|
44
|
Kim SR, Lerman LO. Diagnostic imaging in the management of patients with metabolic syndrome. Transl Res 2018; 194:1-18. [PMID: 29175480 PMCID: PMC5839955 DOI: 10.1016/j.trsl.2017.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MetS) is the constellation of metabolic risk factors that might foster development of type 2 diabetes and cardiovascular disease. Abdominal obesity and insulin resistance play a prominent role among all metabolic traits of MetS. Because intervention including weight loss can reduce these morbidity and mortality in MetS, early detection of the severity and complications of MetS could be useful. Recent advances in imaging modalities have provided significant insight into the development and progression of abdominal obesity and insulin resistance, as well as target organ injuries. The purpose of this review is to summarize advances in diagnostic imaging modalities in MetS that can be applied for evaluating each components and target organs. This may help in early detection, monitoring target organ injury, and in turn developing novel therapeutic target to alleviate and avert them.
Collapse
Affiliation(s)
- Seo Rin Kim
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn.
| |
Collapse
|
45
|
Chang AR, Surapaneni A, Kirchner HL, Young A, Kramer HJ, Carey DJ, Appel LJ, Grams ME. Metabolically Healthy Obesity and Risk of Kidney Function Decline. Obesity (Silver Spring) 2018; 26:762-768. [PMID: 29498223 PMCID: PMC5866209 DOI: 10.1002/oby.22134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The aim of this study was to examine the association between BMI categories, stratified by metabolic health status, and the risk of kidney function decline (KFD). METHODS In this study, 42,128 adult patients with a stable BMI were classified over a 3-year baseline window by BMI and metabolic health status (assessed by Adult Treatment Panel-III criteria). KFD was defined as an estimated glomerular filtration rate (eGFR) decline ≥ 30%, eGFR < 15 mL/min/1.73 m2 , or receipt of dialysis and/or transplant. RESULTS Over a median of 5.1 years (interquartile range 2.1-8.9), 6,533 (15.5%) individuals developed KFD. Compared with the normal weight, metabolically healthy category, metabolically healthy obesity was associated with a higher risk of KFD (adjusted hazard ratio [aHR] 1.52; 95% CI: 1.22-1.89). aHRs for KFD were 1.17 (95% CI: 0.89-1.53), 2.21 (95% CI: 1.59-3.08), and 2.20 (95% CI: 1.55-3.11) for metabolically healthy obesity with BMI 30 to 34.9, BMI 35 to 39.9, and BMI ≥ 40 kg/m2 . These associations were consistent among men and women, patients with eGFR ≥ or < 90 mL/min/1.73 m2 , and age ≥ or < 55 years. The risk of KFD was highest among metabolically unhealthy individuals with BMI ≥ 40 (aHR 4.02; 95% CI: 3.40-4.75 vs. metabolically healthy individuals with normal weight). CONCLUSIONS Obesity, whether in the presence or absence of metabolic health, is a risk factor for KFD.
Collapse
Affiliation(s)
- Alex R Chang
- Kidney Health Research Institute, Geisinger Health, Danville, Pennsylvania, USA
- Department of Epidemiology and Health Services Research, Geisinger Health, Danville, Pennsylvania, USA
| | - Aditya Surapaneni
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - H Lester Kirchner
- Biomedical and Translational Informatics Institute, Geisinger Health, Danville, Pennsylvania, USA
| | - Amanda Young
- Biomedical and Translational Informatics Institute, Geisinger Health, Danville, Pennsylvania, USA
| | - Holly J Kramer
- Division of Nephrology, Loyola University Medical Center, Maywood, Illinois, USA
| | - David J Carey
- Department of Molecular and Functional Genomics, Geisinger Health, Danville, Pennsylvania, USA
| | - Lawrence J Appel
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Morgan E Grams
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
- Divison of Nephrology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Jaikumkao K, Pongchaidecha A, Chueakula N, Thongnak L, Wanchai K, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Renal outcomes with sodium glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin, in obese insulin-resistant model. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2021-2033. [PMID: 29572114 DOI: 10.1016/j.bbadis.2018.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 02/08/2023]
Abstract
A growing body of evidence indicates that obesity and insulin resistance contribute to the progression of renal disease. This study was performed to determine the effects of dapagliflozin, a novel sodium glucose cotransporter 2 (SGLT2) inhibitor, on renal and renal organic anion transporter 3 (Oat3) functions in high-fat diet fed rats, a model of obese insulin-resistance. Twenty-four male Wistar rats were divided into two groups, and received either a normal diet (ND) (n = 6) or a high-fat diet (HFD) (n = 18) for 16 weeks. At week 17, the HFD-fed rats were subdivided into three subgroups (n = 6/subgroup) and received either a vehicle (HFD), dapagliflozin (HFDAP; 1.0 mg/kg/day) or metformin (HFMET; 30 mg/kg/day), by oral gavage for four weeks. Metabolic parameters, renal function, renal Oat3 function, renal oxidative stress, and renal morphology were determined. The results showed that obese insulin-resistant rats induced by HFD feeding had impaired renal function and renal Oat3 function together with increased renal oxidative injury. Dapagliflozin or metformin treatment decreased insulin resistance, hypercholesterolemia, creatinine clearance and renal oxidative stress leading to improved renal function. However, dapagliflozin treatment decreased blood pressure, serum creatinine, urinary microalbumin and increased glucose excretions, and showed a greater ability to ameliorate impaired renal insulin signaling and glomerular barrier damage than metformin. These data suggest that dapagliflozin had greater efficacy than metformin for attenuating renal dysfunction and improving renal Oat3 function, at least in part by reducing renal oxidative stress and modulating renal insulin signaling pathways, and hence ameliorating renal injury.
Collapse
Affiliation(s)
- Krit Jaikumkao
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttawud Chueakula
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Keerati Wanchai
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | | | - Nipon Chattipakorn
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center for Research and Development of Natural Products for Health, Chiang Mai University, Thailand.
| |
Collapse
|
47
|
Dekkers IA, de Heer P, Bizino MB, de Vries APJ, Lamb HJ. 1 H-MRS for the assessment of renal triglyceride content in humans at 3T: A primer and reproducibility study. J Magn Reson Imaging 2018. [PMID: 29517830 DOI: 10.1002/jmri.26003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Renal steatosis (fatty kidney) is a potential biomarker for obesity-related renal disease; however, noninvasive assessment of renal fat content remains a technical challenge. PURPOSE To evaluate reproducibility and explore clinical application of renal metabolic imaging for the quantification of renal triglyceride content (TG) using proton magnetic resonance spectroscopy (1 H-MRS). STUDY TYPE Reproducibility and clinical cohort study. POPULATION Twenty-three healthy volunteers (mean age 30.1 ± 13.4 years) and 15 patients with type 2 diabetes mellitus (T2DM) (mean age 59.3 ± 7.0 years). FIELD STRENGTH/SEQUENCE 3T, single-voxel point resolved spectroscopy (PRESS). ASSESSMENT Intra- and interexamination reproducibility of renal TG was assessed in healthy volunteers, and compared to T2DM patients. Intraexamination differences were obtained by repeating the 1 H-MRS measurement directly after the first 1 H-MRS without repositioning of the subject or changing surface coil and measurement volumes. Interexamination variability was studied by repeating the scan protocol after removal and replacement of the subject in the magnet, and subsequent repositioning of body coil and measurement volumes. STATISTICAL TESTS Reproducibility was determined using Pearson's correlation and Bland-Altman analyses. Differences in TG% between healthy volunteers and T2DM patients were assessed using the Mann-Whitney U-test. RESULTS After logarithmic (log) transformation, both intraexamination (r = 0.91, n = 19) and interexamination (r = 0.73, n = 9) measurements of renal TG content were highly correlated with the first renal TG measurements. Intraexamination and interexamination limits of agreement of renal log TG% were respectively [-1.36%, + 0.84%] and [-0.77%, + 0.62%]. Backtransformed limits of agreement were [-0.89%,+0.57%] and [-0.55%, + 0.43%] multiplied by mean TG for intra- and interexamination measurements. Overall median renal TG content was 0.12% [0.08, 0.22; 25th percentile, 75th percentile] in healthy volunteers and 0.20% [0.13, 0.22] in T2DM patients (P = 0.08). DATA CONCLUSION Renal metabolic imaging using 3T 1 H-MRS is a reproducible technique for the assessment of renal triglyceride content. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2018;48:507-513.
Collapse
Affiliation(s)
- Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul de Heer
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Maurice B Bizino
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Aiko P J de Vries
- Department of Medicine, Division of Nephrology and Transplant Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
48
|
Jonker JT, de Heer P, Engelse MA, van Rossenberg EH, Klessens CQF, Baelde HJ, Bajema IM, Koopmans SJ, Coelho PG, Streefland TCM, Webb AG, Dekkers IA, Rabelink TJ, Rensen PCN, Lamb HJ, de Vries APJ. Metabolic imaging of fatty kidney in diabesity: validation and dietary intervention. Nephrol Dial Transplant 2018; 33:224-230. [PMID: 28992141 DOI: 10.1093/ndt/gfx243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/17/2017] [Indexed: 02/06/2023] Open
Abstract
Background Obesity and type 2 diabetes have not only been linked to fatty liver, but also to fatty kidney and chronic kidney disease. Since non-invasive tools are lacking to study fatty kidney in clinical studies, we explored agreement between proton magnetic resonance spectroscopy (1H-MRS) and enzymatic assessment of renal triglyceride content (without and with dietary intervention). We further studied the correlation between fatty kidney and fatty liver. Methods Triglyceride content in the renal cortex was measured by 1H-MRS on a 7-Tesla scanner in 27 pigs, among which 15 minipigs had been randomized to a 7-month control diet, cafeteria diet (CAF) or CAF with low-dose streptozocin (CAF-S) to induce insulin-independent diabetes. Renal biopsies were taken from corresponding MRS-voxel locations. Additionally, liver biopsies were taken and triglyceride content in all biopsies was measured by enzymatic assay. Results Renal triglyceride content measured by 1H-MRS and enzymatic assay correlated positively (r = 0.86, P < 0.0001). Compared with control diet-fed minipigs, renal triglyceride content was higher in CAF-S-fed minipigs (137 ± 51 nmol/mg protein, mean ± standard error of the mean, P < 0.05), but not in CAF-fed minipigs (60 ± 10 nmol/mg protein) compared with controls (40 ± 6 nmol/mg protein). Triglyceride contents in liver and kidney biopsies were strongly correlated (r = 0.97, P < 0.001). Conclusions Non-invasive measurement of renal triglyceride content by 1H-MRS closely predicts triglyceride content as measured enzymatically in biopsies, and fatty kidney appears to develop parallel to fatty liver. 1H-MRS may be a valuable tool to explore the role of fatty kidney in obesity and type 2 diabetic nephropathy in humans in vivo.
Collapse
Affiliation(s)
- Jacqueline T Jonker
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul de Heer
- Department of Radiology, C.J. Gorter Center for High Field MR, Leiden University Medical Center, Leiden, The Netherlands
| | - Marten A Engelse
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Celine Q F Klessens
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingeborg M Bajema
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sietse Jan Koopmans
- Animal Science Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Paulo G Coelho
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York University, New York, NY, USA
| | - Trea C M Streefland
- Department of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew G Webb
- Department of Radiology, C.J. Gorter Center for High Field MR, Leiden University Medical Center, Leiden, The Netherlands
| | - Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ton J Rabelink
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aiko P J de Vries
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
49
|
Ferguson CM, Eirin A, Michalak GJ, Hedayat AF, Abumoawad A, Saad A, Zhu X, Textor SC, McCollough CH, Lerman LO. Intrarenal fat deposition does not interfere with the measurement of single-kidney perfusion in obese swine using multi-detector computed tomography. J Cardiovasc Comput Tomogr 2018; 12:149-152. [PMID: 29339048 DOI: 10.1016/j.jcct.2018.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Altered vascular structure or function in several diseases may impair renal perfusion. Multi-detector computed tomography (MDCT) is a non-invasive tool to assess single-kidney perfusion and function based on dynamic changes in tissue attenuation during contrast media transit. However, changes in basal tissue attenuation might hamper these assessments, despite background subtraction. Evaluation of iodine concentration using the dual-energy (DECT) MDCT mode allows excluding effects of basal values on dynamic changes in tissue attenuation. We tested whether decreased basal kidney attenuation secondary to intrarenal fat deposition in swine obesity interferes with assessment of renal perfusion using MDCT. METHODS Domestic pigs were fed a standard (lean) or a high-cholesterol/carbohydrate (obese) diet (n = 5 each) for 16 weeks, and both kidneys were then imaged using MDCT/DECT after iodinated contrast injection. DECT images were post-processed to generate iodine and virtual-non-contrast (VNC) datasets, and the MDCT kidney/aorta CT number (following background subtraction) and DECT iodine ratios calculated during the peak vascular phase as surrogates of renal perfusion. Intrarenal fat was subsequently assessed with Oil-Red-O staining. RESULTS VNC maps in obese pigs revealed decreased basal cortical attenuation, and histology confirmed increased renal tissue fat deposition. Nevertheless, the kidney/aorta attenuation and iodine ratios remained similar, and unchanged compared to lean pigs. CONCLUSIONS Despite decreased basal attenuation secondary to renal adiposity, background subtraction allows adequate assessment of kidney perfusion in obese pigs using MDCT. These observations support the feasibility of renal perfusion assessment in obese subjects using MDCT.
Collapse
Affiliation(s)
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Ahmad F Hedayat
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Ahmed Saad
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Stephen C Textor
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
50
|
Van Beusecum JP, Zhang S, Cook AK, Inscho EW. Acute toll-like receptor 4 activation impairs rat renal microvascular autoregulatory behaviour. Acta Physiol (Oxf) 2017; 221:204-220. [PMID: 28544543 DOI: 10.1111/apha.12899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/16/2016] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
Abstract
AIM Little is known about how toll-like receptor 4 (TLR4) influences the renal microvasculature. We hypothesized that acute TLR4 stimulation with lipopolysaccharide (LPS) impairs afferent arteriole autoregulatory behaviour, partially through reactive oxygen species (ROS). METHODS We assessed afferent arteriole autoregulatory behaviour after LPS treatment (1 mg kg-1 ; i.p.) using the in vitro blood-perfused juxtamedullary nephron preparation. Autoregulatory behaviour was assessed by measuring diameter responses to stepwise changes in renal perfusion pressure. TLR4 expression was assessed by immunofluorescence, immunohistochemistry and Western blot analysis in the renal cortex and vasculature. RESULTS Baseline arteriole diameter at 100 mmHg averaged 15.2 ± 1.2 μm and 12.2 ± 1.0 μm for control and LPS groups (P < 0.05) respectively. When perfusion pressure was increased in 15 mmHg increments from 65 to 170 mmHg, arteriole diameter in control kidneys decreased significantly to 69 ± 6% of baseline diameter. In the LPS-treated group, arteriole diameter remained essentially unchanged (103 ± 9% of baseline), indicating impaired autoregulatory behaviour. Pre-treatment with anti-TLR4 antibody or the TLR4 antagonist, LPS-RS, preserved autoregulatory behaviour during LPS treatment. P2 receptor reactivity was normal in control and LPS-treated rats. Pre-treatment with Losartan (angiotensin type 1 receptor blocker; (AT1 ) 2 mg kg-1 ; i.p.) increased baseline afferent arteriole diameter but did not preserve autoregulatory behaviour in LPS-treated rats. Acute exposure to Tempol (10-3 mol L-1 ), a superoxide dismutase mimetic, restored pressure-mediated vasoconstriction in kidneys from LPS-treated rats. CONCLUSION These data demonstrate that TLR4 activation impairs afferent arteriole autoregulatory behaviour, partially through ROS, but independently of P2 and AT1 receptor activation.
Collapse
Affiliation(s)
- J. P. Van Beusecum
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
- Department of Physiology; Augusta University; Augusta GA USA
| | - S. Zhang
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
- Department of Physiology; Augusta University; Augusta GA USA
| | - A. K. Cook
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
- Department of Physiology; Augusta University; Augusta GA USA
| | - E. W. Inscho
- Division of Nephrology; Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
- Department of Physiology; Augusta University; Augusta GA USA
| |
Collapse
|