1
|
Ilatovskaya DV, Behr A, Staruschenko A, Hall G, Palygin O. Mechanistic Insights Into Redox Damage of the Podocyte in Hypertension. Hypertension 2025; 82:14-25. [PMID: 39534957 DOI: 10.1161/hypertensionaha.124.22068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Podocytes are specialized cells within the glomerular filtration barrier, which are crucial for maintaining glomerular structural integrity and convective ultrafiltration. Podocytes exhibit a unique arborized morphology with foot processes interfacing by slit diaphragms, ladder-like, multimolecular sieves, which provide size and charge selectivity for ultrafiltration and transmembrane signaling. Podocyte dysfunction, resulting from oxidative stress, dysregulated prosurvival signaling, or structural damage, can drive the development of proteinuria and glomerulosclerosis in hypertensive nephropathy. Functionally, podocyte injury leads to actin cytoskeleton rearrangements, foot process effacement, dysregulated slit diaphragm protein expression, and impaired ultrafiltration. Notably, the renin-angiotensin system plays a pivotal role in podocyte function, with beneficial AT2R (angiotensin receptor 2)-mediated nitric oxide (NO) signaling to counteract AT1R (angiotensin receptor 1)-driven calcium (Ca2+) influx and oxidative stress. Disruption of this balance contributes significantly to podocyte dysfunction and drives albuminuria, a marker of kidney damage and overall disease progression. Oxidative stress can also lead to sustained ion channel-mediated Ca2+ influx and precipitate cytoskeletal disorganization. The complex interplay between GPCR (G-protein coupled receptor) signaling, ion channel activation, and redox injury pathways underscores the need for additional research aimed at identifying targeted therapies to protect podocytes and preserve glomerular function. Earlier detection of albuminuria and podocyte injury through routine noninvasive diagnostics will also be critical in populations at the highest risk for the development of hypertensive kidney disease. In this review, we highlight the established mechanisms of oxidative stress-mediated podocyte damage in proteinuric kidney diseases, with an emphasis on a hypertensive renal injury. We will also consider emerging therapies that have the potential to selectively protect podocytes from redox-related injury.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia (D.V.I.), Augusta University, Augusta, GA
| | - Amanda Behr
- Department of Medical Illustration, College of Allied Health Sciences (A.B.), Augusta University, Augusta, GA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology (A.S.), University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center (A.S.), University of South Florida, Tampa, FL
- James A. Haley Veterans' Hospital, Tampa, FL (A.S.)
| | - Gentzon Hall
- Division of Nephrology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC (G.H.)
- Division of Nephrology, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC (G.H.)
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine (O.P.), Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology (O.P.), Medical University of South Carolina, Charleston, SC
| |
Collapse
|
2
|
Waller AP, Muralidharan K, Kerlin BA. PARticularly Forceful: PAR1 Drives Glomerular Mesangial Cell Contractility. FUNCTION 2024; 5:zqae044. [PMID: 39293813 DOI: 10.1093/function/zqae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024] Open
Affiliation(s)
- Amanda P Waller
- Center for Clinical & Translational Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kaushik Muralidharan
- Center for Clinical & Translational Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Bryce A Kerlin
- Center for Clinical & Translational Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| |
Collapse
|
3
|
Stefanenko M, Fedoriuk M, Mamenko M, Semenikhina M, Nowling TK, Lipschutz JH, Maximyuk O, Staruschenko A, Palygin O. PAR1-mediated Non-periodical Synchronized Calcium Oscillations in Human Mesangial Cells. FUNCTION 2024; 5:zqae030. [PMID: 38984988 PMCID: PMC11384906 DOI: 10.1093/function/zqae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Mesangial cells offer structural support to the glomerular tuft and regulate glomerular capillary flow through their contractile capabilities. These cells undergo phenotypic changes, such as proliferation and mesangial expansion, resulting in abnormal glomerular tuft formation and reduced capillary loops. Such adaptation to the changing environment is commonly associated with various glomerular diseases, including diabetic nephropathy and glomerulonephritis. Thrombin-induced mesangial remodeling was found in diabetic patients, and expression of the corresponding protease-activated receptors (PARs) in the renal mesangium was reported. However, the functional PAR-mediated signaling in mesangial cells was not examined. This study investigated protease-activated mechanisms regulating mesangial cell calcium waves that may play an essential role in the mesangial proliferation or constriction of the arteriolar cells. Our results indicate that coagulation proteases such as thrombin induce synchronized oscillations in cytoplasmic Ca2+ concentration of mesangial cells. The oscillations required PAR1 G-protein coupled receptors-related activation, but not a PAR4, and were further mediated presumably through store-operated calcium entry and transient receptor potential canonical 3 (TRPC3) channel activity. Understanding thrombin signaling pathways and their relation to mesangial cells, contractile or synthetic (proliferative) phenotype may play a role in the development of chronic kidney disease and requires further investigation.
Collapse
Affiliation(s)
- Mariia Stefanenko
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine
| | - Mykhailo Fedoriuk
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mykola Mamenko
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Marharyta Semenikhina
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tamara K Nowling
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joshua H Lipschutz
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Medicine, Ralph H. Johnson VAMC, Charleston, SC 29401, USA
| | - Oleksandr Maximyuk
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602, USA
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Vesey DA, Iyer A, Owen E, Kamato D, Johnson DW, Gobe GC, Fairlie DP, Nikolic-Paterson DJ. PAR2 activation on human tubular epithelial cells engages converging signaling pathways to induce an inflammatory and fibrotic milieu. Front Pharmacol 2024; 15:1382094. [PMID: 39005931 PMCID: PMC11239397 DOI: 10.3389/fphar.2024.1382094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024] Open
Abstract
Key features of chronic kidney disease (CKD) include tubulointerstitial inflammation and fibrosis. Protease activated receptor-2 (PAR2), a G-protein coupled receptor (GPCR) expressed by the kidney proximal tubular cells, induces potent proinflammatory responses in these cells. The hypothesis tested here was that PAR2 signalling can contribute to both inflammation and fibrosis in the kidney by transactivating known disease associated pathways. Using a primary cell culture model of human kidney tubular epithelial cells (HTEC), PAR2 activation induced a concentration dependent, PAR2 antagonist sensitive, secretion of TNF, CSF2, MMP-9, PAI-1 and CTGF. Transcription factors activated by the PAR2 agonist 2F, including NFκB, AP1 and Smad2, were critical for production of these cytokines. A TGF-β receptor-1 (TGF-βRI) kinase inhibitor, SB431542, and an EGFR kinase inhibitor, AG1478, ameliorated 2F induced secretion of TNF, CSF2, MMP-9, and PAI-1. Whilst an EGFR blocking antibody, cetuximab, blocked PAR2 induced EGFR and ERK phosphorylation, a TGF-βRII blocking antibody failed to influence PAR2 induced secretion of PAI-1. Notably simultaneous activation of TGF-βRII (TGF-β1) and PAR2 (2F) synergistically enhanced secretion of TNF (2.2-fold), CSF2 (4.4-fold), MMP-9 (15-fold), and PAI-1 (2.5-fold). In summary PAR2 activates critical inflammatory and fibrotic signalling pathways in human kidney tubular epithelial cells. Biased antagonists of PAR2 should be explored as a potential therapy for CKD.
Collapse
Affiliation(s)
- David A Vesey
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Abishek Iyer
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Evan Owen
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Danielle Kamato
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - David W Johnson
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Centre for Kidney Disease Research, Translational Research Institute, The University of Queensland at the Princess Alexandra Hospital, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - David P Fairlie
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health and Monash University Centre for Inflammatory Diseases, Monash Medical Centre, Clayton, VIC, Australia
| |
Collapse
|
5
|
Mavridis T, Choratta T, Papadopoulou A, Sawafta A, Archontakis-Barakakis P, Laou E, Sakellakis M, Chalkias A. Protease-Activated Receptors (PARs): Biology and Therapeutic Potential in Perioperative Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01233-0. [PMID: 38326662 DOI: 10.1007/s12975-024-01233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Perioperative stroke is a devastating complication that occurs during surgery or within 30 days following the surgical procedure. Its prevalence ranges from 0.08 to 10% although it is most likely an underestimation, as sedatives and narcotics can substantially mask symptomatology and clinical presentation. Understanding the underlying pathophysiology and identifying potential therapeutic targets are of paramount importance. Protease-activated receptors (PARs), a unique family of G-protein-coupled receptors, are widely expressed throughout the human body and play essential roles in various physiological and pathological processes. This review elucidates the biology and significance of PARs, outlining their diverse functions in health and disease, and their intricate involvement in cerebrovascular (patho)physiology and neuroprotection. PARs exhibit a dual role in cerebral ischemia, which underscores their potential as therapeutic targets to mitigate the devastating effects of stroke in surgical patients.
Collapse
Affiliation(s)
- Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Dublin, incorporating the National Children's Hospital (AMNCH), Dublin, D24 NR0A, Ireland
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - Theodora Choratta
- Department of General Surgery, Metaxa Hospital, 18537, Piraeus, Greece
| | - Androniki Papadopoulou
- Department of Anesthesiology, G. Gennimatas General Hospital, 54635, Thessaloniki, Greece
| | - Assaf Sawafta
- Department of Cardiology, University Hospital of Larisa, 41110, Larisa, Greece
| | | | - Eleni Laou
- Department of Anesthesiology, Agia Sophia Children's Hospital, 15773, Athens, Greece
| | - Minas Sakellakis
- Department of Medicine, Jacobi Medical Center-North Central Bronx Hospital, Bronx, NY, 10467, USA
| | - Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-5158, USA.
- Outcomes Research Consortium, Cleveland, OH, 44195, USA.
| |
Collapse
|
6
|
May CJ, Chesor M, Hunter SE, Hayes B, Barr R, Roberts T, Barrington FA, Farmer L, Ni L, Jackson M, Snethen H, Tavakolidakhrabadi N, Goldstone M, Gilbert R, Beesley M, Lennon R, Foster R, Coward R, Welsh GI, Saleem MA. Podocyte protease activated receptor 1 stimulation in mice produces focal segmental glomerulosclerosis mirroring human disease signaling events. Kidney Int 2023; 104:265-278. [PMID: 36940798 PMCID: PMC7616342 DOI: 10.1016/j.kint.2023.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
About 30% of patients who have a kidney transplant with underlying nephrotic syndrome (NS) experience rapid relapse of disease in their new graft. This is speculated to be due to a host-derived circulating factor acting on podocytes, the target cells in the kidney, leading to focal segmental glomerulosclerosis (FSGS). Our previous work suggests that podocyte membrane protease receptor 1 (PAR-1) is activated by a circulating factor in relapsing FSGS. Here, the role of PAR-1 was studied in human podocytes in vitro, and using a mouse model with developmental or inducible expression of podocyte-specific constitutively active PAR-1, and using biopsies from patients with nephrotic syndrome. In vitro podocyte PAR-1 activation caused a pro-migratory phenotype with phosphorylation of the kinase JNK, VASP protein and docking protein Paxillin. This signaling was mirrored in podocytes exposed to patient relapse-derived NS plasma and in patient disease biopsies. Both developmental and inducible activation of transgenic PAR-1 (NPHS2 Cre PAR-1Active+/-) caused early severe nephrotic syndrome, FSGS, kidney failure and, in the developmental model, premature death. We found that the non-selective cation channel protein TRPC6 could be a key modulator of PAR-1 signaling and TRPC6 knockout in our mouse model significantly improved proteinuria and extended lifespan. Thus, our work implicates podocyte PAR-1 activation as a key initiator of human NS circulating factor and that the PAR-1 signaling effects were partly modulated through TRPC6.
Collapse
Affiliation(s)
- Carl J May
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | - Bryony Hayes
- Bristol Renal, University of Bristol, Bristol, UK
| | - Rachel Barr
- Bristol Renal, University of Bristol, Bristol, UK
| | - Tim Roberts
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | - Lan Ni
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | | | | | - Rodney Gilbert
- Renal Medicine and Nephrology, Southampton General Hospital, University Hospital Southampton, Southampton, UK
| | - Matt Beesley
- Pathology Department, Gloucestershire Royal Hospital, Gloucester, UK
| | - Rachel Lennon
- Wellcome Trust Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medical and Health Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | | | - Richard Coward
- Bristol Renal, University of Bristol, Bristol, UK; Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK
| | | | - Moin A Saleem
- Bristol Renal, University of Bristol, Bristol, UK; Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK.
| |
Collapse
|
7
|
Shimada S, Hoffmann BR, Yang C, Kurth T, Greene AS, Liang M, Dash RK, Cowley AW. Metabolic Responses of Normal Rat Kidneys to a High Salt Intake. FUNCTION 2023; 4:zqad031. [PMID: 37575482 PMCID: PMC10413938 DOI: 10.1093/function/zqad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 08/15/2023] Open
Abstract
In this study, novel methods were developed, which allowed continuous (24/7) measurement of arterial blood pressure and renal blood flow in freely moving rats and the intermittent collection of arterial and renal venous blood to estimate kidney metabolic fluxes of O2 and metabolites. Specifically, the study determined the effects of a high salt (HS; 4.0% NaCl) diet upon whole kidney O2 consumption and arterial and renal venous plasma metabolomic profiles of normal Sprague-Dawley rats. A separate group of rats was studied to determine changes in the cortex and outer medulla tissue metabolomic and mRNAseq profiles before and following the switch from a 0.4% to 4.0% NaCl diet. In addition, targeted mRNA expression analysis of cortical segments was performed. Significant changes in the metabolomic and transcriptomic profiles occurred with feeding of the HS diet. A progressive increase of kidney O2 consumption was found despite a reduction in expression of most of the mRNA encoding enzymes of TCA cycle. A novel finding was the increased expression of glycolysis-related genes in Cx and isolated proximal tubular segments in response to an HS diet, consistent with increased release of pyruvate and lactate from the kidney to the renal venous blood. Data suggests that aerobic glycolysis (eg, Warburg effect) may contribute to energy production under these circumstances. The study provides evidence that kidney metabolism responds to an HS diet enabling enhanced energy production while protecting from oxidative stress and injury. Metabolomic and transcriptomic analysis of kidneys of Sprague-Dawley rats fed a high salt diet.
Collapse
Affiliation(s)
- Satoshi Shimada
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian R Hoffmann
- Mass Spectrometry and Protein Chemistry, Protein Sciences, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Theresa Kurth
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andrew S Greene
- Mass Spectrometry and Protein Chemistry, Protein Sciences, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI 53226, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Abdel-Bakky MS, Aldakhili ASA, Ali HM, Babiker AY, Alhowail AH, Mohammed SAA. Evaluation of Cisplatin-Induced Acute Renal Failure Amelioration Using Fondaparinux and Alteplase. Pharmaceuticals (Basel) 2023; 16:910. [PMID: 37513824 PMCID: PMC10383028 DOI: 10.3390/ph16070910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Acute renal failure (ARF) is a deleterious condition with increased mortality or healthcare costs or dialysis-dependent end-stage renal disease. The study aims to compare prophylaxis with fondaparinux (Fund) vs. treatment with alteplase (Alt) in ameliorating cisplatin (Cis)-induced ARF. Sixty male mice were equally divided randomly into six groups of control, Cis, Alt, and Cis + Alt groups receiving normal saline for 10 days. All four groups except for the control received Cis (30 mg/kg, i.p.) on day 7, and 6 h later, both the Alt groups received Alt (0.9 mg/kg, i.v.). The animal groups Fund and Fund + Cis received Fund (5 mg/kg, i.p.) for 10 days, and the Fund + Cis group on day 7 received Cis. All the animal groups were euthanized 72 h after the Cis dose. The Fund + Cis group showed significantly increased expression levels of platelet count, retinoid X receptor alpha (RXR-α) and phosphorylated Akt (p-Akt) in addition to decreased levels of urea, blood urea nitrogen (BUN), uric acid, white blood cells (WBCs), red blood cells (RBCs), relative kidney body weight, kidney injury score, glucose, prothrombin (PT), A Disintegrin And Metalloproteinases-10 (ADAM10), extracellular matrix deposition, protease-activated receptor 2 (PAR-2), and fibrinogen expression when compared to the Cis-only group. Meanwhile, the Cis + Alt group showed increased caspase-3 expression in addition to decreased levels of urea, BUN, uric acid, WBCs, RBCs, glucose, platelet count and PT expression with a marked decrease in PAR-2 protein expression compared to the Cis group. The creatinine levels for both the Fund + Cis and Cis + Alt groups were found to be comparable to those of the Cis-only group. The results demonstrate that the coagulation system's activation through the stimulation of PAR-2 and fibrinogen due to Cis-induced ADAM10 protein expression mediated the apoptotic pathway, as indicated by caspase-3 expression through the p-Akt pathway. This is normally accompanied by the loss of RXR-α distal and proximal tubules as lipid droplets. When the animals were pre-treated with the anticoagulant, Fund, the previous deleterious effect was halted while the fibrinolytic agent, Alt, most of the time failed to treat Cis-induced toxicity.
Collapse
Affiliation(s)
- Mohamed S Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Anas S A Aldakhili
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hussein M Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | - Ali Y Babiker
- Department of Medical Laboratories, College of Applied Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad H Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Salman A A Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
9
|
Mehranfard N, Rezazadeh H, Soltani N, Dastgerdi AH, Ghanbari Rad M, Ghasemi M. Changes in Protease-Activated Receptor and Trypsin-1 Expression Are Involved in the Therapeutic Effect of Mg 2+ Supplementation in Type 2 Diabetes-Induced Gastric Injury in Male Adult Rats. Adv Pharmacol Pharm Sci 2023; 2023:5703718. [PMID: 37228689 PMCID: PMC10205415 DOI: 10.1155/2023/5703718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/17/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Purpose Gastric inflammation is common and usually severe in patients with type 2 diabetes mellitus (T2DM). Evidence suggests protease-activated receptors (PARs) are a link between inflammation and gastrointestinal dysfunction. Given that magnesium (Mg2+) deficiency is a highly prevalent condition in T2DM patients, we assessed the therapeutic role of Mg2+ on the factors involved in gastric inflammation in T2DM. Methods A rat model of T2DM gastropathy was established using a long-term high-fat diet + a low dose of streptozocin. Twenty-four rats were divided into control, T2DM , T2DM + insulin (positive control), and T2DM + Mg2+ groups. At the end of 2-month therapies, changes in the expression of gastric trypsin-1, PAR1, PAR2, PAR3, PI3K/Akt, and COX-2 proteins were measured by western blot. Hematoxylin and eosin and Masson's trichrome staining were used to detect gastric mucosal injury and fibrosis. Results The expression of trypsin-1, PAR1, PAR2, PAR3, and COX-2 increased in diabetes, and Mg2+/insulin treatment strongly decreased their expression. The PI3K/p-Akt significantly decreased in T2DM, and treatment with Mg2+/insulin improved PI3K in T2DM rats. Staining of the gastric antrum tissue of the insulin/Mg2+-treated T2DM rats showed a significantly minimal mucosal and fibrotic injury compared with those of rats from the T2DM group. Conclusion Mg2+ supplement, comparable to insulin, via decreasing PARs expression, mitigating COX-2 activity, and decreasing collagen deposition could exert a potent gastroprotective effect against inflammation, ulcer, and fibrotic development in T2DM patients.
Collapse
Affiliation(s)
- Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Rezazadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nepton Soltani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mahtab Ghanbari Rad
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Xu P, Zhan H, Zhang R, Xu XJ, Zhang Y, Le Y, Bi JG. Early growth response factor 1 upregulates pro-fibrotic genes through activation of TGF-β1/Smad pathway via transcriptional regulation of PAR1 in high-glucose treated HK-2 cells. Mol Cell Endocrinol 2023; 572:111953. [PMID: 37172885 DOI: 10.1016/j.mce.2023.111953] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Tubulointerstitial fibrosis (TIF) makes a key role in diabetic kidney disease (DKD). In this study, we revealed that the expressions of Egr1 and protease-activated receptor 1 (PAR1) were increased in renal tissues of DKD rats. In vitro experiments demonstrated that both Egr1 overexpression and high glucose (HG) condition could promote the expressions of PAR1, fibronectin (FN) and collagen I (COL I). Furthermore, HG stimulation enhanced the binding capacity of Egr1 to PAR1 promoter. Both HG condition and Egr1 upregulation could increase, and thrombin inhibitor did not affect activity of TGF-β1/Smad pathway via PAR1. Collectively, Egr1 is involved in TIF of DKD partly through activating TGF-β1/Smad pathway via transcriptional regulation of PAR1 in HG treated HK-2 cells.
Collapse
Affiliation(s)
- Ping Xu
- Department of Endocrinology and Metabolism, Shenzhen, 518020, Guangdong, China
| | - Hui Zhan
- Department of Pharmacy, Shenzhen, 518020, Guangdong, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Shenzhen, 518020, Guangdong, China
| | - Xiu-Jun Xu
- Shenzhen Municipal Health Commission Office, Shenzhen, 518020, Guangdong, China
| | - Ying Zhang
- Department of Endocrinology and Metabolism, Shenzhen, 518020, Guangdong, China
| | - Ying Le
- Department of Endocrinology and Metabolism, Shenzhen, 518020, Guangdong, China
| | - Jian-Gang Bi
- Department of Hepatobiliary Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
11
|
Bagang N, Gupta K, Singh G, Kanuri SH, Mehan S. Protease-activated receptors in kidney diseases: A comprehensive review of pathological roles, therapeutic outcomes and challenges. Chem Biol Interact 2023; 377:110470. [PMID: 37011708 DOI: 10.1016/j.cbi.2023.110470] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Studies have demonstrated that protease-activated receptors (PARs) with four subtypes (PAR1-4) are mainly expressed in the renal epithelial, endothelial, and podocyte cells. Some endogenous and urinary proteases, namely thrombin, trypsin, urokinase, and kallikrein released during diseased conditions, are responsible for activating different subtypes of PARs. Each PAR receptor subtype is involved in kidney disease of distinct aetiology. PAR1 and PAR2 have shown differential therapeutic outcomes in rodent models of type-1 and type-2 diabetic kidney diseases due to the distinct etiological basis of each disease type, however such findings need to be confirmed in other diabetic renal injury models. PAR1 and PAR2 blockers have been observed to abolish drug-induced nephrotoxicity in rodents by suppressing tubular inflammation and fibrosis and preventing mitochondrial dysfunction. Notably, PAR2 inhibition improved autophagy and prevented fibrosis, inflammation, and remodeling in the urethral obstruction model. Only the PAR1/4 subtypes have emerged as a therapeutic target for treating experimentally induced nephrotic syndrome, where their respective antibodies attenuated the podocyte apoptosis induced upon thrombin activation. Strikingly PAR2 and PAR4 subtypes involvement has been tested in sepsis-induced acute kidney injury (AKI) and renal ischemia-reperfusion injury models. Thus, more studies are required to delineate the role of other subtypes in the sepsis-AKI model. Evidence suggests that PARs regulate oxidative, inflammatory stress, immune cell activation, fibrosis, autophagic flux, and apoptosis during kidney diseases.
Collapse
|
12
|
Shimada S, Hoffmann BR, Yang C, Kurth T, Greene AS, Liang M, Dash RK, Cowley AW. Metabolic responses of normal rat kidneys to a high salt intake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524636. [PMID: 36711564 PMCID: PMC9882299 DOI: 10.1101/2023.01.18.524636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the present study, novel methods were developed which allowed continuous (24/7) measurement of blood pressure (BP) and renal blood flow (RBF) in freely moving rats and the intermittent collection of arterial and renal venous blood to estimate kidney metabolic fluxes of O 2 and metabolites. The study determined the effects of a high salt (HS) diet upon whole kidney O 2 consumption and the metabolomic profiles of normal Sprague Dawley (SD) rats. A separate group of rats was studied to determine changes in the cortex (Cx) and outer medulla (OM) tissue metabolomic and mRNAseq profiles before and following the switch from a 0.4% to a 4.0% NaCl diet. Significant changes in the metabolomic and transcriptomic profiles occurred with feeding of the HS diet. A progressive increase of kidney O 2 consumption was found despite a reduction in expression of most of the mRNA encoding enzymes of TCA cycle. Increased glycolysis was evident with the elevation of mRNA expression encoding key glycolytic enzymes and release of pyruvate and lactate from the kidney in the renal venous blood. Glycolytic production of NADH is used in either the production of lactate or oxidized via the malate aspartate shuttle. Aerobic glycolysis (e.g., Warburg-effect) may account for the needed increase in cellular energy. The study provides evidence that kidney metabolism responds to a HS diet enabling enhanced energy production while protecting from oxidate stress and injury.
Collapse
|
13
|
Huang Y, Zhao X, Zhang Q, Yang X, Hou G, Peng C, Jia M, Zhou L, Yamamoto T, Zheng J. Novel therapeutic perspectives for crescentic glomerulonephritis through targeting parietal epithelial cell activation and proliferation. Expert Opin Ther Targets 2023; 27:55-69. [PMID: 36738160 DOI: 10.1080/14728222.2023.2177534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Kidney injury is clinically classified as crescentic glomerulonephritis (CrGN) when ≥50% of the glomeruli in a biopsy sample contain crescentic lesions. However, current strategies, such as systemic immunosuppressive therapy and plasmapheresis for CrGN, are partially effective, and these drugs have considerable systemic side effects. Hence, targeted therapy to prevent glomerular crescent formation and expansion remains an unmet clinical need. AREAS COVERED Hyperproliferative parietal epithelial cells (PECs) are the main constituent cells of the glomerular crescent with cell-tracing evidence. Crescents obstruct the flow of primary urine, pressure the capillaries, and degenerate the affected nephrons. We reviewed the markers of PEC activation and proliferation, potential therapeutic effects of thrombin and thrombin receptor inhibitors, and how podocytes cross-talk with PECs. These experiments may help identify potential early specific targets for the prevention and treatment of glomerular crescentic injury. EXPERT OPINION Inhibiting PEC activation and proliferation in CrGN can alleviate glomerular crescent progression, which has been supported by preclinical studies with evidence of genetic deletion. Clarifying the outcome of PEC transformation to the podocyte phenotype and suppressing thrombin, thrombin receptors, and PEC hyperproliferation in early therapeutic strategies will be the research goals in the next ten years.
Collapse
Affiliation(s)
- Yanjie Huang
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Qiushuang Zhang
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mengzhen Jia
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Li Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Tatsuo Yamamoto
- Department of Nephrology, Fujieda Municipal General Hospital, 4-1-11 Surugadai, Fujieda, Japan
| | - Jian Zheng
- Institute of Pediatrics of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
14
|
Oe Y, Takahashi N. Tissue Factor, Thrombosis, and Chronic Kidney Disease. Biomedicines 2022; 10:2737. [PMID: 36359257 PMCID: PMC9687479 DOI: 10.3390/biomedicines10112737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/14/2023] Open
Abstract
Coagulation abnormalities are common in chronic kidney disease (CKD). Tissue factor (TF, factor III) is a master regulator of the extrinsic coagulation system, activating downstream coagulation proteases, such as factor Xa and thrombin, and promoting fibrin formation. TF and coagulation proteases also activate protease-activated receptors (PARs) and are implicated in various organ injuries. Recent studies have shown the mechanisms by which thrombotic tendency is increased under CKD-specific conditions. Uremic toxins, such as indoxyl sulfate and kynurenine, are accumulated in CKD and activate TF and coagulation; in addition, the TF-coagulation protease-PAR pathway enhances inflammation and fibrosis, thereby exacerbating renal injury. Herein, we review the recent research studies to understand the role of TF in increasing the thrombotic risk and CKD progression.
Collapse
Affiliation(s)
- Yuji Oe
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai 980-8578, Japan
| |
Collapse
|
15
|
Zhuo X, Wu Y, Fu X, Liang X, Xiang Y, Li J, Mao C, Jiang Y. The Yin‐Yang roles of protease‐activated receptors in inflammatory signalling and diseases. FEBS J 2022; 289:4000-4020. [DOI: 10.1111/febs.16406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Xin Zhuo
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yue Wu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xiujuan Fu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xiaoyu Liang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yuxin Xiang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Jianbin Li
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Canquan Mao
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yuhong Jiang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| |
Collapse
|
16
|
Ha S, Yang Y, Kim BM, Kim J, Son M, Kim D, Yu HS, Im DS, Chung HY, Chung KW. Activation of PAR2 promotes high-fat diet-induced renal injury by inducing oxidative stress and inflammation. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166474. [PMID: 35772632 DOI: 10.1016/j.bbadis.2022.166474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022]
Abstract
A high-fat diet (HFD) is a major risk factor for chronic kidney disease. Although HFD promotes renal injury, characterized by increased inflammation and oxidative stress leading to fibrosis, the underlying mechanism remains elusive. Here, we investigated the role and mechanism of protease-activating receptor 2 (PAR2) activation during HFD-induced renal injury in C57/BL6 mice. HFD for 16 weeks resulted in kidney injury, manifested by increased blood levels of blood urea nitrogen, increased levels of oxidative stress with inflammation, and structural changes in the kidney tubules. HFD-fed kidneys showed elevated PAR2 expression level in the tubular epithelial region. To elucidate the role of PAR2, PAR2 knockout mice and their littermates were administered HFD. PAR2 deficient kidneys showed reduced extent of renal injury. PAR2 deficient kidneys showed significantly decreased levels of inflammatory gene expression and macrophage infiltration, followed by reduced accumulation of extracellular matrix proteins. Using NRK52E kidney epithelial cells, we further elucidated the mechanism and role of PAR2 activation during renal injury. Palmitate treatment increased PAR2 expression level in NRK52E cells and scavenging of oxidative stress blocked PAR2 expression. Under palmitate-treated conditions, PAR2 agonist-induced NF-κB activation level was higher with increased chemokine expression level in the cells. These changes were attenuated by the depletion of oxidative stress. Taken together, our results suggest that HFD-induced PAR2 activation is associated with increased levels of renal oxidative stress, inflammatory response, and fibrosis.
Collapse
Affiliation(s)
- Sugyeong Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Yejin Yang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Byeong Moo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jeongwon Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Minjung Son
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Doyeon Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Dong-Soon Im
- Laboratory of Pharmacology, College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
17
|
Artunc F, Bohnert BN, Schneider JC, Staudner T, Sure F, Ilyaskin AV, Wörn M, Essigke D, Janessa A, Nielsen NV, Birkenfeld AL, Etscheid M, Haerteis S, Korbmacher C, Kanse SM. Proteolytic activation of the epithelial sodium channel (ENaC) by factor VII activating protease (FSAP) and its relevance for sodium retention in nephrotic mice. Pflugers Arch 2021; 474:217-229. [PMID: 34870751 PMCID: PMC8766372 DOI: 10.1007/s00424-021-02639-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
Proteolytic activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases is thought to contribute to renal sodium retention in nephrotic syndrome. However, the identity of the responsible proteases remains elusive. This study evaluated factor VII activating protease (FSAP) as a candidate in this context. We analyzed FSAP in the urine of patients with nephrotic syndrome and nephrotic mice and investigated its ability to activate human ENaC expressed in Xenopus laevis oocytes. Moreover, we studied sodium retention in FSAP-deficient mice (Habp2−/−) with experimental nephrotic syndrome induced by doxorubicin. In urine samples from nephrotic humans, high concentrations of FSAP were detected both as zymogen and in its active state. Recombinant serine protease domain of FSAP stimulated ENaC-mediated whole-cell currents in a time- and concentration-dependent manner. Mutating the putative prostasin cleavage site in γ-ENaC (γRKRK178AAAA) prevented channel stimulation by the serine protease domain of FSAP. In a mouse model for nephrotic syndrome, active FSAP was present in nephrotic urine of Habp2+/+ but not of Habp2−/− mice. However, Habp2−/− mice were not protected from sodium retention compared to nephrotic Habp2+/+ mice. Western blot analysis revealed that in nephrotic Habp2−/− mice, proteolytic cleavage of α- and γ-ENaC was similar to that in nephrotic Habp2+/+ animals. In conclusion, active FSAP is excreted in the urine of nephrotic patients and mice and activates ENaC in vitro involving the putative prostasin cleavage site of γ-ENaC. However, endogenous FSAP is not essential for sodium retention in nephrotic mice.
Collapse
Affiliation(s)
- Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany. .,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany. .,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany.
| | - Bernhard N Bohnert
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany
| | - Jonas C Schneider
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany
| | - Tobias Staudner
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Sure
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Wörn
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany
| | - Daniel Essigke
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany
| | - Andrea Janessa
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany
| | - Nis V Nielsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Andreas L Birkenfeld
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tubingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tubingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tubingen, Germany
| | | | - Silke Haerteis
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Institute of Anatomy, University of Regensburg, Regensburg, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sandip M Kanse
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Hara T, Uemoto R, Sekine A, Mitsui Y, Masuda S, Kurahashi K, Yoshida S, Otoda T, Yuasa T, Kuroda A, Ikeda Y, Endo I, Honda S, Yoshimoto K, Kondo A, Tamaki T, Matsumoto T, Matsuhisa M, Abe M, Aihara K. Plasma heparin cofactor II activity is inversely associated with albuminuria and its annual deterioration in patients with diabetes. J Diabetes Investig 2021; 12:2172-2182. [PMID: 34043882 PMCID: PMC8668075 DOI: 10.1111/jdi.13602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 12/01/2022] Open
Abstract
AIMS/INTRODUCTION Thrombin exerts various pathophysiological functions by activating protease-activated receptors (PARs). Recent data have shown that PARs influence the development of glomerular diseases including diabetic kidney disease (DKD) by regulating inflammation. Heparin cofactor II (HCII) specifically inactivates thrombin; thus, we hypothesized that low plasma HCII activity correlates with DKD development, as represented by albuminuria. MATERIALS AND METHODS Plasma HCII activity and spot urine biomarkers, including albumin and liver-type fatty acid-binding protein (L-FABP), were determined as the urine albumin-to-creatinine ratio (uACR) and the urine L-FABP-to-creatinine ratio (uL-FABPCR) in 310 Japanese patients with diabetes mellitus (176 males and 134 females). The relationships between plasma HCII activities and those DKD urine biomarkers were statistically evaluated. In addition, the relationship between plasma HCII activities and annual uACR changes was statistically evaluated for 201/310 patients (115 males and 86 females). RESULTS The mean plasma HCII activity of all participants was 93.8 ± 17.7%. Multivariate-regression analysis including confounding factors showed that plasma HCII activity independently contributed to the suppression of the uACR and log-transformed uACR values (P = 0.036 and P = 0.006, respectively) but not uL-FABPCR (P = 0.541). In addition, plasma HCII activity significantly and inversely correlated with annual uACR and log-transformed uACR increments after adjusting for confounding factors (P = 0.001 and P = 0.014, respectively). CONCLUSIONS The plasma HCII activity was inversely and specifically associated with glomerular injury in patients with diabetes. The results suggest that HCII can serve as a novel predictive factor for early-stage DKD development, as represented by albuminuria.
Collapse
Affiliation(s)
- Tomoyo Hara
- Department of Hematology, Endocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Ryoko Uemoto
- Department of Community Medicine and Medical ScienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Akiko Sekine
- Department of Community Medicine and Medical ScienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Yukari Mitsui
- Department of Hematology, Endocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Shiho Masuda
- Department of Hematology, Endocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Kiyoe Kurahashi
- Department of Hematology, Endocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Sumiko Yoshida
- Department of Hematology, Endocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Toshiki Otoda
- Department of Community Medicine and Medical ScienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Tomoyuki Yuasa
- Department of Community Medicine and Medical ScienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Akio Kuroda
- Diabetes Therapeutics and Research CenterInstitute of Advanced Medical SciencesTokushima UniversityTokushimaJapan
| | - Yasumasa Ikeda
- Department of PharmacologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Itsuro Endo
- Department of Bioregulatory SciencesTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Soichi Honda
- Minami Municipal National Insurance HospitalMinami‐choJapan
| | - Katsuhiko Yoshimoto
- Department of Medical PharmacologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Kondo Naika HospitalTokushimaJapan
| | | | | | - Toshio Matsumoto
- Fujii Memorial Institute of Medical SciencesTokushima UniversityTokushimaJapan
| | - Munehide Matsuhisa
- Diabetes Therapeutics and Research CenterInstitute of Advanced Medical SciencesTokushima UniversityTokushimaJapan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Ken‐ichi Aihara
- Department of Community Medicine and Medical ScienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| |
Collapse
|
19
|
Amri J, Alaee M, Babaei R, Salemi Z, Meshkani R, Ghazavi A, Akbari A, Salehi M. Biochanin-A has antidiabetic, antihyperlipidemic, antioxidant, and protective effects on diabetic nephropathy via suppression of TGF-β1 and PAR-2 genes expression in kidney tissues of STZ-induced diabetic rats. Biotechnol Appl Biochem 2021; 69:2112-2121. [PMID: 34652037 DOI: 10.1002/bab.2272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022]
Abstract
One of the major complications of diabetes is diabetic nephropathy, and often many patients suffer from diabetic nephropathy. That is why it is important to find the mechanisms that cause nephropathy and its treatment. This study was designed to examine the antidiabetic effects of biochanin A (BCA) and evaluate its effects on oxidative stress markers and the expression of transforming growth factor-β1 (TGF-β1) and protease-activated receptors-2 (PAR-2) genes in the kidney of type 1 diabetic rats. After induction of diabetes using streptozotocin (STZ), 55 mg/kg bw dose, rats were randomly divided into four groups with six rats in each group as follows: normal group: normal control receiving normal saline and a single dose of citrate buffer daily; diabetic control group: diabetic control receiving 0.5% dimethyl sulfoxide daily; diabetic+BCA (10 mg/kg) group: diabetic rats receiving biochanin A at a dose of 10 mg/kg bw daily; diabetic+BCA (15 mg/kg) group: diabetic rats receiving biochanin A at a dose of 15 mg/kg bw daily. TGF-β1 and PAR-2 gene expression was assessed by real-time. Spectrophotometric methods were used to measure biochemical factors: fast blood glucose (FBG), urea, creatinine, albumin, lipids profiles malondialdehyde (MDA), and superoxide dismutase (SOD). The course of treatment in this study was 42 days. The results showed that in the diabetic control group, FBG, serum urea, creatinine, expression of TGF-β1 and PAR-2 genes, and the levels of MDA in kidney tissue significantly increased and SOD activity in kidney tissue and serum albumin significantly decreased compared to the normal group (p < 0.001). The results showed that administration of biochanin A (10 and 15 mg/kg) after 42 days significantly reduced the expression of TGF-β1 and PAR-2 genes and FBG, urea, creatinine in serum compared to the diabetic control group (p < 0.001), also significantly increased serum albumin compared to the diabetic control group (p < 0.001). The level of MDA and SOD activity in the tissues of diabetic rats that used biochanin A (10 and 15 mg/kg) was significantly reduced and increased, respectively, compared to the diabetic control group (p < 0.001). Also, the result showed that in the diabetic control group lipids profiles significantly is disturbed compared to the normal group (p < 0.001), the results also showed that biochanin A (10 and 15 mg/kg) administration could significantly improved the lipids profile compared to the control diabetic group (p < 0.001). It is noteworthy that it was found that the beneficial effects of the biochanin A were dose dependent. In conclusion, administration of biochanin A for 42 days has beneficial effect and improves diabetes and nephropathy in diabetic rats. So probably biochanin A can be used as an adjunct therapy in the treatment of diabetes.
Collapse
Affiliation(s)
- Jamal Amri
- Traditional and Complementary Medicine Research Center, Department of Traditional medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Alaee
- Traditional and Complementary Medicine Research Center, Department of Traditional medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasool Babaei
- Traditional and Complementary Medicine Research Center, Department of Traditional medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Salemi
- Department of Biochemistry and Genetics, Arak University of Medical Sciences, Arak, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ghazavi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ahmad Akbari
- Traditional and Complementary Medicine Research Center, Department of Traditional medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehdi Salehi
- Traditional and Complementary Medicine Research Center, Department of Traditional medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
20
|
The PAR-1 antagonist vorapaxar ameliorates kidney injury and tubulointerstitial fibrosis. Clin Sci (Lond) 2021; 134:2873-2891. [PMID: 33078834 DOI: 10.1042/cs20200923] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/30/2022]
Abstract
Protease-activated receptor (PAR)-1 has emerged as a key profibrotic player in various organs including kidney. PAR-1 activation leads to deposition of extracellular matrix (ECM) proteins in the tubulointerstitium and induction of epithelial-mesenchymal transition (EMT) during renal fibrosis. We tested the anti-fibrotic potential of vorapaxar, a clinically approved PAR-1 antagonist for cardiovascular protection, in an experimental kidney fibrosis model of unilateral ureteral obstruction (UUO) and an AKI-to-chronic kidney disease (CKD) transition model of unilateral ischemia-reperfusion injury (UIRI), and dissected the underlying renoprotective mechanisms using rat tubular epithelial cells. PAR-1 is activated mostly in the renal tubules in both the UUO and UIRI models of renal fibrosis. Vorapaxar significantly reduced kidney injury and ameliorated morphologic changes in both models. Amelioration of kidney fibrosis was evident from down-regulation of fibronectin (Fn), collagen and α-smooth muscle actin (αSMA) in the injured kidney. Mechanistically, inhibition of PAR-1 inhibited MAPK ERK1/2 and transforming growth factor-β (TGF-β)-mediated Smad signaling, and suppressed oxidative stress, overexpression of pro-inflammatory cytokines and macrophage infiltration into the kidney. These beneficial effects were recapitulated in cultured tubular epithelial cells in which vorapaxar ameliorated thrombin- and hypoxia-induced TGF-β expression and ECM accumulation. In addition, vorapaxar mitigated capillary loss and the expression of adhesion molecules on the vascular endothelium during AKI-to-CKD transition. The PAR-1 antagonist vorapaxar protects against kidney fibrosis during UUO and UIRI. Its efficacy in human CKD in addition to CV protection warrants further investigation.
Collapse
|
21
|
Maruyama-Fumoto K, McGuire JJ, Fairlie DP, Shinozuka K, Kagota S. Activation of protease-activated receptor 2 is associated with blood pressure regulation and proteinuria reduction in metabolic syndrome. Clin Exp Pharmacol Physiol 2021; 48:211-220. [PMID: 33124085 DOI: 10.1111/1440-1681.13431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/27/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Metabolic syndrome (MetS) increases the risk of kidney disease. In SHRSP.Z-Leprfa /IzmDmcr (SHRSP.ZF) rats with MetS, protease-activated receptor 2 (PAR2)-mediated vasorelaxation is preserved in the aorta at 20 weeks of age (weeks) via enhancement of nitric oxide production but impaired at 30 weeks by oxidative stress. However, impairment of PAR2-mediated vasorelaxation of renal arteries and its possible implications for kidney disease are unclear. We used organ baths to assess PAR2-mediated vasorelaxation of isolated renal arteries, colorimetric methods to measure urinary protein levels as an index of renal function, and western blot to determine expression of PAR2 and nephrin proteins in the kidneys of SHRSP.ZF rats at 10, 20, and 30 weeks. We assessed renal arteries and kidney function for effects of orally administered GB88, a pathway-dependent PAR2 antagonist, from 10 to 18 weeks, and azilsartan, an angiotensin II type 1 receptor blocker, from 13 to 23 weeks. PAR2-mediated vasorelaxation was slightly lower at 20 weeks and attenuated significantly at 30 weeks compared with those at 10 weeks. Urinary protein levels were increased at 20 and 30 weeks. Decreased protein expression of PAR2 and nephrin in the kidney were observed at 30 weeks. Administration of GB88 increased blood pressure (BP) and proteinuria. Azilsartan reduced the high BP and the impaired PAR2-mediated vasorelaxation, but did not restore the increase in urinary protein levels and decreased PAR2 and nephrin protein expression in the kidney. PAR2 activation in the kidney may be associated with maintenance of BP and urinary protein excretion in MetS.
Collapse
Affiliation(s)
- Kana Maruyama-Fumoto
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - John J McGuire
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - David P Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld, Australia
| | - Kazumasa Shinozuka
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Satomi Kagota
- Department of Pharmacology II, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| |
Collapse
|
22
|
A direct thrombin inhibitor, dabigatran etexilate protects from renal fibrosis by inhibiting protease activated receptor-1. Eur J Pharmacol 2020; 893:173838. [PMID: 33359646 DOI: 10.1016/j.ejphar.2020.173838] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/23/2022]
Abstract
Chronic kidney disease (CKD) involves interstitial fibrosis as an influential underlying pathological process associated with compromised renal function regardless of etiological cause of the injury. The tubulointerstitial fibrosis is found to be well correlated with declining renal function and its subsequent culmination into renal failure. Given the prominent role of thrombin in multiple diseases, it was tempting for us to investigate the outcome of a direct thrombin inhibitor in renal injury. We investigated the involvement of thrombin in renal injury and fibrosis by using an FDA approved orally active, direct thrombin inhibitor, dabigatran etexilate (DB). We used a robust experimental model of unilateral ureteral obstruction (UUO)-induced renal injury which shows progressive tubulointerstitial fibrosis (TIF) along with tubular injury and inflammation. The obstructed kidney showed severe TIF as compared to control kidneys. The administration of DB significantly inhibited UUO-induced collagen-1 and TIF by inhibition of thrombin activated protease activated receptor (PAR)-1 expression in fibrotic kidney. In addition, DB administration improved histoarchitecture of obstructed kidney, inhibited TGF-β and SNAI2-induced epithelial-mesenchymal transition (EMT) program. Our study highlights the importance of thrombin signalling in TIF and provides strong evidences to support the notion that a direct thrombin inhibitor ameliorates TIF by PAR-1 mediated mechanism.
Collapse
|
23
|
Iio A, Kaji K, Kaji N, Hori M, Yonezawa T, Momoi Y, Maeda S. Expression analysis of protease-activated receptor-2 in cats. Vet Immunol Immunopathol 2020; 229:110115. [PMID: 32932190 DOI: 10.1016/j.vetimm.2020.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
Chronic kidney disease (CKD) is a common disease in geriatric cats. Despite its high prevalence, the pathogenesis of feline CKD is poorly understood. Recently, there has been increasing evidence for the role of protease-activated receptor-2 (PAR-2) in the progression of CKD in humans and rodents. However, the role of PAR-2 in feline CKD has not been evaluated. In this study, we determined nucleotide sequence of feline PAR-2 from the kidney, evaluated PAR-2 mRNA and protein expression in normal feline tissues, and analyzed functional expression in the feline kidney epithelial cell line Crandell-Rees Feline Kidney (CRFK). The open reading frame of feline PAR-2 comprised 1,194 bp and encoded 397 amino acids, showing 90%, 90%, and 85% identities to human, dog, and mouse PAR-2, respectively. In healthy cats, expression levels of the PAR-2 mRNA and protein were relatively higher in the gastrointestinal tract and kidney, and was lowest in the heart. The feline PAR-2 protein expression was confirmed, and stimulation of trypsin and PAR-2 agonists induced a prompt increase in the intracellular calcium ion concentration in CRFK cells. The present study will provide fundamental information for investigation of the involvement of PAR-2 in the pathogenesis of CKD in cats.
Collapse
Affiliation(s)
- Aki Iio
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kenjiro Kaji
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Noriyuki Kaji
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuyuki Momoi
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
24
|
Stallone G, Pontrelli P, Rascio F, Castellano G, Gesualdo L, Grandaliano G. Coagulation and Fibrinolysis in Kidney Graft Rejection. Front Immunol 2020; 11:1807. [PMID: 32983089 PMCID: PMC7477357 DOI: 10.3389/fimmu.2020.01807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Coagulation system is currently considered an integrated part of innate immunity. Clotting activation in response to bacterial surface along with complement cascade priming represents the first line of defense against pathogens. In the last three decades, we learned that several coagulation factors, including factor II or thrombin and factor X, can interact with specific cell surface receptors activated by an unusual proteolytic mechanism and belonging to a novel class of G-protein-coupled receptors known as protease-activated receptors (PARs). PARs are expressed by a variety of cells, including monocytes, dendritic cells, and endothelial cells and may play a key role in the modulation of innate immunity and in the regulation of its interaction with the adaptive branch of the immune system. Also, the fibrinolytic system, in which activation is controlled by coagulation, can interact with innate immunity, and it is a key modulator of extracellular matrix deposition eventually leading to scarring and fibrosis. In the setting of kidney transplantation, coagulation and fibrinolytic systems have been shown to play key roles in the ischemia/reperfusion injury featuring delayed graft function and in the pathogenesis of tissue damage following acute and chronic rejection. In the present review, we aim to describe the mechanisms leading to coagulation and fibrinolysis activation in this setting and their interaction with the priming of the innate immune response and their role in kidney graft rejection.
Collapse
Affiliation(s)
- Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Federica Rascio
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Grandaliano
- Nephrology Unit, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
25
|
Tomuschat C, O'Donnell AM, Coyle D, Puri P. Increased protease activated receptors in the colon of patients with Hirschsprung's disease. J Pediatr Surg 2020; 55:1488-1494. [PMID: 31859043 DOI: 10.1016/j.jpedsurg.2019.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE The pathophysiology of Hirschsprung's associated enterocolitis (HAEC) is not understood. Abnormal intestinal motility and altered intestinal epithelial barrier function have been suggested to play a key role in the causation of HAEC. Protease-activated receptors (PARs) 1 and 2, have been implicated in inflammatory reactions, intestinal permeability and modulation of motility in the gut. METHODS We investigated PAR-1 and PAR-2 protein expression in aganglionic and ganglionic regions of patients with Hirschsprung's Disease (HSCR) (n = 10) versus normal control colon (n = 10). Protein distribution was assessed by using immunofluorescence and confocal microscopy. Gene and protein expression were quantified using quantitative real-time polymerase chain reaction (qPCR), western blot analysis, and densitometry. RESULTS qPCR and Western blot analysis revealed that PAR-1 and PAR-2 expression was significantly increased in ganglionic and aganglionic bowel in HSCR compared to controls (p < 0.003). Confocal microscopy revealed strong PAR-1 and PAR-2 expression in smooth muscles, interstitial cells of Cajal (ICCs), platelet-derived growth factor-alpha receptor-positive (PDGFRα+) cells, enteric neurons and epithelium in the ganglionic and aganglionic bowel compared to controls. CONCLUSION Increased PAR-1 and PAR-2 expression in the colon of patients with HSCR suggests that excessive local release of PAR activating proteases may trigger inflammatory responses leading to HAEC.
Collapse
Affiliation(s)
- Christian Tomuschat
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.
| | - Anne Marie O'Donnell
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - David Coyle
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland; School of Medicine and Medical Science and Conway Institute of Biomedical Research, University College Dublin, Ireland
| |
Collapse
|
26
|
Seo Y, Mun CH, Park SH, Jeon D, Kim SJ, Yoon T, Ko E, Jo S, Park YB, Namkung W, Lee SW. Punicalagin Ameliorates Lupus Nephritis via Inhibition of PAR2. Int J Mol Sci 2020; 21:ijms21144975. [PMID: 32674502 PMCID: PMC7404282 DOI: 10.3390/ijms21144975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/26/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022] Open
Abstract
Lupus nephritis (LN) is the most frequent phenotype in patients with systemic lupus erythematosus (SLE) and has a high rate of progression to end-stage renal disease, in spite of intensive treatment and maintenance therapies. Recent evidence suggests that protease-activated receptor-2 (PAR2) is a therapeutic target for glomerulonephritis. In this study, we performed a cell-based high-throughput screening and identified a novel potent PAR2 antagonist, punicalagin (PCG, a major polyphenol enriched in pomegranate), and evaluated the effects of PCG on LN. The effect of PCG on PAR2 inhibition was observed in the human podocyte cell line and its effect on LN was evaluated in NZB/W F1 mice. In the human podocyte cell line, PCG potently inhibited PAR2 (IC50 = 1.5 ± 0.03 µM) and significantly reduced the PAR2-mediated activation of ERK1/2 and NF-κB signaling pathway. In addition, PCG significantly decreased PAR2-induced increases in ICAM-1 and VCAM-1 as well as in IL-8, IFN-γ, and TNF-α expression. Notably, the intraperitoneal administration of PCG significantly alleviated kidney injury and splenomegaly and reduced proteinuria and renal ICAM-1 and VCAM-1 expression in NZB/W F1 mice. Our results suggest that PCG has beneficial effects on LN via inhibition of PAR2, and PCG is a potential therapeutic agent for LN.
Collapse
Affiliation(s)
- Yohan Seo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.S.); (D.J.); (S.J.)
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Chin Hee Mun
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
| | - So-Hyeon Park
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Korea;
| | - Dongkyu Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.S.); (D.J.); (S.J.)
| | - Su Jeong Kim
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
- BK21 Plus Project, Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Taejun Yoon
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
- BK21 Plus Project, Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eunhee Ko
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
- BK21 Plus Project, Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sungwoo Jo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.S.); (D.J.); (S.J.)
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
- BK21 Plus Project, Department of Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03772, Korea
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.S.); (D.J.); (S.J.)
- Interdisciplinary Program of Integrated OMICS for Biomedical Science Graduate School, Yonsei University, Seoul 03772, Korea
- Correspondence: (W.N.); (S.-W.L.); Tel.: +82-32-749-4519 (W.N.); +82-2-2228-1987 (S.-W.L.)
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.M.); (S.J.K.); (T.Y.); (E.K.); (Y.-B.P.)
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03772, Korea
- Correspondence: (W.N.); (S.-W.L.); Tel.: +82-32-749-4519 (W.N.); +82-2-2228-1987 (S.-W.L.)
| |
Collapse
|
27
|
Scicchitano P, Tucci M, Bellino MC, Cortese F, Cecere A, De Palo M, Massari F, Caldarola P, Silvestris F, Ciccone MM. The Impairment in Kidney Function in the Oral Anticoagulation Era. A Pathophysiological Insight. Cardiovasc Drugs Ther 2020; 35:505-519. [PMID: 32535717 DOI: 10.1007/s10557-020-07004-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The need for anticoagulation in patients with atrial fibrillation (AF) is fundamental to prevent thromboembolic events. Direct oral anticoagulants (DOACs) recently demonstrated to be superior, or at least equal, to Warfarin in reducing the risk for stroke/systemic embolism and preventing major bleeding and intracranial hemorrhages. The AF population often suffers from chronic kidney disease (CKD). Indeed, the relationship between AF and renal function is bidirectional: AF can trigger kidney failure, while kidney impairment can promote alterations able to enhance AF. Therefore, there are concerns regarding prescriptions of anticoagulants to patients with AF and CKD. The worsening in kidney function can be effectively due to anticoagulants administration. Warfarin has been recognized to promote acute kidney injury in case of excessive anticoagulation levels. Nevertheless, further mechanisms can induce the chronic worsening of renal function, thus leading to terminal kidney failure as observed in post-hoc analysis from registration trials and dedicated observational studies. By contrast, DOACs seem to protect kidneys from injuries more efficiently than Warfarin, although they still continue to play a role in promoting some kidney lesions. However, the exact mechanisms remain unknown. This narrative review aimed to discuss the influence of oral anticoagulants on renal impairment as well as to overview potential pathophysiological mechanisms related to this clinical complication.
Collapse
Affiliation(s)
- Pietro Scicchitano
- Cardiology Department, Hospital "F. Perinei", SS. 96 Altamura - Gravina in Puglia Km. 73,800, 70022, Altamura, BA, Italy. .,Cardiology Department, University of Bari, Bari, Italy.
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.,National Cancer Research Center, Tumori Institute Giovanni Paolo II, Bari, Italy
| | | | | | | | | | - Francesco Massari
- Cardiology Department, Hospital "F. Perinei", SS. 96 Altamura - Gravina in Puglia Km. 73,800, 70022, Altamura, BA, Italy
| | | | - Francesco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | | |
Collapse
|
28
|
Ningtyas D, Thomson RJ, Tarlac V, Nagaraj SH, Hoy W, Mathews JD, Foote SJ, Gardiner EE, Hamilton JR, McMorran BJ. Analysis of the F2LR3 (PAR4) Single Nucleotide Polymorphism ( rs773902) in an Indigenous Australian Population. Front Genet 2020; 11:432. [PMID: 32425989 PMCID: PMC7204273 DOI: 10.3389/fgene.2020.00432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/07/2020] [Indexed: 11/29/2022] Open
Abstract
The F2RL3 gene encoding protease activated receptor 4 (PAR4) contains a single nucleotide variant, rs773902, that is functional. The resulting PAR4 variants, Thr120, and Ala120, are known to differently affect platelet reactivity to thrombin. Significant population differences in the frequency of the allele indicate it may be an important determinant in the ethnic differences that exist in thrombosis and hemostasis, and for patient outcomes to PAR antagonist anti-platelet therapies. Here we determined the frequency of rs773902 in an Indigenous Australian group comprising 467 individuals from the Tiwi Islands. These people experience high rates of renal disease that may be related to platelet and PAR4 function and are potential recipients of PAR-antagonist treatments. The rs773902 minor allele frequency (Thr120) in the Tiwi Islanders was 0.32, which is similar to European and Asian groups and substantially lower than Melanesians and some African groups. Logistic regression and allele distortion testing revealed no significant associations between the variant and several markers of renal function, as well as blood glucose and blood pressure. These findings suggest that rs773902 is not an important determinant for renal disease in this Indigenous Australian group. However, the relationships between rs773902 genotype and platelet and drug responsiveness in the Tiwi, and the allele frequency in other Indigenous Australian groups should be evaluated.
Collapse
Affiliation(s)
- Dian Ningtyas
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Russell J Thomson
- Centre for Research in Mathematics and Data Science, School of Computer, Data and Mathematical Sciences, Western Sydney University, Parramatta, NSW, Australia
| | - Volga Tarlac
- Australian Center for Blood Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Shivashankar H Nagaraj
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Brisbane, QLD, Australia
| | - Wendy Hoy
- Centre for Chronic Disease, Faculty of Health, The University of Queensland, Brisbane, QLD, Australia
| | - John D Mathews
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia.,Menzies School of Health Research, Darwin, NT, Australia
| | - Simon J Foote
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Elizabeth E Gardiner
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Justin R Hamilton
- Australian Center for Blood Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Brendan J McMorran
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
29
|
Kanazawa N, Iyoda M, Tachibana S, Matsumoto K, Wada Y, Suzuki T, Iseri K, Shibata T. Therapeutic Potential of Thrombomodulin in Renal Fibrosis of Nephrotoxic Serum Nephritis in Wistar-Kyoto Rats. Kidney Blood Press Res 2020; 45:391-406. [PMID: 32146474 DOI: 10.1159/000506286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recombinant human soluble thrombomodulin (rhTM) was approved in 2008 and has been used for treatment of disseminated intravascular coagulation in Japan. The antifibrotic effects of rhTM in acute exacerbation of idiopathic pulmonary fibrosis are well established, but the therapeutic potential of rhTM in renal fibrosis remains poorly understood. METHODS Nephrotoxic serum nephritis (NTS-N) was induced in 22 female Wistar-Kyoto (WKY) rats on day 0. Rats were administered either rhTM or vehicle intraperitoneally, every day from day 4 to day 55. Rats were sacrificed on day 56 when renal fibrosis was established and renal morphological investigations were performed. In vitro, rat renal fibroblasts (NRK-49F) were pretreated with rhTM or saline, and expression levels of profibrogenic gene induced by thrombin were analyzed by real-time reverse transcription polymerase chain reaction. RESULTS Compared to WKY-GN-vehicle rats, the body weights of WKY-GN-rhTM rats were significantly greater on day 55. By day 56, rhTM had significantly reduced serum creatinine levels in NTS-N. On the other hand, urinary protein excretion was comparable between the two treatment groups throughout the study. The percentage of Masson trichrome-positive areas in WKY-GN-rhTM rats was significantly lower compared to that in WKY-GN-vehicle rats. Glomerular fibrin deposition was significantly reduced in WKY-GN-rhTM rats. In addition, rhTM significantly reduced the renal cortical mRNA expression levels of TNF-α, Toll-like receptor 4, MYD88, TGF-β, αSMA, collagen I, collagen III, fibronectin, and protease-activated receptor 1 (PAR1), a thrombin receptor. In vitro, thrombin stimulation of NRK-49F cells significantly enhanced the mRNA expression levels of αSMA and PAR1, and these upregulations were significantly reduced by pretreatment with rhTM. CONCLUSIONS Administration of rhTM after establishment of crescentic glomerulonephritis (GN) attenuated the subsequent development of renal fibrosis in NTS-N, possibly in part by inhibiting thrombin-mediated fibrogenesis. Our results suggest that rhTM may offer a therapeutic option for limiting the progression of chronic kidney disease in crescentic GN.
Collapse
Affiliation(s)
- Nobuhiro Kanazawa
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan,
| | - Shohei Tachibana
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kei Matsumoto
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yukihiro Wada
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ken Iseri
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takanori Shibata
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
30
|
Jacobs-Cachá C, Puig-Gay N, Helm D, Rettel M, Sellarès J, Meseguer A, Savitski MM, Moreso FJ, Soler MJ, Seron D, Lopez-Hellin J. A misprocessed form of Apolipoprotein A-I is specifically associated with recurrent Focal Segmental Glomerulosclerosis. Sci Rep 2020; 10:1159. [PMID: 31980684 PMCID: PMC6981185 DOI: 10.1038/s41598-020-58197-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
Apolipoprotein A-Ib (ApoA-Ib) is a high molecular weight form of Apolipoprotein A-I (ApoA-I) found specifically in the urine of kidney-transplanted patients with recurrent idiopathic focal segmental glomerulosclerosis (FSGS). To determine the nature of the modification present in ApoA-Ib, we sequenced the whole APOA1 gene in ApoA-Ib positive and negative patients, and we also studied the protein primary structure using mass spectrometry. No genetic variations in the APOA1 gene were found in the ApoA-Ib positive patients that could explain the increase in its molecular mass. The mass spectrometry analysis revealed three extra amino acids at the N-Terminal end of ApoA-Ib that were not present in the standard plasmatic form of ApoA-I. These amino acids corresponded to half of the propeptide sequence of the immature form of ApoA-I (proApoA-I) indicating that ApoA-Ib is a misprocessed form of proApoA-I. The description of ApoA-Ib could be relevant not only because it can allow the automated analysis of this biomarker in the clinical practice but also because it has the potential to shed light into the molecular mechanisms that cause idiopathic FSGS, which is currently unknown.
Collapse
Affiliation(s)
- Conxita Jacobs-Cachá
- Nephrology Research Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain. .,Nephrology Department, Hospital Vall d'Hebrón, Barcelona, Spain.
| | - Natàlia Puig-Gay
- Renal Physiopathology Group-CIBBIM. Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Dominic Helm
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mandy Rettel
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Joana Sellarès
- Nephrology Research Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Nephrology Department, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Anna Meseguer
- Renal Physiopathology Group-CIBBIM. Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Mikhail M Savitski
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany.,Genome Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Francesc J Moreso
- Nephrology Research Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Nephrology Department, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Maria José Soler
- Nephrology Research Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Nephrology Department, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Daniel Seron
- Nephrology Research Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Nephrology Department, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Joan Lopez-Hellin
- Renal Physiopathology Group-CIBBIM. Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain. .,Biochemistry Department, Hospital Vall d'Hebrón, Barcelona, Spain.
| |
Collapse
|
31
|
Abstract
Increasing evidence suggests that renal inflammation contributes to the pathogenesis and progression of diabetic kidney disease (DKD) and that anti-inflammatory therapies might have renoprotective effects in DKD. Immune cells and resident renal cells that activate innate immunity have critical roles in triggering and sustaining inflammation in this setting. Evidence from clinical and experimental studies suggests that several innate immune pathways have potential roles in the pathogenesis and progression of DKD. Toll-like receptors detect endogenous danger-associated molecular patterns generated during diabetes and induce a sterile tubulointerstitial inflammatory response via the NF-κB signalling pathway. The NLRP3 inflammasome links sensing of metabolic stress in the diabetic kidney to activation of pro-inflammatory cascades via the induction of IL-1β and IL-18. The kallikrein-kinin system promotes inflammatory processes via the generation of bradykinins and the activation of bradykinin receptors, and activation of protease-activated receptors on kidney cells by coagulation enzymes contributes to renal inflammation and fibrosis in DKD. In addition, hyperglycaemia leads to protein glycation and activation of the complement cascade via recognition of glycated proteins by mannan-binding lectin and/or dysfunction of glycated complement regulatory proteins. Data from preclinical studies suggest that targeting these innate immune pathways could lead to novel therapies for DKD.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The underlining goal of this review is to offer a concise, detailed look into current knowledge surrounding transient receptor potential canonical channel 6 (TRPC6) in the progression of diabetic kidney disease (DKD). RECENT FINDINGS Mutations and over-activation in TRPC6 channel activity lead to the development of glomeruli injury. Angiotensin II, reactive oxygen species, and other factors in the setting of DKD stimulate drastic increases in calcium influx through the TRPC6 channel, causing podocyte hypertrophy and foot process effacement. Loss of the podocytes further promote deterioration of the glomerular filtration barrier and play a major role in the development of both albuminuria and the renal injury in DKD. Recent genetic manipulation with TRPC6 channels in various rodent models provide additional knowledge about the role of TRPC6 in DKD and are reviewed here. The TRPC6 channel has a pronounced role in the progression of DKD, with deviations in activity yielding detrimental outcomes. The benefits of targeting TRPC6 or its upstream or downstream signaling pathways in DKD are prominent.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Clement J. Zablocki VA Medical Center, Milwaukee, WI, 53295, USA.
| | - Denisha Spires
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
33
|
Rinschen MM, Huesgen PF, Koch RE. The podocyte protease web: uncovering the gatekeepers of glomerular disease. Am J Physiol Renal Physiol 2018; 315:F1812-F1816. [PMID: 30230368 DOI: 10.1152/ajprenal.00380.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteases regulate glomerular physiology. The last decade has revealed a multitude of podocyte proteases that govern the glomerular response to numerous chemical, mechanical, and metabolic cues. These proteases form a protein signaling web that integrates stress stimuli and serves as a key controller of the glomerular microenvironment. Both the extracellular and intracellular proteolytic networks are perturbed in focal segmental glomerulosclerosis, as well as hypertensive and diabetic nephropathy. Accordingly, the highly intertwined podocyte protease web is an integrative part of the podocyte's damage response. Novel mass spectrometry-based technologies will help to untangle this proteolytic network: functional readouts acquired from deep podocyte proteomics, single glomerular proteomics, and degradomics have exposed unanticipated protease activity in podocytes. Future efforts should characterize the interdependency and upstream regulation of key proteases, along with their role in promoting tissue heterogeneity in glomerular diseases. These efforts will not only illuminate the machinery of podocyte proteostasis but also reveal avenues for therapeutic intervention in the podocyte protease web.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany.,Center for Mass Spectrometry and Metabolomics, The Scripps Research Institute , La Jolla, California
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics ZEA-3, Forschungszentrum Jülich, Jülich , Germany
| | - Rachelle E Koch
- Division of Graduate Medical Sciences, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
34
|
Fu X, Ning JP. Synthesis and biocompatibility of an argatroban-modified polysulfone membrane that directly inhibits thrombosis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:66. [PMID: 29744595 DOI: 10.1007/s10856-018-6054-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Anticoagulation therapy plays a vital role in the prevention of blood clot formation during hemodialysis and hemofiltration, especially for critical care patients. Here, we synthesized a novel argatroban (Arg)-modified polysulfone (PSf) membrane for anticoagulation. Arg was grafted onto the PSF membrane via chemical modification to increase membrane hydrophilicity. Protein adsorption, coagulation, as well as activation of platelets and complement systems were greatly reduced on the Arg-modified PSf membrane. Thus, the recalcification time and the activated partial thrombin time (APTT) were increased after the modification. In comparison with the pristine PSf membrane, the Arg-modified PSf membrane showed better hemocompatibility and anticoagulation properties, indicating its potential for applications in hemodialysis and hemofiltration. Modification of the PSf membrane has been investigated in attempts to further enhance the anticoagulation properties of the hemodialysis membranes, including a heparin-modified PSf membrane. However, heparin can inhibit plasma-free thrombin, and cause the occurrence of heparin-induced thrombocytopenia (HIT), which increases the risk of bleeding during dialysis in critical care patients. To address this problem, we modified PSf membrane with as a novel direct thrombin inhibitors, argatroban (Arg). It can reversibly bind to thrombin, inhibiting not only the plasma-free thrombin in the blood, but also clot-bound thrombin.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jian-Ping Ning
- Department of Nephropathy, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
35
|
Genetic risk factors in thrombotic primary antiphospholipid syndrome: A systematic review with bioinformatic analyses. Autoimmun Rev 2018; 17:226-243. [PMID: 29355608 DOI: 10.1016/j.autrev.2017.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Antiphospholipid Syndrome (APS) is an autoimmune multifactorial disorder. Genetics is believed to play a contributory role in the pathogenesis of APS, especially in thrombosis development and pregnancy morbidity. In the last 20 years, extensive research on genetic contribution on APS indicates that APS is a polygenic disorder, where a number of genes are involved in the development of its clinical manifestations. AIMS The aim of this systematic review is to evaluate the genetic risk factors in thrombotic primary APS. Additionally, to assess the common molecular functions, biological processes, pathways, interrelations with the gene encoded proteins and RNA-Seq-derived expression patterns over different organs of the associated genes via bioinformatic analyses. METHODS Without restricting the year, a systematic search of English articles was conducted (up to 4th September 2017) using Web of Science, PubMed, Scopus, ScienceDirect and Google Scholar databases. Eligible studies were selected based on the inclusion criteria. Two researchers independently extracted the data from the included studies. Quality assessment of the included studies was carried out using a modified New-Castle Ottawa scale (NOS). RESULTS From an initial search result of 2673 articles, 22 studies were included (1268 primary APS patients and 1649 healthy controls). Twenty-two genes were identified in which 16 were significantly associated with thrombosis in primary APS whereas six genes showed no significant association with thrombosis. Based on the NOS, 14 studies were of high quality while 6 were low quality studies. From the bioinformatic analyses, thrombin-activated receptor activity (q = 6.77 × 10-7), blood coagulation (q = 2.63 × 10-15), formation of fibrin clot (q = 9.76 × 10-10) were the top hit for molecular function, biological process and pathway categories, respectively. With the highest confidence interaction score of 0.900, all of the thrombosis-associated gene encoded proteins of APS were found to be interconnected except for two. Based on the pathway analysis, cumulatively all the genes affect haemostasis [false discovery rate (FDR) = 1.01 × 10-8] and the immune system [FDR = 9.93 × 10-2]. Gene expression analysis from RNA-Seq data revealed that almost all the genes were expressed in 32 different tissues in the human body. CONCLUSION According to our systematic review, 16 genes contribute significantly in patients with thrombotic primary APS when compared with controls. Bioinformatic analyses of these genes revealed their molecular interconnectivity in protein levels largely by affecting blood coagulation and immune system. These genes are expressed in 32 different organs and may pose higher risk of developing thrombosis anywhere in the body of primary APS patients.
Collapse
|
36
|
Guan Y, Nakano D, Zhang Y, Li L, Liu W, Nishida M, Kuwabara T, Morishita A, Hitomi H, Mori K, Mukoyama M, Masaki T, Hirano K, Nishiyama A. A protease-activated receptor-1 antagonist protects against podocyte injury in a mouse model of nephropathy. J Pharmacol Sci 2017; 135:S1347-8613(17)30128-7. [PMID: 29110957 DOI: 10.1016/j.jphs.2017.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
The kidney expresses protease-activated receptor-1 (PAR-1). PAR-1 is known as a thrombin receptor, but its role in kidney injury is not well understood. In this study, we examined the contribution of PAR-1 to kidney glomerular injury and the effects of its inhibition on development of nephropathy. Mice were divided into 3 groups: control, doxorubicin + vehicle (15 mg/kg doxorubicin and saline) and doxorubicin + Q94 (doxorubicin at 15 mg/kg and the PAR-1 antagonist Q94 at 5 mg/kg/d) groups. Where indicated, doxorubicin was administered intravenously and PAR-1 antagonist or saline vehicle by subcutaneous osmotic mini-pump. PAR-1 expression was increased in glomeruli of mice treated with doxorubicin. Q94 treatment significantly suppressed the increased albuminuria in these nephropathic mice. Pathological analysis showed that Q94 treatment significantly attenuated periodic acid-Schiff and desmin staining, indicators of podocyte injury, and also decreased glomerular levels of podocin and nephrin. Furthermore, thrombin increased intracellular calcium levels in podocytes. This increase was suppressed by Q94 and Rox4560, a transient receptor potential cation channel (TRPC)3/6 antagonist. In addition, both Q94 and Rox4560 suppressed the doxorubicin-induced increase in activities of caspase-9 and caspase-3 in podocytes. These data suggested that PAR-1 contributes to development of podocyte and glomerular injury and that PAR-1 antagonists have therapeutic potential.
Collapse
Affiliation(s)
- Yu Guan
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University, Kagawa, Japan.
| | - Yifan Zhang
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Lei Li
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Wenhua Liu
- Department of Cardiovascular Physiology, Kagawa University, Kagawa, Japan
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Asahiro Morishita
- Department of Gastroenterology & Neurology, Kagawa University, Kagawa, Japan
| | - Hirofumi Hitomi
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| | - Kiyoshi Mori
- Department of Nephrology and Kidney Research, Shizuoka General Hospital, Shizuoka, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology & Neurology, Kagawa University, Kagawa, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Kagawa, Japan
| |
Collapse
|
37
|
Isermann B. Homeostatic effects of coagulation protease-dependent signaling and protease activated receptors. J Thromb Haemost 2017; 15:1273-1284. [PMID: 28671351 DOI: 10.1111/jth.13721] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A homeostatic function of the coagulation system in regard to hemostasis is well established. Homeostasis of blood coagulation depends partially on protease activated receptor (PAR)-signaling. Beyond coagulation proteases, numerous other soluble and cell-bound proteases convey cellular effects via PAR signaling. As we learn more about the mechanisms underlying cell-, tissue-, and context-specific PAR signaling, we concurrently gain new insights into physiological and pathophysiological functions of PARs. In this regard, regulation of cell and tissue homeostasis by PAR signaling is an evolving scheme. Akin to the control of blood clotting per se (the fibrin-platelet interaction) coagulation proteases coordinately regulate cell- and tissue-specific functions. This review summarizes recent insights into homeostatic regulation through PAR signaling, focusing on blood coagulation proteases. Considering the common use of drugs altering coagulation protease activity through either broad or targeted inhibitory activities, and the advent of PAR modulating drugs, an in-depth understanding of the mechanisms through which coagulation proteases and PAR signaling regulate not only hemostasis, but also cell and tissue homeostasis is required.
Collapse
Affiliation(s)
- B Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|