1
|
Sharkova M, Chow E, Erickson T, Hocking JC. The morphological and functional diversity of apical microvilli. J Anat 2023; 242:327-353. [PMID: 36281951 PMCID: PMC9919547 DOI: 10.1111/joa.13781] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Sensory neurons use specialized apical processes to perceive external stimuli and monitor internal body conditions. The apical apparatus can include cilia, microvilli, or both, and is adapted for the functions of the particular cell type. Photoreceptors detect light through a large, modified cilium (outer segment), that is supported by a surrounding ring of microvilli-like calyceal processes (CPs). Although first reported 150 years ago, CPs remain poorly understood. As a basis for future study, we therefore conducted a review of existing literature about sensory cell microvilli, which can act either as the primary sensory detector or as support for a cilia-based detector. While all microvilli are finger-like cellular protrusions with an actin core, the processes vary across cell types in size, number, arrangement, dynamics, and function. We summarize the current state of knowledge about CPs and the characteristics of the microvilli found on inner ear hair cells (stereocilia) and cerebral spinal fluid-contacting neurons, with comparisons to the brush border of the intestinal and renal epithelia. The structure, stability, and dynamics of the actin core are regulated by a complement of actin-binding proteins, which includes both common components and unique features when compared across cell types. Further, microvilli are often supported by lateral links, a glycocalyx, and a defined extracellular matrix, each adapted to the function and environment of the cell. Our comparison of microvillar features will inform further research into how CPs support photoreceptor function, and also provide a general basis for investigations into the structure and functions of apical microvilli found on sensory neurons.
Collapse
Affiliation(s)
- Maria Sharkova
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Erica Chow
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Timothy Erickson
- Department of BiologyUniversity of New BrunswickFrederictonNew BrunswickCanada
| | - Jennifer C. Hocking
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Division of Anatomy, Department of Surgery, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Department of Medical Genetics, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
- Women and Children's Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
2
|
Battistone MA, Mendelsohn AC, Spallanzani RG, Allegretti AS, Liberman RN, Sesma J, Kalim S, Wall SM, Bonventre JV, Lazarowski ER, Brown D, Breton S. Proinflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice. J Clin Invest 2020; 130:3734-3749. [PMID: 32287042 PMCID: PMC7324186 DOI: 10.1172/jci134791] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
Ischemic acute kidney injury (AKI), a complication that frequently occurs in hospital settings, is often associated with hemodynamic compromise, sepsis, cardiac surgery, or exposure to nephrotoxins. Here, using a murine renal ischemia/reperfusion injury (IRI) model, we show that intercalated cells (ICs) rapidly adopted a proinflammatory phenotype after IRI. Wwe demonstrate that during the early phase of AKI either blockade of the proinflammatory P2Y14 receptor located on the apical membrane of ICs or ablation of the gene encoding the P2Y14 receptor in ICs (a) inhibited IRI-induced increase of chemokine expression in ICs, (b) reduced neutrophil and monocyte renal infiltration, (c) reduced the extent of kidney dysfunction, and (d) attenuated proximal tubule damage. These observations indicate that the P2Y14 receptor participates in the very first inflammatory steps associated with ischemic AKI. In addition, we show that the concentration of the P2Y14 receptor ligand UDP-glucose (UDP-Glc) was higher in urine samples from intensive care unit patients who developed AKI compared with patients without AKI. In particular, we observed a strong correlation between UDP-Glc concentration and the development of AKI in cardiac surgery patients. Our study identifies the UDP-Glc/P2Y14 receptor axis as a potential target for the prevention and/or attenuation of ischemic AKI.
Collapse
Affiliation(s)
- Maria Agustina Battistone
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexandra C. Mendelsohn
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Raul German Spallanzani
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Andrew S. Allegretti
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rachel N. Liberman
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Juliana Sesma
- Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Susan M. Wall
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Eduardo R. Lazarowski
- Marsico Lung Institute, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dennis Brown
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sylvie Breton
- Program in Membrane Biology, Division of Nephrology, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Chen HY, Chou C, Chang CH, Lee NG, Yu PC, Chen YC, Pan HC, Fan PC, Yang CW, Cherng WJ, Chen YC. Urine Cofilin-1 Detection for Predicting Type 1 Cardiorenal Syndrome in the Coronary Care Unit: A Gold Nanoparticle- and Laser-Based Approach. Cardiorenal Med 2018; 8:302-310. [PMID: 30121654 DOI: 10.1159/000490927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/16/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Type 1 cardiorenal syndrome (CRS) is a severe complication for acute decompensated heart failure patients. This study aimed at evaluating the feasibility of using the gold nanoparticle-based localized surface plasmon-coupled fluorescence biosensor (LSPCFB) to detect urine cofilin-1 as a biomarker for predicting CRS among patients in the coronary care unit (CCU). METHODS A total of 44 patients were included with prospectively collected urine and blood samples. Both LSPCFB and conventional enzyme-linked immunosorbent assays (ELISAs) were used to measure urine cofilin-1 at admission to the CCU. The occurrence of CRS was judged within 7 days after admission. The discrimination presented as the area under the receiver operating characteristic curve (AUROC) and calibration of both detection methods were used to assess the predictive ability of urine cofilin-1 measured by the LSPCFB and ELISA. RESULTS Thirteen patients were diagnosed with CRS, while the other 31 patients were classified into a non-CRS group. For predicting CRS by measuring urine cofilin-1, the LSPCFB had higher accuracy (AUROC: 0.707, p = 0.031; overall accuracy: 79.55%) than the ELISA (AUROC: 0.479, p = 0.827; overall accuracy: 53.27%). The positive and negative predictive values of the LSPCFB were also higher than those of the ELISA (positive predictive value: 70.0 vs. 34.8%; negative predictive value: 82.4 vs. 76.2%). CONCLUSIONS The gold nanoparticle-based immunoassay LSPCFB could exploit the potential of urine cofilin-1 as a single biomarker to predict CRS among CCU patients.
Collapse
Affiliation(s)
- Hsing-Yu Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien Chou
- Graduate Institute of Electro-Optical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Hsiang Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Nien-Gen Lee
- Graduate Institute of Electro-Optical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Chun Yu
- Graduate Institute of Electro-Optical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chi Chen
- Graduate Institute of Electro-Optical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Heng-Chih Pan
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Pei-Chun Fan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Jin Cherng
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yung-Chang Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.,Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| |
Collapse
|
4
|
Li L, Watson CJ, Dubourd M, Bruton A, Xu M, Cooke G, Baugh JA. HIF-1-Dependent TGM1 Expression is Associated with Maintenance of Airway Epithelial Junction Proteins. Lung 2016; 194:829-38. [PMID: 27423780 DOI: 10.1007/s00408-016-9918-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Hypoxia has been implicated in the pathogenesis of many inflammatory and fibrotic lung diseases. The effect of hypoxia on epithelial junction protein expression is yet to be fully elucidated but evidence suggests a protective role for the hypoxia-inducible transcription factor HIF-1 in stabilising occludin. Transglutaminase 1 (TGM1) has been shown to stabilise endothelial and keratinocyte cell junctions, and while its expression and function have been mostly studied in the skin, recent studies have reported its expression in the lung. We hypothesised that TGM1 is a hypoxia-induced regulator of pulmonary epithelial junction protein stability, and the aim of this study was to investigate the regulation of TGM1 expression by hypoxia. METHODS Hypoxia-responsive genes were identified in human small airway epithelial cells (SAECs) by DNA microarray. TGM1 mRNA expression in SAECs was measured by quantitative real-time PCR. Protein expression of TGM1 and junction proteins was investigated by western blotting. Hypoxia-induced TGM1 was analysed by immunohistochemistry in vivo. The TGM1 gene promoter was investigated by luciferase assay. RESULTS In vitro exposure of SAECs to hypoxia induced a significant increase in TGM1 expression at both mRNA and protein levels. TGM1 was also significantly upregulated in hypoxic mouse lung epithelium. The hypoxia-responsive region was mapped to a HIF-1-responsive element. Inhibition of HIF-1 expression abolished hypoxia-induced promoter activation. Overexpression of TGM1 in lung epithelial cells or exposure of SAECs to hypoxia led to upregulated expression of junction proteins. CONCLUSION Herein we report that TGM1 is a HIF-1-regulated gene that is associated with the upregulation of airway epithelial junction proteins, supporting a protective role for HIF-1 in the lung. Interventions that augment the expression of TGM1 may provide useful therapeutic strategies for maintaining pulmonary epithelial integrity during lung injury.
Collapse
Affiliation(s)
- Lili Li
- UCD Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Chris J Watson
- UCD Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Centre for Experimental Medicine, Queen's University Belfast, Wellcome-Wolfson Building, Belfast, Northern Ireland, UK
| | - Mickael Dubourd
- UCD Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aine Bruton
- UCD Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maojia Xu
- UCD Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gordon Cooke
- UCD Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - John A Baugh
- UCD Conway Institute for Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
5
|
Renner B, Tong HH, Laskowski J, Jonscher K, Goetz L, Woolaver R, Hannan J, Li YX, Hourcade D, Pickering MC, Holers VM, Thurman JM. Annexin A2 Enhances Complement Activation by Inhibiting Factor H. THE JOURNAL OF IMMUNOLOGY 2016; 196:1355-65. [PMID: 26729803 DOI: 10.4049/jimmunol.1500793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 11/27/2015] [Indexed: 12/31/2022]
Abstract
Factor H is a circulating protein that regulates activation of the alternative pathway (AP) of complement. Mutations and genetic variations of factor H are associated with several AP-mediated diseases, highlighting the critical role of factor H in AP regulation. AP-mediated inflammation is typically triggered by illness or tissue injury, however, and tissue injury can trigger AP activation in individuals with fully functional factor H. This suggests that factor H function is affected by local conditions within tissues. We hypothesized that inducible proteins impair the ability of factor H to locally control the AP, thereby increasing AP activation. We used purified murine factor H to immunoprecipitate binding partners from mouse kidneys. Using immunoaffinity liquid chromatography-mass spectrometry, we identified annexin A2 as a factor H binding partner. Further experiments showed that annexin A2 reduces the binding of factor H to cell surfaces. Recombinant annexin A2 impaired complement regulation by factor H and increased complement activation on renal cell surfaces in vitro and in vivo. In a murine model of acute pneumococcal otitis media, the administration of annexin A2 increased AP-mediated bacterial opsonization and clearance. In conclusion, the local production of annexin A2 within tissues suppresses regulation of the AP by factor H. Annexin A2 can contribute to AP-mediated tissue inflammation by locally impairing factor H function, but it can also improve complement-mediated bacterial clearance.
Collapse
Affiliation(s)
- Brandon Renner
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Hua Hua Tong
- Department of Otolaryngology, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210
| | - Jennifer Laskowski
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Karen Jonscher
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Lindsey Goetz
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rachel Woolaver
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jonathan Hannan
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Yong Xing Li
- Department of Otolaryngology, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210
| | - Dennis Hourcade
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Matthew C Pickering
- Centre for Complement and Inflammation Research, South Kensington Campus, Imperial College, London SW7 2AZ, United Kingdom
| | - V Michael Holers
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Joshua M Thurman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| |
Collapse
|
6
|
Abstract
Pyelonephritis represents a subset of urinary tract infections that occur from bacteria ascending from the lower to the upper reaches of the genitourinary system, such as the kidney. The renal system contains a range of hydrodynamically and immunologically challenging, interconnected microenvironments where the invading pathogen may populate during the course of the infection. The situation at the infection foci changes dynamically, vacillating between bacterial colonization and clearance, to which the outcome is a summation of all host-pathogen elements in play. A selection of important determinants includes factors of microbial origin, effects of eukaryotic cell signaling, physiological facets of the infected organ, and signals from distal organs. Improved understanding of the multifactorial aspects of molecular pathogenesis of infection requires intravital, cross-disciplinary approaches with high spatio-temporal resolution. The advancement of such approaches promises to eventually provide a comprehensive understanding of the integrated pathophysiology of pyelonephritis.
Collapse
|
7
|
Madineni A, Alhadidi Q, Shah ZA. Cofilin Inhibition Restores Neuronal Cell Death in Oxygen-Glucose Deprivation Model of Ischemia. Mol Neurobiol 2014; 53:867-878. [PMID: 25526862 DOI: 10.1007/s12035-014-9056-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/08/2014] [Indexed: 11/25/2022]
Abstract
Ischemia is a condition associated with decreased blood supply to the brain, eventually leading to death of neurons. It is associated with a diverse cascade of responses involving both degenerative and regenerative mechanisms. At the cellular level, the changes are initiated prominently in the neuronal cytoskeleton. Cofilin, a cytoskeletal actin severing protein, is known to be involved in the early stages of apoptotic cell death. Evidence supports its intervention in the progression of disease states like Alzheimer's and ischemic kidney disease. In the present study, we have hypothesized the possible involvement of cofilin in ischemia. Using PC12 cells and mouse primary cultures of cortical neurons, we investigated the potential role of cofilin in ischemia in two different in vitro ischemic models: chemical induced oxidative stress and oxygen-glucose deprivation/reperfusion (OGD/R). The expression profile studies demonstrated a decrease in phosphocofilin levels in all models of ischemia, implying stress-induced cofilin activation. Furthermore, calcineurin and slingshot 1L (SSH) phosphatases were found to be the signaling mediators of the cofilin activation. In primary cultures of cortical neurons, cofilin was found to be significantly activated after 1 h of OGD. To delineate the role of activated cofilin in ischemia, we knocked down cofilin by small interfering RNA (siRNA) technique and tested the impact of cofilin silencing on neuronal viability. Cofilin siRNA-treated neurons showed a significant reduction of cofilin levels in all treatment groups (control, OGD, and OGD/R). Additionally, cofilin siRNA-reduced cofilin mitochondrial translocation and caspase 3 cleavage, with a concomitant increase in neuronal viability. These results strongly support the active role of cofilin in ischemia-induced neuronal degeneration and apoptosis. We believe that targeting this protein mediator has a potential for therapeutic intervention in ischemic brain injury and stroke.
Collapse
Affiliation(s)
- Anusha Madineni
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Qasim Alhadidi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA.,Ministry of Health, Diyala Health Directorate, Baqubah, Iraq
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
8
|
Birk AV, Liu S, Soong Y, Mills W, Singh P, Warren JD, Seshan SV, Pardee JD, Szeto HH. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol 2013; 24:1250-61. [PMID: 23813215 DOI: 10.1681/asn.2012121216] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ischemia causes AKI as a result of ATP depletion, and rapid recovery of ATP on reperfusion is important to minimize tissue damage. ATP recovery is often delayed, however, because ischemia destroys the mitochondrial cristae membranes required for mitochondrial ATP synthesis. The mitochondria-targeted compound SS-31 accelerates ATP recovery after ischemia and reduces AKI, but its mechanism of action remains unclear. Here, we used a polarity-sensitive fluorescent analog of SS-31 to demonstrate that SS-31 binds with high affinity to cardiolipin, an anionic phospholipid expressed on the inner mitochondrial membrane that is required for cristae formation. In addition, the SS-31/cardiolipin complex inhibited cytochrome c peroxidase activity, which catalyzes cardiolipin peroxidation and results in mitochondrial damage during ischemia, by protecting its heme iron. Pretreatment of rats with SS-31 protected cristae membranes during renal ischemia and prevented mitochondrial swelling. Prompt recovery of ATP on reperfusion led to rapid repair of ATP-dependent processes, such as restoration of the actin cytoskeleton and cell polarity. Rapid recovery of ATP also inhibited apoptosis, protected tubular barrier function, and mitigated renal dysfunction. In conclusion, SS-31, which is currently in clinical trials for ischemia-reperfusion injury, protects mitochondrial cristae by interacting with cardiolipin on the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Alexander V Birk
- Departments of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Enterocyte loss of polarity and gut wound healing rely upon the F-actin-severing function of villin. Proc Natl Acad Sci U S A 2013; 110:E1380-9. [PMID: 23520048 DOI: 10.1073/pnas.1218446110] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Efficient wound healing is required to maintain the integrity of the intestinal epithelial barrier because of its constant exposure to a large variety of environmental stresses. This process implies a partial cell depolarization and the acquisition of a motile phenotype that involves rearrangements of the actin cytoskeleton. Here we address how polarized enterocytes harboring actin-rich apical microvilli undergo extensive cell remodeling to drive injury repair. Using live imaging technologies, we demonstrate that enterocytes in vitro and in vivo rapidly depolarize their microvilli at the wound edge. Through its F-actin-severing activity, the microvillar actin-binding protein villin drives both apical microvilli disassembly in vitro and in vivo and promotes lamellipodial extension. Photoactivation experiments indicate that microvillar actin is mobilized at the lamellipodium, allowing optimal migration. Finally, efficient repair of colonic mechanical injuries requires villin severing of F-actin, emphasizing the importance of villin function in intestinal homeostasis. Thus, villin severs F-actin to ensure microvillus depolarization and enterocyte remodeling upon injury. This work highlights the importance of specialized apical pole disassembly for the repolarization of epithelial cells initiating migration.
Collapse
|
10
|
Simard JM, Woo SK, Gerzanich V. Transient receptor potential melastatin 4 and cell death. Pflugers Arch 2012; 464:573-82. [PMID: 23065026 PMCID: PMC3513597 DOI: 10.1007/s00424-012-1166-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 09/25/2012] [Accepted: 09/25/2012] [Indexed: 12/12/2022]
Abstract
Cell death proceeds by way of a variety of “cell death subroutines,” including several types of “apoptosis,” “regulated necrosis,” and others. “Accidental necrosis” due to profound adenosine triphosphate (ATP) depletion or oxidative stress is distinguished from regulated necrosis by the absence of death receptor signaling. However, both accidental and regulated necrosis have in common the process of “oncosis,” a physiological process characterized by Na+ influx and cell volume increase that, in necrotic cell death, is required to produce the characteristic features of membrane blebbing and membrane rupture. Here, we review emerging evidence that the monovalent cation channel, transient receptor potential melastatin 4 (TRPM4), is involved in the cell death process of oncosis. Potential involvement of TRPM4 in oncosis is suggested by the fact that the two principal regulators of TRPM4, intracellular ATP and Ca2+, are both altered during necrosis in the direction that causes TRPM4 channel opening. Under physiological conditions, activation of TRPM4 promotes Na+ influx and cell depolarization. Under pathological conditions, unchecked activation of TRPM4 leads to Na+ overload, cell volume increase, blebbing and cell membrane rupture, the latter constituting the irreversible end stage of necrosis. Emerging data indicate that TRPM4 plays a crucial role as end executioner in the accidental necrotic death of ATP-depleted or redox-challenged endothelial and epithelial cells, both in vitro and in vivo. Future studies will be needed to determine whether TRPM4 also plays a role in regulated necrosis and apoptosis.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201-1595, USA.
| | | | | |
Collapse
|
11
|
Abstract
Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future.
Collapse
Affiliation(s)
- David P Basile
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
12
|
Palomares SM, Cipolla MJ. Vascular Protection Following Cerebral Ischemia and Reperfusion. ACTA ACUST UNITED AC 2011; 2011. [PMID: 22102980 DOI: 10.4172/2155-9562.s1-004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite considerable research that has contributed to a better understanding of the pathophysiology of stroke, translation of this knowledge into effective therapies has largely failed. The only effective treatment for ischemic stroke is rapid recanalization of an occluded vessel by dissolving the clot with tissue plasminogen activator (tPA). However, stroke adversely affects vascular function as well that can cause secondary brain injury and limit treatment that depends on a patent vasculature. In middle cerebral arteries (MCA), ischemia/reperfusion (I/R) cause loss of myogenic tone, vascular paralysis, and endothelial dysfunction that can lead to loss of autoregulation. In contrast, brain parenchymal arterioles retain considerable tone during I/R that likely contributes to expansion of the infarct into the penumbra. Microvascular dysregulation also occurs during ischemic stroke that causes edema and hemorrhage, exacerbating the primary insult. Ischemic injury of vasculature is progressive with longer duration of I/R. Early postischemic reperfusion has beneficial effects on stroke outcome but can impair vascular function and exacerbate ischemic injury after longer durations of I/R. This review focuses on current knowledge on the effects of I/R on the structure and function of different vascular segments in the brain and highlight some of the more promising targets for vascular protection.
Collapse
Affiliation(s)
- Sara Morales Palomares
- Departments of Neurology, Obstetrics, Gynecology & Reproductive Sciences and Pharmacology, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
13
|
McDuffie JE, Sablad M, Ma J, Snook S. Urinary parameters predictive of cisplatin-induced acute renal injury in dogs. Cytokine 2010; 52:156-62. [PMID: 20655244 DOI: 10.1016/j.cyto.2010.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 02/15/2010] [Accepted: 06/02/2010] [Indexed: 11/16/2022]
Abstract
A 28-day study was conducted to evaluate changes in urinary cytokine/chemokine expression levels in dogs with renal injury due to administration of cisplatin. Animals (n=17) were administered cisplatin at 0.75 mg/kg/day (i.v.) for five consecutive days. Urine/serum were collected at pre-dosing, 4h post-dosing and on days 2, 3, 4, 8, 10, 14, 16, 18, 21, 23, 25, 28 and unscheduled terminations. Animals were euthanized when serum creatinine (sCr) levels measured at ≥ 1.9 mg/dL, indicating significant loss of renal function (decreased glomerular filtration rate). Relevant clinical observations included lethargy and dehydration. Pre-study sCr levels ranged from 0.6 to 0.8 mg/dL; on days 1 through 4, sCr levels ranged from 0.5 and 1.1mg/dL; and terminal sCr levels ranged from 0.6 and 6.6 mg/dL. Histologically, cisplatin-related renal changes were characterized as proximal tubule dilatation, vacuolization, degeneration, regeneration, and interstitial inflammation. Increased interleukin (IL)-2, IL-8, monocyte chemoattractant protein-1 (MCP-1), granulocyte-macrophage colony-stimulating factor (GMCSF) and keratinocyte-derived chemokine (KC) occurred on days 3 through 4. Increased IL-7 occurred on day 4. This study showed for the first time that inflammatory cytokines/chemokines in urine positively identified acute renal tubular injury in dogs at time points earlier than sCr, a traditional marker of nephrotoxicity.
Collapse
Affiliation(s)
- J Eric McDuffie
- Global Preclinical Development, Johnson & Johnson Pharmaceutical Research and Development LLC, 3210 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
14
|
Ivanov AI, Parkos CA, Nusrat A. Cytoskeletal regulation of epithelial barrier function during inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:512-24. [PMID: 20581053 DOI: 10.2353/ajpath.2010.100168] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increased epithelial permeability is a common and important consequence of mucosal inflammation that results in perturbed body homeostasis and enhanced exposure to external pathogens. The integrity and barrier properties of epithelial layers are regulated by specialized adhesive plasma membrane structures known as intercellular junctions. It is generally believed that inflammatory stimuli increase transepithelial permeability by inducing junctional disassembly. This review highlights molecular events that lead to disruption of epithelial junctions during inflammation. We specifically focus on key mechanisms of junctional regulation that are dependent on reorganization of the perijunctional F-actin cytoskeleton. We discuss critical roles of myosin-II-dependent contractility and actin filament turnover in remodeling of the F-actin cytoskeleton that drive disruption of epithelial barriers under different inflammatory conditions. Finally, we highlight signaling pathways induced by inflammatory mediators that regulate reorganization of actin filaments and junctional disassembly in mucosal epithelia.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Gastroenterology and Hepatology Division, Department of Medicine, University of Rochester, Rochester, New York, USA.
| | | | | |
Collapse
|
15
|
Yu Y, Kuebler J, Groos S, Metzelder M, Kurpanik S, Ure BM, Vieten G. Carbon dioxide modifies the morphology and function of mesothelial cells and facilitates transepithelial neuroblastoma cell migration. Pediatr Surg Int 2010; 26:29-36. [PMID: 19847444 DOI: 10.1007/s00383-009-2503-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The response of mesothelial cells to surgical trauma and bacterial contamination is poorly defined. We have recently shown that CO(2) pneumoperitoneum increases systemic metastasis of neuroblastoma cells in a murine model. Thus, we hypothesized that CO(2) alters the morphology and function of mesothelial cells and facilitates transmesothelial tumor cell migration. MATERIALS AND METHODS Murine mesothelial cells were exposed to 100% CO(2) and 5% CO(2) as control. Scanning electron microscopy (SEM) investigations, as well as LPS-induced granulocyte-colony stimulating factor (G-CSF) production and mitochondrial activity (MTT assay) were measured. Transmesothelial migration of neuroblastoma cells (Neuro2a) was determined using a transwell chamber system. RESULTS CO(2) incubation was associated with a significant destruction of the microvillar formation in SEM. Migration studies showed that the barrier function of the mesothelial monolayer decreased. A significantly increased migration of neuroblastoma cells was identified after 100% CO(2) exposure (P < 0.05). Although the conversion of MTT as an indicator of mitochondrial activity was only slightly and not significantly reduced after CO(2) incubation, the release of G-CSF induced by LPS was completely blocked during the incubation with 100% CO(2) (P < 0.05). The capacity of G-CSF release recovered after the incubation. CONCLUSION We observed that peritoneal mesothelial cells lose their typical cell morphology by CO(2) incubation, which is accompanied by facilitated migration of neuroblastoma cells. Moreover, the synthesis of immunological factors is blocked, but this effect is not long lasting. These mechanisms may explain an increased metastasis rate of neuroblastoma cells after CO(2) pneumoperitoneum, which was recently observed in a murine model.
Collapse
Affiliation(s)
- Yi Yu
- Department of Pediatric Surgery, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Huang TY, Minamide LS, Bamburg JR, Bokoch GM. Chronophin mediates an ATP-sensing mechanism for cofilin dephosphorylation and neuronal cofilin-actin rod formation. Dev Cell 2009; 15:691-703. [PMID: 19000834 DOI: 10.1016/j.devcel.2008.09.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 08/11/2008] [Accepted: 09/30/2008] [Indexed: 01/25/2023]
Abstract
Actin and its key regulatory component, cofilin, are found together in large rod-shaped assemblies in neurons subjected to energy stress. Such inclusions are also enriched in Alzheimer's disease brain, and appear in transgenic models of neurodegeneration. Neuronal insults, such as energy loss and/or oxidative stress, result in rapid dephosphorylation of the cellular cofilin pool prior to its assembly into rod-shaped inclusions. Although these events implicate a role for phosphatases in cofilin rod formation, a mechanism linking energy stress, phosphocofilin turnover, and subsequent rod assembly has been elusive. We demonstrate the ATP-sensitive interaction of the cofilin phosphatase chronophin (CIN) with the chaperone hsp90 to form a biosensor that mediates cofilin/actin rod formation. Our results suggest a model whereby attenuated interactions between CIN and hsp90 during ATP depletion enhance CIN-dependent cofilin dephosphorylation and consequent rod assembly, thereby providing a mechanism for the formation of pathological actin/cofilin aggregates during neurodegenerative energy flux.
Collapse
Affiliation(s)
- Timothy Y Huang
- Departments of Immunology and Microbial Science, and of Cell Biology, The Scripps Research Institute, IMM14, 10550 N. Torrey Pines Rd., La Jolla, CA 92122, USA
| | | | | | | |
Collapse
|
17
|
Shi T, Moulton VR, Lapchak PH, Deng GM, Dalle Lucca JJ, Tsokos GC. Ischemia-mediated aggregation of the actin cytoskeleton is one of the major initial events resulting in ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2009; 296:G339-47. [PMID: 19095765 DOI: 10.1152/ajpgi.90607.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ischemia-reperfusion (IR) injury represents a major clinical challenge, which contributes to morbidity and mortality during surgery. The critical role of natural immunoglobulin M (IgM) and complement in tissue injury has been demonstrated. However, cellular mechanisms that result in the deposition of natural IgM and the activation of complement are still unclear. In this report, using a murine intestinal IR injury model, we demonstrated that the beta-actin protein in the small intestine was cleaved and actin filaments in the columnar epithelial cells were aggregated after a transient disruption during 30 min of ischemia. Ischemia also led to deposition of natural IgM and complement 3 (C3). A low dose of cytochalasin D, a depolymerization reagent of the actin cytoskeleton, attenuated this deposition and also attenuated intestinal tissue injury in a dose-dependent manner. In contrast, high doses of cytochalasin D failed to worsen the injury. These data indicate that ischemia-mediated aggregation of the actin cytoskeleton, rather than its disruption, results directly in the deposition of natural IgM and C3. We conclude that ischemia-mediated aggregation of the actin cytoskeleton leads to the deposition of natural IgM and the activation of complement, as well as tissue injury.
Collapse
Affiliation(s)
- Tong Shi
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Campos SB, Ashworth SL, Wean S, Hosford M, Sandoval RM, Hallett MA, Atkinson SJ, Molitoris BA. Cytokine-induced F-actin reorganization in endothelial cells involves RhoA activation. Am J Physiol Renal Physiol 2009; 296:F487-95. [PMID: 19144696 DOI: 10.1152/ajprenal.00112.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute ischemic kidney injury results in marked increases in local and systemic cytokine levels. IL-1alpha, IL-6, and TNF-alpha orchestrate various inflammatory reactions influencing endothelial permeability by altering cell-to-cell and cell-to-extracellular matrix attachments. To explore the role of actin and the regulatory proteins RhoA and cofilin in this process, microvascular endothelial cells (MS1) were exposed to individual cytokines or a cytokine cocktail. Within minutes, a marked, time-dependent redistribution of the actin cytoskeleton occurred with the formation of long, dense F-actin basal stress fibers. The concentration of F-actin, normalized to nuclear staining, significantly increased compared with untreated cells (up 20%, P < or = 0.05). Western blot analysis of MS1 lysates incubated with the cytokine cocktail for 4 h showed an increase in phosphorylated/inactive cofilin (up 25 +/- 15%, P < or = 0.05) and RhoA activation (up to 227 +/- 26% increase, P < or = 0.05) compared with untreated cells. Decreasing RhoA levels using small interfering RNA blocked the effect of cytokines on stress fiber organization. Treatment with Y-27632, an inhibitor of the RhoA effector p160-ROCK, decreased levels of phosphorylated cofilin and reduced stress fiber fluorescence by 22%. In cells treated with Y-27632 followed by treatment with the cytokine cocktail, stress fiber levels were similar to control cells and cofilin phosphorylation was 55% of control levels. Taken together, these studies demonstrate cytokine stimulation of RhoA, which in turn leads to cofilin phosphorylation and formation of numerous basal actin stress fibers. These results suggest cytokines signal through the Rho-ROCK pathway, but also through another pathway to affect actin dynamics.
Collapse
Affiliation(s)
- Silvia B Campos
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jo SK, Bajwa A, Ye H, Vergis AL, Awad AS, Kharel Y, Lynch KR, Okusa MD. Divergent roles of sphingosine kinases in kidney ischemia-reperfusion injury. Kidney Int 2008; 75:167-75. [PMID: 18971925 DOI: 10.1038/ki.2008.400] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sphingosine-1-phosphate (S1P), produced by sphingosine kinase 1 (SphK1) or kinase 2 (SphK2), mediates biological effects through intracellular and/or extracellular mechanisms. Here we determined a role for these kinases in kidney injury of wild-type mice following ischemia-reperfusion. SphK1 but not SphK2 mRNA expression and activity increased in the kidney following injury relative to sham-operated animals. Although SphK1(-/-) mice had no alteration in renal function following injury, mice with a disrupted SphK2 gene (SphK2(tr/tr)) had histological damage and impaired function. The immune-modulating pro-drug, FTY720, an S1P agonist failed to provide protection in SphK2(tr/tr) mice. Injured kidneys of these mice showed increased neutrophil infiltration and neutrophil chemokine expression along with a 3- to 5-fold increase in expression of the G-protein-coupled receptor S1P(3) compared to heterozygous SphK2(+/tr) mice. Kidney function and reduced vascular permeability were preserved in S1P(3)(-/-) compared to S1P(3)(+/-) mice after ischemia-reperfusion injury, suggesting increased S1P(3) mRNA may play a role in the injury of SphK2(tr/tr) mice. Our study suggests that constitutive expression of SphK2 may contribute to reduced ischemia-reperfusion injury of the kidney, and its absence may enhance injury due to increased neutrophil infiltration and S1P(3) activation. We also confirm that SphK2 is necessary to mediate the protective effects of FTY720.
Collapse
Affiliation(s)
- Sang-Kyung Jo
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mendelsohn BA, Malone JP, Townsend RR, Gitlin JD. Proteomic analysis of anoxia tolerance in the developing zebrafish embryo. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 4:21-31. [PMID: 20403745 DOI: 10.1016/j.cbd.2008.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 09/25/2008] [Accepted: 09/26/2008] [Indexed: 12/26/2022]
Abstract
While some species and tissue types are injured by oxygen deprivation, anoxia tolerant organisms display a protective response that has not been fully elucidated and is well-suited to genomic and proteomic analysis. However, such methodologies have focused on transcriptional responses, prolonged anoxia, or have used cultured cells or isolated tissues. In this study of intact zebrafish embryos, a species capable of >24 h survival in anoxia, we have utilized 2D difference in gel electrophoresis to identify changes in the proteomic profile caused by near-lethal anoxic durations as well as acute anoxia (1 h), a timeframe relevant to ischemic events in human disease when response mechanisms are largely limited to post-transcriptional and post-translational processes. We observed a general stabilization of the proteome in anoxia. Proteins involved in oxidative phosphorylation, antioxidant defense, transcription, and translation changed over this time period. Among the largest proteomic alterations was that of muscle cofilin 2, implicating the regulation of the cytoskeleton and actin assembly in the adaptation to acute anoxia. These studies in an intact embryo highlight proteomic components of an adaptive response to anoxia in a model organism amenable to genetic analysis to permit further mechanistic insight into the phenomenon of anoxia tolerance.
Collapse
Affiliation(s)
- Bryce A Mendelsohn
- Departments of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
21
|
Kwon O, Hong SM, Sutton TA, Temm CJ. Preservation of peritubular capillary endothelial integrity and increasing pericytes may be critical to recovery from postischemic acute kidney injury. Am J Physiol Renal Physiol 2008; 295:F351-9. [PMID: 18562634 DOI: 10.1152/ajprenal.90276.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Decreased renal blood flow following an ischemic insult contributes to a reduction in glomerular filtration. However, little is known about the underlying cellular or subcellular mechanisms mediating reduced renal blood flow in human ischemic acute kidney injury (AKI) or acute renal failure (ARF). To examine renal vascular injury following ischemia, intraoperative graft biopsies were performed after reperfusion in 21 cadaveric renal allografts. Confocal fluorescence microscopy was utilized to examine vascular smooth muscle and endothelial cell integrity as well as peritubular interstitial pericytes in the biopsies. The reperfused, transplanted kidneys exhibited postischemic injury to the renal vasculature, as demonstrated by disorganization/disarray of the actin cytoskeleton in vascular smooth muscle cells and disappearance of von Willebrand factor from vascular endothelial cells. Damage to peritubular capillary endothelial cells was more severe in subjects destined to have sustained ARF than in those with rapid recovery of their graft function. In addition, peritubular pericytes/myofibroblasts were more pronounced in recipients destined to recover than those with sustained ARF. Taken together, these data suggest damage to the renal vasculature occurs after ischemia-reperfusion in human kidneys. Preservation of peritubular capillary endothelial integrity and increasing pericytes may be critical to recovery from postischemic AKI.
Collapse
Affiliation(s)
- Osun Kwon
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | | | |
Collapse
|
22
|
|
23
|
Fouassier L, Beaussier M, Schiffer E, Rey C, Barbu V, Mergey M, Wendum D, Callard P, Scoazec JY, Lasnier E, Stieger B, Lienhart A, Housset C. Hypoxia-induced changes in the expression of rat hepatobiliary transporter genes. Am J Physiol Gastrointest Liver Physiol 2007; 293:G25-35. [PMID: 17615179 DOI: 10.1152/ajpgi.00175.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cholestatic disorders may arise from liver ischemia (e.g., in liver transplantation) through various mechanisms. We have examined the potential of hypoxia to induce changes in the expression of hepatobiliary transporter genes. In a model of arterial liver ischemia subsequent to complete arterial deprivation of the rat liver, the mRNA levels of VEGF, a hypoxia-inducible gene, were increased fivefold after 24 h. The pattern of VEGF-induced expression and ultrastructural changes, including swelling of the endoplasmic reticulum, indicated that hypoxia affected primarily cholangiocytes, but also hepatocytes, predominantly in the periportal area. Serum and bile analyses demonstrated liver dysfunction of cholestatic type with reduced bile acid biliary excretion. Fluorescence-labeled ursodeoxycholic acid used as a tracer displayed no regurgitation, eliminating bile leakage as a significant mechanism of cholestasis in this model. In liver tissue, a marked reduction in the mRNA levels of Na(+)-taurocholate-cotransporting polypeptide (Ntcp), bile salt export protein (Bsep), and multidrug resistance-associated protein 2 (Mrp2) and an increase in those of Cftr were detected before bile duct proliferation occurred. In cultured hepatocytes, a nontoxic hypoxic treatment caused a decrease in the mRNA and protein expression of Ntcp, Bsep, and Mrp2 and in the mRNA levels of nuclear factors involved in the transactivation of these genes, i.e., HNF4alpha, RXRalpha, and FXR. In bile duct preparations, hypoxic treatment elicited an increase in Cftr transcripts, along with a rise in cAMP, a major regulator of Cftr expression and function. In conclusion, hypoxia triggers a downregulation of hepatocellular transporters, which may contribute to cholestasis, whereas Cftr, which drives secretion in cholangiocytes, is upregulated.
Collapse
Affiliation(s)
- Laura Fouassier
- INSERM U680, Faculté de Médecine Pierre et Marie Curie, Site Saint-Antoine, 27 rue Chaligny, 75571 Paris Cedex 12, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Keller M, Gerbes AL, Kulhanek-Heinze S, Gerwig T, Grutzner U, van Rooijen N, Vollmar AM, Kiemer AK. Hepatocyte cytoskeleton during ischemia and reperfusion--influence of ANP-mediated p38 MAPK activation. World J Gastroenterol 2006; 11:7418-29. [PMID: 16437711 PMCID: PMC4725179 DOI: 10.3748/wjg.v11.i47.7418] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To determine functional consequences of this activation, whereby we focused on a potential regulation of the hepatocyte cytoskeleton during ischemia and reperfusion. METHODS For in vivo experiments, animals received ANP (5 microg/kg) intravenously. In a different experimental setting, isolated rat livers were perfused with KH-buffer+/-ANP (200 nmol/L) +/-SB203580 (2 micromol/L). Livers were then kept under ischemic conditions for 24 h, and either transplanted or reperfused. Actin, Hsp27, and phosphorylated Hsp27 were determined by Western blotting, p38 MAPK activity by in vitro phosphorylation assay. F-actin distribution was determined by confocal microscopy. RESULTS We first confirmed that ANP preconditioning leads to an activation of p38 MAPK and observed alterations of the cytoskeleton in hepatocytes of ANP-preconditioned organs. ANP induced an increase of hepatic F-actin after ischemia, which could be prevented by the p38 MAPK inhibitor SB203580 but had no effect on bile flow. After ischemia untreated livers showed a translocation of Hsp27 towards the cytoskeleton and an increase in total Hsp27, whereas ANP preconditioning prohibited translocation but caused an augmentation of Hsp27 phosphorylation. This effect is also mediated via p38 MAPK, since it was abrogated by the p38 MAPK inhibitor SB203580. CONCLUSION This study reveals that ANP-mediated p38 MAPK activation leads to changes in hepatocyte cytoskeleton involving an elevation of phosphorylated Hsp27 and thereby for the first time shows functional consequences of ANP-induced hepatic p38 MAPK activation.
Collapse
Affiliation(s)
- Melanie Keller
- Department of Pharmacy, Centre of Drug Research, University of Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Suurna MV, Ashworth SL, Hosford M, Sandoval RM, Wean SE, Shah BM, Bamburg JR, Molitoris BA. Cofilin mediates ATP depletion-induced endothelial cell actin alterations. Am J Physiol Renal Physiol 2006; 290:F1398-407. [PMID: 16434575 DOI: 10.1152/ajprenal.00194.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ischemia and sepsis lead to endothelial cell damage, resulting in compromised microvascular flow in many organs. Much remains to be determined regarding the intracellular structural events that lead to endothelial cell dysfunction. To investigate potential actin cytoskeletal-related mechanisms, ATP depletion was induced in mouse pancreatic microvascular endothelial cells (MS1). Fluorescent imaging and biochemical studies demonstrated a rapid and progressive increase in F-actin along with a decrease in G-actin at 60 min. Confocal microscopic analysis showed ATP depletion resulted in destruction of actin stress fibers and accumulation of F-actin aggregates. We hypothesized these actin alterations were secondary to dephosphorylation/activation of actin-depolymerizing factor (ADF)/cofilin proteins. Cofilin, the predominant isoform expressed in MS1 cells, was rapidly dephosphorylated/activated during ATP depletion. To directly investigate the role of cofilin activation on the actin cytoskeleton during ischemia, MS1 cells were infected with adenoviruses containing the cDNAs for wild-type Xenopus laevis ADF/cofilin green fluorescent protein [XAC(wt)-GFP], GFP, and the constitutively active and inactive isoforms XAC(S3A)-GFP and XAC(S3E)-GFP. The rate and extent of cortical actin destruction and actin aggregate formation were increased in ATP-depleted XAC(wt)-GFP- and XAC(S3A)-GFP-expressing cells, whereas increased actin stress fibers were observed in XAC(S3E)-GFP-expressing cells. To investigate the upstream signaling pathway of ADF/cofilin, LIM kinase 1-GFP (LIMK1-GFP) was expressed in MS1 cells. Cells expressing LIMK1-GFP protein had higher levels of phosphorylated ADF/cofilin, increased stress fibers, and delayed F-actin cytoskeleton destruction during ATP depletion. These results strongly support the importance of cofilin regulation in ischemia-induced endothelial cell actin cytoskeleton alterations leading to cell damage and microvascular dysfunction.
Collapse
Affiliation(s)
- Maria V Suurna
- Div. of Nephrology, Indiana Univ. School of Medicine, Indianapolis, IN 46202-5116, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV. Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 2005; 290:F517-29. [PMID: 16174863 DOI: 10.1152/ajprenal.00291.2005] [Citation(s) in RCA: 457] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sensitive and specific biomarkers are needed to detect early kidney injury. The objective of the present work was to develop a sensitive quantitative urinary test to identify renal injury in the rodent to facilitate early assessment of pathophysiological influences and drug toxicity. Two mouse monoclonal antibodies were made against the purified ectodomain of kidney injury molecule-1 (Kim-1), and these were used to construct a sandwich Kim-1 ELISA. The assay range of this ELISA was 50 pg/ml to 5 ng/ml, with inter- and intra-assay variability of <10%. Urine samples were collected from rats treated with one of three doses of cisplatin (2.5, 5, or 7.5 mg/kg). At one day after each of the doses, there was an approximately three- to fivefold increase in the urine Kim-1 ectodomain, whereas other routinely used biomarkers measured in this study [plasma creatinine, blood urea nitrogen (BUN), urinary N-acetyl-beta-glucosaminidase (NAG), glycosuria, proteinuria] lacked the sensitivity to show any sign of renal damage at this time point. When rats were subjected to increasing periods (10, 20, 30, or 45 min) of bilateral ischemia, there was an increasing amount of urinary Kim-1 detected. After only 10 min of bilateral ischemia, Kim-1 levels on day 1 were 10-fold higher (5 ng/ml) than control levels, whereas plasma creatinine and BUN were not increased and there was no glycosuria, increased proteinuria, or increased urinary NAG levels. Thus urinary Kim-1 levels serve as a noninvasive, rapid, sensitive, reproducible, and potentially high-throughput method to detect early kidney injury in pathophysiological studies and in preclinical drug development studies for risk-benefit profiling of pharmaceutical agents.
Collapse
Affiliation(s)
- Vishal S Vaidya
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, Harvard Institutes of Medicine, Rm. 550, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
27
|
Tanner GA, Sandoval RM, Molitoris BA, Bamburg JR, Ashworth SL. Micropuncture gene delivery and intravital two-photon visualization of protein expression in rat kidney. Am J Physiol Renal Physiol 2005; 289:F638-43. [PMID: 15886277 DOI: 10.1152/ajprenal.00059.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding molecular mechanisms of pathophysiology and disease processes requires the development of new methods for studying proteins in animal tissues and organs. Here, we describe a method for adenoviral-mediated gene transfer into tubule or endothelial cells of the rat kidney. The left kidney of an anesthetized rat was exposed and the lumens of superficial proximal tubules or vascular welling points were microinfused, usually for 20 min. The microinfusion solution contained adenovirus with a cDNA construct of either 1) Xenopus laevis actin depolymerizing factor/cofilin [XAC; wt-green fluorescent protein (GFP)], 2) actin-GFP, or 3) GFP. Sudan black-stained castor oil, injected into nearby tubules, allowed us to localize the microinfused structures for subsequent visualization. Two days later, the rat was anesthetized and the kidneys were fixed for tissue imaging or the left kidney was observed in vivo using two-photon microscopy. Expression of GFP and GFP-chimeric proteins was clearly seen in epithelial cells of the injected proximal tubules and the expressed proteins were localized similarly to their endogenously expressed counterparts. Only a minority of the cells in the virally exposed regions, however, expressed these proteins. Endothelial cells also expressed XAC-GFP after injection of the virus cDNA construct into vascular welling points. An advantage of the proximal tubule and vascular micropuncture approaches is that only minute amounts of virus are required to achieve protein expression in vivo. This micropuncture approach to gene transfer of the virus cDNA construct and intravital two-photon microscopy should be applicable to study of the behavior of any fluorescently tagged protein in the kidney and shows promise in studying renal physiology and pathophysiology.
Collapse
Affiliation(s)
- George A Tanner
- Department of Cellular and Integrative Physiology, Indiana Univ. School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
28
|
Ashworth SL, Wean SE, Campos SB, Temm-Grove CJ, Southgate EL, Vrhovski B, Gunning P, Weinberger RP, Molitoris BA. Renal ischemia induces tropomyosin dissociation-destabilizing microvilli microfilaments. Am J Physiol Renal Physiol 2003; 286:F988-96. [PMID: 15075195 DOI: 10.1152/ajprenal.00168.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ischemic-induced cell injury results in rapid duration-dependent actin-depolymerizing factor (ADF)/cofilin-mediated disruption of the apical microvilli microfilament cores. Because intestinal microvillar microfilaments are bound and stabilized in the terminal web by the actin-binding protein tropomyosin, we questioned whether a protective effect of tropomyosin localization to the terminal web of the proximal tubule microfilament cores is disrupted during ischemic injury. With tropomyosin-specific antibodies, we examined rat cortical sections under physiological conditions and following ischemic injury by confocal microscopy. In addition, Western blot analysis of cortical extracts and urine was undertaken. Our studies demonstrated the presence of tropomyosin isoforms in the proximal tubule microvillar terminal web under physiological conditions and their dissociation in response to 25 min of ischemic injury. This correlated with the excretion of tropomyosin-containing plasma membrane vesicles in urine from ischemic rats. In addition, we noted increased tropomyosin Triton X-100 solubility following ischemia in cortical extracts. These studies suggest tropomyosin binds to and stabilizes the microvillar microfilament core in the terminal web under physiological conditions. With the onset of ischemic injury, we propose that tropomyosin dissociates from the microfilament core providing access to microfilaments in the terminal web for F-actin binding, severing and depolymerizing actions of ADF/cofilin proteins.
Collapse
Affiliation(s)
- Sharon L Ashworth
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, IN 46202-5116, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ashworth SL, Southgate EL, Sandoval RM, Meberg PJ, Bamburg JR, Molitoris BA. ADF/cofilin mediates actin cytoskeletal alterations in LLC-PK cells during ATP depletion. Am J Physiol Renal Physiol 2003; 284:F852-62. [PMID: 12620926 DOI: 10.1152/ajprenal.00210.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemic injury induces actin cytoskeleton disruption and aggregation, but mechanisms affecting these changes remain unclear. To determine the role of actin-depolymerizing factor (ADF)/ cofilin participation in ischemic-induced actin cytoskeletal breakdown, we utilized porcine kidney cultured cells, LLC-PK(A4.8), and adenovirus containing wild-type (wt), constitutively active, and inactive Xenopus ADF/cofilin linked to green fluorescence protein [XAC(wt)-GFP] in an ATP depletion model. High adenoviral infectivity (70%) in LLC-PK(A4.8) cells resulted in linearly increasing XAC(wt)-GFP and phosphorylated (p)XAC(wt)-GFP (inactive) expression. ATP depletion rapidly induced dephosphorylation, and, therefore, activation, of endogenous pcofilin as well as pXAC(wt)-GFP in conjunction with the formation of fluorescent XAC(wt)-GFP/actin aggregates and rods. No significant actin cytoskeletal alterations occurred with short-term ATP depletion of LLC-PK(A4.8) cells expressing GFP or the constitutively inactive mutant XAC(S3E)-GFP, but cells expressing the constitutively active mutant demonstrated nearly instantaneous actin disruption with aggregate and rod formation. Confocal image three-dimensional volume reconstructions of normal and ATP-depleted LLC-PK(A4.8) cells demonstrated that 25 min of ATP depletion induced a rapid increase in XAC(wt)-GFP apical and basal signal in addition to XAC-GFP/actin aggregate formation. These data demonstrate XAC(wt)-GFP participates in ischemia-induced actin cytoskeletal alterations and determines the rate and extent of these ATP depletion-induced cellular alterations.
Collapse
Affiliation(s)
- Sharon L Ashworth
- Division of Nephrology, Department of Medicine, Indiana University, and Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana 46202-5116, USA
| | | | | | | | | | | |
Collapse
|
30
|
Shelden EA, Weinberg JM, Sorenson DR, Edwards CA, Pollock FM. Site-specific alteration of actin assembly visualized in living renal epithelial cells during ATP depletion. J Am Soc Nephrol 2002; 13:2667-80. [PMID: 12397036 DOI: 10.1097/01.asn.0000033353.21502.31] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Disruption of normal actin organization in renal tubular epithelial cells is an important element of renal injury induced by ischemia. Studies of fixed cells indicate that the cytoskeleton is disrupted by both ischemia and ATP depletion in a site-specific manner. However, few studies have examined these effects in living cells, and the relationship between the time course of ATP reduction and alteration of the cytoskeleton remains unclear. Here, time-lapse video images of cultured renal epithelial cells expressing an enhanced green fluorescent protein (EGFP)-actin fusion protein were obtained, and the kinetics of fluorescence actin distribution before and during ATP depletion is quantified and compared with measured ATP levels. This study found that assembly of lamellar actin is inhibited rapidly as cellular ATP levels are reduced, whereas disruption of actin in stress fibers is more gradual and persistent. Actin associated with focal adhesions is largely resistant to ATP depletion in these experiments, and, consistent with previous studies, particulate aggregates of actin were formed within the cytoplasm of ATP-depleted cells. Most surprisingly, time-lapse imaging of EGFP-actin distribution, quantitative fluorescence imaging of phalloidin-stained cells, and ultrastructural studies indicate that assembly of actin filaments occurs at sites of epithelial cell-cell attachment in ATP-depleted cells. This assembly is initiated early during ATP depletion and continues after ATP levels are maximally reduced. Assembly of actin at sites of cell-cell attachment may be an element of the pathology of injury induced by ischemia, or alternatively, could reflect the function of a protective mechanism. These studies directly demonstrate site-specific alteration of actin assembly in living epithelial cells during ATP depletion. The results also reveal that actin reorganization continues after ATP levels are maximally decreased and that epithelial cell-cell attachments are sites of actin assembly in ATP-depleted cells.
Collapse
Affiliation(s)
- Eric A Shelden
- Department of Cell and Developmental Biology, Division of Nephrology, University of Michigan Medical School, Ann Arbor 48109, USA.
| | | | | | | | | |
Collapse
|
31
|
Gopalakrishnan S, Dunn KW, Marrs JA. Rac1, but not RhoA, signaling protects epithelial adherens junction assembly during ATP depletion. Am J Physiol Cell Physiol 2002; 283:C261-72. [PMID: 12055095 DOI: 10.1152/ajpcell.00604.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rho family GTPase signaling regulates actin cytoskeleton and junctional complex assembly. Our previous work showed that RhoA signaling protects tight junctions from damage during ATP depletion. Here, we examined whether RhoA GTPase signaling protects adherens junction assembly during ATP depletion. Despite specific RhoA signaling- and ATP depletion-induced effects on adherens junction assembly, RhoA signaling did not alter adherens junction disassembly rates during ATP depletion. This shows that RhoA signaling specifically protects tight junctions from damage during ATP depletion. Rac1 GTPase signaling also regulates adherens junction assembly and therefore may regulate adherens junction assembly during ATP depletion. Indeed, we found that Rac1 signaling protects adherens junctions from damage during ATP depletion. Adherens junctions are regulated by various GTPases, including RhoA and Rac1, but adherens junctions are specifically protected by Rac1 signaling.
Collapse
Affiliation(s)
- Shobha Gopalakrishnan
- Department of Medicine, Indiana University Medical Center, Indianapolis, Indiana 46202-5116, USA
| | | | | |
Collapse
|
32
|
Kwon O, Phillips CL, Molitoris BA. Ischemia induces alterations in actin filaments in renal vascular smooth muscle cells. Am J Physiol Renal Physiol 2002; 282:F1012-9. [PMID: 11997317 DOI: 10.1152/ajprenal.00294.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although altered renal vascular reactivity is known to occur after ischemia, the structural basis explaining the phenomenon has not been clarified. To evaluate for structural damage to the renal vasculature in ischemic acute renal failure (ARF), F-actin in the renal vasculature of rat kidneys and cultured vascular smooth muscle cells was examined using confocal fluorescence microscopy. The left renal artery was clamped for 15 or 45 min in Sprague-Dawley rats. In other experimental groups, 45 min of renal arterial clamping was followed by 1 or 3 h of reperfusion. Control kidneys were procured without any preceding interventional procedure. F-actin was labeled with either fluorescein or Texas red-conjugated phalloidin. Serial optical sections were collected by confocal microscopy, and image volumes were rendered three dimensionally. The degree of cytoskeletal damage in the vasculature was assessed by semiquantitative scoring of the staining for F-actin. Disorganization/disarray of F-actin, reflected by disruption and clumping of the actin filaments, was observed in arteries, arterioles, and the vasa rectae of the kidney after ischemia or ischemia-reperfusion. Smooth muscle cells from arteries and arterioles showed significant damage to F-actin after either 15 or 45 min of ischemia in a duration-dependent manner. The actin cytoskeleton tended to recover from damage from 45 min of ischemia 1 and 3 h after reperfusion. The vasa rectae did not demonstrate significant damage to F-actin after 15- or 45-min ischemia. However, significant damage to the vasa rectae was manifest 3 h after the reperfusion following 45 min of ischemia. In summary, disorganization/disarray of F-actin in vascular smooth muscle cells of the kidney was observed after ischemia or ischemia-reperfusion. A similar finding was observed in cultured vascular smooth muscle cells. We suggest that this disorganization of the actin cytoskeleton may play a contributory role in the loss of autoregulation of renal blood flow and the aberrant vascular reactivity in postischemic ARF.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Actin Cytoskeleton/pathology
- Actins/analysis
- Actins/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Arterioles/pathology
- Arterioles/physiopathology
- Cells, Cultured
- Cytoskeleton/metabolism
- Cytoskeleton/ultrastructure
- Electrophoresis, Polyacrylamide Gel
- Fluorescent Antibody Technique
- Imaging, Three-Dimensional
- Immunoblotting
- Ischemia/complications
- Ischemia/pathology
- Ischemia/physiopathology
- Kidney/blood supply
- Kidney/pathology
- Kidney Diseases/complications
- Kidney Diseases/pathology
- Kidney Diseases/physiopathology
- Male
- Microscopy, Confocal/methods
- Microscopy, Fluorescence/methods
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats
- Rats, Sprague-Dawley
- Reperfusion
- Time Factors
Collapse
Affiliation(s)
- Osun Kwon
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202-5113, USA.
| | | | | |
Collapse
|
33
|
Herget-Rosenthal S, Hosford M, Kribben A, Atkinson SJ, Sandoval RM, Molitoris BA. Characteristics of EYFP-actin and visualization of actin dynamics during ATP depletion and repletion. Am J Physiol Cell Physiol 2001; 281:C1858-70. [PMID: 11698244 DOI: 10.1152/ajpcell.2001.281.6.c1858] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disruption of the actin cytoskeleton in proximal tubule cells is a key pathophysiological factor in acute renal failure. To investigate dynamic alterations of the actin cytoskeleton in live proximal tubule cells, LLC-PK(10) cells were transfected with an enhanced yellow fluorescence protein (EYFP)-actin construct, and a clone with stable EYFP-actin expression was established. Confluent live cells were studied by confocal microscopy under physiological conditions or during ATP depletion of up to 60 min. Immunoblots of stable transfected LLC-PK(10) cells confirmed the presence of EYFP-actin, accounting for 5% of total actin. EYFP-actin predominantly incorporated in stress fibers, i.e., cortical and microvillar actin as shown by excellent colocalization with Texas red phalloidin. Homogeneous cytosolic distribution of EYFP-actin indicated colocalization with G-actin as well. Beyond previous findings, we observed differential subcellular disassembly of F-actin structures: stress fibers tagged with EYFP-actin underwent rapid and complete disruption, whereas cortical and microvillar actin disassembled at slower rates. In parallel, ATP depletion induced the formation of perinuclear EYFP-actin aggregates that colocalized with F-actin. During ATP depletion the G-actin fraction of EYFP-actin substantially decreased while endogenous and EYFP-F-actin increased. During intracellular ATP repletion, after 30 min of ATP depletion, there was a high degree of agreement between F-actin formation from EYFP-actin and endogenous actin. Our data indicate that EYFP-actin did not alter the characteristics of the endogenous actin cytoskeleton or the morphology of LLC-PK(10) cells. Furthermore, EYFP-actin is a suitable probe to study the spatial and temporal dynamics of actin cytoskeleton alterations in live proximal tubule cells during ATP depletion and ATP repletion.
Collapse
Affiliation(s)
- S Herget-Rosenthal
- Indiana Center for Biological Microscopy, Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
34
|
Rueckschloss U, Isenberg G. Cytochalasin D reduces Ca2+ currents via cofilin-activated depolymerization of F-actin in guinea-pig cardiomyocytes. J Physiol 2001; 537:363-70. [PMID: 11731570 PMCID: PMC2278948 DOI: 10.1111/j.1469-7793.2001.00363.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. L-type Ca2+ channel currents (I(Ca)) were measured in guinea-pig ventricular myocytes (22 degrees C, 300 ms steps from -45 to +10 mV). Pulsing at 0.5 Hz reduced I(Ca) within 5 min to 92 +/- 3% (mean +/- S.E.M., n = 14) and within 10 min to 83 +/- 4 % ('run-down' with reference to I(Ca) after a 5 min equilibration period). 2. Bath-applied cytochalasin D (cytD, 10 microM) reduced I(Ca) to 75 +/- 4% within 5 min and to 61 +/- 4% within 10 min ('cytD reduction of I(Ca)') by reduction of maximal Ca2+ conductance (suggested by fits of time course and of current-potential (I-V) curves). 3. Preincubation with phalloidin (bath applied, 100 microM, 5 h) prevented the cytD reduction of I(Ca). Since phalloidin specifically blocks F-actin depolymerization, cytD reduction of I(Ca) is linked to depolymerization of F-actin. 4. CytD did not attenuate the beta-adrenergic stimulation of I(Ca) (30 nM isoproterenol), suggesting that A kinase anchoring proteins are unlikely to mediate the cytD reduction of I(Ca). The cytD reduction of I(Ca) was abolished by extra-/intracellular acidosis (pH(o) 6.9), by cell dialysis of 5 mM BAPTA, or by serine/threonine protein phosphatase inhibitors. 5. Actin-depolymerizing factor (ADF)/cofilin are proteins that bind to actin, mediate a pH-sensitive depolymerization of F-actin, and are activated by dephosphorylation. Western blots from hearts perfused with solutions containing zero or 10 microM cytD indicated that cytD reduces the ratio of phosphorylated to total ADF/cofilin content by 50%. 6. The data support the concept that cytD mediates dephosphorylation and activation of ADF/cofilin, leading to depolymerization of F-actin with a subsequent reduction of I(Ca).
Collapse
Affiliation(s)
- U Rueckschloss
- Department of Physiology, Faculty of Medicine, Martin-Luther-University, 06097 Halle, Germany.
| | | |
Collapse
|
35
|
Boyd-White J, Srirangam A, Goheen MP, Wagner MC. Ischemia disrupts myosin I beta in renal tubules. Am J Physiol Cell Physiol 2001; 281:C1326-35. [PMID: 11546671 DOI: 10.1152/ajpcell.2001.281.4.c1326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In these studies we have examined rat kidneys biochemically and microscopically to determine where myosin I beta is located before, during, and after an acute ischemic injury. Myosin I beta is present in multiple tubule segments including the brush border (BB) of the proximal tubule cell (PTC). Its distribution is severely altered by a 15-min renal artery clamp. Myosin I beta is present in the urine during reflow and is found in the numerous cellular blebs arising from the damaged PTC and other tubules. Two hours of reflow result in a decrease in BB myosin I beta staining and an increase in its cytoplasmic staining. Interestingly, the return of the F-actin in the BB precedes the return of the myosin I beta, suggesting that this myosin I isoform may not play a role in rebuilding the microvilli after an ischemic injury. A nonstructural role for this myosin, such as transport or channel regulation, is supported by its presence in many tubule segments, all of which have transport and channel requirements but do not all contain microvilli.
Collapse
Affiliation(s)
- J Boyd-White
- Renal Epithelial Biology Experimental Laboratories, Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
36
|
Panebra A, Ma SX, Zhai LW, Wang XT, Rhee SG, Khurana S. Regulation of phospholipase C-gamma(1) by the actin-regulatory protein villin. Am J Physiol Cell Physiol 2001; 281:C1046-58. [PMID: 11502583 DOI: 10.1152/ajpcell.2001.281.3.c1046] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actin-regulatory protein villin is tyrosine phosphorylated and associates with phospholipase C-gamma(1) (PLC-gamma(1)) in the brush border of intestinal epithelial cells. To study the mechanism of villin-associated PLC-gamma(1) activation, we reconstituted in vitro the tyrosine phosphorylation of villin and its association with PLC-gamma(1). Recombinant villin was phosphorylated in vitro by the nonreceptor tyrosine kinase c-src or by expression in the TKX1 competent cells that carry an inducible tyrosine kinase gene. Using in vitro binding assays, we demonstrated that tyrosine-phosphorylated villin associates with the COOH-terminal Src homology 2 (SH2) domain of PLC-gamma(1). The catalytic activity of PLC-gamma(1) was inhibited by villin in a dose-dependent manner with half-maximal inhibition at a concentration of 12.4 microM. Villin inhibited PLC-gamma(1) activity by sequestering the substrate phosphatidylinositol 4,5-bisphosphate (PIP(2)), since increasing concentrations of PIP(2) reversed the inhibitory effects of villin on PLC activity. The inhibition of PLC-gamma(1) activity by villin was reversed by the tyrosine phosphorylation of villin. Further, we demonstrated that tyrosine phosphorylation of villin abolished villin's ability to associate with PIP(2). In conclusion, tyrosine-phosphorylated villin associates with the COOH-terminal SH2 domain of PLC-gamma(1) and activates PLC-gamma(1) catalytic activity. Villin regulates PLC-gamma(1) activity by modifying its own ability to bind PIP(2). This study provides biochemical proof of the functional relevance of tyrosine phosphorylation of villin and identifies the molecular mechanisms involved in the activation of PLC-gamma(1) by villin.
Collapse
Affiliation(s)
- A Panebra
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | |
Collapse
|
37
|
Hamm-Alvarez SF, Chang A, Wang Y, Jerdeva G, Lin HH, Kim KJ, Ann DK. Etk/Bmx activation modulates barrier function in epithelial cells. Am J Physiol Cell Physiol 2001; 280:C1657-68. [PMID: 11350762 DOI: 10.1152/ajpcell.2001.280.6.c1657] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Etk/Bmx is a member of the Tec family of cytoplasmic non-receptor tyrosine kinases known to express in epithelial cells. We demonstrate herein that Etk activation in stably Etk-transfected epithelial Pa-4 cells resulted in a consistently increased transepithelial resistance (TER). After 24 h of hypoxic (1% O2) exposure, the TER and equivalent active ion transport rate ( I eq) were reduced to <5% of the normoxia control in Pa-4 cells, whereas both TER and I eqwere maintained at comparable and 60% levels, respectively, relative to their normoxic controls in cells with Etk activation. Moreover, Pa-4 cells exhibited an abundant actin stress fiber network with a diffuse distribution of β-catenin at the cell periphery. By contrast, Etk-activated cells displayed a redistribution of actin to an exclusively peripheral network, with a discrete band of β-catenin also concentrated at the cell periphery, and an altered occludin distribution profile. On the basis of these findings, we propose that Etk may be a novel regulator of epithelial junctions during physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- S F Hamm-Alvarez
- Department of Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Ashworth SL, Sandoval RM, Hosford M, Bamburg JR, Molitoris BA. Ischemic injury induces ADF relocalization to the apical domain of rat proximal tubule cells. Am J Physiol Renal Physiol 2001; 280:F886-94. [PMID: 11292632 DOI: 10.1152/ajprenal.2001.280.5.f886] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Breakdown of proximal tubule cell apical membrane microvilli is an early-occurring hallmark of ischemic acute renal failure. Intracellular mechanisms responsible for these apical membrane changes remain unknown, but it is known that actin cytoskeleton alterations play a critical role in this cellular process. Our laboratory previously demonstrated that ischemia-induced cell injury resulted in dephosphorylation and activation of the actin-binding protein, actin depolymerizing factor [(ADF); Schwartz, N, Hosford M, Sandoval RM, Wagner MC, Atkinson SJ, Bamburg J, and Molitoris BA. Am J Physiol Renal Fluid Electrolyte Physiol 276: F544-F551, 1999]. Therefore, we postulated that ischemia-induced ADF relocalization from the cytoplasm to the apical microvillar microfilament core was an early event occurring before F-actin alterations. To directly investigate this hypothesis, we examined the intracellular localization of ADF in ischemic rat cortical tissues by immunofluorescence and quantified the concentration of ADF in brush-border membrane vesicles prepared from ischemic rat kidneys by using Western blot techniques. Within 5 min of the induction of ischemia, ADF relocalized to the apical membrane region. The length of ischemia correlated with the time-related increase in ADF in isolated brush-border membrane vesicles. Finally, depolymerization of microvillar F-actin to G-actin was documented by using colocalization studies for G- and F-actin. Collectively, these data indicate that ischemia induces ADF activation and relocalization to the apical domain before microvillar destruction. These data further suggest that ADF plays a critical role in microvillar microfilament destruction and apical membrane damage during ischemia.
Collapse
Affiliation(s)
- S L Ashworth
- Renal Epithelial Biology Experimental Laboratories, Indiana University Department of Medicine, and Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202-5116, USA
| | | | | | | | | |
Collapse
|
39
|
Chen J, Wagner MC. Altered membrane-cytoskeleton linkage and membrane blebbing in energy-depleted renal proximal tubular cells. Am J Physiol Renal Physiol 2001; 280:F619-27. [PMID: 11249853 DOI: 10.1152/ajprenal.2001.280.4.f619] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of energy depletion on two membrane-cytoskeletal linker proteins (ezrin and myosin-1 beta) and membrane bleb formation were studied in isolated rabbit proximal tubule cells. Measurements of cytoskeletal-membrane interactions by using the laser optic trap method revealed a stronger association of control tubule membrane with the apical cytoskeleton compared with the basal cytoskeleton. Energy depletion weakened the apical membrane-cytoskeleton interactions to a greater degree. Biochemical studies demonstrated that energy depletion altered both ezrin and myosin-1 beta. The salt-insensitive ezrin fraction dissociated from the cytoskeleton; myosin-1beta redistributed from the peripheral cytoskeleton to a perinuclear/nuclear complex. These changes in ezrin and myosin-1 beta and the weakening of the membrane-cytoskeleton interactions correlated with the release of brush-border membrane blebs observed by differential interference contrast microscopy. Permeability of membrane blebs was also evaluated during energy depletion and indicated an increased permeabilization of basal blebs to 3-kDa dextrans. These results support the hypothesis that alterations in membrane-cytoskeleton linkers facilitate the formation and detachment of blebs by weakening membrane-cytoskeleton interactions.
Collapse
Affiliation(s)
- J Chen
- Department of Life Sciences, Indiana State University, Terre Haute, 47809, USA.
| | | |
Collapse
|
40
|
Jahraus A, Egeberg M, Hinner B, Habermann A, Sackman E, Pralle A, Faulstich H, Rybin V, Defacque H, Griffiths G. ATP-dependent membrane assembly of F-actin facilitates membrane fusion. Mol Biol Cell 2001; 12:155-70. [PMID: 11160830 PMCID: PMC30575 DOI: 10.1091/mbc.12.1.155] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2000] [Revised: 10/12/2000] [Accepted: 11/08/2000] [Indexed: 11/11/2022] Open
Abstract
We recently established an in vitro assay that monitors the fusion between latex-bead phagosomes and endocytic organelles in the presence of J774 macrophage cytosol (). Here, we show that different reagents affecting the actin cytoskeleton can either inhibit or stimulate this fusion process. Because the membranes of purified phagosomes can assemble F-actin de novo from pure actin with ATP (), we focused here on the ability of membranes to nucleate actin in the presence of J774 cytosolic extracts. For this, we used F-actin sedimentation, pyrene actin assays, and torsional rheometry, a biophysical approach that could provide kinetic information on actin polymerization and gel formation. We make two major conclusions. First, under our standard in vitro conditions (4 mg/ml cytosol and 1 mM ATP), the presence of membranes actively catalyzed the assembly of cytosolic F-actin, which assembled into highly viscoelastic gels. A model is discussed that links these results to how the actin may facilitate fusion. Second, cytosolic actin paradoxically polymerized more under ATP depletion than under high-ATP conditions, even in the absence of membranes; we discuss these data in the context of the well described, large increases in F-actin seen in many cells during ischemia.
Collapse
Affiliation(s)
- A Jahraus
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Peiffer I, Guignot J, Barbat A, Carnoy C, Moseley SL, Nowicki BJ, Servin AL, Bernet-Camard MF. Structural and functional lesions in brush border of human polarized intestinal Caco-2/TC7 cells infected by members of the Afa/Dr diffusely adhering family of Escherichia coli. Infect Immun 2000; 68:5979-90. [PMID: 10992510 PMCID: PMC101562 DOI: 10.1128/iai.68.10.5979-5990.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diffusely adhering Escherichia coli (DAEC) strains expressing F1845 fimbrial adhesin or Dr hemagglutinin belonging to the Afa/Dr family of adhesins infect cultured polarized human intestinal cells through recognition of the brush border-associated decay-accelerating factor (DAF; CD55) as a receptor. The wild-type Afa/Dr DAEC strain C1845 has been shown to induce brush border lesions by an adhesin-dependent mechanism triggering apical F-actin rearrangements. In the present study, we undertook to further characterize cell injuries following the interaction of wild-type Afa/Dr DAEC strains C1845 and IH11128 expressing fimbrial F1845 adhesin and Dr hemagglutinin, respectively, with polarized, fully differentiated Caco-2/TC7 cells. In both cases, bacterium-cell interaction was followed by rearrangement of the major brush border-associated cytoskeletal proteins F-actin, villin, and fimbrin, proteins which play a pivotal role in brush border assembly. In contrast, distribution of G-actin, actin-depolymerizing factor, and tubulin was not modified. Using draE mutants, we found that a mutant in which cysteine replaces aspartic acid at position 54 conserved binding capacity but failed to induce F-actin disassembly. Accompanying the cytoskeleton injuries, we found that the distribution of brush border-associated functional proteins sucrase-isomaltase (SI), dipeptidylpeptidase IV (DPPIV), glucose transporter SGLT1, and fructose transporter GLUT5 was dramatically altered. In parallel, SI and DPPIV enzyme activity decreased.
Collapse
Affiliation(s)
- I Peiffer
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 510, Faculté de Pharmacie Paris XI, F-92296 Châtenay-Malabry, France
| | | | | | | | | | | | | | | |
Collapse
|