1
|
She H, Qu Y. Cardiovascular Plasticity and Adaptation of High-Altitude Birds and Mammals. Integr Zool 2025. [PMID: 40400082 DOI: 10.1111/1749-4877.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/28/2025] [Accepted: 04/05/2025] [Indexed: 05/23/2025]
Abstract
Exposure to a hypoxic environment at high altitudes imposes severe pressure on animals living there, which utilize substantial cardiovascular and respiratory responses to meet the physiological challenge of oxygen requirement. These responses may result from phenotypic plasticity through short-term exposure (i.e., within a generation) to a new environment or shaped by adaptation (i.e., many generations) through long-term evolution. For example, plasticity triggers a sympathetic-mediated adrenergic response, resulting in an elevation of heart rate and hypoxia-induced pulmonary vasoconstriction that eventually contributes to pulmonary hypertension in some animals. Adaptation to high altitudes can drive an increase in muscular capillarization and adaptive cardiac growth, which promote oxygen diffusion and transportation. Exposure to a high-altitude hypoxic environment stimulates excessive erythropoiesis, which has maladaptive effects and contributes to chronic mountain sickness. Maladaptation caused by plasticity at early stages can be reversed during adaptation. Despite extensive research on high-altitude adaptation, the phenotypic changes and genetic variations in cardiovascular systems responding to high-altitude hypoxia remain insufficiently integrated across taxa. While genomic and transcriptomic studies have advanced our understanding, a cross-taxa comparison of cardiovascular adaptations is still incomplete. We here review recent literature on phenotypic plasticity, adaptations, and genetic and transcriptional basis of cardiovascular systems of mammals and birds living in high altitudes with respect to their duration of exposure at high altitudes. By integrating and comparing data across mammalian and avian species, we aim to provide a framework for understanding the plasticity and adaptation of the cardiovascular system in high-altitude environments.
Collapse
Affiliation(s)
- Huishang She
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Adams E, Peel T. Chronic Mountain Sickness: A Comprehensive Review of Current Management and Proposals for Novel Therapies. High Alt Med Biol 2025. [PMID: 40329926 DOI: 10.1089/ham.2024.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Chronic mountain sickness (CMS) is an acquired condition affecting 5%-10% of high-altitude residents. Lifelong exposure to chronic hypoxia triggers excessive erythrocytosis, resulting in an expanded hematocrit. Patients present with symptoms such as dyspnea, fatigue, and palpitations. Complications such as pulmonary hypertension and heart failure are often fatal. Relocation to sea level remains the only definitive management of CMS but poses an unacceptable personal burden. Long-term oxygen therapy provides symptomatic relief, but dependency issues remain a concern. Phlebotomy reduces hematocrit and offers short-term symptom relief. However, side effects and cultural conflicts continue to pose challenges. Acetazolamide, enalapril, and medroxyprogesterone have lowered hematocrit and alleviated symptoms in human trials. Further research into systemic side effects, application in women, and long-term use is required. Methylxanthines, adrenergic blockers, almitrine, and dopamine antagonists showed promise in murine and/or short-term human trials, highlighting the need for further long-term human trials. Inhibition of hypoxia-inducible factor and Janus Kinase-signal transducer and activator of transcription pathways is currently used to suppress hematocrit in polycythemia vera, demonstrating potential application in CMS. Topiramate may stimulate ventilation via acid-base modulation, thus providing therapeutic value. Similarly, the effect of aspirin and caffeine on ventilation may provide a low-cost, accessible intervention.
Collapse
Affiliation(s)
- Edmund Adams
- Queen Mary University of London, Winchester, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Tamlyn Peel
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Yang X, Liu H, Wu X. High-altitude pulmonary hypertension: a comprehensive review of mechanisms and management. Clin Exp Med 2025; 25:79. [PMID: 40063280 PMCID: PMC11893705 DOI: 10.1007/s10238-025-01577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/26/2025] [Indexed: 03/14/2025]
Abstract
High-altitude pulmonary hypertension (HAPH) is characterized by an increase in pulmonary artery pressure due to prolonged exposure to hypoxic environment at high altitudes. The development of HAPH involves various factors such as pressure changes, inflammation, oxidative stress, gene regulation, and signal transduction. The pathophysiological mechanisms of this condition operate at molecular, cellular, and genetic levels. Diagnosis of HAPH often relies on echocardiography, cardiac catheterization, and other methods to assess pulmonary artery pressure and its impact on cardiac function. Treatment options for HAPH encompass both nondrug and drug therapies. While advancements have been made in understanding the pathological mechanisms through research on animal models and clinical trials, there are still limitations to be addressed. Future research should focus on exploring molecular targets, personalized medicine, long-term management strategies, and interdisciplinary approaches. By leveraging advanced technologies like systems biology, omics technology, big data, and artificial intelligence, a comprehensive analysis of HAPH pathogenesis can lead to the identification of new treatment targets and strategies, ultimately enhancing patient quality of life and prognosis. Furthermore, research on health monitoring and preventive measures for populations living at high altitudes should be intensified to reduce the incidence and mortality of HAPH.
Collapse
Affiliation(s)
- Xitong Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Hong Liu
- The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Xinhua Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China.
- The First Affiliated Hospital of Dali University, Dali, Yunnan, China.
| |
Collapse
|
4
|
Hua Q, Meng X, Chen W, Xu Y, Xu R, Shi Y, Li J, Meng X, Li A, Chai Q, Sheng M, Yao Y, Fan Y, Qiao R, Zhang Y, Wang T, Zhang Y, Cui X, Yu Y, Li H, Tang R, Yan M, Duo B, Dunzhu D, Ga Z, Hou L, Liu Y, Shang J, Chen Q, Qiu X, Ye C, Gong J, Zhu T. Associations of Short-Term Ozone Exposure With Hypoxia and Arterial Stiffness. J Am Coll Cardiol 2025; 85:606-621. [PMID: 39846938 DOI: 10.1016/j.jacc.2024.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Epidemiological studies reported associations between ozone (O3) exposure and cardiovascular diseases, yet the biological mechanisms remain underexplored. Hypoxia is a shared pathogenesis of O3-associated diseases; therefore, we hypothesized that O3 exposure may induce changes in hypoxia-related markers, leading to adverse cardiovascular effects. OBJECTIVES This study aimed to investigate associations of short-term O3 exposure with hypoxic biomarkers and arterial stiffness. METHODS We conducted a panel study involving 210 young healthy residents in 2 cities at different altitudes on the Qinghai-Tibetan Plateau in China, where O3 concentrations are high and particulate pollution is low. Participants underwent 4 repeated visits to assess ambient O3 exposure levels, hypoxic biomarkers, and arterial stiffness. We applied linear mixed-effects models to assess the associations of O3 exposure (lag1 to lag1-7 days) with hypoxic biomarkers and arterial stiffness, adjusted for confounders. Mediation analyses explored the hypoxia's role in O3-related arterial stiffness changes. We further examined effect modification by residence altitude and the robustness of results by including PM2.5 (particulate matter ≤2.5 μm in aerodynamic diameter) or NO2 in 2-pollutant models. RESULTS O3 exposure 1 to 7 days before visits was significantly associated with changes in multiple hypoxic biomarkers. A 10-ppb increase in O3 exposure was linked to significant decreases in oxygen saturation (SpO2) and increases in red blood cell count (RBC), hemoglobin concentration, and hematocrit, with maximum changes by -0.42%, 0.92%, 0.97%, and 1.92%, respectively. Laboratory analysis of mRNA and protein markers consistently indicated that O3 exposure activated the hypoxia-inducible factor 1 (HIF-1) signaling pathway. Additionally, a 10-ppb increase in O3 corresponded to a 1.04% to 1.33% increase in carotid-femoral pulse wave velocity (cfPWV), indicating increased arterial stiffness. RBC, hemoglobin concentration, and hematocrit increases significantly mediated the O3-cfPWV association, whereas the SpO2 reduction had an insignificant mediating effect. Associations of O3 with hypoxic biomarkers varied by altitude. The higher altitude group showed delayed associations with SpO₂ and HIF-1 expression but stronger associations with RBC indices. These associations remained robust after adjusting for copollutants. CONCLUSIONS O3 exposure may reduce oxygen availability, prompting compensatory increases in red blood cells and hemoglobin, which exacerbate arterial stiffening. These findings provide new insights into the mechanisms underlying O3-induced cardiovascular injury.
Collapse
Affiliation(s)
- Qiaoyi Hua
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Xin Meng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Wu Chen
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yifan Xu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Ruiwei Xu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yunxiu Shi
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Jiajianghui Li
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Xueling Meng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Ailin Li
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Qianqian Chai
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Mengshuang Sheng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yuan Yao
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yunfei Fan
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; China National Environmental Monitoring Centre, Beijing, China
| | - Ruohong Qiao
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yi Zhang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Teng Wang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yidan Zhang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Xiaoyu Cui
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yaqi Yu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Haonan Li
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Rui Tang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Meilin Yan
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Department of Environmental Science and Engineering, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, China
| | - Bu Duo
- School of Ecology and Environment, Tibet University, Lhasa, Tibet Autonomous Region, China
| | - Danzeng Dunzhu
- College of Medicine, Tibet University, Lhasa, Tibet Autonomous Region, China; Research Station of Alpine Ecology Environment and Health at Tibet University, Lhasa, Tibet Autonomous Region, China
| | - Zhuo Ga
- Clinical Laboratory, the Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, China
| | - Lei Hou
- College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Nyingchi, Tibet Autonomous Region, China
| | - Yingjun Liu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Research Station of Alpine Ecology Environment and Health at Tibet University, Lhasa, Tibet Autonomous Region, China
| | - Jing Shang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Research Station of Alpine Ecology Environment and Health at Tibet University, Lhasa, Tibet Autonomous Region, China
| | - Qi Chen
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Xinghua Qiu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Research Station of Alpine Ecology Environment and Health at Tibet University, Lhasa, Tibet Autonomous Region, China
| | - Chunxiang Ye
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Research Station of Alpine Ecology Environment and Health at Tibet University, Lhasa, Tibet Autonomous Region, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Research Station of Alpine Ecology Environment and Health at Tibet University, Lhasa, Tibet Autonomous Region, China.
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Research Station of Alpine Ecology Environment and Health at Tibet University, Lhasa, Tibet Autonomous Region, China.
| |
Collapse
|
5
|
Formenti F, Askew GN, Minetti AE. Tools and strategies to improve human locomotion performance and safety throughout history: on ice skates, skis, mountains and the battlefield. J Exp Biol 2025; 228:JEB247851. [PMID: 39973200 DOI: 10.1242/jeb.247851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Humans have developed tools and strategies to improve locomotion performance and safety throughout history. In particular, unusual environmental conditions and danger have pushed the limits of imagination and initiative, laying the foundations for the development of several tools to enhance locomotion. This Review summarises studies on the biomechanics and energetics of human locomotion on ice and snow, from a historical perspective and in load-carrying conditions. Environmental conditions challenge our locomotor performance: steep mountain paths and snow on the ground increase the metabolic cost of walking, ice increases the risk of falls, and fighting on the medieval battlefield required protection. In these conditions, humans evolved and developed tools and strategies to improve their locomotor performance and safety, typically with a trade-off between increasing the weight carried and reducing the metabolic cost of locomotion and/or increasing safety. Materials engineering and empirical understanding of muscle and locomotion biomechanics have aided performance improvement. In addition, environmental and even genetic changes have contributed to a superior physiological performance at high altitude. This Review presents and discusses findings integrating the biomechanics and energetics of locomotion. Overall, the thought-provoking historical perspective of this work helps to hypothesise some of the current technological and technical limitations to human physiological performance and highlights how improving the latter may well require a wide multidisciplinary approach.
Collapse
Affiliation(s)
- Federico Formenti
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Centre for Human and Applied Physiological Sciences, King's College London, London, WC2R 2LS, UK
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Graham N Askew
- School of Biomedical Sciences , University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
6
|
Paris HL, Baranauskas MN, Constantini K, Shei RJ, Allen PE, Jadovitz JR, Wiggins CC, Storm CP. Born high, born fast: Does highland birth confer a pulmonary advantage for sea level endurance? Exp Physiol 2024. [PMID: 39576829 DOI: 10.1113/ep091830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024]
Abstract
Less than 7% of the world's population live at an altitude above 1500 m. Yet, as many as 67% of medalists in the 2020 men's and women's Olympic marathon, and 100% of medalists in the 2020 men's and women's Olympic 5000 m track race may have been born or raised above this otherwise rare threshold. As a possible explanation, research spanning nearly a quarter of a century demonstrates that indigenous highlanders exhibit pulmonary adaptations distinct from their lowland counterparts. These adaptations may then promote endurance performance. Indeed, healthy indigenous highlanders often exhibit a larger aerobic exercise capacity compared to sea-level residents who travel to high altitude. However, questions remain on whether high-altitude birth is advantageous for sea-level competitions. In this review, we ask whether being born at a high altitude generates an ergogenic advantage for endurance performance in the Summer Olympics-a venue that is generally held at sea level. In so doing, we distinguish between three groups of high-altitude residents: (i) the indigenous highlander, (ii) the highland newcomer, and (iii) the highland sojourner. Concentrating specifically on altitude-induced alterations to pulmonary physiology beginning in the perinatal period, we propose that if altitude-related maladaptations are avoided, genomic and developmental alterations accompanying highland birth may present benefits for endurance competitions at sea level.
Collapse
Affiliation(s)
- Hunter L Paris
- Division of Natural Sciences, Pepperdine University, Malibu, California, USA
| | - Marissa N Baranauskas
- Department of Human Physiology & Nutrition, University of Colorado, Colorado Springs, Colorado, USA
| | - Keren Constantini
- Sylvan Adams Sports Institute, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ren-Jay Shei
- Indiana University Alumni Association, Bloomington, Indiana, USA
| | - Peyton E Allen
- Division of Natural Sciences, Pepperdine University, Malibu, California, USA
| | - John R Jadovitz
- Division of Natural Sciences, Pepperdine University, Malibu, California, USA
| | - Chad C Wiggins
- Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
7
|
Ye S, Sun J, Craig SR, Di Rienzo A, Witonsky D, Yu JJ, Moya EA, Simonson TS, Powell FL, Basnyat B, Strohl KP, Hoit BD, Beall CM. Higher oxygen content and transport characterize high-altitude ethnic Tibetan women with the highest lifetime reproductive success. Proc Natl Acad Sci U S A 2024; 121:e2403309121. [PMID: 39432765 PMCID: PMC11551319 DOI: 10.1073/pnas.2403309121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/22/2024] [Indexed: 10/23/2024] Open
Abstract
We chose the "natural laboratory" provided by high-altitude native ethnic Tibetan women who had completed childbearing to examine the hypothesis that multiple oxygen delivery traits were associated with lifetime reproductive success and had genomic associations. Four hundred seventeen (417) women aged 46 to 86 y residing at ≥3,500 m in Upper Mustang, Nepal, provided information on reproductive histories, sociocultural factors, physiological measurements, and DNA samples for this observational cohort study. Simultaneously assessing multiple traits identified combinations associated with lifetime reproductive success measured as the number of livebirths. Women with the most livebirths had distinctive hematological and cardiovascular traits. A hemoglobin concentration near the sample mode and a high percent of oxygen saturation of hemoglobin raised arterial oxygen concentration without risking elevated blood viscosity. We propose ongoing stabilizing selection on hemoglobin concentration because extreme values predicted fewer livebirths and directional selection favoring higher oxygen saturation because higher values had more predicted livebirths. EPAS1, an oxygen homeostasis locus with strong signals of positive natural selection and a high frequency of variants occurring only among populations indigenous to the Tibetan Plateau, associated with hemoglobin concentration. High blood flow into the lungs, wide left ventricles, and low hypoxic heart rate responses aided effective convective oxygen transport to tissues. Women with physiologies closer to unstressed, low altitude values had the highest lifetime reproductive success. This example of ethnic Tibetan women residing at high altitudes in Nepal links reproductive fitness with trait combinations increasing oxygen delivery under severe hypoxic stress and demonstrates ongoing natural selection.
Collapse
Affiliation(s)
- Shenghao Ye
- Statistics Department, George Mason University, Fairfax, VA22030
| | - Jiayang Sun
- Statistics Department, George Mason University, Fairfax, VA22030
| | - Sienna R. Craig
- Anthropology Department, Dartmouth College, Hanover, NH03755
| | - Anna Di Rienzo
- Human Genetics Department, University of Chicago, Chicago, IL60637
| | - David Witonsky
- Human Genetics Department, University of Chicago, Chicago, IL60637
| | - James J. Yu
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA92023
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA92023
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA92023
| | - Frank L. Powell
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA92023
| | - Buddha Basnyat
- Oxford University Clinical Research Unit-Nepal, Kathmandu44600, Nepal
| | - Kingman P. Strohl
- School of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Brian D. Hoit
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Departments of Medicine and Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Cynthia M. Beall
- Anthropology Department, Case Western Reserve University, Cleveland, OH44106
| |
Collapse
|
8
|
Slingo ME. Oxygen-sensing pathways and the pulmonary circulation. J Physiol 2024; 602:5619-5629. [PMID: 37843154 DOI: 10.1113/jp284591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
The unique property of the pulmonary circulation to constrict in response to hypoxia, rather than dilate, brings advantages in both health and disease. Hypoxic pulmonary vasoconstriction (HPV) acts to optimise ventilation-perfusion matching - this is important clinically both in focal disease (such as pneumonia) and in one-lung ventilation during anaesthesia for thoracic surgery. However, during global hypoxia such as that encountered at high altitude, generalised pulmonary vasoconstriction can lead to pulmonary hypertension. There is now a growing body of evidence that links the hypoxia-inducible factor (HIF) pathway and pulmonary vascular tone - in both acute and chronic settings. Genetic and pharmacological alterations to all key components of this pathway (VHL - von Hippel-Lindau ubiquitin E3 ligase; PHD2 - prolyl hydroxylase domain protein 2; HIF1 and HIF2) have clear effects on the pulmonary circulation, particularly in hypoxia. Furthermore, knowledge of the molecular biology of the prolyl hydroxylase enzymes has led to an extensive and ongoing body of research into the importance of iron in both HPV and pulmonary hypertension. This review will explore these relationships in more detail and discuss future avenues of research.
Collapse
Affiliation(s)
- Mary E Slingo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Simpson LL, Stembridge M, Siebenmann C, Moore JP, Lawley JS. Mechanisms underpinning sympathoexcitation in hypoxia. J Physiol 2024; 602:5485-5503. [PMID: 38533641 DOI: 10.1113/jp284579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Sympathoexcitation is a hallmark of hypoxic exposure, occurring acutely, as well as persisting in acclimatised lowland populations and with generational exposure in highland native populations of the Andean and Tibetan plateaus. The mechanisms mediating altitude sympathoexcitation are multifactorial, involving alterations in both peripheral autonomic reflexes and central neural pathways, and are dependent on the duration of exposure. Initially, hypoxia-induced sympathoexcitation appears to be an adaptive response, primarily mediated by regulatory reflex mechanisms concerned with preserving systemic and cerebral tissue O2 delivery and maintaining arterial blood pressure. However, as exposure continues, sympathoexcitation is further augmented above that observed with acute exposure, despite acclimatisation processes that restore arterial oxygen content (C a O 2 ${C_{{\mathrm{a}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). Under these conditions, sympathoexcitation may become maladaptive, giving rise to reduced vascular reactivity and mildly elevated blood pressure. Importantly, current evidence indicates the peripheral chemoreflex does not play a significant role in the augmentation of sympathoexcitation during altitude acclimatisation, although methodological limitations may underestimate its true contribution. Instead, processes that provide no obvious survival benefit in hypoxia appear to contribute, including elevated pulmonary arterial pressure. Nocturnal periodic breathing is also a potential mechanism contributing to altitude sympathoexcitation, although experimental studies are required. Despite recent advancements within the field, several areas remain unexplored, including the mechanisms responsible for the apparent normalisation of muscle sympathetic nerve activity during intermediate hypoxic exposures, the mechanisms accounting for persistent sympathoexcitation following descent from altitude and consideration of whether there are sex-based differences in sympathetic regulation at altitude.
Collapse
Affiliation(s)
- Lydia L Simpson
- Department of Sport Science, Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | | | - Jonathan P Moore
- School of Psychology and Sport Science, Institute of Applied Human Physiology, Bangor University, Bangor, UK
| | - Justin S Lawley
- Department of Sport Science, Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| |
Collapse
|
10
|
Murphy BT, O'Halloran KD. Champions of the mountains: superior aerobic performance in Tibetans is not due to enhanced cardiopulmonary traits. J Physiol 2024; 602:3865-3866. [PMID: 39072734 DOI: 10.1113/jp287012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Affiliation(s)
- Ben T Murphy
- Department of Physiology, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Möller FN, Fan JL, Futral JE, Hodgman CF, Kayser B, Lovering AT. Cardiopulmonary haemodynamics in Tibetans and Han Chinese during rest and exercise. J Physiol 2024; 602:3893-3907. [PMID: 38924564 DOI: 10.1113/jp286303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
During sea-level exercise, blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) in humans without a patent foramen ovale (PFO) is negatively correlated with pulmonary pressure. Yet, it is unknown whether the superior exercise capacity of Tibetans well adapted to living at high altitude is the result of lower pulmonary pressure during exercise in hypoxia, and whether their cardiopulmonary characteristics are significantly different from lowland natives of comparable ancestry (e.g. Han Chinese). We found a 47% PFO prevalence in male Tibetans (n = 19) and Han Chinese (n = 19) participants. In participants without a PFO (n = 10 each group), we measured heart structure and function at rest and peak oxygen uptake (V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ ), peak power output (W ̇ p e a k ${{\dot{W}}_{peak}}$ ), pulmonary artery systolic pressure (PASP), blood flow through IPAVA and cardiac output (Q ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ ) at rest and during recumbent cycle ergometer exercise at 760 Torr (SL) and at 410 Torr (ALT) barometric pressure in a pressure chamber. Tibetans achieved a higherW peak ${W}_{\textit{peak}}$ than Han, and a higherV ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ at ALT without differences in heart rate, stroke volume orQ ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ . Blood flow through IPAVA was generally similar between groups. Increases in PASP and total pulmonary resistance at ALT were comparable between the groups. There were no differences in the slopes of PASP plotted as a function ofQ ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ during exercise. In those without PFO, our data indicate that the superior aerobic exercise capacity of Tibetans over Han Chinese is independent of cardiopulmonary features and more probably linked to differences in local muscular oxygen extraction. KEY POINTS: Patent foramen ovale (PFO) prevalence was 47% in Tibetans and Han Chinese living at 2 275 m. Subjects with PFO were excluded from exercise studies. Compared to Han Chinese, Tibetans had a higher peak workload with acute compression to sea level barometric pressure (SL) and acute decompression to 5000 m altitude (ALT). Comprehensive cardiac structure and function at rest were not significantly different between Han Chinese and Tibetans. Tibetans and Han had similar blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) during exercise at SL. Peak pulmonary artery systolic pressure (PASP) and total pulmonary resistance were different between SL and ALT, with significantly increased PASP for Han compared to Tibetans at ALT. No differences were observed between groups at acute SL and ALT.
Collapse
Affiliation(s)
- Fabian N Möller
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Boston, MA, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
- German Sport University Cologne, Institute for Professional Sport Education and Qualification, Cologne, Germany
| | - Jui-Lin Fan
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, University of Auckland, Faculty of Medical and Health Sciences, Auckland, New Zealand
| | - Joel E Futral
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
- Oregon Heart & Vascular Institute, Springfield, Oregon, USA
| | - Charles F Hodgman
- Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Bengt Kayser
- University of Lausanne, Institute of Sports Sciences, Lausanne, Switzerland
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
12
|
Zhang Q, Liu H, Liu C, Wang Y, Huang P, Wang X, Ma Y, Ma L, Ge R. Tibetan mesenchymal stem cell-derived exosomes alleviate pulmonary vascular remodeling in hypoxic pulmonary hypertension rats. Stem Cells 2024; 42:720-735. [PMID: 38717187 DOI: 10.1093/stmcls/sxae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 08/02/2024]
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by progressive pulmonary vasoconstriction, vascular remodeling, and right ventricular hypertrophy, causing right heart failure. This study aimed to investigate the therapeutic effects of exosomes from Tibetan umbilical cord mesenchymal stem cells on HPH via the TGF-β1/Smad2/3 pathway, comparing them with exosomes from Han Chinese individuals. An HPH rat model was established in vivo, and a hypoxia-induced injury in the rat pulmonary artery smooth muscle cells (rPASMCs) was simulated in vitro. Exosomes from human umbilical cord mesenchymal stem cells were administered to HPH model rats or added to cultured rPASMCs. The therapeutic effects of Tibetan-mesenchymal stem cell-derived exosomes (Tibetan-MSC-exo) and Han-mesenchymal stem cell-derived exosomes (Han-MSC-exo) on HPH were investigated through immunohistochemistry, western blotting, EdU, and Transwell assays. The results showed that Tibetan-MSC-exo significantly attenuated pulmonary vascular remodeling and right ventricular hypertrophy in HPH rats compared with Han-MSC-exo. Tibetan-MSC-exo demonstrated better inhibition of hypoxia-induced rPASMCs proliferation and migration. Transcriptome sequencing revealed upregulated genes (Nbl1, Id2, Smad6, and Ltbp1) related to the TGFβ pathway. Nbl1 knockdown enhanced hypoxia-induced rPASMCs proliferation and migration, reversing Tibetan-MSC-exo-induced downregulation of TGFβ1 and p-Smad2/3. Furthermore, TGFβ1 overexpression hindered the therapeutic effects of Tibetan-MSC-exo and Han-MSC-exo on hypoxic injury. These findings suggest that Tibetan-MSC-exo favors HPH treatment better than Han-MSC-exo, possibly through the modulation of the TGFβ1/Smad2/3 pathway via Nbl1.
Collapse
Affiliation(s)
- Qingqing Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Qinghai University Affiliated Hospital, Xining 810001, People's Republic of China
| | - Hong Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Chuanchuan Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Yuxiang Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Pan Huang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Xiaobo Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Yougang Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Lan Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Rili Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
| |
Collapse
|
13
|
Moya EA, Yu JJ, Brown S, Gu W, Lawrence ES, Carlson R, Brandes A, Wegeng W, Amann K, McIntosh SE, Powell FL, Simonson TS. Tibetans exhibit lower hemoglobin concentration and decreased heart response to hypoxia during poikilocapnia at intermediate altitude relative to Han Chinese. Front Physiol 2024; 15:1334874. [PMID: 38784113 PMCID: PMC11112024 DOI: 10.3389/fphys.2024.1334874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
Background High-altitude populations exhibit distinct cellular, respiratory, and cardiovascular phenotypes, some of which provide adaptive advantages to hypoxic conditions compared to populations with sea-level ancestry. Studies performed in populations with a history of high-altitude residence, such as Tibetans, support the idea that many of these phenotypes may be shaped by genomic features that have been positively selected for throughout generations. We hypothesize that such traits observed in Tibetans at high altitude also occur in Tibetans living at intermediate altitude, even in the absence of severe sustained hypoxia. Methodology We studied individuals of high-altitude ancestry (Tibetans, n = 17 females; n = 12 males) and sea-level ancestry (Han Chinese, n = 6 females; n = 10 males), both who had been living at ∼1300 m (∼4327 ft) for at least 18 months. We measured hemoglobin concentration ([Hb]), hypoxic ventilatory response (HVR), and hypoxic heart rate response (HHRR) with end-tidal CO2 (PetCO2) held constant (isocapnia) or allowed to decrease with hypoxic hyperventilation (poikilocapnia). We also quantified the contribution of CO2 on ventilation and heart rate by calculating the differences of isocapnic versus poikilocapnic hypoxic conditions (Δ V ˙ I /ΔPetCO2 and ΔHR/ΔPetCO2, respectively). Results Male Tibetans had lower [Hb] compared to Han Chinese males (p < 0.05), consistent with reports for individuals from these populations living at high altitude and sea level. Measurements of ventilation (resting ventilation, HVR, and PetCO2) were similar for both groups. Heart rate responses to hypoxia were similar in both groups during isocapnia; however, HHRR in poikilocapnia was reduced in the Tibetan group (p < 0.03), and the heart rate response to CO2 in hypoxia was lower in Tibetans relative to Han Chinese (p < 0.01). Conclusion These results suggest that Tibetans living at intermediate altitude have blunted cardiac responses in the context of hypoxia. Hence, only some of the phenotypes observed in Tibetans living at high altitude are observed in Tibetans living at intermediate altitude. Whereas blunted cardiac responses to hypoxia is revealed at intermediate altitudes, manifestation of other physiological adaptations to high altitude may require exposure to more severe levels of hypoxia.
Collapse
Affiliation(s)
- E. A. Moya
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - J. J. Yu
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - S. Brown
- Department of Anesthesiology, Loyola University Medical Center, Maywood, IL, United States
| | - W. Gu
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - E. S. Lawrence
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - R. Carlson
- School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - A. Brandes
- School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - W. Wegeng
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - K. Amann
- Department of Emergency Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - S. E. McIntosh
- Department of Emergency Medicine, University of Utah Health, Salt Lake City, UT, United States
| | - F. L. Powell
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - T. S. Simonson
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
14
|
Niclou A, Sarma M, Levy S, Ocobock C. To the extreme! How biological anthropology can inform exercise physiology in extreme environments. Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111476. [PMID: 37423419 DOI: 10.1016/j.cbpa.2023.111476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
The fields of biological anthropology and exercise physiology are closely related and can provide mutually beneficial insights into human performance. These fields often use similar methods and are both interested in how humans function, perform, and respond in extreme environments. However, these two fields have different perspectives, ask different questions, and work within different theoretical frameworks and timescales. Biological anthropologists and exercise physiologists can greatly benefit from working together when examining human adaptation, acclimatization, and athletic performance in the extremes of heat, cold, and high-altitude. Here we review the adaptations and acclimatizations in these three different extreme environments. We then examine how this work has informed and built upon exercise physiology research on human performance. Finally, we present an agenda for moving forward, hopefully, with these two fields working more closely together to produce innovative research that improves our holistic understanding of human performance capacities informed by evolutionary theory, modern human acclimatization, and the desire to produce immediate and direct benefits.
Collapse
Affiliation(s)
- Alexandra Niclou
- Pennington Biomedical Research Center, Baton Rouge, LA, United States of America. https://twitter.com/fiat_luxandra
| | - Mallika Sarma
- Human Space Flight Lab, Johns Hopkins School of Medicine, Baltimore, MD, United States of America. https://twitter.com/skyy_mal
| | - Stephanie Levy
- Department of Anthropology, CUNY Hunter College, New York, NY, United States of America; New York Consortium in Evolutionary Primatology, New York, NY, United States of America. https://twitter.com/slevyscience
| | - Cara Ocobock
- University of Notre Dame Department of Anthropology, Notre Dame, IN, United States of America; Eck Institute for Global Health, Institute for Educational Initiatives, University of Notre Dame, United States of America.
| |
Collapse
|
15
|
Ghosh S. Angiotensin-Converting Enzyme (ACE) gene polymorphism and arterial blood pressure among the Tawang Monpa of Eastern Himalayan Mountains: Is there a signature of natural selection? PLoS One 2023; 18:e0291810. [PMID: 37733712 PMCID: PMC10513219 DOI: 10.1371/journal.pone.0291810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVES The present paper aims to characterize the Angiotensin-converting enzyme (ACE) genotype, with particular emphasis on its association with arterial oxygen saturation, arterial blood pressure, hemoglobin [Hb] concentration, and ventilatory measures among the Tawang Monpa, a high-altitude native population of the Eastern Himalaya, India. METHODS A cross-sectional sample of 168Monpa participants from Tawang town, Arunachal Pradesh, India, was selected who live at an altitude of ∼3,200 meters (m) above sea level. For each participant, height, weight, and skinfold thickness were measured, based on which body mass index (BMI, kg/m2) and percentage of body fat (%BF) were calculated. Physiological measures, such as the transcutaneous arterial oxygen saturation (SaO2), hemoglobin [Hb] concentration, forced vital capacity (FVC), forced expiratory volume in 1-second (FEV1), and systemic arterial blood pressure were measured. First, the peripheral venous blood samples (four ml) were drawn, and then white blood cells were separated for the ACE genotyping of each participant. RESULTS Unlike high-altitude natives from Peru and Ladakh, who exhibit high frequencies of II homozygotes, the Tawang Monpa shows a significantly high frequency of ID heterozygotes (p<0.0001). In addition, no significant association was identified between ACE gene polymorphism and arterial blood pressure, oxygen saturation at rest, vital capacity, or [Hb] concentration. DISCUSSION The results suggest that the association of the ACE gene with resting SaO2 is inconsistent across native populations living under hypobaric hypoxia. Further, ACE I/D gene polymorphism may not be under natural selection in specific native populations, including Tawang Monpa, for their adaptation to high-altitude hypoxia.
Collapse
Affiliation(s)
- Sudipta Ghosh
- Department of Anthropology, North-Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
16
|
He Y, Zheng W, Guo Y, Yue T, Cui C, Ouzhuluobu, Zhang H, Liu K, Yang Z, Wu T, Qu J, Jin ZB, Yang J, Lu F, Qi X, Su B. Deep phenotyping of 11,880 highlanders reveals novel adaptive traits in native Tibetans. iScience 2023; 26:107677. [PMID: 37680474 PMCID: PMC10481350 DOI: 10.1016/j.isci.2023.107677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Tibetans are the ideal population to study genetic adaptation in extreme environments. Here, we performed systematic phenotyping of 11,880 highlanders, covering 133 quantitative traits of 13 organ systems. We provided a comprehensive phenotypic atlas by comparing altitude adaptation and altitude acclimatization. We found the differences between adaptation and acclimatization are quantitative rather than qualitative, with a whole-system "blunted effect" seen in the adapted Tibetans. We characterized twelve different functional changes between adaptation and acclimatization. More importantly, we established a landscape of adaptive phenotypes of indigenous Tibetans, including 45 newly identified Tibetan adaptation-nominated traits, involving specific changes of Tibetans in internal organ state, metabolism, eye morphology, and skin pigmentation. In addition, we observed a sex-biased pattern between altitude acclimatization and adaptation. The generated atlas of phenotypic landscape provides new insights into understanding of human adaptation to high-altitude environments, and it serves as a valuable blueprint for future medical and physiological studies.
Collapse
Affiliation(s)
- Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | | | - Ouzhuluobu
- Tibetan Fukang Hospital, Lhasa 850000, China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China
| | - Kai Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaohui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Academy of Medicine Science, Zhengzhou University, Zhengzhou 450052, China
| | - Tianyi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining 810012, China
| | - Jia Qu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zi-Bing Jin
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China
| | - Jian Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Fan Lu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Tibetan Fukang Hospital, Lhasa 850000, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
17
|
Li S, Mu D, Ma C, Yixicuomu, Zhaxiyangzong, Pang J, Zhan M, Liu Z, Dan Q, Cheng X. Establishment of a reference interval for total carbon dioxide using indirect methods in Chinese populations living in high-altitude areas: A retrospective real-world analysis. Clin Biochem 2023; 119:110631. [PMID: 37572984 DOI: 10.1016/j.clinbiochem.2023.110631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Hypoxia leads to different concentrations of the bicarbonate buffer system in Tibetan people. Indirect methods were used to establish the reference interval (RI) for total carbon dioxide (tCO2) based on big data from the adult population of Tibet, a high-altitude area in Western China. METHODS Anonymous tCO2 test data (n = 442,714) were collected from the People's Hospital of the Tibet Autonomous Region from January 2018, to December 2021. Multiple linear regression and variance component analyses were performed to assess the effects of sex, age, and race on tCO2 levels. Indirect methods, including Hoffmann, Bhattacharya, expectation maximization (EM), kosmic and refineR, were used to calculate the total RI and ethnicity-partitioned RI. RESULTS A total of 230,821 real-world tCO2 test results were eligible. Sex, age, and race were significantly associated with the tCO2 levels. The total and ethnically-partitioned RIs estimated using the five indirect methods were comparable. The total RI of tCO2 was 14-24 mmol/L (calculated using Hoffmann and refineR) and 15-24 mmol/L (Bhattacharya, EM and kosmic). For Han nationality, the RIs were 14-25 mmol/L (calculated using Hoffmann and Bhattacharya), 16-23 mmol/L (EM), 15-24 mmol/L (kosmic), and 14.2-24.5 mmol/L (refineR). For the Tibetan population, the RIs were 14-24 mmol/L (calculated using Hoffmann and refineR), 15-24 mmol/L (Bhattacharya and kosmic), and 15-23 mmol/L (EM). The established RIs were significantly lower than those living at lower altitudes area (22-29 mmol/L) that was provided by the manufacturer. CONCLUSION The tCO2 RI of the populations living on the Tibetan Plateau was significantly lower than those at the lower altitudes. The RIs established using indirect methods are suitable for clinical applications in Tibet.
Collapse
Affiliation(s)
- Shensong Li
- Department of Clinical Laboratory, People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Danni Mu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Chaochao Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yixicuomu
- Department of Clinical Laboratory, People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Zhaxiyangzong
- Department of Clinical Laboratory, People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Jinrong Pang
- Department of Clinical Laboratory, People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Mingjun Zhan
- Department of Clinical Laboratory, People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Zhijuan Liu
- Department of Clinical Laboratory, People's Hospital of Tibet Autonomous Region, Lhasa, China.
| | - Qu Dan
- Department of Clinical Laboratory, People's Hospital of Tibet Autonomous Region, Lhasa, China.
| | - Xinqi Cheng
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
18
|
Subedi P, Gasho C, Stembridge M, Williams AM, Patrician A, Ainslie PN, Anholm JD. Pulmonary vascular reactivity to supplemental oxygen in Sherpa and lowlanders during gradual ascent to high altitude. Exp Physiol 2023; 108:111-122. [PMID: 36404588 PMCID: PMC10103769 DOI: 10.1113/ep090458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does hypoxic pulmonary vasoconstriction and the response to supplemental oxygen change over time at high altitude? What is the main finding and its importance? Lowlanders and partially de-acclimatized Sherpa both demonstrated pulmonary vascular responsiveness to supplemental oxygen that was maintained for 12 days' exposure to progressively increasing altitude. An additional 2 weeks' acclimatization at 5050 m altitude rendered the pulmonary vasculature minimally responsive to oxygen similar to the fully acclimatized non-ascent Sherpa. Additional hypoxic exposure at that time point did not augment hypoxic pulmonary vasoconstriction. ABSTRACT Prolonged alveolar hypoxia leads to pulmonary vascular remodelling. We examined the time course at altitude, over which hypoxic pulmonary vasoconstriction goes from being acutely reversible to potentially irreversible. Study subjects were lowlanders (n = 20) and two Sherpa groups. All Sherpa were born and raised at altitude. One group (ascent Sherpa, n = 11) left altitude and after de-acclimatization in Kathmandu for ∼7 days re-ascended with the lowlanders over 8-10 days to 5050 m. The second Sherpa group (non-ascent Sherpa, n = 12) remained continuously at altitude. Pulmonary artery systolic pressure (PASP) and pulmonary vascular resistance (PVR) were measured while breathing ambient air and following supplemental oxygen. During ascent PASP and PVR increased in lowlanders and ascent Sherpa; however, with supplemental oxygen, lowlanders had significantly greater decrease in PASP (P = 0.02) and PVR (P = 0.02). After ∼14 days at 5050 m, PASP decreased with supplemental oxygen (mean decrease: 3.9 mmHg, 95% CI 2.1-5.7 mmHg, P < 0.001); however, PVR was unchanged (P = 0.49). In conclusion, PASP and PVR increased with gradual ascent to altitude and decreased via oxygen supplementation in both lowlanders and ascent Sherpa. Following ∼14 days at 5050 m altitude, there was no change in PVR to hypoxia or O2 supplementation in lowlanders or either Sherpa group. These data show that both duration of exposure and residential altitude influence the pulmonary vascular responses to hypoxia.
Collapse
Affiliation(s)
- Prajan Subedi
- Division of PulmonaryCritical Care, Sleep, Hyperbaric Medicine and AllergyDept. of MedicineLoma Linda University School of MedicinePulmonary SectionVA Loma Linda Healthcare SystemLoma LindaCaliforniaUSA
| | - Christopher Gasho
- Division of PulmonaryCritical Care, Sleep, Hyperbaric Medicine and AllergyDept. of MedicineLoma Linda University School of MedicinePulmonary SectionVA Loma Linda Healthcare SystemLoma LindaCaliforniaUSA
| | - Michael Stembridge
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
| | - Alexandra M. Williams
- Department of Cellular and Physiological SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Alexander Patrician
- Centre for Heart, Lung and Vascular HealthFaculty of Health and Social DevelopmentUniversity of British Columbia – OkanaganKelownaBCCanada
| | - Philip N. Ainslie
- Centre for Heart, Lung and Vascular HealthFaculty of Health and Social DevelopmentUniversity of British Columbia – OkanaganKelownaBCCanada
| | - James D. Anholm
- Division of PulmonaryCritical Care, Sleep, Hyperbaric Medicine and AllergyDept. of MedicineLoma Linda University School of MedicinePulmonary SectionVA Loma Linda Healthcare SystemLoma LindaCaliforniaUSA
| |
Collapse
|
19
|
Doutreleau S, Ulliel-Roche M, Hancco I, Bailly S, Oberholzer L, Robach P, Brugniaux JV, Pichon A, Stauffer E, Perger E, Parati G, Verges S. Cardiac remodelling in the highest city in the world: effects of altitude and chronic mountain sickness. Eur J Prev Cardiol 2022; 29:2154-2162. [PMID: 35929776 DOI: 10.1093/eurjpc/zwac166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 01/11/2023]
Abstract
AIMS A unique Andean population lives in the highest city of the world (La Rinconada, 5100 m, Peru) and frequently develops a maladaptive syndrome, termed chronic mountain sickness (CMS). Both extreme altitude and CMS are a challenge for the cardiovascular system. This study aims to evaluate cardiac remodelling and pulmonary circulation at rest and during exercise in healthy and CMS highlanders. METHODS AND RESULTS Highlanders living permanently at 3800 m (n = 23) and 5100 m (n = 55) with (n = 38) or without CMS (n = 17) were compared with 18 healthy lowlanders. Rest and exercise echocardiography were performed to describe cardiac remodelling, pulmonary artery pressure (PAP), and pulmonary vascular resistance (PVR). Total blood volume (BV) and haemoglobin mass were determined in all people. With the increase in the altitude of residency, the right heart dilated with an impairment in right ventricle systolic function, while the left heart exhibited a progressive concentric remodelling with Grade I diastolic dysfunction but without systolic dysfunction. Those modifications were greater in moderate-severe CMS patients. The mean PAP was higher both at rest and during exercise in healthy highlanders at 5100 m. The moderate-severe CMS subjects had a higher PVR at rest and a larger increase in PAP during exercise. The right heart remodelling was correlated with PAP, total BV, and SpO2. CONCLUSION Healthy dwellers at 5100 m exhibit both right heart dilatation and left ventricle concentric remodelling with diastolic dysfunction. Those modifications are even more pronounced in moderate-severe CMS subjects and could represent the limit of the heart's adaptability before progression to heart failure.
Collapse
Affiliation(s)
- Stéphane Doutreleau
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| | - Mathilde Ulliel-Roche
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| | - Ivan Hancco
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| | - Sébastien Bailly
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| | - Laura Oberholzer
- The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Paul Robach
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France.,National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - Julien V Brugniaux
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| | - Aurélien Pichon
- Laboratoire MOVE EA 6314, Faculté des Sciences du Sport, Université de Poitiers, Poitiers, France
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team 'Vascular Biology and Red Blood Cell', Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Elisa Perger
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Gianfranco Parati
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Samuel Verges
- HP2 Laboratory, Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, Avenue Kimberley, 38 434 Grenoble, France
| |
Collapse
|
20
|
Mares AC, Gupta R. Surviving and thriving: impact of altitude on cardiac remodelling. Eur J Prev Cardiol 2022; 29:2152-2153. [PMID: 36166377 DOI: 10.1093/eurjpc/zwac225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Adriana C Mares
- Division of Cardiovascular Medicine, Texas Tech University Health Sciences Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, 1200 S Cedar Crest Blvd, Allentown, PA 18103, USA
| |
Collapse
|
21
|
Gray OA, Yoo J, Sobreira DR, Jousma J, Witonsky D, Sakabe NJ, Peng YJ, Prabhakar NR, Fang Y, Nobréga MA, Di Rienzo A. A pleiotropic hypoxia-sensitive EPAS1 enhancer is disrupted by adaptive alleles in Tibetans. SCIENCE ADVANCES 2022; 8:eade1942. [PMID: 36417539 PMCID: PMC9683707 DOI: 10.1126/sciadv.ade1942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In Tibetans, noncoding alleles in EPAS1-whose protein product hypoxia-inducible factor 2α (HIF-2α) drives the response to hypoxia-carry strong signatures of positive selection; however, their functional mechanism has not been systematically examined. Here, we report that high-altitude alleles disrupt the activity of four EPAS1 enhancers in one or more cell types. We further characterize one enhancer (ENH5) whose activity is both allele specific and hypoxia dependent. Deletion of ENH5 results in down-regulation of EPAS1 and HIF-2α targets in acute hypoxia and in a blunting of the transcriptional response to sustained hypoxia. Deletion of ENH5 in mice results in dysregulation of gene expression across multiple tissues. We propose that pleiotropic adaptive effects of the Tibetan alleles in EPAS1 underlie the strong selective signal at this gene.
Collapse
Affiliation(s)
- Olivia A. Gray
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Jennifer Yoo
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Débora R. Sobreira
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Jordan Jousma
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - David Witonsky
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Noboru J. Sakabe
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL 60637, USA
| | - Nanduri R. Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL 60637, USA
| | - Yun Fang
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Marcelo A. Nobréga
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Anna Di Rienzo
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
22
|
Physiology and Proteomic Basis of Lung Adaptation to High-Altitude Hypoxia in Tibetan Sheep. Animals (Basel) 2022; 12:ani12162134. [PMID: 36009723 PMCID: PMC9405401 DOI: 10.3390/ani12162134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary As an indigenous animal living in the Tibetan plateau, the Tibetan sheep is well adapted to high-altitude hypoxia, and the lungs play an important role in overcoming the hypoxic environment. To reveal the physiological and proteomic basis of Tibetan sheep lungs during their adaptation to hypoxia, we studied the lungs of Tibetan sheep at different altitudes using light and electron microscopy and proteome sequencing. The results showed that in the lungs of Tibetan sheep occurred a series of physiological changes with increasing altitude, and some important proteins and pathways identified by proteome sequencing further support these physiology findings. These changes at the physiological and molecular levels may facilitate the adaptation of Tibetan sheep to high-altitude hypoxia. In conclusion, these findings may provide a reference for the prevention of altitude sickness in humans. Abstract The Tibetan sheep is an indigenous animal of the Tibetan plateau, and after a long period of adaptation have adapted to high-altitude hypoxia. Many physiological changes occur in Tibetan sheep as they adapt to high-altitude hypoxia, especially in the lungs. To reveal the physiological changes and their molecular mechanisms in the lungs of Tibetan sheep during adaptation to high altitudes, we selected Tibetan sheep from three altitudes (2500 m, 3500 m, and 4500 m) and measured blood-gas indicators, observed lung structures, and compared lung proteome changes. The results showed that the Tibetan sheep increased their O2-carrying capacity by increasing the hemoglobin (Hb) concentration and Hematocrit (Hct) at an altitude of 3500 m. While at altitude of 4500 m, Tibetan sheep decreased their Hb concentration and Hct to avoid pulmonary hypertension and increased the efficiency of air-blood exchange and O2 transfer by increasing the surface area of gas exchange and half-saturation oxygen partial pressure. Besides these, some important proteins and pathways related to gas transport, oxidative stress, and angiogenesis identified by proteome sequencing further support these physiology findings, including HBB, PRDX2, GPX1, GSTA1, COL14A1, and LTBP4, etc. In conclusion, the lungs of Tibetan sheep are adapted to different altitudes by different strategies; these findings are valuable for understanding the basis of hypoxic adaptation in Tibetan sheep.
Collapse
|
23
|
Droma Y, Hanaoka M, Kinjo T, Kobayashi N, Yasuo M, Kitaguchi Y, Ota M. The blunted vascular endothelial growth factor-A (VEGF-A) response to high-altitude hypoxia and genetic variants in the promoter region of the VEGFA gene in Sherpa highlanders. PeerJ 2022; 10:e13893. [PMID: 35996666 PMCID: PMC9392454 DOI: 10.7717/peerj.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/22/2022] [Indexed: 01/19/2023] Open
Abstract
Background Sherpa highlanders demonstrate extraordinary tolerance to hypoxia at high altitudes, which may be achieved by mechanisms promoting microcirculatory blood flow and capillary density at high altitudes for restoring oxygen supply to tissues. Vascular endothelial growth factors (VEGFs) are important signaling proteins involved in vasculogenesis and angiogenesis which are stimulated by hypoxia. We hypothesize that the VEGF-A, the major member of the VEGF family, and the gene encoding VEGF-A (VEGFA) play a part in the adaptation to high-altitude hypoxia in Sherpa highlanders. Methods Fifty-one Sherpa highlanders in Namche Bazaar village at a high altitude of 3,440 meters (m) above sea level and 76 non-Sherpa lowlanders in Kathmandu city at 1,300 m in Nepal were recruited for the study. Venous blood was sampled to obtain plasma and extract DNA from each subject. The plasma VEGF-A concentrations were measured and five single-nucleotide polymorphisms (SNPs, rs699947, rs833061, rs1570360, rs2010963, and rs3025039) in the VEGFA were genotyped. The VEGF-A levels and allelic frequencies of the SNPs were compared between the two populations. Results A significant difference in oxygen saturation (SpO2) was observed between the two ethnic groups locating at different elevations (93.7 ± 0.2% in Sherpas at 3,440 m vs. 96.7 ± 0.2% in non-Sherpas at 1,300 m, P < 0.05). The plasma VEGF-A concentration in the Sherpas at high altitude was on the same level as that in the non-Sherpas at low altitude (262.8 ± 17.9 pg/ml vs. 266.8 ± 21.8 pg/ml, P = 0.88). This result suggested that the plasma VEGF-A concentration in Sherpa highlanders was stable despite a high-altitude hypoxic stimulus and that therefore the Sherpas exhibited a phenotype of blunted response to hypoxic stress. Moreover, the allele frequencies of the SNPs rs699947, rs833061, and rs2010963 in the promoter region of the VEGFA were different between the Sherpa highlanders and non-Sherpa lowlanders (corrected P values = 3.30 ×10-5, 4.95 ×10-4, and 1.19 ×10-7, respectively). Conclusions Sherpa highlanders exhibited a blunted VEGF-A response to hypoxia at high altitudes, which was speculated to be associated with the distinctive genetic variations of the SNPs and haplotype in the promoter region of VEGFA in Sherpa highlanders.
Collapse
Affiliation(s)
- Yunden Droma
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masayuki Hanaoka
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takumi Kinjo
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Nobumitsu Kobayashi
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masanori Yasuo
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yoshiaki Kitaguchi
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masao Ota
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
24
|
Yu JJ, Non AL, Heinrich EC, Gu W, Alcock J, Moya EA, Lawrence ES, Tift MS, O'Brien KA, Storz JF, Signore AV, Khudyakov JI, Milsom WK, Wilson SM, Beall CM, Villafuerte FC, Stobdan T, Julian CG, Moore LG, Fuster MM, Stokes JA, Milner R, West JB, Zhang J, Shyy JY, Childebayeva A, Vázquez-Medina JP, Pham LV, Mesarwi OA, Hall JE, Cheviron ZA, Sieker J, Blood AB, Yuan JX, Scott GR, Rana BK, Ponganis PJ, Malhotra A, Powell FL, Simonson TS. Time Domains of Hypoxia Responses and -Omics Insights. Front Physiol 2022; 13:885295. [PMID: 36035495 PMCID: PMC9400701 DOI: 10.3389/fphys.2022.885295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
Collapse
Affiliation(s)
- James J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amy L. Non
- Department of Anthropology, Division of Social Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, MX, United States
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Katie A. O'Brien
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Physiology, Development and Neuroscience, Faculty of Biology, School of Biological Sciences, University of Cambridge, Cambridge, ENG, United Kingdom
| | - Jay F. Storz
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Anthony V. Signore
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | | | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | | | | | | | - Colleen G. Julian
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lorna G. Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Aurora, CO, United States
| | - Mark M. Fuster
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jennifer A. Stokes
- Department of Kinesiology, Southwestern University, Georgetown, TX, United States
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - John B. West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jiao Zhang
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - John Y. Shyy
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - James E. Hall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT, United States
| | - Jeremy Sieker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arlin B. Blood
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jason X. Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Graham R. Scott
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brinda K. Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, La Jolla, CA, United States
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frank L. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
25
|
Ruggiero L, Harrison SWD, Rice CL, McNeil CJ. Neuromuscular fatigability at high altitude: Lowlanders with acute and chronic exposure, and native highlanders. Acta Physiol (Oxf) 2022; 234:e13788. [PMID: 35007386 PMCID: PMC9286620 DOI: 10.1111/apha.13788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
Abstract
Ascent to high altitude is accompanied by a reduction in partial pressure of inspired oxygen, which leads to interconnected adjustments within the neuromuscular system. This review describes the unique challenge that such an environment poses to neuromuscular fatigability (peripheral, central and supraspinal) for individuals who normally reside near to sea level (SL) (<1000 m; ie, lowlanders) and for native highlanders, who represent the manifestation of high altitude-related heritable adaptations across millennia. Firstly, the effect of acute exposure to high altitude-related hypoxia on neuromuscular fatigability will be examined. Under these conditions, both supraspinal and peripheral fatigability are increased compared with SL. The specific mechanisms contributing to impaired performance are dependent on the exercise paradigm and amount of muscle mass involved. Next, the effect of chronic exposure to high altitude (ie, acclimatization of ~7-28 days) will be considered. With acclimatization, supraspinal fatigability is restored to SL values, regardless of the amount of muscle mass involved, whereas peripheral fatigability remains greater than SL except when exercise involves a small amount of muscle mass (eg, knee extensors). Indeed, when whole-body exercise is involved, peripheral fatigability is not different to acute high-altitude exposure, due to competing positive (haematological and muscle metabolic) and negative (respiratory-mediated) effects of acclimatization on neuromuscular performance. In the final section, we consider evolutionary adaptations of native highlanders (primarily Himalayans of Tibet and Nepal) that may account for their superior performance at altitude and lesser degree of neuromuscular fatigability compared with acclimatized lowlanders, for both single-joint and whole-body exercise.
Collapse
Affiliation(s)
- Luca Ruggiero
- Laboratory of Physiomechanics of LocomotionDepartment of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Scott W. D. Harrison
- School of KinesiologyFaculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
| | - Charles L. Rice
- School of KinesiologyFaculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
| | - Chris J. McNeil
- Centre for Heart, Lung & Vascular HealthSchool of Health and Exercise SciencesUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| |
Collapse
|
26
|
O’Brien KA, Murray AJ, Simonson TS. Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. Life (Basel) 2022; 12:437. [PMID: 35330188 PMCID: PMC8954738 DOI: 10.3390/life12030437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2) homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone natural selection of multiple gene regions supporting adaptive traits. Some of the strongest selection signals identified in highland populations emanate from hypoxia-inducible factor (HIF) pathway genes. The HIF pathway is a master regulator of the cellular hypoxic response, but it is not the only regulatory pathway under positive selection. For instance, regions linked to the highly conserved Notch signaling pathway are also top targets, and this pathway is likely to play essential roles that confer hypoxia tolerance. Here, we explored the importance of the Notch pathway in mediating the cellular hypoxic response. We assessed transcriptional regulation of the Notch pathway, including close cross-talk with HIF signaling, and its involvement in the mediation of angiogenesis, cellular metabolism, inflammation, and oxidative stress, relating these functions to generational hypoxia adaptation.
Collapse
Affiliation(s)
- Katie A. O’Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
27
|
Hannemann J, Böger R. Dysregulation of the Nitric Oxide/Dimethylarginine Pathway in Hypoxic Pulmonary Vasoconstriction—Molecular Mechanisms and Clinical Significance. Front Med (Lausanne) 2022; 9:835481. [PMID: 35252268 PMCID: PMC8891573 DOI: 10.3389/fmed.2022.835481] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
The pulmonary circulation responds to hypoxia with vasoconstriction, a mechanism that helps to adapt to short-lived hypoxic episodes. When sustained, hypoxic pulmonary vasoconstriction (HPV) may become deleterious, causing right ventricular hypertrophy and failure, and contributing to morbidity and mortality in the late stages of several chronic pulmonary diseases. Nitric oxide (NO) is an important endothelial vasodilator. Its release is regulated, amongst other mechanisms, by the presence of endogenous inhibitors like asymmetric dimethylarginine (ADMA). Evidence has accumulated in recent years that elevated ADMA may be implicated in the pathogenesis of HPV and in its clinical sequelae, like pulmonary arterial hypertension (PAH). PAH is one phenotypic trait in experimental models with disrupted ADMA metabolism. In high altitude, elevation of ADMA occurs during long-term exposure to chronic or chronic intermittent hypobaric hypoxia; ADMA is significantly associated with high altitude pulmonary hypertension. High ADMA concentration was also reported in patients with chronic obstructive lung disease, obstructive sleep apnoea syndrome, and overlap syndrome, suggesting a pathophysiological role for ADMA-mediated impairment of endothelium-dependent, NO-mediated pulmonary vasodilation in these clinically relevant conditions. Improved understanding of the molecular (dys-)regulation of pathways controlling ADMA concentration may help to dissect the pathophysiology and find novel therapeutic options for these diseases.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Hamburg, Germany
- *Correspondence: Rainer Böger
| |
Collapse
|
28
|
Parodi JB, Ramchandani R, Zhou Z, Chango DX, Acunzo R, Liblik K, Farina JM, Zaidel EJ, Ruiz-Mori E, Carreón JMA, Liprandi AS, Baranchuk A. A systematic review of electrocardiographic changes in healthy high-altitude populations. Trends Cardiovasc Med 2022:S1050-1738(22)00015-9. [PMID: 35121084 DOI: 10.1016/j.tcm.2022.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
High-altitude environments are characterized by decreased atmospheric pressures at which individuals exhibit a reduced volume of maximal oxygen uptake and arterial partial pressure of oxygen, both of which lead to hypobaric hypoxia. While acute exposure may temporarily offset cardiovascular homeostasis in sea-level residents, native highlanders have become accustomed to these high-altitude conditions and often exhibit variations in normal ECG parameters. As part of the "Altitude Non-differentiated ECG Study" (ANDES) project, this paper aims to systematically review the available literature regarding ECG changes in healthy highlander populations. After searching the PubMed, Medline, and Embase databases, 286 abstracts were screened, of which 13 full-texts were ultimately included. This process was completed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Major ECG deviations in native healthy highlanders include right QRS axis deviation, right ventricular hypertrophy signs, and more prevalent T-wave inversion in the right precordial leads. Notably, they exhibit a prolonged QTc compared to sea-level residents, although within normal limits. Evidence about increased P-wave amplitude or duration, variations in PR interval, or greater prevalence of complete right bundle branch block is not conclusive. This review provides ECG reference standards that can be used by clinicians, who should be aware of the effects of high-altitude residence on cardiovascular health and how these may change according to age, ethnicity, and other factors.
Collapse
Affiliation(s)
- Josefina B Parodi
- Cardiology Division, CEMIC, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rashi Ramchandani
- Department of Medicine, Kingston Health Sciences Center, Queen's University, Kingston, Ontario, Canada
| | - Zier Zhou
- Atherosclerosis, Genomics and Vascular Biology Division, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Diego X Chango
- Cardiology and Advanced Cardiac Imaging Division, Hospital Universitario del Río, Cuenca, Azuay, Ecuador
| | - Rafael Acunzo
- Department of Medicine, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Kiera Liblik
- Department of Medicine, Kingston Health Sciences Center, Queen's University, Kingston, Ontario, Canada
| | - Juan M Farina
- Cardiovascular and Thoracic Surgery Department, Mayo Clinic, Phoenix, AZ, United States
| | - Ezequiel J Zaidel
- Cardiology Department, Sanatorio Güemes, Ciudad Autónoma de Buenos Aires, Argentina
| | - Enrique Ruiz-Mori
- Cardiology Department, Instituto de Enfermedades neoplásicas, Lima, Peru
| | | | - Alvaro Sosa Liprandi
- Cardiology Department, Sanatorio Güemes, Ciudad Autónoma de Buenos Aires, Argentina
| | - Adrian Baranchuk
- Department of Medicine, Kingston Health Sciences Center, Queen's University, Kingston, Ontario, Canada.
| | | |
Collapse
|
29
|
Garrido E, Botella de Maglia J, Castillo O. Acute, subacute and chronic mountain sickness. Rev Clin Esp 2021; 221:481-490. [PMID: 34583826 DOI: 10.1016/j.rceng.2019.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022]
Abstract
More than 100 million people ascend to high mountainous areas worldwide every year. At nonextreme altitudes (<5500m), 10-85% of these individuals are affected by acute mountain sickness, the most common disease induced by mild-moderate hypobaric hypoxia. Approximately 140 million individuals live permanently at heights of 2500-5500m, and up to 10% of them are affected by the subacute form of mountain sickness (high-altitude pulmonary hypertension) or the chronic form (Monge's disease), the latter of which is especially common in Andean ethnicities. This review presents the most relevant general concepts of these 3 clinical variants, which can be incapacitating and can result in complications and become life-threatening. Proper prevention, diagnosis, treatment and management of these conditions in a hostile environment such as high mountains are therefore essential.
Collapse
Affiliation(s)
- E Garrido
- Servicio de Hipobaria y Fisiología Biomédica, Universidad de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain; Instituto de Estudios de Medicina de Montaña (IEMM), Barcelona, Spain.
| | - J Botella de Maglia
- Servicio de Medicina Intensiva, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Instituto de Estudios de Medicina de Montaña (IEMM), Barcelona, Spain
| | - O Castillo
- Instituto Nacional de Biología Andina, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
30
|
Lucero García Rojas EY, Villanueva C, Bond RA. Hypoxia Inducible Factors as Central Players in the Pathogenesis and Pathophysiology of Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:709509. [PMID: 34447792 PMCID: PMC8382733 DOI: 10.3389/fcvm.2021.709509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular (CV) diseases are the major cause of death in industrialized countries. The main function of the CV system is to deliver nutrients and oxygen to all tissues. During most CV pathologies, oxygen and nutrient delivery is decreased or completely halted. Several mechanisms, including increased oxygen transport and delivery, as well as increased blood flow are triggered to compensate for the hypoxic state. If the compensatory mechanisms fail to sufficiently correct the hypoxia, irreversible damage can occur. Thus, hypoxia plays a central role in the pathogenesis and pathophysiology of CV diseases. Hypoxia inducible factors (HIFs) orchestrate the gene transcription for hundreds of proteins involved in erythropoiesis, glucose transport, angiogenesis, glycolytic metabolism, reactive oxygen species (ROS) handling, cell proliferation and survival, among others. The overall regulation of the expression of HIF-dependent genes depends on the severity, duration, and location of hypoxia. In the present review, common CV diseases were selected to illustrate that HIFs, and proteins derived directly or indirectly from their stabilization and activation, are related to the development and perpetuation of hypoxia in these pathologies. We further classify CV diseases into acute and chronic hypoxic states to better understand the temporal relevance of HIFs in the pathogenesis, disease progression and clinical outcomes of these diseases. We conclude that HIFs and their derived factors are fundamental in the genesis and progression of CV diseases. Understanding these mechanisms will lead to more effective treatment strategies leading to reduced morbidity and mortality.
Collapse
Affiliation(s)
| | - Cleva Villanueva
- Instituto Politecnico Nacional, Escuela Superior de Medicina, Mexico City, Mexico
| | - Richard A Bond
- Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| |
Collapse
|
31
|
van Vliet T, Casciaro F, Demaria M. To breathe or not to breathe: Understanding how oxygen sensing contributes to age-related phenotypes. Ageing Res Rev 2021; 67:101267. [PMID: 33556549 DOI: 10.1016/j.arr.2021.101267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
Aging is characterized by a progressive loss of tissue integrity and functionality due to disrupted homeostasis. Molecular oxygen is pivotal to maintain tissue functions, and aerobic species have evolved a sophisticated sensing system to ensure proper oxygen supply and demand. It is not surprising that aberrations in oxygen and oxygen-associated pathways subvert health and promote different aspects of aging. In this review, we discuss emerging findings on how oxygen-sensing mechanisms regulate different cellular and molecular processes during normal physiology, and how dysregulation of oxygen availability lead to disease and aging. We describe various clinical manifestations associated with deregulation of oxygen balance, and how oxygen-modulating therapies and natural oxygen oscillations influence longevity. We conclude by discussing how a better understanding of oxygen-related mechanisms that orchestrate aging processes may lead to the development of new therapeutic strategies to extend healthy aging.
Collapse
|
32
|
West CM, Wearing OH, Rhem RG, Scott GR. Pulmonary hypertension is attenuated and ventilation-perfusion matching is maintained during chronic hypoxia in deer mice native to high altitude. Am J Physiol Regul Integr Comp Physiol 2021; 320:R800-R811. [PMID: 33826424 DOI: 10.1152/ajpregu.00282.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia at high altitude can constrain metabolism and performance and can elicit physiological adjustments that are deleterious to health and fitness. Hypoxic pulmonary hypertension is a particularly serious and maladaptive response to chronic hypoxia, which results from vasoconstriction and pathological remodeling of pulmonary arteries, and can lead to pulmonary edema and right ventricle hypertrophy. We investigated whether deer mice (Peromyscus maniculatus) native to high altitude have attenuated this maladaptive response to chronic hypoxia and whether evolved changes or hypoxia-induced plasticity in pulmonary vasculature might impact ventilation-perfusion (V-Q) matching in chronic hypoxia. Deer mouse populations from both high and low altitudes were born and raised to adulthood in captivity at sea level, and various aspects of lung function were measured before and after exposure to chronic hypoxia (12 kPa O2, simulating the O2 pressure at 4,300 m) for 6-8 wk. In lowlanders, chronic hypoxia increased right ventricle systolic pressure (RVSP) from 14 to 19 mmHg (P = 0.001), in association with thickening of smooth muscle in pulmonary arteries and right ventricle hypertrophy. Chronic hypoxia also impaired V-Q matching in lowlanders (measured at rest using SPECT-CT imaging), as reflected by increased log SD of the perfusion distribution (log SDQ) from 0.55 to 0.86 (P = 0.031). In highlanders, chronic hypoxia had attenuated effects on RVSP and no effects on smooth muscle thickness, right ventricle mass, or V-Q matching. Therefore, evolved changes in lung function help attenuate maladaptive plasticity and contribute to hypoxia tolerance in high-altitude deer mice.
Collapse
Affiliation(s)
- Claire M West
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Oliver H Wearing
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rod G Rhem
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Storz JF, Scott GR. Phenotypic plasticity, genetic assimilation, and genetic compensation in hypoxia adaptation of high-altitude vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2021; 253:110865. [PMID: 33301891 PMCID: PMC7867641 DOI: 10.1016/j.cbpa.2020.110865] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022]
Abstract
Important questions about mechanisms of physiological adaptation concern the role of phenotypic plasticity and the extent to which acclimatization responses align with genetic responses to selection. Such questions can be addressed in experimental studies of high-altitude vertebrates by investigating how mechanisms of acclimatization to hypoxia in lowland natives may influence genetic adaptation to hypoxia in highland natives. Evidence from high-altitude mammals suggest that evolved changes in some physiological traits involved canalization of the ancestral acclimatization response to hypoxia (genetic assimilation), a mechanism that results in an evolved reduction in plasticity. In addition to cases where adaptive plasticity may have facilitated genetic adaptation, evidence also suggests that some physiological changes in high-altitude natives are the result of selection to mitigate maladaptive plastic responses to hypoxia (genetic compensation). Examples of genetic compensation involve the attenuation of hypoxic pulmonary hypertension in Tibetan humans and other mammals native to high altitude. Here we discuss examples of adaptive physiological phenotypes in high-altitude natives that may have evolved by means of genetic assimilation or genetic compensation.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA.
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
34
|
Abstract
Population genomic studies of humans and other animals at high altitude have generated many hypotheses about the genes and pathways that may have contributed to hypoxia adaptation. Future advances require experimental tests of such hypotheses to identify causal mechanisms. Studies to date illustrate the challenge of moving from lists of candidate genes to the identification of phenotypic targets of selection, as it can be difficult to determine whether observed genotype-phenotype associations reflect causal effects or secondary consequences of changes in other traits that are linked via homeostatic regulation. Recent work on high-altitude models such as deer mice has revealed both plastic and evolved changes in respiratory, cardiovascular, and metabolic traits that contribute to aerobic performance capacity in hypoxia, and analyses of tissue-specific transcriptomes have identified changes in regulatory networks that mediate adaptive changes in physiological phenotype. Here we synthesize recent results and discuss lessons learned from studies of high-altitude adaptation that lie at the intersection of genomics and physiology.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA;
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| |
Collapse
|
35
|
Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041692. [PMID: 33578749 PMCID: PMC7916528 DOI: 10.3390/ijerph18041692] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022]
Abstract
Alveolar hypoxia is the most prominent feature of high altitude environment with well-known consequences for the cardio-pulmonary system, including development of pulmonary hypertension. Pulmonary hypertension due to an exaggerated hypoxic pulmonary vasoconstriction contributes to high altitude pulmonary edema (HAPE), a life-threatening disorder, occurring at high altitudes in non-acclimatized healthy individuals. Despite a strong physiologic rationale for using vasodilators for prevention and treatment of HAPE, no systematic studies of their efficacy have been conducted to date. Calcium-channel blockers are currently recommended for drug prophylaxis in high-risk individuals with a clear history of recurrent HAPE based on the extensive clinical experience with nifedipine in HAPE prevention in susceptible individuals. Chronic exposure to hypoxia induces pulmonary vascular remodeling and development of pulmonary hypertension, which places an increased pressure load on the right ventricle leading to right heart failure. Further, pulmonary hypertension along with excessive erythrocytosis may complicate chronic mountain sickness, another high altitude maladaptation disorder. Importantly, other causes than hypoxia may potentially underlie and/or contribute to pulmonary hypertension at high altitude, such as chronic heart and lung diseases, thrombotic or embolic diseases. Extensive clinical experience with drugs in patients with pulmonary arterial hypertension suggests their potential for treatment of high altitude pulmonary hypertension. Small studies have demonstrated their efficacy in reducing pulmonary artery pressure in high altitude residents. However, no drugs have been approved to date for the therapy of chronic high altitude pulmonary hypertension. This work provides a literature review on the role of pulmonary hypertension in the pathogenesis of acute and chronic high altitude maladaptation disorders and summarizes current knowledge regarding potential treatment options.
Collapse
|
36
|
Willie CK, Patrician A, Hoiland RL, Williams AM, Gasho C, Subedi P, Anholm J, Drane A, Tymko MM, Nowak-Flück D, Plato S, McBride E, Varoli G, Binsted G, Eller LK, Reimer RA, MacLeod DB, Stembridge M, Ainslie PN. Influence of iron manipulation on hypoxic pulmonary vasoconstriction and pulmonary reactivity during ascent and acclimatization to 5050 m. J Physiol 2021; 599:1685-1708. [PMID: 33442904 DOI: 10.1113/jp281114] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Iron acts as a cofactor in the stabilization of the hypoxic-inducible factor family, and plays an influential role in the modulation of hypoxic pulmonary vasoconstriction. It is uncertain whether iron regulation is altered in lowlanders during either (1) ascent to high altitude, or (2) following partial acclimatization, when compared to high-altitude adapted Sherpa. During ascent to 5050 m, the rise in pulmonary artery systolic pressure (PASP) was blunted in Sherpa, compared to lowlanders; however, upon arrival to 5050 m, PASP levels were comparable in both groups, but the reduction in iron bioavailability was more prevalent in lowlanders compared to Sherpa. Following partial acclimatization to 5050 m, there were differential influences of iron status manipulation (via iron infusion or chelation) at rest and during exercise between lowlanders and Sherpa on the pulmonary vasculature. ABSTRACT To examine the adaptational role of iron bioavailability on the pulmonary vascular responses to acute and chronic hypobaric hypoxia, the haematological and cardiopulmonary profile of lowlanders and Sherpa were determined during: (1) a 9-day ascent to 5050 m (20 lowlanders; 12 Sherpa), and (2) following partial acclimatization (11 ± 4 days) to 5050 m (18 lowlanders; 20 Sherpa), where both groups received an i.v. infusion of either iron (iron (iii)-hydroxide sucrose) or an iron chelator (desferrioxamine). During ascent, there were reductions in iron status in both lowlanders and Sherpa; however, Sherpa appeared to demonstrate a more efficient capacity to mobilize stored iron, compared to lowlanders, when expressed as a Δhepcidin per unit change in either body iron or the soluble transferrin receptor index, between 3400-5050 m (P = 0.016 and P = 0.029, respectively). The rise in pulmonary artery systolic pressure (PASP) was blunted in Sherpa, compared to lowlanders during ascent; however, PASP was comparable in both groups upon arrival to 5050 m. Following partial acclimatization, despite Sherpa demonstrating a blunted hypoxic ventilatory response and greater resting hypoxaemia, they had similar hypoxic pulmonary vasoconstriction when compared to lowlanders at rest. Iron-infusion attenuated PASP in both groups at rest (P = 0.005), while chelation did not exaggerate PASP in either group at rest or during exaggerated hypoxaemia ( P I O 2 = 67 mmHg). During exercise at 25% peak wattage, PASP was only consistently elevated in Sherpa, which persisted following both iron infusion or chelation. These findings provide new evidence on the complex interplay of iron regulation on pulmonary vascular regulation during acclimatization and adaptation to high altitude.
Collapse
Affiliation(s)
- Christopher K Willie
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Alexander Patrician
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexandra M Williams
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Gasho
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Prajan Subedi
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - James Anholm
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System and Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Aimee Drane
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Michael M Tymko
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.,Neurovascular Health Laboratory, University of Alberta, Edmonton, Alberta, Canada
| | - Daniela Nowak-Flück
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Sawyer Plato
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Emily McBride
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Giovanfrancesco Varoli
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Gordon Binsted
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Lindsay K Eller
- Faculty of Kinesiology and Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology and Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - David B MacLeod
- Human Pharmacology & Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Michael Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Philip N Ainslie
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
37
|
Tana W, Noryung T, Burton GJ, van Patot MT, Ri-Li G. Protective Effects from the Ischemic/Hypoxic Stress Induced by Labor in the High-Altitude Tibetan Placenta. Reprod Sci 2021; 28:659-664. [DOI: 10.1007/s43032-020-00443-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/20/2020] [Indexed: 12/14/2022]
|
38
|
Simpson LL, Steinback CD, Stembridge M, Moore JP. A sympathetic view of blood pressure control at high altitude: new insights from microneurographic studies. Exp Physiol 2020; 106:377-384. [PMID: 33345334 PMCID: PMC7898382 DOI: 10.1113/ep089194] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
NEW FINDINGS What is the topic of the review? Sympathoexcitation and sympathetic control of blood pressure at high altitude. What advances does it highlight? Sustained sympathoexcitation is fundamental to integrative control of blood pressure in humans exposed to chronic hypoxia. The largest gaps in current knowledge are in understanding the complex mechanisms by which central sympathetic outflow is regulated at high altitude. ABSTRACT High altitude (HA) hypoxia is a potent activator of the sympathetic nervous system, eliciting increases in sympathetic vasomotor activity. Microneurographic evidence of HA sympathoexcitation dates back to the late 20th century, yet only recently have the characteristics and underpinning mechanisms been explored in detail. This review summarises recent findings and highlights the importance of HA sympathoexcitation for the regulation of blood pressure in lowlanders and indigenous highlanders. In addition, this review identifies gaps in our knowledge and corresponding avenues for future study.
Collapse
Affiliation(s)
- Lydia L Simpson
- Institute for Sport Science, Division of Physiology, Innsbruck University, Innsbruck, Austria
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, UK
| |
Collapse
|
39
|
Lyu Q, Bai Y, Cheng J, Liu H, Li S, Yang J, Wang Z, Ma Y, Jiang M, Dong D, Yan Y, Shi Q, Ren X, Ma J. Intermittent short-duration reoxygenation protects against simulated high altitude-induced pulmonary hypertension in rats. FASEB J 2020; 35:e21212. [PMID: 33230951 DOI: 10.1096/fj.202000533rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
High-altitude pulmonary hypertension (HAPH) is a severe and progressive disease caused by chronic hypoxia and subsequent pulmonary vascular remodeling. No cure is currently available owing to an incomplete understanding about vascular remodeling. It is believed that hypoxia-induced diseases can be prevented by treating hypoxia. Thus, this study aimed to determine whether daily short-duration reoxygenation at sea level attenuates pulmonary hypertension under high-altitude hypoxia. To this end, a simulated 5000-m hypoxia rat model and hypoxic cultured human pulmonary artery smooth muscle cells were used to evaluate the effect of short-duration reoxygenation. Results show that intermittent, not continuous, short-duration reoxygenation effectively attenuates hypoxia-induced pulmonary hypertension. The mechanisms underlining the protective effects involved that intermittent, short-duration reoxygenation prevented functional and structural remodeling of pulmonary arteries and proliferation, migration, and phenotypic conversion of pulmonary artery smooth muscle cells under hypoxia. The specific genes or potential molecular pathways responsible for mediating the protective effects were also characterised by RNA sequencing. Further, the frequency and the total time of intermittent reoxygenation affected its preventive effect of HAPH, which was likely attributable to augmented oxidative stress. Hence, daily intermittent, not continuous, short-duration reoxygenation partially prevented pulmonary hypertension induced by 5000-m hypoxia in rats. This study is novel in revealing a new potential method in preventing HAPH. It gives insights into the selection and optimisation of oxygen supply schemes in high-altitude areas.
Collapse
Affiliation(s)
- Qiang Lyu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Yungang Bai
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Jiuhua Cheng
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Huan Liu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Shaohua Li
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Jing Yang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Zhongchao Wang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Yan Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Min Jiang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Dong Dong
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Yiquan Yan
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Qixin Shi
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Xinling Ren
- Department of Respiratory Diseases, Xi'an, China
| | - Jin Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
40
|
Gassmann M, Cowburn A, Gu H, Li J, Rodriguez M, Babicheva A, Jain PP, Xiong M, Gassmann NN, Yuan JXJ, Wilkins MR, Zhao L. Hypoxia-induced pulmonary hypertension-Utilizing experiments of nature. Br J Pharmacol 2020; 178:121-131. [PMID: 32464698 DOI: 10.1111/bph.15144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
An increase in pulmonary artery pressure is a common observation in adult mammals exposed to global alveolar hypoxia. It is considered a maladaptive response that places an increased workload on the right ventricle. The mechanisms initiating and maintaining the elevated pressure are of considerable interest in understanding pulmonary vascular homeostasis. There is an expectation that identifying the key molecules in the integrated vascular response to hypoxia will inform potential drug targets. One strategy is to take advantage of experiments of nature, specifically, to understand the genetic basis for the inter-individual variation in the pulmonary vascular response to acute and chronic hypoxia. To date, detailed phenotyping of highlanders has focused on haematocrit and oxygen saturation rather than cardiovascular phenotypes. This review explores what we can learn from those studies with respect to the pulmonary circulation. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,University Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Andrew Cowburn
- National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Hospital, London, UK
| | - Hong Gu
- Department of Pediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jia Li
- Clinical Physiology Laboratory, Institute of Pediatrics, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Pritesh P Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mingmei Xiong
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Norina N Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Martin R Wilkins
- National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Hospital, London, UK
| | - Lan Zhao
- National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
41
|
Eichstaedt CA, Benjamin N, Grünig E. Genetics of pulmonary hypertension and high-altitude pulmonary edema. J Appl Physiol (1985) 2020; 128:1432-1438. [PMID: 32324476 DOI: 10.1152/japplphysiol.00113.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heritable pulmonary arterial hypertension (PAH) is an autosomal dominantly inherited disease caused by mutations in the bone morphogenetic protein receptor 2 (BMPR2) gene and/or genes of its signaling pathway in ~85% of patients. A genetic predisposition to high-altitude pulmonary edema (HAPE) has long been suspected because of familial HAPE cases, but very few possibly disease-causing mutations have been identified to date. This minireview provides an overview of genetic analyses investigating common polymorphisms in HAPE-susceptible patients and the directed identification of disease-causing mutations in PAH patients. Increased pulmonary artery pressure is highlighted as an overlapping clinical feature of the two diseases. Moreover, studies showing increased pulmonary artery pressures in HAPE-susceptible patients during exercise or hypoxia as well as in healthy BMPR2 mutation carriers are illustrated. Finally, high-altitude pulmonary hypertension is introduced and future research perspectives outlined.
Collapse
Affiliation(s)
- Christina A Eichstaedt
- Centre for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg Germany.,Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Nicola Benjamin
- Centre for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Ekkehard Grünig
- Centre for Pulmonary Hypertension, Thoraxklinik Heidelberg gGmbH at Heidelberg University Hospital, Heidelberg Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
42
|
Garrido E, Botella de Maglia J, Castillo O. Acute, subacute and chronic mountain sickness. Rev Clin Esp 2020; 221:S0014-2565(20)30064-3. [PMID: 32197780 DOI: 10.1016/j.rce.2019.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 11/20/2022]
Abstract
More than 100 million people ascend to high mountainous areas worldwide every year. At nonextreme altitudes (<5500 m), 10-85% of these individuals are affected by acute mountain sickness, the most common disease induced by mild-moderate hypobaric hypoxia. Approximately 140 million individuals live permanently at heights of 2500-5500 m, and up to 10% of them are affected by the subacute form of mountain sickness (high-altitude pulmonary hypertension) or the chronic form (Monge's disease), the latter of which is especially common in Andean ethnicities. This review presents the most relevant general concepts of these 3 clinical variants, which can be incapacitating and can result in complications and become life-threatening. Proper prevention, diagnosis, treatment and management of these conditions in a hostile environment such as high mountains are therefore essential.
Collapse
Affiliation(s)
- E Garrido
- Servicio de Hipobaria y Fisiología Biomédica, Universidad de Barcelona, L'Hospitalet de Llobregat, Barcelona, España; Instituto de Estudios de Medicina de Montaña (IEMM), Barcelona, España.
| | - J Botella de Maglia
- Servicio de Medicina Intensiva, Hospital Universitario y Politécnico La Fe, Valencia, España; Instituto de Estudios de Medicina de Montaña (IEMM), Barcelona, España
| | - O Castillo
- Instituto Nacional de Biología Andina, Universidad Nacional Mayor de San Marcos, Lima, Perú
| |
Collapse
|
43
|
Storz JF, Scott GR. Life Ascending: Mechanism and Process in Physiological Adaptation to High-Altitude Hypoxia. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019; 50:503-526. [PMID: 33033467 DOI: 10.1146/annurev-ecolsys-110218-025014] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To cope with the reduced availability of O2 at high altitude, air-breathing vertebrates have evolved myriad adjustments in the cardiorespiratory system to match tissue O2 delivery with metabolic O2 demand. We explain how changes at interacting steps of the O2 transport pathway contribute to plastic and evolved changes in whole-animal aerobic performance under hypoxia. In vertebrates native to high altitude, enhancements of aerobic performance under hypoxia are attributable to a combination of environmentally induced and evolved changes in multiple steps of the pathway. Additionally, evidence suggests that many high-altitude natives have evolved mechanisms for attenuating maladaptive acclimatization responses to hypoxia, resulting in counter-gradient patterns of altitudinal variation for key physiological phenotypes. For traits that exhibit counteracting environmental and genetic effects, evolved changes in phenotype may be cryptic under field conditions and can only be revealed by rearing representatives of high-and low-altitude populations under standardized environmental conditions to control for plasticity.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
44
|
Bhandari S, Cavalleri GL. Population History and Altitude-Related Adaptation in the Sherpa. Front Physiol 2019; 10:1116. [PMID: 31555147 PMCID: PMC6722185 DOI: 10.3389/fphys.2019.01116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/29/2022] Open
Abstract
The first ascent of Mount Everest by Tenzing Norgay and Sir Edmund Hillary in 1953 brought global attention to the Sherpa people and human performance at altitude. The Sherpa inhabit the Khumbu Valley of Nepal, and are descendants of a population that has resided continuously on the Tibetan plateau for the past ∼25,000 to 40,000 years. The long exposure of the Sherpa to an inhospitable environment has driven genetic selection and produced distinct adaptive phenotypes. This review summarizes the population history of the Sherpa and their physiological and genetic adaptation to hypoxia. Genomic studies have identified robust signals of positive selection across EPAS1, EGLN1, and PPARA, that are associated with hemoglobin levels, which likely protect the Sherpa from altitude sickness. However, the biological underpinnings of other adaptive phenotypes such as birth weight and the increased reproductive success of Sherpa women are unknown. Further studies are required to identify additional signatures of selection and refine existing Sherpa-specific adaptive phenotypes to understand how genetic factors have underpinned adaptation in this population. By correlating known and emerging signals of genetic selection with adaptive phenotypes, we can further reveal hypoxia-related biological mechanisms of adaptation. Ultimately this work could provide valuable information regarding treatments of hypoxia-related illnesses including stroke, heart failure, lung disease and cancer.
Collapse
Affiliation(s)
- Sushil Bhandari
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
45
|
The overlooked significance of plasma volume for successful adaptation to high altitude in Sherpa and Andean natives. Proc Natl Acad Sci U S A 2019; 116:16177-16179. [PMID: 31358634 PMCID: PMC6697886 DOI: 10.1073/pnas.1909002116] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In contrast to Andean natives, high-altitude Tibetans present with a lower hemoglobin concentration that correlates with reproductive success and exercise capacity. Decades of physiological and genomic research have assumed that the lower hemoglobin concentration in Himalayan natives results from a blunted erythropoietic response to hypoxia (i.e., no increase in total hemoglobin mass). In contrast, herein we test the hypothesis that the lower hemoglobin concentration is the result of greater plasma volume, rather than an absence of increased hemoglobin production. We assessed hemoglobin mass, plasma volume and blood volume in lowlanders at sea level, lowlanders acclimatized to high altitude, Himalayan Sherpa, and Andean Quechua, and explored the functional relevance of volumetric hematological measures to exercise capacity. Hemoglobin mass was highest in Andeans, but also was elevated in Sherpa compared with lowlanders. Sherpa demonstrated a larger plasma volume than Andeans, resulting in a comparable total blood volume at a lower hemoglobin concentration. Hemoglobin mass was positively related to exercise capacity in lowlanders at sea level and in Sherpa at high altitude, but not in Andean natives. Collectively, our findings demonstrate a unique adaptation in Sherpa that reorientates attention away from hemoglobin concentration and toward a paradigm where hemoglobin mass and plasma volume may represent phenotypes with adaptive significance at high altitude.
Collapse
|
46
|
Gassmann M, Mairbäurl H, Livshits L, Seide S, Hackbusch M, Malczyk M, Kraut S, Gassmann NN, Weissmann N, Muckenthaler MU. The increase in hemoglobin concentration with altitude varies among human populations. Ann N Y Acad Sci 2019; 1450:204-220. [PMID: 31257609 DOI: 10.1111/nyas.14136] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023]
Abstract
Decreased oxygen availability at high altitude requires physiological adjustments allowing for adequate tissue oxygenation. One such mechanism is a slow increase in the hemoglobin concentration ([Hb]) resulting in elevated [Hb] in high-altitude residents. Diagnosis of anemia at different altitudes requires reference values for [Hb]. Our aim was to establish such values based on published data of residents living at different altitudes by applying meta-analysis and multiple regressions. Results show that [Hb] is increased in all high-altitude residents. However, the magnitude of increase varies among the regions analyzed and among ethnic groups within a region. The highest increase was found in residents of the Andes (1 g/dL/1000 m), but this increment was smaller in all other regions of the world (0.6 g/dL/1000 m). While sufficient data exist for adult males and females showing that sex differences in [Hb] persist with altitude, data for infants, children, and pregnant women are incomplete preventing such analyses. Because WHO reference values were originally based on [Hb] of South American people, we conclude that individual reference values have to be defined for ethnic groups to reliably diagnose anemia and erythrocytosis in high-altitude residents. Future studies need to test their applicability for children of different ages and pregnant women.
Collapse
Affiliation(s)
- Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Heimo Mairbäurl
- Translational Lung Research Center Heidelberg (TLRC), the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Leonid Livshits
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Svenja Seide
- Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Heidelberg, Germany
| | - Matthes Hackbusch
- Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Heidelberg, Germany
| | - Monika Malczyk
- Excellence Cluster Cardiopulmonary System, Justus-Liebig-University Giessen, University of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Simone Kraut
- Excellence Cluster Cardiopulmonary System, Justus-Liebig-University Giessen, University of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Norina N Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, Justus-Liebig-University Giessen, University of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martina U Muckenthaler
- Pediatric Hematology, Oncology and Immunology, University Hospital Heidelberg, Molecular Medicine Partnership Unit, University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
47
|
Velotta JP, Cheviron ZA. Remodeling Ancestral Phenotypic Plasticity in Local Adaptation: A New Framework to Explore the Role of Genetic Compensation in the Evolution of Homeostasis. Integr Comp Biol 2019; 58:1098-1110. [PMID: 30272147 DOI: 10.1093/icb/icy117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phenotypic plasticity is not universally adaptive. In certain cases, plasticity can result in phenotypic shifts that reduce fitness relative to the un-induced state. A common cause of such maladaptive plasticity is the co-option of ancestral developmental and physiological response systems to meet novel challenges. Because these systems evolved to meet specific challenges in an ancestral environment (e.g., localized and transient hypoxia), their co-option to meet a similar, but novel, stressor (e.g., reductions in ambient pO2 at high elevation) can lead to misdirected responses that reduce fitness. In such cases, natural selection should act to remodel phenotypic plasticity to suppress the expression of these maladaptive responses. Because these maladaptive responses reduce the fitness of colonizers in new environments, this remodeling of ancestral plasticity may be among the earliest steps in adaptive walks toward new local optima. Genetic compensation has been proposed as a general form of adaptive evolution that leads to the suppression of maladaptive plasticity to restore the ancestral trait value in the face of novel stimuli. Given their central role in the regulation of basic physiological functions, we argue that genetic compensation may often be achieved by modifications of homeostatic regulatory systems. We further suggest that genetic compensation to modify homeostatic systems can be achieved by two alternative strategies that differ in their mechanistic underpinnings; to our knowledge, these strategies have not been formally recognized by previous workers. We then consider how the mechanistic details of these alternative strategies may constrain their evolution. These considerations lead us to argue that genetic compensation is most likely to evolve by compensatory physiological changes that safeguard internal homeostatic conditions to prevent the expression of maladaptive portions of conserved reaction norms, rather than direct evolution of plasticity itself. Finally, we outline a simple experimental framework to test this hypothesis. Our goal is to stimulate research aimed at providing a deeper mechanistic understanding of whether and how phenotypic plasticity can be remodeled following environmental shifts that render ancestral responses maladaptive, an issue with increasing importance in our current era of rapid environmental change.
Collapse
Affiliation(s)
- Jonathan P Velotta
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
48
|
Young JM, Williams DR, Thompson AAR. Thin Air, Thick Vessels: Historical and Current Perspectives on Hypoxic Pulmonary Hypertension. Front Med (Lausanne) 2019; 6:93. [PMID: 31119132 PMCID: PMC6504829 DOI: 10.3389/fmed.2019.00093] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
The association between pulmonary hypertension (PH) and hypoxia is well-established, with two key mechanistic processes, hypoxic pulmonary vasoconstriction and hypoxia-induced vascular remodeling, driving changes in pulmonary arterial pressure. In contrast to other forms of pulmonary hypertension, the vascular changes induced by hypoxia are reversible, both in humans returning to sea-level from high altitude and in animal models. This raises the intriguing possibility that the molecular drivers of these hypoxic processes could be targeted to modify pulmonary vascular remodeling in other contexts. In this review, we outline the history of research into PH and hypoxia, before discussing recent advances in our understanding of this relationship at the molecular level, focussing on the role of the oxygen-sensing transcription factors, hypoxia inducible factors (HIFs). Emerging links between HIF and vascular remodeling highlight the potential utility in inhibiting this pathway in pulmonary hypertension and raise possible risks of activating this pathway using HIF-stabilizing medications.
Collapse
Affiliation(s)
- Jason M. Young
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Apex (Altitude Physiology Expeditions), Edinburgh, United Kingdom
| | | | - A. A. Roger Thompson
- Apex (Altitude Physiology Expeditions), Edinburgh, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
49
|
Human Genetic Adaptation to High Altitude: Evidence from the Andes. Genes (Basel) 2019; 10:genes10020150. [PMID: 30781443 PMCID: PMC6410003 DOI: 10.3390/genes10020150] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Whether Andean populations are genetically adapted to high altitudes has long been of interest. Initial studies focused on physiological changes in the O₂ transport system that occur with acclimatization in newcomers and their comparison with those of long-resident Andeans. These as well as more recent studies indicate that Andeans have somewhat larger lung volumes, narrower alveolar to arterial O₂ gradients, slightly less hypoxic pulmonary vasoconstrictor response, greater uterine artery blood flow during pregnancy, and increased cardiac O2 utilization, which overall suggests greater efficiency of O₂ transfer and utilization. More recent single nucleotide polymorphism and whole-genome sequencing studies indicate that multiple gene regions have undergone recent positive selection in Andeans. These include genes involved in the regulation of vascular control, metabolic hemostasis, and erythropoiesis. However, fundamental questions remain regarding the functional links between these adaptive genomic signals and the unique physiological attributes of highland Andeans. Well-designed physiological and genome association studies are needed to address such questions. It will be especially important to incorporate the role of epigenetic processes (i.e.; non-sequence-based features of the genome) that are vital for transcriptional responses to hypoxia and are potentially heritable across generations. In short, further exploration of the interaction among genetic, epigenetic, and environmental factors in shaping patterns of adaptation to high altitude promises to improve the understanding of the mechanisms underlying human adaptive potential and clarify its implications for human health.
Collapse
|
50
|
Savla JJ, Levine BD, Sadek HA. The Effect of Hypoxia on Cardiovascular Disease: Friend or Foe? High Alt Med Biol 2019; 19:124-130. [PMID: 29939783 DOI: 10.1089/ham.2018.0044] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Savla, Jainy J., Benjamin D. Levine, and Hesham A. Sadek. The effect of hypoxia on cardiovascular disease: Friend or foe? High Alt Med Biol. 19:124-130, 2018.-Over 140 million people reside at altitudes exceeding 2500 m across the world, resulting in exposure to atmospheric (hypobaric) hypoxia. Whether this chronic exposure is beneficial or detrimental to the cardiovascular system, however, is uncertain. On one hand, multiple studies have suggested a protective effect of living at moderate and high altitudes for cardiovascular risk factors and cardiovascular disease (CVD) events. Conversely, residence at high altitude comes at the tradeoff of developing diseases such as chronic mountain sickness and high-altitude pulmonary hypertension and worsens outcomes for diseases such as chronic obstructive pulmonary disease. Interestingly, recently published data show a potential role for severe hypoxia as a unique and unexpected therapy after myocardial infarction. In this review, we will discuss the current literature evaluating the effects of altitude exposure and the accompanying hypoxia on health and the potential therapeutic applications of hypoxia on CVD.
Collapse
Affiliation(s)
- Jainy J Savla
- 1 Department of Cardiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Benjamin D Levine
- 1 Department of Cardiology, University of Texas Southwestern Medical Center , Dallas, Texas
- 2 Institute for Exercise and Environmental Medicine , Texas Health Presbyterian Hospital, Dallas, Texas
| | - Hesham A Sadek
- 1 Department of Cardiology, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|