1
|
Vieira DCL, Babault N, Hitier M, Durigan JLQ, Bottaro M. The acute effects of dynamic stretching on the neuromuscular system are independent of the velocity. Exp Physiol 2025; 110:494-505. [PMID: 39763181 PMCID: PMC11868028 DOI: 10.1113/ep092217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 03/01/2025]
Abstract
This study examined the acute effects of dynamic stretching at different velocities on the neuromuscular system. Fourteen participants underwent four experimental sessions in random order: (1) control (lying at rest with the ankle in a neutral position); (2) slow velocity dynamic stretching (50 beats/min; SLOWDS); (3) moderate velocity dynamic stretching (70 beats/min; MODDS); and (4) fast velocity dynamic stretching (90 beats/min; FASTDS). The stretching protocols consisted of four sets of 10 repetitions and targeted the plantar flexor muscles of the right ankle. Assessments included corticospinal excitability (via motor-evoked potential-MEP/Mmax), spinal reflex activity (via H-reflex-Hmax/Mmax), muscle contractile properties (peak twitch torque; PTT), maximal voluntary contraction (MVC), and maximal range of motion (ROMmax). Dynamic stretching did not affect MEP/Mmax and MVC of the plantar flexor muscles (P > 0.05). All stretching protocols similarly reduced soleus Hmax/Mmax (P < 0.05), and increased PTT (P < 0.05). Additionally, all conditions, including control, similarly increase ROMmax (P < 0.05, and Cohen's d value of -0.39, -0.28, -0.38 and -0.29 for CON, SLOWDS, MODDS and FASTDS, respectively). Therefore, dynamic stretching reduces spinal reflex activity and enhances muscle contractile properties irrespective of movement velocity without impairing corticospinal excitability and MVC.
Collapse
Affiliation(s)
- Denis César Leite Vieira
- INSERM UMR1093‐CAPS & Centre d'Expertise de la PerformanceUFR des Sciences du Sport, Université de BourgogneDijonFrance
- Strength and Conditioning Research Laboratory, College of Physical EducationUniversity of BrasíliaBrasíliaBrazil
- Graduate Program of Physical Education, Department of Physical EducationCatholic University of BrasiliaTaguatingaBrazil
| | - Nicolas Babault
- INSERM UMR1093‐CAPS & Centre d'Expertise de la PerformanceUFR des Sciences du Sport, Université de BourgogneDijonFrance
| | - Marion Hitier
- INSERM UMR1093‐CAPS & Centre d'Expertise de la PerformanceUFR des Sciences du Sport, Université de BourgogneDijonFrance
| | - João Luiz Quagliotti Durigan
- Laboratory of Muscle and Tendon Plasticity, Graduate Program of Rehabilitation SciencesUniversity of BrasiliaBrasíliaBrazil
| | - Martim Bottaro
- Strength and Conditioning Research Laboratory, College of Physical EducationUniversity of BrasíliaBrasíliaBrazil
| |
Collapse
|
2
|
Lima CDPD, Ruas CV, Blazevich AJ. Influence of Stretch Speed and Arousal State on Passive Ankle Joint Mechanics. Scand J Med Sci Sports 2024; 34:e14774. [PMID: 39639795 DOI: 10.1111/sms.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Studies investigating the mechanisms influencing maximum passive joint range of motion (ROMmax) and stiffness have not objectively assessed the possible influence of stretch speed and/or arousal state. The purpose of this study was to assess the effects of arousal state and stretch speed on healthy individuals ROMmax, stiffness, gastrocnemius medialis, and soleus electromyographic activity (EMG). Fourteen participants performed one familiarization and then one testing session on separate days in the laboratory. In the familiarization (Session 1), participants practiced fast (30°/s ankle dorsiflexion) and slow (5°/s) plantar flexor stretches on an isokinetic dynamometer with the knee extended. In the experimental session (Session 2), they performed two slow, then two fast, stretches under three randomized arousal conditions: control (no music), arousing, and relaxing music. Dorsiflexion ROMmax, ankle joint stiffness, muscle activity during stretch, mean heart rate, and perception of arousal were measured. Perception of arousal was greater in the arousing than relaxing condition (p = 0.001). ROMmax was greater during fast (69.1° ± 7.8°) than slow stretches (64.9° ± 10.8°; p = 0.002) with no effect of arousal. Stiffness and EMG were higher at faster speeds, with a significantly greater percentage of stiffness observed in the arousing than the other conditions during faster stretches (p = 0.04). ROMmax was greater at the faster stretch speed despite greater stiffness and muscle activities being produced during the stretch. Thus, despite reflexive muscle activity and viscosity being higher during faster stretches, a greater, not lesser, ROMmax was observed. Arousal state, at least when altered by music, did not seem to affect ROMmax but somewhat influenced stiffness in the faster stretches.
Collapse
Affiliation(s)
- Camila de Paula de Lima
- University of Campinas, Campinas, Brazil
- School of Medical and Health Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Cassio Victora Ruas
- University of Campinas, Campinas, Brazil
- School of Medical and Health Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Anthony John Blazevich
- School of Medical and Health Science, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
3
|
Ingram LA, Tomkinson GR, d'Unienville NMA, Gower B, Gleadhill S, Boyle T, Bennett H. Optimising the Dose of Static Stretching to Improve Flexibility: A Systematic Review, Meta-analysis and Multivariate Meta-regression. Sports Med 2024:10.1007/s40279-024-02143-9. [PMID: 39614059 DOI: 10.1007/s40279-024-02143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Static stretching is widely used to increase flexibility. However, there is no consensus regarding the optimal dosage parameters for increasing flexibility. OBJECTIVES We aimed to determine the optimal frequency, intensity and volume to maximise flexibility through static stretching, and to investigate whether this is moderated by muscle group, age, sex, training status and baseline level of flexibility. METHODS Seven databases (CINAHL Complete, Cochrane CENTRAL, Embase, Emcare, MEDLINE, Scopus, and SPORTDiscus) were systematically searched up to June 2024. Randomised and non-randomised controlled trials investigating the effects of a single session (acute) or multiple sessions (chronic) of static stretching on one or more flexibility outcomes (compared to non-stretching passive controls) among adults (aged ≥ 18 years) were included. A multi-level meta-analysis examined the effect of acute and chronic static stretching on flexibility outcomes, while multivariate meta-regression was used to determine the volume at which increases in flexibility were maximised. RESULTS Data from 189 studies representing 6654 adults (61% male; mean [standard deviation] age = 26.8 ± 11.4 years) were included. We found a moderate positive effect of acute static stretching on flexibility (summary Hedges' g = 0.63, 95% confidence interval 0.52-0.75, p < 0.001) and a large positive effect of chronic static stretching on flexibility (summary Hedges' g = 0.96, 95% confidence interval 0.84-1.09, p < 0.001). Neither effect was moderated by stretching intensity, age, sex or training status, or weekly session frequency and intervention length (chronic static stretching only) [p > 0.05]. However, larger improvements were found for adults with poor baseline flexibility compared with adults with average baseline flexibility (p = 0.01). Furthermore, larger improvements in flexibility were found in the hamstrings compared with the spine following acute static stretching (p = 0.04). Improvements in flexibility were maximised by a cumulative stretching volume of 4 min per session (acute) and 10 min per week (chronic). CONCLUSIONS Static stretching improves flexibility in adults, with no additional benefit observed beyond 4 min per session or 10 min per week. Although intensity, frequency, age, sex and training status do not influence improvements in flexibility, lower flexibility levels are associated with greater improvement following both acute and chronic static stretching. These guidelines for static stretching can be used by coaches and therapists to improve flexibility. CLINICAL TRIAL REGISTRATION PROSPERO CRD42023420168.
Collapse
Affiliation(s)
- Lewis A Ingram
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia.
| | - Grant R Tomkinson
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Noah M A d'Unienville
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Bethany Gower
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Sam Gleadhill
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| | - Terry Boyle
- Australian Centre for Precision Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Hunter Bennett
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, GPO Box 2471, Adelaide, SA, 5001, Australia
| |
Collapse
|
4
|
Arntz F, Markov A, Schoenfeld BJ, Behrens M, Behm DG, Prieske O, Negra Y, Chaabene H. Chronic Effects of Static Stretching Exercises on Skeletal Muscle Hypertrophy in Healthy Individuals: A Systematic Review and Multilevel Meta-Analysis. SPORTS MEDICINE - OPEN 2024; 10:106. [PMID: 39340744 PMCID: PMC11438763 DOI: 10.1186/s40798-024-00772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND The chronic effect of static stretching (SS) on muscle hypertrophy is still unclear. This study aimed to examine the chronic effects of SS exercises on skeletal muscle hypertrophy in healthy individuals. METHODS A systematic literature search was conducted in the PubMed, Web of Science, Cochrane Library, and SPORTDiscus databases up to July 2023. Included studies examined chronic effects of SS exercise compared to an active/passive control group or the contralateral leg (i.e., utilizing between- or within-study designs, respectively) and assessed at least one outcome of skeletal muscle hypertrophy in healthy individuals with no age restriction. RESULTS Twenty-five studies met the inclusion criteria. Overall, findings indicated an unclear effect of chronic SS exercises on skeletal muscle hypertrophy with a trivial point estimate (standardised mean difference [SMD] = 0.118 [95% prediction interval [95% PI] = - 0.233 to 0.469; p = 0.017]) and low heterogeneity (I2 = 24%). Subgroup analyses revealed that trained individuals (β = 0.424; 95% PI = 0.095 to 0.753) displayed larger effects compared to recreationally trained (β = 0.115; 95% PI = - 0.195 to 0.425) and sedentary individuals (β = - 0.081; 95% PI = - 0.399 to 0.236). Subanalysis suggested the potential for greater skeletal muscle hypertrophy in samples with higher percentages of females (β = 0.003, [95% confidence interval [95% CI] = - 0.000 to 0.005]). However, the practical significance of this finding is questionable. Furthermore, a greater variety of stretching exercises elicited larger increases in muscle hypertrophy (β = 0.069, [95% CI = 0.041 to 0.097]). Longer durations of single stretching exercises (β = 0.006, [95% CI = 0.002 to 0.010]), time under stretching per session (β = 0.006, [95% CI = 0.003 to 0.009]), per week (β = 0.001, [95% CI = 0.000 to 0.001]) and in total (β = 0.008, [95% CI = 0.003 to 0.013]) induced larger muscle hypertrophy. Regarding joint range of motion, there was a clear positive effect with a moderate point estimate (β = 0.698; 95% PI = 0.147 to 1.249; p < 0.001) and moderate heterogeneity (I2 = 43%). Moreover, findings indicated no significant association between the gains in joint range of motion and the increase in muscle hypertrophy (β = 0.036, [95% CI = - 0.123 to 0.196]; p = 0.638). CONCLUSIONS This study revealed an overall unclear chronic effect of SS on skeletal muscle hypertrophy, although interpretation across the range of PI suggests a potential modest beneficial effect. Subgroup analysis indicated larger stretching-induced muscle gains in trained individuals, a more varied selection of SS exercises, longer mean duration of single stretching exercise, increased time under SS per session, week, and in total, and possibly in samples with a higher proportion of females. From a practical perspective, it appears that SS exercises may not be highly effective in promoting skeletal muscle hypertrophy unless a higher duration of training is utilized. PROSPERO registration number: CRD42022331762.
Collapse
Affiliation(s)
- Fabian Arntz
- Department of Social- and Preventive Medicine, Research Focus Cognition Sciences, University of Potsdam, Am Neuen Palais 10, Building 12, 14469, Potsdam, Germany
| | - Adrian Markov
- Faculty of Human Sciences, Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, 14469, Potsdam, Germany
| | - Brad J Schoenfeld
- Department of Exercise Science and Recreation, CUNY Lehman College, Bronx, NY, USA
| | - Martin Behrens
- Division of Research Methods and Analysis in Sports Science, University of Applied Sciences for Sport and Management Potsdam, Olympischer Weg 7, 14471, Potsdam, Germany
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Olaf Prieske
- Division of Exercise and Movement, University of Applied Sciences for Sport and Management Potsdam, Olympischer Weg 7, 14471, Potsdam, Germany
| | - Yassine Negra
- Higher Institute of Sport and Physical Education of Ksar Saïd, University of "La Manouba", Manouba, Tunisia
- Research Laboratory (LR23JS01) «Sport Performance, Health and Society», Tunis, Tunisia
| | - Helmi Chaabene
- Department of Sport Science, Chair for Health and Physical Activity, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.
- Institut Supérieur de Sport et de l'Education Physique du Kef, Université de Jandouba, 7100, Le Kef, Tunisia.
| |
Collapse
|
5
|
Støve MP, Thomsen JL, Magnusson SP, Riis A. The effect of six-week regular stretching exercises on regional and distant pain sensitivity: an experimental longitudinal study on healthy adults. BMC Sports Sci Med Rehabil 2024; 16:202. [PMID: 39334218 PMCID: PMC11437648 DOI: 10.1186/s13102-024-00995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Stretching exercises are widely used for pain relief and show positive effects on musculoskeletal, nociplastic and neuropathic pain; the magnitude of altered pain sensitivity responses following regular stretching is currently unknown. This study aimed to investigate the effect of six weeks of regular stretching exercise on regional and widespread pain sensitivity and range of motion and the effect of stretching cessation on regional and widespread pain sensitivity and range of motion. METHODS An experimental single-blind longitudinal repeated measures study. Twenty-six healthy adults were recruited. Regional and distant pressure pain thresholds and passive knee extension range of motion were measured at three points: before (baseline) and after six weeks (post-stretch) of daily bilateral hamstring stretching exercises and following four weeks of cessation (post-cessation) from stretching exercises. RESULTS Participants had a mean ± standard deviation (range) age of 23.8 ± 2.1 (21-30) years. There was a 36.7% increase in regional (p = 0.003), an 18.7% increase in distant pressure pain thresholds (p = 0.042) and a 3.6% increase in range of motion (p = 0.002) between baseline and post-stretch measures. No statistically significant differences were found for regional (p = 1.000) or distant pressure pain thresholds (p = 1.000), or range of motion (p = 1.000) between post-stretch and post-cessation. A 41.2% increase in distant pressure pain thresholds (p = 0.001), a 15.4% increase in regional pressure pain thresholds from baseline to post-cessation (p = 0.127) and a 3.6% increase in passive knee extension range of motion (p = 0.005) were found from baseline to post-cessation. CONCLUSIONS Six weeks of regular stretching exercises significantly decreased regional and widespread pain sensitivity. Moreover, the results showed that the hypoalgesic effect of stretching on regional and widespread pain sensitivity persisted following four weeks of cessation. The results further support the rationale of adding stretching exercises to rehabilitation efforts for patients experiencing nociceptive, nociplastic, and neuropathic pain. However, further research is needed to investigate how the long-term effects of stretching exercises compare with no treatment in clinical populations. TRIAL REGISTRATION The trial was registered June 1st, 2021 at ClinicalTrials.gov (Trial registration number NCT04919681).
Collapse
Affiliation(s)
- Morten Pallisgaard Støve
- Department of Physiotherapy, University College of Northern Denmark (UCN), Selma Lagerløfs Vej 2, Aalborg East, 9220, Denmark.
- Center for General Practice, Aalborg University, Selma Lagerløfs Vej 249, Gistrup, 9260, Denmark.
| | - Janus Laust Thomsen
- Center for General Practice, Aalborg University, Selma Lagerløfs Vej 249, Gistrup, 9260, Denmark
| | - Stig Peter Magnusson
- Institute of Sports Medicine Copenhagen & Department of Occupational and Physical Therapy, Bispebjerg Hospital, building 8, 1st floor, Bispebjerg bakke 23, Copenhagen, 2400, NV, Denmark
- Center of Healthy Aging, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, 2200, Denmark
| | - Allan Riis
- Department of Physiotherapy, University College of Northern Denmark (UCN), Selma Lagerløfs Vej 2, Aalborg East, 9220, Denmark
- Center for General Practice, Aalborg University, Selma Lagerløfs Vej 249, Gistrup, 9260, Denmark
| |
Collapse
|
6
|
Konrad A, Alizadeh S, Anvar SH, Fischer J, Manieu J, Behm DG. Static Stretch Training versus Foam Rolling Training Effects on Range of Motion: A Systematic Review and Meta-Analysis. Sports Med 2024; 54:2311-2326. [PMID: 38760635 PMCID: PMC11393112 DOI: 10.1007/s40279-024-02041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Long-term static stretching as well as foam rolling training can increase a joint's range of motion (ROM). However, to date, it is not clear which method is the most effective for increasing ROM. OBJECTIVE The purpose of this systematic review and meta-analysis was to compare the effects of static stretching and foam rolling training on ROM. METHODS The literature search was performed in PubMed, Scopus, and Web of Science to find the eligible studies. Eighty-five studies (72 on static stretching; and 13 on foam rolling) were found to be eligible with 204 effect sizes (ESs). For the main analyses, a random-effect meta-analysis was applied. To assess the difference between static stretching and foam rolling, subgroup analyses with a mixed-effect model were applied. Moderating variables were sex, total intervention duration, and weeks of intervention. RESULTS Static stretch (ES = - 1.006; p < 0.001), as well as foam rolling training (ES = - 0.729; p = 0.001), can increase joint ROM with a moderate magnitude compared with a control condition. However, we did not detect a significant difference between the two conditions in the subgroup analysis (p = 0.228). When the intervention duration was ≤ 4 weeks, however, a significant change in ROM was shown following static stretching (ES = - 1.436; p < 0.001), but not following foam rolling (ES = - 0.229; p = 0.248). Thus, a subgroup analysis indicated a significant favorable effect with static stretching for increasing ROM compared with foam rolling (p < 0.001) over a shorter term (≤ 4 weeks). Other moderator analyses showed no significant difference between static stretch and foam rolling training on ROM. CONCLUSIONS According to the results, both static stretching and foam rolling training can be similarly recommended to increase joint ROM, unless the training is scheduled for ≤ 4 weeks, in which case static stretching demonstrates a significant advantage. More studies are needed with a high-volume foam rolling training approach as well as foam rolling training in exclusively female participants.
Collapse
Affiliation(s)
- Andreas Konrad
- Institute of Human Movement Science, Sport and Health, Graz University, Mozartgasse 14, 8010, Graz, Austria.
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Shahab Alizadeh
- Human Performance Lab, Department of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Josef Fischer
- Institute of Human Movement Science, Sport and Health, Graz University, Mozartgasse 14, 8010, Graz, Austria
| | - Josefina Manieu
- Institute of Human Movement Science, Sport and Health, Graz University, Mozartgasse 14, 8010, Graz, Austria
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
7
|
Soares ALC, Carvalho RF, Mogami R, Meirelles CDM, Gomes PSC. Effect of resistance training on quadriceps femoris muscle thickness obtained by ultrasound: A systematic review with meta-analysis. J Bodyw Mov Ther 2024; 39:270-278. [PMID: 38876638 DOI: 10.1016/j.jbmt.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/26/2023] [Accepted: 02/25/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE The present study aimed to determine the magnitude and intervention time of resistance training required to generate adaptations in the muscle thickness of the quadriceps muscle obtained by ultrasound in healthy adults. METHOD A systematic review with meta-analysis was conducted on studies recovered from Pubmed, Web of Science, and Scopus databases up to March 2022. The study selection process was carried out by two independent researchers, with the presence of a third researcher in case of disagreements. The methodological quality of the studies was determined with the TESTEX scale, and the risk of bias analysis was determined using Cochrane's RoB 2.0 tool. The meta-analysis used the inverse of the variance with a fixed model, and the effect size was reported by the standardized mean difference (SMD) with a confidence interval of 95%. RESULTS Ten studies were included in a meta-analysis. The overall analysis of the studies demonstrated an SMD = 0.35 [95% CI: 0.13-0.56] (P = 0.002), with a low heterogeneity of I2 = 0% (P = 0.52). No publication bias was detected using a funnel plot followed by Egger's test (P = 0.06). The degree of certainty of the meta-analysis was high using the GRADE tool. CONCLUSION We found that resistance training can generate significant average increases of 16.6% in muscle thickness obtained by ultrasound in the quadriceps femoris muscles of healthy adults. However, the subgroup analysis showed that significant effect sizes were only observed after eight weeks of training.
Collapse
Affiliation(s)
- André Luiz Conveniente Soares
- Laboratory Crossbridges, Institute of Physical Education and Sports, Rio de Janeiro State University, Rio de Janeiro - RJ, Brazil.
| | - Ramon Franco Carvalho
- Laboratory Crossbridges, Institute of Physical Education and Sports, Rio de Janeiro State University, Rio de Janeiro - RJ, Brazil.
| | - Roberto Mogami
- Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro - RJ, Brazil.
| | | | - Paulo Sergio Chagas Gomes
- Laboratory Crossbridges, Institute of Physical Education and Sports, Rio de Janeiro State University, Rio de Janeiro - RJ, Brazil.
| |
Collapse
|
8
|
Martin-Rodriguez S, Gonzalez-Henriquez JJ, Diaz-Conde JC, Calbet JAL, Sanchis-Moysi J. The relationship between muscle thickness and pennation angle is mediated by fascicle length in the muscles of the lower extremities. Sci Rep 2024; 14:14847. [PMID: 38937524 PMCID: PMC11211461 DOI: 10.1038/s41598-024-65100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Muscle morphological architecture, a crucial determinant of muscle function, has fascinated researchers since the Renaissance. Imaging techniques enable the assessment of parameters such as muscle thickness (MT), pennation angle (PA), and fascicle length (FL), which may vary with growth, sex, and physical activity. Despite known interrelationships, robust mathematical models like causal mediation analysis have not been extensively applied to large population samples. We recruited 109 males and females, measuring knee flexor and extensor, and plantar flexor MT, PA, and FL using real-time ultrasound imaging at rest. A mixed-effects model explored sex, leg (dominant vs. non-dominant), and muscle region differences. Males exhibited greater MT in all muscles (0.1 to 2.1 cm, p < 0.01), with no sex differences in FL. Dominant legs showed greater rectus femoris (RF) MT (0.1 cm, p = 0.01) and PA (1.5°, p = 0.01), while vastus lateralis (VL) had greater FL (1.2 cm, p < 0.001) and PA (0.6°, p = 0.02). Regional differences were observed in VL, RF, and biceps femoris long head (BFlh). Causal mediation analyses highlighted MT's influence on PA, mediated by FL. Moderated mediation occurred in BFlh, with FL differences. Gastrocnemius medialis and lateralis exhibited FL-mediated MT and PA relationships. This study unveils the intricate interplay of MT, FL, and PA in muscle architecture.
Collapse
Affiliation(s)
- Saul Martin-Rodriguez
- Department of Physical Education, University of Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Juan Jose Gonzalez-Henriquez
- Research Institute of Biomedical and Health Sciences (IUIBS), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
- Department of Mathematics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan Carlos Diaz-Conde
- Department of Physical Education, University of Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
- Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway
| | - Joaquin Sanchis-Moysi
- Department of Physical Education, University of Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain.
- Research Institute of Biomedical and Health Sciences (IUIBS), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain.
| |
Collapse
|
9
|
Afonso J, Andrade R, Rocha-Rodrigues S, Nakamura FY, Sarmento H, Freitas SR, Silva AF, Laporta L, Abarghoueinejad M, Akyildiz Z, Chen R, Pizarro A, Ramirez-Campillo R, Clemente FM. What We Do Not Know About Stretching in Healthy Athletes: A Scoping Review with Evidence Gap Map from 300 Trials. Sports Med 2024; 54:1517-1551. [PMID: 38457105 PMCID: PMC11239752 DOI: 10.1007/s40279-024-02002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Stretching has garnered significant attention in sports sciences, resulting in numerous studies. However, there is no comprehensive overview on investigation of stretching in healthy athletes. OBJECTIVES To perform a systematic scoping review with an evidence gap map of stretching studies in healthy athletes, identify current gaps in the literature, and provide stakeholders with priorities for future research. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 and PRISMA-ScR guidelines were followed. We included studies comprising healthy athletes exposed to acute and/or chronic stretching interventions. Six databases were searched (CINAHL, EMBASE, PubMed, Scopus, SPORTDiscus, and Web of Science) until 1 January 2023. The relevant data were narratively synthesized; quantitative data summaries were provided for key data items. An evidence gap map was developed to offer an overview of the existing research and relevant gaps. RESULTS Of ~ 220,000 screened records, we included 300 trials involving 7080 athletes [mostly males (~ 65% versus ~ 20% female, and ~ 15% unreported) under 36 years of age; tiers 2 and 3 of the Participant Classification Framework] across 43 sports. Sports requiring extreme range of motion (e.g., gymnastics) were underrepresented. Most trials assessed the acute effects of stretching, with chronic effects being scrutinized in less than 20% of trials. Chronic interventions averaged 7.4 ± 5.1 weeks and never exceeded 6 months. Most trials (~ 85%) implemented stretching within the warm-up, with other application timings (e.g., post-exercise) being under-researched. Most trials examined static active stretching (62.3%), followed by dynamic stretching (38.3%) and proprioceptive neuromuscular facilitation (PNF) stretching (12.0%), with scarce research on alternative methods (e.g., ballistic stretching). Comparators were mostly limited to passive controls, with ~ 25% of trials including active controls (e.g., strength training). The lower limbs were primarily targeted by interventions (~ 75%). Reporting of dose was heterogeneous in style (e.g., 10 repetitions versus 10 s for dynamic stretching) and completeness of information (i.e., with disparities in the comprehensiveness of the provided information). Most trials (~ 90%) reported performance-related outcomes (mainly strength/power and range of motion); sport-specific outcomes were collected in less than 15% of trials. Biomechanical, physiological, and neural/psychological outcomes were assessed sparsely and heterogeneously; only five trials investigated injury-related outcomes. CONCLUSIONS There is room for improvement, with many areas of research on stretching being underexplored and others currently too heterogeneous for reliable comparisons between studies. There is limited representation of elite-level athletes (~ 5% tier 4 and no tier 5) and underpowered sample sizes (≤ 20 participants). Research was biased toward adult male athletes of sports not requiring extreme ranges of motion, and mostly assessed the acute effects of static active stretching and dynamic stretching during the warm-up. Dose-response relationships remain largely underexplored. Outcomes were mostly limited to general performance testing. Injury prevention and other effects of stretching remain poorly investigated. These relevant research gaps should be prioritized by funding policies. REGISTRATION OSF project ( https://osf.io/6auyj/ ) and registration ( https://osf.io/gu8ya ).
Collapse
Affiliation(s)
- José Afonso
- Faculty of Sport, Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), University of Porto, Porto, Portugal.
| | - Renato Andrade
- Clínica Espregueira-FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Sílvia Rocha-Rodrigues
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Tumour and Microenvironment Interactions Group, INEB-Institute of Biomedical Engineering, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-153, Porto, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
| | - Fábio Yuzo Nakamura
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, Maia, Portugal
| | - Hugo Sarmento
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF), Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Sandro R Freitas
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
| | - Ana Filipa Silva
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
| | - Lorenzo Laporta
- Núcleo de Estudos em Performance Analysis Esportiva (NEPAE/UFSM), Universidade Federal de Santa Maria, Avenida Roraima, nº 1000, Cidade Universitária, Bairro Camobi, Santa Maria, RS, CEP: 97105-900, Brazil
| | | | - Zeki Akyildiz
- Sports Science Faculty, Department of Coaching Education, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Rongzhi Chen
- Faculty of Sport, Centre of Research, Education, Innovation, and Intervention in Sport (CIFI2D), University of Porto, Porto, Portugal
| | - Andreia Pizarro
- Faculty of Sport, Research Center in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Rua das Taipas, 135, 4050-600, Porto, Portugal
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy. Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538, Santiago, Chile
| | - Filipe Manuel Clemente
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun'Alvares, 4900-347, Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347, Viana do Castelo, Portugal
- Gdańsk University of Physical Education and Sport, 80-336, Gdańsk, Poland
| |
Collapse
|
10
|
Du J, Yun H, Wang H, Bai X, Su Y, Ge X, Wang Y, Gu B, Zhao L, Yu JG, Song Y. Proteomic Profiling of Muscular Adaptations to Short-Term Concentric Versus Eccentric Exercise Training in Humans. Mol Cell Proteomics 2024; 23:100748. [PMID: 38493954 PMCID: PMC11017286 DOI: 10.1016/j.mcpro.2024.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/16/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024] Open
Abstract
The molecular mechanisms underlying muscular adaptations to concentric (CON) and eccentric (ECC) exercise training have been extensively explored. However, most previous studies have focused on specifically selected proteins, thus, unable to provide a comprehensive protein profile and potentially missing the crucial mechanisms underlying muscular adaptation to exercise training. We herein aimed to investigate proteomic profiles of human skeletal muscle in response to short-term resistance training. Twenty young males were randomly and evenly assigned to two groups to complete a 4-week either ECC or CON training program. Measurements of body composition and physiological function of the quadriceps femoris were conducted both before and after the training. Muscle biopsies from the vastus lateralis of randomly selected participants (five in ECC and four in CON) of both before and after the training were analyzed using the liquid-chromatography tandem mass spectrometry in combination with bioinformatics analysis. Neither group presented a significant difference in body composition or leg muscle mass; however, muscle peak torque, total work, and maximal voluntary contraction were significantly increased after the training in both groups. Proteomics analysis revealed 122 differentially abundant proteins (DAPs; p value < 0.05 & fold change >1.5 or <0.67) in ECC, of which the increased DAPs were mainly related to skeletal muscle contraction and cytoskeleton and enriched specifically in the pentose phosphate pathway, extracellular matrix-receptor interaction, and PI3K-Akt signaling pathway, whereas the decreased DAPs were associated with the mitochondrial respiratory chain. One hundred one DAPs were identified in CON, of which the increased DAPs were primarily involved in translation/protein synthesis and the mitochondria respiratory, whereas the decreased DAPs were related to metabolic processes, cytoskeleton, and de-ubiquitination. In conclusion, the 4-week CON and ECC training resulted in distinctly different proteomic profiles, especially in proteins related to muscular structure and metabolism.
Collapse
Affiliation(s)
- Jiawei Du
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Hezhang Yun
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Hongsheng Wang
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Xin Bai
- Beijing Sports University Community Health Service Center, Beijing Sport University, Beijing, China
| | - Yuhui Su
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Xiaochuan Ge
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yang Wang
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Institute of Sports and Health, Beijing Sport University, Beijing, China
| | - Boya Gu
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Institute of Sports and Health, Beijing Sport University, Beijing, China
| | - Li Zhao
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Ji-Guo Yu
- Sports Medicine Unit, Department of Community Medicine and Rehabilitation, Umea University, Umeå, Sweden.
| | - Yafeng Song
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China; Institute of Sports and Health, Beijing Sport University, Beijing, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China.
| |
Collapse
|
11
|
Konrad A, Alizadeh S, Daneshjoo A, Anvar SH, Graham A, Zahiri A, Goudini R, Edwards C, Scharf C, Behm DG. Chronic effects of stretching on range of motion with consideration of potential moderating variables: A systematic review with meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:186-194. [PMID: 37301370 PMCID: PMC10980866 DOI: 10.1016/j.jshs.2023.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND It is well known that stretch training can induce prolonged increases in joint range of motion (ROM). However, to date more information is needed regarding which training variables might have greater influence on improvements in flexibility. Thus, the purpose of this meta-analysis was to investigate the effects of stretch training on ROM in healthy participants by considering potential moderating variables, such as stretching technique, intensity, duration, frequency, and muscles stretched, as well as sex-specific, age-specific, and/or trained state-specific adaptations to stretch training. METHODS We searched through PubMed, Scopus, Web of Science, and SportDiscus to find eligible studies and, finally, assessed the results from 77 studies and 186 effect sizes by applying a random-effect meta-analysis. Moreover, by applying a mixed-effect model, we performed the respective subgroup analyses. To find potential relationships between stretch duration or age and effect sizes, we performed a meta-regression. RESULTS We found a significant overall effect, indicating that stretch training can increase ROM with a moderate effect compared to the controls (effect size = -1.002; Z = -12.074; 95% confidence interval: -1.165 to -0.840; p < 0.001; I2 = 74.97). Subgroup analysis showed a significant difference between the stretching techniques (p = 0.01) indicating that proprioceptive neuromuscular facilitation and static stretching produced greater ROM than did ballistic/dynamic stretching. Moreover, there was a significant effect between the sexes (p = 0.04), indicating that females showed higher gains in ROM compared to males. However, further moderating analysis showed no significant relation or difference. CONCLUSION When the goal is to maximize ROM in the long term, proprioceptive neuromuscular facilitation or static stretching, rather than ballistic/dynamic stretching, should be applied. Something to consider in future research as well as sports practice is that neither volume, intensity, nor frequency of stretching were found to play a significant role in ROM yields.
Collapse
Affiliation(s)
- Andreas Konrad
- Institute of Human Movement Science, Sport and Health, Graz University, Graz A-8010, Austria; School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Abdolhamid Daneshjoo
- Department of Sport Injuries and Corrective Exercises, Faculty of Sport Sciences, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Andrew Graham
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ali Zahiri
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Reza Goudini
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Chris Edwards
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Carina Scharf
- Institute of Human Movement Science, Sport and Health, Graz University, Graz A-8010, Austria
| | - David George Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
12
|
Nakamura M, Takeuchi K, Fukaya T, Nakao G, Konrad A, Mizuno T. Acute effects of static stretching on passive stiffness in older adults: A systematic review and meta-analysis. Arch Gerontol Geriatr 2024; 117:105256. [PMID: 37951029 DOI: 10.1016/j.archger.2023.105256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/29/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Static stretching has been demonstrated to improve the health of older adults. One of its goals is to decrease passive stiffness of the muscle-tendon unit (MTU) and/or muscles. Decreased passive stiffness in older adults could increase the range of motion and movement efficiency. Herein, we conducted a meta-analysis of the acute effects of static stretching on passive stiffness in older adults as well as a meta-analysis of differences in these effects between older and young adults. BACKGROUND PubMed, Web of Science, and EBSCO were searched for studies published before June 28, 2023. Manual searches were performed to identify additional studies. All included studies were critically reviewed by five authors. Meta-analyses of muscle and tendon injuries were performed using a random effect model. Of 4643 identified studies, 6 studies were included in the systematic review. RESULTS The main meta-analysis in older adults showed that static stretching could decrease the passive stiffness of the MTU or muscles (effect size, 0.55; 95 % confidence interval, 0.27 to 0.84; p < 0.01; and I2 = 0.0 %). Moreover, for the comparison between young and old adults, three studies were included in the meta-analysis. The results revealed no significant difference in the effects of static stretching interventions on stiffness between older and young adults (effect size, 0.136; 95 % confidence interval, -0.301 to 0.5738; p = 0.541; and I2 = 17.4 %). Static stretching could decrease the passive stiffness of the MTU and/or muscles in older adults to a small magnitude, and the effects were comparable between older and young adults.
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Nishi Kyushu University, 4490-9 Ozaki, Kanzaki, Saga 842-8585, Japan.
| | - Kosuke Takeuchi
- Department of Physical Therapy, Kobe International University, Kobe-shi, Hyogo, Japan
| | - Taizan Fukaya
- Department of Physical Therapy, Faculty of Social Work Studies, Josai International University, Togane, Chiba, Japan
| | - Gakuto Nakao
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan; Professional Post-Secondary Course (Physical Therapist), Sapporo Medical Technology, Welfare and Dentistry Professional Training College of Nishino Gakuen School Foundation, Sapporo, Japan
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Takamasa Mizuno
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya-shi, Aichi, Japan
| |
Collapse
|
13
|
Oranchuk DJ, Hopkins WG, Cronin JB, Storey AG, Nelson AR. The effects of regional quadriceps architecture on angle-specific rapid force expression. Appl Physiol Nutr Metab 2023; 48:829-840. [PMID: 37390497 DOI: 10.1139/apnm-2023-0074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Evaluating anatomical contributions to performance can increase understanding of muscle mechanics and guide physical preparation. While the impact of anatomy on muscular performance is well studied, the effects of regional quadriceps architecture on rapid torque or force expression are less clear. Regional (proximal, middle, and distal) quadriceps (vastus lateralis, rectus femoris, and vastus intermedius) thickness (MT), pennation angle (PA), and fascicle length (FL) of 24 males (48 limbs) were assessed via ultrasonography. Participants performed maximal isometric knee extensions at 40°, 70°, and 100° of knee flexion to evaluate rate of force development from 0 to 200 ms (RFD0-200). Measurements were repeated on three occasions with the greatest RFD0-200 and mean muscle architecture measures used for analysis. Linear regression models predicting angle-specific RFD0-200 from regional anatomy provided adjusted correlations (√adjR2) with bootstrapped compatibility limits. Mid-rectus femoris MT (√adjR2 = 0.41-0.51) and proximal vastus lateralis FL (√adjR2 = 0.42-0.48) were the best single predictors of RFD0-200, and the only measures to reach precision with 99% compatibility limits. Small simple correlations were found across all regions and joint angles between RFD0-200 and vastus lateralis MT (√adjR2 = 0.28 ± 0.13; mean ± SD), vastus lateralis FL (√adjR2 = 0.33 ± 0.10), rectus femoris MT (√adjR2 = 0.38 ± 0.10), and lateral vastus intermedius MT (√adjR2 = 0.24 ± 0.10). Between-correlation comparisons are reported within the article. Researchers should measure mid-region rectus femoris MT and vastus lateralis FL to efficiently and robustly evaluate potential anatomical contributions to rapid knee extension force changes, with distal and proximal measurements providing little additional value. However, correlations were generally small to moderate, suggesting that neurological factors may be critical in rapid force expression.
Collapse
Affiliation(s)
- Dustin J Oranchuk
- Sports Performance Research Institute New Zealand, Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Muscle Morphology, Mechanics, and Performance Laboratory, Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, US
| | - William G Hopkins
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - John B Cronin
- Sports Performance Research Institute New Zealand, Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Adam G Storey
- Sports Performance Research Institute New Zealand, Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - André R Nelson
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
14
|
Hjortshoej MH, Aagaard P, Storgaard CD, Juneja H, Lundbye‐Jensen J, Magnusson SP, Couppé C. Hormonal, immune, and oxidative stress responses to blood flow-restricted exercise. Acta Physiol (Oxf) 2023; 239:e14030. [PMID: 37732509 PMCID: PMC10909497 DOI: 10.1111/apha.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Heavy-load free-flow resistance exercise (HL-FFRE) is a widely used training modality. Recently, low-load blood-flow restricted resistance exercise (LL-BFRRE) has gained attention in both athletic and clinical settings as an alternative when conventional HL-FFRE is contraindicated or not tolerated. LL-BFRRE has been shown to result in physiological adaptations in muscle and connective tissue that are comparable to those induced by HL-FFRE. The underlying mechanisms remain unclear; however, evidence suggests that LL-BFRRE involves elevated metabolic stress compared to conventional free-flow resistance exercise (FFRE). AIM The aim was to evaluate the initial (<10 min post-exercise), intermediate (10-20 min), and late (>30 min) hormonal, immune, and oxidative stress responses observed following acute sessions of LL-BFRRE compared to FFRE in healthy adults. METHODS A systematic literature search of randomized and non-randomized studies was conducted in PubMed, Embase, Cochrane Central, CINAHL, and SPORTDiscus. The Cochrane Risk of Bias (RoB2, ROBINS-1) and TESTEX were used to evaluate risk of bias and study quality. Data extractions were based on mean change within groups. RESULTS A total of 12525 hits were identified, of which 29 articles were included. LL-BFRRE demonstrated greater acute increases in growth hormone responses when compared to overall FFRE at intermediate (SMD 2.04; 95% CI 0.87, 3.22) and late (SMD 2.64; 95% CI 1.13, 4.16) post-exercise phases. LL-BFRRE also demonstrated greater increase in testosterone responses compared to late LL-FFRE. CONCLUSION These results indicate that LL-BFRRE can induce increased or similar hormone and immune responses compared to LL-FFRE and HL-FFRE along with attenuated oxidative stress responses compared to HL-FFRE.
Collapse
Affiliation(s)
- M. H. Hjortshoej
- Institute of Sports Medicine Copenhagen, Department of Orthopedic SurgeryCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Physical and Occupational TherapyBispebjerg and Frederiksberg University HospitalCopenhagenDenmark
- Centre for Health and RehabilitationUniversity College AbsalonSlagelseDenmark
| | - P. Aagaard
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - C. D. Storgaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic SurgeryCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - H. Juneja
- Centre for Health and RehabilitationUniversity College AbsalonSlagelseDenmark
| | - J. Lundbye‐Jensen
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - S. P. Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic SurgeryCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Physical and Occupational TherapyBispebjerg and Frederiksberg University HospitalCopenhagenDenmark
| | - C. Couppé
- Institute of Sports Medicine Copenhagen, Department of Orthopedic SurgeryCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Physical and Occupational TherapyBispebjerg and Frederiksberg University HospitalCopenhagenDenmark
| |
Collapse
|
15
|
Takeuchi K, Nakamura M, Fukaya T, Konrad A, Mizuno T. Acute and Long-Term Effects of Static Stretching on Muscle-Tendon Unit Stiffness: A Systematic Review and Meta-Analysis. J Sports Sci Med 2023; 22:465-475. [PMID: 37711702 PMCID: PMC10499138 DOI: 10.52082/jssm.2023.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
Static stretching can increase the range of motion of a joint. Muscle-tendon unit stiffness (MTS) is potentially one of the main factors that influences the change in the range of motion after static stretching. However, to date, the effects of acute and long-term static stretching on MTS are not well understood. The purpose of this meta-analysis was to investigate the effects of acute and long-term static stretching training on MTS, in young healthy participants. PubMed, Web of Science, and EBSCO published before January 6, 2023, were searched and finally, 17 papers were included in the meta-analysis. Main meta-analysis was performed with a random-effect model and subgroup analyses, which included comparisons of sex (male vs. mixed sex and female) and muscle (hamstrings vs. plantar flexors) were also performed. Furthermore, a meta-regression was conducted to examine the effect of total stretching duration on MTS. For acute static stretching, the result of the meta-analysis showed a moderate decrease in MTS (effect size = -0.772, Z = -2.374, 95% confidence interval = -1.409 - -0.325, p = 0.018, I2 = 79.098). For long-term static stretching, there is no significant change in MTS (effect size = -0.608, Z = -1.761, 95% CI = -1.284 - 0.069, p = 0.078, I2 = 83.061). Subgroup analyses revealed no significant differences between sex (long-term, p = 0.209) or muscle (acute, p =0.295; long-term, p = 0.427). Moreover, there was a significant relationship between total stretching duration and MTS in acute static stretching (p = 0.011, R2 = 0.28), but not in long-term stretching (p = 0.085, R2 < 0.01). Whilst MTS decreased after acute static stretching, only a tendency of a decrease was seen after long-term stretching.
Collapse
Affiliation(s)
- Kosuke Takeuchi
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe International University, Kobe-shi, Hyogo, Japan
| | - Masatoshi Nakamura
- Department of Physical Therapy, Faculty of Rehabilitation Sciences, Nishi Kyushu University, Kanzaki-cho, Saga, Japan
| | - Taizan Fukaya
- Department of Physical Therapy, Faculty of Social Work Studies, Josai International University, Togane-shi, Chiba, Japan
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria
| | - Takamasa Mizuno
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya-shi, Aichi, Japan
| |
Collapse
|
16
|
Takeuchi K, Nakamura M, Konrad A, Mizuno T. Long-term static stretching can decrease muscle stiffness: A systematic review and meta-analysis. Scand J Med Sci Sports 2023; 33:1294-1306. [PMID: 37231582 DOI: 10.1111/sms.14402] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Stretch training increases the range of motion of a joint. However, to date, the mechanisms behind such a stretching effect are not well understood. An earlier meta-analysis on several studies reported no changes in the passive properties of a muscle (i.e., muscle stiffness) following long-term stretch training with various types of stretching (static, dynamic, and proprioceptive neuromuscular stretching). However, in recent years, an increasing number of papers have reported the effects of long-term static stretching on muscle stiffness. The purpose of the present study was to examine the long-term (≥2 weeks) effect of static stretching training on muscle stiffness. PubMed, Web of Science, and EBSCO published before December 28, 2022, were searched and 10 papers met the inclusion criteria for meta-analysis. By applying a mixed-effect model, subgroup analyses, which included comparisons of sex (male vs. mixed sex) and type of muscle stiffness assessment (calculated from the muscle-tendon junction vs. shear modulus), were performed. Furthermore, a meta-regression was conducted to examine the effect of total stretching duration on muscle stiffness. The result of the meta-analysis showed a moderate decrease in muscle stiffness after 3-12 weeks of static stretch training compared to a control condition (effect size = -0.749, p < 0.001, I2 = 56.245). Subgroup analyses revealed no significant differences between sex (p = 0.131) and type of muscle stiffness assessment (p = 0.813). Moreover, there was no significant relationship between total stretching duration and muscle stiffness (p = 0.881).
Collapse
Affiliation(s)
- Kosuke Takeuchi
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe International University, Kobe-shi, Japan
| | - Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Department of Physical Therapy, Nishi Kyushu University, Kanzaki-cho, Japan
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria
| | - Takamasa Mizuno
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya-shi, Japan
| |
Collapse
|
17
|
Panidi I, Donti O, Konrad A, Dinas PC, Terzis G, Mouratidis A, Gaspari V, Donti A, Bogdanis GC. Muscle Architecture Adaptations to Static Stretching Training: A Systematic Review with Meta-Analysis. SPORTS MEDICINE - OPEN 2023; 9:47. [PMID: 37318696 PMCID: PMC10271914 DOI: 10.1186/s40798-023-00591-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Long-term stretching of human skeletal muscles increases joint range of motion through altered stretch perception and decreased resistance to stretch. There is also some evidence that stretching induces changes in muscle morphology. However, research is limited and inconclusive. OBJECTIVE To examine the effect of static stretching training on muscle architecture (i.e., fascicle length and fascicle angle, muscle thickness and cross-sectional area) in healthy participants. DESIGN Systematic review and meta-analysis. METHODS PubMed Central, Web of Science, Scopus, and SPORTDiscus were searched. Randomized controlled trials and controlled trials without randomization were included. No restrictions on language or date of publication were applied. Risk of bias was assessed using Cochrane RoB2 and ROBINS-I tools. Subgroup analyses and random-effects meta-regressions were also performed using total stretching volume and intensity as covariates. Quality of evidence was determined by GRADE analysis. RESULTS From the 2946 records retrieved, 19 studies were included in the systematic review and meta-analysis (n = 467 participants). Risk of bias was low in 83.9% of all criteria. Confidence in cumulative evidence was high. Stretching training induces trivial increases in fascicle length at rest (SMD = 0.17; 95% CI 0.01-0.33; p = 0.042) and small increases in fascicle length during stretching (SMD = 0.39; 95% CI 0.05 to 0.74; p = 0.026). No increases were observed in fascicle angle or muscle thickness (p = 0.30 and p = 0.18, respectively). Subgroup analyses showed that fascicle length increased when high stretching volumes were used (p < 0.004), while no changes were found for low stretching volumes (p = 0.60; subgroup difference: p = 0.025). High stretching intensities induced fascicle length increases (p < 0.006), while low stretching intensities did not have an effect (p = 0.72; subgroup difference: p = 0.042). Also, high intensity stretching resulted in increased muscle thickness (p = 0.021). Meta-regression analyses showed that longitudinal fascicle growth was positively associated with stretching volume (p < 0.02) and intensity (p < 0.04). CONCLUSIONS Static stretching training increases fascicle length at rest and during stretching in healthy participants. High, but not low, stretching volumes and intensities induce longitudinal fascicle growth, while high stretching intensities result in increased muscle thickness. REGISTRATION PROSPERO, registration number: CRD42021289884.
Collapse
Affiliation(s)
- Ioli Panidi
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Dafne, Greece
| | - Olyvia Donti
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Dafne, Greece
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Petros C Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Gerasimos Terzis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Dafne, Greece
| | - Athanasios Mouratidis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Dafne, Greece
| | - Vasiliki Gaspari
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Dafne, Greece
| | - Anastasia Donti
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Dafne, Greece
| | - Gregory C Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Dafne, Greece.
| |
Collapse
|
18
|
Kruse A, Habersack A, Weide G, Jaspers RT, Svehlik M, Tilp M. Eight weeks of proprioceptive neuromuscular facilitation stretching and static stretching do not affect muscle-tendon properties, muscle strength, and joint function in children with spastic cerebral palsy. Clin Biomech (Bristol, Avon) 2023; 107:106011. [PMID: 37329655 DOI: 10.1016/j.clinbiomech.2023.106011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/05/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND While the effect of static stretching for individuals with cerebral palsy is questionable, recent results suggest that the combination with activation seems promising to improve muscle-tendon properties and function. Therefore, this study analyzed the effects of 8-week proprioceptive neuromuscular facilitation stretching on the gastrocnemius medialis muscle-tendon properties, muscle strength, and the ankle joint in children with spastic cerebral palsy in comparison to static stretching. METHODS Initially, 24 children with spastic cerebral palsy were randomly assigned to a static stretching (10.7 ± 1.8 years) or proprioceptive neuromuscular facilitation stretching group (10.9 ± 2.6 years). Plantar flexors were manually stretched at home for 300 s and ∼ 250-270 s per day four times a week for eight weeks, respectively. Assessments of ankle joint function (e.g., range of motion), muscle-tendon properties, and isometric muscle strength were conducted using 3D motion capture, 2D ultrasound, dynamometry, and electromyography. A mixed analysis of variance was used for the statistical analysis. FINDINGS Stretching adherence was high in the proprioceptive neuromuscular facilitation stretching (93.1%) and static stretching group (94.4%). No significant changes (p > 0.05) were observed in ankle joint function, muscle-tendon properties, and isometric muscle strength after both interventions. Moreover, no differences (p > 0.05) were found between the stretching techniques. INTERPRETATION The findings support the idea that manual stretching (neither proprioceptive neuromuscular facilitation stretching nor static stretching) performed in isolation for eight weeks may not be appropriate to evoke significant changes in muscle-tendon properties, voluntary muscle strength, or joint function in children with spastic cerebral palsy. CLINICAL TRIAL REGISTRATION NUMBER NCT04570358.
Collapse
Affiliation(s)
- Annika Kruse
- Department of Biomechanics, Training and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria.
| | - Andreas Habersack
- Department of Biomechanics, Training and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria; Department of Othopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Guido Weide
- Department of Human Movement Science, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Richard T Jaspers
- Department of Human Movement Science, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Martin Svehlik
- Department of Othopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Markus Tilp
- Department of Biomechanics, Training and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| |
Collapse
|
19
|
Kay AD, Baxter BA, Hill MW, Blazevich AJ. Effects of Eccentric Resistance Training on Lower-Limb Passive Joint Range of Motion: A Systematic Review and Meta-analysis. Med Sci Sports Exerc 2023; 55:710-721. [PMID: 36730587 DOI: 10.1249/mss.0000000000003085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Substantial increases in joint range of motion (ROM) have been reported after eccentric resistance training; however, between-study variability and sample size issues complicate the interpretation of the magnitude of effect. METHODS PubMed, Medline, and SPORTDiscus databases were searched for studies examining the effects of eccentric training on lower-limb passive joint ROM in healthy human participants. Meta-analysis used an inverse-variance random-effects model to calculate the pooled standardized difference (Hedge's g ) with 95% confidence intervals. RESULTS Meta-analysis of 22 ROM outcomes (17 studies, 376 participants) revealed a large increase in lower-limb passive joint ROM ( g = 0.86 (95% confidence intervals, 0.65-1.08)). Subgroup analyses revealed a moderate increase after 4-5 wk ( g = 0.63 (0.27-0.98)), large increase after 6-8 wk ( g = 0.98 (0.73-1.24)), and moderate increase after 9-14 wk ( g = 0.75 (0.03, 1.46)) of training. Large increases were found in dorsiflexion ( g = 1.12 (0.78-1.47)) and knee extension ( g = 0.82 (0.48-1.17)), but a small increase in knee flexion was observed ( g = 0.41 (0.05-0.77)). A large increase was found after isokinetic ( g = 1.07 (0.59-1.54)) and moderate increase after isotonic ( g = 0.77 (0.56-0.99)) training. CONCLUSIONS These findings demonstrate the potential of eccentric training as an effective flexibility training intervention and provide evidence for "best practice" guidelines. The larger effect after isokinetic training despite <50% training sessions being performed is suggestive of a more effective exercise mode, although further research is needed to determine the influence of contraction intensity and to confirm the efficacy of eccentric training in clinical populations.
Collapse
Affiliation(s)
- Anthony D Kay
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, UNITED KINGDOM
| | - Brett A Baxter
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, UNITED KINGDOM
| | - Mathew W Hill
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Warwickshire, UNITED KINGDOM
| | - Anthony J Blazevich
- Centre for Human Performance (CHP), School of Medical and Health Sciences, Edith Cowan University, Joondalup, AUSTRALIA
| |
Collapse
|
20
|
Lévenéz M, Moeremans M, Booghs C, Vigouroux F, Leveque C, Hemelryck W, Balestra C. Architectural and Mechanical Changes after Five Weeks of Intermittent Static Stretch Training on the Medial Gastrocnemius Muscle of Active Adults. Sports (Basel) 2023; 11:sports11040073. [PMID: 37104147 PMCID: PMC10144030 DOI: 10.3390/sports11040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
We investigated the effects of intermittent long-term stretch training (5 weeks) on the architectural and mechanical properties of the muscle–tendon unit (MTU) in healthy humans. MTU’s viscoelastic and architectural properties in the human medial gastrocnemius (MG) muscle and the contribution of muscle and tendon structures to the MTU lengthening were analyzed. Ten healthy volunteers participated in the study (four females and six males). The passive stretch of the plantar flexor muscles was achieved from 0° (neutral ankle position) to 25° of dorsiflexion. Measurements were obtained during a single passive stretch before and after the completion of the stretching protocol. During the stretch, the architectural parameters of the MG muscle were measured via ultrasonography, and the passive torque was recorded by means of a strain-gauge transducer. Repeated-measure ANOVA was applied for all parameters. When expressed as a percentage for all dorsiflexion angles, the relative torque values decreased (p < 0.001). In the same way, architectural parameters (pennation angle and fascicle length) were compared for covariance and showed a significant difference between the slopes (ANCOVA p < 0.0001 and p < 0.001, respectively) suggesting a modification in the mechanical behavior after stretch training. Furthermore, the values for passive stiffness decreased (p < 0.05). The maximum ankle range of motion (ROM) (p < 0.01) and the maximum passive torque (p < 0.05) increased. Lastly, the contribution of the free tendon increased more than fascicle elongation to the total lengthening of the MTU (ANCOVA p < 0.001). Our results suggest that five weeks of intermittent static stretch training significantly change the behavior of the MTU. Specifically, it can increase flexibility and increase tendon contribution during MTU lengthening.
Collapse
Affiliation(s)
- Morgan Lévenéz
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Matthieu Moeremans
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Cédric Booghs
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Florent Vigouroux
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Clément Leveque
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Walter Hemelryck
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussel, 1090 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Correspondence:
| |
Collapse
|
21
|
Wohlann T, Warneke K, Hillebrecht M, Petersmann A, Ferrauti A, Schiemann S. Effects of daily static stretch training over 6 weeks on maximal strength, muscle thickness, contraction properties, and flexibility. Front Sports Act Living 2023; 5:1139065. [PMID: 37139297 PMCID: PMC10149921 DOI: 10.3389/fspor.2023.1139065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/06/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose Static stretch training (SST) with long stretching durations seems to be sufficient to increase flexibility, maximum strength (MSt) and muscle thickness (MTh). However, changes in contraction properties and effects on muscle damage remain unclear. Consequently, the objective of the study was to investigate the effects of a 6-week self-performed SST on MSt, MTh, contractile properties, flexibility, and acute response of creatine kinase (CK) 3 days after SST. Methods Forty-four participants were divided into a control (CG, n = 22) and an intervention group (IG, n = 22), who performed a daily SST for 5 min for the lower limb muscle group. While isometric MSt was measured in leg press, MTh was examined via sonography and flexibility by functional tests. Muscle stiffness and contraction time were measured by tensiomyography on the rectus femoris. Additionally, capillary blood samples were taken in the pretest and in the first 3 days after starting SST to measure CK. Results A significant increase was found for MSt (p < 0.001, η 2 = 0.195) and flexibility in all functional tests (p < 0.001, η 2 > 0.310). Scheffé post hoc test did not show significant differences between the rectus femoris muscle inter- and intragroup comparisons for MTh nor for muscle stiffness and contraction time (p > 0.05, η 2 < 0.100). Moreover, CK was not significantly different between IG and CG with p > 0.05, η 2 = 0.032. Discussion In conclusion, the increase in MSt cannot be exclusively explained by muscular hypertrophy or the increased CK-related repair mechanism after acute stretching. Rather, neuronal adaptations have to be considered. Furthermore, daily 5-min SST over 6 weeks does not seem sufficient to change muscle stiffness or contraction time. Increases in flexibility tests could be attributed to a stretch-induced change in the muscle-tendon complex.
Collapse
Affiliation(s)
- Tim Wohlann
- Institute for Exercise, Sport and Health, Leuphana University, Lüneburg, Germany
- Correspondence: Tim Wohlann
| | - Konstantin Warneke
- Institute for Exercise, Sport and Health, Leuphana University, Lüneburg, Germany
| | - Martin Hillebrecht
- University Sports Centre, Carl von University of Oldenburg, Oldenburg, Germany
| | - Astrid Petersmann
- University Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Oldenburg, Oldenburg, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | - Stephan Schiemann
- Institute for Exercise, Sport and Health, Leuphana University, Lüneburg, Germany
| |
Collapse
|
22
|
Thomas E, Ficarra S, Nakamura M, Paoli A, Bellafiore M, Palma A, Bianco A. Effects of Different Long-Term Exercise Modalities on Tissue Stiffness. SPORTS MEDICINE - OPEN 2022; 8:71. [PMID: 35657537 PMCID: PMC9166919 DOI: 10.1186/s40798-022-00462-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022]
Abstract
AbstractStiffness is a fundamental property of living tissues, which may be modified by pathologies or traumatic events but also by nutritional, pharmacological and exercise interventions. This review aimed to understand if specific forms of exercise are able to determine specific forms of tissue stiffness adaptations. A literature search was performed on PubMed, Scopus and Web of Science databases to identify manuscripts addressing adaptations of tissue stiffness as a consequence of long-term exercise. Muscular, connective, peripheral nerve and arterial stiffness were considered for the purpose of this review. Resistance training, aerobic training, plyometric training and stretching were retrieved as exercise modalities responsible for tissue stiffness adaptations. Differences were observed related to each specific modality. When exercise was applied to pathological cohorts (i.e. tendinopathy or hypertension), stiffness changed towards a physiological condition. Exercise interventions are able to determine tissue stiffness adaptations. These should be considered for specific exercise prescriptions. Future studies should concentrate on identifying the effects of exercise on the stiffness of specific tissues in a broader spectrum of pathological populations, in which a tendency for increased stiffness is observed.
Collapse
|
23
|
Hinks A, Franchi MV, Power GA. The influence of longitudinal muscle fascicle growth on mechanical function. J Appl Physiol (1985) 2022; 133:87-103. [DOI: 10.1152/japplphysiol.00114.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle has the remarkable ability to remodel and adapt, such as the increase in serial sarcomere number (SSN) or fascicle length (FL) observed after overstretching a muscle. This type of remodelling is termed longitudinal muscle fascicle growth, and its impact on biomechanical function has been of interest since the 1960s due to its clinical applications in muscle strain injury, muscle spasticity, and sarcopenia. Despite simplified hypotheses on how longitudinal muscle fascicle growth might influence mechanical function, existing literature presents conflicting results partly due to a breadth of methodologies. The purpose of this review is to outline what is currently known about the influence of longitudinal muscle fascicle growth on mechanical function and suggest future directions to address current knowledge gaps and methodological limitations. Various interventions indicate longitudinal muscle fascicle growth can increase the optimal muscle length for active force, but whether the whole force-length relationship widens has been less investigated. Future research should also explore the ability for longitudinal fascicle growth to broaden the torque-angle relationship's plateau region, and the relation to increased force during shortening. Without a concurrent increase in intramuscular collagen, longitudinal muscle fascicle growth also reduces passive tension at long muscle lengths; further research is required to understand whether this translates to increased joint range of motion. Lastly, some evidence suggests longitudinal fascicle growth can increase maximum shortening velocity and peak isotonic power, however, there has yet to be direct assessment of these measures in a neurologically intact model of longitudinal muscle fascicle growth.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Martino V. Franchi
- Department of Biomedical Sciences,, University of Padua, Padova, Veneto, Italy
| | - Geoffrey A. Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
24
|
Seever TC, Mason J, Zech A. Chronic and Residual Effects of a Two-Week Foam Rolling Intervention on Ankle Flexibility and Dynamic Balance. Front Sports Act Living 2022; 4:799985. [PMID: 35243341 PMCID: PMC8886294 DOI: 10.3389/fspor.2022.799985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/20/2022] [Indexed: 11/26/2022] Open
Abstract
Background Foam rolling has been shown to acutely improve joint range of motion (ROM). However, limited knowledge exists on the chronic and residual effects. The primary purpose of this study was to examine the chronic and residual effects of a 2-week roller–massager intervention on ankle dorsiflexion ROM and dynamic balance. Methods Forty-two participants (24.3 ± 2.5 years, 33 males, 9 females) were randomly assigned to either roller-massage (RM) or control group (= no intervention). Ankle ROM was assessed with the weight-bearing lunge test (WBLT) and dynamic balance with the Y-Balance test for both limbs. The RM group was instructed to roll their calf muscles for three sets of 60 s per leg on 6 days a week over 2 weeks. Acute effects were measured during baseline testing for dorsiflexion ROM and dynamic balance immediately after foam rolling. Chronic and residual effects were measured 1 day and 7 days after the intervention period. Multivariate ANOVA was performed for post-hoc comparisons to determine acute, chronic, and residual effects. Results Significant acute and chronic foam rolling effects (p <0.05) were found for ankle dorsiflexion ROM. The chronic increase in ROM slightly decreased 7 days post-intervention but remained significantly above baseline (p < 0.05). Regarding dynamic balance, there were no acute but chronic (p < 0.05) and residual (p < 0.05) effects. Conclusion Using a roller–massager for a 2-week period chronically increases ROM and dynamic balance. These increases are still significant 7 days post-intervention emphasizing the sustainability of foam rolling effects.
Collapse
|
25
|
Fukaya T, Konrad A, Sato S, Kiyono R, Yahata K, Yasaka K, Onuma R, Yoshida R, Nakamura M. Comparison Between Contract-Relax Stretching and Antagonist Contract-Relax Stretching on Gastrocnemius Medialis Passive Properties. Front Physiol 2022; 12:764792. [PMID: 35185595 PMCID: PMC8854798 DOI: 10.3389/fphys.2021.764792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Antagonist contract-relax stretching and contract-relax stretching is commonly used in sports practice and rehabilitation settings. To date, no study has compared these modalities regarding muscle stiffness and stretch tolerance. This study aimed to investigate the effects of contract-relax and antagonist contract-relax stretching on dorsiflexion range of motion (ROM), stretch tolerance, and shear elastic modulus. Forty healthy participants (24 men and 16 women) took part in the study. Participants were randomly assigned to perform either contract-relax stretching or antagonist contract-relax stretching for 2 min. Outcomes were assessed on ROM, stretch tolerance, and shear elastic modulus before and after stretching. The ROM and stretch tolerance significantly increased after both contract-relax stretching (+ 5.4 ± 5.8°, p < 0.05; + 3.5 ± 8.0 Nm, p < 0.05) and antagonist contract-relax stretching (+ 6.1 ± 4.9°, p < 0.05; + 4.2 ± 6.4 Nm, p < 0.05); however, no significant difference was found between the two groups. Alternatively, the shear elastic modulus significantly decreased after both contract-relax (-31.1 ± 22.6 kPa, p < 0.05) and antagonist contract-relax stretching (-11.1 ± 22.3 kPa, p < 0.05); however, contract-relax stretching (-41.9 ± 19.6%) was more effective than antagonist contract-relax stretching (-12.5 ± 61.6%). The results of this study suggest that contract-relax stretching instead of antagonist contract-relax stretching should be conducted to decrease muscle stiffness. However, either contract-relax or antagonist contract-relax stretching can increase ROM.
Collapse
Affiliation(s)
- Taizan Fukaya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan,Department of Rehabilitation, Kyoto Kujo Hospital, Kyoto, Japan,*Correspondence: Taizan Fukaya,
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Ryosuke Kiyono
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Koki Yasaka
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Remi Onuma
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Riku Yoshida
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan,Masatoshi Nakamura,
| |
Collapse
|
26
|
Nakamura M, Yoshida R, Sato S, Yahata K, Murakami Y, Kasahara K, Fukaya T, Takeuchi K, Nunes JP, Konrad A. Comparison Between High- and Low-Intensity Static Stretching Training Program on Active and Passive Properties of Plantar Flexors. Front Physiol 2022; 12:796497. [PMID: 34975544 PMCID: PMC8718681 DOI: 10.3389/fphys.2021.796497] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to compare two static stretching (SS) training programs at high-intensity (HI-SS) and low-intensity (LI-SS) on passive and active properties of the plantar flexor muscles. Forty healthy young men were randomly allocated into three groups: HI-SS intervention group (n = 14), LI-SS intervention group (n = 13), and non-intervention control group (n = 13). An 11-point numerical scale (0–10; none to very painful stretching) was used to determine SS intensity. HI-SS and LI-SS stretched at 6–7 and 0–1 intensities, respectively, both in 3 sets of 60 s, 3×/week, for 4 weeks. Dorsiflexion range of motion (ROM), gastrocnemius muscle stiffness, muscle strength, drop jump height, and muscle architecture were assessed before and after SS training program. The HI-SS group improved more than LI-SS in ROM (40 vs. 15%) and decreased muscle stiffness (−57 vs. −24%), while no significant change was observed for muscle strength, drop jump height, and muscle architecture in both groups. The control group presented no significant change in any variable. Performing HI-SS is more effective than LI-SS for increasing ROM and decreasing muscle stiffness of plantar flexor muscles following a 4-week training period in young men. However, SS may not increase muscle strength or hypertrophy, regardless of the stretching discomfort intensity.
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Riku Yoshida
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Rehabilitation, Matsumura General Hospital, Iwaki, Japan
| | - Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yuta Murakami
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Kazuki Kasahara
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Taizan Fukaya
- Department of Rehabilitation, Kyoto Kujo Hospital, Kyoto, Japan
| | - Kosuke Takeuchi
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe International University, Kobe, Japan
| | - João Pedro Nunes
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| |
Collapse
|
27
|
Influence of stress relaxation and load during static stretching on the range of motion and muscle–tendon passive stiffness. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Nakamura M, Konrad A, Ryosuke K, Sato S, Yahata K, Yoshida R, Murakami Y, Sanuki F, Wilke J. Sex Differences in the Mechanical and Neurophysiological Response to Roller Massage of the Plantar Flexors. J Sports Sci Med 2021; 20:665-671. [PMID: 35321127 DOI: 10.52082/jssm.2021.665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
Self-massage using foam rollers, sticks, or balls has become a popular technique to enhance joint range of motion (ROM). Although increases are reported to be larger in females than males, the mechanisms of this observation are unclear. The present study aimed to investigate the effect of roller massage (RM) on ROM, passive tissue stiffness, and neurophysiological markers as a function of sex. Males (n = 15, 22.8 ± 2.9 yrs.) and females (n = 14, 21.1 ± 0.7 yrs.) performed three 60-second bouts of calf RM. Outcomes assessed pre-, and post-intervention included passive dorsiflexion (DF) ROM, passive tissue stiffness, passive torque, DF angle at the first stretch sensation, shear elastic modulus, and spinal excitability. DF ROM (+35.9 %), passive torque at DF ROM (+46.4 %), DF angle at first stretch sensation (+32.9 %), and pain pressure threshold (+25.2 %) increased in both groups (p<.05) with no differences between males and females (p > 0.05). No changes were observed for passive stiffness, shear elastic modulus, and spinal excitability (p > 0.05). Roller massage may increase ROM independently of sex, which, in the present study, could not be ascribed to alterations in passive stiffness or neurophysiological markers. Future studies may further elucidate the role of sensory alterations as possible factors driving RM-induced changes in flexibility.
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Mozartgasse 14, A-8010 Graz, Austria
| | - Kiyono Ryosuke
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Riku Yoshida
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Yuta Murakami
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Futaba Sanuki
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Jan Wilke
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
29
|
Kruse A, Rivares C, Weide G, Tilp M, Jaspers RT. Stimuli for Adaptations in Muscle Length and the Length Range of Active Force Exertion-A Narrative Review. Front Physiol 2021; 12:742034. [PMID: 34690815 PMCID: PMC8531727 DOI: 10.3389/fphys.2021.742034] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/08/2021] [Indexed: 12/03/2022] Open
Abstract
Treatment strategies and training regimens, which induce longitudinal muscle growth and increase the muscles’ length range of active force exertion, are important to improve muscle function and to reduce muscle strain injuries in clinical populations and in athletes with limited muscle extensibility. Animal studies have shown several specific loading strategies resulting in longitudinal muscle fiber growth by addition of sarcomeres in series. Currently, such strategies are also applied to humans in order to induce similar adaptations. However, there is no clear scientific evidence that specific strategies result in longitudinal growth of human muscles. Therefore, the question remains what triggers longitudinal muscle growth in humans. The aim of this review was to identify strategies that induce longitudinal human muscle growth. For this purpose, literature was reviewed and summarized with regard to the following topics: (1) Key determinants of typical muscle length and the length range of active force exertion; (2) Information on typical muscle growth and the effects of mechanical loading on growth and adaptation of muscle and tendinous tissues in healthy animals and humans; (3) The current knowledge and research gaps on the regulation of longitudinal muscle growth; and (4) Potential strategies to induce longitudinal muscle growth. The following potential strategies and important aspects that may positively affect longitudinal muscle growth were deduced: (1) Muscle length at which the loading is performed seems to be decisive, i.e., greater elongations after active or passive mechanical loading at long muscle length are expected; (2) Concentric, isometric and eccentric exercises may induce longitudinal muscle growth by stimulating different muscular adaptations (i.e., increases in fiber cross-sectional area and/or fiber length). Mechanical loading intensity also plays an important role. All three training strategies may increase tendon stiffness, but whether and how these changes may influence muscle growth remains to be elucidated. (3) The approach to combine stretching with activation seems promising (e.g., static stretching and electrical stimulation, loaded inter-set stretching) and warrants further research. Finally, our work shows the need for detailed investigation of the mechanisms of growth of pennate muscles, as those may longitudinally grow by both trophy and addition of sarcomeres in series.
Collapse
Affiliation(s)
- Annika Kruse
- Department of Biomechanics, Training, and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Cintia Rivares
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Guido Weide
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands.,Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, University Hospital Leuven, Leuven, Belgium
| | - Markus Tilp
- Department of Biomechanics, Training, and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Richard T Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
30
|
Moltubakk MM, Villars FO, Magulas MM, Magnusson SP, Seynnes OR, Bojsen-Møller J. Altered Triceps Surae Muscle-Tendon Unit Properties after 6 Months of Static Stretching. Med Sci Sports Exerc 2021; 53:1975-1986. [PMID: 34398062 DOI: 10.1249/mss.0000000000002671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION This study examined the effects of 24 wk of daily static stretching of the plantarflexors (unilateral 4 × 60-s stretching, whereas the contralateral leg served as a control; n = 26) on joint range of motion (ROM), muscle-tendon unit morphological and mechanical properties, neural activation, and contractile function. METHODS Torque-angle/velocity was obtained in passive and active conditions using isokinetic dynamometry, whereas muscle-tendon morphology and mechanical properties were examined using ultrasonography. RESULTS After the intervention, ROM increased (stretching, +11° ± 7°; control, 4° ± 8°), and passive torque (stretching, -10 ± 11 N·m; control, -7 ± 10 N·m) and normalized EMG amplitude (stretching, -3% ± 6%; control, -3% ± 4%) at a standardized dorsiflexion angle decreased. Increases were seen in passive tendon elongation at a standardized force (stretching, +1.3 ± 1.6 mm; control, +1.4 ± 2.1 mm) and in maximal passive muscle and tendon elongation. Angle of peak torque shifted toward dorsiflexion. No changes were seen in tendon stiffness, resting tendon length, or gastrocnemius medialis fascicle length. Conformable changes in ROM, passive dorsiflexion variables, tendon elongation, and angle of peak torque were observed in the nonstretched leg. CONCLUSIONS The present findings indicate that habitual stretching increases ROM and decreases passive torque, altering muscle-tendon behavior with the potential to modify contractile function.
Collapse
Affiliation(s)
- Marie M Moltubakk
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, NORWAY
| | | | - Melina M Magulas
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, NORWAY
| | | | - Olivier R Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, NORWAY
| | | |
Collapse
|
31
|
Afonso J, Olivares-Jabalera J, Andrade R. Time to Move From Mandatory Stretching? We Need to Differentiate "Can I?" From "Do I Have To?". Front Physiol 2021; 12:714166. [PMID: 34366900 PMCID: PMC8340604 DOI: 10.3389/fphys.2021.714166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- José Afonso
- Faculty of Sport of the University of Porto (FADEUP), Centre for Research, Education, Innovation and Intervention in Sport (CIFI2D), Porto, Portugal
| | - Jesús Olivares-Jabalera
- Sport Research Lab, Football Science Institute, Granada, Spain.,Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Renato Andrade
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal.,Porto Biomechanics Laboratory (LABIOMEP), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Panidi I, Bogdanis GC, Terzis G, Donti A, Konrad A, Gaspari V, Donti O. Muscle Architectural and Functional Adaptations Following 12-Weeks of Stretching in Adolescent Female Athletes. Front Physiol 2021; 12:701338. [PMID: 34335307 PMCID: PMC8322691 DOI: 10.3389/fphys.2021.701338] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022] Open
Abstract
This study examined the effects of high-volume static stretching training on gastrocnemius muscle architecture, ankle angle and jump height in 21 female adolescent volleyball players. Static stretching of the plantar flexors of one leg (STR) was performed five times/week for 12 weeks, in addition to volleyball training, with the contra-lateral leg used as control (CON). Total duration of stretching per session increased from 540 s (week 1) to 900 s (week 12). At baseline, week 12 and after 3 weeks of detraining, muscle architecture at the middle and the distal part of both gastrocnemius heads (medialis and lateralis) and ankle angle were examined at rest and at maximum dorsiflexion. At the same time-points gastrocnemius cross-sectional area (CSA) was also assessed, while jumping height was measured at baseline and week 12. Following intervention, ankle dorsiflexion increased in both legs with a greater increase in STR than CON (22 ± 20% vs. 8 ± 17%, p < 0.001). Fascicle length at the middle part of gastrocnemius medialis increased only in the STR, at rest (6 ± 7%, p = 0.006) and at maximum dorsiflexion (11 ± 7%, p < 0.001). Fascicle length at maximum dorsiflexion also increased at the distal part of gastrocnemius lateralis of STR (15 ± 13%, p < 0.001). A greater increase in CSA (23 ± 14% vs. 13 ± 14%, p < 0.001) and in one-leg jumping height (27 ± 30% vs. 17 ± 23%, p < 0.001) was found in STR than CON. Changes in ankle angle, fascicle length and CSA were maintained following detraining. High-volume stretching training for 12 weeks results in ankle dorsiflexion, fascicle length and muscle cross sectional area increases in adolescent female volleyball players. These adaptations may partly explain improvements in jump performance.
Collapse
Affiliation(s)
- Ioli Panidi
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian, University of Athens, Athens, Greece
| | - Gregory C. Bogdanis
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian, University of Athens, Athens, Greece
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian, University of Athens, Athens, Greece
| | - Anastasia Donti
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian, University of Athens, Athens, Greece
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Vasiliki Gaspari
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian, University of Athens, Athens, Greece
| | - Olyvia Donti
- Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian, University of Athens, Athens, Greece
| |
Collapse
|
33
|
Nakamura M, Konrad A, Kiyono R, Sato S, Yahata K, Yoshida R, Yasaka K, Murakami Y, Sanuki F, Wilke J. Local and Non-local Effects of Foam Rolling on Passive Soft Tissue Properties and Spinal Excitability. Front Physiol 2021; 12:702042. [PMID: 34248682 PMCID: PMC8267519 DOI: 10.3389/fphys.2021.702042] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
In sports and clinical settings, roller massage (RM) interventions are used to acutely increase range of motion (ROM); however, the underlying mechanisms are unclear. Apart from changes in soft tissue properties (i.e., reduced passive stiffness), neurophysiological alterations such as decreased spinal excitability have been described. However, to date, no study has investigated both jointly. The purpose of this trial was to examine RM’s effects on neurophysiological markers and passive tissue properties of the plantar flexors in the treated (ROLL) and non-treated (NO-ROLL) leg. Fifteen healthy individuals (23 ± 3 years, eight females) performed three unilateral 60-s bouts of calf RM. This procedure was repeated four times on separate days to allow independent assessments of the following outcomes without reciprocal interactions: dorsiflexion ROM, passive torque during passive dorsiflexion, shear elastic modulus of the medial gastrocnemius muscle, and spinal excitability. Following RM, dorsiflexion ROM increased in both ROLL (+19.7%) and NO-ROLL (+13.9%). Similarly, also passive torque at dorsiflexion ROM increased in ROLL (+15.0%) and NO-ROLL (+15.2%). However, there were no significant changes in shear elastic modulus and spinal excitability (p > 0.05). Moreover, significant correlations were observed between the changes in DF ROM and passive torque at DF ROM in both ROLL and NO-ROLL. Changes in ROM after RM appear to be the result of sensory changes (e.g., passive torque at DF ROM), affecting both rolled and non-rolled body regions. Thus, therapists and exercise professionals may consider applying remote treatments if local loading is contraindicated.
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Ryosuke Kiyono
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Riku Yoshida
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Koki Yasaka
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Yuta Murakami
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Futaba Sanuki
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Jan Wilke
- Department of Sports Medicine and Exercise Physiology, Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
34
|
Afonso J, Ramirez-Campillo R, Moscão J, Rocha T, Zacca R, Martins A, Milheiro AA, Ferreira J, Sarmento H, Clemente FM. Strength Training versus Stretching for Improving Range of Motion: A Systematic Review and Meta-Analysis. Healthcare (Basel) 2021; 9:427. [PMID: 33917036 PMCID: PMC8067745 DOI: 10.3390/healthcare9040427] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Stretching is known to improve range of motion (ROM), and evidence has suggested that strength training (ST) is effective too. However, it is unclear whether its efficacy is comparable to stretching. The goal was to systematically review and meta-analyze randomized controlled trials (RCTs) assessing the effects of ST and stretching on ROM (INPLASY 10.37766/inplasy2020.9.0098). (2) Methods: Cochrane Library, EBSCO, PubMed, Scielo, Scopus, and Web of Science were consulted in October 2020 and updated in March 2021, followed by search within reference lists and expert suggestions (no constraints on language or year). Eligibility criteria: (P) Humans of any condition; (I) ST interventions; (C) stretching (O) ROM; (S) supervised RCTs. (3) Results: Eleven articles (n = 452 participants) were included. Pooled data showed no differences between ST and stretching on ROM (ES = -0.22; 95% CI = -0.55 to 0.12; p = 0.206). Sub-group analyses based on risk of bias, active vs. passive ROM, and movement-per-joint analyses showed no between-protocol differences in ROM gains. (4) Conclusions: ST and stretching were not different in their effects on ROM, but the studies were highly heterogeneous in terms of design, protocols and populations, and so further research is warranted. However, the qualitative effects of all the studies were quite homogeneous.
Collapse
Affiliation(s)
- José Afonso
- Centre for Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport of the University of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal; (J.A.); (R.Z.); (A.M.); (A.A.M.)
| | - Rodrigo Ramirez-Campillo
- Department of Physical Activity Sciences, Universidad de Los Lagos, Lord Cochrane 1046, Osorno 5290000, Chile;
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, San Pio X, 2422, Providencia, Santiago 7500000, Chile
| | - João Moscão
- REP Exercise Institute, Rua Manuel Francisco 75-A 2 °C, 2645-558 Alcabideche, Portugal;
| | - Tiago Rocha
- Polytechnic of Leiria, Rua General Norton de Matos, Apartado 4133, 2411-901 Leiria, Portugal;
| | - Rodrigo Zacca
- Centre for Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport of the University of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal; (J.A.); (R.Z.); (A.M.); (A.A.M.)
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal
- Coordination for the Improvement of Higher Educational Personnel Foundation (CAPES), Ministry of Education of Brazil, Brasília 70040-020, Brazil
| | - Alexandre Martins
- Centre for Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport of the University of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal; (J.A.); (R.Z.); (A.M.); (A.A.M.)
| | - André A. Milheiro
- Centre for Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport of the University of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal; (J.A.); (R.Z.); (A.M.); (A.A.M.)
| | - João Ferreira
- Superior Institute of Engineering of Porto, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal;
| | - Hugo Sarmento
- Faculty of Sport Sciences and Physical Education, University of Coimbra, 3040-256 Coimbra, Portugal;
| | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- Instituto de Telecomunicações, Department of Covilhã, 1049-001 Lisboa, Portugal
| |
Collapse
|
35
|
Nakamura M, Yahata K, Sato S, Kiyono R, Yoshida R, Fukaya T, Nunes JP, Konrad A. Training and Detraining Effects Following a Static Stretching Program on Medial Gastrocnemius Passive Properties. Front Physiol 2021; 12:656579. [PMID: 33868026 PMCID: PMC8049289 DOI: 10.3389/fphys.2021.656579] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
A stretching intervention program is performed to maintain and improve range of motion (ROM) in sports and rehabilitation settings. However, there is no consensus on the effects of stretching programs on muscle stiffness, likely due to short stretching durations used in each session. Therefore, a longer stretching exercise session may be required to decrease muscle stiffness in the long-term. Moreover, until now, the retention effect (detraining) of such an intervention program is not clear yet. The purpose of this study was to investigate the training (5-week) and detraining effects (5-week) of a high-volume stretching intervention on ankle dorsiflexion ROM (DF ROM) and medial gastrocnemius muscle stiffness. Fifteen males participated in this study and the plantarflexors of the dominant limb were evaluated. Static stretching intervention was performed using a stretching board for 1,800 s at 2 days per week for 5 weeks. DF ROM was assessed, and muscle stiffness was calculated from passive torque and muscle elongation during passive dorsiflexion test. The results showed significant changes in DF ROM and muscle stiffness after the stretching intervention program, but the values returned to baseline after the detraining period. Our results indicate that high-volume stretching intervention (3,600 s per week) may be beneficial for DF ROM and muscle stiffness, but the training effects are dismissed after a detraining period with the same duration of the intervention.
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Ryosuke Kiyono
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Riku Yoshida
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Taizan Fukaya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Rehabilitation, Kyoto Kujo Hospital, Kyoto, Japan
| | - João Pedro Nunes
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| |
Collapse
|
36
|
Yahata K, Konrad A, Sato S, Kiyono R, Yoshida R, Fukaya T, Nunes JP, Nakamura M. Effects of a high-volume static stretching programme on plantar-flexor muscle strength and architecture. Eur J Appl Physiol 2021; 121:1159-1166. [PMID: 33502614 DOI: 10.1007/s00421-021-04608-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/17/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE Static stretching (SS) is performed in various settings, but there is no consensus about the effects of SS programmes on changes in muscle morphofunction. This study aimed to investigate the effects of a high-volume SS programme on muscle strength and architecture. METHODS Sixteen healthy young male adults participated, and the dominant leg was defined as the intervention side, with the non-dominant leg as the control side. Stretching exercises were performed two times per week (6 sets of 5 min, totally 30 min per session,) for 5-week using a stretching board under the supervision of the research team. Before and after SS intervention programme, plantar-flexor strength (maximum voluntary isometric contraction, MVC-ISO; maximum voluntary concentric contraction, MVC-CON) and architecture (muscle thickness, pennation angle, and fascicle length) were measured via dynamometer and ultrasound, respectively. RESULTS Following the SS-training programme, significant increases were observed for stretching side in MVIC-ISO at neutral ankle position (p = 0.02, d = 0.31, Δ = 6.4 ± 9.9%) and MVC-CON at 120°/s (p = 0.02, d = 0.30, Δ = 7.8 ± 9.1%), with no significant change on the control side. There was no significant change in any measure of muscle architecture for both intervention and control sides. CONCLUSION Five-week high-volume SS induced positive changes on some measures of muscle strength but not hypertrophy of plantar-flexor muscles. Even with a volume much greater than already tested, the low strain offered by the SS per set seems be insufficient to induce architectural changes on skeletal muscle.
Collapse
Affiliation(s)
- Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Mozartgasse 14, 8010, Graz, Austria
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
| | - Ryosuke Kiyono
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
| | - Riku Yoshida
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
| | - Taizan Fukaya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
- Department of Rehabilitation, Kyoto Kujo Hospital, 10 Karahashirajoumoncho, Minami-ku, Kyoto, 601-8453, Japan
| | - João Pedro Nunes
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, 86057-970, PR, Brazil
| | - Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan.
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan.
| |
Collapse
|
37
|
The effects of 12 weeks of static stretch training on the functional, mechanical, and architectural characteristics of the triceps surae muscle-tendon complex. Eur J Appl Physiol 2021; 121:1743-1758. [PMID: 33687531 PMCID: PMC8144166 DOI: 10.1007/s00421-021-04654-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE We investigated the effects of 12 weeks of passive static stretching training (PST) on force-generating capacity, passive stiffness, muscle architecture of plantarflexor muscles. METHODS Thirty healthy adults participated in the study. Fifteen participants (STR, 6 women, 9 men) underwent 12-week plantarflexor muscles PST [(5 × 45 s-on/15 s-off) × 2exercises] × 5times/week (duration: 2250 s/week), while 15 participants (CTRL, 6 women, 9 men) served as control (no PST). Range of motion (ROM), maximum passive resistive torque (PRTmax), triceps surae architecture [fascicle length, fascicle angle, and thickness], passive stiffness [muscle-tendon complex (MTC) and muscle stiffness], and plantarflexors maximun force-generating capacity variables (maximum voluntary contraction, maximum muscle activation, rate of torque development, electromechanical delay) were calculated Pre, at the 6th (Wk6), and the 12th week (Wk12) of the protocol in both groups. RESULTS Compared to Pre, STR ROM increased (P < 0.05) at Wk6 (8%) and Wk12 (23%). PRTmax increased at Wk12 (30%, P < 0.05), while MTC stiffness decreased (16%, P < 0.05). Muscle stiffness decreased (P < 0.05) at Wk6 (11%) and Wk12 (16%). No changes in triceps surae architecture and plantarflexors maximum force-generating capacity variables were found in STR (P > 0.05). Percentage changes in ROM correlated with percentage changes in PRTmax (ρ = 0.62, P = 0.01) and MTC stiffness (ρ = - 0.78, P = 0.001). In CTRL, no changes (P > 0.05) occurred in any variables at any time point. CONCLUSION The expected long-term PST-induced changes in ROM were associated with modifications in the whole passive mechanical properties of the ankle joint, while maximum force-generating capacity characteristics were preserved. 12 weeks of PST do not seem a sufficient stimulus to induce triceps surae architectural changes.
Collapse
|
38
|
Ikeda N, Ryushi T. Effects of 6-Week Static Stretching of Knee Extensors on Flexibility, Muscle Strength, Jump Performance, and Muscle Endurance. J Strength Cond Res 2021; 35:715-723. [PMID: 30161088 DOI: 10.1519/jsc.0000000000002819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Ikeda, N and Ryushi, T. Effects of 6-week static stretching of knee extensors on flexibility, muscle strength, jump performance, and muscle endurance. J Strength Cond Res 35(3): 715-723, 2021-The purpose of this study was to evaluate the changes in flexibility and muscular performance after stretching training for 6 weeks. Twelve healthy young men were assigned to a stretching group and 13 to a control group. The subjects of the stretching group performed static stretching of knee extensors for 6 weeks. Knee flexion range of motion (KFROM), leg extension strength, rate of force development (RFD) in leg extension, jump performance (squat and countermovement jump height, and index of rebound jump), and strength decrement index of 50 repetitions of isokinetic knee extension (muscle endurance) were measured before and after the interventions. In the stretching group, KFROM significantly increased from 145.2 ± 17.3 to 158.7 ± 6.3° (p < 0.05), whereas RFD significantly improved from 10,173 ± 2,401 to 11,883 ± 2,494 N·s-1 (p < 0.05). By contrast, leg extension strength and jump performance of each jump type did not improve significantly. Furthermore, muscle endurance decreased significantly. All variables remained unchanged in the control group. In conclusion, 6 weeks of stretching training of knee extensors improved KFROM and RFD in leg extension, but not leg extension strength and jump performance; moreover, muscle endurance decreased. These findings indicate that this stretching training protocol can be used by athletes in sports who require high flexibility and those who require high-power exertion.
Collapse
Affiliation(s)
- Naoki Ikeda
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan; and
| | - Tomoo Ryushi
- Faculty of Sports & Health Sciences, Daito Bunka University, Higashi-matsuyama, Saitama, Japan
| |
Collapse
|
39
|
Behm DG, Alizadeh S, Anvar SH, Drury B, Granacher U, Moran J. Non-local Acute Passive Stretching Effects on Range of Motion in Healthy Adults: A Systematic Review with Meta-analysis. Sports Med 2021; 51:945-959. [PMID: 33459990 DOI: 10.1007/s40279-020-01422-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Stretching a muscle not only increases the extensibility or range of motion (ROM) of the stretched muscle or joint but there is growing evidence of increased ROM of contralateral and other non-local muscles and joints. OBJECTIVE The objective of this meta-analysis was to quantify crossover or non-local changes in passive ROM following an acute bout of unilateral stretching and to examine potential dose-response relations. METHODS Eleven studies involving 14 independent measures met the inclusion criteria. The meta-analysis included moderating variables such as sex, trained state, stretching intensity and duration. RESULTS The analysis revealed that unilateral passive static stretching induced moderate magnitude (standard mean difference within studies: SMD: 0.86) increases in passive ROM with non-local, non-stretched joints. Moderating variables such as sex, trained state, stretching intensity, and duration did not moderate the results. Although stretching duration did not present statistically significant differences, greater than 240-s of stretching (SMD: 1.24) exhibited large magnitude increases in non-local ROM compared to moderate magnitude improvements with shorter (< 120-s: SMD: 0.72) durations of stretching. CONCLUSION Passive static stretching of one muscle group can induce moderate magnitude, global increases in ROM. Stretching durations greater than 240 s may have larger effects compared with shorter stretching durations.
Collapse
Affiliation(s)
- David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.,Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Ben Drury
- Department of Applied Sport Sciences, Hartpury University, Hartpury, UK
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK.
| |
Collapse
|
40
|
Thomas E, Bellafiore M, Gentile A, Paoli A, Palma A, Bianco A. Cardiovascular Responses to Muscle Stretching: A Systematic Review and Meta-analysis. Int J Sports Med 2021; 42:481-493. [PMID: 33440445 DOI: 10.1055/a-1312-7131] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this study will be to review the current body of literature to understand the effects of stretching on the responses of the cardiovascular system. A literature search was performed using the following databases: Scopus, NLM Pubmed and ScienceDirect. Studies regarding the effects of stretching on responses of the cardiovascular system were investigated. Outcomes regarded heart rate(HR), blood pressure, pulse wave velocity (PWV of which baPWV for brachial-ankle and cfPWV for carotid-femoral waveforms), heart rate variability and endothelial vascular function. Subsequently, the effects of each outcome were quantitatively synthetized using meta-analytic synthesis with random-effect models. A total of 16 studies were considered eligible and included in the quantitative synthesis. Groups were also stratified according to cross-sectional or longitudinal stretching interventions. Quality assessment through the NHLBI tools observed a "fair-to-good" quality of the studies. The meta-analytic synthesis showed a significant effect of d=0.38 concerning HR, d=2.04 regarding baPWV and d=0.46 for cfPWV. Stretching significantly reduces arterial stiffness and HR. The qualitative description of the studies was also supported by the meta-analytic synthesis. No adverse effects were reported, after stretching, in patients affected by cardiovascular disease on blood pressure. There is a lack of studies regarding vascular adaptations to stretching.
Collapse
Affiliation(s)
- Ewan Thomas
- Sport and Exercise Sciences Research Unit, Department of Psychological, Educational Science and Human Movement University of Palermo, Palermo, Italy
| | - Marianna Bellafiore
- Sport and Exercise Sciences Research Unit, Department of Psychological, Educational Science and Human Movement University of Palermo, Palermo, Italy
| | - Ambra Gentile
- Sport and Exercise Sciences Research Unit, Department of Psychological, Educational Science and Human Movement University of Palermo, Palermo, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, Department of Psychological, Educational Science and Human Movement University of Palermo, Palermo, Italy
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, Department of Psychological, Educational Science and Human Movement University of Palermo, Palermo, Italy
| |
Collapse
|
41
|
Støve MP, Hirata RP, Palsson TS. The tolerance to stretch is linked with endogenous modulation of pain. Scand J Pain 2021; 21:355-363. [PMID: 34387949 DOI: 10.1515/sjpain-2020-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The effect of stretching on joint range of motion is well documented, and although sensory perception has significance for changes in the tolerance to stretch following stretching the underlining mechanisms responsible for these changes is insufficiently understood. The aim of this study was to examine the influence of endogenous pain inhibitory mechanisms on stretch tolerance and to investigate the relationship between range of motion and changes in pain sensitivity. METHODS Nineteen healthy males participated in this randomized, repeated-measures crossover study, conducted on 2 separate days. Knee extension range of motion, passive resistive torque, and pressure pain thresholds were recorded before, after, and 10 min after each of four experimental conditions; (i) Exercise-induced hypoalgesia, (ii) two bouts of static stretching, (iii) resting, and (iv) a remote, painful stimulus induced by the cold pressor test. RESULTS Exercise-induced hypoalgesia and cold pressor test caused an increase in range of motion (p<0.034) and pressure pain thresholds (p<0.027). Moderate correlations in pressure pain thresholds were found between exercise-induced hypoalgesia and static stretch (Rho>0.507, p=0.01) and exercise-induced hypoalgesia and the cold pressor test (Rho=0.562, p=0.01). A weak correlation in pressure pain thresholds and changes in range of motion were found following the cold pressor test (Rho=0.460, p=0.047). However, a potential carryover hypoalgesic effect may have affected the results of the static stretch. CONCLUSIONS These results suggest that stretch tolerance may be linked with endogenous modulation of pain. Present results suggest, that stretch tolerance may merely be a marker for pain sensitivity which may have clinical significance given that stretching is often prescribed in the rehabilitation of different musculoskeletal pain conditions where reduced endogenous pain inhibition is frequently seen.
Collapse
Affiliation(s)
- Morten Pallisgaard Støve
- Department of Physiotherapy, University College of Northern Denmark (UCN), Aalborg East, Denmark
| | - Rogerio Pessoto Hirata
- Department of Health Science and Technology, SMI®, Faculty of Medicine, Aalborg University, Aalborg East, Denmark
| | - Thorvaldur Skuli Palsson
- Department of Health Science and Technology, SMI®, Faculty of Medicine, Aalborg University, Aalborg East, Denmark
| |
Collapse
|
42
|
Vieira DCL, Opplert J, Babault N. Acute effects of dynamic stretching on neuromechanical properties: an interaction between stretching, contraction, and movement. Eur J Appl Physiol 2021; 121:957-967. [PMID: 33417034 DOI: 10.1007/s00421-020-04583-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The present study aimed to investigate the acute effects of dynamic stretching on neurophysiological and mechanical properties of plantar flexor muscles and to test the hypothesis that dynamic stretching resulted from an interaction between stretching, movement, and contraction. METHODS The dynamic stretching conditioning activity (DS) was compared to static stretching (SS), passive cyclic stretching (PCS), isometric contractions (IC), static stretching followed by isometric contractions (SSIC), and control (CO) conditions. Stretching amplitude (DS, SS, PCS and SSIC), contraction intensity (DS, IC and SSIC) and duration (all 6 conditions) were matched. Thirteen volunteers were included. Passive torque, fascicle length, and stiffness were evaluated from a dynamometer and ultrasonography during passive dorsiflexion. Neuromuscular electrical stimulation was used to investigate contractile properties [peak twitch torque (PTT), and rate of torque development (RTD)] and muscle voluntary activation (%VA). Gastrocnemius lateralis electromyographic activity (GL EMG/Mwave) was obtained during maximal voluntary contraction. All of these parameters were measured immediately before and 10 s after each experimental condition. RESULTS Peak twitch torque, RTD, %VA, GL EMG/Mwave remained unaltered, while passive torque was significantly reduced after DS (- 8.14 ± 2.21%). SS decreased GL EMG/Mwave (- 7.83 ± 12.01%) and passive torque (- 2.16 ± 7.25%). PCS decreased PTT (- 3.40 ± 6.03%), RTD (- 2.96 ± 5.16%), and passive torque (- 2.16 ± 2.05%). IC decreased passive torque (- 7.72 ± 1.97%) and enhanced PTT (+ 5.77 ± 5.19%) and RTD (+ 7.36 ± 8.35%). However, SSIC attenuated PTT and RTD improvements as compared to IC. CONCLUSION These results suggested that dynamic stretching is multi-component and would result from an interaction between stretching, contraction, and movement.
Collapse
Affiliation(s)
- Denis César Leite Vieira
- Center for Performance Expertise, INSERM UMR1093-CAPS, Faculty of Sports Sciences, University of Burgundy, Dijon, France.,College of Physical Education, University of Brasilia, Brasilia, Brazil
| | - Jules Opplert
- Center for Performance Expertise, INSERM UMR1093-CAPS, Faculty of Sports Sciences, University of Burgundy, Dijon, France
| | - Nicolas Babault
- Center for Performance Expertise, INSERM UMR1093-CAPS, Faculty of Sports Sciences, University of Burgundy, Dijon, France.
| |
Collapse
|
43
|
Fukaya T, Konrad A, Sato S, Kiyono R, Yahata K, Yasaka K, Onuma R, Yoshida R, Nakamura M. Comparison Between Contract-Relax Stretching and Antagonist Contract-Relax Stretching on Gastrocnemius Medialis Passive Properties. Front Physiol 2021. [PMID: 35185595 DOI: 10.3389/fphys.2021.656579/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Antagonist contract-relax stretching and contract-relax stretching is commonly used in sports practice and rehabilitation settings. To date, no study has compared these modalities regarding muscle stiffness and stretch tolerance. This study aimed to investigate the effects of contract-relax and antagonist contract-relax stretching on dorsiflexion range of motion (ROM), stretch tolerance, and shear elastic modulus. Forty healthy participants (24 men and 16 women) took part in the study. Participants were randomly assigned to perform either contract-relax stretching or antagonist contract-relax stretching for 2 min. Outcomes were assessed on ROM, stretch tolerance, and shear elastic modulus before and after stretching. The ROM and stretch tolerance significantly increased after both contract-relax stretching (+ 5.4 ± 5.8°, p < 0.05; + 3.5 ± 8.0 Nm, p < 0.05) and antagonist contract-relax stretching (+ 6.1 ± 4.9°, p < 0.05; + 4.2 ± 6.4 Nm, p < 0.05); however, no significant difference was found between the two groups. Alternatively, the shear elastic modulus significantly decreased after both contract-relax (-31.1 ± 22.6 kPa, p < 0.05) and antagonist contract-relax stretching (-11.1 ± 22.3 kPa, p < 0.05); however, contract-relax stretching (-41.9 ± 19.6%) was more effective than antagonist contract-relax stretching (-12.5 ± 61.6%). The results of this study suggest that contract-relax stretching instead of antagonist contract-relax stretching should be conducted to decrease muscle stiffness. However, either contract-relax or antagonist contract-relax stretching can increase ROM.
Collapse
Affiliation(s)
- Taizan Fukaya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Rehabilitation, Kyoto Kujo Hospital, Kyoto, Japan
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Ryosuke Kiyono
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Koki Yasaka
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Remi Onuma
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Riku Yoshida
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
44
|
Soares ALC, Nogueira FDS, Gomes PSC. Assessment methods of vastus lateralis muscle architecture using panoramic ultrasound: a new approach, test-retest reliability and measurement error. REVISTA BRASILEIRA DE CINEANTROPOMETRIA E DESEMPENHO HUMANO 2021. [DOI: 10.1590/1980-0037.2021v23e76402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract Extended-field-of-view ultrasonography is a valid alternative to determine the dimensions of the skeletal striated muscle; however, some factors may influence the final measurement. The aim of this study was to determine the test-retest reliability and measurement error of vastus lateralis muscle architecture variables through internal anatomical landmarks and to compare three fixed determined points using extended-field-of-view ultrasonography. Twelve young (24 ± 6 years) adult university male students participated in the study. Images were obtained through extended-field-of-view ultrasonography of the vastus lateralis muscle. Measurements were made for muscle thickness (MT), fascicle length (FL), and fascicle pennation angle (FA) using a method that identifies internal anatomical landmarks. MT was also measured at predetermined distances of 2 cm proximal, 6 cm proximal, and 2 cm distal. One-way ANOVA with repeated measures did not identify any test-retest significant differences for all variables measured. Typical measurement error in centimeters (cm) or degrees (º), coefficient of variation in percentage (%) and intraclass correlation coefficient were MT = 0.07 cm, 2.93%, 0.964; FL = 0.31 cm, 2.89%, 0.947; FA = 0.92°, 4.08%, 0.942; MT 2 cm proximal = 0.10 cm, 3.77%, 0.910; MT 6 cm proximal = 0.27 cm, 9.66%, 0.576; MT 2 cm distal = 0.35 cm, 19.76%, 0.564. MT, FL and FA showed high reliability and low measurement error. Internal anatomical landmarks proved to be more reliable and presented smaller measurement errors when compared to the predetermined distances method.
Collapse
|
45
|
Fukaya T, Kiyono R, Sato S, Yahata K, Yasaka K, Onuma R, Nakamura M. Effects of Static Stretching With High-Intensity and Short-Duration or Low-Intensity and Long-Duration on Range of Motion and Muscle Stiffness. Front Physiol 2020; 11:601912. [PMID: 33329054 PMCID: PMC7714915 DOI: 10.3389/fphys.2020.601912] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
This study investigated the effects of static stretching (SS) delivered with the same load but using two protocols – high-intensity and short-duration and low-intensity and long-duration – on range of motion (ROM) and muscle stiffness. A total of 18 healthy students participated in the study. They randomly performed high-intensity and short-duration (120% and 100 s) or low-intensity and long-duration (50% and 240 s) SS. Outcomes were assessed on ROM, passive torque at dorsiflexion ROM, and shear elastic modulus of the medial gastrocnemius before and after static stretching. The results showed that ROM increased significantly at post-stretching compared to that at pre-stretching in both high-intensity and short-duration [+6.1° ± 4.6° (Δ25.7 ± 19.9%)] and low-intensity and long-duration [+3.6° ± 2.3° (Δ16.0 ± 11.8%)]. Also, the ROM was significantly higher at post-stretching in high-intensity and short-duration conditions than that in low-intensity and long-duration. The passive torque at dorsiflexion ROM was significantly increased in both high-intensity and short-duration [+5.8 ± 12.8 Nm (Δ22.9 ± 40.5%)] and low-intensity and long-duration [+2.1 ± 3.4 Nm (Δ6.9 ± 10.8%)] conditions, but no significant differences were observed between both conditions. The shear elastic modulus was significantly decreased in both high-intensity and short-duration [−8.8 ± 6.1 kPa (Δ − 38.8 ± 14.5%)] and low-intensity and long-duration [−8.0 ± 12.8 kPa (Δ − 22.2 ± 33.8%)] conditions. Moreover, the relative change in shear elastic modulus in the high-intensity and short-duration SS was significantly greater than that in low-intensity and long-duration SS. Our results suggest that a higher intensity of the static stretching should be conducted to increase ROM and decrease muscle stiffness, even for a short time.
Collapse
Affiliation(s)
- Taizan Fukaya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Rehabilitation, Kyoto Kujo Hospital, Kyoto, Japan
| | - Ryosuke Kiyono
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Koki Yasaka
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Remi Onuma
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
46
|
Fukaya T, Matsuo S, Iwata M, Yamanaka E, Tsuchida W, Asai Y, Suzuki S. Acute and chronic effects of static stretching at 100% versus 120% intensity on flexibility. Eur J Appl Physiol 2020; 121:513-523. [PMID: 33151438 DOI: 10.1007/s00421-020-04539-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/22/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE The acute effects of static stretching have been frequently studied, but the chronic effects have not been studied concurrently. Thus, this study aimed to investigate both the acute and chronic effects of static stretching at different intensities on flexibility. METHODS Twenty-three healthy men were randomly assigned to perform 1 min of static stretching 3 days/week for 4 weeks at 100% intensity (n = 12) or 120% intensity (n = 11). The acute effects of stretching were assessed by measuring the range of motion (ROM), peak passive torque, and passive stiffness before and after every stretching session; the chronic effects of stretching were assessed by measuring these outcomes at baseline and after 2 and 4 weeks of stretching. RESULTS Compared with the 100% intensity group, the 120% intensity group had significantly greater acute increases in ROM after all 12 sessions, a significantly greater decrease in passive stiffness after 11 of 12 sessions, and a significantly greater increase in peak passive torque after six of 12 sessions. Regarding the chronic effects, ROM was significantly increased in both groups after 2 and 4 weeks of stretching. Peak passive torque significantly increased in the 100% intensity group after 2 and 4 weeks of stretching, and after 4 weeks in the 120% intensity group. CONCLUSION Stretching at 120% intensity resulted in significantly greater acute improvements in ROM, peak passive torque, and stiffness than stretching at 100% intensity. Four weeks of stretching increased ROM and peak passive torque but did not decrease passive stiffness, regardless of the stretching intensity.
Collapse
Affiliation(s)
- Taizan Fukaya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan
- Department of Rehabilitation, Kyoto Kujo Hospital, 10 Karahashirajoumon-cho, Minami-ku, Kyoto, 601-8453, Japan
| | - Shingo Matsuo
- Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashihaemi-cho, Handa, Aichi, 475-0012, Japan.
| | - Masahiro Iwata
- Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashihaemi-cho, Handa, Aichi, 475-0012, Japan
- Department of Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Eiji Yamanaka
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, 4-4-1 Yatsu, Narashino, Chiba, Japan
| | - Wakako Tsuchida
- Department of Life Science and Biotechnology, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| | - Yuji Asai
- Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashihaemi-cho, Handa, Aichi, 475-0012, Japan
| | - Shigeyuki Suzuki
- Department of Health and Sports Sciences, School of Health Sciences, Asahi University, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| |
Collapse
|
47
|
Larouche MC, Camiré Bernier S, Racine R, Collin O, Desmons M, Mailloux C, Massé-Alarie H. Stretch-induced hypoalgesia: a pilot study. Scand J Pain 2020; 20:837-845. [PMID: 32881712 DOI: 10.1515/sjpain-2020-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/10/2020] [Indexed: 01/07/2023]
Abstract
Objectives Stretching is an intervention often used in various kinds of rehabilitation protocols and the effects on pain sensitivity has sparsely been investigated, especially when addressing potential effects on pain. The objective is to investigate the immediate effects of an axial and peripheral prolonged stretch on pressure pain sensitivity (PPT) and temporal summation (TS) on local and distal sites in healthy subjects. Methods Twenty-two healthy volunteers were recruited to participate in this pilot study. Two prolonged stretching protocols were performed: low back and wrist extensors stretches. PPT and pinprick TS were measured pre- and post-intervention at local and remote sites. Repeated measures analysis of variance (ANOVA) was used to examine the effects and significance of the interventions. Results The low back stretch induced an increase in PPT for both local and remote sites, and the wrist stretch produced a PPT increase only at the local site. TS did not change. Conclusions Low back stretching induced an increase in PPT at both local and remote sites whereas the wrist stretch only increased PPT locally, suggesting hypoalgesia at these sites. Further studies are needed to confirm the effect and mechanisms using randomised, controlled and parallel study design. Considering that pain sensitivity is different than clinical pain, results are difficult to extrapolate to clinical practice. Future studies testing clinical pain are needed to better understand the clinical implication of these results.
Collapse
Affiliation(s)
| | | | - Rosalie Racine
- McGill University, School of Occupational and Physical Therapy, Montreal, Canada
| | - Olivier Collin
- McGill University, School of Occupational and Physical Therapy, Montreal, Canada
| | - Mikaël Desmons
- Cirris research centre, Université Laval, Quebec City, Canada
| | | | - Hugo Massé-Alarie
- Cirris research centre, Université Laval, Quebec City, Canada.,Rehabilitation Unit, Université Laval, Quebec City, Canada
| |
Collapse
|
48
|
Andrade RJ, Freitas SR, Hug F, Le Sant G, Lacourpaille L, Gross R, Quillard JB, McNair PJ, Nordez A. Chronic effects of muscle and nerve-directed stretching on tissue mechanics. J Appl Physiol (1985) 2020; 129:1011-1023. [PMID: 32853116 DOI: 10.1152/japplphysiol.00239.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue-directed stretching interventions can preferentially load muscular or nonmuscular structures such as peripheral nerves. How these tissues adapt mechanically to long-term stretching is poorly understood. This randomized, single-blind, controlled study used ultrasonography and dynamometry to compare the effects of 12-wk nerve-directed and muscle-directed stretching programs versus control on maximal ankle dorsiflexion range of motion (ROM) and passive torque, shear wave velocity (SWV; an index of stiffness), and architecture of triceps surae and sciatic nerve. Sixty healthy adults were randomized to receive nerve-directed stretching, muscle-directed stretching, or no intervention (control). The muscle-directed protocol was designed to primarily stretch the plantar flexor muscle group, whereas the nerve-directed intervention targeted the sciatic nerve tract. Compared with the control group [mean; 95% confidence interval (CI)], muscle-directed intervention showed increased ROM (+7.3°; 95% CI: 4.1-10.5), decreased SWV of triceps surae (varied from -0.8 to -2.3 m/s across muscles), decreased passive torque (-6.8 N·m; 95% CI: -11.9 to -1.7), and greater gastrocnemius medialis fascicle length (+0.4 cm; 95% CI: 0.1-0.8). Muscle-directed intervention did not affect the SWV and size of sciatic nerve. Participants in the nerve-directed group showed a significant increase in ROM (+9.9°; 95% CI: 6.2-13.6) and a significant decrease in sciatic nerve SWV (> -1.8 m/s across nerve regions) compared with the control group. Nerve-directed intervention had no effect on the main outcomes at muscle and joint levels. These findings provide new insights into the long-term mechanical effects of stretching interventions and have relevance to clinical conditions where change in mechanical properties has occurred.NEW & NOTEWORTHY This study demonstrates that the mechanical properties of plantar flexor muscles and sciatic nerve can adapt mechanically to long-term stretching programs. Although interventions targeting muscular or nonmuscular structures are both effective at increasing maximal range of motion, the changes in tissue mechanical properties (stiffness) are specific to the structure being preferentially stretched by each program. We provide the first in vivo evidence that stiffness of peripheral nerves adapts to long-term loading stimuli using appropriate nerve-directed stretching.
Collapse
Affiliation(s)
- Ricardo J Andrade
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France.,School of Allied Health Sciences, Griffith University, Brisbane and Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Sandro R Freitas
- Universidade de Lisboa, Faculdade de Motricidade Humana, Centro Interdisciplinar de Estudo da Performance Humana (CIPER), Lisbon, Portugal
| | - François Hug
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France.,Institut Universitaire de France (IUF), Paris, France.,The University of Queensland, National Health and Medical Research Council (NHMRC) Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Guillaume Le Sant
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France.,School of Physiotherapy (IFM3R), Nantes, France
| | - Lilian Lacourpaille
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France
| | - Raphaël Gross
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France.,Gait Analysis Laboratory, Physical and Rehabilitation Medicine Department, University Hospital of Nantes, Nantes, France
| | - Jean-Baptiste Quillard
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France
| | - Peter J McNair
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Antoine Nordez
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France.,Institut Universitaire de France (IUF), Paris, France.,Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
49
|
Sato S, Hiraizumi K, Kiyono R, Fukaya T, Nishishita S, Nunes JP, Nakamura M. The effects of static stretching programs on muscle strength and muscle architecture of the medial gastrocnemius. PLoS One 2020; 15:e0235679. [PMID: 32645095 PMCID: PMC7347101 DOI: 10.1371/journal.pone.0235679] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/19/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction Static stretching (SS) program are widely used in clinical and athletic settings. Many previous studies investigate the effect of SS program on muscle strength and muscle architecture (muscle thickness, and pennation angleh). However, no consensus has been reached about the effect of SS programs on muscle strength and muscle architecture. The aim of this study was to investigate the effects of 6-week SS programs performed at different weekly frequencies on muscle strength, muscle thickness and pennation angle at different ankle joint positions. Methods A total of 24 healthy male volunteers were performed 6-week SS programs (2,160 s of SS: 360 s/week*6 weeks) and were randomized to a group that performed SS once a week, or a group that performed SS three times per week. Total time under stretching was equated between groups. The muscle strength (maximum voluntary isometric contraction) at three different ankle joints were assessed before and after the 6-week SS program. In addition, muscle thickness and pennation angle were assessed by ultrasonography before and after 6-week SS program. Results There were no significant changes in all variables before and after the 6-week SS program, regardless of weekly frequency (p > 0.05). Conclusions Our results suggest that 6-week SS programs do not increase muscle strength or muscle architecture at different ankle joint positions, regardless of stretching frequency; however, no negative effect on these outcomes was observed, contrary to evidence on the immediate, detrimental effects of SS.
Collapse
Affiliation(s)
- Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Japan
| | - Kakeru Hiraizumi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Japan
| | - Ryosuke Kiyono
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Japan
| | - Taizan Fukaya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Japan
- Department of Rehabilitation, Kyoto Kujo Hospital, Minami-ku, Japan
| | - Satoru Nishishita
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Institute of Rehabilitation Science, Tokuyukai Medical Corporation, Toyonaka, Japan
- Kansai Rehabilitation Hospital, Tokuyukai Medical Corporation, Toyonaka, Japan
| | - João Pedro Nunes
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| | - Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Japan
- * E-mail:
| |
Collapse
|
50
|
Ikeda N, Otsuka S, Kawanishi Y, Kawakami Y. Effects of Instrument-assisted Soft Tissue Mobilization on Musculoskeletal Properties. Med Sci Sports Exerc 2020; 51:2166-2172. [PMID: 31083046 PMCID: PMC6798743 DOI: 10.1249/mss.0000000000002035] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose Instrument-assisted soft tissue mobilization (IASTM) has been reported to improve joint range of motion (flexibility). However, it is not clear whether this change in the joint range of motion is accompanied by any alterations in the mechanical and/or neural properties. This study aimed to investigate the effects of IASTM in plantarflexors and Achilles tendon on the mechanical and neural properties of them. Methods This randomized, controlled, crossover study included 14 healthy volunteers (11 men and 3 women, 21–32 yr). IASTM was performed on the skin over the posterior part of the lower leg for 5 min and targeted the soft tissues (gastrocnemii, soleus, and tibialis posterior muscles; overlying deep fascia; and Achilles tendon). As a control condition, the same participants rested for 5 min between pre- and postmeasurements without IASTM on a separate day. The maximal ankle joint dorsiflexion angle (dorsiflexion range of motion), the peak passive torque (stretch tolerance), and the ankle joint stiffness (slope of the relationship between passive torque and ankle joint angle) during the measurement of the dorsiflexion range of motion and muscle stiffness of the triceps surae (using shear wave elastography) were measured before and immediately after the interventions. Results After IASTM, the dorsiflexion range of motion significantly increased by 10.7% ± 10.8% and ankle joint stiffness significantly decreased by −6.2% ± 10.1%. However, peak passive torque and muscle stiffness did not change. All variables remained unchanged in the repeated measurements of controls. Conclusion IASTM can improve joint range of motion, without affecting the mechanical and neural properties of the treated muscles.
Collapse
Affiliation(s)
- Naoki Ikeda
- Faculty of Sport Sciences, Waseda University, Saitama, JAPAN
| | - Shun Otsuka
- Graduate School of Sport Sciences, Waseda University, Saitama, JAPAN
| | | | - Yasuo Kawakami
- Faculty of Sport Sciences, Waseda University, Saitama, JAPAN
| |
Collapse
|