1
|
Bigliassi M, Antonio DS, Celoch K, Krause MP. Examining the relationship between subjective exercise tolerance and psychophysiological reactivity during physical stress. Psychophysiology 2024:e14680. [PMID: 39394542 DOI: 10.1111/psyp.14680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/13/2024]
Abstract
It has been hypothesized that one's ability to control impulses aids in sustaining effort despite experiencing painful physical sensations. Physical exercise has been used extensively as an intervention to strengthen the inhibitory control system and protect an individual's cognitive plan of action. It is unclear, however, whether the high levels of exercise tolerance could facilitate inhibitory control under varied stressors. The present study explored the relationship between subjective exercise tolerance and psychophysiological characteristics that indicate reactivity capacity when exposed to the cold pressor test. Thirty-six participants were divided into two groups based on their subjective exercise tolerance profiles. During the test, participants' psychophysiological reactivity was monitored via heart rate variability. Participants were also required to answer questions about their perceptual and affective states at the beginning and immediately after the stress test. The study revealed insights into dominance perception and emotional states among individuals with varying subjective exercise tolerance levels. High-tolerant individuals endured physical discomfort longer (~50 s) and exhibited higher perceived dominance at the outset of the test when compared to their low-tolerant counterparts. Despite differences in task performance, both groups experienced more positive affective states post-task, potentially as a result of a heightened sense of self-accomplishment. Notably, both groups showed similar levels of psychophysiological reactivity, suggesting a protective effect of physical tolerance on ensuing biological responses. Overall, this study sheds light on the complex relationship between exercise tolerance, dominance perception, and psychophysiological reactivity during physically demanding tasks, enriching our understanding of how developing physical tolerance may impact inhibitory control under stress.
Collapse
Affiliation(s)
- Marcelo Bigliassi
- Department of Teaching and Learning, Florida International University, Miami, Florida, USA
| | - Dayanne S Antonio
- Department of Teaching and Learning, Florida International University, Miami, Florida, USA
| | - Kamil Celoch
- Department of Teaching and Learning, Florida International University, Miami, Florida, USA
| | - Maressa P Krause
- Department of Physical Education, Federal University of Technology, Parana, Brazil
| |
Collapse
|
2
|
Shiravand F, Motamedi P, Amani-Shalamzari S, Amiri E, da Silva Machado DG. Effect of repeated sessions of transcranial direct current stimulation on subjective and objective measures of recovery and performance in soccer players following a soccer match simulation. Sci Rep 2024; 14:20809. [PMID: 39242725 PMCID: PMC11379740 DOI: 10.1038/s41598-024-71701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
We investigated the effect of repeated sessions of anodal transcranial direct current stimulation (a-tDCS) on subjective and objective measures of recovery, cognitive and sport-specific performance in professional soccer players following a soccer match simulation (SMS). Sixteen soccer players participated in this randomized, crossover, and sham-controlled study. They completed baseline assessments of well-being, total quality recovery (TQR), electromyographic activity (EMG) of the thigh muscles, countermovement jump (CMJ), and cognitive and Loughborough soccer passing test (LSPT) skills. Then, the participants engaged in an SMS routine (2 × 45 min, 15-min intervals). There was no significant difference in rating of perceived exertion (RPE) during the SMS in the anodal (17.25 ± 0.85) and sham (16.93 ± 0.92) conditions (p = 0.19). Following the SMS, the participants were randomized to receive three sessions of a-tDCS (2 mA, 20 min, +F3/-F4) targeting the left dorsolateral prefrontal cortex (DLPFC) or sham immediately after, 24 h, and 48 h after the SMS. Finally, the same outcome measures were evaluated 24 and 48 h following the SMS. A two-way repeated-measures ANOVA showed that a-tDCS stimulation improved passing skills (decreased time to perform the LSPT and number of errors; all ps < 0.01; d = 0.56-2.9) and increased the feeling of well-being (p = 0.02; d = 2.8), with no effect on TQR, cognitive performance, CMJ performance, and EMG. Therefore, the results of the present study indicate, for the first time, that repeated a-tDCS could be used as an adjunct method to accelerate soccer players' well-being and technical performance recovery, particularly after congested matches and/or training sessions. These findings may also be applicable to other team sports with characteristics similar to soccer (e.g., futsal, handball, basketball, etc.).
Collapse
Affiliation(s)
- Fatemeh Shiravand
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Kharazmi University, Tehran, Iran
| | - Pezhman Motamedi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Kharazmi University, Tehran, Iran
| | - Sadegh Amani-Shalamzari
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Kharazmi University, Tehran, Iran.
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
3
|
Holgado D, Sanabria D, Vadillo MA, Román-Caballero R. Zapping the brain to enhance sport performance? An umbrella review of the effect of transcranial direct current stimulation on physical performance. Neurosci Biobehav Rev 2024; 164:105821. [PMID: 39053786 DOI: 10.1016/j.neubiorev.2024.105821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Concepts such as "neurodoping" have contributed to an expansion in the area of transcranial direct current stimulation (tDCS) and its impact over physical performance in recent years. This umbrella review examines meta-analyses to evaluate tDCS's impact on exercise performance in healthy individuals. We identified 9 meta-analyses that met our inclusion criteria, encompassing 50 crossover studies and 683 participants. Like previous meta-analyses, we found a small but significant effect across individual studies (gz = 0.28, 95%CI [0.18, 0.39]). However, we also found clear evidence of publication bias, low power and substantial variability in methodological decisions. The average effect became non-significant after accounting for publication bias (grm = 0.10, 95%CrI [-0.04, 0.20], BF10 = 0.99), and a specification curve analysis showed that the final effect could range from g = -0.23 to g = 0.33, depending on decisions such as the formula used for estimating the effect size and multiple additional analytic steps. Overall, our findings suggest that current evidence does not conclusively support acute tDCS as an exercise performance enhancer.
Collapse
Affiliation(s)
- Darías Holgado
- Institute of Sport Sciences, University of Lausanne, Quartier, UNIL-Centre, Bâtiment, Synathlon, Lausanne, Switzerland; Department of Experimental Psychology, University of Granada, Spain; Mind, Brain & Behavior Research Center, University of Granada, Spain.
| | - Daniel Sanabria
- Department of Experimental Psychology, University of Granada, Spain; Mind, Brain & Behavior Research Center, University of Granada, Spain
| | - Miguel A Vadillo
- Department of Basic Psychology, Autonomous University of Madrid, Madrid, Spain
| | - Rafael Román-Caballero
- Department of Experimental Psychology, University of Granada, Spain; Mind, Brain & Behavior Research Center, University of Granada, Spain; Department of Psychology Neuroscience, and Behaviour, McMaster University, Hamilton, Canada; McMaster Institute for Music and the Mind, McMaster University, Hamilton, Canada
| |
Collapse
|
4
|
Vargas NT, Robertson CV, Marino FE. Acute ingestion of Ibuprofen does not influence the release of IL-6 or improve self-paced exercise in the heat despite altering cortical activity. Eur J Appl Physiol 2024; 124:2303-2313. [PMID: 38446191 PMCID: PMC11322222 DOI: 10.1007/s00421-024-05452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
The present study tested the hypothesis that ingesting 800 mg Ibuprofen prior to self-paced cycling at a fixed rating of perceived exertion (RPE) improves performance by attenuating the release of Interleukin (IL)-6 and its signalling molecules, whilst simultaneously modulating cortical activity and cerebral oxygenation to the brain. Eight healthy, recreationally active males ingested 800 mg Ibuprofen or a placebo ~ 1 h prior to performing fixed RPE cycling for 60 min in 35 °C and 60% relative humidity at an intensity of hard to very hard (RPE = 16) with intermittent maximal (RPE = 20) sprints every 10 min. Power output (PO), core and mean skin temperatures (Tc, Tsk), respectively, and heart rate (HR) were measured continuously. Electroencephalography (EEG) recordings at the frontal (Fz), motor (Cz) and Parietal (Pz) areas (90 s) were collected every 5 min. IL-6, soluble glycoprotein receptor (sgp130) and IL-6 receptor (R) were collected at pre-, 30 min and immediately post-exercise. Mean PO, HR, Tc and Tsk, and RPE were not different between trials (P ≥ 0.33). At end-exercise, the change in IL-6, sgp130 and sIL-6R was not different between trials (P ≥ 0.12). The increase in α and β activity did not differ in any cortices between trials (P ≥ 0.07); however, there was a significant reduction in α/β activity in the Ibuprofen compared to placebo trials at all sites (P ≤ 0.05). Ingesting a maximal, over-the-counter dose of Ibuprofen prior to exercise in the heat does not attenuate the release of IL-6, nor improve performance, but may influence cortical activity evidenced by a greater reduction in α/β activity.
Collapse
Affiliation(s)
- Nicole T Vargas
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, 54 Mills Rd, Florey Building, Canberra, ACT, 2601, Australia.
| | - Caroline V Robertson
- Griffith Centre For Mental Health and ALIVE National Centre for Mental Health Research Translation, Griffith University, Nathan, QLD, Australia
| | - Frank E Marino
- School of Rural Medicine and Research Group for Human Adaptation, Exercise and Health, Charles Sturt University, Orange, NSW, 2890, Australia
| |
Collapse
|
5
|
Tyagi O, Mehta RK. Sex-specific Neural Strategies During Fatiguing Work in Older Adults. HUMAN FACTORS 2024; 66:1490-1503. [PMID: 36898850 DOI: 10.1177/00187208231159526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND Historical biases in ergonomics-related studies have been attributed to lack of participant diversity and sensitivity of measurements to capture variability between diverse groups. We posit that a neuroergonomics approach, that is, study of brain-behavior relationships during fatiguing work, allows for unique insights on sex differences in fatigue mechanisms that are not available via traditional "neck down" measurement approaches. OBJECTIVE This study examined the supraspinal mechanisms of exercise performance under fatigue and determined if there were any sex differences in these mechanisms. METHODS Fifty-nine older adults performed submaximal handgrip contractions until voluntary fatigue. Traditional ergonomics measures, namely, force variability, electromyography (EMG) of arm muscles, and strength and endurance times, and prefrontal and motor cortex hemodynamic responses were recorded. RESULTS There were no significant differences observed between older males and females in fatigability outcomes (i.e., endurance times, strength loss, and EMG activity) and brain activation. Effective connectivity from prefrontal to motor areas was significant for both sexes throughout the task, but during fatigue, males had higher interregional connectivity than females. DISCUSSION While traditional metrics of fatigue were comparable between the sexes, we observed distinct sex-specific neuromotor strategies (i.e., information flow between frontal-motor regions) that were adopted by older adults to maintain motor performance. APPLICATION The findings from this study offer insights into the capabilities and adaptation strategies of older men and women under fatiguing conditions. This knowledge can facilitate in the development of effective and targeted ergonomic strategies that accommodate for the varying physical capacities of diverse worker demographics.
Collapse
Affiliation(s)
- Oshin Tyagi
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, USA
| | - Ranjana K Mehta
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, USA
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
6
|
Matta PM, Glories D, Alamia A, Baurès R, Duclay J. Mind over muscle? Time manipulation improves physical performance by slowing down the neuromuscular fatigue accumulation. Psychophysiology 2024; 61:e14487. [PMID: 38015102 DOI: 10.1111/psyp.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023]
Abstract
While physical performance has long been thought to be limited only by physiological factors, many experiments denote that psychological ones can also influence it. Specifically, the deception paradigm investigates the effect of psychological factors on performance by manipulating a psychological variable unbeknownst to the subjects. For example, during a physical exercise performed to failure, previous results revealed an improvement in performance (i.e., holding time) when the clock shown to the subjects was deceptively slowed down. However, the underlying neurophysiological changes supporting this performance improvement due to deceptive time manipulation remain unknown. Here, we addressed this issue by investigating from a neuromuscular perspective the effect of a deceptive clock manipulation on a single-joint isometric task conducted to failure in 24 healthy participants (11 females). Neuromuscular fatigue was assessed by pre- to post-exercise changes in quadriceps maximal voluntary torque (Tmax ), voluntary activation level (VAL), and potentiated twitch (TTW ). Our main results indicated a significant performance improvement when the clock was slowed down (Biased: 356 ± 118 s vs. Normal: 332 ± 112 s, p = .036) but, surprisingly, without any difference in the associated neuromuscular fatigue (p > .05 and BF < 0.3 for Tmax , VAL, and TTW between both sessions). Computational modeling showed that, when observed, the holding time improvement was explained by a neuromuscular fatigue accumulation based on subjective rather than actual time. These results support a psychological influence on neuromuscular processes and contribute significantly to the literature on the mind-body influence, by challenging our understanding of fatigue.
Collapse
Affiliation(s)
- Pierre-Marie Matta
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
- CerCo, Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Dorian Glories
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Andrea Alamia
- CerCo, Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Robin Baurès
- CerCo, Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Duclay
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| |
Collapse
|
7
|
Shin H, Kim R, Park K, Byun K. Role of exercise in modulating prefrontal cortical activation for improved gait and cognition in Parkinson's disease patients. Phys Act Nutr 2024; 28:37-44. [PMID: 38719465 PMCID: PMC11079376 DOI: 10.20463/pan.2024.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
PURPOSE This narrative review evaluated the impact of exercise on gait and cognitive functions in patients with Parkinson's disease (PD), focusing on prefrontal cortical (PFC) activation assessed using near-infrared spectroscopy (NIRS). METHODS A literature search was conducted in the PubMed and Web of Science databases using keywords such as "Parkinson's disease," "gait," "cognitive functions," "exercise," and "NIRS," focusing on publications from the last decade. Studies measuring PFC activity using NIRS during gait tasks in patients with PD were selected. RESULTS The review indicated that patients with PD demonstrate increased PFC activity during gait tasks compared to healthy controls, suggesting a greater cognitive demand for movement control. Exercise has been shown to enhance neural efficiency, thus improving gait and cognitive functions. CONCLUSION Exercise is crucial for improving gait and cognitive functions in patients with PD through increased PFC activation. This emphasizes the importance of incorporating exercise into PD management plans and highlights the need for further studies on its long-term effects and the neurobiological mechanisms underlying its benefits, with the aim of optimizing therapeutic strategies and improving patients' quality of life.
Collapse
Affiliation(s)
- Heehyun Shin
- Division of Sport Science, Sport Science Institute, Health Promotion Center, Incheon National University, Incheon, Republic of Korea
| | - Ryul Kim
- Department of Neurology, Seoul Metropolitan Government – Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kiwon Park
- Department of Biomedical and Robotics Engineering, Incheon National University, Incheon, Republic of Korea
| | - Kyeongho Byun
- Division of Sport Science, Sport Science Institute, Health Promotion Center, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
8
|
Baharlouei H, Goosheh M, Moore M, Ramezani Ahmadi AH, Yassin M, Jaberzadeh S. The effect of transcranial direct current stimulation on rating of perceived exertion: A systematic review of the literature. Psychophysiology 2024; 61:e14520. [PMID: 38217074 DOI: 10.1111/psyp.14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024]
Abstract
The rating of perceived exertion (RPE) is a widely used method for monitoring the load during training, as it provides insight into the subjective intensity of effort experienced during exercises. Considering the role of brain in monitoring and perception of the effort, several studies explored the effect of transcranial direct current stimulation (tDCS) on RPE in different populations. The aim of current study is to review the studies that investigated the effect of tDCS on RPE in three groups including healthy untrained people, physically active persons, and athletes. Nine databases were searched for papers assessing the effect of tDCS on RPE. The data from the included studies were extracted and methodological quality was examined using the risk of bias 2 (ROB2) tool. Thirty-three studies met the inclusion criteria. According to the meta-analysis, active a-tDCS significantly decreased the RPE compared to the sham stimulation. The a-tDCS could decrease the RPE when it was applied over M1 or DLPF. Regarding the measurement tool, Borg's scale 6-20 and OMNI scale could show an improvement in RPE scale. A-tDCS is a promising technique that can decrease the RPE. M1 and DLPFC are suggested as the target area of stimulation. From the tools that measure the RPE, Borg's RPE 6-20 and OMNI scale could better show the effect of a-tDCS.
Collapse
Affiliation(s)
- Hamzeh Baharlouei
- Musculoskeletal Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Meysam Goosheh
- Physical Therapy Department, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maha Moore
- Physical Therapy Department, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Marzieh Yassin
- Iranian Center of Excellence in Physiotherapy, Rehabilitation Research Center, Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Tan XR, Stephenson MC, Alhadad SB, Loh KWZ, Soong TW, Lee JKW, Low ICC. Elevated brain temperature under severe heat exposure impairs cortical motor activity and executive function. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:233-244. [PMID: 37678507 PMCID: PMC10980903 DOI: 10.1016/j.jshs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/27/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Excessive heat exposure can lead to hyperthermia in humans, which impairs physical performance and disrupts cognitive function. While heat is a known physiological stressor, it is unclear how severe heat stress affects brain physiology and function. METHODS Eleven healthy participants were subjected to heat stress from prolonged exercise or warm water immersion until their rectal temperatures (Tre) attained 39.5°C, inducing exertional or passive hyperthermia, respectively. In a separate trial, blended ice was ingested before and during exercise as a cooling strategy. Data were compared to a control condition with seated rest (normothermic). Brain temperature (Tbr), cerebral perfusion, and task-based brain activity were assessed using magnetic resonance imaging techniques. RESULTS Tbr in motor cortex was found to be tightly regulated at rest (37.3°C ± 0.4°C (mean ± SD)) despite fluctuations in Tre. With the development of hyperthermia, Tbr increases and dovetails with the rising Tre. Bilateral motor cortical activity was suppressed during high-intensity plantarflexion tasks, implying a reduced central motor drive in hyperthermic participants (Tre = 38.5°C ± 0.1°C). Global gray matter perfusion and regional perfusion in sensorimotor cortex were reduced with passive hyperthermia. Executive function was poorer under a passive hyperthermic state, and this could relate to compromised visual processing as indicated by the reduced activation of left lateral-occipital cortex. Conversely, ingestion of blended ice before and during exercise alleviated the rise in both Tre and Tbr and mitigated heat-related neural perturbations. CONCLUSION Severe heat exposure elevates Tbr, disrupts motor cortical activity and executive function, and this can lead to impairment of physical and cognitive performance.
Collapse
Affiliation(s)
- Xiang Ren Tan
- Health and Social Sciences, Singapore Institute of Technology, Singapore 138683, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Mary C Stephenson
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Sharifah Badriyah Alhadad
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Kelvin W Z Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Jason K W Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117510, Singapore; N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore.
| | - Ivan C C Low
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
10
|
Pires FO, Pinheiro FA, Brietzke C, Franco-Alvarenga PE, Veras K, de Matos ECT, Rodacki ALF, Ugrinowitsch C. Carbohydrate mouth rinse failed to reduce central fatigue, lower perceived exertion, and improve performance during incremental exercise. Front Nutr 2024; 11:1329074. [PMID: 38445204 PMCID: PMC10912157 DOI: 10.3389/fnut.2024.1329074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 03/07/2024] Open
Abstract
We examined if carbohydrate (CHO) mouth rinse may reduce central fatigue and perceived exertion, thus improving maximal incremental test (MIT) performance. Nine recreational cyclists warmed up for 6 min before rinsing a carbohydrate (CHO) or placebo (PLA) solution in their mouth for 10 s in a double-blind, counterbalanced manner. Thereafter, they performed the MIT (25 W·min-1 increases until exhaustion) while cardiopulmonary and ratings of perceived exertion (RPE) responses were obtained. Pre- to post-MIT alterations in voluntary activation (VA) and peak twitch torque (Tw) were determined. Time-to-exhaustion (p = 0.24), peak power output (PPO; p = 0.45), and V̇O2MAX (p = 0.60) were comparable between conditions. Neither treatment main effect nor time-treatment interaction effect were observed in the first and second ventilatory threshold when expressed as absolute or relative V̇O2 (p = 0.78 and p = 0.96, respectively) and power output (p = 0.28 and p = 0.45, respectively) values, although with moderate-to-large effect sizes. RPE increased similarly throughout the tests and was comparable at the ventilatory thresholds (p = 0.56). Despite the time main effect revealing an MIT-induced central and peripheral fatigue as indicated by the reduced VA and Tw, CHO mouth rinse was ineffective in attenuating both fatigues. Hence, rinsing the mouth with CHO was ineffective in reducing central fatigue, lowering RPE, and improving MIT performance expressed as PPO and time-to-exhaustion. However, moderate-to-large effect sizes in power output values at VT1 and VT2 may suggest some beneficial CHO mouth rinse effects on these MIT outcomes.
Collapse
Affiliation(s)
- Flávio O. Pires
- Exercise Psychophysiology Research Group, School of Arts, Science and Humanities, University of São Paulo, São Paulo, Brazil
| | - Fabiano A. Pinheiro
- Exercise Psychophysiology Research Group, School of Arts, Science and Humanities, University of São Paulo, São Paulo, Brazil
- School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil
| | - Cayque Brietzke
- Exercise Psychophysiology Research Group, School of Arts, Science and Humanities, University of São Paulo, São Paulo, Brazil
| | - Paulo Estevão Franco-Alvarenga
- Exercise Psychophysiology Research Group, School of Arts, Science and Humanities, University of São Paulo, São Paulo, Brazil
| | - Katherine Veras
- Department of Nutrition, University of Mogi das Cruzes, São Paulo, Brazil
| | | | - André L. F. Rodacki
- Department of Physical Education, Federal University of Paraná, Paraná, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, United States
| |
Collapse
|
11
|
Licea J, Khan OA, Singh T, Modlesky CM. Prefrontal cortex hemodynamic activity during a test of lower extremity functional muscle strength in children with cerebral palsy: A functional near-infrared spectroscopy study. Eur J Neurosci 2024; 59:298-307. [PMID: 38128061 DOI: 10.1111/ejn.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
Children with cerebral palsy (CP) exhibit impaired motor control and significant muscle weakness due to a brain lesion. However, studies that assess the relationship between brain activity and performance on dynamic functional muscle strength assessments in CP are needed. The aim of this study was to determine the effect of a progressive lateral step-up test on prefrontal cortex (PFC) hemodynamic activity in children with CP. Fourteen ambulatory children with spastic CP (Gross Motor Function Classification System level I; 5-11 y) and 14 age- and sex-matched typically developing control children completed a progressive lateral step-up test at incremental step heights (0, 10, 15 and 20 cm) using their non-dominant lower limb. Hemodynamic activity in the PFC was assessed using non-invasive, portable functional neuroimaging (functional near-infrared spectroscopy). Children with CP completed fewer repetitions at each step height and exhibited lower PFC hemodynamic activity across step heights compared to controls. Lower PFC activation in CP was maintained after statistically controlling for the number of repetitions completed at each step height. PFC hemodynamic activity was not associated with LSUT task performance in children with CP, but a positive relationship was observed in controls at the most challenging 20 cm step height. The results suggest there is an altered PFC recruitment pattern in children with CP during a highly dynamic test of functional strength. Further studies are needed to explore the mechanisms underlying the suppressed PFC activation observed in children with CP compared to typically developing children.
Collapse
Affiliation(s)
- Joel Licea
- Department of Kinesiology, University of Georgia, Athens, GA, USA
| | - Owais A Khan
- Department of Kinesiology, University of Georgia, Athens, GA, USA
| | - Tarkeshwar Singh
- Department of Kinesiology, The Pennsylvania State University, State College, PA, USA
| | | |
Collapse
|
12
|
Yao ZF, Hsieh S, Yang MH. Exercise habits and mental health: Exploring the significance of multimodal imaging markers. PROGRESS IN BRAIN RESEARCH 2023; 286:179-209. [PMID: 38876575 DOI: 10.1016/bs.pbr.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Engaging in regular physical activity and establishing exercise habits is known to have multifaceted benefits extending beyond physical health to cognitive and mental well-being. This study explores the intricate relationship between exercise habits, brain imaging markers, and mental health outcomes. While extensive evidence supports the positive impact of exercise on cognitive functions and mental health, recent advancements in multimodal imaging techniques provide a new dimension to this exploration. By using a cross-sectional multimodal brain-behavior statistic in participants with different exercise habits, we aim to unveil the intricate mechanisms underlying exercise's influence on cognition and mental health, including the status of depression, anxiety, and quality of life. This integration of exercise science and imaging promises to substantiate cognitive benefits on mental health and uncover functional and structural changes underpinning these effects. This study embarks on a journey to explore the significance of multimodal imaging metrics (i.e., structural and functional metrics) in deciphering the intricate interplay between exercise habits and mental health, enhancing the comprehension of how exercise profoundly shapes psychological well-being. Our analysis of group comparisons uncovered a strong association between regular exercise habits and improved mental well-being, encompassing factors such as depression, anxiety levels, and overall life satisfaction. Additionally, individuals who engaged in exercise displayed enhanced brain metrics across different modalities. These metrics encompassed greater gray matter volume within the left frontal regions and hippocampus, improved white matter integrity in the frontal-occipital fasciculus, as well as more robust functional network configurations in the anterior segments of the default mode network. The interplay between exercise habits, brain adaptations, and mental health outcomes underscores the pivotal role of an active lifestyle in nurturing a resilient and high-functioning brain, thus paving the way for tailored interventions and improved well-being.
Collapse
Affiliation(s)
- Zai-Fu Yao
- College of Education, National Tsing Hua University, Hsinchu City, Taiwan; Research Center for Education and Mind Sciences, National Tsing Hua University, Hsinchu City, Taiwan; Basic Psychology Group, Department of Educational Psychology and Counseling, National Tsing Hua University, Hsinchu City, Taiwan; Department of Kinesiology, National Tsing Hua University, Hsinchu City, Taiwan.
| | - Shulan Hsieh
- Cognitive Electrophysiology Laboratory, Control, Aging, Sleep, and Emotion (CASE), National Cheng Kung University, Tainan City, Taiwan; Department of Psychology, National Cheng Kung University, Tainan City, Taiwan; Institute of Allied Health Sciences, National Cheng Kung University, Tainan City, Taiwan; Department of Public Health, National Cheng Kung University, Tainan City, Taiwan.
| | - Meng-Heng Yang
- Cognitive Electrophysiology Laboratory, Control, Aging, Sleep, and Emotion (CASE), National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
13
|
Machado DGDS, Amiri E. Critical considerations on tDCS-induced changes in corticospinal excitability and exercise performance: should we go beyond M1? J Physiol 2023; 601:5453-5455. [PMID: 37786946 DOI: 10.1113/jp285507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023] Open
Affiliation(s)
- Daniel Gomes da Silva Machado
- Research Group in Neuroscience of Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
14
|
Solon-Júnior LJF, Boullosa Alvarez DA, Martinez Gonzalez B, da Silva Machado DG, de Lima-Junior D, de Sousa Fortes L. The effect of tyrosine supplementation on whole-body endurance performance in physically active population: A systematic review and meta-analysis including GRADE qualification. J Sports Sci 2023; 41:2045-2053. [PMID: 38290812 DOI: 10.1080/02640414.2024.2309434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Although tyrosine supplementation is well recognized to improve cognitive function, its impact on endurance performance is debatable and needs to be clarified further. The purpose of this systematic review and meta-analysis was to evaluate the effects of tyrosine supplementation on whole-body endurance performance in physically active population. The search strategy follow the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA), using four databases (Cochrane Library, Web of Science, Scopus, PsycINFO, and PubMed) until 3 August 2023. The effect of tyrosine (experimental condition) was compared against placebo (control condition). The methodological quality of the included studies was evaluated using the Physiotherapy Evidence Database (PEDro) scale. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE Pro software) System was also used to assess the quality of evidence. A total of 10 interventions from 8 studies were included. The sub-group analysis revealed no significant differences between tyrosine and placebo conditions for time to exhaustion (SMD = 0.02; p = 0.94) and time trial performance (SMD = -0.04; p = 0.85). The level of evidence as qualified with GRADE was moderate. In conclusion, moderate-quality evidence suggests that tyrosine supplementation is ineffective on endurance performance in the physically active population, independently of the endurance task (TTE or ETT).
Collapse
Affiliation(s)
| | - Daniel Alexandre Boullosa Alvarez
- Faculty of Physical Activity and Sports Sciences, Universidad de León, León, Spain
- Integrated Institute of Health, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| | | | | | | | | |
Collapse
|
15
|
Banaei P, Tadibi V, Amiri E, Machado DGDS. Concomitant dual-site tDCS and dark chocolate improve cognitive and endurance performance following cognitive effort under hypoxia: a randomized controlled trial. Sci Rep 2023; 13:16473. [PMID: 37777571 PMCID: PMC10542360 DOI: 10.1038/s41598-023-43568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Ten male cyclists were randomized into four experimental conditions in this randomized, cross-over, double-blind, and sham-controlled study to test the combined effect of acute dark chocolate (DC) ingestion and anodal concurrent dual-site transcranial direct current stimulation (a-tDCS) targeting M1 and left DLPFC on cognitive and whole-body endurance performance in hypoxia after performing a cognitive task. Two hours before the sessions, chocolate was consumed. After arriving at the lab, participants completed an incongruent Stroop task for 30 min in hypoxia (O2 = 13%) to induce mental fatigue, followed by 20 min of tDCS (2 mA) in hypoxia. Then, in hypoxia, they performed a time-to-exhaustion task (TTE) while measuring physiological and psychophysiological responses. Cognitive performance was measured at baseline, after the Stroop task, and during and after TTE. TTE in 'DC + a-tDCS' was significantly longer than in 'white chocolate (WC) + a-tDCS' and WC + sham-tDCS'. The vastus medialis muscle electromyography amplitude was significantly higher in 'DC + a-tDCS' and 'DC + sham-tDCS' than in 'WC + sh-tDCS'. During and after the TTE, choice reaction time was significantly lower in 'DC + a-tDCS' compared to 'WC + sh-tDCS'. Other physiological or psychophysiological variables showed no significant differences. The concurrent use of acute DC consumption and dual-site a-tDCS might improve cognitive and endurance performance in hypoxia.
Collapse
Affiliation(s)
- Parisa Banaei
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-e Bostan, Kermanshah, 6714414971, Iran
| | - Vahid Tadibi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-e Bostan, Kermanshah, 6714414971, Iran.
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-e Bostan, Kermanshah, 6714414971, Iran
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| |
Collapse
|
16
|
Alix-Fages C, Jiménez-Martínez P, de Oliveira DS, Möck S, Balsalobre-Fernández C, Del Vecchio A. Mental fatigue impairs physical performance but not the neural drive to the muscle: a preliminary analysis. Eur J Appl Physiol 2023; 123:1671-1684. [PMID: 36988671 DOI: 10.1007/s00421-023-05189-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Mental fatigue (MF) does not only affect cognitive but also physical performance. This study aimed to explore the effects of MF on muscle endurance, rate of perceived exertion (RPE), and motor units' activity. Ten healthy males participated in a randomised crossover study. The subjects attended two identical experimental sessions separated by 3 days with the only difference of a cognitive task (incongruent Stroop task [ST]) and a control condition (watching a documentary). Perceived MF and motivation were measured for each session at baseline and after each cognitive task. Four contractions at 20% of maximal voluntary contraction (MVIC) were performed at baseline, after each cognitive and after muscle endurance task while measuring motor units by high-density surface electromyography. Muscle endurance until failure at 50% of MVIC was measured after each cognitive task and the RPE was measured right after failure. ST significantly increased MF (p = 0.001) reduced the motivation (p = 0.008) for the subsequent physical task and also impaired physical performance (p = 0.044). However, estimates of common synaptic inputs and motor unit discharge rates as well as RPE were not affected by MF (p > 0.11). In conclusion, MF impairs muscle endurance and motivation for the physical task but not the neural drive to the muscle at any frequency bands. Although it is physiologically possible for mentally fatigued subjects to generate an optimal neuromuscular function, the altered motivation seems to limit physical performance. Preliminarily, our results suggest that the corticospinal pathways are not affected by MF.
Collapse
Affiliation(s)
- Carlos Alix-Fages
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, C/ Fco Tomas Y Valiente 3, Cantoblanco, 28049, Madrid, Spain.
- ICEN Institute, Madrid, Spain.
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain.
| | - Pablo Jiménez-Martínez
- ICEN Institute, Madrid, Spain
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
| | - Daniela Souza de Oliveira
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052, Erlangen, Germany
| | - Sebastian Möck
- Department of Exercise Science, Olympic Training and Testing Center of Hessen, Frankfurt Am Main, Germany
| | - Carlos Balsalobre-Fernández
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, C/ Fco Tomas Y Valiente 3, Cantoblanco, 28049, Madrid, Spain
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052, Erlangen, Germany.
| |
Collapse
|
17
|
Teymoori H, Amiri E, Tahmasebi W, Hoseini R, Grospretre S, Machado DGDS. Effect of tDCS targeting the M1 or left DLPFC on physical performance, psychophysiological responses, and cognitive function in repeated all-out cycling: a randomized controlled trial. J Neuroeng Rehabil 2023; 20:97. [PMID: 37496055 PMCID: PMC10373277 DOI: 10.1186/s12984-023-01221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Despite reporting the positive effects of transcranial direct current stimulation (tDCS) on endurance performance, very few studies have investigated its efficacy in anaerobic short all-out activities. Moreover, there is still no consensus on which brain areas could provide the most favorable effects on different performance modalities. Accordingly, this study aimed to investigate the effects of anodal tDCS (a-tDCS) targeting the primary motor cortex (M1) or left dorsolateral prefrontal cortex (DLPFC) on physical performance, psychophysiological responses, and cognitive function in repeated all-out cycling. METHODS In this randomized, crossover, and double-blind study, 15 healthy physically active men underwent a-tDCS targeting M1 or the left DLPFC or sham tDCS in separate days before performing three bouts of all-out 30s cycling anaerobic test. a-tDCS was applied using 2 mA for 20 min. Peak power, mean power, fatigue index, and EMG of the quadriceps muscles were measured during each bout. Heart rate, perceived exertion, affective valence, and arousal were recorded two minutes after each bout. Color-word Stroop test and choice reaction time were measured at baseline and after the whole anaerobic test. RESULTS Neither tDCS montage significantly changed peak power, mean power, fatigue index, heart rate, affective valence, arousal, and choice reaction time (p> 0.05). a-tDCS over DLPFC significantly lowered RPE of the first bout (compared to sham; p=0.048, Δ=-12.5%) and third bout compared to the M1 (p=0.047, Δ=-12.38%) and sham (p=0.003, Δ=-10.5%), increased EMG of the Vastus Lateralis muscle during the second (p=0.016, Δ= +40.3%) and third bout (p=0.016, Δ= +42.1%) compared to sham, and improved the score of color-word Stroop test after the repeated all-out task (p=0.04, Δ= +147%). The qualitative affective response (valence and arousal) was also higher under the M1 and DLPFC compared to the sham. CONCLUSION We concluded that tDCS targeting M1 or DLPFC does not improve repeated anaerobic performance. However, the positive effect of DLPFC montage on RPE, EMG, qualitative affective responses, and cognitive function is promising and paves the path for future research using different tDCS montages to see any possible effects on anaerobic performance. TRIAL REGISTRATION This study was approved by the Ethics Committee of Razi University (IR.RAZI.REC.1400.023) and registered in the Iranian Registry of Clinical Trials (IRCT id: IRCT20210617051606N5; Registration Date: 04/02/2022).
Collapse
Affiliation(s)
- Hafez Teymoori
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
| | - Worya Tahmasebi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Rastegar Hoseini
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Sidney Grospretre
- EA4660-C3S Laboratory - Culture, Sports, Health and Society, University Bourgogne France- Comte, Besancon, France
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of the Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
18
|
Etemadi M, Amiri E, Tadibi V, Grospretre S, Valipour Dehnou V, Machado DGDS. Anodal tDCS over the left DLPFC but not M1 increases muscle activity and improves psychophysiological responses, cognitive function, and endurance performance in normobaric hypoxia: a randomized controlled trial. BMC Neurosci 2023; 24:25. [PMID: 37020275 PMCID: PMC10077713 DOI: 10.1186/s12868-023-00794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been shown to have positive effects on exercise performance and cognitive function in the normal ambient condition. Hypoxia is deemed a stressful situation with detrimental effects on physiological, psychological, cognitive, and perceptual responses of the body. Nevertheless, no study has evaluated the efficacy of tDCS for counteracting the negative effects of hypoxic conditions on exercise performance and cognition so far. Hence, in the present study, we investigated the effects of anodal tDCS on endurance performance, cognitive function, and perceptual responses in hypoxia. PARTICIPANTS AND METHODS Fourteen endurance-trained males participated in five experimental sessions. After familiarization and measuring peak power output in hypoxia, in the first and second sessions, through the 3rd to 5th sessions, participants performed a cycling endurance task until exhaustion after 30 min hypoxic exposure at resting position followed by 20 min of anodal stimulation of the motor cortex (M1), left dorsolateral prefrontal cortex (DLPFC), or sham-tDCS. Color-word Stroop test and choice reaction time were measured at baseline and after exhaustion. Time to exhaustion, heart rate, saturated O2, EMG amplitude of the vastus lateralis, vastus medialis, and rectus femoris muscles, RPE, affective response, and felt arousal were also measured during the task under hypoxia. RESULTS The results showed a longer time to exhaustion (+ 30.96%, p=0.036), lower RPE (- 10.23%, p = 0.045) and higher EMG amplitude of the vastus medialis muscle (+ 37.24%, p=0.003), affective response (+ 260%, p=0.035) and felt arousal (+ 28.9%, p=0.029) in the DLPFC tDCS compared to sham. The choice reaction time was shorter in DLPFC tDCS compared to sham (- 17.55%, p=0.029), and no differences were seen in the color-word Stroop test among the conditions under hypoxia. M1 tDCS resulted in no significant effect for any outcome measure. CONCLUSIONS We concluded that, as a novel finding, anodal stimulation of the left DLPFC might provide an ergogenic aid for endurance performance and cognitive function under the hypoxic condition probably via increasing neural drive to the working muscles, lowering RPE, and increasing perceptual responses.
Collapse
Affiliation(s)
- Matin Etemadi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
- Room. 73, Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-E Bostan, Kermanshah, 674441497, Iran.
| | - Vahid Tadibi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Sidney Grospretre
- EA4660-C3S Laboratory-Culture, Sports, Health and Society, University Bourgogne France-Comte, Besancon, France
| | - Vahid Valipour Dehnou
- Department of Sports Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| |
Collapse
|
19
|
Vignaud P, Adam O, Palm U, Baeken C, Prieto N, Poulet E, Brunelin J. Can a single session of noninvasive brain stimulation applied over the prefrontal cortex prevent stress-induced cortisol release? Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110667. [PMID: 36273508 DOI: 10.1016/j.pnpbp.2022.110667] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION A better understanding of how the hypothalamic-pituitary-adrenal (HPA) axis can be externally regulated is of major importance, especially because hyperreactivity to stress has been proposed as a key factor in the onset and maintenance of many psychiatric conditions. Over the past decades, numerous studies have investigated whether non-invasive brain stimulation (NIBS) can regulate HPA axis reactivity in acute stress situation. As the current results did not allow us to draw clear conclusions, we decided to conduct a systematic review of the literature investigating the effect of a single NIBS session on stress-induced cortisol release. METHODS We searched MEDLINE and Web Of Science for articles indexed through December 2021. Among the 246 articles identified, 15 fulfilled our inclusion criteria with a quality estimated between 52 and 93%. RESULTS Of the different NIBS used and targeted brain regions, stimulating the left dorsolateral prefrontal cortex, with either high frequency repetitive transcranial magnetic stimulation or anodal transcranial direct current stimulation, seems to be the most appropriate for reducing cortisol release in acute stress situations. CONCLUSIONS Despite the heterogeneity of the stimulation parameters, the characteristics of participants, the modalities of cortisol collection, the timing of the NIBS session in relation to the stressor exposure, and methodological considerations, stimulating the left dorsolateral prefrontal cortex can be efficient to modulate stress-induced cortisol release.
Collapse
Affiliation(s)
- Philippe Vignaud
- Regional Centre for Psychotraumatic Disorders, Hôpital Edouard Herriot, F-69437 Lyon, France; Emergency Medical Service, Cellule D'urgences Medico-Psychologiques, Hôpital Edouard Herriot, F-69437 Lyon, France; INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, F-69000 Lyon, France.
| | - Ondine Adam
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, F-69000 Lyon, France; CH Le Vinatier, 95 boulevard Pinel, F-69500 Bron, France.
| | - Ulrich Palm
- Dept. of Psychiatry and Psychotherapy, Munich University Hospital, Munich, Germany; Medicalpark Chiemseeblick, Bernau-Felden, Germany.
| | - Chris Baeken
- Ghent University, Dept. of Head and Skin (UZGent), Ghent Experimental Psychiatry (GHEP) Lab, Belgium; Vrije Universiteit Brussel (VUB) Department of Psychiatry (UZBrussel), Belgium; Eindhoven University of Technology, Department of ELectrical Engineering, the Netherlands.
| | - Nathalie Prieto
- Regional Centre for Psychotraumatic Disorders, Hôpital Edouard Herriot, F-69437 Lyon, France; Emergency Medical Service, Cellule D'urgences Medico-Psychologiques, Hôpital Edouard Herriot, F-69437 Lyon, France.
| | - Emmanuel Poulet
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, F-69000 Lyon, France; CH Le Vinatier, 95 boulevard Pinel, F-69500 Bron, France; Department of Psychiatric Emergency, Hôpital Edouard Herriot, F-69437 Lyon, France.
| | - Jérôme Brunelin
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, F-69000 Lyon, France; CH Le Vinatier, 95 boulevard Pinel, F-69500 Bron, France.
| |
Collapse
|
20
|
Perrey S. Probing the Promises of Noninvasive Transcranial Electrical Stimulation for Boosting Mental Performance in Sports. Brain Sci 2023; 13:brainsci13020282. [PMID: 36831825 PMCID: PMC9954379 DOI: 10.3390/brainsci13020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
While the importance of physical abilities is noncontested to perform in elite sport, more focus has recently been turned toward cognitive processes involved in sport performance. Practicing any sport requires a high demand of cognitive functioning including, but not limited to, decision-making, processing speed, working memory, perceptual processing, motor functioning, and attention. Noninvasive transcranial electrical stimulation (tES) has recently attracted considerable scientific interest due to its ability to modulate brain functioning. Neuromodulation apparently improves cognitive functions engaged in sports performance. This opinion manuscript aimed to reveal that tES is likely an adjunct ergogenic resource for improving cognitive processes, counteracting mental fatigue, and managing anxiety in elite athletes. Nevertheless, the first evidence is insufficient to guarantee its real effectiveness and benefits. All tES techniques could be add-ons to make performance-related cognitive functions more efficient and obtain better results. Modulating inhibitory control through tES over the frontal cortex might largely contribute to the improvement of mental performance. Nevertheless, studies in elite athletes are required to assess the long-term effects of tES application as an ergogenic aid in conjunction with other training methods (e.g., neurofeedback, mental imagery) where cognitive abilities are trainable.
Collapse
Affiliation(s)
- Stephane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, 34090 Montpellier, France
| |
Collapse
|
21
|
Dallaway N, Lucas S, Marks J, Ring C. Prior brain endurance training improves endurance exercise performance. Eur J Sport Sci 2023:1-10. [PMID: 36475378 DOI: 10.1080/17461391.2022.2153231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mental fatigue (MF) impairs endurance exercise performance. Brain endurance training (BET) describes the systematic repetition of mentally-fatiguing cognitive tasks designed to build resilience to MF and improve endurance performance. Evidence to date shows that mental training during physical training can benefit post-training exercise performance, however, this concurrent BET approach may not be practical for all settings. Therefore, the current study evaluated the effects of mental training before physical training (prior BET) on exercise performance. A randomised control trial design: pre-test, training (BET, control), post-test. During the pre-test and post-test sessions, participants performed a 5-min rhythmic handgrip task requiring the generation of as much force as possible, a 20-min 2-back working memory task, and another 5-min rhythmic handgrip task. Participants were randomly assigned to a BET (n = 12) or control group (n = 12). Both groups completed the same submaximal rhythmic handgrip training for five weeks (four sessions per week). The BET group also completed 20-min cognitive training (2-back working memory task, incongruent colour-word Stroop task) before each submaximal exercise training session. Endurance performance improved more (p < 0.05) following BET (24%) than physical training alone (12%). Compared to the control group, the BET group showed higher prefrontal oxygenation during the post-test exercise tasks (p < 0.05). Both groups were characterised by the same exertion, motivation, heart rate, and heart rate variability. Mental training before physical training improves endurance performance greater than physical training alone. The benefits of prior BET may be explained, at least in part, by improved prefrontal oxygenation. HighlightsThis study provides further evidence that brain endurance training (BET) improves performance over matched physical training.Prior BET (i.e. engaging in mentally demanding cognitive tasks before physical training) offers another option to enhance fatigue resilience, which expands the use of BET to more sports and potentially higher intensity training where concurrent BET will not be practical.The benefits of prior BET may be explained, at least in part, by improved prefrontal oxygenation.
Collapse
Affiliation(s)
- Neil Dallaway
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Sam Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Joesph Marks
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Christopher Ring
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
22
|
Deshayes M, Clément-Guillotin C, Denis G, Bredin J, Radel R, Zory R. Effect of a sex stereotype on cortical activity during a self-paced exercise: A motor-related cortical potential approach. PSYCHOLOGY OF SPORT AND EXERCISE 2023; 64:102336. [PMID: 37665818 DOI: 10.1016/j.psychsport.2022.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/05/2022] [Accepted: 11/13/2022] [Indexed: 09/06/2023]
Abstract
Recent research has shown that inducing a negative stereotype toward women does not always decrease the subsequent motor performance of women, but can increase it, especially during endurance tasks. The mechanisms involved are nonetheless still poorly understood. The main aim of the present study was to investigate the effect of a negative stereotype toward women on men's and women's performance during an endurance task, and to analyze the neuropsychological mechanisms involved through motor-related cortical potentials and motivation toward men/women. Thirty-four participants were assigned to a negative stereotype toward women condition and a nullified-stereotype condition and performed 80 self-paced intermittent isometric elbow contractions at a moderate perceived intensity. Results showed that women performed better when assigned to the negative stereotype toward women condition, they were more motivated to outperform men, and their MRCP amplitudes were higher in this same condition over the prefrontal cortex (i.e., FP1 and FP2). Concerning men, they also performed better when the negative stereotype toward women was induced. However, no effect emerged on motivation toward women and MRCP amplitudes. This study showed that inducing a negative stereotype during an endurance task led to a performance increase in women, which is contrary to the stereotype threat theory, strengthening the idea of a task-dependency effect when inducing a negative stereotype. This performance improvement observed in women may be caused by increased motivation to outperform men and a planning of the upcoming movement. Concerning men, more research is needed to clarify the mechanisms involved in such performance improvement.
Collapse
Affiliation(s)
- Maxime Deshayes
- UNIV. NIMES, APSY-V, F-30021 Nîmes Cedex 1, France; Université Côte d'Azur, LAMHESS, France.
| | | | | | | | | | - Raphaël Zory
- Université Côte d'Azur, LAMHESS, France; Institut Universitaire de France, IRCAN, Nice, France
| |
Collapse
|
23
|
Effects of Mental Fatigue on Strength Endurance: A Systematic Review and Meta-Analysis. Motor Control 2022; 27:442-461. [PMID: 36509089 DOI: 10.1123/mc.2022-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/14/2022]
Abstract
The purpose of the present systematic review and meta-analysis was to explore the effects of mental fatigue on upper and lower body strength endurance. Searches for studies were performed in the PubMed/MEDLINE and Web of Science databases. We included studies that compared the effects of a demanding cognitive task (set to induce mental fatigue) with a control condition on strength endurance in dynamic resistance exercise (i.e., expressed as the number of performed repetitions at a given load). The data reported in the included studies were pooled in a random-effects meta-analysis of standardized mean differences. Seven studies were included in the review. We found that mental fatigue significantly reduced the number of performed repetitions for upper body exercises (standardized mean difference: -0.41; 95% confidence interval [-0.70, -0.12]; p = .006; I2 = 0%). Mental fatigue also significantly reduced the number of performed repetitions in the analysis for lower body exercises (standardized mean difference: -0.39; 95% confidence interval [-0.75, -0.04]; p = .03; I2 = 0%). Our results showed that performing a demanding cognitive task-which induces mental fatigue-impairs strength endurance performance. Collectively, our findings suggest that exposure to cognitive tasks that may induce mental fatigue should be minimized before strength endurance-based resistance exercise sessions.
Collapse
|
24
|
Smith RW, Housh TJ, Anders JPV, Neltner TJ, Arnett JE, Schmidt RJ, Johnson GO. Application of the Ratings of Perceived Exertion-Clamp Model to Examine the Effects of Joint Angle on the Time Course of Torque and Neuromuscular Responses During a Sustained, Isometric Forearm Flexion to Task Failure. J Strength Cond Res 2022; 37:1023-1033. [PMID: 36730581 DOI: 10.1519/jsc.0000000000004357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Robert W Smith
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska
| | | | | | | | | | | | | |
Collapse
|
25
|
Bigliassi M, Filho E. Functional significance of the dorsolateral prefrontal cortex during exhaustive exercise. Biol Psychol 2022; 175:108442. [DOI: 10.1016/j.biopsycho.2022.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/28/2022]
|
26
|
Maudrich T, Ragert P, Perrey S, Kenville R. Single-session anodal transcranial direct current stimulation to enhance sport-specific performance in athletes: A systematic review and meta-analysis. Brain Stimul 2022; 15:1517-1529. [PMID: 36442774 DOI: 10.1016/j.brs.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has emerged as a promising and feasible method to improve motor performance in healthy and clinical populations. However, the potential of tDCS to enhance sport-specific motor performance in athletes remains elusive. OBJECTIVE We aimed at analyzing the acute effects of a single anodal tDCS session on sport-specific motor performance changes in athletes compared to sham. METHODS A systematic review and meta-analysis was conducted in the electronic databases PubMed, Web of Science, and SPORTDiscus. The meta-analysis was performed using an inverse variance method and a random-effects model. Additionally, two subgroup analyses were conducted (1) depending on the stimulated brain areas (primary motor cortex (M1), temporal cortex (TC), prefrontal cortex (PFC), cerebellum (CB)), and (2) studies clustered in subgroups according to different sports performance domains (endurance, strength, visuomotor skill). RESULTS A total number of 19 studies enrolling a sample size of 258 athletes were deemed eligible for inclusion. Across all included studies, a significant moderate standardized mean difference (SMD) favoring anodal tDCS to enhance sport-specific motor performance could be observed. Subgroup analysis depending on cortical target areas of tDCS indicated a significant moderate SMD in favor of anodal tDCS compared to sham for M1 stimulation. CONCLUSION A single anodal tDCS session can lead to performance enhancement in athletes in sport-specific motor tasks. Although no definitive conclusions can be drawn regarding the modes of action as a function of performance domain or stimulation site, these results imply intriguing possibilities concerning sports performance enhancement through anodal M1 stimulation.
Collapse
Affiliation(s)
- Tom Maudrich
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Rouven Kenville
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
27
|
da Silva WQA, Cabral DAR, Bigliassi M, Bortolotti H, Hussey E, Ward N, Fontes EB. The mediating role of inhibitory control in the relationship between prefrontal cortex hemodynamics and exercise performance in adults with overweight or obesity. Physiol Behav 2022; 257:113966. [PMID: 36150475 DOI: 10.1016/j.physbeh.2022.113966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/05/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
Physical inactivity has been suggested to impair physical performance, cognitive functions and facilitate weight gain. One hypothesis is that long periods of physical inactivity could impair oxygen delivery to the prefrontal cortex (PFC), impairing one's cognitive ability to inhibit unhealthy automated behaviors and, therefore, reduce exercise tolerance. The present study sought to further understand the relationship among PFC hemodynamics, inhibitory control, and exercise tolerance in individuals with low physical fitness levels who are overweight or obese. Thirty-four participants were asked to perform a series of inhibitory control tests (i.e., Stroop task) in one testing session and complete an incremental cycling exercise test with hemodynamic fluctuations of the PFC measured with functional near-infrared spectroscopy in another session. Our results indicate that exercise performance varied with PFC oxygenation. We also found that inhibitory control played a key role mediating the relationship between PFC oxygenation and exercise performance, suggesting that the cognitive ability to inhibit automated responses has an impact on exercise behavior in adults with overweight and obesity.
Collapse
Affiliation(s)
| | | | - Marcelo Bigliassi
- Department of Teaching and Learning, Florida International University, Miami, FL, United States of America
| | - Henrique Bortolotti
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN Brazil
| | - Erika Hussey
- Defense Innovation Unit, Mountain View, CA, United States of America
| | - Nathan Ward
- Department of Psychology, Tufts University, Medford, MA, United States of America
| | - Eduardo Bodnariuc Fontes
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN Brazil; Department of Psychology, Tufts University, Medford, MA, United States of America.
| |
Collapse
|
28
|
Hong Y, Dong G, Li Q, Wang V, Liu M, Jiang G, Bao D, Zhou J. Effects of pre-exercise H2 inhalation on physical fatigue and related prefrontal cortex activation during and after high-intensity exercise. Front Physiol 2022; 13:988028. [PMID: 36117685 PMCID: PMC9478471 DOI: 10.3389/fphys.2022.988028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: In this study, we examined the effects of pre-exercise H2 gas inhalation on physical fatigue (PF) and prefrontal cortex (PFC) activation during and after high-intensity cycling exercise. Methods: Twenty-four young men completed four study visits. On the first two visits, the maximum workload (Wmax) of cycling exercise of each participant was determined. On each of the other two visits, participants inhaled 20 min of either H2 gas or placebo gas after a baseline test of maximal voluntary isometric contraction (MVIC) of thigh. Then participants performed cycling exercise under their maximum workload. Ratings of perceived exertion (RPE), heart rate (HR) and the PFC activation by using functional near-infrared spectroscopy (fNIRS) was measured throughout cycling exercise. The MVIC was measured again after the cycling. Results: It was observed that compared to control, after inhaling H2 gas, participants had significantly lower RPE at each workload phase (p < 0.032) and lower HR at 50% Wmax, 75% Wmax, and 100% Wmax during cycling exercise (p < 0.037); the PFC activation was also significantly increased at 75 and 100% Wmax (p < 0.011). Moreover, the H2-induced changes in PF were significantly associated with that in PFC activation, that is, those who had higher PFC activation had lower RPE at 75% Wmax (p = 0.010) and lower HR at 100% Wmax (p = 0.016), respectively. Conclusion: This study demonstrated that pre-exercise inhalation of H2 gas can alleviate PF, potentially by maintaining high PFC activation during high-intensity exercise in healthy young adults.
Collapse
Affiliation(s)
- Yinglu Hong
- School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Gengxin Dong
- School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Qian Li
- Sports Coaching College, Beijing Sport University, Beijing, China
| | - Vienna Wang
- California State University, Long Beach, CA, United States
| | - Meng Liu
- Sports Coaching College, Beijing Sport University, Beijing, China
| | - Guole Jiang
- Sports Coaching College, Beijing Sport University, Beijing, China
- National University of Defense Technology, Changsha, Hunan, China
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- *Correspondence: Dapeng Bao,
| | - Junhong Zhou
- Hebrew Senior Life Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
Brietzke C, Cesario JCS, Hettinga FJ, Pires FO. The reward for placebos: mechanisms underpinning placebo-induced effects on motor performance. Eur J Appl Physiol 2022; 122:2321-2329. [PMID: 36006479 DOI: 10.1007/s00421-022-05029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Different from the most popular thinking, the placebo effect is not a purely psychological phenomenon. A body of knowledge from multidisciplinary fields has shown that the expectation of a potential benefit when receiving a treatment induces a cascade of neurochemical-electrophysiological alterations in brain reward areas, including motor-related ones. Alterations in the dopamine, opioid, and glutamate metabolism are the neural representation converting reward-derived declarative forms into an attractive and wanted behavior, thereby changing the activation in reward subcortical and cortical structures involved in motor planning, motor execution, and emotional-cognitive attributes of decision-making. We propose that the expectation of receiving a treatment that is beneficial to motor performance triggers a cascade of activations in brain reward areas that travels from motor planning and motor command areas, passing through corticospinal pathways until driving the skeletal muscles, therefore facilitating the motor performance. Although alternative explanations cannot be totally ruled out, this mechanistic route is robust in explaining the results of placebo-induced effects on motor performance and could lead to novel insights and applications in the exercise sciences. Factors such as sex differences in reward-related mechanisms and aversion-induced nocebo effects should also be addressed.
Collapse
Affiliation(s)
- Cayque Brietzke
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil.,Human Movement Science and Rehabilitation Program, Federal University of São Paulo, Santos, Brazil
| | - Julio Cesar Silva Cesario
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | | | - Flavio Oliveira Pires
- Exercise Psychophysiology Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil. .,Human Movement Science and Rehabilitation Program, Federal University of São Paulo, Santos, Brazil. .,Rehabilitation Sciences Program, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
30
|
Marillier M, Borowik A, Chacaroun S, Baillieul S, Doutreleau S, Guinot M, Wuyam B, Tamisier R, Pépin JL, Estève F, Vergès S, Tessier D, Flore P. High-intensity interval training to promote cerebral oxygenation and affective valence during exercise in individuals with obesity. J Sports Sci 2022; 40:1500-1511. [PMID: 35942923 DOI: 10.1080/02640414.2022.2086658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Left/right prefrontal cortex (PFC) activation is linked to positive/negative affects, respectively. Besides, larger left PFC oxygenation during exercise relates to higher cardiorespiratory fitness (CRF). High-intensity interval training (HIIT) is superior to moderate-intensity continuous training (MICT) in improving CRF. The influence of training on PFC oxygenation and affects during exercise in individuals with obesity is, however, currently unknown. Twenty participants with obesity (14 males, 48 ± 8 years, body-mass index = 35 ± 6 kg·m-2) were randomised to MICT [50% peak work rate (WRpeak)] or HIIT (1-min bouts 100% WRpeak; 3 sessions/week, 8 weeks). Before/after training, participants completed an incremental ergocycle test. Near-infrared spectroscopy and the Feeling Scale assessed PFC oxygenation and affects during exercise, respectively. Improvements in CRF (e.g., WRpeak: 32 ± 14 vs 20 ± 13 W) were greater after HIIT vs MICT (p < 0.05). Only HIIT induced larger left PFC oxygenation (haemoglobin difference from 7 ± 6 to 10 ± 7 μmol) and enhanced affective valence (from 0.7 ± 2.9 to 2.2 ± 2.0; p < 0.05) at intensities ≥ second ventilatory threshold. Exercise-training induced changes in left PFC oxygenation correlated with changes in CRF [e.g., WRpeak (% predicted), r = 0.46] and post-training affective valence (r = 0.45; p < 0.05). HIIT specifically improved left PFC oxygenation and affects during exercise in individuals with obesity. Implementing HIIT in exercise programmes may therefore have relevant implications for the management of obesity, since greater affective response to exercise is thought to be associated with future commitment to physical activity.
Collapse
Affiliation(s)
| | - Anna Borowik
- Inserm, CHU Grenoble Alpes, Univ. Grenoble Alpes, Grenoble, France
| | | | | | | | - Michel Guinot
- Inserm, CHU Grenoble Alpes, Univ. Grenoble Alpes, Grenoble, France
| | - Bernard Wuyam
- Inserm, CHU Grenoble Alpes, Univ. Grenoble Alpes, Grenoble, France
| | - Renaud Tamisier
- Inserm, CHU Grenoble Alpes, Univ. Grenoble Alpes, Grenoble, France
| | - Jean-Louis Pépin
- Inserm, CHU Grenoble Alpes, Univ. Grenoble Alpes, Grenoble, France
| | - François Estève
- CHU Grenoble Alpes, CLUNI, SCRIMM-Sud, Inserm - UA07 - Rayonnement Synchrotron pour la Recherche Biomédicale (STROBE) ID17 Installation Européenne du Rayonnement Synchrotron (ESRF), Grenoble, France
| | - Samuel Vergès
- Inserm, CHU Grenoble Alpes, Univ. Grenoble Alpes, Grenoble, France
| | - Damien Tessier
- Laboratoire SENS, Univ. Grenoble Alpes, Grenoble, France
| | - Patrice Flore
- Inserm, CHU Grenoble Alpes, Univ. Grenoble Alpes, Grenoble, France
| |
Collapse
|
31
|
Kojima S, Morishita S, Hotta K, Qin W, Usui N, Tsubaki A. Temporal changes in cortical oxygenation in the motor-related areas and bilateral prefrontal cortex based on exercise intensity and respiratory metabolism during incremental exercise in male subjects: A near-Infrared spectroscopy study. Front Physiol 2022; 13:794473. [PMID: 36017334 PMCID: PMC9396126 DOI: 10.3389/fphys.2022.794473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
A recent study has reported that prefrontal cortex (PFC) activity during incremental exercise may be related to exercise termination on exhaustion. However, few studies have focused on motor-related areas during incremental exercise. This study investigated changes in the oxygenation of the PFC and motor-related areas using near-infrared spectroscopy during incremental exercise. Moreover, we analyzed the effect of exercise termination on changes in cortical oxygenation based on exercise intensity and respiratory metabolism. Sixteen healthy young male patients participated in this study. After a 4-min rest and 4-min warm-up period, incremental exercise was started at an incremental load corresponding to 20 W/min. Oxyhemoglobin (O2Hb), deoxyhemoglobin (HHb), and total hemoglobin (THb) in the bilateral PFC, supplementary motor area, and primary motor cortex were measured. We evaluated changes in oxygenation in each cortex before and after the anaerobic threshold (AT) and respiratory compensation point to identify changes due to respiratory metabolism. O2Hb and THb increased from moderate intensity or after AT to maximal exercise, and HHb increased slowly compared to O2Hb and THb; these changes in hemoglobin levels were consistent in all cortical areas we measured. However, the increase in each hemoglobin level in the bilateral PFC during incremental exercise was faster than that in motor-related areas. Moreover, changes in cortical oxygenation in the right PFC were faster than those in the left PFC. These results suggest changes based on differences in neural activity due to the cortical area.
Collapse
Affiliation(s)
- Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Kisen Hospital, Tokyo, Japan
| | | | - Kazuki Hotta
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Weixiang Qin
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naoto Usui
- Department of Physical Therapy, Kisen Hospital, Tokyo, Japan
| | - Atsuhiro Tsubaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- *Correspondence: Atsuhiro Tsubaki,
| |
Collapse
|
32
|
Saanijoki T, Kantonen T, Pekkarinen L, Kalliokoski K, Hirvonen J, Malén T, Tuominen L, Tuulari JJ, Arponen E, Nuutila P, Nummenmaa L. Aerobic Fitness Is Associated with Cerebral μ-Opioid Receptor Activation in Healthy Humans. Med Sci Sports Exerc 2022; 54:1076-1084. [PMID: 35195103 DOI: 10.1249/mss.0000000000002895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Central μ-opioid receptors (MORs) modulate affective responses to physical exercise. Individuals with higher aerobic fitness report greater exercise-induced mood improvements than those with lower fitness, but the link between cardiorespiratory fitness and the MOR system remains unresolved. Here we tested whether maximal oxygen uptake (V̇O2peak) and physical activity level are associated with cerebral MOR availability and whether these phenotypes predict endogenous opioid release after a session of exercise. METHODS We studied 64 healthy lean men who performed a maximal incremental cycling test for V̇O2peak determination, completed a questionnaire assessing moderate-to-vigorous physical activity (MVPA; in minutes per week), and underwent positron emission tomography with [11C]carfentanil, a specific radioligand for MOR. A subset of 24 subjects underwent additional positron emission tomography scan also after a 1-h session of moderate-intensity exercise and 12 of them also after a bout of high-intensity interval training. RESULTS Higher self-reported MVPA level predicted greater opioid release after high-intensity interval training, and both V̇O2peak and MVPA level were associated with a larger decrease in cerebral MOR binding after aerobic exercise in the ventral striatum, orbitofrontal cortex, and insula. That is, more trained individuals showed greater opioid release acutely after exercise in brain regions especially relevant for reward and cognitive processing. Fitness was not associated with MOR availability. CONCLUSIONS We conclude that regular exercise training and higher aerobic fitness may induce neuroadaptation within the MOR system, which might contribute to improved emotional and behavioral responses associated with long-term exercise.
Collapse
Affiliation(s)
| | | | | | | | | | - Tuulia Malén
- Turku PET Centre, University of Turku, Turku, FINLAND
| | | | | | | | | | | |
Collapse
|
33
|
Fortes LDS, Faro H, de Lima-Junior D, Albuquerque MR, Ferreira MEC. Non-invasive brain stimulation over the orbital prefrontal cortex maintains endurance performance in mentally fatigued swimmers. Physiol Behav 2022; 250:113783. [PMID: 35331714 DOI: 10.1016/j.physbeh.2022.113783] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Using anodal transcranial direct current stimulation (a-tDCS) on frontal brain areas might be a promising strategy to mitigates mental fatigue and maintain endurance performance swimmers. OBJECTIVE The objective was to analyze the effect of a-tDCS over the orbital prefrontal cortex (oPFC) on endurance performance of mentally fatigued female amateur swimmer. METHODS Nineteen female amateur swimmers participated in this study. In two experimental visits, the swimmers completed the 3-min all-out tethered swimming after performing a 30-min Stroop test with a-tDCS or placebo (Sham) stimulation over the left-oPFC. The brain stimulation conditions (i.e., a-tDCS and Sham) were performed in a double-blinded and counterbalanced order. RESULTS It was found lower critical force, mean force, force minimum, fatigue index, and aerobic impulse for Sham than a-tDCS (p < 0.05). There was no main effect of condition for peak force (p > 0.05). CONCLUSION We concluded that a-tDCS applied over the left-oPFC in female amateur swimmers mentally fatigued maintained endurance performance. From a practical point of view, the use of a-tDCS should be considered to counteract harmful cognitive effects and maintain endurance performance during competitive race events.
Collapse
Affiliation(s)
| | - Heloiana Faro
- Associate Graduate Program of Physical Education of the Federal University of Paraíba, Brazil
| | - Dalton de Lima-Junior
- Associate Graduate Program of Physical Education of the Federal University of Paraíba, Brazil
| | | | | |
Collapse
|
34
|
Hyland-Monks R, Marchant D, Cronin L. Self-Paced Endurance Performance and Cerebral Hemodynamics of the Prefrontal Cortex: A Scoping Review of Methodology and Findings. Percept Mot Skills 2022; 129:1089-1114. [PMID: 35609231 PMCID: PMC9301167 DOI: 10.1177/00315125221101017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent research has suggested that top-down executive function associated with the prefrontal cortex is key to the decision-making processes and pacing of endurance performance. A small but growing body of literature has investigated the neurological underpinnings of these processes by subjecting the prefrontal cortex to functional near-infrared spectroscopy (fNIRS) measurement during self-paced endurance task performance. Given that fNIRS measurement for these purposes is a relatively recent development, the principal aim of this review was to assess the methodological rigor and findings of this body of research. We performed a systematic literature search to collate research assessing prefrontal cortex oxygenation via fNIRS during self-paced endurance performance. A total of 17 studies met the criteria for inclusion. We then extracted information concerning the methodology and findings from the studies reviewed. Promisingly, most of the reviewed studies reported having adopted commonplace and feasible best practice guidelines. However, a lack of adherence to these guidelines was evident in some areas. For instance, there was little evidence of measures to tackle and remove artifacts from data. Lastly, the reviewed studies provide insight into the significance of cerebral oxygenation to endurance performance and the role of the prefrontal cortex in pacing behavior. Therefore, future research that better follows the guidelines presented will help advance our understanding of the role of the brain in endurance performance and aid in the development of techniques to improve or maintain prefrontal cortex (PFC) oxygenation to help bolster endurance performance.
Collapse
Affiliation(s)
- Robert Hyland-Monks
- Department of Sport and Physical Activity, 6249Edge Hill University, Ormskirk, UK
| | - David Marchant
- Department of Sport and Physical Activity, 6249Edge Hill University, Ormskirk, UK
| | - Lorcan Cronin
- Department of Sport and Physical Activity, 6249Edge Hill University, Ormskirk, UK
| |
Collapse
|
35
|
Tyagi O, Mehta RK. Mind over body: A neuroergonomic approach to assessing motor performance under stress in older adults. APPLIED ERGONOMICS 2022; 101:103691. [PMID: 35086006 DOI: 10.1016/j.apergo.2022.103691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Stress impairs motor performance, which is exacerbated with age. Stress also impairs brain activity in the prefrontal cortex, which communicates with the motor areas of the brain to regulate exercise and motor performance. To develop ergogenic strategies for the aging workforce, mind (brain)-body mechanisms behind the effect of stress on neuromuscular performance need to be well understood. This study investigated the influence of social stress on motor performance and information flow between the frontal and motor regions of the brain during intermittent handgrip contractions among older adults. Thirty older adults, balanced by gender, performed intermittent handgrip contractions at 30% of maximum strength before and after being subjected to a social stressor. Force steadiness, strength loss, root mean square electromyogram (EMG) activity, activation of the brain regions, and functional and effective connectivity between the frontal and motor brain regions were computed for pre- and post-stressor handgrip contractions. Older men exhibited improved motor performance after the stressor and concomitant reduction in functional connectivity between the frontal-motor brain regions ipsilateral to the contracting hand. Additionally, while both sexes exhibited significant causal information flow, i.e., effective connectivity, from the frontal to the motor regions of the brain, irrespective of the stressor, older women exhibited a bidirectional effective connectivity between the frontal-motor brain regions after the stressor. Stress had a facilitative effect on the motor performance of older men through compensatory brain network reorganization. Older women exhibited comparable motor performance pre/post stress, despite showing an increase in bidirectional information flow between the frontal-motor areas. Employing brain hemodynamics can facilitate better understanding of the impact of stress on neuromuscular performance and its differential impacts on brain network reorganization between the sexes.
Collapse
Affiliation(s)
- Oshin Tyagi
- Wm. Michael Barnes '64 Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Ranjana K Mehta
- Wm. Michael Barnes '64 Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, 77843, USA; J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
36
|
Alterations in spontaneous electrical brain activity after an extreme mountain ultramarathon. Biol Psychol 2022; 171:108348. [DOI: 10.1016/j.biopsycho.2022.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
|
37
|
Wunder ML, Staines WR. Chronic Exercise as a Modulator of Cognitive Control: Investigating the Electrophysiological Indices of Performance Monitoring. Front Psychol 2022; 13:814199. [PMID: 35450338 PMCID: PMC9016271 DOI: 10.3389/fpsyg.2022.814199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise may influence components of executive functioning, specifically cognitive control and action monitoring. We aimed to determine whether high level exercise improves the efficacy of cognitive control in response to differing levels of conflict. Fitter individuals were expected to demonstrate enhanced action monitoring and optimal levels of cognitive control in response to changing task demands. Participants were divided into the highly active (HA) or low-active group based on self-reported activity using the International Physical Activity Questionnaire. A modified flanker task was then performed, in which the level of conflict was modulated by distance of distractors from the target (close, far) and congruency of arrows (incongruent, congruent). Electroencephalography (EEG) was collected during 800 trials; trials were 80% congruent, 20% incongruent, 50% close, and 50% far. The error-related negativity (ERN) and error positivity (Pe) were extracted from the difference wave of correct and incorrect response locked epochs, the N2 from the difference wave of congruent and incongruent stimulus locked epochs and the P3 from stimulus locked epochs. The HA group showed a larger Pe amplitude compared to the low-active group. Close trials elicited a larger N2 amplitude than far trials in the HA group, but not the low-active group, the HA group also made fewer errors on far trials than on close trials. Finally, the P3 was smaller in the lowest conflict condition in the HA, but not the low-active group. These findings suggest that habitual, high levels of exercise may influence the endogenous processing involved in pre-response conflict detection and the post-error response.
Collapse
Affiliation(s)
- Meaghan L Wunder
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - W Richard Staines
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
38
|
Zafeiridis A, Kounoupis A, Papadopoulos S, Koutlas A, Boutou AK, Smilios I, Dipla K. Brain oxygenation during multiple sets of isometric and dynamic resistance exercise of equivalent workloads: Association with systemic haemodynamics. J Sports Sci 2022; 40:1020-1030. [PMID: 35271420 DOI: 10.1080/02640414.2022.2045061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brain function relies on sufficient blood flow and oxygen supply. Changes in cerebral oxygenation during exercise have been linked to brain activity and central command. Isometric- and dynamic-resistance exercise-(RE) may elicit differential responses in systemic circulation, neural function and metabolism; all important regulators of cerebral circulation. We examined whether (i) cerebral oxygenation differs between isometric- and dynamic-RE of similar exercise characteristics and (ii) cerebral oxygenation changes relate to cardiovascular adjustments occurring during RE. Fourteen men performed, randomly, an isometric-RE and a dynamic-RE of similar characteristics (bilateral-leg-press, 2-min×4-sets, 30% of maximal-voluntary-contraction, equivalent tension-time-index/workload). Cerebral-oxygenation (oxyhaemoglobin-O2Hb; total haemoglobin-tHb/blood-volume-index; deoxyhemoglobin-HHb) was assessed by NIRS and beat-by-beat haemodynamics via photoplethysmography. Cerebral-O2Hb and tHb progressively increased from the 1st to 4th set in both RE-protocols (p < 0.05); HHb slightly decreased (p < 0.05). Changes in NIRS-parameters were similar between RE-protocols within each exercise-set (p = 0.91-1.00) and during the entire protocol (including resting-phases) (p = 0.48-0.63). O2Hb and tHb changes were not correlated with changes in systemic haemodynamics. In conclusion, cerebral oxygenation/blood-volume steadily increased during multiple-set RE-protocols. Isometric- and dynamic-RE of matched exercise characteristics resulted in similar prefrontal oxygenation/blood volume changes, suggesting similar cerebral haemodynamic and possibly neuronal responses to maintain a predetermined force.
Collapse
Affiliation(s)
- Andreas Zafeiridis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Anastasios Kounoupis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Stavros Papadopoulos
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Aggelos Koutlas
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Afroditi K Boutou
- Department of Respiratory Medicine, General Papanikolaou Hospital, Thessaloniki, Greece
| | - Ilias Smilios
- Department of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
| | - Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
39
|
Hiura M, Shirai Y, Shibutani H, Funaki A, Takahashi K, Katayama Y. Estimation of Cerebral Hemodynamics and Oxygenation During Various Intensities of Rowing Exercise: An NIRS Study. Front Physiol 2022; 13:828357. [PMID: 35309081 PMCID: PMC8924415 DOI: 10.3389/fphys.2022.828357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose This study aimed to investigate changes in cerebral hemodynamics and oxygenation at moderate, heavy, maximal and supramaximal intensities of rowing exercise. It also examined whether these changes reflect alterations in sensation of effort and mood. We also aimed to examine the effects of peak pulmonary oxygen consumption (V.O2peak) on cerebral oxygenation. Methods Eleven rowers, consisting out of six athletes and five recreational rowers [two female; age, 27 ± 9 years; height, 171 ± 7 cm, body mass, 67 ± 9 kg; V.O2peak, 53.5 ± 6.5 mL min–1 kg–1] rowed a 13-min session separated by 10 and 3 min, at 70 (Ex70%) and 80% of V.O2peak (Ex80%), respectively, on a rowing ergometer, followed by three sessions of 1-min supramaximal exercise (ExSp). After a warm-up at 60% of V.O2peak (ExM), seven male rowers performed a 2,000 m all-out test (Ex2000). Cardiovascular and respiratory variables were measured. Cerebral oxygenation was investigated by near-infrared time-resolved spectroscopy (TRS) to measure cerebral hemoglobin oxygen saturation (ScO2) and total hemoglobin concentration ([HbT]) in the prefrontal cortex (PFC) quantitatively. We estimated the relative changes from rest in cerebral metabolic rate for oxygen (rCMRO2) using TRS at all intensities. During Ex70% and Ex80%, ratings of perceived exertion (RPE) were monitored, and alteration of the subject’s mood was evaluated using a questionnaire of Positive-and-Negative-Affect-Schedule after Ex70% and Ex80%. Results When exercise intensity changed from Ex70% to Ex80%, the sense of effort increased while ScO2 decreased. [HbT] remained unchanged. After Ex70% and Ex80%, a negative mood state was less prominent compared to rest and was accompanied by increases in both ScO2 and [HbT]. At termination of Ex2000, ScO2 decreased by 23% compared to rest. Changes in ScO2 correlated with V.O2peak only during Ex2000 (r = −0.86; p = 0.01). rCMRO2 did not decrease at any intensities. Conclusion Our results suggest that alterations in the sense of effort are associated with oxygenation in the PFC, while positive changes in mood status are associated with cerebral perfusion and oxygen metabolism estimated by TRS. At exhaustion, the cerebral metabolic rate for oxygen is maintained despite a decrease in ScO2.
Collapse
Affiliation(s)
- Mikio Hiura
- Center for Brain and Health Sciences, Aomori University, Aomori, Japan
- *Correspondence: Mikio Hiura,
| | - Yusuke Shirai
- Department of Sport and Health Science, Tokai Gakuen University, Miyoshi, Japan
| | | | - Akio Funaki
- Faculty of Sociology, Aomori University, Aomori, Japan
| | - Katsumi Takahashi
- Faculty of Creative Engineering, Kanagawa Institute of Technology, Atsugi, Japan
| | - Yoichi Katayama
- Center for Brain and Health Sciences, Aomori University, Aomori, Japan
| |
Collapse
|
40
|
John AT, Barthel A, Wind J, Rizzi N, Schöllhorn WI. Acute Effects of Various Movement Noise in Differential Learning of Rope Skipping on Brain and Heart Recovery Analyzed by Means of Multiscale Fuzzy Measure Entropy. Front Behav Neurosci 2022; 16:816334. [PMID: 35283739 PMCID: PMC8914377 DOI: 10.3389/fnbeh.2022.816334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
In search of more detailed explanations for body-mind interactions in physical activity, neural and physiological effects, especially regarding more strenuous sports activities, increasingly attract interest. Little is known about the underlying manifold (neuro-)physiological impacts induced by different motor learning approaches. The various influences on brain or cardiac function are usually studied separately and modeled linearly. Limitations of these models have recently led to a rapidly growing application of nonlinear models. This study aimed to investigate the acute effects of various sequences of rope skipping on irregularity of the electrocardiography (ECG) and electroencephalography (EEG) signals as well as their interaction and whether these depend on different levels of active movement noise, within the framework of differential learning theory. Thirty-two males were randomly and equally distributed to one of four rope skipping conditions with similar cardiovascular but varying coordinative demand. ECG and EEG were measured simultaneously at rest before and immediately after rope skipping for 25 mins. Signal irregularity of ECG and EEG was calculated via the multiscale fuzzy measure entropy (MSFME). Statistically significant ECG and EEG brain area specific changes in MSFME were found with different pace of occurrence depending on the level of active movement noise of the particular rope skipping condition. Interaction analysis of ECG and EEG MSFME specifically revealed an involvement of the frontal, central, and parietal lobe in the interplay with the heart. In addition, the number of interaction effects indicated an inverted U-shaped trend presenting the interaction level of ECG and EEG MSFME dependent on the level of active movement noise. In summary, conducting rope skipping with varying degrees of movement variation appears to affect the irregularity of cardiac and brain signals and their interaction during the recovery phase differently. These findings provide enough incentives to foster further constructive nonlinear research in exercise-recovery relationship and to reconsider the philosophy of classical endurance training.
Collapse
Affiliation(s)
- Alexander Thomas John
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | |
Collapse
|
41
|
Alix-Fages C, Del Vecchio A, Baz-Valle E, Santos-Concejero J, Balsalobre-Fernández C. The role of the neural stimulus in regulating skeletal muscle hypertrophy. Eur J Appl Physiol 2022; 122:1111-1128. [PMID: 35138447 DOI: 10.1007/s00421-022-04906-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/28/2022] [Indexed: 02/06/2023]
Abstract
Resistance training is frequently performed with the goal of stimulating muscle hypertrophy. Due to the key roles motor unit recruitment and mechanical tension play to induce muscle growth, when programming, the manipulation of the training variables is oriented to provoke the correct stimulus. Although it is known that the nervous system is responsible for the control of motor units and active muscle force, muscle hypertrophy researchers and trainers tend to only focus on the adaptations of the musculotendinous unit and not in the nervous system behaviour. To better guide resistance exercise prescription for muscle hypertrophy and aiming to delve into the mechanisms that maximize this goal, this review provides evidence-based considerations for possible effects of neural behaviour on muscle growth when programming resistance training, and future neurophysiological measurement that should be tested when training to increase muscle mass. Combined information from the neural and muscular structures will allow to understand the exact adaptations of the muscle in response to a given input (neural drive to the muscle). Changes at different levels of the nervous system will affect the control of motor units and mechanical forces during resistance training, thus impacting the potential hypertrophic adaptations. Additionally, this article addresses how neural adaptations and fatigue accumulation that occur when resistance training may influence the hypertrophic response and propose neurophysiological assessments that may improve our understanding of resistance training variables that impact on muscular adaptations.
Collapse
Affiliation(s)
- Carlos Alix-Fages
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, C/ Fco Tomas y Valiente 3, Cantoblanco, 28049, Madrid, Spain.
| | - Alessandro Del Vecchio
- Neuromuscular Physiology and Neural Interfacing Group, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Eneko Baz-Valle
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jordan Santos-Concejero
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Carlos Balsalobre-Fernández
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, C/ Fco Tomas y Valiente 3, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
42
|
Greenhouse-Tucknott A, Butterworth JB, Wrightson JG, Harrison NA, Dekerle J. Effect of the subjective intensity of fatigue and interoception on perceptual regulation and performance during sustained physical activity. PLoS One 2022; 17:e0262303. [PMID: 34986186 PMCID: PMC8730470 DOI: 10.1371/journal.pone.0262303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/21/2021] [Indexed: 02/05/2023] Open
Abstract
Background The subjective experience of fatigue impairs an individual’s ability to sustain physical endurance performance. However, precise understanding of the specific role perceived fatigue plays in the central regulation of performance remains unclear. Here, we examined whether the subjective intensity of a perceived state of fatigue, pre-induced through prior upper body activity, differentially impacted performance and altered perceived effort and affect experienced during a sustained, isometric contraction in lower body. We also explored whether (cardiac) interoception predicted the intensity of experienced perceptual and affective responses and moderated the relationships between constructs during physical activity. Methods Using a repeated-measures study design, thirty male participants completed three experimental conditions, with the intensity of a pre-induced state of fatigue manipulated to evoke moderate (MOD), severe (SEV) and minimal (control; CON) intensity of perceptions prior to performance of the sustained contraction. Results Performance of the sustained contraction was significantly impaired under a perceived state of fatigue, with reductions of 10% and 14% observed in the MOD and SEV conditions, respectively. Performance impairment was accompanied by greater perceived effort and more negative affective valence reported during the contraction. However, effects were limited to comparisons to CON, with no difference evident between the two experimental trials (i.e. MOD vs. SEV). Individuals’ awareness of their accuracy in judging resting heartbeats was shown to predict the subjective intensity of fatigue experienced during the endurance task. However, interoception did not moderate the relationships evident between fatigue and both perceived effort and affective valence. Conclusions A perceived state of fatigue limits endurance performance, influencing both how effortful activity is perceived to be and the affective experience of activity. Though awareness of interoceptive representations of bodily states may be important to the subjective experience of fatigue, interoception does not modulate the relationships between perceived fatigue and other perceptual (i.e. effort) and affective constructs.
Collapse
Affiliation(s)
- Aaron Greenhouse-Tucknott
- Fatigue and Exercise Laboratory, School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
- * E-mail:
| | - Jake B. Butterworth
- Fatigue and Exercise Laboratory, School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
| | - James G. Wrightson
- Fatigue and Exercise Laboratory, School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Neil A. Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Jeanne Dekerle
- Fatigue and Exercise Laboratory, School of Sport and Health Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
43
|
Tyagi O, Mehta RK. A Methodological Framework to Capture Neuromuscular Fatigue Mechanisms Under Stress. FRONTIERS IN NEUROERGONOMICS 2021; 2:779069. [PMID: 38235237 PMCID: PMC10790877 DOI: 10.3389/fnrgo.2021.779069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/23/2021] [Indexed: 01/19/2024]
Abstract
Neuromuscular fatigue is exacerbated under stress and is characterized by shorter endurance time, greater perceived effort, lower force steadiness, and higher electromyographic activity. However, the underlying mechanisms of fatigue under stress are not well-understood. This review investigated existing methods of identifying central mechanisms of neuromuscular fatigue and the potential mechanisms of the influence of stress on neuromuscular fatigue. We found that the influence of stress on the activity of the prefrontal cortex, which are also involved in exercise regulation, may contribute to exacerbated fatigue under stress. We also found that the traditional methods involve the synchronized use of transcranial magnetic stimulation, peripheral nerve stimulation, and electromyography to identify the contribution of supraspinal fatigue, through measures such as voluntary activation, motor evoked potential, and silent period. However, these popular techniques are unable to provide information about neural alterations upstream of the descending drive that may contribute to supraspinal fatigue development. To address this gap, we propose that functional brain imaging techniques, which provide insights on activation and information flow between brain regions, need to be combined with the traditional measures of measuring central fatigue to fully understand the mechanisms behind the influence of stress on fatigue.
Collapse
Affiliation(s)
| | - Ranjana K. Mehta
- Neuroergonomics Lab, Texas A&M University, Industrial and Systems Engineering, College Station, TX, United States
| |
Collapse
|
44
|
Damrongthai C, Kuwamizu R, Suwabe K, Ochi G, Yamazaki Y, Fukuie T, Adachi K, Yassa MA, Churdchomjan W, Soya H. Benefit of human moderate running boosting mood and executive function coinciding with bilateral prefrontal activation. Sci Rep 2021; 11:22657. [PMID: 34811374 PMCID: PMC8608901 DOI: 10.1038/s41598-021-01654-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Running, compared to pedaling is a whole-body locomotive movement that may confer more mental health via strongly stimulating brains, although running impacts on mental health but their underlying brain mechanisms have yet to be determined; since almost the mechanistic studies have been done with pedaling. We thus aimed at determining the acute effect of a single bout of running at moderate-intensity, the most popular condition, on mood and executive function as well as their neural substrates in the prefrontal cortex (PFC). Twenty-six healthy participants completed both a 10-min running session on a treadmill at 50%[Formula: see text] and a resting control session in randomized order. Executive function was assessed using the Stroop interference time from the color-word matching Stroop task (CWST) and mood was assessed using the Two-Dimensional Mood Scale, before and after both sessions. Prefrontal hemodynamic changes while performing the CWST were investigated using functional near-infrared spectroscopy. Running resulted in significant enhanced arousal and pleasure level compared to control. Running also caused significant greater reduction of Stroop interference time and increase in Oxy-Hb signals in bilateral PFCs. Besides, we found a significant association among pleasure level, Stroop interference reaction time, and the left dorsolateral PFCs: important brain loci for inhibitory control and mood regulation. To our knowledge, an acute moderate-intensity running has the beneficial of inducing a positive mood and enhancing executive function coinciding with cortical activation in the prefrontal subregions involved in inhibitory control and mood regulation. These results together with previous findings with pedaling imply the specificity of moderate running benefits promoting both cognition and pleasant mood.
Collapse
Affiliation(s)
- Chorphaka Damrongthai
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 305-8574, Japan
- Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
- Faculty of Physical Therapy and Sports Medicine, Rangsit University, Pathum Thani, 12000, Thailand
| | - Ryuta Kuwamizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 305-8574, Japan
| | - Kazuya Suwabe
- Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
- Faculty of Health and Sport Sciences, Ryutsu Keizai University, Ryugasaki, 301-8555, Japan
| | - Genta Ochi
- Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata, 950-3198, Japan
| | - Yudai Yamazaki
- Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Takemune Fukuie
- School of Nursing and Social Services, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Kazutaka Adachi
- Laboratory of Applied Anatomy, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 305-8574, Japan
| | - Michael A Yassa
- Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92679-3800, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, 92679-3800, USA
| | - Worachat Churdchomjan
- Faculty of Physical Therapy and Sports Medicine, Rangsit University, Pathum Thani, 12000, Thailand
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, 305-8574, Japan.
- Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan.
| |
Collapse
|
45
|
De Wachter J, Proost M, Habay J, Verstraelen M, Díaz-García J, Hurst P, Meeusen R, Van Cutsem J, Roelands B. Prefrontal Cortex Oxygenation During Endurance Performance: A Systematic Review of Functional Near-Infrared Spectroscopy Studies. Front Physiol 2021; 12:761232. [PMID: 34764885 PMCID: PMC8576380 DOI: 10.3389/fphys.2021.761232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/27/2021] [Indexed: 01/17/2023] Open
Abstract
Introduction: A myriad of factors underlie pacing-/exhaustion-decisions that are made during whole-body endurance performance. The prefrontal cortex (PFC) is a brain region that is crucial for decision-making, planning, and attention. PFC oxygenation seems to be a mediating factor of performance decisions during endurance performance. Nowadays, there is no general overview summarizing the current knowledge on how PFC oxygenation evolves during whole-body endurance performance and whether this is a determining factor. Methods: Three electronic databases were searched for studies related to the assessment of PFC oxygenation, through near-IR spectroscopy (NIRS), during endurance exercise. To express PFC oxygenation, oxygenated (HbO2) and deoxygenated hemoglobin (HHb) concentrations were the primary outcome measures. Results: Twenty-eight articles were included. Ten articles focused on assessing prefrontal oxygenation through a maximal incremental test (MIT) and 18 focused on using endurance tasks at workloads ranging from low intensity to supramaximal intensity. In four MIT studies measuring HbO2, an increase of HbO2 was noticed at the respiratory compensation point (RCP), after which it decreased. HbO2 reached a steady state in the four studies and increased in one study until exhaustion. All studies found a decrease or steady state in HHb from the start until RCP and an increase to exhaustion. In regard to (non-incremental) endurance tasks, a general increase in PFC oxygenation was found while achieving a steady state at vigorous intensities. PCF deoxygenation was evident for near-to-maximal intensities at which an increase in oxygenation and the maintenance of a steady state could not be retained. Discussion/Conclusion: MIT studies show the presence of a cerebral oxygenation threshold (ThCox) at RCP. PFC oxygenation increases until the RCP threshold, thereafter, a steady state is reached and HbO2 declines. This study shows that the results obtained from MIT are transferable to non-incremental endurance exercise. HbO2 increases during low-intensity and moderate-intensity until vigorous-intensity exercise, and it reaches a steady state in vigorous-intensity exercise. Furthermore, ThCox can be found between vigorous and near-maximal intensities. During endurance exercise at near-maximal intensities, PFC oxygenation increases until the value exceeding this threshold, resulting in a decrease in PFC oxygenation. Future research should aim at maintaining and improving PFC oxygenation to help in improving endurance performance and to examine whether PFC oxygenation has a role in other performance-limiting factors.
Collapse
Affiliation(s)
- Jonas De Wachter
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias Proost
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jelle Habay
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias Verstraelen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jesús Díaz-García
- Faculty of Sport Sciences, University of Extremadura, Caceres, Spain
| | - Philip Hurst
- The School of Psychology & Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Romain Meeusen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jeroen Van Cutsem
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium.,VIPER Research Unit, Royal Military Academy, Brussels, Belgium
| | - Bart Roelands
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
46
|
McMorris T. The acute exercise-cognition interaction: From the catecholamines hypothesis to an interoception model. Int J Psychophysiol 2021; 170:75-88. [PMID: 34666105 DOI: 10.1016/j.ijpsycho.2021.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
An interoception model for the acute exercise-cognition interaction is presented. During exercise following the norepinephrine threshold, interoceptive feedback induces increased tonic release of extracellular catecholamines, facilitating phasic release hence better cognitive performance of executive functions. When exercise intensity increases to maximum, the nature of task-induced norepinephrine release from the locus coeruleus is dependent on interaction between motivation, perceived effort costs and perceived availability of resources. This is controlled by interaction between the rostral and dorsolateral prefrontal cortices, orbitofrontal cortex, anterior cingulate cortex and anterior insula cortex. If perceived available resources are sufficient to meet predicted effort costs and reward value is high, tonic release from the locus coeruleus is attenuated thus facilitating phasic release, therefore cognition is not inhibited. However, if perceived available resources are insufficient to meet predicted effort costs or reward value is low, tonic release from the locus coeruleus is induced, attenuating phasic release. As a result, cognition is inhibited, although long-term memory and tasks that require switching to new stimuli-response couplings are probably facilitated.
Collapse
Affiliation(s)
- Terry McMorris
- Institute of Sport, University of Chichester, College Lane, Chichester, West Sussex PO19 6PE, United Kingdom; Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Guildhall Walk, Portsmouth PO1 2ER, United Kingdom.
| |
Collapse
|
47
|
Toward the unity of pathological and exertional fatigue: A predictive processing model. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 22:215-228. [PMID: 34668170 PMCID: PMC8983507 DOI: 10.3758/s13415-021-00958-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/23/2023]
Abstract
Fatigue is a common experience in both health and disease. Yet, pathological (i.e., prolonged or chronic) and transient (i.e., exertional) fatigue symptoms are traditionally considered distinct, compounding a separation between interested research fields within the study of fatigue. Within the clinical neurosciences, nascent frameworks position pathological fatigue as a product of inference derived through hierarchical predictive processing. The metacognitive theory of dyshomeostasis (Stephan et al., 2016) states that pathological fatigue emerges from the metacognitive mechanism in which the detection of persistent mismatches between prior interoceptive predictions and ascending sensory evidence (i.e., prediction error) signals low evidence for internal generative models, which undermine an agent’s feeling of mastery over the body and is thus experienced phenomenologically as fatigue. Although acute, transient subjective symptoms of exertional fatigue have also been associated with increasing interoceptive prediction error, the dynamic computations that underlie its development have not been clearly defined. Here, drawing on the metacognitive theory of dyshomeostasis, we extend this account to offer an explicit description of the development of fatigue during extended periods of (physical) exertion. Accordingly, it is proposed that a loss of certainty or confidence in control predictions in response to persistent detection of prediction error features as a common foundation for the conscious experience of both pathological and nonpathological fatigue.
Collapse
|
48
|
Oliveira GTA, Elsangedy HM, Pereira DC, de Melo Silva R, Faro HKC, Bortolotti H, Costa EC, Fontes EB. Effects of 12 weeks of high-intensity interval, moderate-intensity continuous and self-selected intensity exercise training protocols on cognitive inhibitory control in overweight/obese adults: A randomized trial. Eur J Sport Sci 2021; 22:1724-1733. [PMID: 34429030 DOI: 10.1080/17461391.2021.1969433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Growing evidence shows that aerobic exercise improves cognitive function. However, it is unclear how exercising at different exercise intensities affects cognitive inhibitory control in overweight/obese adults. Herein we compared the effects of 12 weeks of high-intensity interval training (HIIT), moderate-intensity continuous training (MICT), and self-selected intensity training (SSIT) on cognitive inhibitory control in overweight/obese adults. A total of 64 adults (59.4% women, 31.3 ± 7.1 years, 29 ± 2.5 kg/m²) were randomized into three walking/running groups: HIIT, MICT and SSIT. All groups performed three exercise sessions per week on an outdoor running track for 12 weeks. Cognitive inhibitory control was assessed at baseline and after the exercising programs using a computerized version of the Stroop Color-Words test. The HIIT and SSIT resulted in a faster Stroop effect (i.e. enhanced performance) when compared to MICT (p=.018; p= .026), however, there were no significant differences between the HIIT and SSIT groups (p> .05). The enhanced Stroop effect was correlated with increases in cardiorespiratory fitness after HIIT (r= -.521, p= .018) and decreases in body fat after MICT (r= .671, p= .001). These findings may suggest that overweight/obese adults performing exercise interventions at higher intensities or self-selected intensity may enhance their cognitive ability to inhibit automated behavioral responses.
Collapse
Affiliation(s)
- Gledson Tavares Amorim Oliveira
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Raíssa de Melo Silva
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Henrique Bortolotti
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eduardo Caldas Costa
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eduardo Bodnariuc Fontes
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
49
|
Nikooharf Salehi E, Jaydari Fard S, Jaberzadeh S, Zoghi M. Transcranial Direct Current Stimulation Reduces the Negative Impact of Mental Fatigue on Swimming Performance. J Mot Behav 2021; 54:327-336. [PMID: 34433377 DOI: 10.1080/00222895.2021.1962238] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The issue of using transcranial direct current stimulation (tDCS) to improve sport performance has recently been a topic of interest for researchers. The purpose of this study was to examine the effect of tDCS over left dorsolateral prefrontal cortex (DLPFC) on mental fatigue and physical performance in professional swimmers. Fifteen professional swimmers were randomly assigned in a single-blinded, randomized, counterbalanced order to sham, anodal and cathodal stimulation conditions. Mental fatigue was induced by using a 60-min modified Stroop color-word task. Subjective ratings of mental fatigue were measured before and after the stroop task. The results showed that only anodal tDCS of the left DLPFC reduces adverse effects of mental fatigue in 50-meter swimming performance, whereas cathodal stimulation had no significant effect.
Collapse
Affiliation(s)
- Elahe Nikooharf Salehi
- Department of Motor Behavior and Sport Psychology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Saeed Jaydari Fard
- Institute for Social Science Research, Faculty of Humanities and Social Sciences, The University of Queensland, Brisbane, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Maryam Zoghi
- Discipline of Physiotherapy, Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Melbourne, Australia
| |
Collapse
|
50
|
Savoury R, Kibele A, Behm DG. Methodological Issues with Transcranial Direct Current Stimulation for Enhancing Muscle Strength and Endurance: A Narrative Review. JOURNAL OF COGNITIVE ENHANCEMENT 2021. [DOI: 10.1007/s41465-021-00222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|