1
|
Engin A. Adipose Tissue Hypoxia in Obesity: Clinical Reappraisal of Hypoxia Hypothesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:329-356. [PMID: 39287857 DOI: 10.1007/978-3-031-63657-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obese subjects exhibit lower adipose tissue oxygen consumption in accordance with the lower adipose tissue blood flow. Thereby, compared to lean subjects, obese individuals have almost half lower capillary density and more than half lower vascular endothelial growth factor (VEGF). The VEGF expression together with hypoxia-inducible transcription factor-1 alpha (HIF-1α) activity also requires phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR)-mediated signaling. Especially HIF-1α is an important signaling molecule for hypoxia to induce the inflammatory responses. Hypoxia contributes to several biological functions, such as angiogenesis, cell proliferation, apoptosis, inflammation, and insulin resistance (IR). Pathogenesis of obesity-related comorbidities is attributed to intermittent hypoxia (IH), which is mostly observed in visceral obesity. Proinflammatory phenotype of the adipose tissue is a crucial link between IH and the development of IR. Inhibition of adaptive unfolded protein response (UPR) in hypoxia increases β cell death. Moreover, deletion of HIF-1α worsens β cell function. Oxidative stress, as well as the release of proinflammatory cytokines/adipokines in obesity, is proportional to the severity of IH. Reactive oxygen species (ROS) generation at mitochondria is responsible for propagation of the hypoxic signal; however, mitochondrial ROS production is required for hypoxic HIF-1α protein stabilization. Alterations in oxygen availability of adipose tissue directly affect the macrophage polarization and are responsible for the dysregulated adipocytokines production in obesity. Hypoxia both inhibits adipocyte differentiation from preadipocytes and macrophage migration from the hypoxic adipose tissue. Upon reaching a hypertrophic threshold beyond the adipocyte fat loading capacity, excess extracellular matrix (ECM) components are deposited, causing fibrosis. HIF-1α initiates the whole pathological process of fibrosis and inflammation in the obese adipose tissue. In addition to stressed adipocytes, hypoxia contributes to immune cell migration and activation which further aggravates adipose tissue fibrosis. Therefore, targeting HIF-1α might be an efficient way to suppress hypoxia-induced pathological changes in the ECM. The fibrosis score of adipose tissue correlates negatively with the body mass index and metabolic parameters. Inducers of browning/beiging adipocytes and adipokines, as well as modulations of matrix remodeling enzyme inhibitors, and associated gene regulators, are potential pharmacological targets for treating obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
2
|
Uataya M, Banhiran W, Chotinaiwattarakul W, Keskool P, Rungmanee S, Pimolsri C. Association between hypoxic burden and common cardiometabolic diseases in patients with severe obstructive sleep apnea. Sleep Breath 2023; 27:2423-2428. [PMID: 37392326 DOI: 10.1007/s11325-023-02860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/19/2023] [Accepted: 05/23/2023] [Indexed: 07/03/2023]
Abstract
PURPOSE To determine the possible associations between total sleep time spent with arterial oxygen saturation < 90% (T90) and comorbid cardiometabolic diseases (CMDs) in patients with severe obstructive sleep apnea (OSA). METHODS A retrospective review of the chart was conducted in patients with severe OSA diagnosed by in-lab polysomnography (PSG) between January 2018 and December 2019 at Siriraj Hospital. The patients were divided into two groups: hypoxic (T90 ≥ 10%) and nonhypoxic (T90 < 10%). The association between common CMDs including hypertension (HT), type 2 diabetes mellitus (T2DM), and impaired fasting glucose (IFG) was investigated and compared between the two groups. RESULTS Data were collected from 450 patients with severe OSA, 289 males/161 females with a mean age of 53.5 ± 14.2 years and an apnea-hypopnea index (AHI) of 49.6 events/h. Among these, 114 patients (25.3%) were defined as the hypoxic group (T90 ≥ 10%). When compared between the hypoxic and nonhypoxic groups, the patients in the hypoxic group were significantly younger and more obese, and had a higher proportion of male patients. The majority of patients (80%) had at least one CMD; however, the most common comorbidities significantly associated with hypoxic OSA (T90 ≥ 10%) were HT and IFG. CONCLUSION Hypoxic burden is significantly associated with an increased prevalence of HT and IFG in patients with severe OSA. T90 may be potentially useful for predicting CMDs in these patients. However, prospective studies are still required.
Collapse
Affiliation(s)
- Maythad Uataya
- Department of Otorhinolaryngology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Wish Banhiran
- Department of Otorhinolaryngology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Wattanachai Chotinaiwattarakul
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Phawin Keskool
- Department of Otorhinolaryngology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Sarin Rungmanee
- Siriraj Sleep Center, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Chawanont Pimolsri
- Siriraj Sleep Center, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| |
Collapse
|
3
|
Conde SV, Polotsky VY, Joseph V, Kinkead R. On the origins of sleep disordered breathing, cardiorespiratory and metabolic dysfunction: which came first, the chicken or the egg? J Physiol 2023; 601:5509-5525. [PMID: 36988138 PMCID: PMC10539476 DOI: 10.1113/jp284113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Sleep disordered breathing (SDB) is a complex, sex specific and highly heterogeneous group of respiratory disorders. Nevertheless, sleep fragmentation and repeated fluctuations of arterial blood gases for several hours per night are at the core of the problem; together, they impose significant stress to the organism with deleterious consequences on physical and mental health. SDB increases the risk of obesity, diabetes, depression and anxiety disorders; however, the same health issues are risk factors for SDB. So, which came first, the chicken or the egg? What causes the appearance of the first significant apnoeic events during sleep? These are important questions because although moderate to severe SDB affects ∼500 million adults globally, we still have a poor understanding of the origins of the disease, and the main treatments (and animal models) focus on the symptoms rather than the cause. Because obesity, metabolic dysfunction and stress-related neurological disorders generally appear progressively, we discuss how the development of these diseases can lead to specific anatomical and non-anatomical traits of SDB in males and females while considering the impacts of sex steroids. In light of the growing evidence indicating that the carotid bodies are important sensors of key metabolic and endocrine signals associated with stress and dysmetabolism, we propose that these organs play a key role in the process.
Collapse
Affiliation(s)
- Silvia V. Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Vsevolod Y Polotsky
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Vincent Joseph
- Département de Pédiatrie, Université Laval & Research Center of the Québec Heart and Lung Institute, Québec, QC. Canada
| | - Richard Kinkead
- Département de Pédiatrie, Université Laval & Research Center of the Québec Heart and Lung Institute, Québec, QC. Canada
| |
Collapse
|
4
|
Fernandes JL, Martins FO, Olea E, Prieto-Lloret J, Braga PC, Sacramento JF, Sequeira CO, Negrinho AP, Pereira SA, Alves MG, Rocher A, Conde SV. Chronic Intermittent Hypoxia-Induced Dysmetabolism Is Associated with Hepatic Oxidative Stress, Mitochondrial Dysfunction and Inflammation. Antioxidants (Basel) 2023; 12:1910. [PMID: 38001763 PMCID: PMC10669005 DOI: 10.3390/antiox12111910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The association between obstructive sleep apnea (OSA) and metabolic disorders is well-established; however, the underlying mechanisms that elucidate this relationship remain incompletely understood. Since the liver is a major organ in the maintenance of metabolic homeostasis, we hypothesize that liver dysfunction plays a crucial role in the pathogenesis of metabolic dysfunction associated with obstructive sleep apnea (OSA). Herein, we explored the underlying mechanisms of this association within the liver. Experiments were performed in male Wistar rats fed with a control or high fat (HF) diet (60% lipid-rich) for 12 weeks. Half of the groups were exposed to chronic intermittent hypoxia (CIH) (30 hypoxic (5% O2) cycles, 8 h/day) that mimics OSA, in the last 15 days. Insulin sensitivity and glucose tolerance were assessed. Liver samples were collected for evaluation of lipid deposition, insulin signaling, glucose homeostasis, hypoxia, oxidative stress, antioxidant defenses, mitochondrial biogenesis and inflammation. Both the CIH and HF diet induced dysmetabolism, a state not aggravated in animals submitted to HF plus CIH. CIH aggravates hepatic lipid deposition in obese animals. Hypoxia-inducible factors levels were altered by these stimuli. CIH decreased the levels of oxidative phosphorylation complexes in both groups and the levels of SOD-1. The HF diet reduced mitochondrial density and hepatic antioxidant capacity. The CIH and HF diet produced alterations in cysteine-related thiols and pro-inflammatory markers. The results obtained suggest that hepatic mitochondrial dysfunction and oxidative stress, leading to inflammation, may be significant factors contributing to the development of dysmetabolism associated with OSA.
Collapse
Affiliation(s)
- Joana L. Fernandes
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-069 Lisboa, Portugal; (J.L.F.); (F.O.M.); (J.F.S.); (C.O.S.); (A.P.N.); (S.A.P.)
| | - Fátima O. Martins
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-069 Lisboa, Portugal; (J.L.F.); (F.O.M.); (J.F.S.); (C.O.S.); (A.P.N.); (S.A.P.)
| | - Elena Olea
- Departamento de Enfermeria, Universidad de Valladolid, 47005 Valladolid, Spain;
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47005 Valladolid, Spain; (J.P.-L.); (A.R.)
| | - Jesus Prieto-Lloret
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47005 Valladolid, Spain; (J.P.-L.); (A.R.)
- Departamento de Bioquímica, Biologia Molecular y Fisiologia, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Patrícia C. Braga
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (P.C.B.); (M.G.A.)
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal
- Institute of Biomedicine—iBiMED and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana F. Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-069 Lisboa, Portugal; (J.L.F.); (F.O.M.); (J.F.S.); (C.O.S.); (A.P.N.); (S.A.P.)
| | - Catarina O. Sequeira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-069 Lisboa, Portugal; (J.L.F.); (F.O.M.); (J.F.S.); (C.O.S.); (A.P.N.); (S.A.P.)
| | - Ana P. Negrinho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-069 Lisboa, Portugal; (J.L.F.); (F.O.M.); (J.F.S.); (C.O.S.); (A.P.N.); (S.A.P.)
| | - Sofia A. Pereira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-069 Lisboa, Portugal; (J.L.F.); (F.O.M.); (J.F.S.); (C.O.S.); (A.P.N.); (S.A.P.)
| | - Marco G. Alves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (P.C.B.); (M.G.A.)
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal
- Institute of Biomedicine—iBiMED and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Asunción Rocher
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47005 Valladolid, Spain; (J.P.-L.); (A.R.)
- Departamento de Bioquímica, Biologia Molecular y Fisiologia, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-069 Lisboa, Portugal; (J.L.F.); (F.O.M.); (J.F.S.); (C.O.S.); (A.P.N.); (S.A.P.)
| |
Collapse
|
5
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
6
|
Valverde-Pérez E, Olea E, Obeso A, Prieto-Lloret J, Rocher A, Gonzalez-Obeso E. Intermittent Hypoxia and Diet-Induced Obesity on the Intestinal Wall Morphology in a Murine Model of Sleep Apnea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:89-97. [PMID: 37322339 DOI: 10.1007/978-3-031-32371-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This work analyzes the impact of two conditions, intermittent hypoxia exposure and high-fat diet in rats as models of sleep apnea. We studied the autonomic activity and histological structure of the rat jejunum and whether the overlapping of both conditions, as often observed in patients, induces more deleterious effects on the intestinal barrier. We found alterations in jejunum wall histology, predominantly in HF rats, based on increased crypt depth and submucosal thickness, as well as decreased muscularis propria thickness. These alterations were maintained with the IH and HF overlap. An increase in the number and size of goblet cells in the villi and crypts and the infiltration of eosinophils and lymphocytes in the lamina propria suggest an inflammatory status, confirmed by the increase in plasma CRP levels in all experimental groups. Regarding the CAs analysis, IH, alone or combined with HF, causes a preferential accumulation of NE in the catecholaminergic nerve fibers of the jejunum. In contrast, serotonin increases in all three experimental conditions, with the highest level in the HF group. It remains to be elucidated whether the alterations found in the present work could affect the permeability of the intestinal barrier, promoting sleep apnea-induced morbidities.
Collapse
Affiliation(s)
- Esther Valverde-Pérez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Instituto de Biomedicina y Genética Molecular (IBGM), UVa-CSIC, Valladolid, Spain
| | - Elena Olea
- Instituto de Biomedicina y Genética Molecular (IBGM), UVa-CSIC, Valladolid, Spain
- Departamento de Enfermería, Facultad de Enfermeria, Universidad de Valladolid, Valladolid, Spain
| | - Ana Obeso
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Instituto de Biomedicina y Genética Molecular (IBGM), UVa-CSIC, Valladolid, Spain
| | - Jesús Prieto-Lloret
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Instituto de Biomedicina y Genética Molecular (IBGM), UVa-CSIC, Valladolid, Spain
| | - Asunción Rocher
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.
- Instituto de Biomedicina y Genética Molecular (IBGM), UVa-CSIC, Valladolid, Spain.
| | - Elvira Gonzalez-Obeso
- Instituto de Biomedicina y Genética Molecular (IBGM), UVa-CSIC, Valladolid, Spain
- Servicio de Anatomía Patológica, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|
7
|
Effects of Thymoquinone Alone or in Combination with Losartan on the Cardiotoxicity Caused by Oxidative Stress and Inflammation in Hypercholesterolemia. J Cardiovasc Dev Dis 2022; 9:jcdd9120428. [PMID: 36547425 PMCID: PMC9782872 DOI: 10.3390/jcdd9120428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Dietary cholesterol accelerates oxidative and pro-inflammatory processes, causing hypercholesterolemia and cardiovascular diseases. Thus, the purpose of the current study is to compare the protective effects of thymoquinone (TQ) alone or in combination with losartan (LT) against the heart damage caused by a high-cholesterol diet (HCD). HCD-fed rat groups revealed an elevated activity of indicators of cardiac enzymes in the serum. Serum and cardiac lipids were also found to be significantly higher in HCD-fed rat groups. Cardiac pro-inflammatory and oxidative markers were also increased in HCD-fed rat groups, whereas antioxidant indicators were decreased. However, all of these biochemical, inflammatory, antioxidant, and oxidative change indicators returned to levels similar to those of normal rats after treatment with TQ alone or in combination with LT administered to HCD-fed rat groups. Hypercholesterolemia considerably induced the lipid peroxidation product, thiobarbituric acid reaction substances (TBARs), and oxidative radicals in cardiac cells, which were attenuated by QT and LT treatments, particularly when combined. Finally, QT, LT, and their combination were able to reduce the histological changes changes brought on by cholesterol excess in cardiac tissues. In conclusion, administration of TQ in a combination with LT which has a better protective effect, significantly reduced the hypercholesterolemic-induced oxidative and inflammatory changes that occurred in cardiac tissue.
Collapse
|
8
|
Analysis of Bone Histomorphometry in Rat and Guinea Pig Animal Models Subject to Hypoxia. Int J Mol Sci 2022; 23:ijms232112742. [DOI: 10.3390/ijms232112742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Hypoxia may be associated with alterations in bone remodeling, but the published results are contradictory. The aim of this study was to characterize the bone morphometry changes subject to hypoxia for a better understanding of the bone response to hypoxia and its possible clinical consequences on the bone metabolism. This study analyzed the bone morphometry parameters by micro-computed tomography (μCT) in rat and guinea pig normobaric hypoxia models. Adult male and female Wistar rats were exposed to chronic hypoxia for 7 and 15 days. Additionally, adult male guinea pigs were exposed to chronic hypoxia for 15 days. The results showed that rats exposed to chronic constant and intermittent hypoxic conditions had a worse trabecular and cortical bone health than control rats (under a normoxic condition). Rats under chronic constant hypoxia were associated with a more deteriorated cortical tibia thickness, trabecular femur and tibia bone volume over the total volume (BV/TV), tibia trabecular number (Tb.N), and trabecular femur and tibia bone mineral density (BMD). In the case of chronic intermittent hypoxia, rats subjected to intermittent hypoxia had a lower cortical femur tissue mineral density (TMD), lower trabecular tibia BV/TV, and lower trabecular thickness (Tb.Th) of the tibia and lower tibia Tb.N. The results also showed that obese rats under a hypoxic condition had worse values for the femur and tibia BV/TV, tibia trabecular separation (Tb.Sp), femur and tibia Tb.N, and BMD for the femur and tibia than normoweight rats under a hypoxic condition. In conclusion, hypoxia and obesity may modify bone remodeling, and thus bone microarchitecture, and they might lead to reductions in the bone strength and therefore increase the risk of fragility fracture.
Collapse
|
9
|
Memaran N, Onnen M, Müller C, Schwerk N, Carlens J, Borchert-Mörlins B, Bauer E, Blöte R, Sugianto RI, Zürn K, Wühl E, Warnecke G, Tudorache I, Hansen G, Gjertson DW, Schmidt BMW, Melk A. Cardiovascular Burden Is High in Pediatric Lung Transplant Recipients. Transplantation 2022; 106:1465-1472. [PMID: 34982755 DOI: 10.1097/tp.0000000000004025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cardiovascular morbidity is common in adults after lung transplantation (LTx) but has not been described for pediatric LTx recipients. Early subclinical cardiovascular damage is reflected by increases in pulse wave velocity (PWV; indicating arteriosclerosis), intima-media thickness (IMT; indicating atherosclerosis), and left ventricular mass index (LVMI; indicating left ventricular hypertrophy). METHODS We annually assessed 47 pediatric LTx recipients in a prospective longitudinal study (144 observations, mean 3.1 visits/patient, range of 1-4 visits, mean follow-up 2.2 y). RESULTS At inclusion, increased PWV and IMT were detected in 13% and 30%, respectively, and elevated LVMI was detected in 33%. Higher PWV was associated with male sex, longer time since LTx, higher diastolic blood pressure, and lower glomerular filtration rate. Male sex and lower hemoglobin levels were associated with higher IMT, and the presence of diabetes was associated with higher LVMI. CONCLUSIONS Pediatric LTx recipients suffer from a high and sustained burden of subclinical cardiovascular damage. In light of improving long-term outcomes, cardiovascular morbidity needs to be addressed. Our analysis identified classical and nonclassical risk factors to be associated with the measures for cardiovascular damage, which could serve as targets for intervention.
Collapse
Affiliation(s)
- Nima Memaran
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Mareike Onnen
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Carsten Müller
- Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Nicolaus Schwerk
- Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Julia Carlens
- Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Bianca Borchert-Mörlins
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Elena Bauer
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ricarda Blöte
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Rizky I Sugianto
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Katharina Zürn
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Elke Wühl
- Division of Pediatric Nephrology, University Children's Hospital, University of Heidelberg, Heidelberg, Germany
| | - Gregor Warnecke
- Department of Cardiothoracic Surgery, Hannover Medical School, Hannover, Germany
| | - Igor Tudorache
- Department of Cardiothoracic Surgery, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Clinic for Pediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany
| | - David W Gjertson
- Division of Biostatistics, University of California, Los Angeles School of Public Health, Los Angeles, CA
| | | | - Anette Melk
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Incorporation of Oxidized Phenylalanine Derivatives into Insulin Signaling Relevant Proteins May Link Oxidative Stress to Signaling Conditions Underlying Chronic Insulin Resistance. Biomedicines 2022; 10:biomedicines10050975. [PMID: 35625712 PMCID: PMC9138545 DOI: 10.3390/biomedicines10050975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
A link between oxidative stress and insulin resistance has been suggested. Hydroxyl free radicals are known to be able to convert phenylalanine (Phe) into the non-physiological tyrosine isoforms ortho- and meta-tyrosine (o-Tyr, m-Tyr). The aim of our study was to examine the role of o-Tyr and m-Tyr in the development of insulin resistance. We found that insulin-induced uptake of glucose was blunted in cultures of 3T3-L1 grown on media containing o- or m-Tyr. We show that these modified amino acids are incorporated into cellular proteins. We focused on insulin receptor substrate 1 (IRS-1), which plays a role in insulin signaling. The activating phosphorylation of IRS-1 was increased by insulin, the effect of which was abolished in cells grown in m-Tyr or o-Tyr media. We found that phosphorylation of m- or o-Tyr containing IRS-1 segments by insulin receptor (IR) kinase was greatly reduced, PTP-1B phosphatase was incapable of dephosphorylating phosphorylated m- or o-Tyr IRS-1 peptides, and the SH2 domains of phosphoinositide 3-kinase (PI3K) bound the o-Tyr IRS-1 peptides with greatly reduced affinity. According to our data, m- or o-Tyr incorporation into IRS-1 modifies its protein–protein interactions with regulating enzymes and effectors, thus IRS-1 eventually loses its capacity to play its role in insulin signaling, leading to insulin resistance.
Collapse
|
11
|
Chronic intermittent hypoxia induces gut microbial dysbiosis and infers metabolic dysfunction in mice. Sleep Med 2022; 91:84-92. [DOI: 10.1016/j.sleep.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022]
|
12
|
In Vivo and Ex Vivo Evaluation of 1,3-Thiazolidine-2,4-Dione Derivatives as Euglycemic Agents. PPAR Res 2022; 2021:5100531. [PMID: 35003235 PMCID: PMC8741387 DOI: 10.1155/2021/5100531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Thiazolidinediones (TZDs), used to treat type 2 diabetes mellitus, act as full agonists of the peroxisome proliferator-activated receptor gamma. Unfortunately, they produce adverse effects, including weight gain, hepatic toxicity, and heart failure. Our group previously reported the design, synthesis, in silico evaluation, and acute oral toxicity test of two TZD derivatives, compounds 40 (C40) and 81 (C81), characterized as category 5 and 4, respectively, under the Globally Harmonized System. The aim of this study was to determine whether C40, C81, and a new compound, C4, act as euglycemic and antioxidant agents in male Wistar rats with streptozotocin-induced diabetes. The animals were randomly divided into six groups (n = 7): the control, those with diabetes and untreated, and those with diabetes and treated with pioglitazone, C40, C81, or C4 (daily for 21 days). At the end of the experiment, tissue samples were collected to quantify the level of glucose, insulin, triglycerides, total cholesterol, and liver enzymes, as well as enzymatic and nonenzymatic antioxidant activity. C4, without a hypoglycemic effect, displayed the best antioxidant activity. Whereas C81 could only attenuate the elevated level of blood glucose, C40 generated euglycemia by the end of the treatment. All compounds produced a significant decrease in triglycerides.
Collapse
|
13
|
Martins FO, Conde SV. Gender Differences in the Context of Obstructive Sleep Apnea and Metabolic Diseases. Front Physiol 2022; 12:792633. [PMID: 34970158 PMCID: PMC8712658 DOI: 10.3389/fphys.2021.792633] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
The relationship between obstructive sleep apnea (OSA) and endocrine and metabolic disease is unequivocal. OSA, which is characterized by intermittent hypoxia and sleep fragmentation, leads to and exacerbates obesity, metabolic syndrome, and type 2 diabetes (T2D) as well as endocrine disturbances, such as hypothyroidism and Cushing syndrome, among others. However, this relationship is bidirectional with endocrine and metabolic diseases being considered major risk factors for the development of OSA. For example, polycystic ovary syndrome (PCOS), one of the most common endocrine disorders in women of reproductive age, is significantly associated with OSA in adult patients. Several factors have been postulated to contribute to or be critical in the genesis of dysmetabolic states in OSA including the increase in sympathetic activation, the deregulation of the hypothalamus-pituitary axis, the generation of reactive oxygen species (ROS), insulin resistance, alteration in adipokines levels, and inflammation of the adipose tissue. However, probably the alterations in the hypothalamus-pituitary axis and the altered secretion of hormones from the peripheral endocrine glands could play a major role in the gender differences in the link between OSA-dysmetabolism. In fact, normal sleep is also different between men and women due to the physiologic differences between genders, with sex hormones such as progesterone, androgens, and estrogens, being also connected with breathing pathologies. Moreover, it is very well known that OSA is more prevalent among men than women, however the prevalence in women increases after menopause. At the same time, the step-rise in obesity and its comorbidities goes along with mounting evidence of clinically important sex and gender differences. Metabolic and cardiovascular diseases, seen as a men's illness for decades, presently are more common in women than in men and obesity has a higher association with insulin-resistance-related risk factors in women than in men. In this way, in the present manuscript, we will review the major findings on the overall mechanisms that connect OSA and dysmetabolism giving special attention to the specific regulation of this relationship in each gender. We will also detail the gender-specific effects of hormone replacement therapies on metabolic control and sleep apnea.
Collapse
Affiliation(s)
- Fátima O Martins
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Sílvia V Conde
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
14
|
Maladaptive Pulmonary Vascular Responses to Chronic Sustained and Chronic Intermittent Hypoxia in Rat. Antioxidants (Basel) 2021; 11:antiox11010054. [PMID: 35052557 PMCID: PMC8773044 DOI: 10.3390/antiox11010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic sustained hypoxia (CSH), as found in individuals living at a high altitude or in patients suffering respiratory disorders, initiates physiological adaptations such as carotid body stimulation to maintain oxygen levels, but has deleterious effects such as pulmonary hypertension (PH). Obstructive sleep apnea (OSA), a respiratory disorder of increasing prevalence, is characterized by a situation of chronic intermittent hypoxia (CIH). OSA is associated with the development of systemic hypertension and cardiovascular pathologies, due to carotid body and sympathetic overactivation. There is growing evidence that CIH can also compromise the pulmonary circulation, causing pulmonary hypertension in OSA patients and animal models. The aim of this work was to compare hemodynamics, vascular contractility, and L-arginine-NO metabolism in two models of PH in rats, associated with CSH and CIH exposure. We demonstrate that whereas CSH and CIH cause several common effects such as an increased hematocrit, weight loss, and an increase in pulmonary artery pressure (PAP), compared to CIH, CSH seems to have more of an effect on the pulmonary circulation, whereas the effects of CIH are apparently more targeted on the systemic circulation. The results suggest that the endothelial dysfunction evident in pulmonary arteries with both hypoxia protocols are not due to an increase in methylated arginines in these arteries, although an increase in plasma SDMA could contribute to the apparent loss of basal NO-dependent vasodilation and, therefore, the increase in PAP that results from CIH.
Collapse
|
15
|
Chronic Intermittent Hypoxia Induces Early-Stage Metabolic Dysfunction Independently of Adipose Tissue Deregulation. Antioxidants (Basel) 2021; 10:antiox10081233. [PMID: 34439481 PMCID: PMC8388878 DOI: 10.3390/antiox10081233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Several studies demonstrated a link between obstructive sleep apnea (OSA) and the development of insulin resistance. However, the main event triggering insulin resistance in OSA remains to be clarified. Herein, we investigated the effect of mild and severe chronic intermittent hypoxia (CIH) on whole-body metabolic deregulation and visceral adipose tissue dysfunction. Moreover, we studied the contribution of obesity to CIH-induced dysmetabolic states. Experiments were performed in male Wistar rats submitted to a control and high-fat (HF) diet. Two CIH protocols were tested: A mild CIH paradigm (5/6 hypoxic (5% O2) cycles/h, 10.5 h/day) during 35 days and a severe CIH paradigm (30 hypoxic (5% O2) cycles, 8 h/day) during 15 days. Fasting glycemia, insulinemia, insulin sensitivity, weight, and fat mass were assessed. Adipose tissue hypoxia, inflammation, angiogenesis, oxidative stress, and metabolism were investigated. Mild and severe CIH increased insulin levels and induced whole-body insulin resistance in control animals, effects not associated with weight gain. In control animals, CIH did not modify adipocytes perimeter as well as adipose tissue hypoxia, angiogenesis, inflammation or oxidative stress. In HF animals, severe CIH attenuated the increase in adipocytes perimeter, adipose tissue hypoxia, angiogenesis, and dysmetabolism. In conclusion, adipose tissue dysfunction is not the main trigger for initial dysmetabolism in CIH. CIH in an early stage might have a protective role against the deleterious effects of HF diet on adipose tissue metabolism.
Collapse
|
16
|
Almendros I, Basoglu ÖK, Conde SV, Liguori C, Saaresranta T. Metabolic dysfunction in OSA: Is there something new under the sun? J Sleep Res 2021; 31:e13418. [PMID: 34152053 DOI: 10.1111/jsr.13418] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
The growing number of patients with obstructive sleep apnea is challenging healthcare systems worldwide. Obstructive sleep apnea is characterized by chronic intermittent hypoxaemia, episodes of apnea and hypopnea, and fragmented sleep. Cardiovascular and metabolic diseases are common in obstructive sleep apnea, also in lean patients. Further, comorbidity burden is not unambiguously linked to the severity of obstructive sleep apnea. There is a growing body of evidence revealing diverse functions beyond the conventional tasks of different organs such as carotid body and gut microbiota. Chronic intermittent hypoxia and sleep loss due to sleep fragmentation are associated with insulin resistance. Indeed, carotid body is a multi-sensor organ not sensoring only hypoxia and hypercapnia but also acting as a metabolic sensor. The emerging evidence shows that obstructive sleep apnea and particularly chronic intermittent hypoxia is associated with non-alcoholic fatty liver disease. Gut dysbiosis seems to be an important factor in the pathophysiology of obstructive sleep apnea and its consequences. The impact of sleep fragmentation and intermittent hypoxia on the development of metabolic syndrome may be mediated via altered gut microbiota. Circadian misalignment seems to have an impact on the cardiometabolic risk in obstructive sleep apnea. Dysfunction of cerebral metabolism is also related to hypoxia and sleep fragmentation. Therefore, obstructive sleep apnea may alter cerebral metabolism and predispose to neurocognitive impairment. Moreover, recent data show that obstructive sleep apnea independently predicts impaired lipid levels. This mini-review will provide novel insights into the mechanisms of metabolic dysfunction in obstructive sleep apnea combining recent evidence from basic, translational and clinical research, and discuss the impact of positive airway pressure treatment on metabolic disorders.
Collapse
Affiliation(s)
- Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Özen K Basoglu
- Department of Pulmonary Diseases, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Silvia V Conde
- Faculdade de Ciências Médicas, CEDOC, NOVA Medical School, Lisboa, Portugal
| | - Claudio Liguori
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Tarja Saaresranta
- Division of Medicine, Department of Pulmonary Diseases, Turku University Hospital, Turku, Finland.,Sleep Research Centre, Department of Pulmonary Diseases and Clinical Allergology, University of Turku, Turku, Finland
| |
Collapse
|
17
|
Drummond SE, Burns DP, O'Connor KM, Clarke G, O'Halloran KD. The role of NADPH oxidase in chronic intermittent hypoxia-induced respiratory plasticity in adult male mice. Respir Physiol Neurobiol 2021; 292:103713. [PMID: 34116239 DOI: 10.1016/j.resp.2021.103713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Reactive oxygen species (ROS) are proposed as mediators of chronic intermittent hypoxia (CIH)-induced respiratory plasticity. We sought to determine if NADPH oxidase 2 (NOX2)-derived ROS underpin CIH-induced maladaptive changes in respiratory control. Adult male mice (C57BL/6 J) were assigned to one of three groups: normoxic controls (sham); chronic intermittent hypoxia-exposed (CIH, 12 cycles/hour, 8 h/day for 14 days); and CIH + apocynin (NOX2 inhibitor, 2 mM) given in the drinking water throughout exposure to CIH. In addition, we studied sham and CIH-exposed NOX2-null mice (B6.129S-CybbTM1Din/J). Whole-body plethysmography was used to measure breathing and metabolic parameters. Ventilation (V̇I/V̇CO2) during normoxia was unaffected by CIH, but apnoea index was increased, which was prevented by apocynin, but not by NOX2 deletion. The ventilatory response to hypercapnia following exposure to CIH was potentiated in NOX2-null mice. Our results reveal ROS-dependent influences on the control of breathing and point to antioxidant intervention as a potential adjunctive therapeutic strategy in respiratory control disorders.
Collapse
Affiliation(s)
- Sarah E Drummond
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
18
|
Marcouiller F, Jochmans-Lemoine A, Ganouna-Cohen G, Mouchiroud M, Laplante M, Marette A, Bairam A, Joseph V. Metabolic responses to intermittent hypoxia are regulated by sex and estradiol in mice. Am J Physiol Endocrinol Metab 2021; 320:E316-E325. [PMID: 33284090 PMCID: PMC8260369 DOI: 10.1152/ajpendo.00272.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The roles of sex and sex-hormones on the metabolic consequences of intermittent hypoxia (IH, a reliable model of sleep apnea) are unknown. We used intact male or female mice and ovariectomized (OVX) females treated with vehicle (Veh) or estradiol (E2) and exposed to normoxia (Nx) or IH (6% O2, 10 cycles/h, 12 h/day, 2 wk). Mice were then fasted for 6 h, and we measured fasting glucose and insulin levels and performed insulin or glucose tolerance tests (ITT or GTT). We also assessed liver concentrations of glycogen, triglycerides (TGs), and expression levels of genes involved in aerobic or anaerobic metabolism. In males, IH lowered fasting levels of glucose and insulin, slightly improved glucose tolerance, but altered glucose tolerance in females. In OVX-Veh females, IH reduced fasting glucose and insulin levels and strongly impaired glucose tolerance. E2 supplementation reversed these effects and improved homeostasis model assessment of β-cell function (HOMA-β), a marker of pancreatic glucose-induced insulin released. IH decreased liver TG concentration in males and slightly increased glycogen in OVX-Veh females. Liver expression of glycolytic (Ldha) and mitochondrial (citrate synthase, Pdha1) genes was reduced by IH in males and in OVX-Veh females, but not in intact or OVX-E2 females. We conclude that 1) IH reduced fasting levels of glycemia in males and in ovariectomized females. 2) IH improves glucose tolerance only in males. 3) In females IH decreased glucose tolerance, this effect was amplified by ovariectomy, and reversed by E2 supplementation. 4) During IH exposures, E2 supplementation appears to improve pancreatic β cells functions.NEW & NOTEWORTHY We assessed fasting glycemic control, and tolerance to insulin and glucose in male and female mice exposed to intermittent hypoxia. IH improves glucose tolerance in males but had opposite effects in females. This response was amplified following ovariectomy in females and prevented by estradiol supplementation. Metabolic consequences of IH differ between males and females and are regulated by estradiol in female mice.
Collapse
Affiliation(s)
- François Marcouiller
- Faculté de Médecine, Département de Pédiatrie, Axe Pneumologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Alexandra Jochmans-Lemoine
- Faculté de Médecine, Département de Pédiatrie, Axe Pneumologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Gauthier Ganouna-Cohen
- Faculté de Médecine, Département de Pédiatrie, Axe Pneumologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Mathilde Mouchiroud
- Faculté de Médecine, Département de Médecine, Axe Obésité-Métabolisme, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Mathieu Laplante
- Faculté de Médecine, Département de Médecine, Axe Obésité-Métabolisme, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - André Marette
- Faculté de Médecine, Département de Médecine, Axe Cardiologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Quebec, Canada
| | - Aida Bairam
- Faculté de Médecine, Département de Pédiatrie, Axe Pneumologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Vincent Joseph
- Faculté de Médecine, Département de Pédiatrie, Axe Pneumologie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| |
Collapse
|
19
|
Logan SM, Storey KB. Inflammasome signaling could be used to sense and respond to endogenous damage in brown but not white adipose tissue of a hibernating ground squirrel. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103819. [PMID: 32781003 DOI: 10.1016/j.dci.2020.103819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Small mammalian hibernators use metabolic suppression to enhance survival during the winter. Torpor is punctuated by periods of euthermia used to clear metabolic by-products and damaged cell components. The current study was performed to determine if the innate immune system, specifically NLRP and AIM2 inflammasome signaling, may detect and respond to cell stress during hibernation. Nlrp3, Casp1, and Il1b genes were significantly upregulated in brown adipose tissue (BAT) during arousal with respect to the euthermic control, suggesting increased NLRP3 inflammasome priming. NLRP3, IL-18, and gasdermin D protein levels increased during torpor, indicating a lag between inflammasome priming and formation. AIM2 and gasdermin D levels increased in BAT during arousal, as did caspase-1 activity. Thus, non-shivering thermogenesis may generate pro-inflammatory triggers of inflammasome signaling. This study is the first to support a role for inflammasome signaling in sensing cellular perturbations at various points of the torpor-arousal cycle, in metabolically-active BAT, but not white adipose tissue (WAT).
Collapse
Affiliation(s)
- Samantha M Logan
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | - Kenneth B Storey
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
20
|
BINMOWYNA MN, ALFARIS NA, ALMNAIZEL AT, ALSAYADI MM, AL-SANEA EA. Hypolipidemic and antioxidant effects of the juice and water seed extracts of two pomegranate species in high-cholesterol diet fed rats. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.31220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Peripheral Dopamine 2-Receptor Antagonist Reverses Hypertension in a Chronic Intermittent Hypoxia Rat Model. Int J Mol Sci 2020; 21:ijms21144893. [PMID: 32664461 PMCID: PMC7402302 DOI: 10.3390/ijms21144893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
The sleep apnea-hypopnea syndrome (SAHS) involves periods of intermittent hypoxia, experimentally reproduced by exposing animal models to oscillatory PO2 patterns. In both situations, chronic intermittent hypoxia (CIH) exposure produces carotid body (CB) hyperactivation generating an increased input to the brainstem which originates sympathetic hyperactivity, followed by hypertension that is abolished by CB denervation. CB has dopamine (DA) receptors in chemoreceptor cells acting as DA-2 autoreceptors. The aim was to check if blocking DA-2 receptors could decrease the CB hypersensitivity produced by CIH, minimizing CIH-related effects. Domperidone (DOM), a selective peripheral DA-2 receptor antagonist that does not cross the blood-brain barrier, was used to examine its effect on CIH (30 days) exposed rats. Arterial pressure, CB secretory activity and whole-body plethysmography were measured. DOM, acute or chronically administered during the last 15 days of CIH, reversed the hypertension produced by CIH, an analogous effect to that obtained with CB denervation. DOM marginally decreased blood pressure in control animals and did not affect hypoxic ventilatory response in control or CIH animals. No adverse effects were observed. DOM, used as gastrokinetic and antiemetic drug, could be a therapeutic opportunity for hypertension in SAHS patients’ resistant to standard treatments.
Collapse
|
22
|
Du X, Girard O, Fan RY, Ma F. Effects of Active and Passive Hypoxic Conditioning for 6 Weeks at Different Altitudes on Blood Lipids, Leptin, and Weight in Rats. High Alt Med Biol 2020; 21:243-248. [PMID: 32486854 DOI: 10.1089/ham.2020.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Du, Xia, Olivier Girard, Rong yun Fan, and Fuhai Ma. Effects of active and passive hypoxic conditioning for 6 weeks at different altitudes on blood lipids, leptin, and weight in rats. High Alt Med Biol. 21:243-248, 2020. Objective: To compare the effects of 6 weeks of passive and active hypoxia exposure at different altitudes on lipid metabolism, leptin, and weight in rats. Materials and Methods: Eighty 9-week-old male Wistar rats were assigned to either non-exercise or exercise groups. Each group was subdivided into four categories (n = 10) based on hypoxic conditions: 0, 2200, 2200 + 3500, and 3500 m. Rats in the exercise group trained on a treadmill at a speed of 20-22 m/min (0° incline) for 90 minutes, 5 days per week for 6 weeks. Serum lipid and leptin levels and weight were measured following the intervention. Results: Total cholesterol (-8.2% ± 3.5%), low-density lipoproteins (-29.8% ± 8.1%), and triglyceride (TG) levels (-17.2% ± 3.8%) were lower, and high-density lipoproteins (+7.4% ± 4.0%) higher, in exercise versus non-exercise groups (all p < 0.001), independent of condition. TG levels were lower at altitude (-13.0% ± 27.3%, -10.9% ± 24.3%, and -9.2% ± 20.9% at 2200, 2200 + 3500, and 3500 m, respectively) compared to 0 m (p < 0.001). Hypoxic exposure decreased leptin with lower values at 2200 + 3500 m and 3500 m compared to 0 m (p < 0.05). Weight was lower in exercise than non-exercise groups (-8.2% ± 21.0%; p < 0.001), and at altitude (-2.7% ± 2.6%, -5.5% ± 3.7%, and -5.7% ± 2.7% at 2200, 2200 + 3500, and 3500 m, respectively) compared to 0 m. Conclusion: Regular aerobic exercise led to more favorable responses for lipid metabolism and weight control than the oxygenation conditions the animals are in.
Collapse
Affiliation(s)
- Xia Du
- Qinghai Provincial Sports Bureau, Qinghai Institute of Sports Science, Xi Ning, China.,China National Sports Bureau, Key Lab of Plateau Training in China General Administration of Sport, Xi Ning, China.,Qinghai Provincial Department of Science and Technology, Excellent Key Lab of Plateau Physical Education in Qinghai Province, Xi Ning, China
| | - Olivier Girard
- School of Human Sciences, Exercise and Sport Science, The University of Western Australia, Crawley, Australia
| | - Rong Yun Fan
- Qinghai Provincial Sports Bureau, Qinghai Institute of Sports Science, Xi Ning, China.,China National Sports Bureau, Key Lab of Plateau Training in China General Administration of Sport, Xi Ning, China.,Qinghai Provincial Department of Science and Technology, Excellent Key Lab of Plateau Physical Education in Qinghai Province, Xi Ning, China
| | - Fuhai Ma
- Qinghai Provincial Sports Bureau, Qinghai Institute of Sports Science, Xi Ning, China.,China National Sports Bureau, Key Lab of Plateau Training in China General Administration of Sport, Xi Ning, China.,Qinghai Provincial Department of Science and Technology, Excellent Key Lab of Plateau Physical Education in Qinghai Province, Xi Ning, China
| |
Collapse
|
23
|
Running wheel access fails to resolve impaired sustainable health in mice feeding a high fat sucrose diet. Aging (Albany NY) 2020; 11:1564-1579. [PMID: 30860981 PMCID: PMC6428087 DOI: 10.18632/aging.101857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/06/2019] [Indexed: 12/16/2022]
Abstract
Diet and physical activity are thought to affect sustainable metabolic health and survival. To improve understanding, we studied survival of mice feeding a low-fat (LF) or high-saturated fat/high sugar (HFS) diet, each with or without free running wheel (RW) access. Additionally several endocrine and metabolic health indices were assessed at 6, 12, 18 and 24 months of age. As expected, HFS feeding left-shifted survival curve of mice compared to LF feeding, and this was associated with increased energy intake and increased (visceral/total) adiposity, liver triglycerides, and increased plasma cholesterol, corticosterone, HOMA-IR, and lowered adiponectin levels. Several of these health parameters improved (transiently) by RW access in HFS and LF fed mice (i.e., HOMA-IR, plasma corticosterone), others however deteriorated (transiently) by RW access only in HFS-fed mice (i.e., body adiposity, plasma resistin, and free cholesterol levels). Apart from these multiple and sometimes diverging health effects of RW access, RW access did not affect survival curves. Important to note, voluntary RW activity declined with age, but this effect was most pronounced in the HFS fed mice. These results thus challenge the hypothesis that voluntary wheel running can counteract HFS-induced deterioration of survival and metabolic health.
Collapse
|
24
|
Dumortier L, Bricout VA. Obstructive sleep apnea syndrome in adults with down syndrome: Causes and consequences. Is it a "chicken and egg" question? Neurosci Biobehav Rev 2020; 108:124-138. [DOI: 10.1016/j.neubiorev.2019.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/11/2019] [Accepted: 10/26/2019] [Indexed: 12/31/2022]
|
25
|
Ge MQ, Yeung SC, Mak JCW, Ip MSM. Differential metabolic and inflammatory responses to intermittent hypoxia in substrains of lean and obese C57BL/6 mice. Life Sci 2019; 238:116959. [PMID: 31628916 DOI: 10.1016/j.lfs.2019.116959] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
Abstract
AIMS This study was to investigate the degree of susceptibility to intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), between the two mice inbred lines C57BL/6N (6N) and C57BL/6J (6J). MATERIALS AND METHODS Four-week old male mice of 6N and 6J substrains (n = 8) were randomized to standard diet (SD) group or high fat (HF) diet group. At the age of 13-week, all two groups of mice were subjected to either air or IH (IH30; thirty hypoxic events per hour) for one week. KEY FINDINGS All mice fed with HF diet exhibited obesity with more body weight and fat mass (percentage to body weight) gain. IH reduced serum LDL, HDL and total cholesterol levels in lean 6J mice. In obese mice, IH lowered obesity-induced serum total cholesterol level in 6J substrain but raised further in 6N substrain. Furthermore, IH caused elevation of serum FFA and MDA levels, and pro-inflammatory cytokines MCP-1 and IL-6 levels in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) of lean 6J but not lean 6N mice. There was reduced number of adipocytes and elevation of macrophages in SAT and VAT of HF-induced obese mice of both substrains. IH led to increased number of adipocytes and macrophages in SAT of lean 6J mice. SIGNIFICANCE The genetic difference between 6N and 6J mice may have direct impact on metabolic and inflammatory responses after IH. Therefore, attention must be given for the selection of C57BL mice substrains in the experimental IH-exposed mouse model.
Collapse
Affiliation(s)
- Meng Qin Ge
- Departments of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Sze Chun Yeung
- Departments of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Judith Choi Wo Mak
- Departments of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Mary Sau Man Ip
- Departments of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
26
|
Hanlon CE, Binka E, Garofano JS, Sterni LM, Brady TM. The association of obstructive sleep apnea and left ventricular hypertrophy in obese and overweight children with history of elevated blood pressure. J Clin Hypertens (Greenwich) 2019; 21:984-990. [PMID: 31222948 DOI: 10.1111/jch.13605] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/08/2019] [Accepted: 05/25/2019] [Indexed: 01/20/2023]
Abstract
Obesity is a potent cardiovascular disease (CVD) risk factor and is associated with left ventricular hypertrophy (LVH). Obstructive sleep apnea (OSA) is common among individuals with obesity and is also associated with CVD risk. The authors sought to determine the association of OSA, a modifiable CVD risk factor, with LVH among overweight/obese youth with elevated blood pressure (EBP). This was a cross-sectional analysis of the baseline visit of 61 consecutive overweight/obese children with history of EBP who were evaluated in a pediatric obesity hypertension clinic. OSA was defined via sleep study or validated questionnaire. Children with and without OSA were compared using Fisher's exact tests, Student's t tests, and Wilcoxon rank sum test. Multivariable logistic regression evaluated the association between OSA and LVH. In this cohort, 71.7% of the children had LVH. Children with OSA were more likely to have LVH (85.7% vs 59.4%, P = 0.047). OSA was associated with 4.11 times greater odds of LVH (95% CI 1.15, 14.65; P = 0.030), remaining significant after adjustment for age, sex, race, and BMI z-score (after adjustment for hypertension, P = 0.051). A severe obstructive apnea-hypopnea index (AHI >10) was associated with 14 times greater odds of LVH (95% CI 1.14, 172.64, P = 0.039). OSA was significantly associated with LVH among overweight/obese youth with EBP, even after adjustment for age, sex, race, and BMI z-score. Those with the most severe OSA (AHI >10) had the greatest risk for LVH. Future studies exploring the impact of OSA treatment on CVD risk in children are needed.
Collapse
Affiliation(s)
- Colleen E Hanlon
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Edem Binka
- Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffrey S Garofano
- Division of Pediatric Medical Psychology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura M Sterni
- Division of Pediatric Pulmonology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tammy M Brady
- Division of Pediatric Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
27
|
Qian Y, Zou J, Xu H, Zhu H, Meng L, Liu S, Yi H, Guan J, Yin S. Association of upper airway surgery and improved cardiovascular biomarkers and risk in OSA. Laryngoscope 2019; 130:818-824. [PMID: 31077395 DOI: 10.1002/lary.28012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 01/06/2019] [Accepted: 04/02/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Yingjun Qian
- Department of Otolaryngology Head and Neck SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Sleep Disordered Breathing, and Otolaryngological Institute, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Jianyin Zou
- Department of Otolaryngology Head and Neck SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Sleep Disordered Breathing, and Otolaryngological Institute, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Huajun Xu
- Department of Otolaryngology Head and Neck SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Sleep Disordered Breathing, and Otolaryngological Institute, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Huaming Zhu
- Department of Otolaryngology Head and Neck SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Sleep Disordered Breathing, and Otolaryngological Institute, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Lili Meng
- Department of Otolaryngology Head and Neck SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Sleep Disordered Breathing, and Otolaryngological Institute, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Suru Liu
- Department of Otolaryngology Head and Neck SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Sleep Disordered Breathing, and Otolaryngological Institute, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Hongliang Yi
- Department of Otolaryngology Head and Neck SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Sleep Disordered Breathing, and Otolaryngological Institute, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Jian Guan
- Department of Otolaryngology Head and Neck SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Sleep Disordered Breathing, and Otolaryngological Institute, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Sleep Disordered Breathing, and Otolaryngological Institute, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| |
Collapse
|
28
|
Castellana G, Dragonieri S, Marra L, Quaranta VN, Carratù P, Ranieri T, Resta O. Nocturnal Hypoventilation May Have a Protective Effect on Ischemic Heart Disease in Patients with Obesity Hypoventilation Syndrome. Rejuvenation Res 2019; 22:13-19. [DOI: 10.1089/rej.2017.2030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Giorgio Castellana
- Institute of Respiratory Diseases, University of Bari “Aldo Moro,” Bari, Italy
| | - Silvano Dragonieri
- Institute of Respiratory Diseases, University of Bari “Aldo Moro,” Bari, Italy
| | - Lorenzo Marra
- Institute of Respiratory Diseases, University of Bari “Aldo Moro,” Bari, Italy
| | | | - Pierluigi Carratù
- Institute of Respiratory Diseases, University of Bari “Aldo Moro,” Bari, Italy
| | - Teresa Ranieri
- Institute of Respiratory Diseases, University of Bari “Aldo Moro,” Bari, Italy
| | - Onofrio Resta
- Institute of Respiratory Diseases, University of Bari “Aldo Moro,” Bari, Italy
| |
Collapse
|
29
|
Adrenal Medulla Chemo Sensitivity Does Not Compensate the Lack of Hypoxia Driven Carotid Body Chemo Reflex in Guinea Pigs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 30357748 DOI: 10.1007/978-3-319-91137-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Guinea pigs (GP), originally from the Andes, have absence of hypoxia-driven carotid body (CB) reflex. Neonatal mammals have an immature CB chemo reflex and respond to hypoxia with metabolic changes arising from direct effects of hypoxia on adrenal medulla (AM). Our working hypothesis is that adult GP would mimic neonatal mammals. Plasma epinephrine (E) has an AM origin, while norepinephrine (NE) is mainly originated in sympathetic endings, implying that specific GP changes in plasma E/NE ratio, and in blood glucose and lactate levels during hypoxia would be observed. Experiments were performed on young adult GP and rats. Hypoxic ventilation (10% O2) increased E and NE plasma levels similarly in both species but PaO2 was lower in GP than in rats. Plasma E/NE ratio in GP was higher (≈1.0) than in rats (≈0.5). The hypoxia-evoked increases in blood glucose and lactate were smaller in GP than in the rat. The AM of both species contain comparable E content, but NE was four times lower in GP than in rats. GP superior cervical ganglion also had lower NE content than rats and an unusual high level of dopamine, a negative modulator of sympathetic transmission. Isolated AM from GP released half of E and one tenth of NE than the rat AM, and hypoxia did not alter the time course of CA outflow. These data indicate the absence of direct effects of hypoxia on AM in the GP, and a lower noradrenergic tone in this species. Pathways for hypoxic sympatho-adrenal system activation in GP are discussed.
Collapse
|
30
|
Framnes SN, Arble DM. The Bidirectional Relationship Between Obstructive Sleep Apnea and Metabolic Disease. Front Endocrinol (Lausanne) 2018; 9:440. [PMID: 30127766 PMCID: PMC6087747 DOI: 10.3389/fendo.2018.00440] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a common sleep disorder, effecting 17% of the total population and 40-70% of the obese population (1, 2). Multiple studies have identified OSA as a critical risk factor for the development of obesity, diabetes, and cardiovascular diseases (3-5). Moreover, emerging evidence indicates that metabolic disorders can exacerbate OSA, creating a bidirectional relationship between OSA and metabolic physiology. In this review, we explore the relationship between glycemic control, insulin, and leptin as both contributing factors and products of OSA. We conclude that while insulin and leptin action may contribute to the development of OSA, further research is required to determine the mechanistic actions and relative contributions independent of body weight. In addition to increasing our understanding of the etiology, further research into the physiological mechanisms underlying OSA can lead to the development of improved treatment options for individuals with OSA.
Collapse
Affiliation(s)
| | - Deanna M. Arble
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
31
|
Cai C, Ahmad T, Valencia GB, Aranda JV, Xu J, Beharry KD. Intermittent hypoxia suppression of growth hormone and insulin-like growth factor-I in the neonatal rat liver. Growth Horm IGF Res 2018; 41:54-63. [PMID: 29544682 PMCID: PMC6064669 DOI: 10.1016/j.ghir.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Extremely low gestational age neonates with chronic lung disease requiring oxygen therapy frequently experience fluctuations in arterial oxygen saturation or intermittent hypoxia (IH). These infants are at risk for multi-organ developmental delay, reduced growth, and short stature. The growth hormone (GH)/insulin-like growth factor-I (IGF-1) system, an important hormonal regulator of lipid and carbohydrate metabolism, promotes neonatal growth and development. We tested the hypothesis that increasing episodes of IH delay neonatal growth by influencing the GH/IGF-I axis. DESIGN Newborn rats were exposed to 2, 4, 6, 8, 10, or 12 hypoxic episodes (12% O2) during hyperoxia (50% O2) from P0-P7, P0-P14 (IH), or allowed to recover from P7-P21 or P14-P21 (IHR) in room air (RA). RA littermates at P7, P14, and P21 served as RA controls; and groups exposed to hyperoxia only (50% O2) served as zero IH controls. Histopathology of the liver; hepatic levels of GH, GHBP, IGF-I, IGFBP-3, and leptin; and immunoreactivities of GH, GHR, IGF-I and IGF-IR were determined. RESULTS Pathological findings of the liver, including cellular swelling, steatosis, necrosis and focal sinusoid congestion were seen in IH, and were particularly severe in the P7 animals. Hepatic GH levels were significantly suppressed in the IH groups exposed to 6-12 hypoxic episodes per day and were not normalized during IHR. Deficits in the GH levels were associated with reduced body length and increase body weight during IHR suggesting increased adiposity and catchup fat. Catchup fat was also associated with elevations in GHBP, IGF-I, leptin. CONCLUSIONS IH significantly impairs hepatic GH/IGF-1 signaling during the first few weeks of life, which is likely responsible for hepatic GH resistance, increased body fat, and hepatic steatosis. These hormonal perturbations may contribute to long-term organ and body growth impairment, and metabolic dysfunction in preterm infants experiencing frequent IH and/or apneic episodes.
Collapse
Affiliation(s)
- Charles Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Taimur Ahmad
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Gloria B Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; SUNY Eye Institute, NY, NY, USA
| | - Jiliu Xu
- Department of Pediatrics, Richmond University Medical Center, Staten Island, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; SUNY Eye Institute, NY, NY, USA.
| |
Collapse
|
32
|
Wang H, Wang Y, Xia T, Liu Y, Liu T, Shi X, Li Y. Pathogenesis of Abnormal Hepatic Lipid Metabolism Induced by Chronic Intermittent Hypoxia in Rats and the Therapeutic Effect of N-Acetylcysteine. Med Sci Monit 2018; 24:4583-4591. [PMID: 29968701 PMCID: PMC6060689 DOI: 10.12659/msm.907228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The pathogenesis of chronic intermittent hypoxia (CIH)-induced abnormal hepatic lipid metabolism in rats remains unclear. Here, we investigated the therapeutic effect of N-acetylcysteine (NAC) on abnormal hepatic lipid metabolism. MATERIAL AND METHODS Rats were subjected to hypoxia and NAC treatment, and evaluated in terms of hepatic lipid metabolism, hepatocyte ultrastructure, oxidative stress in hepatocytes, expression of nuclear factor-kappa B (NF-κB) and inflammatory cytokines (IL-1β, IL-6, and TNFα), serum lipoprotein lipase (LPL) levels, and blood lipids (triglycerides and cholesterol). RESULTS Compared to the normoxic control group, animals in the hypoxic model group showed significant body weight gain; abnormal hepatic lipid metabolism; lipid vacuolization; accumulation of lipid droplets; abundant autophagosomes and lysosomes; significant increases in oxidative stress, inflammation level, and blood lipid levels; and significantly reduced LPL levels. Compared to control animals, rats in the treatment group exhibited normal body weight gain, improved lipid metabolism, fewer lipid droplets, alleviated ultrastructural injuries, decreased oxidative stress and inflammation level, as well as elevated LPL and reduced blood lipid levels. CONCLUSIONS The harmful effects of CIH on rat liver are possibly associated with the reactive oxygen species (ROS)/NF-κB signaling pathway. NAC is capable of attenuating lipid metabolism alterations and abnormal body weight gain in the CIH rat model, via a possible mechanism related to inhibition of ROS/NF-κB signaling.
Collapse
Affiliation(s)
- Haipeng Wang
- Department of Otolaryngology Head and Neck Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Otorhinolaryngology of Health Ministry, Shandong University, Jinan, Shandong, China (mainland).,Department of Otolaryngology Head and Neck Surgery, Zibo City Central Hospital, Zibo, Shandong, China (mainland)
| | - Yan Wang
- Department of Otolaryngology Head and Neck Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Otorhinolaryngology of Health Ministry, Shandong University, Jinan, Shandong, China (mainland)
| | - Tongliang Xia
- Department of Otolaryngology Head and Neck Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Otorhinolaryngology of Health Ministry, Shandong University, Jinan, Shandong, China (mainland)
| | - Yaxuan Liu
- Department of Otolaryngology Head and Neck Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Otorhinolaryngology of Health Ministry, Shandong University, Jinan, Shandong, China (mainland)
| | - Ting Liu
- Department of Otolaryngology Head and Neck Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Otorhinolaryngology of Health Ministry, Shandong University, Jinan, Shandong, China (mainland)
| | - Xiaoli Shi
- Department of Otolaryngology Head and Neck Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Otorhinolaryngology of Health Ministry, Shandong University, Jinan, Shandong, China (mainland)
| | - Yanzhong Li
- Ololaryngology Head and Neck Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Key Laboratory of Otorhinolaryngology of Health Ministry, Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
33
|
Docio I, Olea E, Prieto-LLoret J, Gallego-Martin T, Obeso A, Gomez-Niño A, Rocher A. Guinea Pig as a Model to Study the Carotid Body Mediated Chronic Intermittent Hypoxia Effects. Front Physiol 2018; 9:694. [PMID: 29922183 PMCID: PMC5996279 DOI: 10.3389/fphys.2018.00694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
Clinical and experimental evidence indicates a positive correlation between chronic intermittent hypoxia (CIH), increased carotid body (CB) chemosensitivity, enhanced sympatho-respiratory coupling and arterial hypertension and cardiovascular disease. Several groups have reported that both the afferent and efferent arms of the CB chemo-reflex are enhanced in CIH animal models through the oscillatory CB activation by recurrent hypoxia/reoxygenation episodes. Accordingly, CB ablation or denervation results in the reduction of these effects. To date, no studies have determined the effects of CIH treatment in chemo-reflex sensitization in guinea pig, a rodent with a hypofunctional CB and lacking ventilatory responses to hypoxia. We hypothesized that the lack of CB hypoxia response in guinea pig would suppress chemo-reflex sensitization and thereby would attenuate or eliminate respiratory, sympathetic and cardiovascular effects of CIH treatment. The main purpose of this study was to assess if guinea pig CB undergoes overactivation by CIH and to correlate CIH effects on CB chemoreceptors with cardiovascular and respiratory responses to hypoxia. We measured CB secretory activity, ventilatory parameters, systemic arterial pressure and sympathetic activity, basal and in response to acute hypoxia in two groups of animals: control and 30 days CIH exposed male guinea pigs. Our results indicated that CIH guinea pig CB lacks activity elicited by acute hypoxia measured as catecholamine (CA) secretory response or intracellular calcium transients. Plethysmography data showed that only severe hypoxia (7% O2) and hypercapnia (5% CO2) induced a significant increased ventilatory response in CIH animals, together with higher oxygen consumption. Therefore, CIH exposure blunted hyperventilation to hypoxia and hypercapnia normalized to oxygen consumption. Increase in plasma CA and superior cervical ganglion CA content was found, implying a CIH induced sympathetic hyperactivity. CIH promoted cardiovascular adjustments by increasing heart rate and mean arterial blood pressure without cardiac ventricle hypertrophy. In conclusion, CIH does not sensitize CB chemoreceptor response to hypoxia but promotes cardiovascular adjustments probably not mediated by the CB. Guinea pigs could represent an interesting model to elucidate the mechanisms that underlie the long-term effects of CIH exposure to provide evidence for the role of the CB mediating pathological effects in sleep apnea diseases.
Collapse
Affiliation(s)
- Inmaculada Docio
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Olea
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Enfermería, Universidad de Valladolid, Valladolid, Spain
| | - Jesus Prieto-LLoret
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Teresa Gallego-Martin
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Obeso
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Angela Gomez-Niño
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología Celular, Histología y Farmacología, Universidad de Valladolid, Valladolid, Spain
| | - Asuncion Rocher
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
34
|
Allwood MA, Edgett BA, Eadie AL, Huber JS, Romanova N, Millar PJ, Brunt KR, Simpson JA. Moderate and severe hypoxia elicit divergent effects on cardiovascular function and physiological rhythms. J Physiol 2018; 596:3391-3410. [PMID: 29604069 DOI: 10.1113/jp275945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/29/2018] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS In the present study, we provide evidence for divergent physiological responses to moderate compared to severe hypoxia, addressing an important knowledge gap related to severity, duration and after-effects of hypoxia encountered in cardiopulmonary situations. The physiological responses to moderate and severe hypoxia were not proportional, linear or concurrent with the time-of-day. Hypoxia elicited severity-dependent physiological responses that either persisted or fluctuated throughout normoxic recovery. The physiological basis for these distinct cardiovascular responses implicates a shift in the sympathovagal set point and probably not molecular changes at the artery resulting from hypoxic stress. ABSTRACT Hypoxia is both a consequence and cause of many acute and chronic diseases. Severe hypoxia causes hypertension with cardiovascular sequelae; however, the rare studies using moderate severities of hypoxia indicate that it can be beneficial, suggesting that hypoxia may not always be detrimental. Comparisons between studies are difficult because of the varied classifications of hypoxic severities, methods of delivery and use of anaesthetics. Thus, to investigate the long-term effects of moderate hypoxia on cardiovascular health, radiotelemetry was used to obtain in vivo physiological measurements in unanaesthetized mice during 24 h of either moderate (FIO2=0.15) or severe (FIO2=0.09) hypoxia, followed by 72 h of normoxic recovery. Systolic blood pressure was decreased during recovery following moderate hypoxia but increased following severe hypoxia. Moderate and severe hypoxia increased haeme oxygenase-1 expression during recovery, suggesting parity in hypoxic stress at the level of the artery. Severe but not moderate hypoxia increased the low/high frequency ratio of heart rate variability 72 h post-hypoxia, indicating a shift in sympathovagal balance. Moderate hypoxia dampened the amplitude of circadian rhythm, whereas severe disrupted rhythm during the entire insult, with perturbations persisting throughout normoxic recovery. Thus, hypoxic severity differentially regulates circadian blood pressure.
Collapse
Affiliation(s)
- Melissa A Allwood
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Brittany A Edgett
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Ashley L Eadie
- Department of Pharmacology, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John, New Brunswick, Canada
| | - Jason S Huber
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Nadya Romanova
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John, New Brunswick, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| |
Collapse
|
35
|
Yuan F, Wang H, Feng J, Wei Z, Yu H, Zhang X, Zhang Y, Wang S. Leptin Signaling in the Carotid Body Regulates a Hypoxic Ventilatory Response Through Altering TASK Channel Expression. Front Physiol 2018; 9:249. [PMID: 29636698 PMCID: PMC5881163 DOI: 10.3389/fphys.2018.00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/06/2018] [Indexed: 11/23/2022] Open
Abstract
Leptin is an adipose-derived hormone that plays an important role in the regulation of breathing. It has been demonstrated that obesity-related hypoventilation or apnea is closely associated with leptin signaling pathways. Perturbations of leptin signaling probably contribute to the reduced sensitivity of respiratory chemoreceptors to hypoxia/hypercapnia. However, the underlying mechanism remains incompletely understood. The present study is to test the hypothesis that leptin signaling contributes to modulating a hypoxic ventilatory response. The respiratory function was assessed in conscious obese Zucker rats or lean littermates treated with an injection of leptin. During exposure to hypoxia, the change in minute ventilation was lower in obese Zucker rats than chow-fed lean littermates or high fat diet-fed littermates. Such a change was abolished in all groups after carotid body denervation. In addition, the expression of phosphorylated signal transducers and activators of transcription 3 (pSTAT3), as well as putative O2-sensitive K+ channels including TASK-1, TASK-3 and TASK-2 in the carotid body, was significantly reduced in obese Zucker rats compared with the other two phenotype littermates. Chronic administration of leptin in chow-fed lean Zucker rats failed to alter basal ventilation but vigorously increased tidal volume, respiratory frequency, and therefore minute volume during exposure to hypoxia. Likewise, carotid body denervation abolished such an effect. In addition, systemic leptin elicited enhanced expression of pSTAT3 and TASK channels. In conclusion, these data demonstrate that leptin signaling facilitates hypoxic ventilatory responses probably through upregulation of pSTAT3 and TASK channels in the carotid body. These findings may help to better understand the pathogenic mechanism of obesity-related hypoventilation or apnea.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Hanqiao Wang
- Department of Sleep, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiaqi Feng
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Ziqian Wei
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Hongxiao Yu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Xiangjian Zhang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China.,Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.,Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| |
Collapse
|
36
|
Leptin and Leptin Resistance in the Pathogenesis of Obstructive Sleep Apnea: A Possible Link to Oxidative Stress and Cardiovascular Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5137947. [PMID: 29675134 PMCID: PMC5841044 DOI: 10.1155/2018/5137947] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/05/2018] [Accepted: 01/23/2018] [Indexed: 12/17/2022]
Abstract
Obesity-related sleep breathing disorders such as obstructive sleep apnea (OSA) and obesity hypoventilation syndrome (OHS) cause intermittent hypoxia (IH) during sleep, a powerful trigger of oxidative stress. Obesity also leads to dramatic increases in circulating levels of leptin, a hormone produced in adipose tissue. Leptin acts in the hypothalamus to suppress food intake and increase metabolic rate. However, obese individuals are resistant to metabolic effects of leptin. Leptin also activates the sympathetic nervous system without any evidence of resistance, possibly because these effects occur peripherally without a need to penetrate the blood-brain barrier. IH is a potent stimulator of leptin expression and release from adipose tissue. Hyperleptinemia and leptin resistance may upregulate generation of reactive oxygen species, increasing oxidative stress and promoting inflammation. The current review summarizes recent data on a possible link between leptin and oxidative stress in the pathogenesis of sleep breathing disorders.
Collapse
|
37
|
Quercetin Prevents Diastolic Dysfunction Induced by a High-Cholesterol Diet: Role of Oxidative Stress and Bioenergetics in Hyperglycemic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7239123. [PMID: 29576853 PMCID: PMC5821945 DOI: 10.1155/2018/7239123] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
Abstract
Alterations in cardiac energy metabolism play a key role in the pathogenesis of diabetic cardiomyopathy. Hypercholesterolemia associated with bioenergetic impairment and oxidative stress has not been well characterized in the cardiac function under glycemic control deficiency conditions. This work aimed to determine the cardioprotective effects of quercetin (QUE) against the damage induced by a high-cholesterol (HC) diet in hyperglycemic rats, addressing intracellular antioxidant mechanisms and bioenergetics. Quercetin reduced HC-induced alterations in the lipid profile and glycemia in rats. In addition, QUE attenuated cardiac diastolic dysfunction (increased E:A ratio), prevented cardiac cholesterol accumulation, and reduced the increase in HC-induced myocyte density. Moreover, QUE reduced HC-induced oxidative stress by preventing the decrease in GSH/GSSG ratio, Nrf2 nuclear translocation, HO-1 expression, and antioxidant enzymatic activity. Quercetin also counteracted HC-induced bioenergetic impairment, preventing a reduction in ATP levels and alterations in PGC-1α, UCP2, and PPARγ expression. In conclusion, the mechanisms that support the cardioprotective effect of QUE in rats with HC might be mediated by the upregulation of antioxidant mechanisms and improved bioenergetics on the heart. Targeting bioenergetics with QUE can be used as a pharmacological approach to modulate structural and functional changes of the heart under hypercholesterolemic and hyperglycemic conditions.
Collapse
|
38
|
Laouafa S, Ribon-Demars A, Marcouiller F, Roussel D, Bairam A, Pialoux V, Joseph V. Estradiol Protects Against Cardiorespiratory Dysfunctions and Oxidative Stress in Intermittent Hypoxia. Sleep 2017. [PMID: 28633495 DOI: 10.1093/sleep/zsx104] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Study Objectives We tested the hypothesis that estradiol (E2) protects against cardiorespiratory disorders and oxidative stress induced by chronic intermittent hypoxia (CIH) in adult female rats. Methods Sprague-Dawley female rats (230-250 g) were ovariectomized and implanted with osmotic pumps delivering vehicle or E2 (0.5 mg/kg/d). After 14 days of recovery, the rats were exposed to CIH (21%-10% O2: 8 h/d, 10 cycles per hour) or room air (RA). After 7 days of CIH or RA exposure, we measured arterial pressures (tail cuff), metabolic rate (indirect calorimetry), minute ventilation, the frequency of sighs and apneas at rest, and ventilatory responses to hypoxia and hypercapnia (whole body plethysmography). We collected the cerebral cortex, brainstem, and adrenal glands to measure the activity of NADPH and xanthine oxidase (pro-oxidant enzymes), glutathione peroxidase, and the mitochondrial and cytosolic superoxide dismutase (antioxidant enzymes) and measured lipid peroxidation and advanced oxidation protein products (markers of oxidative stress). Results CIH increased arterial pressure, the frequency of apnea at rest, and the hypoxic and hypercapnic ventilatory responses and reduced metabolic rate. CIH also increased oxidant enzyme activities and decreased antioxidant activity in the cortex. E2 treatment reduced body weight and prevented the effects of CIH. Conclusions E2 prevents cardiorespiratory disorders and oxidative stress induced by CIH. These observations may help to better understand the underlying mechanisms linking menopause and occurrence of sleep apnea in women and highlight a potential advantage of hormone therapy.
Collapse
Affiliation(s)
- Sofien Laouafa
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada.,CNRS, UMR 5023, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Alexandra Ribon-Demars
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada.,Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire interuniversitaire de biologie de la motricité EA7424, Villeurbanne, France
| | - François Marcouiller
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Damien Roussel
- CNRS, UMR 5023, Universite´ Claude Bernard Lyon 1, Villeurbanne, France
| | - Aida Bairam
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Vincent Pialoux
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire interuniversitaire de biologie de la motricité EA7424, Villeurbanne, France.,Institut Universitaire de France, Paris, France
| | - Vincent Joseph
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
39
|
Gu C, Younas H, Jun JC. Sleep apnea: An overlooked cause of lipotoxicity? Med Hypotheses 2017; 108:161-165. [PMID: 29055392 DOI: 10.1016/j.mehy.2017.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023]
Abstract
Obstructive sleep apnea (OSA) is a common sleep disorder associated with diabetes and cardiovascular disease. However, the mechanisms by which OSA causes cardiometabolic dysfunction are not fully elucidated. OSA increases plasma free fatty acids (FFA) during sleep, reflecting excessive adipose tissue lipolysis. In animal studies, intermittent hypoxia simulating OSA also increases FFA, and the increase is attenuated by beta-adrenergic blockade. In other contexts, excessive plasma FFA can lead to ectopic fat accumulation, insulin resistance, vascular dysfunction, and dyslipidemia. Herein, we propose that OSA is a cause of excessive adipose tissue lipolysis contributing towards systemic "lipotoxicity". Since visceral and upper-body obesity contributes to OSA pathogenesis, OSA-induced lipolysis may further aggravate the consequences of this metabolically harmful state. If this hypothesis is correct, then OSA may represent a reversible risk factor for cardio-metabolic dysfunction, and this risk might be mitigated by preventing OSA-induced lipolysis during sleep.
Collapse
Affiliation(s)
- Chenjuan Gu
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haris Younas
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jonathan C Jun
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
40
|
Hobbins L, Hunter S, Gaoua N, Girard O. Normobaric hypoxic conditioning to maximize weight loss and ameliorate cardio-metabolic health in obese populations: a systematic review. Am J Physiol Regul Integr Comp Physiol 2017; 313:R251-R264. [PMID: 28679682 DOI: 10.1152/ajpregu.00160.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023]
Abstract
Normobaric hypoxic conditioning (HC) is defined as exposure to systemic and/or local hypoxia at rest (passive) or combined with exercise training (active). HC has been previously used by healthy and athletic populations to enhance their physical capacity and improve performance in the lead up to competition. Recently, HC has also been applied acutely (single exposure) and chronically (repeated exposure over several weeks) to overweight and obese populations with the intention of managing and potentially increasing cardio-metabolic health and weight loss. At present, it is unclear what the cardio-metabolic health and weight loss responses of obese populations are in response to passive and active HC. Exploration of potential benefits of exposure to both passive and active HC may provide pivotal findings for improving health and well being in these individuals. A systematic literature search for articles published between 2000 and 2017 was carried out. Studies investigating the effects of normobaric HC as a novel therapeutic approach to elicit improvements in the cardio-metabolic health and weight loss of obese populations were included. Studies investigated passive (n = 7; 5 animals, 2 humans), active (n = 4; all humans) and a combination of passive and active (n = 4; 3 animals, 1 human) HC to an inspired oxygen fraction ([Formula: see text]) between 4.8 and 15.0%, ranging between a single session and daily sessions per week, lasting from 5 days up to 8 mo. Passive HC led to reduced insulin concentrations (-37 to -22%) in obese animals and increased energy expenditure (+12 to +16%) in obese humans, whereas active HC lead to reductions in body weight (-4 to -2%) in obese animals and humans, and blood pressure (-8 to -3%) in obese humans compared with a matched workload in normoxic conditions. Inconclusive findings, however, exist in determining the impact of acute and chronic HC on markers such as triglycerides, cholesterol levels, and fitness capacity. Importantly, most of the studies that included animal models involved exposure to severe levels of hypoxia ([Formula: see text] = 5.0%; simulated altitude >10,000 m) that are not suitable for human populations. Overall, normobaric HC demonstrated observable positive findings in relation to insulin and energy expenditure (passive), and body weight and blood pressure (active), which may improve the cardio-metabolic health and body weight management of obese populations. However, further evidence on responses of circulating biomarkers to both passive and active HC in humans is warranted.
Collapse
Affiliation(s)
- L Hobbins
- Sport and Exercise Science Research Centre, London South Bank University, London, United Kingdom;
| | - S Hunter
- Sport and Exercise Science Research Centre, London South Bank University, London, United Kingdom
| | - N Gaoua
- Sport and Exercise Science Research Centre, London South Bank University, London, United Kingdom
| | - O Girard
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar; and.,Institute of Sport Sciences, University of Lausanne, Switzerland
| |
Collapse
|
41
|
Gileles-Hillel A, Almendros I, Khalyfa A, Nigdelioglu R, Qiao Z, Hamanaka RB, Mutlu GM, Akbarpour M, Gozal D. Prolonged Exposures to Intermittent Hypoxia Promote Visceral White Adipose Tissue Inflammation in a Murine Model of Severe Sleep Apnea: Effect of Normoxic Recovery. Sleep 2017; 40:2731734. [PMID: 28329220 DOI: 10.1093/sleep/zsw074] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Study Objective Increased visceral white adipose tissue (vWAT) mass results in infiltration of inflammatory macrophages that drive inflammation and insulin resistance. Patients with obstructive sleep apnea (OSA) suffer from increased prevalence of obesity, insulin resistance, and metabolic syndrome. Murine models of intermittent hypoxia (IH) mimicking moderate-severe OSA manifest insulin resistance following short-term IH. We examined in mice the effect of long-term IH on the inflammatory cellular changes within vWAT and the potential effect of normoxic recovery (IH-R). Methods Male C57BL/6J mice were subjected to IH for 20 weeks, and a subset was allowed to recover in room air (RA) for 6 or 12 weeks (IH-R). Stromal vascular fraction was isolated from epididymal vWAT and mesenteric vWAT depots, and single-cell suspensions were prepared for flow cytometry analyses, reactive oxygen species (ROS), and metabolic assays. Results IH reduced body weight and vWAT mass and IH-R resulted in catch-up weight and vWAT mass. IH-exposed vWAT exhibited increased macrophage counts (ATMs) that were only partially improved in IH-R. IH also caused a proinflammatory shift in ATMs (increased Ly6c(hi)(+) and CD36(+) ATMs). These changes were accompanied by increased vWAT insulin resistance with only partial improvements in IH-R. In addition, ATMs exhibited increased ROS production, altered metabolism, and changes in electron transport chain, which were only partially improved in IH-R. Conclusion Prolonged exposures to IH during the sleep period induce pronounced vWAT inflammation and insulin resistance despite concomitant vWAT mass reductions. These changes are only partially reversible after 3 months of normoxic recovery. Thus, long-lasting OSA may preclude complete reversibility of metabolic changes.
Collapse
Affiliation(s)
- Alex Gileles-Hillel
- Sections of Pediatric Sleep Medicine and Pulmonology, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Isaac Almendros
- Sections of Pediatric Sleep Medicine and Pulmonology, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Abdelnaby Khalyfa
- Sections of Pediatric Sleep Medicine and Pulmonology, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Recep Nigdelioglu
- Department of Medicine, Section of Pulmonary and Critical Care, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Zhuanhong Qiao
- Sections of Pediatric Sleep Medicine and Pulmonology, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Mahzad Akbarpour
- Sections of Pediatric Sleep Medicine and Pulmonology, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - David Gozal
- Sections of Pediatric Sleep Medicine and Pulmonology, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL
| |
Collapse
|
42
|
Gonzalez-Obeso E, Docio I, Olea E, Cogolludo A, Obeso A, Rocher A, Gomez-Niño A. Guinea Pig Oxygen-Sensing and Carotid Body Functional Properties. Front Physiol 2017; 8:285. [PMID: 28533756 PMCID: PMC5420588 DOI: 10.3389/fphys.2017.00285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/19/2017] [Indexed: 01/06/2023] Open
Abstract
Mammals have developed different mechanisms to maintain oxygen supply to cells in response to hypoxia. One of those mechanisms, the carotid body (CB) chemoreceptors, is able to detect physiological hypoxia and generate homeostatic reflex responses, mainly ventilatory and cardiovascular. It has been reported that guinea pigs, originally from the Andes, have a reduced ventilatory response to hypoxia compared to other mammals, implying that CB are not completely functional, which has been related to genetically/epigenetically determined poor hypoxia-driven CB reflex. This study was performed to check the guinea pig CB response to hypoxia compared to the well-known rat hypoxic response. These experiments have explored ventilatory parameters breathing different gases mixtures, cardiovascular responses to acute hypoxia, in vitro CB response to hypoxia and other stimuli and isolated guinea pig chemoreceptor cells properties. Our findings show that guinea pigs are hypotensive and have lower arterial pO2 than rats, probably related to a low sympathetic tone and high hemoglobin affinity. Those characteristics could represent a higher tolerance to hypoxic environment than other rodents. We also find that although CB are hypo-functional not showing chronic hypoxia sensitization, a small percentage of isolated carotid body chemoreceptor cells contain tyrosine hydroxylase enzyme and voltage-dependent K+ currents and therefore can be depolarized. However hypoxia does not modify intracellular Ca2+ levels or catecholamine secretion. Guinea pigs are able to hyperventilate only in response to intense acute hypoxic stimulus, but hypercapnic response is similar to rats. Whether other brain areas are also activated by hypoxia in guinea pigs remains to be studied.
Collapse
Affiliation(s)
- Elvira Gonzalez-Obeso
- Servicio de Anatomía Patológica, Hospital Clínico Universitario de ValladolidValladolid, Spain
| | - Inmaculada Docio
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, IBGM, CSICValladolid, Spain.,CIBER de Enfermedades Respiratorias, ISCiiiSpain
| | - Elena Olea
- CIBER de Enfermedades Respiratorias, ISCiiiSpain.,Departamento de Enfermería, Universidad de Valladolid, IBGM, CSICValladolid, Spain
| | - Angel Cogolludo
- CIBER de Enfermedades Respiratorias, ISCiiiSpain.,Departamento de Farmacología, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de MadridMadrid, Spain
| | - Ana Obeso
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, IBGM, CSICValladolid, Spain.,CIBER de Enfermedades Respiratorias, ISCiiiSpain
| | - Asuncion Rocher
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, IBGM, CSICValladolid, Spain.,CIBER de Enfermedades Respiratorias, ISCiiiSpain
| | - Angela Gomez-Niño
- CIBER de Enfermedades Respiratorias, ISCiiiSpain.,Departamento de Biología Celular, Histología y Farmacología, Universidad de Valladolid, IBGM, CSICValladolid, Spain
| |
Collapse
|
43
|
Ovarian steroids act as respiratory stimulant and antioxidant against the causes and consequences of sleep-apnea in women. Respir Physiol Neurobiol 2017; 239:46-54. [DOI: 10.1016/j.resp.2017.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/19/2017] [Accepted: 01/29/2017] [Indexed: 12/22/2022]
|
44
|
Murphy DJ. Apneic events – A proposed new target for respiratory safety pharmacology. Regul Toxicol Pharmacol 2016; 81:194-200. [DOI: 10.1016/j.yrtph.2016.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
|
45
|
Briançon-Marjollet A, Monneret D, Henri M, Joyeux-Faure M, Totoson P, Cachot S, Faure P, Godin-Ribuot D. Intermittent hypoxia in obese Zucker rats: cardiometabolic and inflammatory effects. Exp Physiol 2016; 101:1432-1442. [DOI: 10.1113/ep085783] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/30/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Anne Briançon-Marjollet
- Univ Grenoble Alpes; HP2, F-38041 Grenoble Cedex France
- INSERM U1042; F-38041 Grenoble Cedex France
| | - Denis Monneret
- Univ Grenoble Alpes; HP2, F-38041 Grenoble Cedex France
- INSERM U1042; F-38041 Grenoble Cedex France
- CHU Institut de Biologie et Pathologies; F-38043 Grenoble France
| | - Marion Henri
- Univ Grenoble Alpes; HP2, F-38041 Grenoble Cedex France
- INSERM U1042; F-38041 Grenoble Cedex France
| | - Marie Joyeux-Faure
- Univ Grenoble Alpes; HP2, F-38041 Grenoble Cedex France
- INSERM U1042; F-38041 Grenoble Cedex France
| | - Perle Totoson
- Univ Grenoble Alpes; HP2, F-38041 Grenoble Cedex France
- INSERM U1042; F-38041 Grenoble Cedex France
| | - Sandrine Cachot
- Univ Grenoble Alpes; HP2, F-38041 Grenoble Cedex France
- INSERM U1042; F-38041 Grenoble Cedex France
| | - Patrice Faure
- Univ Grenoble Alpes; HP2, F-38041 Grenoble Cedex France
- INSERM U1042; F-38041 Grenoble Cedex France
- CHU Institut de Biologie et Pathologies; F-38043 Grenoble France
| | - Diane Godin-Ribuot
- Univ Grenoble Alpes; HP2, F-38041 Grenoble Cedex France
- INSERM U1042; F-38041 Grenoble Cedex France
| |
Collapse
|
46
|
Morgan BJ, Bates ML, Rio RD, Wang Z, Dopp JM. Oxidative stress augments chemoreflex sensitivity in rats exposed to chronic intermittent hypoxia. Respir Physiol Neurobiol 2016; 234:47-59. [PMID: 27595979 DOI: 10.1016/j.resp.2016.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
Chronic exposure to intermittent hypoxia (CIH) elicits plasticity of the carotid sinus and phrenic nerves via reactive oxygen species (ROS). To determine whether CIH-induced alterations in ventilation, metabolism, and heart rate are also dependent on ROS, we measured responses to acute hypoxia in conscious rats after 14 and 21 d of either CIH or normoxia (NORM), with or without concomitant administration of allopurinol (xanthine oxidase inhibitor), combined allopurinol plus losartan (angiotensin II type 1 receptor antagonist), or apocynin (NADPH oxidase inhibitor). Carotid body nitrotyrosine production was measured by immunohistochemistry. CIH produced an increase in the ventilatory response to acute hypoxia that was virtually eliminated by all three pharmacologic interventions. CIH caused a robust increase in carotid body nitrotyrosine production that was greatly attenuated by allopurinol plus losartan and by apocynin but unaffected by allopurinol. CIH caused a decrease in metabolic rate and a reduction in hypoxic bradycardia. Both of these effects were prevented by allopurinol, allopurinol plus losartan, and apocynin.
Collapse
Affiliation(s)
- Barbara J Morgan
- John Rankin Laboratory of Pulmonary Medicine, School of Medicine and Public Health: University of Wisconsin, Madison, WI 53706, USA; Department of Orthopedics and Rehabilitation, School of Medicine and Public Health; University of Wisconsin, Madison, WI 53706, USA.
| | - Melissa L Bates
- Department of Health and Human Physiology, College of Liberal Arts and Sciences; University of Iowa, Iowa City, IA 52242, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Zunyi Wang
- Department of Surgical Sciences, School of Veterinary Medicine; University of Wisconsin, Madison, WI 53706, USA
| | - John M Dopp
- Pharmacy Practice Division, School of Pharmacy; University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
47
|
Sacramento J, Ribeiro M, Rodrigues T, Guarino M, Diogo L, Seiça R, Monteiro E, Matafome P, Conde S. Insulin resistance is associated with tissue-specific regulation of HIF-1α and HIF-2α during mild chronic intermittent hypoxia. Respir Physiol Neurobiol 2016; 228:30-8. [DOI: 10.1016/j.resp.2016.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/03/2016] [Accepted: 03/12/2016] [Indexed: 01/18/2023]
|
48
|
Korcarz CE, Peppard PE, Young TB, Chapman CB, Hla KM, Barnet JH, Hagen E, Stein JH. Effects of Obstructive Sleep Apnea and Obesity on Cardiac Remodeling: The Wisconsin Sleep Cohort Study. Sleep 2016; 39:1187-95. [PMID: 27091525 PMCID: PMC4863205 DOI: 10.5665/sleep.5828] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/11/2016] [Indexed: 01/19/2023] Open
Abstract
STUDY OBJECTIVES To characterize the prospective associations of obstructive sleep apnea (OSA) with future echocardiographic measures of adverse cardiac remodeling. METHODS This was a prospective long-term observational study. Participants had overnight polysomnography followed by transthoracic echocardiography a mean (standard deviation) of 18.0 (3.7) y later. OSA was characterized by the apnea-hypopnea index (AHI, events/hour). Echocardiography was used to assess left ventricular (LV) systolic and diastolic function and mass, left atrial volume and pressure, cardiac output, systemic vascular resistance, and right ventricular (RV) systolic function, size, and hemodynamics. Multivariate regression models estimated associations between log10(AHI+1) and future echocardiographic findings. A secondary analysis looked at oxygen desaturation indices and future echocardiographic findings. RESULTS At entry, the 601 participants were mean (standard deviation) 47 (8) y old (47% female). After adjustment for age, sex, and body mass index, baseline log10(AHI+1) was associated significantly with future reduced LV ejection fraction and tricuspid annular plane systolic excursion (TAPSE) ≤ 15 mm. After further adjustment for cardiovascular risk factors, participants with higher baseline log10(AHI+1) had lower future LV ejection fraction (β = -1.35 [standard error = 0.6]/log10(AHI+1), P = 0.03) and higher odds of TAPSE ≤ 15 mm (odds ratio = 6.3/log10(AHI+1), 95% confidence interval = 1.3-30.5, P = 0.02). SaO2 desaturation indices were associated independently with LV mass, LV wall thickness, and RV area (all P < 0.03). CONCLUSIONS OSA is associated independently with decreasing LV systolic function and with reduced RV function. Echocardiographic measures of adverse cardiac remodeling are strongly associated with OSA but are confounded by obesity. Hypoxia may be a stimulus for hypertrophy in individuals with OSA.
Collapse
Affiliation(s)
- Claudia E. Korcarz
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Paul E. Peppard
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Terry B. Young
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Carrie B. Chapman
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - K. Mae Hla
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Jodi H. Barnet
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Erika Hagen
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - James H. Stein
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
49
|
Gileles-Hillel A, Kheirandish-Gozal L, Gozal D. Biological plausibility linking sleep apnoea and metabolic dysfunction. Nat Rev Endocrinol 2016; 12:290-8. [PMID: 26939978 DOI: 10.1038/nrendo.2016.22] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obstructive sleep apnoea (OSA) is a very common disorder that affects 10-25% of the general population. In the past two decades, OSA has emerged as a cardiometabolic risk factor in both paediatric and adult populations. OSA-induced metabolic perturbations include dyslipidaemia, atherogenesis, liver dysfunction and abnormal glucose metabolism. The mainstay of treatment for OSA is adenotonsillectomy in children and continuous positive airway pressure therapy in adults. Although these therapies are effective at resolving the sleep-disordered breathing component of OSA, they do not always produce beneficial effects on metabolic function. Thus, a deeper understanding of the underlying mechanisms by which OSA influences metabolic dysfunction might yield improved therapeutic approaches and outcomes. In this Review, we summarize the evidence obtained from animal models and studies of patients with OSA of potential mechanistic pathways linking the hallmarks of OSA (intermittent hypoxia and sleep fragmentation) with metabolic dysfunction. Special emphasis is given to adipose tissue dysfunction induced by sleep apnoea, which bears a striking resemblance to adipose dysfunction resulting from obesity. In addition, important gaps in current knowledge and promising lines of future investigation are identified.
Collapse
Affiliation(s)
- Alex Gileles-Hillel
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Knapp Center for Biomedical Discovery, Room 4100, 900 East 57th Street, Mailbox 4, Chicago, Illinois 60637-1470, USA
| | - Leila Kheirandish-Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Knapp Center for Biomedical Discovery, Room 4100, 900 East 57th Street, Mailbox 4, Chicago, Illinois 60637-1470, USA
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Knapp Center for Biomedical Discovery, Room 4100, 900 East 57th Street, Mailbox 4, Chicago, Illinois 60637-1470, USA
| |
Collapse
|
50
|
Maeda H, Yoshida KI. Intermittent hypoxia upregulates hepatic heme oxygenase-1 and ferritin-1, thereby limiting hepatic pathogenesis in rats fed a high-fat diet. Free Radic Res 2016; 50:720-31. [PMID: 27021659 DOI: 10.3109/10715762.2016.1170125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is prevalent in patients with sleep apnea syndrome (SAS). Intermittent hypoxia (IH) and a high-fat diet (HFD) reproduce SAS and NAFLD, respectively, in rodents. In this study, rats were fed either an HFD or a standard diet (SD) for 2 weeks, and breathed either IH air or normoxic air for 4 days (early phase) or 6 weeks (late phase), with the same diets maintained during the exposure. HFD increased hepatic lipid accumulation, as detected by oil-red staining and triglyceride content. However, IH exposure reversed the hepatic steatosis at the late phase in these HFD-rats. IH exposure also increased hepatic expression of HO-1 and iron-binding protein ferritin-1 at the late phase, in association with increase in serum iron, bilirubin, and hepatic levels of lipid peroxides, such as 4-hydroxy-2-nonenal (HNE). IH exposure increased serum levels of hemoglobin (Hb) at the early phase and immunofluorescence of Hb and HO-1 in CD68-positive Kupffer cells (KCs) at the late phase. These findings support that IH induces erythrocytosis, erythro-phagocytosis, and generation of Hb in the KCs. The Hb promotes HO-1 expression in KCs, thereby produces iron, bilirubin, and carbon monoxide (CO). The iron would be either sequestrated by ferritin-1, transferred to the bone marrow for erythropoiesis, or would produce hydroxyradicals and HNE in the liver of rats fed an HFD. HNE might also contribute to the upregulation of HO-1, transferrin-1, and IκB, thereby limiting hepatic steatosis and inflammation via inhibition of nuclear factor κB (NFκB) activation.
Collapse
Affiliation(s)
- Hideyuki Maeda
- a Department of Forensic Medicine , Tokyo Medical University , Shinjyuku-ku , Tokyo , Japan
| | - Ken-Ichi Yoshida
- a Department of Forensic Medicine , Tokyo Medical University , Shinjyuku-ku , Tokyo , Japan
| |
Collapse
|