1
|
Radbel J, Rebuli ME, Kipen H, Brigham E. Indoor air pollution and airway health. J Allergy Clin Immunol 2024; 154:835-846. [PMID: 39182629 DOI: 10.1016/j.jaci.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Because of the disproportionate amount of time that people spend indoors and the complexities of air pollutant exposures found there, indoor air pollution is a growing concern for airway health. Both infiltration of outdoor air pollution into the indoor space and indoor sources (such as smoke from tobacco products, cooking or heating practices and combustion of associated fuels, and household materials) contribute to unique exposure mixtures. Although there is substantial literature on the chemistry of indoor air pollution, research focused on health effects is only beginning to emerge and remains an important area of need to protect public health. We provide a review of emerging literature spanning the past 3 years and relating indoor air exposures to airway health, with a specific focus on the impact of either individual pollutant exposures or common combustion sources on the lower airways. Factors defining susceptibility and/or vulnerability are reviewed with consideration for priority populations and modifiable risk factors that may be targeted to advance health equity.
Collapse
Affiliation(s)
- Jared Radbel
- Division of Pulmonary and Critical Care Medicine, Rutgers Robert Wood Johnson University, New Brunswick, NJ
| | - Meghan E Rebuli
- Department of Pediatrics and Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Howard Kipen
- Department of Environmental and Occupational Health and Justice, Rutgers University, Piscataway, NJ
| | - Emily Brigham
- Division of Respirology, University of British Columbia, Vancouver, British Columbia, Canada; Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Kozioł-Kozakowska A, Januś D, Stępniewska A, Szczudlik E, Stochel-Gaudyn A, Wójcik M. Beyond the Metabolic Syndrome: Non-Obvious Complications of Obesity in Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1905. [PMID: 38136107 PMCID: PMC10742254 DOI: 10.3390/children10121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Obesity is currently one of the most significant public health challenges worldwide due to the continuous increase in obesity rates among children, especially younger children. Complications related to obesity, including serious ones, are increasingly being diagnosed in younger children. A search was performed from January 2023 to September 2023 using the PubMed, Cochrane Library, Science Direct, MEDLINE, and EBSCO databases. The focus was on English-language meta-analyses, systematic reviews, randomized clinical trials, and observational studies worldwide. Four main topics were defined as follows: disorders of glucose metabolism; liver disease associated with childhood obesity; the relationship between respiratory disorders and obesity in children; and the effects of obesity on the hypothalamic-pituitary-gonadal axis and puberty. Understanding potential complications and their underlying mechanisms can expedite the diagnostic process and enhance the effectiveness of treatment. We aspire that this study will bring insight into the often-overlooked complications associated with obesity.
Collapse
Affiliation(s)
- Agnieszka Kozioł-Kozakowska
- Department of Pediatrics, Gastroenterology and Nutrition, Institute of Pediatrics, Jagiellonian University Medical College, 31-008 Cracow, Poland; (A.K.-K.); (A.S.-G.)
- Interclinical Center for the Treatment of Childhood Obesity, University Children’s Hospital of Krakow, 30-663 Kraków, Poland; (A.S.); (E.S.)
| | - Dominika Januś
- Department of Pediatric and Adolescent Endocrinology, Pediatric Institute, Jagiellonian University Medical College, 31-008 Kraków, Poland;
| | - Anna Stępniewska
- Interclinical Center for the Treatment of Childhood Obesity, University Children’s Hospital of Krakow, 30-663 Kraków, Poland; (A.S.); (E.S.)
- Department of Pediatric and Adolescent Endocrinology, Pediatric Institute, Jagiellonian University Medical College, 31-008 Kraków, Poland;
| | - Ewa Szczudlik
- Interclinical Center for the Treatment of Childhood Obesity, University Children’s Hospital of Krakow, 30-663 Kraków, Poland; (A.S.); (E.S.)
- Department of Pediatric and Adolescent Endocrinology, Pediatric Institute, Jagiellonian University Medical College, 31-008 Kraków, Poland;
| | - Anna Stochel-Gaudyn
- Department of Pediatrics, Gastroenterology and Nutrition, Institute of Pediatrics, Jagiellonian University Medical College, 31-008 Cracow, Poland; (A.K.-K.); (A.S.-G.)
| | - Małgorzata Wójcik
- Interclinical Center for the Treatment of Childhood Obesity, University Children’s Hospital of Krakow, 30-663 Kraków, Poland; (A.S.); (E.S.)
- Department of Pediatric and Adolescent Endocrinology, Pediatric Institute, Jagiellonian University Medical College, 31-008 Kraków, Poland;
| |
Collapse
|
3
|
Scott HA, Ng SH, McLoughlin RF, Valkenborghs SR, Nair P, Brown AC, Carroll OR, Horvat JC, Wood LG. Effect of obesity on airway and systemic inflammation in adults with asthma: a systematic review and meta-analysis. Thorax 2023; 78:957-965. [PMID: 36948588 DOI: 10.1136/thorax-2022-219268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/25/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Obesity is associated with more severe asthma, however, the mechanisms responsible are poorly understood. Obesity is also associated with low-grade systemic inflammation; it is possible that this inflammation extends to the airways of adults with asthma, contributing to worse asthma outcomes. Accordingly, the aim of this review was to examine whether obesity is associated with increased airway and systemic inflammation and adipokines, in adults with asthma. METHODS Medline, Embase, CINAHL, Scopus and Current Contents were searched till 11 August 2021. Studies reporting measures of airway inflammation, systemic inflammation and/or adipokines in obese versus non-obese adults with asthma were assessed. We conducted random effects meta-analyses. We assessed heterogeneity using the I2 statistic and publication bias using funnel plots. RESULTS We included 40 studies in the meta-analysis. Sputum neutrophils were 5% higher in obese versus non-obese asthmatics (mean difference (MD)=5.0%, 95% CI: 1.2 to 8.9, n=2297, p=0.01, I2=42%). Blood neutrophil count was also higher in obesity. There was no difference in sputum %eosinophils; however, bronchial submucosal eosinophil count (standardised mean difference (SMD)=0.58, 95% CI=0.25 to 0.91, p<0.001, n=181, I2=0%) and sputum interleukin 5 (IL-5) (SMD=0.46, 95% CI=0.17 to 0.75, p<0.002, n=198, I2=0%) were higher in obesity. Conversely, fractional exhaled nitric oxide was 4.5 ppb lower in obesity (MD=-4.5 ppb, 95% CI=-7.1 ppb to -1.8 ppb, p<0.001, n=2601, I2=40%). Blood C reactive protein, IL-6 and leptin were also higher in obesity. CONCLUSIONS Obese asthmatics have a different pattern of inflammation to non-obese asthmatics. Mechanistic studies examining the pattern of inflammation in obese asthmatics are warranted. Studies should also investigate the clinical relevance of this altered inflammatory response. PROSPERO REGISTERATION NUMBER CRD42021254525.
Collapse
Affiliation(s)
- Hayley A Scott
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Shawn Hm Ng
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Rebecca F McLoughlin
- School of Nursing and Midwifery, The University of Newcastle, Callaghan, New South Wales, Australia
- National Health and Medical Research Council, Centre of Excellence in Treatable Traits, New Lambton Heights, New South Wales, Australia
- Asthma and Breathing Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Sarah R Valkenborghs
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Active Living Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Parameswaran Nair
- Division of Respirology, McMaster University and St Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Alexandra C Brown
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Olivia R Carroll
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lisa G Wood
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
4
|
Kim HR, Ingram JL, Que LG. Effects of Oxidative Stress on Airway Epithelium Permeability in Asthma and Potential Implications for Patients with Comorbid Obesity. J Asthma Allergy 2023; 16:481-499. [PMID: 37181453 PMCID: PMC10171222 DOI: 10.2147/jaa.s402340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/15/2023] [Indexed: 05/16/2023] Open
Abstract
20 million adults and 4.2 million children in the United States have asthma, a disease resulting in inflammation and airway obstruction in response to various factors, including allergens and pollutants and nonallergic triggers. Obesity, another highly prevalent disease in the US, is a major risk factor for asthma and a significant cause of oxidative stress throughout the body. People with asthma and comorbid obesity are susceptible to developing severe asthma that cannot be sufficiently controlled with current treatments. More research is needed to understand how asthma pathobiology is affected when the patient has comorbid obesity. Because the airway epithelium directly interacts with the outside environment and interacts closely with the immune system, understanding how the airway epithelium of patients with asthma and comorbid obesity is altered compared to that of lean asthma patients will be crucial for developing more effective treatments. In this review, we discuss how oxidative stress plays a role in two chronic inflammatory diseases, obesity and asthma, and propose a mechanism for how these conditions may compromise the airway epithelium.
Collapse
Affiliation(s)
- Haein R Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jennifer L Ingram
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Loretta G Que
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
5
|
Chandrasekaran R, Bruno SR, Mark ZF, Walzer J, Caffry S, Gold C, Kumar A, Chamberlain N, Butzirus IM, Morris CR, Daphtary N, Aliyeva M, Lam YW, van der Vliet A, Janssen-Heininger Y, Poynter ME, Dixon AE, Anathy V. Mitoquinone mesylate attenuates pathological features of lean and obese allergic asthma in mice. Am J Physiol Lung Cell Mol Physiol 2023; 324:L141-L153. [PMID: 36511516 PMCID: PMC9902225 DOI: 10.1152/ajplung.00249.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Obesity is associated with severe, difficult-to-control asthma, and increased airway oxidative stress. Mitochondrial reactive oxygen species (mROS) are an important source of oxidative stress in asthma, leading us to hypothesize that targeting mROS in obese allergic asthma might be an effective treatment. Using a mouse model of house dust mite (HDM)-induced allergic airway disease in mice fed a low- (LFD) or high-fat diet (HFD), and the mitochondrial antioxidant MitoQuinone (MitoQ), we investigated the effects of obesity and ROS on HDM-induced airway inflammation, remodeling, and airway hyperresponsiveness (AHR). Obese allergic mice showed increased lung tissue eotaxin, airway tissue eosinophilia, and AHR compared with lean allergic mice. MitoQ reduced airway inflammation, remodeling, and hyperreactivity in both lean and obese allergic mice, and tissue eosinophilia in obese-allergic mice. Similar effects were observed with decyl triphosphonium (dTPP+), the hydrophobic cationic moiety of MitoQ lacking ubiquinone. HDM-induced oxidative sulfenylation of proteins was increased particularly in HFD mice. Although only MitoQ reduced sulfenylation of proteins involved in protein folding in the endoplasmic reticulum (ER), ER stress was attenuated by both MitoQ and dTPP+ suggesting the anti-allergic effects of MitoQ are mediated in part by effects of its hydrophobic dTPP+ moiety reducing ER stress. In summary, oxidative signaling is an important mediator of allergic airway disease. MitoQ, likely through reducing protein oxidation and affecting the UPR pathway, might be effective for the treatment of asthma and specific features of obese asthma.
Collapse
Affiliation(s)
| | - Sierra R Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Zoe F Mark
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Joseph Walzer
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Sarah Caffry
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Clarissa Gold
- Department of Biology and Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, Vermont
| | - Amit Kumar
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Nicolas Chamberlain
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | | - Carolyn R Morris
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Nirav Daphtary
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Minara Aliyeva
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Ying-Wai Lam
- Department of Biology and Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | | | | - Anne E Dixon
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
6
|
The Synergistic Action of Metformin and Glycyrrhiza uralensis Fischer Extract Alleviates Metabolic Disorders in Mice with Diet-Induced Obesity. Int J Mol Sci 2023; 24:ijms24020936. [PMID: 36674447 PMCID: PMC9862386 DOI: 10.3390/ijms24020936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Metformin, an antidiabetic drug, and Glycyrrhiza uralensis Fischer (GU), an oriental medicinal herb, have been reported to exert anti-obesity effects. This study investigated the synergistic action of metformin and GU in improving diet-induced obesity. Mice were fed a normal diet, a high-fat diet (HFD), or HFD + 0.015% GU water extract for 8 weeks. The HFD and GU groups were then randomly divided into two groups and fed the following diets for the next 8 weeks: HFD with 50 mg/kg metformin (HFDM) and GU with 50 mg/kg metformin (GUM). GUM prevented hepatic steatosis and adiposity by suppressing expression of mRNAs and enzyme activities related to lipogenesis in the liver and upregulating the expression of adipocyte mRNAs associated with fatty acid oxidation and lipolysis, and as a result, improved dyslipidemia. Moreover, GUM improved glucose homeostasis by inducing glucose uptake in tissues and upregulating mRNA expressions associated with glycolysis in the liver and muscle through AMP-activated protein kinase activation. GUM also improved inflammation by increasing antioxidant activity in the liver and erythrocytes and decreasing inflammatory cytokine productions. Here, we demonstrate that GU and metformin exert synergistic action in the prevention of obesity and its complications.
Collapse
|
7
|
HIF-1α promotes paraquat induced acute lung injury and implicates a role NF-κB and Rac2 activity. Toxicology 2023; 483:153388. [PMID: 36462643 DOI: 10.1016/j.tox.2022.153388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Paraquat (PQ) is a bipyridine herbicide and oral exposure is the main way of PQ exposure with a very high mortality. At present, it is believed that large number of oxygen free radicals are generated and cause lipid peroxidation of tissue and organ cell membranes after PQ is absorbed. PQ exposure could cause multiple organ dysfunction, among which acute lung injury is the most common and most serious. However, its specific mechanism is still unclear. In this study, the C57BL/6J mouse (alveolar epithelial cell-specific knockout HIF-1α) model of acute lung injury (40 mg/kg PQ) at several time pointes and a model of acute type II alveolar epithelial cell (A549, 800 μM PQ) injury constructed. The oxidative stress (ROS, MDA) and inflammatory response (IL-1β, IL-6, TNF-α) were significantly inhibited in the alveolar epithelial cell-specific knockout of HIF-1α mice and siRNA technology to inhibit HIF-1α in alveolar epithelial cells. Further proteomic analysis showed that the expression of Rac2 protein, which is closely related to oxidative stress, was significantly increased after PQ exposure. And the inhibition of Rac2 expression in vitro significantly alleviated PQ-induced oxidative stress and inflammatory response. The expression of Rac2 protein was regulated by HIF-1α. The above suggests that HIF-1α may promote oxidative stress and inflammatory response in alveolar epithelial cells by regulating the expression of Rac2, and then participate in the promotion of PQ exposure-induced acute lung injury.
Collapse
|
8
|
Low Level of Advanced Glycation End Products in Serum of Patients with Allergic Rhinitis and Chronic Epstein-Barr Virus Infection at Different Stages of Virus Persistence. J Immunol Res 2022; 2022:4363927. [PMID: 36405008 PMCID: PMC9674411 DOI: 10.1155/2022/4363927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/16/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Advanced glycation end products (AGEs) are formed in a nonenzymatic reaction of the reducing sugars with amino groups of proteins, lipids, and nucleic acids of different tissues and body fluids. A relatively small number of studies have been conducted on the role of AGEs in allergic inflammation. In this study, patients with allergic rhinitis (AR) were examined for the presence of Epstein-Barr virus and the content of fluorescent and nonfluorescent AGEs. We have also determined the level of a unique epitope (AGE10) which was recently identified in human serum using monoclonal antibodies against synthetic melibiose-derived AGE (MAGE). The levels of AGE10 determined with an immunoenzymatic method revealed no significant difference in the patients' blood with intermittent AR and chronic EBV persistence in the active and latent phases. It has been shown that there is a statistically significantly smaller amount of AGEs and pentosidine in groups of patients, both with and without viremia, than in healthy subjects. In turn, higher levels of immune complexes than of AGE10 were detected in the groups of patients, in contrast to the control group, which had lower levels of complexes than AGE10 concentration. In patients with active infection, there is even more complexes than of noncomplexed AGE10 antigen. The lower level of AGE in allergic rhinitis patient sera may also be due, besides complexes, to allergic inflammation continuously activating the cells, which effectively remove glycation products from the body.
Collapse
|
9
|
Mazur A, Zachurzok A, Baran J, Dereń K, Łuszczki E, Weres A, Wyszyńska J, Dylczyk J, Szczudlik E, Drożdż D, Metelska P, Brzeziński M, Kozioł-Kozakowska A, Matusik P, Socha P, Olszanecka-Gilianowicz M, Jackowska T, Walczak M, Peregud-Pogorzelski J, Tomiak E, Wójcik M. Childhood Obesity: Position Statement of Polish Society of Pediatrics, Polish Society for Pediatric Obesity, Polish Society of Pediatric Endocrinology and Diabetes, the College of Family Physicians in Poland and Polish Association for Study on Obesity. Nutrients 2022; 14:nu14183806. [PMID: 36145182 PMCID: PMC9505061 DOI: 10.3390/nu14183806] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Childhood obesity is one of the most important problems of public health. Searching was conducted by using PubMed/MEDLINE, Cochrane Library, Science Direct, MEDLINE, and EBSCO databases, from January 2022 to June 2022, for English language meta-analyses, systematic reviews, randomized clinical trials, and observational studies from all over the world. Five main topics were defined in a consensus join statement of the Polish Society of Pediatrics, Polish Society for Pediatric Obesity, Polish Society of Pediatric Endocrinology and Diabetes and Polish Association for the Study on Obesity: (1) definition, causes, consequences of obesity; (2) treatment of obesity; (3) obesity prevention; (4) the role of primary care in the prevention of obesity; (5) Recommendations for general practitioners, parents, teachers, and regional authorities. The statement outlines the role of diet, physical activity in the prevention and treatment of overweight and obesity, and gives appropriate recommendations for interventions by schools, parents, and primary health care. A multisite approach to weight control in children is recommended, taking into account the age, the severity of obesity, and the presence of obesity-related diseases. Combined interventions consisting of dietary modification, physical activity, behavioral therapy, and education are effective in improving metabolic and anthropometric indices. More actions are needed to strengthen the role of primary care in the effective prevention and treatment of obesity because a comprehensive, multi-component intervention appears to yield the best results.
Collapse
Affiliation(s)
- Artur Mazur
- Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszów, Poland
- Correspondence: (A.M.); (A.Z.); (M.W.)
| | - Agnieszka Zachurzok
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Zabrze, Poland
- Correspondence: (A.M.); (A.Z.); (M.W.)
| | - Joanna Baran
- Institute of Health Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Katarzyna Dereń
- Institute of Health Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Aneta Weres
- Institute of Health Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Justyna Wyszyńska
- Institute of Health Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Justyna Dylczyk
- Children’s University Hospital, Jagiellonian University Medical College, 31-008 Kraków, Poland
| | - Ewa Szczudlik
- Department of Pediatric and Adolescent Endocrinology, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, 31-008 Kraków, Poland
| | - Dorota Drożdż
- Department of Pediatric Nephrology and Hypertension, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, 31-008 Kraków, Poland
| | - Paulina Metelska
- Department of Public Health and Social Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Michał Brzeziński
- Chair and Department of Paediatrics, Gastroenterology, Allergology and Child Nutrition, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Agnieszka Kozioł-Kozakowska
- Department of Pediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, 31-008 Kraków, Poland
| | - Paweł Matusik
- Department of Pediatrics, Pediatric Obesity and Metabolic Bone Diseases, Chair of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Piotr Socha
- The Children’s Memorial Health Institute, 04-736 Warsaw, Poland
| | - Magdalena Olszanecka-Gilianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Teresa Jackowska
- Department of Pediatrics, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Mieczysław Walczak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Disorders and Cardiology of the Developmental Age, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Jarosław Peregud-Pogorzelski
- Department of Pediatrics, Pediatric Oncology and Immunology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Elżbieta Tomiak
- The College of Family Physicians in Poland, 00-209 Warszawa, Poland
| | - Małgorzata Wójcik
- Department of Pediatric and Adolescent Endocrinology, Chair of Pediatrics, Pediatric Institute, Jagiellonian University Medical College, 31-008 Kraków, Poland
- Correspondence: (A.M.); (A.Z.); (M.W.)
| |
Collapse
|
10
|
Xu S, Karmacharya N, Cao G, Guo C, Gow A, Panettieri RA, Jude JA. Obesity elicits a unique metabolomic signature in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2022; 323:L297-L307. [PMID: 35787188 PMCID: PMC9514806 DOI: 10.1152/ajplung.00132.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Obesity can aggravate asthma by enhancing airway hyperresponsiveness (AHR) and attenuating response to treatment. However, the precise mechanisms linking obesity and asthma remain unknown. Human airway smooth muscle (HASM) cells exhibit amplified excitation-contraction (EC) coupling and force generation in obesity. Therefore, we posit that airway smooth muscle (ASM) cells obtained from obese donors manifest a metabolomic phenotype distinct from that of nonobese donor cells and that a differential metabolic phenotype, at least in part, drives enhanced ASM cell EC coupling. HASM cells derived from age-, sex-, and race-matched nonobese [body mass index (BMI) ≤ 24.9 kg·m-2] and obese (BMI ≥ 29.9 kg·m-2) lung donors were subjected to unbiased metabolomic screening. The unbiased metabolomic screening identified differentially altered metabolites linked to glycolysis and citric acid cycle in obese donor-derived cells compared with nonobese donor cells. The Seahorse assay measured the bioenergetic profile based on glycolysis, mitochondrial respiration, palmitate oxidation, and glutamine oxidation rates in HASM cells. Glycolytic rate and capacity were elevated in obese donor-derived HASM cells, whereas mitochondrial respiration, palmitate oxidation, and glutamine oxidation rates were comparable between obese and nonobese groups. PFKFB3 mRNA and protein expression levels were also elevated in obese donor-derived HASM cells. Furthermore, pharmacological inhibition of PFKFB3 attenuated agonist-induced myosin light chain (MLC) phosphorylation in HASM cells derived from obese and nonobese donors. Our findings identify elevated glycolysis as a signature metabolic phenotype of obesity and inhibition of glycolysis attenuates MLC phosphorylation in HASM cells. These findings identify novel therapeutic targets to mitigate AHR in obesity-associated asthma.
Collapse
Affiliation(s)
- Shengjie Xu
- Department of Pharmacology and Toxicology, The Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Nikhil Karmacharya
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Changjiang Guo
- Department of Pharmacology and Toxicology, The Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Andrew Gow
- Department of Pharmacology and Toxicology, The Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Reynold A Panettieri
- Department of Pharmacology and Toxicology, The Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Joseph A Jude
- Department of Pharmacology and Toxicology, The Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
11
|
Karimi A, Tutunchi H, Naeini F, Vajdi M, Mobasseri M, Najafipour F. The therapeutic effects and mechanisms of action of resveratrol on polycystic ovary syndrome: A comprehensive systematic review of clinical, animal, and in vitro studies. Clin Exp Pharmacol Physiol 2022; 49:935-949. [PMID: 35778955 DOI: 10.1111/1440-1681.13698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is one of the most important and common polygenic endocrine disorders among women of reproductive age. Resveratrol, a natural phenol, is involved in various biological activities, including antioxidant, antiseptic, anti-inflammatory, anti-aging, and anti-cancer effects. METHODS This systematic review aimed to investigate the therapeutic effects and mechanisms of actions of resveratrol in PCOS. The present study was conducted according to the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements. We searched PubMed, Science Direct, Google Scholar, Scopus, ISI Web of Science, ProQuest, and Embase databases up to August 2021 by using the relative keywords. Original studies published in the English language that assessed the effects of resveratrol on PCOS and its associated complications were considered. Out of 417 records screened, only 24 articles met the inclusion criteria: 10 in vitro, 10 animal, and 4 human studies. RESULTS The results obtained in the present study showed that resveratrol supplementation might be effective in improving PCOS-related symptoms by reducing insulin resistance, alleviating dyslipidemia, improving ovarian morphology and anthropometric indices, regulating the reproductive hormones, and reducing inflammation and oxidative stress by affecting biological pathways. CONCLUSION According to the available evidence, resveratrol may reduce the complications of PCOS. However, further studies are recommended for a comprehensive conclusion on the exact mechanism of resveratrol in PCOS patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Mahdi Vajdi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Mobasseri
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Najafipour
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Abstract
Background Obesity in asthmatics has been associated with higher airway oxidative stress in which dysfunctional mitochondria are a potential contributing source of excess free radicals. Paraoxonase 2 (PON2) plays an important role in reducing mitochondrial-derived oxidative stress and could, therefore, have therapeutic potential in these patients. Objectives We used primary human bronchial epithelial cells (HBECs) from asthmatics and healthy controls to evaluate: a) protein levels of Paraoxonase 2 and b) to test the potential protective effect of quercetin supplementation in cells under oxidative stress conditions. Results Compared to lean controls, obese asthmatics had significantly lower PON2 airway epithelial levels (respectively, 1.08 vs. 0.47 relative units normalized by GAPDH) (p-value < 0.006). Treating HBECs in vitro for 24 hrs. with 25μM quercetin significantly increased PON2 protein levels: 15.5 treated cells vs. 9.8 untreated cells (relative units normalized by GAPDH) (p value = 0.004). Notably, compared to untreated cells, quercetin supplementation reduces mitochondrial superoxide and hydrogen peroxide production on HBECs cells exposed to different oxidative stress triggers such as 1–2 Naphthoquinone (1–2 NQ) and hydrogen peroxide, suggesting that PON2 might play a protective role ameliorating oxidative injury on human airway epithelium. Conclusion Compared to lean controls, obese asthmatics have significantly reduced PON2 levels in airway epithelial cells. Treatment with quercetin in vitro increased PON2 protein levels and prevented oxidative stress from different types of stimuli. Hence, quercetin supplementation may be a potential therapeutic strategy to prevent obesity-mediated airway oxidative stress in obese asthmatics.
Collapse
|
13
|
Mank MM, Reed LF, Walton CJ, Barup MLT, Ather JL, Poynter ME. Therapeutic ketosis decreases methacholine hyperresponsiveness in mouse models of inherent obese asthma. Am J Physiol Lung Cell Mol Physiol 2022; 322:L243-L257. [PMID: 34936508 PMCID: PMC8782644 DOI: 10.1152/ajplung.00309.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023] Open
Abstract
Obese asthmatics tend to have severe, poorly controlled disease and exhibit methacholine hyperresponsiveness manifesting in proximal airway narrowing and distal lung tissue collapsibility. Substantial weight loss in obese asthmatics or in mouse models of the condition decreases methacholine hyperresponsiveness. Ketone bodies are rapidly elevated during weight loss, coinciding with or preceding relief from asthma-related comorbidities. As ketone bodies may exert numerous potentially therapeutic effects, augmenting their systemic concentrations is being targeted for the treatment of several conditions. Circulating ketone body levels can be increased by feeding a ketogenic diet or by providing a ketone ester dietary supplement, which we hypothesized would exert protective effects in mouse models of inherent obese asthma. Weight loss induced by feeding a low-fat diet to mice previously fed a high-fat diet was preceded by increased urine and blood levels of the ketone body β-hydroxybutyrate (BHB). Feeding a ketogenic diet for 3 wk to high-fat diet-fed obese mice or genetically obese db/db mice increased BHB concentrations and decreased methacholine hyperresponsiveness without substantially decreasing body weight. Acute ketone ester administration decreased methacholine responsiveness of normal mice, and dietary ketone ester supplementation of high-fat diet-fed mice decreased methacholine hyperresponsiveness. Ketone ester supplementation also transiently induced an "antiobesogenic" gut microbiome with a decreased Fermicutes/Bacteroidetes ratio. Dietary interventions to increase systemic BHB concentrations could provide symptom relief for obese asthmatics without the need for the substantial weight loss required of patients to elicit benefits to their asthma through bariatric surgery or other diet or lifestyle alterations.
Collapse
Affiliation(s)
- Madeleine M Mank
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| | - Leah F Reed
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| | - Camille J Walton
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| | - Madison L T Barup
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| | - Jennifer L Ather
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| | - Matthew E Poynter
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| |
Collapse
|
14
|
Kirenga B, Chakaya J, Yimer G, Nyale G, Haile T, Muttamba W, Mugenyi L, Katagira W, Worodria W, Aanyu-Tukamuhebwa H, Lugogo N, Joloba M, Bekele A, Makumbi F, Green C, de Jong C, Kamya M, van der Molen T. Phenotypic characteristics and asthma severity in an East African cohort of adults and adolescents with asthma: findings from the African severe asthma project. BMJ Open Respir Res 2021; 7:7/1/e000484. [PMID: 32054641 PMCID: PMC7047479 DOI: 10.1136/bmjresp-2019-000484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022] Open
Abstract
RATIONALE The relationship between clinical and biomarker characteristics of asthma and its severity in Africa is not well known. METHODS Using the Expert Panel Report 3, we assessed for asthma severity and its relationship with key phenotypic characteristics in Uganda, Kenya and Ethiopia. The characteristics included adult onset asthma, family history of asthma, exposures (smoking and biomass), comorbidities (HIV, hypertension, obesity, tuberculosis (TB), rhinosinusitis, gastro-oesophageal disease (GERD) and biomarkers (fractional exhaled nitric oxide (FeNO), skin prick test (SPT) and blood eosinophils). We compared these characteristics on the basis of severity and fitted a multivariable logistic regression model to assess the independent association of these characteristics with asthma severity. RESULTS A total of 1671 patients were enrolled, 70.7% women, with median age of 40 years. The prevalence of intermittent, mild persistent, moderate persistent and severe persistent asthma was 2.9%, 19.9%, 42.6% and 34.6%, respectively. Only 14% were on inhaled corticosteroids (ICS). Patients with severe persistent asthma had a higher rate of adult onset asthma, smoking, HIV, history of TB, FeNO and absolute eosinophil count but lower rates of GERD, rhinosinusitis and SPT positivity. In the multivariate model, Ethiopian site and a history of GERD remained associated with asthma severity. DISCUSSION The majority of patients in this cohort presented with moderate to severe persistent asthma and the use of ICS was very low. Improving access to ICS and other inhaled therapies could greatly reduce asthma morbidity in Africa.
Collapse
Affiliation(s)
- Bruce Kirenga
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jeremiah Chakaya
- Kenya Association of Physicians against TB and Lung Diseases (KAPTLD), Nairobi, Kenya
| | - Getnet Yimer
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - George Nyale
- Department of Medicine, Kenyatta National Hospital, Nairobi, Kenya
| | - Tewodros Haile
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Winters Muttamba
- Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Levicatus Mugenyi
- Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Winceslaus Katagira
- Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - William Worodria
- Mulago National Referral Hospital, Uganda Ministry of Health, Kampala, Uganda
| | | | - Njira Lugogo
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Moses Joloba
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Amsalu Bekele
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fred Makumbi
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Cindy Green
- Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Corina de Jong
- Department of General Practice, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Moses Kamya
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Thys van der Molen
- University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| |
Collapse
|
15
|
Abstract
Worldwide, more than 4 million deaths annually are attributed to indoor air pollution. This largely preventable exposure represents a key target for reducing morbidity and mortality worldwide. Significant respiratory health effects are observed, ranging from attenuated lung growth and development in childhood to accelerated lung function decline and is determined by chronic obstructive pulmonary disease later in life. Personal exposure to household air pollutants include household characteristics, combustion of solid fuels, cooking practices, and household pest allergens. This review outlines important sources of indoor air pollution, their respiratory health effects, and strategies to reduce household pollution and improve lung health across the globe.
Collapse
Affiliation(s)
- Sarath Raju
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Johns Hopkins School of Medicine, 1830 East Monument Street Fifth Floor, Baltimore, MD, 21287, USA.
| | - Trishul Siddharthan
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Johns Hopkins School of Medicine, 1830 East Monument Street Fifth Floor, Baltimore, MD, 21287, USA
| | - Meredith C McCormack
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Johns Hopkins School of Medicine, 1830 East Monument Street Fifth Floor, Baltimore, MD, 21287, USA
| |
Collapse
|
16
|
Li J, Qiu C, Xu P, Lu Y, Chen R. Casticin Improves Respiratory Dysfunction and Attenuates Oxidative Stress and Inflammation via Inhibition of NF-ĸB in a Chronic Obstructive Pulmonary Disease Model of Chronic Cigarette Smoke-Exposed Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5019-5027. [PMID: 33235440 PMCID: PMC7680168 DOI: 10.2147/dddt.s277126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 12/04/2022]
Abstract
Objective The present study was conducted to elucidate the protective effect of Casticin against chronic obstructive pulmonary disease (COPD) in rats. Methods The COPD in rats was induced by the controlled cigarette smoke, and CST (10, 20, and 30 mg/kg) was injected into the cigarette-smoke exposed rats. Blood was taken from the abdominal vein and centrifuged (1500×g, 4°C, 15min); plasma was collected and used for the determination of various biochemical parameters. Results The results of the study suggested that CST significantly improved the lung functions of the rats in a dose-dependent manner. It also causes a reduction of white blood cells, neutrophils, and macrophages in BALF of rats. The plasma level of leptin and C-reactive protein together with pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) were also significantly restored to near to normal in CST-treated group. In Western blot analysis, CST causes significant inhibition of the NF-ĸB and iNOS pathway. Conclusion Our study demonstrated that the CST protects lungs against COPD via improving lung functions and inhibition of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, People's Republic of China
| | - Chen Qiu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, People's Republic of China
| | - Peng Xu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, People's Republic of China
| | - Yongzhen Lu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, People's Republic of China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
17
|
van Oosterom N, Barras M, Bird R, Nusem I, Cottrell N. A Narrative Review of Aspirin Resistance in VTE Prophylaxis for Orthopaedic Surgery. Drugs 2020; 80:1889-1899. [DOI: 10.1007/s40265-020-01413-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Associations between obesity, asthma and physical activity in children and adolescents. APUNTS SPORTS MEDICINE 2020. [DOI: 10.1016/j.apunsm.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Holguin F, Grasemann H, Sharma S, Winnica D, Wasil K, Smith V, Cruse MH, Perez N, Coleman E, Scialla TJ, Que LG. L-Citrulline increases nitric oxide and improves control in obese asthmatics. JCI Insight 2019; 4:131733. [PMID: 31714895 DOI: 10.1172/jci.insight.131733] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUNDThe airways of obese asthmatics have been shown to be NO deficient, and this contributes to airway dysfunction and reduced response to inhaled corticosteroids. In cultured airway epithelial cells, L-citrulline, a precursor of L-arginine recycling and NO formation, has been shown to prevent asymmetric dimethyl arginine-mediated (ADMA-mediated) NO synthase (NOS2) uncoupling, restoring NO and reducing oxidative stress.METHODSIn a proof-of-concept, open-label pilot study in which participants were analyzed before and after treatment, we hypothesized that 15 g/d L-citrulline for 2 weeks would (a) increase the fractional excretion of NO (FeNO), (b) improve asthma control, and (c) improve lung function. To this end, we recruited obese (BMI >30) asthmatics on controller therapy, with a baseline FeNO of ≤30 ppb from the University of Colorado Medical Center and Duke University Health System.RESULTSA total of 41 subjects with an average FeNO of 17 ppb (95% CI, 15-19) and poorly controlled asthma (average asthma control questionnaire [ACQ] 1.5 [95% CI, 1.2-1.8]) completed the study. Compared with baseline, L-citrulline increased whereas ADMA and arginase concentration did not (values represent the mean Δ and 95% CI): plasma L-citrulline (190 μM, 84-297), plasma L-arginine (67 μM, 38-95), and plasma L-arginine/ADMA (ratio 117, 67-167). FeNO increased by 4.2 ppb (1.7-6.7 ppb); ACQ decreased by -0.46 (-0.67 to 0.27 points); the forced vital capacity and forced exhalation volume in 1 second, respectively, changed by 86 ml (10-161 ml) and 52 ml (-11 to 132 ml). In a secondary analysis, the greatest FEV1 increments occurred in those subjects with late-onset asthma (>12 years) (63 ml [95% CI, 1-137]), in females (80 ml [95% CI, 5-154]), with a greater change seen in late-onset females (100 ml, [95% CI, 2-177]). The changes in lung function or asthma control were not significantly associated with the changes before and after treatment in L-arginine/ADMA or FeNO.CONCLUSIONShort-term L-citrulline treatment improved asthma control and FeNO levels in obese asthmatics with low or normal FeNO. Larger FEV1 increments were observed in those with late-onset asthma and in females.TRIAL REGISTRATIONClinicalTrials.gov NCT01715844.FUNDINGNIH NHLBI R01 HL146542-01.
Collapse
Affiliation(s)
- Fernando Holguin
- Department of Medicine, University of Colorado Medical School, Aurora, Colorado, USA
| | - Hartmut Grasemann
- Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sunita Sharma
- Department of Medicine, University of Colorado Medical School, Aurora, Colorado, USA
| | - Daniel Winnica
- Department of Medicine, University of Colorado Medical School, Aurora, Colorado, USA
| | - Karen Wasil
- Department of Medicine, University of Colorado Medical School, Aurora, Colorado, USA
| | - Vong Smith
- Department of Medicine, University of Colorado Medical School, Aurora, Colorado, USA
| | - Margaret H Cruse
- Department of Medicine, University of Colorado Medical School, Aurora, Colorado, USA
| | - Nancy Perez
- Department of Medicine, University of Colorado Medical School, Aurora, Colorado, USA
| | - Erika Coleman
- Department of Medicine, University of Colorado Medical School, Aurora, Colorado, USA
| | - Timothy J Scialla
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Loretta G Que
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
20
|
Winnica D, Corey C, Mullett S, Reynolds M, Hill G, Wendell S, Que L, Holguin F, Shiva S. Bioenergetic Differences in the Airway Epithelium of Lean Versus Obese Asthmatics Are Driven by Nitric Oxide and Reflected in Circulating Platelets. Antioxid Redox Signal 2019; 31:673-686. [PMID: 30608004 PMCID: PMC6708272 DOI: 10.1089/ars.2018.7627] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aims: Asthma, characterized by airway obstruction and hyper-responsiveness, is more severe and less responsive to treatment in obese subjects. While alterations in mitochondrial function and redox signaling have been implicated in asthma pathogenesis, it is unclear whether these mechanisms differ in lean versus obese asthmatics. In addition, we previously demonstrated that circulating platelets from asthmatic individuals have altered bioenergetics; however, it is unknown whether platelet mitochondrial changes reflect those observed in airway epithelial cells. Herein we hypothesized that lean and obese asthmatics show differential bioenergetics and redox signaling in airway cells and that these alterations could be measured in platelets from the same individual. Results: Using freshly isolated bronchial airway epithelial cells and platelets from lean and obese asthmatics and healthy individuals, we show that both cell types from obese asthmatics have significantly increased glycolysis, basal and maximal respiration, and oxidative stress compared with lean asthmatics and healthy controls. This increased respiration was associated with enhanced arginine metabolism by arginase, which has previously been shown to drive respiration. Inducible nitric oxide synthase (iNOS) was also upregulated in cells from all asthmatics. However, due to nitric oxide synthase uncoupling in obese asthmatics, overall nitric oxide (NO) bioavailability was decreased, preventing NO-dependent inhibition in obese asthmatic cells that was observed in lean asthmatics. Innovation and Conclusion: These data demonstrate bioenergetic differences between lean and obese asthmatics that are, in part, due to differences in NO signaling. They also suggest that the platelet may serve as a useful surrogate to understand redox, oxidative stress and bioenergetic changes in the asthmatic airway.
Collapse
Affiliation(s)
- Daniel Winnica
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Catherine Corey
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Steven Mullett
- Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michael Reynolds
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gabrielle Hill
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stacy Wendell
- Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Loretta Que
- Department of Pulmonary and Critical Care Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Fernando Holguin
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Zhang J, Bao Y, Zhou X, Zheng L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod Biol Endocrinol 2019; 17:67. [PMID: 31420039 PMCID: PMC6698037 DOI: 10.1186/s12958-019-0509-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent hormonal disorder of premenopausal women worldwide and is characterized by reproductive, endocrine, and metabolic abnormalities. The clinical manifestations of PCOS include oligomenorrhea or amenorrhea, hyperandrogenism, ovarian polycystic changes, and infertility. Women with PCOS are at an increased risk of suffering from type 2 diabetes; me\tabolic syndrome; cardiovascular events, such as hypertension, dyslipidemia; gynecological diseases, including infertility, endometrial dysplasia, endometrial cancer, and ovarian malignant tumors; pregnancy complications, such as premature birth, low birthweight, and eclampsia; and emotional and mental disorders in the future. Although numerous studies have focused on PCOS, the underlying pathophysiological mechanisms of this disease remain unclear. Mitochondria play a key role in energy production, and mitochondrial dysfunction at the cellular level can affect systemic metabolic balance. The recent wide acceptance of functional mitochondrial disorders as a correlated factor of numerous diseases has led to the presupposition that abnormal mitochondrial metabolic markers are associated with PCOS. Studies conducted in the past few years have confirmed that increased oxidative stress is associated with the progression and related complications of PCOS and have proven the relationship between other mitochondrial dysfunctions and PCOS. Thus, this review aims to summarize and discuss previous and recent findings concerning the relationship between mitochondrial dysfunction and PCOS.
Collapse
Affiliation(s)
- Jingshun Zhang
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin China
| | - Yigang Bao
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin China
| | - Xu Zhou
- 0000 0004 1760 5735grid.64924.3dCollege of Animal Sciences, Jilin University, Changchun, Jilin China
| | - Lianwen Zheng
- grid.452829.0Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin China
| |
Collapse
|
22
|
Shrestha B, Mukhtar O, Kandel S, Bhattrai B, Dattar P, Amgai B, Mandal A, Alhafidh O, Thapa S, Khalid M, Gayam V, Ting B, Enriquez DA, Quist J, Schmidt MF. Polysomnographic variables in Alternate overlap syndrome: data from sleep heart health study. J Community Hosp Intern Med Perspect 2019; 9:108-112. [PMID: 31044041 PMCID: PMC6484460 DOI: 10.1080/20009666.2019.1595951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/05/2019] [Indexed: 11/01/2022] Open
Abstract
Objective: To evaluate influence of asthma on polysomnographic variables of patients with obstructive sleep apnea (OSA).Methods: A longitudinal retrospective study using data collected from the Sleep Heart Health Study (SHHS).Results: All 2822 patients included had OSA, 2599 were non-asthmatic whereas 223 were asthmatics. Average BMI for non-asthmatics was 28.8 kg/m2 whereas asthmatics had 29.5 kg/m2. Median pack-years of smoking was 1.42 vs. 1.98 in non-asthmatic and asthmatic groups, respectively. Sex distribution, age (in years), BMI, FEV1, FVC, AHI ≥ 4% (all apneas, hypopneas with ≥4% oxygen desaturation or arousal per hour of sleep), RDI ≥ 3% (overall respiratory distribution index at ≥3% oxygen desaturation or arousal), sleep latency, percentage of sleep time in apnea/hypopnea and Epworth sleep scale score were all statistically significant. Non-asthmatics had greater AHI (12.63/hr) compared to asthmatics (11.34/hour), p = 0.0015. RDI in non-asthmatics and asthmatics was (23.07 vs 20.53; p = 0.009). Sleep latency was found to be longer in asthmatics 19.8 minutes vs. 16 minutes (p = 0.008). Epworth sleepiness scale score was high in asthmatics (9 vs. 8, p = 0.002).Conclusion: OSA was found more severe in non-asthmatic subgroup, but asthmatics had statistically significant higher Epworth sleepiness scale score and sleep latency. Clinicians should be vigilant and keep low threshold to rule out OSA particularly on patients with difficult to control asthma, smoker, GERD, obese and nasal disease.
Collapse
Affiliation(s)
- Binav Shrestha
- Department of Internal Medicine, Interfaith Medical Centre, Brooklyn, NY, USA
| | - Osama Mukhtar
- Department of Pulmonary Medicine, Interfaith Medical Centre, Brooklyn, NY, USA
| | - Saroj Kandel
- Department of Pulmonary and Sleep Medicine, Winthrop Hospital, Mineola, New York, USA
| | - Bikash Bhattrai
- Department of Pulmonary Medicine, Interfaith Medical Centre, Brooklyn, NY, USA
| | - Parveen Dattar
- Department of Pulmonary Medicine, Interfaith Medical Centre, Brooklyn, NY, USA
| | - Birendra Amgai
- Department of Internal Medicine, Interfaith Medical Centre, Brooklyn, NY, USA
| | - Amrendra Mandal
- Department of Internal Medicine, Interfaith Medical Centre, Brooklyn, NY, USA
| | - Oday Alhafidh
- Department of Pulmonary Medicine, Interfaith Medical Centre, Brooklyn, NY, USA
| | - Shivani Thapa
- Department of Internal Medicine, Interfaith Medical Centre, Brooklyn, NY, USA
| | - Mazin Khalid
- Department of Internal Medicine, Interfaith Medical Centre, Brooklyn, NY, USA
| | - Vijay Gayam
- Department of Internal Medicine, Interfaith Medical Centre, Brooklyn, NY, USA
| | - Brandon Ting
- Department of Internal Medicine, Avalon University School of Medicine, Curacao, Curacao
| | - Danilo A Enriquez
- Department of Pulmonary Medicine, Interfaith Medical Centre, Brooklyn, NY, USA
| | - Joseph Quist
- Department of Pulmonary Medicine, Interfaith Medical Centre, Brooklyn, NY, USA
| | | |
Collapse
|
23
|
Yang HW, Fernando KHN, Oh JY, Li X, Jeon YJ, Ryu B. Anti-Obesity and Anti-Diabetic Effects of Ishige okamurae. Mar Drugs 2019; 17:E202. [PMID: 30934943 PMCID: PMC6520893 DOI: 10.3390/md17040202] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 01/12/2023] Open
Abstract
Obesity is associated with several health complications and can lead to the development of metabolic syndrome. Some of its deleterious consequences are related to insulin resistance, which adversely affects blood glucose regulation. At present, there is a growing concern regarding healthy food consumption, owing to awareness about obesity. Seaweeds are well-known for their nutritional benefits. The brown alga Ishige okamurae (IO) has been studied as a dietary supplement and exhibits various biological activities in vitro and in vivo. The bioactive compounds isolated from IO extract are known to possess anti-obesity and anti-diabetic properties, elicited via the regulation of lipid metabolism and glucose homeostasis. This review focuses on IO extract and its bioactive compounds that exhibit therapeutic effects through several cellular mechanisms in obesity and diabetes. The information discussed in the present review may provide evidence to develop nutraceuticals from IO.
Collapse
Affiliation(s)
- Hye-Won Yang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - K H N Fernando
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Jae-Young Oh
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Xining Li
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - BoMi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
24
|
Yaribeygi H, Atkin SL, Sahebkar A. A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J Cell Physiol 2019; 234:1300-1312. [PMID: 30146696 DOI: 10.1002/jcp.27164] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/10/2018] [Indexed: 12/16/2022]
Abstract
The prevalence of diabetes is growing worldwide with an increasing morbidity and mortality associated with the development of diabetes complications. Free radical production is a normal biological process that is strictly controlled and has been shown to be important in normal cellular homeostasis, and in the bodies response to pathogens. However, there are several mechanisms leading to excessive free radical production that overcome the normal protective quenching mechanisms. Studies have shown that many of the diabetes complications result from excessive free radical generation and oxidative stress, and it has been shown that chronic hyperglycemia is a potent inducer for free radical production, generated through several pathways and triggering multiple molecular mechanisms. An understanding of these processes may help us to improving our preventive or therapeutic strategies. In this review, the major molecular pathways involved in free radical generation induced by hyperglycemia are described.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Del Giacco SR, Firinu D, Minciullo PL, Barca MP, Manconi PE, Tartarisco G, Cristani M, Saija A, Gangemi S. Oxidative stress markers in patients with hereditary angioedema. Arch Med Sci 2019; 15:92-98. [PMID: 30697258 PMCID: PMC6348350 DOI: 10.5114/aoms.2017.66160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Hereditary angioedema due to C1-INH deficiency (C1-INH-HAE) or with normal C1-INH is characterized by recurrent swellings due to uncontrolled production of vasoactive mediators, among which bradykinin (BK) is crucial. Through the binding and activation of the two human BK-receptors, kinins may have dual beneficial and deleterious effects in vascular and inflammation physiopathology by inducing oxidative stress. We aimed to assess the serum concentrations of advanced glycation end products (AGEs) and advanced oxidation protein products (AOPPs) in patients affected by HAE. MATERIAL AND METHODS Blood samples were collected to measure the serum concentrations of AGEs and AOPPs by spectrofluorimetric and spectrophotometric methods in patients affected by C1-INH-HAE and FXII-HAE during the remission state. RESULTS We showed that the circulating levels of AOPPs observed on control group (0.94 (0.36) nmol/mg) were significantly lower than those observed on the C1-INH-HAE group (1.68 (0.47) nmol/mg; p = 0.002) and FXII-HAE (1.50 (0.27) nmol/mg; p = 0.001). Moreover, the circulating levels of AGEs were significantly higher in C1-INH-HAE group (211.58 (151.05) AU/g; p = 0.02) than the FXII group (141.48 (89.59) AU/g), thus demonstrating a state of heightened oxidative stress. CONCLUSIONS Our observations show additional underlying events involved in HAE and are of central importance for further investigations of differences in bradykinin receptors signaling among the two disease subgroups.
Collapse
Affiliation(s)
| | - Davide Firinu
- Department of Medical Sciences “M. Aresu”, University of Cagliari, Cagliari, Italy
| | - Paola Lucia Minciullo
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Maria Pina Barca
- Department of Medical Sciences “M. Aresu”, University of Cagliari, Cagliari, Italy
| | - Paolo Emilio Manconi
- Department of Medical Sciences “M. Aresu”, University of Cagliari, Cagliari, Italy
| | - Gennaro Tartarisco
- National Research Council of Italy (CNR) – Institute of Applied Science and Intelligent System (ISASI), Messina Unit, Messina, Italy
| | - Mariateresa Cristani
- Department of Drug Sciences and Health Products, University of Messina, Messina, Italy
| | - Antonella Saija
- Department of Drug Sciences and Health Products, University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
26
|
Abstract
Obesity is a major risk factor for asthma. This association appears related to altered dietary composition and metabolic factors that can directly affect airway reactivity and airway inflammation. This article discusses how specific changes in the western diet and metabolic changes associated with the obese state affect inflammation and airway reactivity and reviews evidence that interventions targeting weight, dietary components, lifestyle, and metabolism might improve outcomes in asthma.
Collapse
|
27
|
André DM, Horimoto CM, Calixto MC, Alexandre EC, Antunes E. Epigallocatechin-3-gallate protects against the exacerbation of allergic eosinophilic inflammation associated with obesity in mice. Int Immunopharmacol 2018; 62:212-219. [PMID: 30015241 DOI: 10.1016/j.intimp.2018.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/23/2018] [Accepted: 06/18/2018] [Indexed: 12/25/2022]
Abstract
Obesity is linked to worse asthma symptoms. Epigallocatechin-3-gallate (EGCG) reduces airway inflammation, but no study investigated the effects of EGCG on obesity-associated asthma. We aimed here to evaluate the effects of EGCG on allergen-induced airway inflammation in high-fat diet-fed mice. Male C57Bl/6 mice maintained on either standard-chow or high-fat diet for 12 weeks were treated or not with EGCG (10 mg/kg/day, gavage, two weeks). Animals were intranasally challenged with ovalbumin (OVA). In lung tissue and bronchoalveolar lavage fluid (BALF), cell counting and markers of inflammation and oxidative stress were evaluated. High-fat diet-fed mice exhibited significantly higher body weight and epididymal fat mass compared with lean group. EGCG treatment reduced by 20% the epididymal fat mass in obese mice (P < 0.05). The OVA-induced increases of total cells and eosinophils in lung tissue of obese mice were significantly reduced EGCG treatment. The increased levels of TNF-α, IL-4, IL-5 and eotaxin in BALF of obese mice were normalized by EGCG. Likewise, the enhanced expression of inducible nitric oxide synthase (iNOS) and nitric oxide metabolite (NOx) levels in obese mice were normalized by EGCG. Reactive‑oxygen species (ROS) and superoxide dismutase (SOD) levels were elevated and reduced, respectively, in lung tissue of obese mice, both of which were restored by EGCG. In lean mice, EGCG had no significant effect in evaluated parameter (body measures, and inflammatory and oxidative markers). EGCG turns to normal the levels of inflammatory and oxidative stress markers in lungs of obese mice, suggesting it could be an option to attenuate obesity-related asthma.
Collapse
Affiliation(s)
- Diana Majolli André
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Cristina Maki Horimoto
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marina Ciarallo Calixto
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Eduardo Costa Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
28
|
Periyalil HA, Wood LG, Wright TA, Karihaloo C, Starkey MR, Miu AS, Baines KJ, Hansbro PM, Gibson PG. Obese asthmatics are characterized by altered adipose tissue macrophage activation. Clin Exp Allergy 2018; 48:641-649. [PMID: 29383778 DOI: 10.1111/cea.13109] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND Adipose tissue-derived inflammation is linked to obesity-related comorbidities. This study aimed to quantify and immuno-phenotype adipose tissue macrophages (ATMs) from obese asthmatics and obese non-asthmatics and to examine associations between adipose tissue, systemic and airway inflammation. METHODS Visceral (VAT) adipose tissue and subcutaneous (SAT) adipose tissue were collected from obese adults undergoing bariatric surgery and processed to obtain the stromovascular fraction. Pro-inflammatory (M1) and anti-inflammatory (M2) macrophages were quantified by flow cytometry. Cytospins of induced sputum were stained for differential cell counts. Plasma C-reactive protein (CRP) and CD163 were measured by ELISA. RESULTS VAT contained a higher number of ATMs compared to SAT. A higher percentage of M1 ATMs was observed in VAT of obese asthmatics compared to obese non-asthmatics. The M1:M2 ratio in VAT was negatively associated with FEV1 %. Sputum macrophage count was correlated positively with M1 ATMs and negatively with M2 ATMs in VAT. In obese asthmatics, CRP was positively associated with M1:M2 ratio in VAT. There were no associations with CD163. An elevated ratio of M1:M2 ATMs was observed in VAT of obese asthmatics with increased disease severity. CONCLUSIONS AND CLINICAL RELEVANCE Visceral inflammation with increased pro-inflammatory macrophages (M1) occurs in obese asthma and may be a determinant of systemic inflammation and asthma severity.
Collapse
Affiliation(s)
- H A Periyalil
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - L G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - T A Wright
- Department of Surgery, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - C Karihaloo
- Department of Surgery, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - M R Starkey
- Priority Research Centre Grow-Up-Well, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - A S Miu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Department of Surgery, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - K J Baines
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - P M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre Grow-Up-Well, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - P G Gibson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
| |
Collapse
|
29
|
Osokogu OU, Khan J, Nakato S, Weibel D, de Ridder M, Sturkenboom MCJM, Verhamme K. Choice of time period to identify confounders for propensity score matching, affected the estimate: a retrospective cohort study of drug effectiveness in asthmatic children. J Clin Epidemiol 2018; 101:107-115.e3. [PMID: 29378305 DOI: 10.1016/j.jclinepi.2018.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/05/2018] [Accepted: 01/19/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To control for confounding by indication in comparative (drug) effectiveness studies, propensity score (PS) methods may be used. Since childhood diseases or outcomes often present as acute events, we compared the effect of using different look-back periods in electronic health-care data, to construct PSs. This was applied in our research on the effect of a combination of inhaled corticosteroids/long-acting beta-2 agonists (ICS + LABA), either as fixed combination or used as loose combination (2 separate inhaler devices) in the prevention of severe asthma exacerbations. METHODS We created a cohort of children (5-17 years) diagnosed with asthma from the Dutch Integrated Primary Care information database. Within this cohort, we identified new users of ICS + LABA, either as fixed combination or loose combination (2 separate inhaler devices). The outcome of interest was severe asthma exacerbations. PSs for type of treatment were created using comorbidity and drug use history in different time windows: 1 week, 1 month, 3 months, 1 year, and full history prior to the start of treatment. PSs were used for matching subjects in both exposure groups. Time to first asthma exacerbation was analyzed with Cox proportional hazard regression. The results were compared with published clinical trials. RESULTS Of 39,682 asthmatic children, 3,500 (8.8%) were new users of either ICS + LABA fixed (3,324 [95.0%]) or loose (176 [5.0%]). The crude hazard ratio (HR) for a severe asthma exacerbation, comparing ICS + LABA fixed to loose was 0.37 (95% confidence interval [CI]: 0.20-0.66). PS-matched HRs (1 week, 1 month, 3 month, 1 year, and full history) were 0.48 (95% CI: 0.22-1.04); 0.60 (95% CI: 0.26-1.38), 0.69 (95% CI: 0.31-1.57), 0.56 (CI: 0.25-1.24), and 0.58 (CI: 0.24-1.36), respectively. CONCLUSIONS PS matching can be used to control for confounding in pediatric comparative (drug) effectiveness studies, the impact of different look-back periods to implement the PS is important. Controlling for confounders occurring in the 3 months preceding drug exposure may yield results comparable to clinical trial results.
Collapse
Affiliation(s)
- Osemeke U Osokogu
- Department of Medical Informatics, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands.
| | - Javeed Khan
- Department of Medical Informatics, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands; Department of Statistics, Universiteit Hasselt, BE 3590 Diepenbeek, Belgium
| | - Swabra Nakato
- Department of Medical Informatics, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Daniel Weibel
- Department of Medical Informatics, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Maria de Ridder
- Department of Medical Informatics, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Miriam C J M Sturkenboom
- Department of Medical Informatics, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Katia Verhamme
- Department of Medical Informatics, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands; Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Universiteit Gent, Gent, Belgium
| |
Collapse
|
30
|
To M, Kono Y, Ogura N, Mikami S, Honda N, Hitani A, Kano I, Haruki K, To Y. Obesity-related systemic oxidative stress: An important factor of poor asthma control. Allergol Int 2018. [PMID: 28648979 DOI: 10.1016/j.alit.2017.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
31
|
Involvement of new oxidative stress markers in chronic spontaneous urticaria. Postepy Dermatol Alergol 2017; 34:448-452. [PMID: 29507559 PMCID: PMC5831279 DOI: 10.5114/ada.2017.71110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/29/2016] [Indexed: 12/16/2022] Open
Abstract
Introduction Oxidative stress is a result of an imbalance between endogenous production of free reactive oxygen species and reduced effectiveness of antioxidant defence mechanisms. Advanced glycation end products (AGEs) and advanced oxidation protein products (AOPPs) are compounds formed by transformation of macromolecules, including proteins which can serve as markers of oxidative stress and inflammation in several diseases. Aim To investigate the role of AGEs and AOPPs as new markers of oxidative stress and inflammation in patients with chronic spontaneous urticaria (CSU). Material and methods Advanced glycation end products and AOPP levels were determined in the sera of 85 patients with CSU and 64 healthy controls, using spectrofluorimetry and spectrophotometry, respectively. Results Advanced oxidation protein products levels in patients were statistically higher than those in controls. These levels were not affected by the presence of positive autologous serum test results or autologous plasma test results. No statistically significant differences were found between AGE levels in patients and controls. Conclusions Formation of AGEs and AOPPs may be accelerated in immunological and allergic disorders. Depending on the sites evaluated, the presence or absence of oxidative stress in chronic urticaria is controversial. To our knowledge, this is the first study showing the possible involvement of AOPPs in CSU. The different behaviour observed for these two biomarkers is very likely due to the activation of specific related biochemical pathways associated with the condition under study.
Collapse
|
32
|
Everaere L, Ait Yahia S, Bouté M, Audousset C, Chenivesse C, Tsicopoulos A. Innate lymphoid cells at the interface between obesity and asthma. Immunology 2017; 153:21-30. [PMID: 28880992 DOI: 10.1111/imm.12832] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023] Open
Abstract
Obesity and asthma prevalence has dramatically and concomitantly increased over the last 25 years, and many epidemiological studies have highlighted obesity as an important risk factor for asthma. Although many studies have been performed, the underlying mechanisms remain poorly understood. Innate mechanisms have been involved in both diseases, in particular through the recently described innate lymphoid cells (ILCs). ILCs are subdivided into three groups that are defined by their cytokine production and by their master transcription factor expression, in sharp correlation with their T helper counterparts. However, unlike T helper cells, ILCs do not express antigen-specific receptors, but respond to damage-induced signals. ILCs have been found in target tissues of both diseases, and data have implicated these cells in the pathogenesis of both diseases. In particular group 2 ILCs (ILC2) are activated in both the adipose and lung tissues under the effect of interleukin-33 and interleukin-25 expression. However, counter-intuitively to the well-known association between obesity and asthma, ILC2 are beneficial for obesity but deleterious for asthma. This review will examine the roles of ILCs in each disease and recent data highlighting ILCs as a putative link between obesity and asthma.
Collapse
Affiliation(s)
- Laetitia Everaere
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France
| | - Saliha Ait Yahia
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France
| | - Mélodie Bouté
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France
| | - Camille Audousset
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France.,Clinique des Maladies Respiratoires et Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Cécile Chenivesse
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France.,Clinique des Maladies Respiratoires et Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Anne Tsicopoulos
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France.,Clinique des Maladies Respiratoires et Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| |
Collapse
|
33
|
Kanagalingam S, Shehab SS, Kaminsky DA, Wise RA, Lang JE, Dixon AE. Effect of obesity on sinonasal disease in asthma. J Asthma 2017; 55:525-531. [PMID: 28737966 DOI: 10.1080/02770903.2017.1341522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Sinonasal disease can contribute to poor asthma control. There are reports that link obesity with an increased prevalence of sinonasal disease, but no studies evaluating the severity of sinonasal disease in obese asthmatics, and how this impacts asthma control. The purpose of the current study was to determine if obesity is associated with increased severity of sinonasal disease, and/or affects response to nasal corticosteroid treatment in asthma. METHODS This study included 236 adults participating in a 24-week randomized, double-masked, placebo-controlled study of nasal mometasone for the treatment of poorly controlled asthma. Sinonasal disease severity was assessed using validated questionnaires, and compared in participants of differing BMIs. Eosinophilic inflammation was assessed using markers in nasal lavage, serum and exhaled nitric oxide. Response to treatment was compared in different BMI groups. RESULTS Obesity had no effect on the severity of sinonasal disease symptoms in asthmatics (Sino-Nasal Outcome Test 22 (SNOT 22) score [mean ± SD] 35.4 ± 18.5, 40.2 ± 22.8, and 39.1 ± 21.7, p = 0.43, in lean, overweight and obese participants), nor on nasal, bronchial or systemic markers of allergic inflammation. Nasal steroids had some limited effects on symptoms, lung function and inflammatory markers in lean participants, but no detectable effect was found in obese patients. CONCLUSIONS Obesity does not affect severity of sinonasal disease in patients with asthma; the association of sinonasal disease symptoms with increased asthma severity and markers of Type 2 inflammation are consistent across all BMI groups. The response of obese patients to nasal corticosteroids requires further study.
Collapse
Affiliation(s)
- S Kanagalingam
- a Department of Medicine , University of Vermont , Burlington , Vermont , USA
| | - S S Shehab
- a Department of Medicine , University of Vermont , Burlington , Vermont , USA
| | - D A Kaminsky
- a Department of Medicine , University of Vermont , Burlington , Vermont , USA
| | - R A Wise
- b Department of Medicine , Johns Hopkins University , Baltimore , Maryland , USA
| | - J E Lang
- c Department of Pediatrics , Duke University School of Medicine , Durham , North Carolina , USA
| | - A E Dixon
- a Department of Medicine , University of Vermont , Burlington , Vermont , USA
| |
Collapse
|
34
|
Dixon AE, Poynter ME. Mechanisms of Asthma in Obesity. Pleiotropic Aspects of Obesity Produce Distinct Asthma Phenotypes. Am J Respir Cell Mol Biol 2017; 54:601-8. [PMID: 26886277 DOI: 10.1165/rcmb.2016-0017ps] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The majority of patients with severe or difficult-to-control asthma in the United States are obese. Epidemiological studies have clearly established that obese patients tend to have worse asthma control and increased hospitalizations and do not respond to standard controller therapy as well as lean patients with asthma. Less clear are the mechanistic underpinnings for the striking clinical differences between lean and obese patients with asthma. Because obesity is principally a disorder of metabolism and energy regulation, processes fundamental to the function of every cell and system within the body, it is not surprising that it affects the respiratory system; it is perhaps surprising that it has taken so long to appreciate how dysfunctional metabolism and energy regulation lead to severe airway disease. Although early investigations focused on identifying a common factor in obesity that could promote airway disease, an appreciation has emerged that the asthma of obesity is a manifestation of multiple anomalies related to obesity affecting all the different pathways that cause asthma, and likely also to de novo airway dysfunction. Consequently, all the phenotypes of asthma currently recognized in lean patients (which are profoundly modified by obesity), as well as those unique to one's obesity endotype, likely contribute to obese asthma in a particular individual. This perspective reviews what we have learned from clinical studies and animal models about the phenotypes of asthma in obesity, which show how specific aspects of obesity and altered metabolism might lead to de novo airway disease and profoundly modify existing airway disease.
Collapse
Affiliation(s)
- Anne E Dixon
- Department of Medicine, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
35
|
Lugogo N, Green CL, Agada N, Zhang S, Meghdadpour S, Zhou R, Yang S, Anstrom KJ, Israel E, Martin R, Lemanske RF, Boushey H, Lazarus SC, Wasserman SI, Castro M, Calhoun W, Peters SP, DiMango E, Chinchilli V, Kunselman S, King TS, Icitovic N, Kraft M. Obesity's effect on asthma extends to diagnostic criteria. J Allergy Clin Immunol 2017. [PMID: 28624608 DOI: 10.1016/j.jaci.2017.04.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The use of inflammatory biomarkers to delineate the type of lung inflammation present in asthmatic subjects is increasingly common. However, the effect of obesity on these markers is unknown. OBJECTIVES We aimed to determine the effect of obesity on conventional markers of inflammation in asthmatic subjects. METHODS We performed secondary analysis of data from 652 subjects previously enrolled in 2 Asthma Clinical Research Network trials. We performed linear correlations between biomarkers and logistic regression analysis to determine the predictive value of IgE levels, blood eosinophil counts, and fraction of exhaled nitric oxide values in relationship to sputum eosinophil counts (>2%), as well as to determine whether cut points existed that would maximize the sensitivity and specificity for predicting sputum eosinophilia in the 3 weight groups. RESULTS Overall, statistically significant but relatively weak correlations were observed among all 4 markers of inflammation. Within obese subjects, the only significant correlation found was between IgE levels and blood eosinophil counts (r = 0.33, P < .001); furthermore, all other correlations between inflammatory markers were approximately 0, including correlations with sputum eosinophil counts. In addition, the predictive value of each biomarker alone or in combination was poor in obese subjects. In fact, in obese subjects none of the biomarkers of inflammation significantly predicted the presence of high sputum eosinophil counts. Obese asthmatic subjects have lower cut points for IgE levels (268 IU), fraction of exhaled nitric oxide values (14.5 ppb), and blood eosinophil counts (96 cells/μL) than all other groups. CONCLUSIONS In obese asthmatic subjects conventional biomarkers of inflammation are poorly predictive of eosinophilic airway inflammation. As such, biomarkers currently used to delineate eosinophilic inflammation in asthmatic subjects should be approached with caution in these subjects.
Collapse
Affiliation(s)
- Njira Lugogo
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Mich.
| | - Cynthia L Green
- Department of Biostatistics and BioInformatics, Duke University, Durham, NC
| | - Noah Agada
- Division of Pediatric Allergy and Immunology, Department of Pediatric Pulmonology, Riley Children's Hospital, and Eli Lilly and Company, Indianapolis, Ind
| | - Siyi Zhang
- Department of Biostatistics and BioInformatics, Duke University, Durham, NC
| | - Susanne Meghdadpour
- Department of Pediatrics, Division of Allergy, Immunology, Pulmonary and Sleep Medicine, Duke University, Durham, NC
| | - Run Zhou
- Department of Biostatistics and BioInformatics, Duke University, Durham, NC
| | - Siyun Yang
- Department of Biostatistics and BioInformatics, Duke University, Durham, NC
| | - Kevin J Anstrom
- Department of Biostatistics and BioInformatics, Duke University, Durham, NC
| | - Elliot Israel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Richard Martin
- Department of Medicine, National Jewish Health and University of Colorado Denver, Denver, Colo
| | - Robert F Lemanske
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Homer Boushey
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, Calif
| | - Stephen C Lazarus
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, Calif
| | - Stephen I Wasserman
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California, San Diego, Calif
| | - Mario Castro
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University, Saint Louis, Mo
| | - William Calhoun
- Division of Pulmonary, Critical Care, and Sleep and Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex
| | - Stephen P Peters
- Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University, Winston-Salem, NC
| | - Emily DiMango
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Columbia University, New York, NY
| | - Vernon Chinchilli
- Department of Public Health Services, Penn State College of Medicine, Division of Biostatistics, Hershey, Pa
| | - Susan Kunselman
- Department of Public Health Services, Penn State College of Medicine, Division of Biostatistics, Hershey, Pa
| | - Tonya S King
- Department of Public Health Services, Penn State College of Medicine, Division of Biostatistics, Hershey, Pa
| | - Nikolina Icitovic
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Monica Kraft
- Department of Medicine, University of Arizona, Tucson, Ariz
| |
Collapse
|
36
|
Peel AM, Crossman-Barnes CJ, Tang J, Fowler SJ, Davies GA, Wilson AM, Loke YK. Biomarkers in adult asthma: a systematic review of 8-isoprostane in exhaled breath condensate. J Breath Res 2017; 11:016011. [PMID: 28102831 DOI: 10.1088/1752-7163/aa5a8a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES We aimed to assess the evidence for the use of 8-isoprostane in exhaled breath condensate (EBC) as a biomarker in adult asthma. DESIGN A systematic review and meta-analysis of EBC 8-isoprostane. METHODS We searched a number of online databases (including PubMed, Embase and Scopus) in January 2016. We included studies of adult non-smokers with EBC collection and asthma diagnosis conducted according to recognised guidelines. We aimed to pool data using random effects meta-analysis and assess heterogeneity using I 2. RESULTS We included twenty studies, the findings from which were inconsistent. Seven studies (n = 329) reported 8-isoprostane levels in asthma to be significantly higher than that of control groups, whilst six studies (n = 403) did not. Only four studies were appropriate for inclusion in a random effects meta-analysis of mean difference. This found a statistically significant between-groups difference of 22 pg ml-1. Confidence in the result is limited by the small number of studies and by substantial statistical heterogeneity (I 2 = 94). CONCLUSION The clinical value of EBC 8-isoprostane as a quantitative assessment of oxidative stress in asthma remains unclear due to variability in results and methodological heterogeneity. It is essential to develop a robust and standardised methodology if the use of EBC 8-isoprostane in asthma is to be properly evaluated.
Collapse
Affiliation(s)
- Adam M Peel
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Han W, Li J, Tang H, Sun L. Treatment of obese asthma in a mouse model by simvastatin is associated with improving dyslipidemia and decreasing leptin level. Biochem Biophys Res Commun 2017; 484:396-402. [PMID: 28131832 DOI: 10.1016/j.bbrc.2017.01.135] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 01/22/2023]
Abstract
Obesity can cause or worsen asthma. Compared with common asthma, obese asthma is difficult to control. Statins are effective serum cholesterol-lowering agents in clinical practice, and they also have anti-inflammatory properties, which in theory are potentially beneficial in asthma. Many studies have shown that simvastatin has good therapeutic effect in animal models of asthma. However, the therapeutic effect and action mechanism of simvastatin for obese asthma remain unclear. Leptin, a satiety hormone, is in positive correlation with total body fat mass and may also play a significant role in the pathogenesis of asthma. In this study, we use the method of high-fat diet and ovalbumin (OVA) sensitization and challenge to establish the mouse model of obesity and asthma, and find that obese asthmatic mice has higher levels of glucose, lipid and leptin in serum, and neutrophil percentage in bronchoalveolar lavage fluid (BALF), and more severe airway inflammation and structural changes in lung tissues than non-obese asthmatic mice, and respond poorly to dexamethasone treatment, which indicates that obese asthma might belong to steroid-resistant (SR) asthma. Simvastatin treatment reduces the levels of glucose, lipid, leptin and neutrophil percentage, and improves airway inflammation and remodeling, which can be as a potential therapeutic target used in the treatment of obese asthma in humans. Correlation analysis shows that there is positive correlation between neutrophil percentage and serum leptin/cholesterol level, which indicates that the therapeutic efficacy of simvastatin on obese asthma might be associated with improving dyslipidemia and decreasing leptin level.
Collapse
Affiliation(s)
- Wei Han
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266011, China
| | - Jun Li
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266011, China
| | - Huaping Tang
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266011, China
| | - Lixin Sun
- Department of Anesthesia, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266011, China.
| |
Collapse
|
38
|
Fitzpatrick AM. Severe Asthma in Children: Lessons Learned and Future Directions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2016; 4:11-9; quiz 20-1. [PMID: 26772923 DOI: 10.1016/j.jaip.2015.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 01/02/2023]
Abstract
Severe asthma in children is a complicated and heterogeneous disorder that is extremely challenging to treat. Although most children with asthma derive clinical benefit from daily administration of low-to-medium-dose inhaled corticosteroid (ICS) therapy, a small subset of children with "severe" or "refractory" asthma require high doses of ICS and even systemic corticosteroids to maintain symptom control. These children with severe asthma are at increased risk for adverse outcomes including medication-related side effects and recurrent and life-threatening exacerbations that significantly impair quality of life. This review highlights findings on severe asthma in school-age children (age 6-17 years) from the National Heart, Lung and Blood Institute's Severe Asthma Research Program (SARP) over a 10-year period, between 2001 and 2011. Although SARP has advanced knowledge of the unique clinical, biological, and molecular attributes of severe asthma in children, considerable gaps remain for which additional studies are needed.
Collapse
Affiliation(s)
- Anne M Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Ga; Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research, Atlanta, Ga.
| |
Collapse
|
39
|
Umetsu DT. Mechanisms by which obesity impacts upon asthma. Thorax 2016; 72:174-177. [DOI: 10.1136/thoraxjnl-2016-209130] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/24/2016] [Indexed: 01/19/2023]
|
40
|
Manna P, Jain SK. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab Syndr Relat Disord 2016; 13:423-44. [PMID: 26569333 DOI: 10.1089/met.2015.0095] [Citation(s) in RCA: 612] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity is gaining acceptance as a serious primary health burden that impairs the quality of life because of its associated complications, including diabetes, cardiovascular diseases, cancer, asthma, sleep disorders, hepatic dysfunction, renal dysfunction, and infertility. It is a complex metabolic disorder with a multifactorial origin. Growing evidence suggests that oxidative stress plays a role as the critical factor linking obesity with its associated complications. Obesity per se can induce systemic oxidative stress through various biochemical mechanisms, such as superoxide generation from NADPH oxidases, oxidative phosphorylation, glyceraldehyde auto-oxidation, protein kinase C activation, and polyol and hexosamine pathways. Other factors that also contribute to oxidative stress in obesity include hyperleptinemia, low antioxidant defense, chronic inflammation, and postprandial reactive oxygen species generation. In addition, recent studies suggest that adipose tissue plays a critical role in regulating the pathophysiological mechanisms of obesity and its related co-morbidities. To establish an adequate platform for the prevention of obesity and its associated health risks, understanding the factors that contribute to the cause of obesity is necessary. The most current list of obesity determinants includes genetic factors, dietary intake, physical activity, environmental and socioeconomic factors, eating disorders, and societal influences. On the basis of the currently identified predominant determinants of obesity, a broad range of strategies have been recommended to reduce the prevalence of obesity, such as regular physical activity, ad libitum food intake limiting to certain micronutrients, increased dietary intake of fruits and vegetables, and meal replacements. This review aims to highlight recent findings regarding the role of oxidative stress in the pathogenesis of obesity and its associated risk factors, the role of dysfunctional adipose tissue in development of these risk factors, and potential strategies to regulate body weight loss/gain for better health benefits.
Collapse
Affiliation(s)
- Prasenjit Manna
- Department of Pediatrics, LSU Health Sciences Center , Shreveport, Louisiana
| | - Sushil K Jain
- Department of Pediatrics, LSU Health Sciences Center , Shreveport, Louisiana
| |
Collapse
|
41
|
Zhang X, Hirota JA, Yang C, Carlsten C. Effect of GST variants on lung function following diesel exhaust and allergen co-exposure in a controlled human crossover study. Free Radic Biol Med 2016; 96:385-91. [PMID: 27151508 DOI: 10.1016/j.freeradbiomed.2016.04.202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/11/2016] [Accepted: 04/30/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Isolated exposure to diesel exhaust (DE) or allergen can cause decrements in lung function that are impacted by the presence of genetic variants in the glutathione-S-transferase (GST) family but the effect of GST interactions with DE-allergen co-exposure on lung function is unknown. We aimed to assess the impact of DE and allergen co-exposure on lung function and the influence of GSTM1 or GSTT1 variation METHODS We used a blinded crossover study design with 17 atopic subjects exposed to filtered air (FA; the control for DE) or DE for 2h. One hour following each exposure to DE or FA, bronchoscopy was performed to deliver a diluent-controlled segmental allergen challenge (SAC). Methacholine challenge and forced expiratory volume in 1s (FEV1) was performed pre-exposure (baseline airway responsiveness) and 24h post-exposure (effect of co-exposure). Additionally, FEV1 was performed hourly after DE/FA exposure and protein carbonyl content was measured in plasma as an oxidative stress marker. RESULTS Changes in FEV1 from baseline were dependent on time following allergen exposure. DE, as opposed to FA, led to a significant change in FEV1 at 2h post-allergen exposure in GSTT1 variants only (24.5±19.6% reduction in GSTT1 null individuals vs. 9.2±7.3% reduction in GSTT1 present individuals). Moreover, plasma protein carbonyl level 4h after co-exposure was higher in the individuals who have the GSTT1 null genotype. CONCLUSIONS This suggests a gene-environment interaction that endangers susceptible populations co-exposed to DE and allergen.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China; Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, Canada
| | - Jeremy A Hirota
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, Canada; Institute for Heart and Lung Health, University of British Columbia, Vancouver, Canada
| | - Chenxi Yang
- Center for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Chris Carlsten
- Department of Medicine, Division of Respiratory Medicine, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, Canada; Institute for Heart and Lung Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
42
|
Griffiths PS, Walton C, Samsell L, Perez MK, Piedimonte G. Maternal high-fat hypercaloric diet during pregnancy results in persistent metabolic and respiratory abnormalities in offspring. Pediatr Res 2016; 79:278-86. [PMID: 26539661 PMCID: PMC4829879 DOI: 10.1038/pr.2015.226] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/08/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND We have shown in a previous population-based study significant correlation between childhood asthma and early abnormalities of lipid and glucose metabolism. This study's specific aim was to determine whether maternal nutrition in pregnancy affects postnatal metabolic and respiratory outcomes in the offspring. METHODS On gestation day 1, dams were switched from standard chow to either high-fat hypercaloric diet or control diet. Terminal experiments were performed on newborn and weanling offspring of dams fed the study diet during gestation and lactation, and on adult offspring maintained on the same diet as their mother. RESULTS Pups born from high-fat hypercaloric diet (HFD) dams developed metabolic abnormalities persistent throughout development. Cytokine expression analysis of lung tissues from newborns born to HFD dams revealed a strong proinflammatory pattern. Gene expression of neurotrophic factors and receptors was upregulated in lungs of weanlings born to HFD dams, and this was associated to higher respiratory system resistance and lower compliance at baseline, as well as hyperreactivity to aerosolized methacholine. Furthermore, HFD dams delivered pups prone to develop more severe disease after respiratory syncytial virus (RSV) infection. CONCLUSION Maternal nutrition in pregnancy is a critical determinant of airway inflammation and hyperreactivity in offspring and also increases risk for bronchiolitis independent from prepregnancy nutrition.
Collapse
Affiliation(s)
- Pamela S Griffiths
- Department of Pediatrics, West Virginia University, Morgantown, West Virginia
| | - Cheryl Walton
- Department of Pediatrics, West Virginia University, Morgantown, West Virginia
| | - Lennie Samsell
- Department of Pediatrics, West Virginia University, Morgantown, West Virginia
| | - Miriam K Perez
- Department of Community Pediatrics, The Cleveland Clinic, Cleveland, Ohio
| | | |
Collapse
|
43
|
Update on the Mechanisms of Pulmonary Inflammation and Oxidative Imbalance Induced by Exercise. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4868536. [PMID: 26881028 PMCID: PMC4736402 DOI: 10.1155/2016/4868536] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/02/2015] [Accepted: 11/08/2015] [Indexed: 11/17/2022]
Abstract
The mechanisms involved in the generation of oxidative damage and lung inflammation induced by physical exercise are described. Changes in lung function induced by exercise involve cooling of the airways, fluid evaporation of the epithelial surface, increased contact with polluting substances, and activation of the local and systemic inflammatory response. The present work includes evidence obtained from the different types of exercise in terms of duration and intensity, the effect of both acute performance and chronic performance, and the influence of special conditions such as cold weather, high altitude, and polluted environments. Levels of prooxidants, antioxidants, oxidative damage to biomolecules, and cellularity, as well as levels of soluble mediators of the inflammatory response and its effects on tissues, are described in samples of lung origin. These samples include tissue homogenates, induced sputum, bronchoalveolar lavage fluid, biopsies, and exhaled breath condensate obtained in experimental protocols conducted on animal and human models. Finally, the need to simultaneously explore the oxidative/inflammatory parameters to establish the interrelation between them is highlighted.
Collapse
|
44
|
Liu X, Lin R, Zhao B, Guan R, Li T, Jin R. Correlation between oxidative stress and the NF-κB signaling pathway in the pulmonary tissues of obese asthmatic mice. Mol Med Rep 2015; 13:1127-34. [PMID: 26677140 PMCID: PMC4732835 DOI: 10.3892/mmr.2015.4663] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 11/17/2015] [Indexed: 02/06/2023] Open
Abstract
The obesity-asthma phenotype is characterized by increased asthma severity and decreased glucocorticoid responsiveness. To date, the mechanism underlying the association between obesity and asthma remain to be fully elucidated. The present study investigated the correlation between oxidative stress and the nuclear factor (NF)-κB pathway in obese asthmatic mice. The animals were divided into the following groups: Control (n=8), comprising C57BL/6J mice without exposure to a high-fat diet; non-obese asthma group (n=8), comprising mice of a normal weight subjected to the induction of asthma; obese control group (n=8), comprising C57BL/6J mice subjected to a high-fat diet; and obese asthmatic group (n=8), comprising obese mice subject to the induction of asthma. The levels of the malondialdehyde (MDA) oxidant and glutathione (GSH) antioxidant in the lungs and bronchoalveolar lavage fluid (BALF) were measured using ELISA. The expression levels of inhibitory κB kinase-β (IKK-β) and the inhibitor of κBα (IκB-α) in the pulmonary tissues was determined using western blot analysis. An electrophoretic mobility shift assay was performed to determine the transcription activity of NF-κB. The levels of MDA in the BALF and lung tissues increased significantly in the two asthmatic groups, compared with the control groups (P<0.01). The asthmatic mice showed significantly lower concentrations of GSH in the BALF and lung tissues, compared with the control groups (P<0.01). In the asthmatic animals, the expression of IκB kinase (IKK)-β and activation of NF-κB were upregulated in the pulmonary tissues, compared with those in the control groups (P<0.01). The expression of IKK-β and transcriptional activity of NF-κB were significantly higher the in obese asthmatic mice, compared with the non-obese asthmatic mice (P<0.01). On examining the expression levels of IκB-α in the pulmonary tissues, a significant reduction was found in the asthmatic animals, compared with the controls (P<0.01). In addition, the level of IκB-α was significantly lower in the obese asthmatics, compared with the non-obese asthmatics (P<0.01). MDA was positively correlated with NF-κB in the obese asthmatic group (R=0.83; P<0.05) and non-obese asthmatic group (R=0.82; P<0.05). Oxidative stress was upregulated in the pulmonary tissues of the asthmatic mice. This upregulation was more marked in the obese asthmatic mice, and was positively correlated with activation of the NF-κB signaling pathway in the pulmonary tissues. The results in the present study indicated that higher oxidative stress and activation of the NF-κB signaling pathway were observed in the lung tissues of the obese asthmatics. Furthermore, a positive correlation was identified between oxidative stress and NF-κB.
Collapse
Affiliation(s)
- Xiaomei Liu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Rongjun Lin
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Baochun Zhao
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Renzheng Guan
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Tang Li
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Rong Jin
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
45
|
Roles of Oxidative Stress in Polycystic Ovary Syndrome and Cancers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8589318. [PMID: 26770659 PMCID: PMC4684888 DOI: 10.1155/2016/8589318] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/28/2015] [Accepted: 09/06/2015] [Indexed: 12/16/2022]
Abstract
Oxidative stress (OS) has received extensive attention in the last two decades, because of the discovery that abnormal oxidation status was related to patients with chronic diseases, such as diabetes, cardiovascular, polycystic ovary syndrome (PCOS), cancer, and neurological diseases. OS is considered as a potential inducing factor in the pathogenesis of PCOS, which is one of the most common complex endocrine disorders and a leading cause of female infertility, affecting 4%–12% of women in the world, as OS has close interactions with PCOS characteristics, just as insulin resistance (IR), hyperandrogenemia, and chronic inflammation. It has also been shown that DNA mutations and alterations induced by OS are involved in cancer pathogenesis, tumor cell survival, proliferation, invasion, angiogenesis, and so on. Furthermore, recent studies show that the females with PCOS are reported to have an increasing risk of cancers. As a result, the more serious OS in PCOS is regarded as an important potential incentive for the increasing risk of cancers, and this study aims to analyze the possibility and potential pathogenic mechanism of the above process, providing insightful thoughts and evidences for preventing cancer potentially caused by PCOS in clinic.
Collapse
|
46
|
Dixon AE, Subramanian M, DeSarno M, Black K, Lane L, Holguin F. A pilot randomized controlled trial of pioglitazone for the treatment of poorly controlled asthma in obesity. Respir Res 2015; 16:143. [PMID: 26610598 PMCID: PMC4661996 DOI: 10.1186/s12931-015-0303-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 11/19/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Obese asthmatics tend to have poorly controlled asthma, and resistance to standard asthma controller medications. The purpose of this study was to determine the efficacy of pioglitazone, an anti-diabetic medication which can alter circulating adipokines and have direct effects on asthmatic inflammation, in the treatment of asthma in obesity. METHODS A two-center, 12-week, randomized, placebo-controlled, double-blinded trial. Treatments were randomly assigned with concealment of allocation. The primary outcome was difference in change in airway reactivity between participants assigned to pioglitazone versus placebo at 12 weeks. RESULTS Twenty-three participants were randomized to treatment, 19 completed the study. Median airway reactivity, measured by PC20 to methacholine was 1.99 (IQR 3.08) and 1.60 (5.91) mg/ml in placebo and pioglitazone group at baseline, and 2.37 (15.22) and 5.08 (7.42) mg/ml after 12 weeks, p = 0.38. There was no difference in exhaled nitric oxide, asthma control or lung function between treatment groups over the 12 week trial. Participants assigned to pioglitazone gained a significant amount more weight than those assigned to placebo (pioglitazone group mean weight 113.6, CI 94.5-132.7 kg at randomization and 115.9, CI 96.9-135.1 at 12 weeks; placebo mean weight 127.5, CI 108.4 - 146.6 kg at randomization and 124.5, CI 105.4 - 143.6 kg at 12 weeks; p = 0.04). CONCLUSIONS This pilot study suggests limited efficacy for pioglitazone in the treatment of poorly controlled asthma in obesity, and also the potential for harm, given the weight gain in those assigned to active treatment, and the association between increased weight and worse outcomes in asthma. TRIAL REGISTRATION Clinicaltrials.gov (NCT00634036).
Collapse
Affiliation(s)
- Anne E Dixon
- Division of Pulmonary and Critical Care Medicine, Given D209, 149 Beaumont Avenue, Burlington, VT, 05405, USA.
| | | | | | | | - Lisa Lane
- University of Pittsburgh, Pittsburgh, PA, USA.
| | | |
Collapse
|
47
|
Gangemi S, Minciullo PL, Magliacane D, Saitta S, Loffredo S, Saija A, Cristani M, Marone G, Triggiani M. Oxidative stress markers are increased in patients with mastocytosis. Allergy 2015; 70:436-42. [PMID: 25630934 DOI: 10.1111/all.12571] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mastocytosis is characterized by clonal proliferation of mast cells limited to the skin (cutaneous mastocytosis: CM and mastocytosis in the skin: MIS) and/or involving internal organs (systemic mastocytosis: SM). Oxidative stress occurring in various inflammatory and neoplastic disorders causes molecular damage with the production of advanced oxidation protein products (AOPPs) and advanced glycation end products (AGEs). We evaluated these markers of oxidative stress in patients with CM/MIS and SM and correlated their levels with the presence of symptoms related to mast cell activation. METHODS Serum levels of AOPPs and AGEs in 34 patients with mastocytosis (23 CM/MIS and 11 SM) and 27 healthy controls were measured by spectrofluorimetric and spectrophotometric methods. Serum tryptase levels were measured by immunofluorescence. RESULTS Serum AOPPs, but not AGEs, were significantly higher in patients with mastocytosis as compared to healthy controls. While serum tryptase levels were higher in patients with SM as compared to those with CM/MIS, there was no difference in AOPP and AGE concentrations between these two groups of patients. Patients with recurrent mediator-related symptoms had lower AOPPs and AGEs as compared to patients without symptoms. AOPPs and AGEs were inversely correlated with the severity of symptoms, and in patients with symptoms, AOPPs correlated with tryptase levels. DISCUSSION Our data show that mastocytosis is associated with a state of increased oxidative stress that, in patients with mediator-related symptoms, correlates with mast cell burden as assessed by tryptase. Patients with symptoms presumably have an adaptive response resulting in lower blood levels of AOPPs and AGEs.
Collapse
Affiliation(s)
- S. Gangemi
- Operative Unit of Allergy and Clinical Immunology; Department of Clinical and Experimental Medicine; University of Messina; Messina Italy
- Institute of Clinical Physiology; IFC CNR; Messina Unit; Messina Italy
| | - P. L. Minciullo
- Operative Unit of Allergy and Clinical Immunology; Department of Clinical and Experimental Medicine; University of Messina; Messina Italy
| | - D. Magliacane
- Division of Immunopathology and Respiratory Disease; Battipaglia Hospital; Salerno Italy
| | - S. Saitta
- Operative Unit of Allergy and Clinical Immunology; Department of Clinical and Experimental Medicine; University of Messina; Messina Italy
| | - S. Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI); University of Naples Federico II; Naples Italy
| | - A. Saija
- Department of Drug Sciences and Health Products; University of Messina; Messina Italy
| | - M. Cristani
- Department of Drug Sciences and Health Products; University of Messina; Messina Italy
| | - G. Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI); University of Naples Federico II; Naples Italy
| | - M. Triggiani
- Division of Allergy and Clinical Immunology; University of Salerno; Salerno Italy
| |
Collapse
|
48
|
Serafino-Agrusa L, Spatafora M, Scichilone N. Asthma and metabolic syndrome: Current knowledge and future perspectives. World J Clin Cases 2015; 3:285-292. [PMID: 25789301 PMCID: PMC4360500 DOI: 10.12998/wjcc.v3.i3.285] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 02/05/2023] Open
Abstract
Asthma and obesity are epidemiologically linked; however, similar relationships are also observed with other markers of the metabolic syndrome, such as insulin resistance and dyslipidemia, which cannot be accounted for by increased body mass alone. Obesity appears to be a predisposing factor for the asthma onset, both in adults and in children. In addition, obesity could make asthma more difficult to control and to treat. Although obesity may predispose to increased Th2 inflammation or tendency to atopy, other mechanisms need to be considered, such as those mediated by hyperglycaemia, hyperinsulinemia and dyslipidemia in the context of metabolic syndrome. The mechanisms underlying the association between asthma and metabolic syndrome are yet to be determined. In the past, these two conditions were believed to occur in the same individual without any pathogenetic link. However, the improvement in asthma symptoms following weight reduction indicates a causal relationship. The interplay between these two diseases is probably due to a bidirectional interaction. The purpose of this review is to describe the current knowledge about the possible link between metabolic syndrome and asthma, and explore potential application for future studies and strategic approaches.
Collapse
|
49
|
Wiktorowicz JE, Jamaluddin M. Proteomic analysis of the asthmatic airway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 795:221-32. [PMID: 24162912 DOI: 10.1007/978-1-4614-8603-9_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteomic investigations in general utilize varied technologies for sample preparation, separations, quantification, protein identification, and biological rationalization. Their applications range from pure discovery and mechanistic studies to biomarker discovery/verification/validation. In each specific case, the analytical strategy to be implemented is tailored to the type of sample that serves as the target of the investigations. Proteomic investigations take into consideration sample complexity, the cellular heterogeneity (particularly from tissues), the potential dynamic range of the protein and peptide abundance within the sample, the likelihood of posttranslational modifications (PTM), and other important factors that might influence the final output of the study. We describe the sample types typically used for proteomic investigations into the biology of asthma and review the most recent related publications with special attention to those that deal with the unique airway samples such as bronchoalveolar lavage fluids (BALF), epithelial lining fluid and cells (ELF), induced sputum (IS), and exhaled breath condensate (EBC). Finally, we describe the newest proteomics approaches to sample preparation of the unique airway samples, BALF and IS.
Collapse
Affiliation(s)
- John E Wiktorowicz
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 2.208A Basic Science Bldg, 301 University Blvd, Galveston, TX, 77555-0635, USA,
| | | |
Collapse
|
50
|
Tiwari M, Dwivedi UN, Kakkar P. Tinospora cordifolia extract modulates COX-2, iNOS, ICAM-1, pro-inflammatory cytokines and redox status in murine model of asthma. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:326-37. [PMID: 24556222 DOI: 10.1016/j.jep.2014.01.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/03/2014] [Accepted: 01/27/2014] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora cordifolia (Willd.) Miers is an important constituent of several ayurvedic medicinal preparations. In Ayurveda it is mentioned as "rasayan" and traditionally used for the treatment of asthma, chronic cough besides other ailments. This study was carried out to study the mechanisms involved in protection accorded by extract of Tinospora cordifolia (Tc) stem to asthmatic mice by regulation of oxidative stress, pro-inflammatory mediator release and redox signaling involving NFκB. MATERIALS AND METHODS BALB/c mice were sensitized with intraperitoneal (i.p.) Ovalbumin (Ova) on days 0 and 14, followed by intranasal Ovalbumin (Ova) challenge on days 24 and 27 to generate an in vivo asthma model. Tc extract (hydroalcoholic, 100 mg/kg) and dexamethasone (1 mg/kg) were given orally from day 15 to 23 to the Tc+Ova treated group and Dex+Ova treated group respectively. Oxidative stress parameters e.g. activity of superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx) and catalase, lipid peroxidation, GSH/GSSG ratio, protein carbonyl content, eosinophil peroxidase, myeloperoxidase activity, and NO release were measured in tissue, blood and bronchoalveolar lavage fluid (BALF). Estimation of cytokines was done in BALF. Western blot analysis was done for IκB α, iNOS, COX-2, iCAM-1 and pJNK MAPKs along with histopathology. RESULTS Tc extract treated mice showed decreased airway hyper-responsiveness, eosinophil count and IgE content in blood as compared to Ova treated asthmatic mice. Increase in activities of SOD, catalase, glutathione reductase, glutathione peroxidase as well as GSH/GSSG ratio was observed while a decrease in MDA formation, protein carbonyl content, eosinophil peroxidase, myeloperoxidase activity and NO release in BALF was seen in Tc treated mice. In BALF, levels of cytokines IL-4 and TNF-α were reduced and IFN-γ levels increased in extract treated mice. At the same time Tc treatment of Ova-challenged mice significantly increased the level of IκB α, cytosolic inhibitor of redox sensitive transcription factor NFκB. Immunoblot analysis revealed considerable decrease in the levels of COX-2, ICAM-1, iNOS, and pJNK. Histopathology and PAS staining also indicate a protective effect of Tc extract in inflammation and mucus hyper-secretion due to goblet cell hyperplasia. CONCLUSION The results suggest a protective effect of Tc extract against oxidative stress, pro-inflammatory mediator release and redox signaling in the murine model of asthma. The Tc extract shows therapeutic potential for management of asthmatic inflammation and other lung inflammatory conditions.
Collapse
Affiliation(s)
- M Tiwari
- Herbal Research Section, Food Drug & Chemical Toxicology Division, CSIR - Indian Institute of Toxicology Research, P.O. Box 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India.
| | - U N Dwivedi
- Department of Biochemistry, University of Lucknow, Lucknow 226007, Uttar Pradesh, India.
| | - P Kakkar
- Herbal Research Section, Food Drug & Chemical Toxicology Division, CSIR - Indian Institute of Toxicology Research, P.O. Box 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|