1
|
Righetti S, Medoro A, Graziano F, Mondazzi L, Martegani S, Chiappero F, Casiraghi E, Petroni P, Corbi G, Pina R, Scapagnini G, Davinelli S, Ricordi C. Effects of Maltodextrin-Fructose Supplementation on Inflammatory Biomarkers and Lipidomic Profile Following Endurance Running: A Randomized Placebo-Controlled Cross-Over Trial. Nutrients 2024; 16:3078. [PMID: 39339678 PMCID: PMC11434986 DOI: 10.3390/nu16183078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Managing metabolism for optimal training, performance, and recovery in medium-to-high-level endurance runners involves enhancing energy systems through strategic nutrient intake. Optimal carbohydrate intake before, during, and after endurance running can enhance glycogen stores and maintain optimal blood glucose levels, influencing various physiological responses and adaptations, including transitory post-endurance inflammation. This randomized trial investigates the impact of a high-dose 2:1 maltodextrin-fructose supplementation to medium-to-high-level endurance runners immediately before, during, and after a 15 km run at 90% VO2max intensity on post-exercise inflammatory stress. METHODS We evaluated inflammatory biomarkers and lipidomic profiles before the endurance tests and up to 24 h after. We focused on the effects of high-dose 2:1 maltodextrin-fructose supplementation on white blood cell count, neutrophil number, IL-6, cortisol, and CRP levels, as well as polyunsaturated fatty acids, ω-3 index, and AA/EPA ratio. RESULTS This supplementation significantly reduced inflammatory markers and metabolic stress. Additionally, it may enhance the post-activity increase in blood ω-3 fatty acid levels and reduce the increase in ω-6 levels, resulting in a lower trend of AA/EPA ratio at 24 h in the treated arm. CONCLUSIONS Adequate carbohydrate supplementation may acutely mitigate inflammation during a one-hour endurance activity of moderate-to-high intensity. These effects could be beneficial for athletes engaging in frequent, high-intensity activities.
Collapse
Affiliation(s)
- Stefano Righetti
- Department of Cardiology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| | - Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (G.S.)
| | - Francesca Graziano
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
- Bicocca Bioinformatics Biostatistics and Bioimaging Center B4, School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy
| | - Luca Mondazzi
- Sport Service Mapei, Sport Nutrition, 21057 Olgiate Olona, Italy;
- School of Clinical Nutrition, University of Milan, 20126 Milan, Italy
| | - Serena Martegani
- Department of Biotechnology and Life Science, University of Insubria, 21100 Varese, Italy;
| | - Francesco Chiappero
- Equipe Enervit Srl, Scientific Research Unit of Enervit Spa, 20126 Milan, Italy; (F.C.); (E.C.); (P.P.); (R.P.)
| | - Elena Casiraghi
- Equipe Enervit Srl, Scientific Research Unit of Enervit Spa, 20126 Milan, Italy; (F.C.); (E.C.); (P.P.); (R.P.)
- Department of Public Health, Experimental and Forensic Sciences, University of Pavia, 27100 Pavia, Italy
| | - Paolo Petroni
- Equipe Enervit Srl, Scientific Research Unit of Enervit Spa, 20126 Milan, Italy; (F.C.); (E.C.); (P.P.); (R.P.)
| | - Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Riccardo Pina
- Equipe Enervit Srl, Scientific Research Unit of Enervit Spa, 20126 Milan, Italy; (F.C.); (E.C.); (P.P.); (R.P.)
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (G.S.)
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.M.); (G.S.)
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
2
|
Ušaj A, Lihteneger Vidmajer J, Lojen S. Recovery after Running an "Everesting" Mountain Ultramarathon. Life (Basel) 2023; 13:1946. [PMID: 37895328 PMCID: PMC10607996 DOI: 10.3390/life13101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Blood markers of muscle microdamage and systemic inflammation do not adequately explain the reduced performance observed over a prolonged recovery after running a mountain ultramarathon. This case study aimed to determine whether the reduced performance after the Everesting mountain ultramarathon can be further assessed by considering cardiorespiratory and metabolic alterations determined via repeated incremental and continuous running tests. A single runner (age: 24 years, BM: 70 kg, BMI: 22, Vo2peak: 74 mL∙min-1∙kg-1) was observed over a preparatory period of two months with a one-month recovery period. The Everesting consisted of nine ascents and descents of 9349 vertical metres completed in 18:22 (h:min). During the first phase of the recovery, enhanced peak creatine kinase (800%) and C-reactive protein (44%) levels explained the decreased performance. In contrast, decreased performance during the second, longer phase was associated with a decreased lactate threshold and Vo2 (21% and 17%, respectively), as well as an increased energetic cost of running (15%) and higher endogenous carbohydrate oxidation rates (87%), lactate concentrations (170%) and respiratory muscle fatigue sensations that remained elevated for up to one month. These alterations may represent characteristics that can explain the second phase of the recovery process after Everesting.
Collapse
Affiliation(s)
- Anton Ušaj
- Laboratory of Biodynamics, Faculty of Sport, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Jon Lihteneger Vidmajer
- Laboratory of Biodynamics, Faculty of Sport, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Sonja Lojen
- Department of Environmental Sciences, Institute Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia;
| |
Collapse
|
3
|
Rothschild JA, Kilding AE, Stewart T, Plews DJ. Factors Influencing Substrate Oxidation During Submaximal Cycling: A Modelling Analysis. Sports Med 2022; 52:2775-2795. [PMID: 35829994 PMCID: PMC9585001 DOI: 10.1007/s40279-022-01727-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Multiple factors influence substrate oxidation during exercise including exercise duration and intensity, sex, and dietary intake before and during exercise. However, the relative influence and interaction between these factors is unclear. OBJECTIVES Our aim was to investigate factors influencing the respiratory exchange ratio (RER) during continuous exercise and formulate multivariable regression models to determine which factors best explain RER during exercise, as well as their relative influence. METHODS Data were extracted from 434 studies reporting RER during continuous cycling exercise. General linear mixed-effect models were used to determine relationships between RER and factors purported to influence RER (e.g., exercise duration and intensity, muscle glycogen, dietary intake, age, and sex), and to examine which factors influenced RER, with standardized coefficients used to assess their relative influence. RESULTS The RER decreases with exercise duration, dietary fat intake, age, VO2max, and percentage of type I muscle fibers, and increases with dietary carbohydrate intake, exercise intensity, male sex, and carbohydrate intake before and during exercise. The modelling could explain up to 59% of the variation in RER, and a model using exclusively easily modified factors (exercise duration and intensity, and dietary intake before and during exercise) could only explain 36% of the variation in RER. Variables with the largest effect on RER were sex, dietary intake, and exercise duration. Among the diet-related factors, daily fat and carbohydrate intake have a larger influence than carbohydrate ingestion during exercise. CONCLUSION Variability in RER during exercise cannot be fully accounted for by models incorporating a range of participant, diet, exercise, and physiological characteristics. To better understand what influences substrate oxidation during exercise further research is required on older subjects and females, and on other factors that could explain additional variability in RER.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Tom Stewart
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
4
|
Heileson JL, Peterson M, Adair KE, Funderburk LK. Comparison of a Sucrose-Based and Rice-Based Sports Beverage on Hydration Status During a 19.3-km Foot March in ROTC Cadets. J Strength Cond Res 2022; 36:1105-1110. [DOI: 10.1519/jsc.0000000000003716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
New Horizons in Carbohydrate Research and Application for Endurance Athletes. Sports Med 2022; 52:5-23. [PMID: 36173597 PMCID: PMC9734239 DOI: 10.1007/s40279-022-01757-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
The importance of carbohydrate as a fuel source for exercise and athletic performance is well established. Equally well developed are dietary carbohydrate intake guidelines for endurance athletes seeking to optimize their performance. This narrative review provides a contemporary perspective on research into the role of, and application of, carbohydrate in the diet of endurance athletes. The review discusses how recommendations could become increasingly refined and what future research would further our understanding of how to optimize dietary carbohydrate intake to positively impact endurance performance. High carbohydrate availability for prolonged intense exercise and competition performance remains a priority. Recent advances have been made on the recommended type and quantity of carbohydrates to be ingested before, during and after intense exercise bouts. Whilst reducing carbohydrate availability around selected exercise bouts to augment metabolic adaptations to training is now widely recommended, a contemporary view of the so-called train-low approach based on the totality of the current evidence suggests limited utility for enhancing performance benefits from training. Nonetheless, such studies have focused importance on periodizing carbohydrate intake based on, among other factors, the goal and demand of training or competition. This calls for a much more personalized approach to carbohydrate recommendations that could be further supported through future research and technological innovation (e.g., continuous glucose monitoring). Despite more than a century of investigations into carbohydrate nutrition, exercise metabolism and endurance performance, there are numerous new important discoveries, both from an applied and mechanistic perspective, on the horizon.
Collapse
|
6
|
Davitt PM, Saenz C, Hartman T, Barone P, Estremera S. Physiological Impact of a Single Serving Slow Absorption Carbohydrate on Metabolic, Hemodynamic, and Performance Markers in Endurance Athletes During a Bout of Exercise. J Strength Cond Res 2021; 35:1262-1272. [PMID: 33900259 DOI: 10.1519/jsc.0000000000003968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Davitt, PM, Saenz, C, Hartman, T, Barone, P, and Estremera, S. Physiological impact of a single serving slow absorption carbohydrate on metabolic, hemodynamic, and performance markers in endurance athletes during a bout of exercise. J Strength Cond Res 35(5): 1262-1272, 2021-The purpose of this study was to determine how a slow-absorbing carbohydrate affected markers of metabolism, hemodynamics, and performance in well-trained endurance athletes. We examined total and exogenous carbohydrate oxidation (CHO ox), glucose, and performance after consuming different glucose beverages, before a treadmill run. Ten male runners (32.4 years; V̇o2max, 55.9 ml·kg-1·min-1) participated on 3 occasions: slow digestion CHO (S), fast digestion CHO (F), and water (W). Subjects consumed a 50 g dose of either S or F before a 3-hour treadmill run at 57% V̇o2max. Variables were assessed at -15, 0, 30, 60, 90, 135, and 180 minutes. Immediately postrun, subjects completed a time-to-fatigue test at 110% V̇o2max. There was a significant difference in CHO ox for W vs. F and S (C,1.14; S,1.52; F,1.66 ± 0.2 g·min-1, p < 0.05). Fat ox was significantly higher in S vs. F (S,0.54; F,0.47 ± 0.08 g·min-1, p < 0.05). Exogenous CHO ox was significantly higher in F vs. S (F,0.26; S,0.19 + 0.04 g·min-1, p < 0.05). There was a significant difference in average blood glucose for trial (F,94.5; S,97.1 vs. W,88.4 + 2.1 mg·dl-1) and time × trial for F vs. S (0 minutes, p < 0.05). There were no significant performance differences. Consumption of a single bolus of CHO beverage before a 3-hour run elicits significant alterations in energy metabolism compared with just water, with S CHO oxidizing significantly more fat than a rapidly digested carbohydrate. These findings suggest that slow-digesting modified starch provides a consistent blood glucose level and sustained exogenous energy supply during a sustained, 3-hour endurance run. Significance was set at p < 0.05.
Collapse
Affiliation(s)
- Patrick M Davitt
- Department of Kinesiology, University of the Sciences, Philadelphia, Pennsylvania.,Department of Natural Sciences, Mercy College, Dobbs Ferry, New York; and
| | - Catherine Saenz
- Department of Kinesiology, Jacksonville University, Jacksonville, Florida
| | - Troy Hartman
- Department of Natural Sciences, Mercy College, Dobbs Ferry, New York; and
| | - Phil Barone
- Department of Natural Sciences, Mercy College, Dobbs Ferry, New York; and
| | - Steven Estremera
- Department of Natural Sciences, Mercy College, Dobbs Ferry, New York; and
| |
Collapse
|
7
|
Pettersson S, Ahnoff M, Edin F, Lingström P, Simark Mattsson C, Andersson-Hall U. A Hydrogel Drink With High Fructose Content Generates Higher Exogenous Carbohydrate Oxidation and Lower Dental Biofilm pH Compared to Two Other, Commercially Available, Carbohydrate Sports Drinks. Front Nutr 2020; 7:88. [PMID: 32596251 PMCID: PMC7303329 DOI: 10.3389/fnut.2020.00088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/14/2020] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was to evaluate the substrate oxidation of three commercially available, 14%-carbohydrate sports drinks with different compositions, osmolality, and pH for their impact on dental exposure to low pH. In a cross-over, randomized double-blinded design, 12 endurance athletes (age 31. 2 ± 7.7 years, V ˙ O2max 65.6 ± 5.0 mL·kg-1) completed 180 min of cycling at 55% Wmax. During the first 100 min of cycling, athletes consumed amylopectin starch (AP), maltodextrin+sucrose (MD+SUC), or maltodextrin+fructose hydrogel (MD+FRU) drinks providing 95 g carbohydrate·h-1, followed by water intake only at 120 and 160 min. Fuel use was determined using indirect calorimetry and stable-isotope techniques. Additionally, dental biofilm pH was measured using the microtouch method in a subsample of participants (n = 6) during resting conditions before, and at different time intervals up to 45 min following a single bolus of drink. Exogenous carbohydrate oxidation (CHOEXO) during the 2nd hour of exercise was significantly (P < 0.05) different between all three drinks: MD+FRU (1.17 ± 0.17 g·min-1), MD+SUC (1.01 ± 0.13 g·min-1), and AP (0.84 ± 0.11 g·min-1). At the end of exercise, CHOEXO and blood glucose concentrations (3.54 ± 0.50, 4.07 ± 0.67, and 4.28 ± 0.47 mmol·L-1, respectively) were significantly lower post MD+FRU consumption than post MD+SUC and AP consumption (P < 0.05). Biofilm acidogenicity at rest demonstrated a less pronounced pH fall for MD+FRU compared to the acidulant-containing MD+SUC and AP (P < 0.05). In conclusion, while total intake of MD+FRU showed signs of completed uptake before end of monitoring, this was less so for MD+SUC, and not at all the case for AP. Thus, this study showed that despite carbohydrates being encapsulated in a hydrogel, a higher CHOEXO was observed following MD+FRU drink ingestion compared to AP and MD+SUC consumption upon exposure to the acidic environment of the stomach. This finding may be related to the higher fructose content of the MD+FRU drink compared with the MD+SUC and AP drinks. Furthermore, a carbohydrate solution without added acidulants, which are commonly included in commercial sport drinks, may have less deleterious effects on oral health.
Collapse
Affiliation(s)
- Stefan Pettersson
- Department of Food and Nutrition, and Sport Science, Center for Health and Performance, University of Gothenburg, Gothenburg, Sweden
| | - Martin Ahnoff
- Maurten AB, Research and Development, Gothenburg, Sweden
| | - Fredrik Edin
- Department of Food and Nutrition, and Sport Science, Center for Health and Performance, University of Gothenburg, Gothenburg, Sweden
| | - Peter Lingström
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Charlotte Simark Mattsson
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Andersson-Hall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Podlogar T, Wallis GA. Impact of Post-Exercise Fructose-Maltodextrin Ingestion on Subsequent Endurance Performance. Front Nutr 2020; 7:82. [PMID: 32582755 PMCID: PMC7289949 DOI: 10.3389/fnut.2020.00082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Current sports nutrition guidelines recommend athletes ingest carbohydrates at 1.0–1.2 g·kg−1·h−1 to optimize repletion of muscle glycogen during short-term recovery from endurance exercise. However, they do not provide specific advice on monosaccharides (e.g., fructose or glucose) other than to ingest carbohydrates of moderate to high glycaemic index. Recent evidence suggests that combined ingestion of fructose and glucose in recovery leads to enhanced liver glycogen synthesis and that this translates into improvement of subsequent endurance capacity. Purpose: The purpose of the present study was to investigate whether consuming a combination of fructose and glucose as opposed to glucose alone during short-term recovery (i.e., 4 h) from exhaustive exercise would also improve subsequent pre-loaded cycle time trial (TT) performance. Methods: Eight participants (seven men, one woman; V∙O2peak: 56.8 ± 5.0 mLO2·min−1·kg−1; Wmax: 352 ± 41 W) participated in this randomized double-blind study. Each experimental session involved a glycogen reducing exercise bout in the morning, a 4-h recovery period and 1-h of steady state (SS) exercise at 50% Wmax followed by a ~40-min simulated TT. During recovery carbohydrates were ingested at a rate of 1.2 g·kg−1·h−1 in the form of fructose and maltodextrin (FRU + MD) or dextrose and maltodextrin (GLU + MD) (both in 1:1.5 ratio). Substrate oxidation rates, including ingested carbohydrate oxidation, were determined during the steady state (SS). Blood samples were collected during recovery, during the SS exercise and at the end of the TT for determination of glucose and lactate concentrations. Results: There were no differences in TT performance [37.41 ± 3.45 (GLU + MD); 37.96 ± 5.20 min (FRU + MD), p = 0.547]. During the first 45-min of SS oxidation of ingested carbohydrates was greater in FRU + MD (1.86 ± 0.41 g−1·min−1 and 1.51 ± 0.37 g−1·min−1 for FRU + MD and GLU + MD, respectively; time x condition interaction p = 0.003) and there was a trend toward higher overall carbohydrate oxidation rates in FRU + MD (2.50 ± 0.36 g−1·min−1 and 2.31 ± 0.37 g−1·min−1 for FRU + MD and GLU + MD, respectively; p = 0.08). However, at 60-min of SS, differences in substrate oxidation disappeared. Conclusion: Ingestion of combined fructose and glucose compared to glucose only during recovery from an exhaustive exercise bout increased the ingested carbohydrate oxidation rate during subsequent exercise. Under the conditions studied, subsequent TT performance was not improved with fructose-glucose.
Collapse
Affiliation(s)
- Tim Podlogar
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gareth A Wallis
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Lou J, Fan X, Wang Q, Wang P, Yuan J, Yu Y. Oxysucrose polyaldehyde: A new hydrophilic crosslinking reagent for anti-crease finishing of cotton fabrics. Carbohydr Res 2019; 486:107783. [PMID: 31669569 DOI: 10.1016/j.carres.2019.107783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 11/26/2022]
Abstract
For the first time, oxidized sucrose (oxysucrose) was used as a hydrophilic crosslinking reagent instead of conventional anti-crease reagents for cotton fabrics. In this research, the partial oxidization of sucrose with sodium periodate generated multiple aldehydes, which acted as multifunctional cross-linkers and endowed cotton fabrics with anti-crease and hydrophilic function. The results showed that the oxysucrose-treated cotton fabrics obtained the maximum crease recovery angle of 245°, durable press rating of 3.0, and whiteness index of 82.8. Importantly, the oxysucrose-treated samples showed better hydrophilicity that overcomes the hydrophobization deficiency of anti-creased cotton fabrics treated with previously reported dimethylol dihydroxy ethylene urea (DMDHEU), glutaraldehyde (GA), and 1, 2, 3, 4,-butanetetracarboxylic acid (BTCA). The etherification reaction between the aldehyde group of oxysucrose and the hydroxyl group of cellulose was investigated and the possible crosslinking and anti-crease mechanism was proposed.
Collapse
Affiliation(s)
- Jiangfei Lou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
10
|
Orrù S, Imperlini E, Nigro E, Alfieri A, Cevenini A, Polito R, Daniele A, Buono P, Mancini A. Role of Functional Beverages on Sport Performance and Recovery. Nutrients 2018; 10:E1470. [PMID: 30308976 PMCID: PMC6213308 DOI: 10.3390/nu10101470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
Functional beverages represent a palatable and efficient way to hydrate and reintegrate electrolytes, carbohydrates, and other nutrients employed and/or lost during physical training and/or competitions. Bodily hydration during sporting activity is one of the best indicators of health in athletes and can be a limiting factor for sport performance. Indeed, dehydration strongly decreases athletic performance until it is a risk to health. As for other nutrients, each of them is reported to support athletes' needs both during the physical activity and/or in the post-workout. In this study, we review the current knowledge of macronutrient-enriched functional beverages in sport taking into account the athletes' health, sports performance, and recovery.
Collapse
Affiliation(s)
- Stefania Orrù
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", via Medina 40, 80133 Napoli, Italy.
- IRCCS SDN, via E. Gianturco 113, 80142 Napoli, Italy.
| | | | - Ersilia Nigro
- Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Medicina e di Scienze della Salute "Vincenzo Tiberio", Università degli Studi del Molise, 86100 Campobasso, Italy.
| | - Andreina Alfieri
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", via Medina 40, 80133 Napoli, Italy.
- Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Armando Cevenini
- Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Medicina molecolare e Biotecnologie mediche, Università degli Studi di Napoli "Federico II", via S. Pansini 5, 80131 Napoli, Italy.
| | - Rita Polito
- Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via G. Vivaldi 42, 81100 Caserta, Italy.
| | - Aurora Daniele
- Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via G. Vivaldi 42, 81100 Caserta, Italy.
| | - Pasqualina Buono
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", via Medina 40, 80133 Napoli, Italy.
- IRCCS SDN, via E. Gianturco 113, 80142 Napoli, Italy.
- Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Annamaria Mancini
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", via Medina 40, 80133 Napoli, Italy.
- Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
| |
Collapse
|
11
|
Maunder E, Kilding AE, Plews DJ. Substrate Metabolism During Ironman Triathlon: Different Horses on the Same Courses. Sports Med 2018; 48:2219-2226. [DOI: 10.1007/s40279-018-0938-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Welch KC, Myrka AM, Ali RS, Dick MF. The Metabolic Flexibility of Hovering Vertebrate Nectarivores. Physiology (Bethesda) 2018; 33:127-137. [DOI: 10.1152/physiol.00001.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Foraging hummingbirds and nectar bats oxidize both glucose and fructose from nectar at exceptionally high rates. Rapid sugar flux is made possible by adaptations to digestive, cardiovascular, and metabolic physiology affecting shared and distinct pathways for the processing of each sugar. Still, how these animals partition and regulate the metabolism of each sugar and whether this occurs differently between hummingbirds and bats remain unclear.
Collapse
Affiliation(s)
- Kenneth C. Welch
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Center for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Alexander M. Myrka
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Raafay Syed Ali
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Morag F. Dick
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Sugar Metabolism in Hummingbirds and Nectar Bats. Nutrients 2017; 9:nu9070743. [PMID: 28704953 PMCID: PMC5537857 DOI: 10.3390/nu9070743] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/15/2022] Open
Abstract
Hummingbirds and nectar bats coevolved with the plants they visit to feed on floral nectars rich in sugars. The extremely high metabolic costs imposed by small size and hovering flight in combination with reliance upon sugars as their main source of dietary calories resulted in convergent evolution of a suite of structural and functional traits. These allow high rates of aerobic energy metabolism in the flight muscles, fueled almost entirely by the oxidation of dietary sugars, during flight. High intestinal sucrase activities enable high rates of sucrose hydrolysis. Intestinal absorption of glucose and fructose occurs mainly through a paracellular pathway. In the fasted state, energy metabolism during flight relies on the oxidation of fat synthesized from previously-ingested sugar. During repeated bouts of hover-feeding, the enhanced digestive capacities, in combination with high capacities for sugar transport and oxidation in the flight muscles, allow the operation of the “sugar oxidation cascade”, the pathway by which dietary sugars are directly oxidized by flight muscles during exercise. It is suggested that the potentially harmful effects of nectar diets are prevented by locomotory exercise, just as in human hunter-gatherers who consume large quantities of honey.
Collapse
|
14
|
Rowlands DS, Houltham SD. Multiple-Transportable Carbohydrate Effect on Long-Distance Triathlon Performance. Med Sci Sports Exerc 2017; 49:1734-1744. [PMID: 28350714 DOI: 10.1249/mss.0000000000001278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ingestion of multiple (2:1 glucose-fructose) transportable carbohydrate in beverages at high rates (>78 g·h) during endurance exercise enhances exogenous carbohydrate oxidation, fluid absorption, gut comfort, and performance relative to glucose alone. However, during long-distance endurance competition, athletes prefer a solid-gel-drink format, and the effect size of multiple-transportable carbohydrate is unknown. PURPOSE This study aimed to determine the effect of multiple-transportable carbohydrate on triathlon competition performance when ingested within bars, gels, and drinks. METHODS A double-blind randomized controlled trial was conducted within two national-body sanctioned half-ironman triathlon races held 3 wk apart in 74 well-trained male triathletes (18-60 yr; >2 yr competition experience). Carbohydrate comprising glucose/maltodextrin-fructose (2:1 ratio) or standard isocaloric carbohydrate (glucose/maltodextrin only) was ingested before (94 g) and during the cycle (2.5 g·km) and run (7.8 g·km) sections, averaging 78.6 ± 6.6 g·h, partitioned to bars (25%), gels (35%), and drink (40%). Postrace, 0- to 10-unit Likert-type scales were completed to assess gut comfort and energy. RESULTS The trial returned low dropout rate (9%), high compliance, and sensitivity (typical error 2.2%). The effect of multiple-transportable carbohydrate on performance time was -0.53% (95% confidence interval = -1.30% to 0.24%; small benefit threshold = -0.54%), with likelihood-based risk analysis supporting adoption (benefit-harm ratio = 48.9%:0.3%; odds ratio = 285:1). Covariate adjustments for preexercise body weight and heat stress had negligible impact performance. Multiple-transportable carbohydrate possibly lowered nausea during the swim and bike; otherwise, effects on gut comfort and perceived energy were negligible. CONCLUSIONS Multiple-transportable (2:1 maltodextrin/glucose-fructose) compared with single-transportable carbohydrate ingested in differing format provided a small benefit to long-distance triathlon performance, inferred as adoption worthy. Large sample in-competition randomized trials offer ecological validity, high participant throughput, compliance, and sensitivity for evaluation of health and performance interventions in athletes.
Collapse
Affiliation(s)
- David S Rowlands
- School of Sport and Exercise, Massey University Wellington, Wellington, NEW ZEALAND
| | | |
Collapse
|
15
|
Gonzalez JT, Fuchs CJ, Betts JA, van Loon LJC. Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts? Nutrients 2017; 9:E344. [PMID: 28358334 PMCID: PMC5409683 DOI: 10.3390/nu9040344] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/27/2017] [Indexed: 01/24/2023] Open
Abstract
Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of endogenous glycogen stores is the principal factor determining recovery. This review considers the role of glucose-fructose co-ingestion on liver and muscle glycogen repletion following prolonged exercise. Glucose and fructose are primarily absorbed by different intestinal transport proteins; by combining the ingestion of glucose with fructose, both transport pathways are utilised, which increases the total capacity for carbohydrate absorption. Moreover, the addition of glucose to fructose ingestion facilitates intestinal fructose absorption via a currently unidentified mechanism. The co-ingestion of glucose and fructose therefore provides faster rates of carbohydrate absorption than the sum of glucose and fructose absorption rates alone. Similar metabolic effects can be achieved via the ingestion of sucrose (a disaccharide of glucose and fructose) because intestinal absorption is unlikely to be limited by sucrose hydrolysis. Carbohydrate ingestion at a rate of ≥1.2 g carbohydrate per kg body mass per hour appears to maximise post-exercise muscle glycogen repletion rates. Providing these carbohydrates in the form of glucose-fructose (sucrose) mixtures does not further enhance muscle glycogen repletion rates over glucose (polymer) ingestion alone. In contrast, liver glycogen repletion rates are approximately doubled with ingestion of glucose-fructose (sucrose) mixtures over isocaloric ingestion of glucose (polymers) alone. Furthermore, glucose plus fructose (sucrose) ingestion alleviates gastrointestinal distress when the ingestion rate approaches or exceeds the capacity for intestinal glucose absorption (~1.2 g/min). Accordingly, when rapid recovery of endogenous glycogen stores is a priority, ingesting glucose-fructose mixtures (or sucrose) at a rate of ≥1.2 g·kg body mass-1·h-1 can enhance glycogen repletion rates whilst also minimising gastrointestinal distress.
Collapse
Affiliation(s)
| | - Cas J Fuchs
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - James A Betts
- Department for Health, University of Bath, Bath BA2 7AY, UK.
| | - Luc J C van Loon
- Department of Human Biology and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
16
|
Trommelen J, Fuchs CJ, Beelen M, Lenaerts K, Jeukendrup AE, Cermak NM, van Loon LJC. Fructose and Sucrose Intake Increase Exogenous Carbohydrate Oxidation during Exercise. Nutrients 2017; 9:nu9020167. [PMID: 28230742 PMCID: PMC5331598 DOI: 10.3390/nu9020167] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/16/2017] [Indexed: 02/07/2023] Open
Abstract
Peak exogenous carbohydrate oxidation rates typically reach ~1 g∙min-1 during exercise when ample glucose or glucose polymers are ingested. Fructose co-ingestion has been shown to further increase exogenous carbohydrate oxidation rates. The purpose of this study was to assess the impact of fructose co-ingestion provided either as a monosaccharide or as part of the disaccharide sucrose on exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists. Ten trained male cyclists (VO2peak: 65 ± 2 mL∙kg-1∙min-1) cycled on four different occasions for 180 min at 50% Wmax during which they consumed a carbohydrate solution providing 1.8 g∙min-1 of glucose (GLU), 1.2 g∙min-1 glucose + 0.6 g∙min-1 fructose (GLU + FRU), 0.6 g∙min-1 glucose + 1.2 g∙min-1 sucrose (GLU + SUC), or water (WAT). Peak exogenous carbohydrate oxidation rates did not differ between GLU + FRU and GLU + SUC (1.40 ± 0.06 vs. 1.29 ± 0.07 g∙min-1, respectively, p = 0.999), but were 46% ± 8% higher when compared to GLU (0.96 ± 0.06 g∙min-1: p < 0.05). In line, exogenous carbohydrate oxidation rates during the latter 120 min of exercise were 46% ± 8% higher in GLU + FRU or GLU + SUC compared with GLU (1.19 ± 0.12, 1.13 ± 0.21, and 0.82 ± 0.16 g∙min-1, respectively, p < 0.05). We conclude that fructose co-ingestion (0.6 g∙min-1) with glucose (1.2 g∙min-1) provided either as a monosaccharide or as sucrose strongly increases exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists.
Collapse
Affiliation(s)
- Jorn Trommelen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Cas J Fuchs
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Milou Beelen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Kaatje Lenaerts
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Asker E Jeukendrup
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK.
| | - Naomi M Cermak
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
17
|
Trommelen J, Beelen M, Pinckaers PJM, Senden JM, Cermak NM, Van Loon LJC. Fructose Coingestion Does Not Accelerate Postexercise Muscle Glycogen Repletion. Med Sci Sports Exerc 2017; 48:907-12. [PMID: 26606271 DOI: 10.1249/mss.0000000000000829] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Postexercise muscle glycogen repletion is largely determined by the systemic availability of exogenous carbohydrate provided. PURPOSE This study aimed to assess the effect of the combined ingestion of fructose and glucose on postexercise muscle glycogen repletion when optimal amounts of carbohydrate are ingested. METHODS Fourteen male cyclists (age: 28 ± 6 yr; Wmax: 4.8 ± 0.4 W·kg⁻¹) were studied on three different occasions. Each test day started with a glycogen-depleting exercise session. This was followed by a 5-h recovery period, during which subjects ingested 1.5 g·kg⁻¹·h⁻¹ glucose (GLU), 1.2 g·kg⁻¹·h⁻¹ glucose + 0.3 g·kg⁻¹·h⁻¹ fructose (GLU + FRU), or 0.9 g·kg⁻¹·h⁻¹ glucose + 0.6 g·kg⁻¹·h⁻¹ sucrose (GLU + SUC). Blood samples and gastrointestinal distress questionnaires were collected frequently, and muscle biopsy samples were taken at 0, 120, and 300 min after cessation of exercise to measure muscle glycogen content. RESULTS Plasma glucose responses did not differ between treatments (ANOVA, P = 0.096), but plasma insulin and lactate concentrations were elevated during GLU + FRU and GLU + SUC when compared with GLU (P < 0.01). Muscle glycogen content immediately after exercise averaged 207 ± 112, 219 ± 107, and 236 ± 118 mmol·kg⁻¹ dry weight in the GLU, GLU + FRU, and GLU + SUC treatments, respectively (P = 0.362). Carbohydrate ingestion increased muscle glycogen concentrations during 5 h of postexercise recovery to 261 ± 98, 289 ± 130, and 315 ± 103 mmol·kg⁻¹ dry weight in the GLU, GLU + FRU, and GLU + SUC treatments, respectively (P < 0.001), with no differences between treatments (time × treatment, P = 0.757). CONCLUSIONS Combined ingestion of glucose plus fructose does not further accelerate postexercise muscle glycogen repletion in trained cyclists when ample carbohydrate is ingested. Combined ingestion of glucose (polymers) plus fructose or sucrose reduces gastrointestinal complaints when ingesting large amounts of carbohydrate.
Collapse
Affiliation(s)
- Jorn Trommelen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, THE NETHERLANDS
| | | | | | | | | | | |
Collapse
|
18
|
Potgieter S. Sport nutrition: A review of the latest guidelines for exercise and sport nutrition from the American College of Sport Nutrition, the International Olympic Committee and the International Society for Sports Nutrition. SOUTH AFRICAN JOURNAL OF CLINICAL NUTRITION 2016. [DOI: 10.1080/16070658.2013.11734434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
McCue MD, Welch KC. (13)C-Breath testing in animals: theory, applications, and future directions. J Comp Physiol B 2015; 186:265-85. [PMID: 26660654 DOI: 10.1007/s00360-015-0950-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/11/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
The carbon isotope values in the exhaled breath of an animal mirror the carbon isotope values of the metabolic fuels being oxidized. The measurement of stable carbon isotopes in carbon dioxide is called (13)C-breath testing and offers a minimally invasive method to study substrate oxidation in vivo. (13)C-breath testing has been broadly used to study human exercise, nutrition, and pathologies since the 1970s. Owing to reduced use of radioactive isotopes and the increased convenience and affordability of (13)C-analyzers, the past decade has witnessed a sharp increase in the use of breath testing throughout comparative physiology--especially to answer questions about how and when animals oxidize particular nutrients. Here, we review the practical aspects of (13)C-breath testing and identify the strengths and weaknesses of different methodological approaches including the use of natural abundance versus artificially-enriched (13)C tracers. We critically compare the information that can be obtained using different experimental protocols such as diet-switching versus fuel-switching. We also discuss several factors that should be considered when designing breath testing experiments including extrinsic versus intrinsic (13)C-labelling and different approaches to model nutrient oxidation. We use case studies to highlight the myriad applications of (13)C-breath testing in basic and clinical human studies as well as comparative studies of fuel use, energetics, and carbon turnover in multiple vertebrate and invertebrate groups. Lastly, we call for increased and rigorous use of (13)C-breath testing to explore a variety of new research areas and potentially answer long standing questions related to thermobiology, locomotion, and nutrition.
Collapse
|
20
|
Fructose–Glucose Composite Carbohydrates and Endurance Performance: Critical Review and Future Perspectives. Sports Med 2015; 45:1561-76. [DOI: 10.1007/s40279-015-0381-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
|
22
|
McCue MD, Passement CA, Rodriguez M. The magnitude of the naturally occurring isotopic enrichment of 13C in exhaled CO2 is directly proportional to exercise intensity in humans. Comp Biochem Physiol A Mol Integr Physiol 2015; 179:164-71. [DOI: 10.1016/j.cbpa.2014.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
|
23
|
Keck NA, Cuddy JS, Hailes WS, Dumke CL, Ruby BC. Effects of commercially available pneumatic compression on muscle glycogen recovery after exercise. J Strength Cond Res 2014; 29:379-85. [PMID: 25463693 DOI: 10.1519/jsc.0000000000000772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to investigate the effects of pneumatic compression pants on postexercise glycogen resynthesis. Active male subjects (n = 10) completed 2 trials consisting of a 90-minute glycogen depleting ride, followed by 4 hours of recovery with either a pneumatic compression device (PCD) or passive recovery (PR) in a random counterbalanced order. A carbohydrate beverage (1.8 g·kg bodyweight) was provided at 0 and 2 hours after exercise. Muscle biopsies (vastus lateralis) were obtained immediately and 4 hours after exercise for glycogen analyses. Blood samples were collected throughout recovery to measure glucose and insulin. Eight fingerstick blood samples for lactate were collected in the last 20 minutes of the exercise period and during the initial portion of the recovery period. Heart rate was monitored throughout the trial. During the PCD trial, subjects recovered using a commercially available recovery device (NormaTec PCD) operational at 0-60 and 120-180 minutes into recovery period. The same PCD was worn during the PR trial but was not turned on to create pulsatile pressures. There was no difference in muscle glycogen resynthesis during the recovery period (6.9 ± 0.8 and 6.9 ± 0.5 mmol·kg wet wt·h for the PR and PCD trials, respectively). Blood glucose, insulin, and lactate concentrations changed with respect to time but were not different between trials (p > 0.05). The use of PCD did not alter the rate of muscle glycogen resynthesis, blood lactate, or blood glucose and insulin concentrations associated with a postexercise oral glucose load.
Collapse
Affiliation(s)
- Nathan A Keck
- 1Department of Health and Human Performance, The University of Montana, Missoula, Montana; and 2Montana Center for Work Physiology and Exercise Metabolism, The University of Montana, Missoula, Montana
| | | | | | | | | |
Collapse
|
24
|
de Oliveira EP, Burini RC, Jeukendrup A. Gastrointestinal complaints during exercise: prevalence, etiology, and nutritional recommendations. Sports Med 2014; 44 Suppl 1:S79-85. [PMID: 24791919 PMCID: PMC4008808 DOI: 10.1007/s40279-014-0153-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gastrointestinal problems are common, especially in endurance athletes, and often impair performance or subsequent recovery. Generally, studies suggest that 30-50% of athletes experience such complaints. Most gastrointestinal symptoms during exercise are mild and of no risk to health, but hemorrhagic gastritis, hematochezia, and ischemic bowel can present serious medical challenges. Three main causes of gastrointestinal symptoms have been identified, and these are either physiological, mechanical, or nutritional in nature. During intense exercise, and especially when hypohydrated, mesenteric blood flow is reduced; this is believed to be one of the main contributors to the development of gastrointestinal symptoms. Reduced splanchnic perfusion could result in compromised gut permeability in athletes. However, although evidence exists that this might occur, this has not yet been definitively linked to the prevalence of gastrointestinal symptoms. Nutritional training and appropriate nutrition choices can reduce the risk of gastrointestinal discomfort during exercise by ensuring rapid gastric emptying and the absorption of water and nutrients, and by maintaining adequate perfusion of the splanchnic vasculature. A number of nutritional manipulations have been proposed to minimize gastrointestinal symptoms, including the use of multiple transportable carbohydrates, and potentially the use of nutrients that stimulate the production of nitric oxide in the intestine and thereby improve splanchnic perfusion. However, at this stage, evidence for beneficial effects of such interventions is lacking, and more research needs to be conducted to obtain a better understanding of the etiology of the problems and to improve the recommendations to athletes.
Collapse
Affiliation(s)
- Erick Prado de Oliveira
- School of Medicine, Federal University of Uberlândia, Av. Pará, no 1720 Bloco 2U, Campus Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil,
| | | | | |
Collapse
|
25
|
Sugar flux through the flight muscles of hovering vertebrate nectarivores: a review. J Comp Physiol B 2014; 184:945-59. [PMID: 25031038 DOI: 10.1007/s00360-014-0843-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/15/2014] [Accepted: 06/20/2014] [Indexed: 12/28/2022]
Abstract
In most vertebrates, uptake and oxidation of circulating sugars by locomotor muscles rises with increasing exercise intensity. However, uptake rate by muscle plateaus at moderate aerobic exercise intensities and intracellular fuels dominate at oxygen consumption rates of 50% of maximum or more. Further, uptake and oxidation of circulating fructose by muscle is negligible. In contrast, hummingbirds and nectar bats are capable of fueling expensive hovering flight exclusively, or nearly completely, with dietary sugar. In addition, hummingbirds and nectar bats appear capable of fueling hovering flight completely with fructose. Three crucial steps are believed to be rate limiting to muscle uptake of circulating glucose or fructose in vertebrates: (1) delivery to muscle; (2) transport into muscle through glucose transporter proteins (GLUTs); and (3) phosphorylation of glucose by hexokinase (HK) within the muscle. In this review, we summarize what is known about the functional upregulation of exogenous sugar flux at each of these steps in hummingbirds and nectar bats. High cardiac output, capillary density, and blood sugar levels in hummingbirds and bats enhance sugar delivery to muscles (step 1). Hummingbird and nectar bat flight muscle fibers have relatively small cross-sectional areas and thus relatively high surface areas across which transport can occur (step 2). Maximum HK activities in each species are enough for carbohydrate flux through glycolysis to satisfy 100 % of hovering oxidative demand (step 3). However, qualitative patterns of GLUT expression in the muscle (step 2) raise more questions than they answer regarding sugar transport in hummingbirds and suggest major differences in the regulation of sugar flux compared to nectar bats. Behavioral and physiological similarities among hummingbirds, nectar bats, and other vertebrates suggest enhanced capacities for exogenous fuel use during exercise may be more wide spread than previously appreciated. Further, how the capacity for uptake and phosphorylation of circulating fructose is enhanced remains a tantalizing unknown.
Collapse
|
26
|
O'Brien WJ, Stannard SR, Clarke JA, Rowlands DS. Fructose-maltodextrin ratio governs exogenous and other CHO oxidation and performance. Med Sci Sports Exerc 2014; 45:1814-24. [PMID: 23949097 DOI: 10.1249/mss.0b013e31828e12d4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Fructose coingested with glucose in carbohydrate (CHO) drinks increases exogenous-CHO oxidation, gut comfort, and physical performance. PURPOSE This study aimed to determine the effect of different fructose-maltodextrin-glucose ratios on CHO oxidation and fluid absorption while controlling for osmolality and caloricity. METHODS In a crossover design, 12 male cyclists rode 2 h at 57% peak power then performed 10 sprints while ingesting artificially sweetened water or three equiosmotic 11.25% CHO-salt drinks at 200 mL·15 min, comprising weighed fructose and maltodextrin-glucose in ratios of 0.5:1 (0.5 ratio), 0.8:1 (0.8 ratio), and 1.25:1 (1.25 ratio). Fluid absorption was traced with D2O, whereas C-fructose and C-maltodextrin-glucose permitted fructose and glucose oxidation rate evaluation. RESULTS The mean exogenous-fructose and exogenous-glucose oxidation rates were 0.27, 0.39, and 0.46 g·min and 0.65, 0.71, and 0.58 g·min in 0.5, 0.8, and 1.25 ratio drinks, representing mean oxidation efficiencies of 54%, 59%, and 55% and 65%, 85%, and 86% for fructose and glucose, respectively. With the 0.8 ratio drink, total exogenous-CHO oxidation rate was 18% (90% confidence interval, ±5%) and 5.2% (±4.6%) higher relative to 0.5 and 1.25 ratios, respectively, whereas respective differences in total exogenous-CHO oxidation efficiency were 17% (±5%) and 5.3% (±4.8%), associated with 8.6% and 7.8% (±4.2%) higher fructose oxidation efficiency. The effects of CHO ratio on water absorption were inconclusive. Mean sprint power with the 0.8 ratio drink was moderately higher than that with the 0.5 ratio (2.9%; 99% confidence interval, ±2.8%) and 1.25 ratio (3.1%; ±2.7%) drinks, with total- and endogenous-CHO oxidation rate, abdominal cramps, and drink sweetness qualifying as explanatory mechanisms. CONCLUSIONS Enhanced high-intensity endurance performance with a 0.8 ratio fructose-maltodextrin-glucose drink is characterized by higher exogenous-CHO oxidation efficiency and reduced endogenous-CHO oxidation. The gut-hepatic or other physiological site responsible requires further research.
Collapse
Affiliation(s)
- Wendy J O'Brien
- School of Sport and Exercise, Massey University, Wellington, New Zealand
| | | | | | | |
Collapse
|
27
|
Abstract
As the incidence rate of lifestyle-related chronic conditions such as cardiovascular disease, obesity, and type 2 diabetes continues to increase, the importance of regular exercise and a healthy diet for improving or maintaining good health is critical. Exercise training is known to improve fitness and many health risk factors, as well as to improve the performance of competitive athletes. It has become increasingly clear, however, that nutrient intake before, during, and after exercise sessions has a powerful influence on the adaptive response to the exercise stimuli. In this review, the science behind nutrient timing will be discussed as it relates to exercise performance, recovery, and training adaptation. Evidence will be provided that validates intake of appropriate nutrients before, during, and immediately after exercise not only to improve exercise performance but also to maximize the training response. Ultimately, the combined response to exercise and proper nutrient intake leads to not only better performance in athletes but also greater health benefits for all exercisers.
Collapse
Affiliation(s)
- John L. Ivy
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas (JLI)
- Integrative Physiology Laboratory, Department of Biology, Hamline University, Saint Paul, Minnesota (LMFS)
| | - Lisa M. Ferguson-Stegall
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas (JLI)
- Integrative Physiology Laboratory, Department of Biology, Hamline University, Saint Paul, Minnesota (LMFS)
| |
Collapse
|
28
|
Cermak NM, van Loon LJC. The Use of Carbohydrates During Exercise as an Ergogenic Aid. Sports Med 2013; 43:1139-55. [DOI: 10.1007/s40279-013-0079-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
SMITH JOHNERICW, PASCOE DAVIDD, PASSE DENNISH, RUBY BRENTC, STEWART LAURAK, BAKER LINDSAYB, ZACHWIEJA JEFFREYJ. Curvilinear Dose–Response Relationship of Carbohydrate (0–120 g·h−1) and Performance. Med Sci Sports Exerc 2013; 45:336-41. [DOI: 10.1249/mss.0b013e31827205d1] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Sun SZ, Empie MW. Fructose metabolism in humans - what isotopic tracer studies tell us. Nutr Metab (Lond) 2012; 9:89. [PMID: 23031075 PMCID: PMC3533803 DOI: 10.1186/1743-7075-9-89] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/24/2012] [Indexed: 12/17/2022] Open
Abstract
Fructose consumption and its implications on public health are currently under study. This work reviewed the metabolic fate of dietary fructose based on isotope tracer studies in humans. The mean oxidation rate of dietary fructose was 45.0% ± 10.7 (mean ± SD) in non-exercising subjects within 3–6 hours and 45.8% ± 7.3 in exercising subjects within 2–3 hours. When fructose was ingested together with glucose, the mean oxidation rate of the mixed sugars increased to 66.0% ± 8.2 in exercising subjects. The mean conversion rate from fructose to glucose was 41% ± 10.5 (mean ± SD) in 3–6 hours after ingestion. The conversion amount from fructose to glycogen remains to be further clarified. A small percentage of ingested fructose (<1%) appears to be directly converted to plasma TG. However, hyperlipidemic effects of larger amounts of fructose consumption are observed in studies using infused labeled acetate to quantify longer term de novo lipogenesis. While the mechanisms for the hyperlipidemic effect remain controversial, energy source shifting and lipid sparing may play a role in the effect, in addition to de novo lipogenesis. Finally, approximately a quarter of ingested fructose can be converted into lactate within a few of hours. The reviewed data provides a profile of how dietary fructose is utilized in humans.
Collapse
Affiliation(s)
- Sam Z Sun
- Compliance, Archer Daniels Midland Company, 1001 North Brush College Road, Decatur, IL, 62521, USA.
| | | |
Collapse
|
31
|
Stookey JD, Hamer J, Espinoza G, Higa A, Ng V, Tinajero-Deck L, Havel PJ, King JC. Orange juice limits postprandial fat oxidation after breakfast in normal-weight adolescents and adults. Adv Nutr 2012; 3:629S-635S. [PMID: 22798004 PMCID: PMC3649737 DOI: 10.3945/an.112.001990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Caloric beverages may promote weight gain by simultaneously increasing total energy intake and limiting fat oxidation. During moderate intensity exercise, caloric beverage intake depresses fat oxidation by 25% or more. This randomized crossover study describes the impact of having a caloric beverage with a typical meal on fat oxidation under resting conditions. On 2 separate days, healthy normal-weight adolescents (n = 7) and adults (n = 10) consumed the same breakfast with either orange juice or drinking water and sat at rest for 3 h after breakfast. The meal paired with orange juice was 882 kJ (210 kcal) higher than the meal paired with drinking water. Both meals contained the same amount of fat (12 g). For both age groups, both meals resulted in a net positive energy balance 150 min after breakfast. Resting fat oxidation 150 min after breakfast was significantly lower after breakfast with orange juice, however. The results suggest that, independent of a state of energy excess, when individuals have a caloric beverage instead of drinking water with a meal, they are less likely to oxidize the amount of fat consumed in the meal before their next meal.
Collapse
Affiliation(s)
- Jodi Dunmeyer Stookey
- Children's Hospital Oakland Research Institute, Children's Hospital and Research Center, Oakland, CA, USA.
| | | | | | | | | | - Lydia Tinajero-Deck
- Department of Pediatric Cardiology, Children’s Hospital and Research Center, Oakland, CA; and
| | - Peter J. Havel
- Department of Molecular Biosciences, School of Veterinary Medicine,Department of Nutrition, University of California, Davis, Sacramento, CA
| | | |
Collapse
|
32
|
Clarke ND, Campbell IT, Drust B, Evans L, Reilly T, Maclaren DPM. The ingestion of combined carbohydrates does not alter metabolic responses or performance capacity during soccer-specific exercise in the heat compared to ingestion of a single carbohydrate. J Sports Sci 2012; 30:699-708. [PMID: 22394348 DOI: 10.1080/02640414.2012.665941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study was designed to investigate the effect of ingesting a glucose plus fructose solution on the metabolic responses to soccer-specific exercise in the heat and the impact on subsequent exercise capacity. Eleven male soccer players performed a 90 min soccer-specific protocol on three occasions. Either 3 ml · kg(-1) body mass of a solution containing glucose (1 g · min(-1) glucose) (GLU), or glucose (0.66 g · min(-1)) plus fructose (0.33 g · min(-1)) (MIX) or placebo (PLA) was consumed every 15 minutes. Respiratory measures were undertaken at 15-min intervals, blood samples were drawn at rest, half-time and on completion of the protocol, and muscle glycogen concentration was assessed pre- and post-exercise. Following the soccer-specific protocol the Cunningham and Faulkner test was performed. No significant differences in post-exercise muscle glycogen concentration (PLA, 62.99 ± 8.39 mmol · kg wet weight(-1); GLU 68.62 ± 2.70; mmol · kg wet weight(-1) and MIX 76.63 ± 6.92 mmol · kg wet weight(-1)) or exercise capacity (PLA, 73.62 ± 8.61 s; GLU, 77.11 ± 7.17 s; MIX, 83.04 ± 9.65 s) were observed between treatments (P > 0.05). However, total carbohydrate oxidation was significantly increased during MIX compared with PLA (P < 0.05). These results suggest that when ingested in moderate amounts, the type of carbohydrate does not influence metabolism during soccer-specific intermittent exercise or affect performance capacity after exercise in the heat.
Collapse
Affiliation(s)
- N D Clarke
- Department of Biomolecular and Sports Science, Faculty of Health and Life Sciences, Coventry University, Coventry, UK.
| | | | | | | | | | | |
Collapse
|
33
|
The effects of carbohydrate ingestion during endurance running on post-exercise inflammation and hepcidin levels. Eur J Appl Physiol 2011; 112:1889-98. [DOI: 10.1007/s00421-011-2156-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 08/27/2011] [Indexed: 01/01/2023]
|
34
|
The power of feeder-mask respirometry as a method for examining hummingbird energetics. Comp Biochem Physiol A Mol Integr Physiol 2011; 158:276-86. [DOI: 10.1016/j.cbpa.2010.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 11/23/2022]
|
35
|
Ferguson-Stegall L, McCleave EL, Ding Z, Kammer LM, Wang B, Doerner PG, Liu Y, Ivy JL. The effect of a low carbohydrate beverage with added protein on cycling endurance performance in trained athletes. J Strength Cond Res 2011; 24:2577-86. [PMID: 20733521 DOI: 10.1519/jsc.0b013e3181ecccca] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ingesting carbohydrate plus protein during prolonged variable intensity exercise has demonstrated improved aerobic endurance performance beyond that of a carbohydrate supplement alone. The purpose of the present study was to determine if a supplement containing a mixture of different carbohydrates (glucose, maltodextrin, and fructose) and a moderate amount of protein given during endurance exercise would increase time to exhaustion (TTE), despite containing 50% less total carbohydrate than a carbohydrate-only supplement. We also sought post priori to determine if there was a difference in effect based on percentage of ventilatory threshold (VT) at which the subjects cycled to exhaustion. Fifteen trained male and female cyclists exercised on 2 separate occasions at intensities alternating between 45 and 70% VO2max for 3 hours, after which the workload increased to ∼74-85% VO2max until exhaustion. Supplements (275 mL) were provided every 20 minutes during exercise, and these consisted of a 3% carbohydrate/1.2% protein supplement (MCP) and a 6% carbohydrate supplement (CHO). For the combined group (n = 15), TTE in MCP did not differ from CHO (31.06 ± 5.76 vs. 26.03 ± 4.27 minutes, respectively, p = 0.064). However, for subjects cycling at or below VT (n = 8), TTE in MCP was significantly greater than for CHO (45.64 ± 7.38 vs. 35.47 ± 5.94 minutes, respectively, p = 0.006). There were no significant differences in TTE for the above VT group (n = 7). Our results suggest that, compared to a traditional 6% CHO supplement, a mixture of carbohydrates plus a moderate amount of protein can improve aerobic endurance at exercise intensities near the VT, despite containing lower total carbohydrate and caloric content.
Collapse
Affiliation(s)
- Lisa Ferguson-Stegall
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Suarez RK, M. LGH, Welch KC. The sugar oxidation cascade: aerial refueling in hummingbirds and nectar bats. J Exp Biol 2011; 214:172-8. [DOI: 10.1242/jeb.047936] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Summary
Most hummingbirds and some species of nectar bats hover while feeding on floral nectar. While doing so, they achieve some of the highest mass-specific values among vertebrates. This is made possible by enhanced functional capacities of various elements of the ‘O2 transport cascade’, the pathway of O2 from the external environment to muscle mitochondria. Fasted hummingbirds and nectar bats fly with respiratory quotients (RQs; ) of ∼0.7, indicating that fat fuels flight in the fasted state. During repeated hover-feeding on dietary sugar, RQ values progressively climb to ∼1.0, indicating a shift from fat to carbohydrate oxidation. Stable carbon isotope experiments reveal that recently ingested sugar directly fuels ∼80 and 95% of energy metabolism in hover-feeding nectar bats and hummingbirds, respectively. We name the pathway of carbon flux from flowers, through digestive and cardiovascular systems, muscle membranes and into mitochondria the ‘sugar oxidation cascade’. O2 and sugar oxidation cascades operate in parallel and converge in muscle mitochondria. Foraging behavior that favours the oxidation of dietary sugar avoids the inefficiency of synthesizing fat from sugar and breaking down fat to fuel foraging. Sugar oxidation yields a higher P/O ratio (ATP made per O atom consumed) than fat oxidation, thus requiring lower hovering per unit mass. We propose that dietary sugar is a premium fuel for flight in nectarivorous, flying animals.
Collapse
Affiliation(s)
- Raul K. Suarez
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - L. Gerardo Herrera M.
- Estación de Biología de Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 21, San Patricio, Jalisco 48980, México
| | - Kenneth C. Welch
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario M1C 1A4, Canada
| |
Collapse
|
37
|
O'Brien WJ, Rowlands DS. Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance. Am J Physiol Gastrointest Liver Physiol 2011; 300:G181-9. [PMID: 21071509 DOI: 10.1152/ajpgi.00419.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Solutions containing multiple carbohydrates utilizing different intestinal transporters (glucose and fructose) show enhanced absorption, oxidation, and performance compared with single-carbohydrate solutions, but the impact of the ratio of these carbohydrates on outcomes is unknown. In a randomized double-blind crossover, 10 cyclists rode 150 min at 50% peak power, then performed an incremental test to exhaustion, while ingesting artificially sweetened water or one of three carbohydrate-salt solutions comprising fructose and maltodextrin in the respective following concentrations: 4.5 and 9% (0.5-Ratio), 6 and 7.5% (0.8-Ratio), and 7.5 and 6% (1.25-Ratio). The carbohydrates were ingested at 1.8 g/min and naturally (13)C-enriched to permit evaluation of oxidation rate by mass spectrometry and indirect calorimetry. Mean exogenous carbohydrate oxidation rates were 1.04, 1.14, and 1.05 g/min (coefficient of variation 20%) in 0.5-, 0.8-, and 1.25-Ratios, respectively, representing likely small increases in 0.8-Ratio of 11% (90% confidence limits; ± 4%) and 10% (± 4%) relative to 0.5- and 1.25-Ratios, respectively. Comparisons of fat and total and endogenous carbohydrate oxidation rates between solutions were unclear. Relative to 0.5-Ratio, there were moderate improvements to peak power with 0.8- (3.6%; 99% confidence limits ± 3.5%) and 1.25-Ratio (3.0%; ± 3.7%) but unclear with water (0.4%; ± 4.4%). Increases in stomach fullness, abdominal cramping, and nausea were lowest with the 0.8- followed by the 1.25-Ratio solution. At high carbohydrate-ingestion rate, greater benefits to endurance performance may result from ingestion of 0.8- to 1.25-Ratio fructose-maltodextrin solutions. Small perceptible improvements in gut comfort favor the 0.8-Ratio and provide a clearer suggestion of mechanism than the relationship with exogenous carbohydrate oxidation.
Collapse
Affiliation(s)
- Wendy J O'Brien
- School of Sport and Exercise, Massey University, Wellington, New Zealand
| | | |
Collapse
|
38
|
|
39
|
PFEIFFER BEATE, STELLINGWERFF TRENT, ZALTAS ERIC, JEUKENDRUP ASKERE. CHO Oxidation from a CHO Gel Compared with a Drink during Exercise. Med Sci Sports Exerc 2010; 42:2038-45. [DOI: 10.1249/mss.0b013e3181e0efe6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Bruce SJ, Breton I, Decombaz J, Boesch C, Scheurer E, Montoliu I, Rezzi S, Kochhar S, Guy PA. A plasma global metabolic profiling approach applied to an exercise study monitoring the effects of glucose, galactose and fructose drinks during post-exercise recovery. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:3015-23. [DOI: 10.1016/j.jchromb.2010.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 01/23/2023]
|
41
|
Abstract
PURPOSE OF REVIEW Carbohydrate feeding has been shown to be ergogenic, but recently substantial advances have been made in optimizing the guidelines for carbohydrate intake during prolonged exercise. RECENT FINDINGS It was found that limitations to carbohydrate oxidation were in the absorptive process most likely because of a saturation of carbohydrate transporters. By using a combination of carbohydrates that use different intestinal transporters for absorption it was shown that carbohydrate delivery and oxidation could be increased. Studies demonstrated increases in exogenous carbohydrate oxidation rates of up to 65% of glucose: fructose compared with glucose only. Exogenous carbohydrate oxidation rates reach values of 1.75 g/min whereas previously it was thought that 1 g/min was the absolute maximum. The increased carbohydrate oxidation with multiple transportable carbohydrates was accompanied by increased fluid delivery and improved oxidation efficiency, and thus the likelihood of gastrointestinal distress may be diminished. Studies also demonstrated reduced fatigue and improved exercise performance with multiple transportable carbohydrates compared with a single carbohydrate. SUMMARY Multiple transportable carbohydrates, ingested at high rates, can be beneficial during endurance sports in which the duration of exercise is 3 h or more.
Collapse
Affiliation(s)
- Asker E Jeukendrup
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
42
|
McCue MD, Sivan O, McWilliams SR, Pinshow B. Tracking the oxidative kinetics of carbohydrates, amino acids and fatty acids in the house sparrow using exhaled 13CO2. J Exp Biol 2010; 213:782-9. [DOI: 10.1242/jeb.039842] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Clinicians commonly measure the 13CO2 in exhaled breath samples following administration of a metabolic tracer (breath testing) to diagnose certain infections and metabolic disorders. We believe that breath testing can become a powerful tool to investigate novel questions about the influence of ecological and physiological factors on the oxidative fates of exogenous nutrients. Here we examined several predictions regarding the oxidative kinetics of specific carbohydrates, amino acids and fatty acids in a dietary generalist, the house sparrow (Passer domesticus). After administering postprandial birds with 20 mg of one of seven 13C-labeled tracers, we measured rates of 13CO2 production every 15 min over 2 h. We found that sparrows oxidized exogenous amino acids far more rapidly than carbohydrates or fatty acids, and that different tracers belonging to the same class of physiological fuels had unique oxidative kinetics. Glycine had a mean maximum rate of oxidation (2021 nmol min−1) that was significantly higher than that of leucine (351 nmol min−1), supporting our prediction that nonessential amino acids are oxidized more rapidly than essential amino acids. Exogenous glucose and fructose were oxidized to a similar extent (5.9% of dose), but the time required to reach maximum rates of oxidation was longer for fructose. The maximum rates of oxidation were significantly higher when exogenous glucose was administered as an aqueous solution (122 nmol min−1), rather than as an oil suspension (93 nmol min−1), supporting our prediction that exogenous lipids negatively influence rates of exogenous glucose oxidation. Dietary fatty acids had the lowest maximum rates of oxidation (2-6 nmol min−1), and differed significantly in the extent to which each was oxidized, with 0.73%, 0.63% and 0.21% of palmitic, oleic and stearic acid tracers oxidized, respectively.
Collapse
Affiliation(s)
- M. D. McCue
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Midreshet Ben-Gurion, Israel
| | - O. Sivan
- Department of Geological and Environmental Sciences, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - S. R. McWilliams
- Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Road, Kingston, RI 02881, USA
| | - B. Pinshow
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Midreshet Ben-Gurion, Israel
| |
Collapse
|
43
|
Kreider RB, Wilborn CD, Taylor L, Campbell B, Almada AL, Collins R, Cooke M, Earnest CP, Greenwood M, Kalman DS, Kerksick CM, Kleiner SM, Leutholtz B, Lopez H, Lowery LM, Mendel R, Smith A, Spano M, Wildman R, Willoughby DS, Ziegenfuss TN, Antonio J. ISSN exercise & sport nutrition review: research & recommendations. J Int Soc Sports Nutr 2010. [PMCID: PMC2853497 DOI: 10.1186/1550-2783-7-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients.
Collapse
|
44
|
Jeukendrup AE, Moseley L. Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sports 2010; 20:112-21. [DOI: 10.1111/j.1600-0838.2008.00862.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
DESBROW BEN, BARRETT CLAREM, MINAHAN CLAREL, GRANT GARYD, LEVERITT MICHAELD. Caffeine, Cycling Performance, and Exogenous CHO Oxidation. Med Sci Sports Exerc 2009; 41:1744-51. [DOI: 10.1249/mss.0b013e3181a16cf7] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Venables MC, Brouns F, Jeukendrup AE. Oxidation of maltose and trehalose during prolonged moderate-intensity exercise. Med Sci Sports Exerc 2009; 40:1653-9. [PMID: 18685525 DOI: 10.1249/mss.0b013e318175716c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The aim of the present study was to compare the effects of trehalose (TRE) and maltose (MAL) ingestion on exogenous carbohydrate oxidation rates and blood metabolite responses during prolonged moderate-intensity cycling exercise. METHODS Nine trained subjects performed three randomly assigned bouts of exercise separated by at least 1 wk. Each trial consisted of 150 min of cycling at 55% of maximal power output (Wmax) while ingesting a solution providing either 1.1 g x min(-1) TRE, 1.1 g x min(-1) MAL, or water (WAT). RESULTS Total carbohydrate oxidation rates were significantly higher (P < 0.05) in both the MAL (2.09 +/- 0.18 g x min(-1)) and TRE (1.92 +/- 0.32 g x min(-1)) trials compared with the WAT trial (1.62 +/- 0.28 g x min(-1)). Peak exogenous carbohydrate oxidation was significantly higher in the MAL trial compared with the TRE trial (1.01 +/- 0.24 and 0.73 +/- 0.22 g x min(-1), respectively, P < 0.05). The MAL trial resulted in significantly reduced endogenous carbohydrate oxidation rates compared with the WAT trial (1.20 +/- 0.25 and 1.62 +/- 0.28 g x min(-1), respectively, P < 0.05). When compared with the WAT trial, total fat oxidation for the same period was significantly reduced in both carbohydrate trials (0.91 +/- 0.19, 0.68 +/- 0.19, and 0.79 +/- 0.19 g x min(-1) for WAT, MAL, and TRE, respectively, P < 0.05) and tended to be lower in MAL compared with TRE (P < 0.06). DISCUSSION Both solutions maintained high plasma glucose concentrations. MAL had a "sparing" effect on endogenous carbohydrate stores. The reduced exogenous carbohydrate oxidation rate of TRE compared to MAL is probably due to a reduced enzymatic hydrolysis rate within the small intestine, causing a slower availability.
Collapse
Affiliation(s)
- Michelle C Venables
- Human Performance Laboratory, School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, United Kingdom
| | | | | |
Collapse
|
47
|
Flight muscle enzymes and metabolic flux rates during hovering flight of the nectar bat, Glossophaga soricina: Further evidence of convergence with hummingbirds. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:136-40. [DOI: 10.1016/j.cbpa.2009.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Revised: 01/26/2009] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
|
48
|
Fluid and food intake during professional men's and women's road-cycling tours. Int J Sports Physiol Perform 2009; 2:58-71. [PMID: 19255455 DOI: 10.1123/ijspp.2.1.58] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To quantify the fluid and food consumed during a men's and women's professional road-cycling tour. METHODS Eight men (age 25 +/- 5 y, body mass 71.4 +/- 7.4 kg, and height 177.4 +/- 4.5 cm) and 6 women (age 26 +/- 4 y, body mass 62.5 +/- 5.6 kg, and height 170.4 +/- 5.2 cm) of the Australian Institute of Sport Road Cycling squads participated in the study. The men competed in the 6-d Tour Down Under (Adelaide, Australia), and the women, in the 10-d Tour De L'Aude (Aude, France). Body mass was recorded before and immediately after the race. Cyclists recalled the number of water bottles and amount of food they had consumed. RESULTS Men and women recorded body-mass losses of approximately 2 kg (2.8% body mass) and 1.5 kg (2.6% body mass), respectively, per stage during the long road races. Men had an average fluid intake of 1.0 L/h, whereas women only consumed on average 0.4 L/h. In addition, men consumed CHO at the rate suggested by dietitians (average CHO intake of 48 g/h), but again the women failed to reach recommendations, with an average intake of approximately 21 g/h during a road stage. CONCLUSIONS Men appeared to drink and eat during racing in accordance with current nutritional recommendations, but women failed to reach these guidelines. Both men and women finished their races with a body-mass loss of approximately 2.6% to 2.8%. Further research is required to determine the impact of this loss on road-cycling performance and thermoregulation.
Collapse
|
49
|
Devries MC, Tarnopolsky MA. Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Phys Med Rehabil Clin N Am 2009; 20:101-31, viii-ix. [DOI: 10.1016/j.pmr.2008.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Currell K, Urch J, Cerri E, Jentjens RL, Blannin AK, Jeukendrup AE. Plasma deuterium oxide accumulation following ingestion of different carbohydrate beverages. Appl Physiol Nutr Metab 2008; 33:1067-72. [DOI: 10.1139/h08-084] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Optimal fluid delivery from carbohydrate solutions such as oral rehydration solutions or sports drinks is essential. The aim of the study was to investigate whether a beverage containing glucose and fructose would result in greater fluid delivery than a beverage containing glucose alone. Six male subjects were recruited (average age (±SD): 22 ± 2 y). Subjects entered the laboratory between 0700h and 0900h after an overnight fast. A 600 mL bolus of 1 of the 3 experimental beverages was then given. The experimental beverages were water (W), 75 g glucose (G), or 50 g glucose and 25 g fructose (GF); each beverage also contained 3.00 g of D2O. Following administration of the experimental beverage subjects remained in a seated position for 180 min. Blood and saliva samples were then taken every 5 min in the first hour and every 15 min thereafter. Plasma and saliva samples were analyzed for deuterium enrichment by isotope ratio mass spectrometry. Deuterium oxide enrichments were compared using a 2-way repeated measures analysis of variance. The water trial (33 ± 3 min) showed a significantly shorter time to peak than either G (82 ± 40 min) or GF (59 ± 25 min), but the difference between G and GF did not reach statistical significance. There was a significantly greater AUC for GF (55 673 ± 10 020 δ‰ vs. Vienna Standard Mean Ocean Water (VSMOW).180min) and W (60 497 ± 9864 δ‰ vs. VSMOW.180min) compared with G (46 290 ± 9622 δ‰ vs. VSMOW.180min); W and GF were not significantly different from each other. These data suggest that a 12.5% carbohydrate beverage containing glucose and fructose results in more rapid fluid delivery in the first 75 min than a beverage containing glucose alone.
Collapse
Affiliation(s)
- Kevin Currell
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Joanna Urch
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Erika Cerri
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Roy L.P. Jentjens
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andy K. Blannin
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Asker E. Jeukendrup
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|