1
|
Nartey MN, Peña-Castillo L, LeGrow M, Doré J, Bhattacharya S, Darby-King A, Carew SJ, Yuan Q, Harley CW, McLean JH. Learning-induced mRNA alterations in olfactory bulb mitral cells in neonatal rats. ACTA ACUST UNITED AC 2020; 27:209-221. [PMID: 32295841 PMCID: PMC7164515 DOI: 10.1101/lm.051177.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
In the olfactory bulb, a cAMP/PKA/CREB-dependent form of learning occurs in the first week of life that provides a unique mammalian model for defining the epigenetic role of this evolutionarily ancient plasticity cascade. Odor preference learning in the week-old rat pup is rapidly induced by a 10-min pairing of odor and stroking. Memory is demonstrable at 24 h, but not 48 h, posttraining. Using this paradigm, pups that showed peppermint preference 30 min posttraining were sacrificed 20 min later for laser microdissection of odor-encoding mitral cells. Controls were given odor only. Microarray analysis revealed that 13 nonprotein-coding mRNAs linked to mRNA translation and splicing and 11 protein-coding mRNAs linked to transcription differed with odor preference training. MicroRNA23b, a translation inhibitor of multiple plasticity-related mRNAs, was down-regulated. Protein-coding transcription was up-regulated for Sec23b, Clic2, Rpp14, Dcbld1, Magee2, Mstn, Fam229b, RGD1566265, and Mgst2. Gng12 and Srcg1 mRNAs were down-regulated. Increases in Sec23b, Clic2, and Dcbld1 proteins were confirmed in mitral cells in situ at the same time point following training. The protein-coding changes are consistent with extracellular matrix remodeling and ryanodine receptor involvement in odor preference learning. A role for CREB and AP1 as triggers of memory-related mRNA regulation is supported. The small number of gene changes identified in the mitral cell input/output link for 24 h memory will facilitate investigation of the nature, and reversibility, of changes supporting temporally restricted long-term memory.
Collapse
Affiliation(s)
- Michaelina N Nartey
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Lourdes Peña-Castillo
- Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland A1B3X5, Canada
| | - Megan LeGrow
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Jules Doré
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Sriya Bhattacharya
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Andrea Darby-King
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Samantha J Carew
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Qi Yuan
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland A1B3X9, Canada
| | - John H McLean
- Divison of Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B3V6, Canada
| |
Collapse
|
2
|
Raber J, Arzy S, Bertolus JB, Depue B, Haas HE, Hofmann SG, Kangas M, Kensinger E, Lowry CA, Marusak HA, Minnier J, Mouly AM, Mühlberger A, Norrholm SD, Peltonen K, Pinna G, Rabinak C, Shiban Y, Soreq H, van der Kooij MA, Lowe L, Weingast LT, Yamashita P, Boutros SW. Current understanding of fear learning and memory in humans and animal models and the value of a linguistic approach for analyzing fear learning and memory in humans. Neurosci Biobehav Rev 2019; 105:136-177. [PMID: 30970272 DOI: 10.1016/j.neubiorev.2019.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Fear is an emotion that serves as a driving factor in how organisms move through the world. In this review, we discuss the current understandings of the subjective experience of fear and the related biological processes involved in fear learning and memory. We first provide an overview of fear learning and memory in humans and animal models, encompassing the neurocircuitry and molecular mechanisms, the influence of genetic and environmental factors, and how fear learning paradigms have contributed to treatments for fear-related disorders, such as posttraumatic stress disorder. Current treatments as well as novel strategies, such as targeting the perisynaptic environment and use of virtual reality, are addressed. We review research on the subjective experience of fear and the role of autobiographical memory in fear-related disorders. We also discuss the gaps in our understanding of fear learning and memory, and the degree of consensus in the field. Lastly, the development of linguistic tools for assessments and treatment of fear learning and memory disorders is discussed.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA; Departments of Neurology and Radiation Medicine, and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA.
| | - Shahar Arzy
- Department of Medical Neurobiology, Hebrew University, Jerusalem 91904, Israel
| | | | - Brendan Depue
- Departments of Psychological and Brain Sciences and Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Haley E Haas
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan G Hofmann
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Maria Kangas
- Department of Psychology, Macquarie University, Sydney, Australia
| | | | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Hilary A Marusak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Jessica Minnier
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS-UMR 5292, INSERM U1028, Université Lyon, Lyon, France
| | - Andreas Mühlberger
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirsi Peltonen
- Faculty of Social Sciences/Psychology, Tampere University, Tampere, Finland
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Christine Rabinak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Youssef Shiban
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Hermona Soreq
- Department of Biological Chemistry, Edmond and Lily Safra Center of Brain Science and The Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - Michael A van der Kooij
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Universitatsmedizin der Johannes Guttenberg University Medical Center, Mainz, Germany
| | | | - Leah T Weingast
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Paula Yamashita
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Sydney Weber Boutros
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Opendak M, Sullivan RM. Unique infant neurobiology produces distinctive trauma processing. Dev Cogn Neurosci 2019; 36:100637. [PMID: 30889546 PMCID: PMC6969239 DOI: 10.1016/j.dcn.2019.100637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/11/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Trauma experienced in early life has unique neurobehavioral outcomes related to later life psychiatric sequelae. Recent evidence has further highlighted the context of infant trauma as critical, with trauma experienced within species-atypical aberrations in caregiving quality as particularly detrimental. Using data from primarily rodent models, we review the literature on the interaction between trauma and attachment in early life, which highlights the role of the caregiver's presence in engagement of attachment brain circuitry and suppressing threat processing by the amygdala. Together these data suggest that infant trauma processing and its enduring effects are impacted by both the immaturity of brain areas for processing trauma and the unique functioning of the early-life brain, which is biased towards forming robust attachments regardless of the quality of care. Understanding the critical role of the caregiver in further altering early life brain processing of trauma is important for developing age-relevant treatment and interventions.
Collapse
Affiliation(s)
- Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, USA.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, USA
| |
Collapse
|
4
|
Neurobiology of Infant Sensitive Period for Attachment and Its Reinstatement Through Maternal Social Buffering. MINNESOTA SYMPOSIA ON CHILD PSYCHOLOGY 2018. [DOI: 10.1002/9781119461746.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Bhattacharya S, Mukherjee B, Doré JJE, Yuan Q, Harley CW, McLean JH. Histone deacetylase inhibition induces odor preference memory extension and maintains enhanced AMPA receptor expression in the rat pup model. ACTA ACUST UNITED AC 2017; 24:543-551. [PMID: 28916629 PMCID: PMC5602343 DOI: 10.1101/lm.045799.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022]
Abstract
Histone deacetylase (HDAC) plays a role in synaptic plasticity and long-term memory formation. We hypothesized that trichostatin-A (TSA), an HDAC inhibitor, would promote long-term odor preference memory and maintain enhanced GluA1 receptor levels that have been hypothesized to support memory. We used an early odor preference learning model in neonate rat pups that normally produces only 24-h memory to test behavior and examine receptor protein expression. Our behavioral studies showed that intrabulbar infusion of TSA, prior to pairing of the conditioned stimulus (peppermint odor) with the unconditioned stimulus (tactile stimulation), prolonged 24-h odor preference memory for at least 9 d. The prolonged odor preference memory was selective for the paired odor and was also observed using a specific HDAC6 inhibitor, tubacin, supporting a role for histone acetylation in associative memory. Immunoblot analysis showed that GluA1 receptor membrane expression in the olfactory bulbs of the TSA-treated group was significantly increased at 48 h unlike control rats without TSA. Immunohistochemistry revealed significant increase of GluA1 expression in olfactory bulb glomeruli 5 d after training. These results extend previous evidence for a close relationship between enhanced GluA1 receptor membrane expression and memory expression. Together, these findings provide a new single-trial appetitive model for understanding the support and maintenance of memories of varying duration.
Collapse
Affiliation(s)
- Sriya Bhattacharya
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| | - Bandhan Mukherjee
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| | - Jules J E Doré
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| | - Qi Yuan
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3X9
| | - John H McLean
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B3V6
| |
Collapse
|
6
|
Debiec J, Sullivan RM. The neurobiology of safety and threat learning in infancy. Neurobiol Learn Mem 2017; 143:49-58. [PMID: 27826033 PMCID: PMC5418109 DOI: 10.1016/j.nlm.2016.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022]
Abstract
What an animal needs to learn to survive is altered dramatically as they change from dependence on the parent for protection to independence and reliance on self-defense. This transition occurs in most altricial animals, but our understanding of the behavioral neurobiology has mostly relied on the infant rat. The transformation from dependence to independence occurs over three weeks in pups and is accompanied by complex changes in responses to both natural and learned threats and the supporting neural circuitry. Overall, in early life, the threat system is quiescent and learning is biased towards acquiring attachment related behaviors to support attachment to the caregiver and proximity seeking. Caregiver-associated cues learned in infancy have the ability to provide a sense of safety throughout lifetime. This attachment/safety system is activated by learning involving presumably pleasurable stimuli (food, warmth) but also painful stimuli (tailpinch, moderate shock). At about the midway point to independence, pups begin to have access to the adult-like amygdala-dependent threat system and amygdala-dependent responses to natural dangers such as predator odors. However, pups have the ability to switch between the infant and adult-like system, which is controlled by maternal presence and modification of stress hormones. Specifically, if the pup is alone, it will learn fear but if with the mother it will learn attachment (10-15days of age). As pups begin to approach weaning, pups lose access to the attachment system and rely only on the amygdala-dependent threat system. However, pups learning system is complex and exhibits flexibility that enables the mother to override the control of the attachment circuit, since newborn pups may acquire threat responses from the mother expressing fear in their presence. Together, these data suggest that the development of pups' threat learning system is not only dependent upon maturation of the amygdala, but it is also exquisitely controlled by the environment. Most notably the mother can switch pup learning between attachment to threat learning in a moment's notice. This enables the mother to navigate pup's learning about the world and what is threatening and what is safe.
Collapse
Affiliation(s)
- Jacek Debiec
- Molecular & Behavioral Neuroscience Institute and Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Child and Adolescent Psychiatry, New York University Langone Medical Center, United States.
| |
Collapse
|
7
|
Opendak M, Gould E, Sullivan R. Early life adversity during the infant sensitive period for attachment: Programming of behavioral neurobiology of threat processing and social behavior. Dev Cogn Neurosci 2017; 25:145-159. [PMID: 28254197 PMCID: PMC5478471 DOI: 10.1016/j.dcn.2017.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 01/03/2017] [Accepted: 02/04/2017] [Indexed: 02/06/2023] Open
Abstract
Animals, including humans, require a highly coordinated and flexible system of social behavior and threat evaluation. However, trauma can disrupt this system, with the amygdala implicated as a mediator of these impairments in behavior. Recent evidence has further highlighted the context of infant trauma as a critical variable in determining its immediate and enduring consequences, with trauma experienced from an attachment figure, such as occurs in cases of caregiver-child maltreatment, as particularly detrimental. This review focuses on the unique role of caregiver presence during early-life trauma in programming deficits in social behavior and threat processing. Using data primarily from rodent models, we describe the interaction between trauma and attachment during a sensitive period in early life, which highlights the role of the caregiver's presence in engagement of attachment brain circuitry and suppressing threat processing by the amygdala. These data suggest that trauma experienced directly from an abusive caregiver and trauma experienced in the presence of caregiver cues produce similar neurobehavioral deficits, which are unique from those resulting from trauma alone. We go on to integrate this information into social experience throughout the lifespan, including consequences for complex scenarios, such as dominance hierarchy formation and maintenance.
Collapse
Affiliation(s)
- Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, USA.
| | - Elizabeth Gould
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Regina Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, USA
| |
Collapse
|
8
|
Abstract
Altricial infants (i.e., requiring parental care for survival), such as humans and rats, form an attachment to their caregiver and receive the nurturing and protections needed for survival. Learning has a strong role in attachment, as is illustrated by strong attachment formed to non-biological caregivers of either sex. Here we summarize and integrate results from animal and human infant attachment research that highlights the important role of social buffering (social presence) of the stress response by the attachment figure and its effect on infant processing of threat and fear through modulation of the amygdala. Indeed, this work suggests the caregiver switches off amygdala function in rodents, although recent human research suggests a similar process in humans and nonhuman primates. This cross-species analysis helps provide insight and unique understanding of attachment and its role in the neurobiology of infant behavior within attachment.
Collapse
Affiliation(s)
- Regina M Sullivan
- Emotional Brain Institute, The Nathan Kline Institute for Psychiatric Research, Child Study Center, Child and Adolescent Psychiatry, New York University Langone Medical Center
| |
Collapse
|
9
|
Boulanger Bertolus J, Mouly AM, Sullivan RM. Ecologically relevant neurobehavioral assessment of the development of threat learning. Learn Mem 2016; 23:556-66. [PMID: 27634146 PMCID: PMC5026204 DOI: 10.1101/lm.042218.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/02/2016] [Indexed: 11/24/2022]
Abstract
As altricial infants gradually transition to adults, their proximate environment changes. In three short weeks, pups transition from a small world with the caregiver and siblings to a complex milieu rich in dangers as their environment expands. Such contrasting environments require different learning abilities and lead to distinct responses throughout development. Here, we will review some of the learned fear conditioned responses to threats in rats during their ontogeny, including behavioral and physiological measures that permit the assessment of learning and its supporting neurobiology from infancy through adulthood. In adulthood, odor-shock conditioning produces robust fear learning to the odor that depends upon the amygdala and related circuitry. Paradoxically, this conditioning in young pups fails to support fear learning and supports approach learning to the odor previously paired with shock. This approach learning is mediated by the infant attachment network that does not include the amygdala. During the age range when pups transition from the infant to the adult circuit (10-15 d old), pups have access to both networks: odor-shock conditioning in maternal presence uses the attachment circuit but the adult amygdala-dependent circuit when alone. However, throughout development (as young as 5 d old) the attachment associated learning can be overridden and amygdala-dependent fear learning supported, if the mother expresses fear in the presence of the pup. This social modulation of the fear permits the expression of defense reactions in life threatening situations informed by the caregiver but prevents the learning of the caregiver itself as a threat.
Collapse
Affiliation(s)
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Lyon1, Lyon, France
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York 10010, USA
| |
Collapse
|
10
|
Opendak M, Sullivan RM. Unique neurobiology during the sensitive period for attachment produces distinctive infant trauma processing. Eur J Psychotraumatol 2016; 7:31276. [PMID: 27837581 PMCID: PMC5106868 DOI: 10.3402/ejpt.v7.31276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/28/2016] [Accepted: 07/31/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Trauma has neurobehavioral effects when experienced at any stage of development, but trauma experienced in early life has unique neurobehavioral outcomes related to later life psychiatric sequelae. Recent evidence has further highlighted the context of infant trauma as a critical variable in determining its immediate and enduring consequences. Trauma experienced from an attachment figure, such as occurs in cases of caregiver child maltreatment, is particularly detrimental. METHODS Using data primarily from rodent models, we review the literature on the interaction between trauma and attachment in early life, which highlights the role of the caregiver's presence in engagement of attachment brain circuitry and suppressing threat processing by the amygdala. We then consider how trauma with and without the caregiver produces long-term changes in emotionality and behavior, and suggest that these experiences initiate distinct pathways to pathology. RESULTS Together these data suggest that infant trauma processing and its enduring effects are impacted by both the immaturity of brain areas for processing trauma and the unique functioning of the early-life brain, which is biased toward processing information within the attachment circuitry. CONCLUSION An understanding of developmental differences in trauma processing as well as the critical role of the caregiver in further altering early life brain processing of trauma is important for developing age-relevant treatment and interventions.
Collapse
Affiliation(s)
- Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA;
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
11
|
Abstract
Sensory responses are modulated by internal factors including attention, experience, and brain state. This is partly due to fluctuations in neuromodulatory input from regions such as the noradrenergic locus ceruleus (LC) in the brainstem. LC activity changes with arousal and modulates sensory processing, cognition, and memory. The main olfactory bulb (MOB) is richly targeted by LC fibers and noradrenaline profoundly influences MOB circuitry and odor-guided behavior. Noradrenaline-dependent plasticity affects the output of the MOB; however. it is unclear whether noradrenergic plasticity also affects the input to the MOB from olfactory sensory neurons (OSNs) in the glomerular layer. Noradrenergic terminals are found in the glomerular layer, but noradrenaline receptors do not seem to acutely modulate OSN terminals in vitro. We investigated whether noradrenaline induces plasticity at the glomerulus. We used wide-field optical imaging to measure changes in odor responses following electrical stimulation of LC in anesthetized mice. Surprisingly, odor-evoked intrinsic optical signals at the glomerulus were persistently weakened after LC activation. Calcium imaging selectively from OSNs confirmed that this effect was due to suppression of presynaptic input and was prevented by noradrenergic antagonists. Finally, suppression of responses to an odor did not require precise coincidence of the odor with LC activation. However, suppression was intensified by LC activation in the absence of odors. We conclude that noradrenaline release from LC has persistent effects on odor processing already at the first synapse of the main olfactory system. This mechanism could contribute to arousal-dependent memories.
Collapse
|
12
|
Abstract
The nature of memory is a central issue in neuroscience. How does our representation of the world change with learning and experience? Here we use the transcription of Arc mRNA, which permits probing the neural representations of temporally separated events, to address this in a well characterized odor learning model. Rat pups readily associate odor with maternal care. In pups, the lateralized olfactory networks are independent, permitting separate training and within-subject control. We use multiday training to create an enduring memory of peppermint odor. Training stabilized rewarded, but not nonrewarded, odor representations in both mitral cells and associated granule cells of the olfactory bulb and in the pyramidal cells of the anterior piriform cortex. An enlarged core of stable, likely highly active neurons represent rewarded odor at both stages of the olfactory network. Odor representations in anterior piriform cortex were sparser than typical in adult rat and did not enlarge with learning. This sparser representation of odor is congruent with the maturation of lateral olfactory tract input in rat pups. Cortical representations elsewhere have been shown to be highly variable in electrophysiological experiments, suggesting brains operate normally using dynamic and network-modulated representations. The olfactory cortical representations here are consistent with the generalized associative model of sparse variable cortical representation, as normal responses to repeated odors were highly variable (∼70% of the cells change as indexed by Arc). Learning and memory modified rewarded odor ensembles to increase stability in a core representational component.
Collapse
|
13
|
Abstract
Stress is a powerful modulator of brain structure and function. While stress is beneficial for survival, inappropriate stress dramatically increases the risk of physical and mental health problems, particularly when experienced during early developmental periods. Here we focus on the neurobiology of the infant rat's odor learning system that enables neonates to learn and approach the maternal odor and describe the unique role of the stress hormone corticosterone in modulating this odor approach learning across development. During the first nine postnatal days, this odor approach learning of infant rats is supported by a wide range of sensory stimuli and ensures attachment to the mother's odor, even when interactions with her are occasionally associated with pain. With maturation and the emergence of a stress- or pain-induced corticosterone response, this odor approach learning terminates and a more adult-like amygdala-dependent fear/avoidance learning emerges. Strikingly, the odor approach and attenuated fear learning of older pups can be re-established by the presence of the mother, due to her ability to suppress her pups' corticosterone release and amygdala activity. This suggests that developmental changes in stress responsiveness and the stimuli that produce a stress response might be critically involved in optimally adapting the pup's attachment system to its respective ecological niche.
Collapse
|
14
|
Arc visualization of odor objects reveals experience-dependent ensemble sharpening, separation, and merging in anterior piriform cortex in adult rat. J Neurosci 2014; 34:10206-10. [PMID: 25080582 DOI: 10.1523/jneurosci.1942-14.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Visualization using the immediate early gene Arc revealed sparser and more robust odor representations in the anterior piriform cortex of adult rats when odor was associated with water reward over 2-3 d. Rewarded odor "mixtures" resulted in rats responding to either component odor similarly, and, correspondingly, the odor representations became more similar as indexed by increased overlap in piriform Arc-expressing (Arc(+)) pyramidal neurons. The increased overlap was consistent with the rats' generalization from component odors. Discriminating among highly similar odor mixtures for reward led to increased differentiation of the neural representations as indexed by a reduction in overlap for piriform Arc(+) pyramidal neurons after training. Similar odor mixture discrimination also required more trials to criterion. The visible reduction in the overlap of odor representations indexes pattern separation. The Arc visualization of odor representations in the anterior piriform network suggests that odor objects are widely distributed representations and can be rapidly modified by reward training in adult rats. We suggest that dynamic changes such as those observed here in piriform odor encoding are at the heart of perceptual learning and reflect the continuing plastic nature of mature associative cortex as an outcome of successful problem solving.
Collapse
|
15
|
Fletcher ML, Bendahmane M. Visualizing olfactory learning functional imaging of experience-induced olfactory bulb changes. PROGRESS IN BRAIN RESEARCH 2014; 208:89-113. [PMID: 24767480 DOI: 10.1016/b978-0-444-63350-7.00004-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The anatomical organization of sensory neuron input allows odor information to be transformed into odorant-specific spatial maps of mitral/tufted cell glomerular activity. In other sensory systems, neuronal representations of sensory stimuli can be reorganized or enhanced following learning or experience. Similarly, several studies have demonstrated both structural and physiological experience-induced changes throughout the olfactory system. As experience-induced changes within this circuit likely serve as an initial site for odor memory formation, the olfactory bulb is an ideal site for optical imaging studies of olfactory learning, as they allow for the visualization of experience-induced changes in the glomerular circuit following learning and how these changes impact of odor representations with the bulb. Presently, optical imaging techniques have been used to visualize experience-induced changes in glomerular odor representations in a variety of paradigms in short-term habituation, chronic odor exposure, and olfactory associative conditioning.
Collapse
Affiliation(s)
- Max L Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Mounir Bendahmane
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
16
|
Rincón-Cortés M, Sullivan RM. Early life trauma and attachment: immediate and enduring effects on neurobehavioral and stress axis development. Front Endocrinol (Lausanne) 2014; 5:33. [PMID: 24711804 PMCID: PMC3968754 DOI: 10.3389/fendo.2014.00033] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/05/2014] [Indexed: 01/22/2023] Open
Abstract
Over half a century of converging clinical and animal research indicates that early life experiences induce enduring neuroplasticity of the HPA-axis and the developing brain. This experience-induced neuroplasticity is due to alterations in the frequency and intensity of stimulation of pups' sensory systems (i.e., olfactory, somatosensory, gustatory) embedded in mother-infant interactions. This stimulation provides "hidden regulators" of pups' behavioral, physiological, and neural responses that have both immediate and enduring consequences, including those involving the stress response. While variation in stimulation can produce individual differences and adaptive behaviors, pathological early life experiences can induce maladaptive behaviors, initiate a pathway to pathology, and increase risk for later-life psychopathologies, such as mood and affective disorders, suggesting that infant-attachment relationships program later-life neurobehavioral function. Recent evidence suggests that the effects of maternal presence or absence during this sensory stimulation provide a major modulatory role in neural and endocrine system responses, which have minimal impact on pups' immediate neurobehavior but a robust impact on neurobehavioral development. This concept is reviewed here using two complementary rodent models of infant trauma within attachment: infant paired-odor-shock conditioning (mimicking maternal odor attachment learning) and rearing with an abusive mother that converge in producing a similar behavioral phenotype in later-life including depressive-like behavior as well as disrupted HPA-axis and amygdala function. The importance of maternal social presence on pups' immediate and enduring brain and behavior suggests unique processing of sensory stimuli in early life that could provide insight into the development of novel strategies for prevention and therapeutic interventions for trauma experienced with the abusive caregiver.
Collapse
Affiliation(s)
- Millie Rincón-Cortés
- Department of Neuroscience and Physiology, Sackler Institute for Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, New York, NY, USA
- New York University Child Study Center, Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
- *Correspondence: Millie Rincón-Cortés, Sullivan Laboratory, New York University Child Study Center, Department of Child and Adolescent Psychiatry, New York University School of Medicine, 1 Park Avenue, New York, NY 10016, USA e-mail:
| | - Regina M. Sullivan
- Department of Neuroscience and Physiology, Sackler Institute for Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, New York, NY, USA
- New York University Child Study Center, Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
17
|
Yuan Q, Shakhawat AMD, Harley CW. Mechanisms underlying early odor preference learning in rats. PROGRESS IN BRAIN RESEARCH 2014; 208:115-56. [PMID: 24767481 DOI: 10.1016/b978-0-444-63350-7.00005-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early odor preference training in rat pups produces behavioral preferences that last from hours to lifetimes. Here, we discuss the molecular and circuitry changes we have observed in the olfactory bulb (OB) and in the anterior piriform cortex (aPC) following odor training. For normal preference learning, both structures are necessary, but learned behavior can be initiated by initiating local circuit change in either structure. Our evidence relates dynamic molecular and circuit changes to memory duration and storage localization. Results using this developmental model are consistent with biological memory theories implicating N-methyl-D-aspartate (NMDA) receptors and β-adrenoceptors, and their associated cascades, in memory induction and consolidation. Finally, our examination of the odor preference model reveals a primary role for increases in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor synaptic strength, and in network strength, in the creation and maintenance of preference memory in both olfactory structures.
Collapse
Affiliation(s)
- Qi Yuan
- Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | - Amin M D Shakhawat
- Biomedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
18
|
Youngentob SL, Kent PF, Youngentob LM. Gestational naltrexone ameliorates fetal ethanol exposures enhancing effect on the postnatal behavioral and neural response to ethanol. Exp Biol Med (Maywood) 2012; 237:1197-208. [PMID: 23045720 DOI: 10.1258/ebm.2012.012132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The association between gestational exposure to ethanol and adolescent ethanol abuse is well established. Recent animal studies support the role of fetal ethanol experience-induced chemosensory plasticity as contributing to this observation. Previously, we established that fetal ethanol exposure, delivered through a dam's diet throughout gestation, tuned the neural response of the peripheral olfactory system of early postnatal rats to the odor of ethanol. This occurred in conjunction with a loss of responsiveness to other odorants. The instinctive behavioral response to the odor of ethanol was also enhanced. Importantly, there was a significant contributory link between the altered response to the odor of ethanol and increased ethanol avidity when assessed in the same animals. Here, we tested whether the neural and behavioral olfactory plasticity, and their relationship to enhanced ethanol intake, is a result of the mere exposure to ethanol or whether it requires the animal to associate ethanol's reinforcing properties with its odor attributes. In this later respect, the opioid system is important in the mediation (or modulation) of the reinforcing aspects of ethanol. To block endogenous opiates during prenatal life, pregnant rats received daily intraperitoneal administration of the opiate antagonist naltrexone from gestational day 6-21 jointly with ethanol delivered via diet. Relative to control progeny, we found that gestational exposure to naltrexone ameliorated the enhanced postnatal behavioral response to the odor of ethanol and postnatal drug avidity. Our findings support the proposition that in utero ethanol-induced olfactory plasticity (and its relationship to postnatal intake) requires, at least in part, the associative pairing between ethanol's odor quality and its reinforcing aspects. We also found suggestive evidence that fetal naltrexone ameliorated the untoward effects of gestational ethanol exposure on the neural response to non-fetal-exposure odorants. Thus, gestational naltrexone may also have a neuroprotective and/or neuroproliferative impact on olfactory development.
Collapse
Affiliation(s)
- Steven L Youngentob
- Department of Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | |
Collapse
|
19
|
Landers MS, Sullivan RM. The development and neurobiology of infant attachment and fear. Dev Neurosci 2012; 34:101-14. [PMID: 22571921 DOI: 10.1159/000336732] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/17/2012] [Indexed: 11/19/2022] Open
Abstract
Survival of altricial infants depends on attachment to the caregiver - a process that requires infants to identify, learn, remember, and approach their attachment figure. Here we review the neurobiology of attachment in infant rats where learning about the caregiver is supported by a specialized attachment neural circuitry to promote the infant-caregiver relationship. Specifically, the attachment circuit relies on infants acquiring learned preferences to the maternal odor, and this behavior is supported by the hyperfunctioning locus coeruleus and generous amounts of norepinephrine to produce experience-induced changes in the olfactory bulb and anterior piriform cortex. Infants also possess a reduced ability to acquire learned aversions or fear, and this behavior is facilitated through attenuated amygdala plasticity to block fear learning. Presumably, this attachment circuitry constrains the infant animal to express only learned preferences regardless of the quality of care received. As pups mature, and begin to travel in and out of the nest, the specialized attachment learning becomes contextually confined to when pups are with the mother. Thus, when outside the nest, these older pups show learning more typical of adult learning, presumably to prepare for independent life outside the nest. The quality of attachment can alter this circuitry, with early life stress prematurely terminating the pups' access to the attachment system through premature functional activation of the amygdala. Overall, the attachment circuit appears to have a dual function: to keep pups close to the caregiver but also to shape pups' behavior to match the environment and define long-term emotion and cognition.
Collapse
Affiliation(s)
- Margo S Landers
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, N.Y., USA
| | | |
Collapse
|
20
|
Lethbridge R, Hou Q, Harley CW, Yuan Q. Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat. PLoS One 2012; 7:e35024. [PMID: 22496886 PMCID: PMC3319620 DOI: 10.1371/journal.pone.0035024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 03/12/2012] [Indexed: 01/23/2023] Open
Abstract
Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular disinhibition also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABA(A) receptor agonist. A glomerular GABA(A) receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning.
Collapse
Affiliation(s)
- Rebecca Lethbridge
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - Qinlong Hou
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - Carolyn W. Harley
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John’s, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
- * E-mail:
| |
Collapse
|
21
|
Fletcher ML. Olfactory aversive conditioning alters olfactory bulb mitral/tufted cell glomerular odor responses. Front Syst Neurosci 2012; 6:16. [PMID: 22461771 PMCID: PMC3309973 DOI: 10.3389/fnsys.2012.00016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/05/2012] [Indexed: 11/23/2022] Open
Abstract
The anatomical organization of receptor neuron input into the olfactory bulb (OB) allows odor information to be transformed into an odorant-specific spatial map of mitral/tufted (M/T) cell glomerular activity at the upper level of the OB. In other sensory systems, neuronal representations of stimuli can be reorganized or enhanced following learning. While the mammalian OB has been shown to undergo experience-dependent plasticity at the glomerular level, it is still unclear if similar representational change occurs within (M/T) cell glomerular odor representations following learning. To address this, odorant-evoked glomerular activity patterns were imaged in mice expressing a GFP-based calcium indicator (GCaMP2) in OB (M/T) cells. Glomerular odor responses were imaged before and after olfactory associative conditioning to aversive foot shock. Following conditioning, we found no overall reorganization of the glomerular representation. Training, however, did significantly alter the amplitudes of individual glomeruli within the representation in mice in which the odor was presented together with foot shock. Further, the specific pairing of foot shock with odor presentations lead to increased responses primarily in initially weakly activated glomeruli. Overall, these results suggest that associative conditioning can enhance the initial representation of odors within the OB by enhancing responses to the learned odor in some glomeruli.
Collapse
Affiliation(s)
- Max L Fletcher
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston TX, USA
| |
Collapse
|
22
|
Gaultier A, Meunier-Salaün MC, Malbert CH, Val-Laillet D. Flavour exposures after conditioned aversion or preference trigger different brain processes in anaesthetised pigs. Eur J Neurosci 2011; 34:1500-11. [DOI: 10.1111/j.1460-9568.2011.07848.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Fletcher ML, Chen WR. Neural correlates of olfactory learning: Critical role of centrifugal neuromodulation. Learn Mem 2010; 17:561-70. [PMID: 20980444 DOI: 10.1101/lm.941510] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of plasticity. As in other sensory systems, this plasticity can be controlled by centrifugal inputs from brain regions known to be involved in attention and learning processes. Specifically, both the bulb and cortex receive heavy inputs from cholinergic, noradrenergic, and serotonergic modulatory systems. These neuromodulators are shown to have profound effects on both odor processing and odor memory by acting on both inhibitory local interneurons and output neurons in both regions.
Collapse
Affiliation(s)
- Max L Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | |
Collapse
|
24
|
Sullivan RM, Holman PJ. Transitions in sensitive period attachment learning in infancy: the role of corticosterone. Neurosci Biobehav Rev 2010; 34:835-44. [PMID: 19931556 PMCID: PMC2848912 DOI: 10.1016/j.neubiorev.2009.11.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/06/2009] [Accepted: 11/10/2009] [Indexed: 11/15/2022]
Abstract
Survival of altricial infants, including humans and rats, depends on attachment to the caregiver - a process that requires infants to recognize, learn, and remember their attachment figure. The demands of a dynamic environment combined with a maturing organism require frequent neurobehavioral reorganization. This restructuring of behavior and its supporting neural circuitry can be viewed through the unique lens of attachment learning in rats in which preference learning is enhanced and aversion learning is attenuated. Behavioral restructuring is well adapted to securing the crucial infant-caregiver relationship regardless of the quality of care. With maturation and the end of the infant-caregiver attachment learning period, the complex interplay of neural structures, hormones, and social behavior coordinates the developing rat's eventual transition to life outside of the nest. Nevertheless, early-life environmental and physiological stressors can alter the resilient nature of this system, particularly with respect to the amygdala, and these changes may provide important clues to understanding the lasting effects of early stress.
Collapse
Affiliation(s)
- Regina M Sullivan
- Emotional Brain Institute, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
25
|
Yuan Q. Theta bursts in the olfactory nerve paired with beta-adrenoceptor activation induce calcium elevation in mitral cells: a mechanism for odor preference learning in the neonate rat. Learn Mem 2009; 16:676-81. [PMID: 19858361 DOI: 10.1101/lm.1569309] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Odor preference learning in the neonate rat follows pairing of odor input and noradrenergic activation of beta-adrenoceptors. Odor learning is hypothesized to be supported by enhanced mitral cell activation. Here a mechanism for enhanced mitral cell signaling is described. Theta bursts in the olfactory nerve (ON) produce long-term potentiation (LTP) of glomerular excitatory postsynaptic potentials (EPSPs) and of excitatory postsynaptic currents (EPSCs) in the periglomerular (PG) and external tufted (ET) cells. Theta bursts paired with beta-adrenoceptor activation significantly elevate mitral cell (MC) calcium. Juxtaglomerular inhibitory network depression by beta-adrenoceptor activation appears to increase calcium in MCs in response to theta burst stimulation.
Collapse
Affiliation(s)
- Qi Yuan
- University of California at San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
26
|
Middleton FA, Carrierfenster K, Mooney SM, Youngentob SL. Gestational ethanol exposure alters the behavioral response to ethanol odor and the expression of neurotransmission genes in the olfactory bulb of adolescent rats. Brain Res 2009; 1252:105-16. [PMID: 19063871 PMCID: PMC3435114 DOI: 10.1016/j.brainres.2008.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 11/01/2008] [Accepted: 11/03/2008] [Indexed: 12/29/2022]
Abstract
Fetal exposure to ethanol is highly predictive of the propensity to ingest ethanol during adolescence and in utero chemosensory plasticity has been implicated as a contributing factor in this process. Recent rodent studies have shown that fetal ethanol exposure results in a tuned unconditioned sniffing and neurophysiological olfactory response to ethanol odor in infant animals. Importantly, a significant proportion of increased ethanol avidity at this age can be attributed to the tuned behavioral response to ethanol odor. These effects are absent in adults. Using behavioral methods and comprehensive gene expression profiling to screen for robust transcriptional differences induced in the olfactory bulb, we examined whether ethanol exposure via maternal diet results in an altered responsiveness to ethanol odor that persists into late adolescence and, if so, the molecular mechanisms that may be associated with such effects. Compared to controls, fetal exposure altered: the adolescent sniffing response to ethanol odor consistent with the previously observed changes in infant animals; and the expression of genes involved in synaptic transmission and plasticity as well as neuronal development (both cell fate and axon/neurite outgrowth). These data provide evidence for a persistence of olfactory-mediated responsiveness to ethanol into the period of adolescence. Further, they provide insight into an important relationship between fetal exposure to ethanol, adolescent odor responsiveness to the drug and potential underlying molecular mechanisms for the odor-guided behavioral response.
Collapse
Affiliation(s)
- Frank A. Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
- The SUNY Developmental Exposure Alcohol Research Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Kellyn Carrierfenster
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
- The SUNY Developmental Exposure Alcohol Research Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Sandra M. Mooney
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
- The SUNY Developmental Exposure Alcohol Research Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Steven L. Youngentob
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
- The SUNY Developmental Exposure Alcohol Research Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
27
|
Tiret P, Chaigneau E, Lecoq J, Charpak S. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Methods Mol Biol 2009; 489:81-91. [PMID: 18839088 DOI: 10.1007/978-1-59745-543-5_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two-photon laser scanning microscopy (TPLSM) is an efficient tool to study cerebral blood flow (CBF) and cellular activity in depth in the brain. We describe here the advantages and weaknesses of the olfactory bulb as a model to study neurovascular coupling using TPLSM. By combining intra- and extracellular recordings, TPLSM of CBF in individual capillaries, local application of drugs, we show that odor triggers odorant-specific and concentration-dependent increases in CBF. We also demonstrate that activation of neurons is required to trigger blood flow responses.
Collapse
Affiliation(s)
- Pascale Tiret
- Laboratory of Neurophysiology; Université Paris Descartes, INSERM U603, Paris, France
| | | | | | | |
Collapse
|
28
|
Abstract
For many mammals, individual recognition of conspecifics relies on olfactory cues. Certain individual recognition memories are thought to be stored when conspecific odor cues coincide with surges of noradrenaline (NA) triggered by intensely arousing social events. Such familiar stimuli elicit reduced behavioral responses, a change likely related to NA-dependent plasticity in the olfactory bulb (OB). In addition to its role in these ethological memories, NA signaling in the OB appears to be relevant for the discrimination of more arbitrary odorants as well. Nonetheless, no NA-gated mechanism of long-term plasticity in the OB has ever been directly observed in vivo. Here, we report that NA release from locus ceruleus (LC), when coupled to odor presentation, acts locally in the main OB to cause a specific long-lasting suppression of responses to paired odors. These effects were observed for both food odors and urine, an important social recognition cue. Moreover, in subsequent behavioral tests, mice exhibited habituation to paired urine stimuli, suggesting that this LC-mediated olfactory neural plasticity, induced under anesthesia, can store an individual recognition memory that is observable after recovery.
Collapse
|
29
|
Gire DH, Schoppa NE. Long-term enhancement of synchronized oscillations by adrenergic receptor activation in the olfactory bulb. J Neurophysiol 2008; 99:2021-5. [PMID: 18256160 DOI: 10.1152/jn.01324.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The noradrenergic system is widely thought to be important for associative learning in the olfactory system through actions in the first processing structure, the main olfactory bulb (MOB). Here, we used extracellular local field potential (LFP) and patch-clamp recordings in rat MOB slices to examine norepinephrine (NE)-induced long-term changes in circuit properties that might underlie learning. During responses to patterned olfactory nerve stimulation mimicking the breathing cycle, NE induced a long-term increase in gamma frequency (30-70 Hz) synchronized oscillations. The enhancement persisted long after washout of NE (<or=70 min), depended on the combined actions of NE and neuronal stimulation, and seemed to be caused by enhanced excitatory drive on the mitral/granule cell network that underlies rapid gamma oscillations. The last effect, increased excitation, was manifested as an increase in evoked long-lasting depolarizations (LLDs) in mitral cells. From a functional perspective, the observed long-term cellular and network changes could promote associative learning by amplifying odor-specific signals.
Collapse
Affiliation(s)
- David H Gire
- Department of Physiology and Biophysics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | |
Collapse
|
30
|
Ishimaru T. Optical recording of the intrinsic signal from the human olfactory cleft. Ann Otol Rhinol Laryngol 2007; 116:335-41. [PMID: 17561761 DOI: 10.1177/000348940711600504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Endoscopy of the human olfactory cleft is important for both research in human olfaction and clinical examination with regard to olfactory disorders. However, endoscopy only provides information on the morphology and functional status of the epithelium, and it does not allow discrimination between respiratory and olfactory mucosa. To obtain information on the functional status of the olfactory mucosa, I used endoscopy to investigate the optical intrinsic signal recording from the human olfactory cleft. METHODS A light-emitting diode (617 nm) light source and a cooled charge-coupled device camera were prepared for endoscopy of the olfactory cleft. Subjects were exposed to various odors presented in front of their nostrils. In addition, blanks were used for control. RESULTS When normosmic subjects sniffed the odors, the intensity of the signal from the olfactory mucosa changed, which was not the case when blank stimuli were presented. Different odors activated different response patterns. A decrease of the oxyhemoglobin level in the activated olfactory epithelium is suspected to be responsible for this observation. CONCLUSIONS The optical intrinsic signals were recorded from the human olfactory cleft with an endoscope. This technique may be applicable to basic research in olfaction and to a clinical test for the assessment of olfactory disorders.
Collapse
Affiliation(s)
- Tadashi Ishimaru
- Smell and Taste Clinic, Department of Otorhinolaryngology, University of Dresden Medical School, Technische Universitaet Dresden, Dresden, Germany
| |
Collapse
|
31
|
Chaigneau E, Tiret P, Lecoq J, Ducros M, Knöpfel T, Charpak S. The relationship between blood flow and neuronal activity in the rodent olfactory bulb. J Neurosci 2007; 27:6452-60. [PMID: 17567806 PMCID: PMC6672435 DOI: 10.1523/jneurosci.3141-06.2007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the brain, neuronal activation triggers an increase in cerebral blood flow (CBF). Here, we use two animal models and several techniques (two-photon imaging of CBF and neuronal calcium dynamics, intracellular and extracellular recordings, local pharmacology) to analyze the relationship between neuronal activity and local CBF during odor stimulation in the rodent olfactory bulb. Application of glutamate receptor antagonists or tetrodotoxin directly into single rat olfactory glomeruli blocked postsynaptic responses but did not affect the local odor-evoked CBF increases. This suggests that in our experimental conditions, odor always activates more than one glomerulus and that silencing one of a few clustered glomeruli does not affect the vascular response. To block synaptic transmission more widely, we then superfused glutamate antagonists over the surface of the olfactory bulb in transgenic G-CaMP2 mice. This was for two reasons: (1) mice have a thin olfactory nerve layer compared to rats and this will favor drug access to the glomerular layer, and (2) transgenic G-CaMP2 mice express the fluorescent calcium sensor protein G-CaMP2 in mitral cells. In G-CaMP2 mice, odor-evoked, odor-specific, and concentration-dependent calcium increases in glomeruli. Superfusion of glutamate receptor antagonists blocked odor-evoked postsynaptic calcium signals and CBF responses. We conclude that activation of postsynaptic glutamate receptors and rises in dendritic calcium are major steps for neurovascular coupling in olfactory bulb glomeruli.
Collapse
Affiliation(s)
- Emmanuelle Chaigneau
- Institut National de la Santé et de la Recherche Médicale U603, 75006 Paris, France
- Laboratory of Neurophysiology, Université Paris Descartes, 75006 Paris, France, and
| | - Pascale Tiret
- Institut National de la Santé et de la Recherche Médicale U603, 75006 Paris, France
- Laboratory of Neurophysiology, Université Paris Descartes, 75006 Paris, France, and
| | - Jérôme Lecoq
- Institut National de la Santé et de la Recherche Médicale U603, 75006 Paris, France
- Laboratory of Neurophysiology, Université Paris Descartes, 75006 Paris, France, and
| | - Mathieu Ducros
- Institut National de la Santé et de la Recherche Médicale U603, 75006 Paris, France
- Laboratory of Neurophysiology, Université Paris Descartes, 75006 Paris, France, and
| | - Thomas Knöpfel
- Laboratory for Neural Circuit Dynamics, Riken Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Serge Charpak
- Institut National de la Santé et de la Recherche Médicale U603, 75006 Paris, France
- Laboratory of Neurophysiology, Université Paris Descartes, 75006 Paris, France, and
| |
Collapse
|
32
|
Youngentob SL, Johnson BA, Leon M, Sheehe PR, Kent PF. Predicting odorant quality perceptions from multidimensional scaling of olfactory bulb glomerular activity patterns. Behav Neurosci 2007; 120:1337-45. [PMID: 17201479 PMCID: PMC2222860 DOI: 10.1037/0735-7044.120.6.1337] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Odorants and their perceptions differ along multiple dimensions, requiring that a critical examination of any putative neural code directly assess the multidimensional nature of the encoding process. Previous work has examined simple, systematic odorant differences that, regardless of coding strategy, would be expected to produce simple, systematic predictions in neural and behavioral responses. In the present study, an odorant identification confusion matrix task that extracts precise quality relationships across odorants was used to determine whether spatially specific glomerular activity patterns predict perceptual quality relationships for odorants that cannot easily be classified a priori along a single chemical dimension. Multidimensional scaling (MDS) analysis of odorant pattern similarity measures derived from the comparison of [14C]-2-deoxyglucose glomerular activity pattern data yielded a two-dimensional odorant activity space that was highly significantly predictive of similarly obtained odorant perceptual spaces, uniformly across animals. These results strongly support the relevance of global spatial patterns in the olfactory bulb to the encoding of odor quality.
Collapse
Affiliation(s)
- Steven L Youngentob
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | | | | | |
Collapse
|
33
|
Shionoya K, Moriceau S, Lunday L, Miner C, Roth TL, Sullivan RM. Development switch in neural circuitry underlying odor-malaise learning. Learn Mem 2006; 13:801-8. [PMID: 17101877 PMCID: PMC1783635 DOI: 10.1101/lm.316006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fetal and infant rats can learn to avoid odors paired with illness before development of brain areas supporting this learning in adults, suggesting an alternate learning circuit. Here we begin to document the transition from the infant to adult neural circuit underlying odor-malaise avoidance learning using LiCl (0.3 M; 1% of body weight, ip) and a 30-min peppermint-odor exposure. Conditioning groups included: Paired odor-LiCl, Paired odor-LiCl-Nursing, LiCl, and odor-saline. Results showed that Paired LiCl-odor conditioning induced a learned odor aversion in postnatal day (PN) 7, 12, and 23 pups. Odor-LiCl Paired Nursing induced a learned odor preference in PN7 and PN12 pups but blocked learning in PN23 pups. 14C 2-deoxyglucose (2-DG) autoradiography indicated enhanced olfactory bulb activity in PN7 and PN12 pups with odor preference and avoidance learning. The odor aversion in weanling aged (PN23) pups resulted in enhanced amygdala activity in Paired odor-LiCl pups, but not if they were nursing. Thus, the neural circuit supporting malaise-induced aversions changes over development, indicating that similar infant and adult-learned behaviors may have distinct neural circuits.
Collapse
Affiliation(s)
- Kiseko Shionoya
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Stephanie Moriceau
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Lauren Lunday
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Cathrine Miner
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Tania L. Roth
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Regina M. Sullivan
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
- Corresponding author.E-mail ; fax (405) 325-2699
| |
Collapse
|
34
|
Laaris N, Puche A, Ennis M. Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells. J Neurophysiol 2006; 97:296-306. [PMID: 17035366 PMCID: PMC2786987 DOI: 10.1152/jn.00823.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Main olfactory bulb (MOB) granule cells receive spatially segregated glutamatergic synaptic inputs from the dendrites of mitral/tufted cells as well as from the axons of centrifugal fibers (CFFs) originating in olfactory cortical areas. Dendrodendritic synapses from mitral/tufted cells occur on granule cell distal dendrites in the external plexiform layer (EPL), whereas CFFs preferentially target the somata/proximal dendrites of granule cells in the granule cell layer (GCL). In the present study, tract tracing, and recordings of field potentials and voltage-sensitive dye optical signals were used to map activity patterns elicited by activation of these two inputs to granule cells in mouse olfactory bulb slices. Stimulation of the lateral olfactory tract (LOT) produced a negative field potential in the EPL and a positivity in the GCL. CFF stimulation produced field potentials of opposite polarity in the EPL and GCL to those elicited by LOT. LOT-evoked optical signals appeared in the EPL and spread subsequently to deeper layers, whereas CFF-evoked responses appeared in the GCL and then spread superficially. Evoked responses were reduced by N-methyl-d-aspartate (NMDA) receptor antagonists and completely suppressed by AMPA receptor antagonists. Reduction of extracellular Mg(2+) enhanced the strength and spatiotemporal extent of the evoked responses. These and additional findings indicate that LOT- and CFF-evoked field potentials and optical signals reflect postsynaptic activity in granule cells, with moderate NMDA and dominant AMPA receptor components. Taken together, these results demonstrate that LOT and CFF stimulation in MOB slices selectively activate glutamatergic inputs to the distal dendrites versus somata/proximal dendrites of granule cells.
Collapse
Affiliation(s)
- Nora Laaris
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, Baltimore, MD, USA
| | | | | |
Collapse
|
35
|
Abstract
A strong attachment to the caregiver is critical for survival in altricial species, including humans. While some behavioral aspects of attachment have been characterized, its neurobiology has only recently received attention. Using a mammalian imprinting model, we are assessing the neural circuitry that enables infant rats to attach quickly to a caregiver, thus enhancing survival in the nest. Specifically, the hyper-functioning noradrenergic locus coeruleus (LC) enables pups to learn rapid, robust preference for the caregiver. Conversely, a hypo-functional amygdala appears to prevent the infant from learning aversions to the caregiver. Adult LC and amygdala functional emergence correlates with sensitive period termination. This study suggests the neonatal brain is not an immature version of the adult brain but is uniquely designed to optimize attachment to the caregiver. Although human attachment may not rely on identical circuitry, the work reviewed here suggests a new conceptual framework in which to explore human attachments, particularly attachments to abusive caregivers.
Collapse
|
36
|
Abstract
The synapses formed by the olfactory nerve (ON) convey sensory information to olfactory glomeruli, the first stage of central odor processing. Morphological and behavioral studies suggest that glomerular odor processing is plastic in neonate rodents. However, long-term synaptic plasticity, a cellular correlate of functional and structural plasticity, has not yet been demonstrated in this system. Here, we report that ON-->mitral cell (MC) synapses of 5- to 8-d-old mice express long-term depression (LTD) after brief low-frequency ON stimulation. Pharmacological techniques and imaging of presynaptic calcium signals demonstrate that ON-MC LTD is expressed presynaptically and requires the activation of metabotropic glutamate receptors but does not require fast synaptic transmission. LTD at the ON--> MC synapse is potentially relevant for the establishment, maintenance, and experience-dependent refinement of odor maps in the olfactory bulb.
Collapse
Affiliation(s)
- Hiroki Mutoh
- Laboratory for Neuronal Circuit Dynamics, Brain Science Institute, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan
| | | | | |
Collapse
|
37
|
Jones SV, Heldt SA, Davis M, Ressler KJ. Olfactory-mediated fear conditioning in mice: simultaneous measurements of fear-potentiated startle and freezing. Behav Neurosci 2005; 119:329-35. [PMID: 15727538 PMCID: PMC2881597 DOI: 10.1037/0735-7044.119.1.329] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study demonstrates that mice display olfactory-cued fear as measured with both freezing and fear-potentiated startle. Following a preconditioning test to measure any unconditioned responses to odor, mice received 5 pairings of a 10-s odor with a 0.25-s, 0.4-mA footshock. The next day, startle and freezing were measured in the presence and absence of the odor. Both fear measures increased after training with amyl acetate (Experiment 1) and acetophenone (Experiment 2). The enhancement of startle did not occur when the same number of odors and shocks were presented in an unpaired fashion (Experiment 3). Furthermore, mice were able to discriminate between an odor paired with shock and a nonreinforced odor (Experiment 4).
Collapse
Affiliation(s)
- Seth V Jones
- Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | |
Collapse
|
38
|
Yuan Q, Mutoh H, Debarbieux F, Knöpfel T. Calcium signaling in mitral cell dendrites of olfactory bulbs of neonatal rats and mice during olfactory nerve Stimulation and beta-adrenoceptor activation. Learn Mem 2004; 11:406-11. [PMID: 15286182 PMCID: PMC498321 DOI: 10.1101/lm.75204] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Synapses formed by the olfactory nerve (ON) provide the source of excitatory synaptic input onto mitral cells (MC) in the olfactory bulb. These synapses, which relay odor-specific inputs, are confined to the distally tufted single primary dendrites of MCs, the first stage of central olfactory processing. beta-adrenergic modulation of electrical and chemical signaling at these synapses may be involved in early odor preference learning. To investigate this possibility, we combined electrophysiological recordings with calcium imaging in olfactory bulb slices prepared from neonatal rats and mice. Activation of ON-MC synapses induced postsynaptic potentials, which were associated with large postsynaptic calcium transients. Neither electrical nor calcium responses were affected by beta-adrenergic agonists or antagonist. Immunocytochemical analysis of MCs and their tufted dendrites revealed clear immunoreactivity with antibodies against alpha1A (Cav2.1, P/Q-type) and alpha1B (Cav2.2, N-type), but not against alpha1C (Cav1.2, L-type) or alpha1D (Cav1.3, L-type) calcium channel subunits. Moreover, nimodipine, a blocker of L-type calcium channels, had no effect on either electrical or calcium signaling at ON-MC synapses. In contrast to previous evidence, we concluded that in neonatal rats and mice (P5-P8), mitral cells do not express significant amounts of L-type calcium channels, the calcium channel type that is often targeted by beta-adrenergic modulation. The absence of beta-adrenergic modulation on either electrical or calcium signaling at ON-MC synapses of neonatal rats and mice excludes the involvement of this mechanism in early odor preference learning.
Collapse
Affiliation(s)
- Qi Yuan
- Laboratory for Neuronal Circuit Dynamics, Brain Science Institute, RIKEN, Wako-shi, Saitama, 351-0198, Japan
| | | | | | | |
Collapse
|
39
|
McLean JH, Harley CW. Olfactory learning in the rat pup: A model that may permit visualization of a mammalian memory trace. Neuroreport 2004; 15:1691-7. [PMID: 15257129 DOI: 10.1097/01.wnr.0000134988.51310.c3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over the past 10 years considerable insight into intracellular interactions leading to long-term memory formation have been gleaned from various neural circuits within invertebrate and vertebrate species. This review suggests that, while certain intracellular signaling pathways are commonly involved across species, it is important to analyze specific neural systems because critical differences among systems appear to exist. The olfactory bulb has been used by our group to estimate the influence of neuromodulatory systems (serotonin and norepinephrine) on intracellular processes leading to learning. We describe here how activation of noradrenergic input to mitral cells increases cAMP leading to CREB phosphorylation when paired with a conditioning stimulus, odor. CREB phosphorylation is causal in odor preference learning leading to long-term memory for the odor. However, the relationship between cAMP activation and CREB phosphorylation is not straight forward; overstimulation of cAMP pathways impedes learning and prevents CREB phosphorylation. Excessive CREB phosphorylation also interferes with learning.
Collapse
Affiliation(s)
- John H McLean
- Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3V6, Canada.
| | | |
Collapse
|
40
|
Abstract
Infant rats exhibit sensitive-period odor learning characterized by olfactory bulb neural changes and odor preference acquisitions critical for survival. This sensitive period is coincident with low endogenous corticosterone (CORT) levels and stress hyporesponsivity. The authors hypothesized that low corticosterone levels modulate sensitive-period learning. They assessed the effects of manipulating CORT levels by increasing and removing CORT during (Postnatal Day 8) and after (Postnatal Day 12) the sensitive period. Results show that (a) exogenous CORT prematurely ends sensitive-period odor-shock-induced preferences; (b) adrenalectomy developmentally extends the sensitive period as indicated by odor-shock-induced odor-preference learning in older pups, whereas CORT replacement can reinstate fear learning; and (c) CORT manipulation modulates olfactory bulb correlates of sensitive-period odor learning in a manner consistent with behavior.
Collapse
|
41
|
Moriceau S, Sullivan RM. Unique neural circuitry for neonatal olfactory learning. J Neurosci 2004; 24:1182-9. [PMID: 14762136 PMCID: PMC1868533 DOI: 10.1523/jneurosci.4578-03.2004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 11/21/2003] [Accepted: 11/25/2003] [Indexed: 01/02/2023] Open
Abstract
Imprinting ensures that the infant forms the caregiver attachment necessary for altricial species survival. In our mammalian model of imprinting, neonatal rats rapidly learn the odor-based maternal attachment. This rapid learning requires reward-evoked locus ceruleus (LC) release of copious amounts of norepinephrine (NE) into the olfactory bulb. This imprinting ends at postnatal day 10 (P10) and is associated with a dramatic reduction in reward-evoked LC NE release. Here we assess whether the functional emergence of LC alpha2 inhibitory autoreceptors and the downregulation of LC alpha1 excitatory autoreceptors underlie the dramatic reduction in NE release associated with termination of the sensitive period. Postsensitive period pups (P12) were implanted with either LC or olfactory bulb cannulas, classically conditioned with intracranial drug infusions (P14), and tested for an odor preference (P15). During conditioning, a novel odor was paired with either olfactory bulb infusion of abeta-receptor agonist (isoproterenol) to assess the target effects of NE or direct LC cholinergic stimulation combined with alpha2 antagonists and alpha1 agonists in a mixture to reinstate neonatal levels of LC autoreceptor activity to assess the source of NE. Pups learned an odor preference when the odor was paired with either olfactory bulb isoproterenol infusion or reinstatement of neonatal LC receptor activity. These results suggest that LC autoreceptor functional changes rather than olfactory bulb changes underlie sensitive period termination.
Collapse
Affiliation(s)
- Stephanie Moriceau
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | | |
Collapse
|
42
|
Neurobehavioral Development of Infant Learning and Memory: Implications for Infant Attachment. ADVANCES IN THE STUDY OF BEHAVIOR 2004. [DOI: 10.1016/s0065-3454(04)34003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
43
|
Chaigneau E, Oheim M, Audinat E, Charpak S. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc Natl Acad Sci U S A 2003; 100:13081-6. [PMID: 14569029 PMCID: PMC240748 DOI: 10.1073/pnas.2133652100] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analysis of the spatiotemporal coupling between neuronal activity and cerebral blood flow requires the precise measurement of the dynamics of RBC flow in individual capillaries that irrigate activated neurons. Here, we use two-photon microscopy in vivo to image individual RBCs in glomerular capillaries in the rat dorsal olfactory bulb. We find that odor stimulation evokes capillary vascular responses that are odorant- and glomerulus-specific. These responses consist of increases as well as decreases in RBC flow, both resulting from independent changes in RBC velocity or linear density. Finally, measuring RBC flow with micrometer spatial resolution and millisecond temporal resolution, we demonstrate that, in olfactory bulb superficial layers, capillary vascular responses precisely outline regions of synaptic activation.
Collapse
|
44
|
Abstract
Processing of olfactory information in the antennal lobes of insects and olfactory bulbs of vertebrates is modulated by centrifugal inputs that represent reinforcing events. Octopamine release by one such pathway in the honeybee antennal lobe modulates olfactory processing in relation to nectar (sucrose) reinforcement. To test more specifically what role octopamine plays in the antennal lobe, we used two treatments to disrupt an octopamine receptor from Apis mellifera brain (AmOAR) function: (1) an OAR antagonist, mianserin, was used to block receptor function, and (2) AmOAR double-stranded RNA was used to silence receptor expression. Both treatments inhibited olfactory acquisition and recall, but they did not disrupt odor discrimination. These results suggest that octopamine mediates consolidation of a component of olfactory memory at this early processing stage in the antennal lobe. Furthermore, after consolidation, octopamine release becomes essential for recall, which suggests that the modulatory circuits become incorporated as essential components of neural representations that activate odor memory.
Collapse
|
45
|
Early odor preference learning in the rat: bidirectional effects of cAMP response element-binding protein (CREB) and mutant CREB support a causal role for phosphorylated CREB. J Neurosci 2003. [PMID: 12805315 DOI: 10.1523/jneurosci.23-11-04760.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Early odor preference learning in rats is associated with increases of phosphorylated CREB (pCREB) in mitral cells of the olfactory bulb. In the present study, herpes simplex virus expressing CREB (HSV-CREB) and dominant-negative mutant CREB (HSV-mCREB) have been injected into the bulb to assess a causal role for CREB and pCREB in this model. Odor paired with stroking or with the beta-adrenoceptor agonist isoproterenol produces odor approach 24 hr later. Isoproterenol-induced learning exhibits an inverted U curve dose-dependent learning relationship with both low and high doses failing to produce learning. pCREB increases have only been seen at the learning effective dose. In the present study, injection of an HSV vector expressing mutant CREB into the olfactory bulb prevented learning induced by stroking. Control HSV expressing LacZ was without effect. Expression of mutant CREB shifted the dose-learning curve for isoproterenol to the right such that a higher dose was required to induce learning. Expression of CREB shifted the dose-learning curve for isoproterenol to the left, with a lower dose now producing learning. As expected from this shift, CREB overexpression interfered with learning induced by stroking. When learning occurred, with either CREB or mutant CREB, pCREB was observed to be elevated relative to the nonlearning LacZ control groups. Unexpectedly, with odor plus stroking in the nonlearning CREB group, the level of pCREB was also higher than with odor plus stroking in LacZ controls that did learn. The data demonstrate a causal role for CREB and pCREB in early mammalian odor preference learning, reinforcing CREB as a "universal" memory molecule. They support evidence that CREB overexpression can be deleterious and suggest the hypothesis of an optimal pCREB window for learning.
Collapse
|
46
|
Yuan Q, Harley CW, McLean JH. Mitral cell beta1 and 5-HT2A receptor colocalization and cAMP coregulation: a new model of norepinephrine-induced learning in the olfactory bulb. Learn Mem 2003; 10:5-15. [PMID: 12551959 PMCID: PMC196649 DOI: 10.1101/lm.54803] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the present study we assess a new model for classical conditioning of odor preference learning in rat pups. In preference learning beta(1)-adrenoceptors activated by the locus coeruleus mediate the unconditioned stimulus, whereas olfactory nerve input mediates the conditioned stimulus, odor. Serotonin (5-HT) depletion prevents odor learning, with 5-HT(2A/2C) agonists correcting the deficit. Our new model proposes that the interaction of noradrenergic and serotonergic input with odor occurs in the mitral cells of the olfactory bulb through activation of cyclic adenosine monophosphate (cAMP). Here, using selective antibodies and immunofluorescence examined with confocal microscopy, we demonstrate that beta(1)-adrenoceptors and 5-HT(2A) receptors colocalize primarily on mitral cells. Using a cAMP assay and cAMP immunocytochemistry, we find that beta-adrenoceptor activation by isoproterenol, at learning-effective and higher doses, significantly increases bulbar cAMP, as does stroking. As predicted by our model, the cAMP increases are localized to mitral cells. 5-HT depletion of the olfactory bulb does not affect basal levels of cAMP but prevents isoproterenol-induced cAMP elevation. These results support the model. We suggest the mitral-cell cAMP cascade converges with a Ca(2+) pathway activated by odor to recruit CREB phosphorylation and memory-associated changes in the olfactory bulb. The dose-related increase in cAMP with isoproterenol implies a critical cAMP window because the highest dose of isoproterenol does not produce learning.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Conditioning, Classical/physiology
- Cyclic AMP/metabolism
- Cyclic AMP/physiology
- Fluorescent Antibody Technique
- Immunohistochemistry
- Isoproterenol/pharmacology
- Learning/physiology
- Locus Coeruleus/physiology
- Microscopy, Confocal
- Norepinephrine/metabolism
- Norepinephrine/physiology
- Odorants
- Olfactory Bulb/metabolism
- Olfactory Bulb/physiology
- Olfactory Nerve/physiology
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2C
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Serotonin/metabolism
- Serotonin/metabolism
- Serotonin/physiology
Collapse
Affiliation(s)
- Qi Yuan
- Division of Basic Medical Sciences, Memorial University of Newfoundland, St John's, Newfoundland, Canada A1B 3V6
| | | | | |
Collapse
|