1
|
Yeganegi H, Ondracek JM. Local sleep in songbirds: different simultaneous sleep states across the avian pallium. J Sleep Res 2024:e14344. [PMID: 39425588 DOI: 10.1111/jsr.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 10/21/2024]
Abstract
Wakefulness and sleep have often been treated as distinct and global brain states. However, an emerging body of evidence on the local regulation of sleep stages challenges this conventional view. Apart from unihemispheric sleep, the current data that support local variations of neural oscillations during sleep are focused on the homeostatic regulation of local sleep, i.e., the role preceding awake activity. Here, to examine local differences in brain activity during natural sleep, we recorded the electroencephalogram and the local field potential across multiple sites within the avian pallium of zebra finches without perturbing the previous awake state. We scored the sleep stages independently in each pallial site and found that the sleep stages are not pallium-wide phenomena but rather deviate widely across electrode sites. Importantly, deeper electrode sites had a dominant role in defining the temporal aspects of sleep state congruence. Altogether, these findings show that local regulation of sleep oscillations also occurs in the avian brain without prior awake recruitment of specific pallial circuits and in the absence of mammalian cortical neural architecture.
Collapse
Affiliation(s)
- Hamed Yeganegi
- Technical University of Munich, TUM School of Life Sciences, Chair of Zoology, Freising-Weihenstephan, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg, Germany
| | - Janie M Ondracek
- Technical University of Munich, TUM School of Life Sciences, Chair of Zoology, Freising-Weihenstephan, Germany
| |
Collapse
|
2
|
Kroeger D, Vetrivelan R. To sleep or not to sleep - Effects on memory in normal aging and disease. AGING BRAIN 2023; 3:100068. [PMID: 36911260 PMCID: PMC9997183 DOI: 10.1016/j.nbas.2023.100068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Sleep behavior undergoes significant changes across the lifespan, and aging is associated with marked alterations in sleep amounts and quality. The primary sleep changes in healthy older adults include a shift in sleep timing, reduced slow-wave sleep, and impaired sleep maintenance. However, neurodegenerative and psychiatric disorders are more common among the elderly, which further worsen their sleep health. Irrespective of the cause, insufficient sleep adversely affects various bodily functions including energy metabolism, mood, and cognition. In this review, we will focus on the cognitive changes associated with inadequate sleep during normal aging and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Daniel Kroeger
- Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| |
Collapse
|
3
|
Recurrent Hippocampo-neocortical sleep-state divergence in humans. Proc Natl Acad Sci U S A 2022; 119:e2123427119. [PMID: 36279474 PMCID: PMC9636919 DOI: 10.1073/pnas.2123427119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sleep is assumed to be a unitary, global state in humans and most other animals that is coordinated by executive centers in the brain stem, hypothalamus, and basal forebrain. However, the common observation of unihemispheric sleep in birds and marine mammals, as well as the recently discovered nonpathological regional sleep in rodents, calls into question whether the whole human brain might also typically exhibit different states between brain areas at the same time. We analyzed sleep states independently from simultaneously recorded hippocampal depth electrodes and cortical scalp electrodes in eight human subjects who were implanted with depth electrodes for pharmacologically intractable epilepsy evaluation. We found that the neocortex and hippocampus could be in nonsimultaneous states, on average, one-third of the night and that the hippocampus often led in asynchronous state transitions. Nonsimultaneous bout lengths varied from 30 s to over 30 min. These results call into question the conclusions of studies, across phylogeny, that measure only surface cortical state but seek to assess the functions and drivers of sleep states throughout the brain.
Collapse
|
4
|
Borbély A. The two-process model of sleep regulation: Beginnings and outlook. J Sleep Res 2022; 31:e13598. [PMID: 35502706 PMCID: PMC9540767 DOI: 10.1111/jsr.13598] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 01/10/2023]
Abstract
The two-process model serves as a major conceptual framework in sleep science. Although dating back more than four decades, it has not lost its relevance for research today. Retracing its origins, I describe how animal experiments aimed at exploring the oscillators driving the circadian sleep-wake rhythm led to the recognition of gradients of sleep states within the daily sleep period. Advances in signal analysis revealed that the level of slow-wave activity in non-rapid eye movement sleep electroencephalogram is high at the beginning of the 12-light period and then declines. After sleep deprivation, the level of slow-wave activity is enhanced. By scheduling recovery sleep to the animal's activity period, the conflict between the sleep-wake-dependent and the circadian influence resulted in a two-stage recovery pattern. These experiments provided the basis for the first version of the two-process model. Sleep deprivation experiments in humans showed that the decline of slow-wave activity during sleep is exponential. The two-process model posits that a sleep-wake-dependent homeostatic process (Process S) interacts with a process controlled by the circadian pacemaker (Process C). At present, homeostatic and circadian facets of sleep regulation are being investigated at the synaptic level as well as in the transcriptome and proteome domains. The notion of sleep has been extended from a global phenomenon to local representations, while the master circadian pacemaker has been supplemented by multiple peripheral oscillators. The original interpretation that the emergence of sleep may be viewed as an escape from the rigid control imposed by the circadian pacemaker is still upheld.
Collapse
Affiliation(s)
- Alexander Borbély
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Moreira CG, Baumann CR, Scandella M, Nemirovsky SI, Leach S, Huber R, Noain D. Closed-loop auditory stimulation method to modulate sleep slow waves and motor learning performance in rats. eLife 2021; 10:e68043. [PMID: 34612204 PMCID: PMC8530509 DOI: 10.7554/elife.68043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Slow waves and cognitive output have been modulated in humans by phase-targeted auditory stimulation. However, to advance its technical development and further our understanding, implementation of the method in animal models is indispensable. Here, we report the successful employment of slow waves' phase-targeted closed-loop auditory stimulation (CLAS) in rats. To validate this new tool both conceptually and functionally, we tested the effects of up- and down-phase CLAS on proportions and spectral characteristics of sleep, and on learning performance in the single-pellet reaching task, respectively. Without affecting 24 hr sleep-wake behavior, CLAS specifically altered delta (slow waves) and sigma (sleep spindles) power persistently over chronic periods of stimulation. While up-phase CLAS does not elicit a significant change in behavioral performance, down-phase CLAS exerted a detrimental effect on overall engagement and success rate in the behavioral test. Overall CLAS-dependent spectral changes were positively correlated with learning performance. Altogether, our results provide proof-of-principle evidence that phase-targeted CLAS of slow waves in rodents is efficient, safe, and stable over chronic experimental periods, enabling the use of this high-specificity tool for basic and preclinical translational sleep research.
Collapse
Affiliation(s)
- Carlos G Moreira
- Department of Neurology, University Hospital Zurich, University of ZurichZurichSwitzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich, University of ZurichZurichSwitzerland
- University Center of Competence Sleep & Health Zurich (CRPP), University of ZurichZurichSwitzerland
- Neuroscience Center Zurich (ZNZ)ZurichSwitzerland
| | - Maurizio Scandella
- Department of Neurology, University Hospital Zurich, University of ZurichZurichSwitzerland
| | - Sergio I Nemirovsky
- Institute of Biological Chemistry, School of Exact and Natural Sciences (IQUIBICEN). CONICET – University of Buenos AiresBuenos AiresArgentina
| | - Sven Leach
- Child Development Center, University Children’s Hospital Zurich, University of ZurichZurichSwitzerland
| | - Reto Huber
- University Center of Competence Sleep & Health Zurich (CRPP), University of ZurichZurichSwitzerland
- Neuroscience Center Zurich (ZNZ)ZurichSwitzerland
- Child Development Center, University Children’s Hospital Zurich, University of ZurichZurichSwitzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of ZurichZurichSwitzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich, University of ZurichZurichSwitzerland
- University Center of Competence Sleep & Health Zurich (CRPP), University of ZurichZurichSwitzerland
- Neuroscience Center Zurich (ZNZ)ZurichSwitzerland
| |
Collapse
|
6
|
Manns M, Basbasse YE, Freund N, Ocklenburg S. Paw preferences in mice and rats: Meta-analysis. Neurosci Biobehav Rev 2021; 127:593-606. [PMID: 34004244 DOI: 10.1016/j.neubiorev.2021.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Mice and rats are among the most common animal model species in both basic and clinical neuroscience. Despite their ubiquity as model species, many clinically relevant brain-behaviour relationships in rodents are not well understood. In particular, data on hemispheric asymmetries, an important organizational principle in the vertebrate brain, are conflicting as existing studies are often statistically underpowered due to small sample sizes. Paw preference is one of the most frequently investigated forms of hemispheric asymmetries on the behavioural level. Here, we used meta-analysis to statistically integrate findings on paw preferences in rats and mice. For both species, results indicate significant hemispheric asymmetries on the individual level. In mice, 81 % of animals showed a preference for either the left or the right paw, while 84 % of rats showed this preference. However, contrary to what has been reported in humans, population level asymmetries were not observed. These results are particularly significant as they point out that paying attention to potential individual hemispheric differences is important in both basic and clinical neuroscience.
Collapse
Affiliation(s)
- Martina Manns
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Germany.
| | - Yasmin El Basbasse
- Institute of Cognitive Neuroscience, Department Biopsychology, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Germany
| | - Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Department Biopsychology, Faculty of Psychology, Ruhr University Bochum, Germany
| |
Collapse
|
7
|
Mondino A, Cavelli M, González J, Osorio L, Castro-Zaballa S, Costa A, Vanini G, Torterolo P. Power and Coherence in the EEG of the Rat: Impact of Behavioral States, Cortical Area, Lateralization and Light/Dark Phases. Clocks Sleep 2020; 2:536-556. [PMID: 33317018 PMCID: PMC7768537 DOI: 10.3390/clockssleep2040039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/28/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
The sleep-wake cycle is constituted by three behavioral states: wakefulness (W), non-REM (NREM) and REM sleep. These states are associated with drastic changes in cognitive capacities, mostly determined by the function of the thalamo-cortical system, whose activity can be examined by means of intra-cranial electroencephalogram (iEEG). With the purpose to study in depth the basal activity of the iEEG in adult rats, we analyzed the spectral power and coherence of the iEEG during W and sleep in the paleocortex (olfactory bulb), and in neocortical areas. We also analyzed the laterality of the signals, as well as the influence of the light and dark phases. We found that the iEEG power and coherence of the whole spectrum were largely affected by behavioral states and highly dependent on the cortical areas recorded. We also determined that there are night/day differences in power and coherence during sleep, but not in W. Finally, we observed that, during REM sleep, intra-hemispheric coherence differs between right and left hemispheres. We conclude that the iEEG dynamics are highly dependent on the cortical area and behavioral states. Moreover, there are light/dark phases disparities in the iEEG during sleep, and intra-hemispheric connectivity differs between both hemispheres during REM sleep.
Collapse
Affiliation(s)
- Alejandra Mondino
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (A.M.); (M.C.); (J.G.); (L.O.); (S.C.-Z.); (A.C.)
- Department of Anesthesiology, University of Michigan, 7433 Medical Science Building 1, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5615, USA;
| | - Matías Cavelli
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (A.M.); (M.C.); (J.G.); (L.O.); (S.C.-Z.); (A.C.)
- Department of Psychiatry, University of Wisconsin, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Joaquín González
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (A.M.); (M.C.); (J.G.); (L.O.); (S.C.-Z.); (A.C.)
| | - Lucía Osorio
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (A.M.); (M.C.); (J.G.); (L.O.); (S.C.-Z.); (A.C.)
| | - Santiago Castro-Zaballa
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (A.M.); (M.C.); (J.G.); (L.O.); (S.C.-Z.); (A.C.)
| | - Alicia Costa
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (A.M.); (M.C.); (J.G.); (L.O.); (S.C.-Z.); (A.C.)
| | - Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, 7433 Medical Science Building 1, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5615, USA;
| | - Pablo Torterolo
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo 11800, Uruguay; (A.M.); (M.C.); (J.G.); (L.O.); (S.C.-Z.); (A.C.)
| |
Collapse
|
8
|
Thomas CW, Guillaumin MCC, McKillop LE, Achermann P, Vyazovskiy VV. Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity. eLife 2020; 9:e54148. [PMID: 32614324 PMCID: PMC7332296 DOI: 10.7554/elife.54148] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Sleep homeostasis manifests as a relative constancy of its daily amount and intensity. Theoretical descriptions define 'Process S', a variable with dynamics dependent on global sleep-wake history, and reflected in electroencephalogram (EEG) slow wave activity (SWA, 0.5-4 Hz) during sleep. The notion of sleep as a local, activity-dependent process suggests that activity history must be integrated to determine the dynamics of global Process S. Here, we developed novel mathematical models of Process S based on cortical activity recorded in freely behaving mice, describing local Process S as a function of the deviation of neuronal firing rates from a locally defined set-point, independent of global sleep-wake state. Averaging locally derived Processes S and their rate parameters yielded values resembling those obtained from EEG SWA and global vigilance states. We conclude that local Process S dynamics reflects neuronal activity integrated over time, and global Process S reflects local processes integrated over space.
Collapse
Affiliation(s)
- Christopher W Thomas
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | | | - Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
- The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of PsychiatryZurichSwitzerland
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
9
|
D'Ambrosio S, Castelnovo A, Guglielmi O, Nobili L, Sarasso S, Garbarino S. Sleepiness as a Local Phenomenon. Front Neurosci 2019; 13:1086. [PMID: 31680822 PMCID: PMC6813205 DOI: 10.3389/fnins.2019.01086] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022] Open
Abstract
Sleep occupies a third of our life and is a primary need for all animal species studied so far. Nonetheless, chronic sleep restriction is a growing source of morbidity and mortality in both developed and developing countries. Sleep loss is associated with the subjective feeling of sleepiness and with decreased performance, as well as with detrimental effects on general health, cognition, and emotions. The ideas that small brain areas can be asleep while the rest of the brain is awake and that local sleep may account for at least some of the cognitive and behavioral manifestations of sleepiness are making their way into the scientific community. We herein clarify the different ways sleep can intrude into wakefulness, summarize recent scientific advances in the field, and offer some hypotheses that help framing sleepiness as a local phenomenon.
Collapse
Affiliation(s)
- Sasha D'Ambrosio
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università Degli Studi di Milano, Milan, Italy
| | - Anna Castelnovo
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital (EOC) of Lugano, Lugano, Switzerland
| | - Ottavia Guglielmi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genoa, Genoa, Italy
| | - Lino Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS, Child Neuropsychiatry Unit, Giannina Gaslini Institute, Genoa, Italy
| | - Simone Sarasso
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università Degli Studi di Milano, Milan, Italy
| | - Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
Loprinzi PD, Franklin J, Farris A, Ryu S. Handedness, Grip Strength, and Memory Function: Considerations by Biological Sex. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E444. [PMID: 31390821 PMCID: PMC6722824 DOI: 10.3390/medicina55080444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
Background and Objective: The objective of this study was to evaluate the potential independent and interactive effects of handedness and grip strength on episodic memory function, and whether biological sex moderated these relationships. Materials and Methods: 162 young adults (Mage = 20.7 years) completed a series of memory assessments including a subjective memory complaint evaluation and several objective measures of memory. Handedness (i.e., left-hand dominant, inconsistent handedness (ICH), and right-hand dominant) was evaluated using the Edinburgh Handedness Inventory. Handgrip strength was determined from a handgrip dynamometer. Results: When compared to ICH individuals, retrospective memory scores were statistically significantly worse for left-handed (p = 0.02) and right-handed (p = 0.03) individuals. Higher grip strength was statistically significantly associated with fewer retrospective memory complaints (b = 0.10, 95% CI: 0.01, 0.19, p = 0.04). Conclusions: The present study provides some suggestive evidence that ICH (inconsistent handedness) and greater grip strength are associated with fewer retrospective memory complaints. However, we did not observe any evidence of an interaction effect of handedness and grip strength on memory, and similarly, biological sex did not interact with these parameters to influence memory.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA.
| | - Joshua Franklin
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA
| | - Allison Farris
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA
| | - Seungho Ryu
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS 38677, USA
| |
Collapse
|
11
|
Rattenborg NC, van der Meij J, Beckers GJL, Lesku JA. Local Aspects of Avian Non-REM and REM Sleep. Front Neurosci 2019; 13:567. [PMID: 31231182 PMCID: PMC6560081 DOI: 10.3389/fnins.2019.00567] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Birds exhibit two types of sleep that are in many respects similar to mammalian rapid eye movement (REM) and non-REM (NREM) sleep. As in mammals, several aspects of avian sleep can occur in a local manner within the brain. Electrophysiological evidence of NREM sleep occurring more deeply in one hemisphere, or only in one hemisphere - the latter being a phenomenon most pronounced in dolphins - was actually first described in birds. Such asymmetric or unihemispheric NREM sleep occurs with one eye open, enabling birds to visually monitor their environment for predators. Frigatebirds primarily engage in this form of sleep in flight, perhaps to avoid collisions with other birds. In addition to interhemispheric differences in NREM sleep intensity, the intensity of NREM sleep is homeostatically regulated in a local, use-depended manner within each hemisphere. Furthermore, the intensity and temporo-spatial distribution of NREM sleep-related slow waves varies across layers of the avian hyperpallium - a primary visual area - with the slow waves occurring first in, and propagating through and outward from, thalamic input layers. Slow waves also have the greatest amplitude in these layers. Although most research has focused on NREM sleep, there are also local aspects to avian REM sleep. REM sleep-related reductions in skeletal muscle tone appear largely restricted to muscles involved in maintaining head posture. Other local aspects of sleep manifest as a mixture of features of NREM and REM sleep occurring simultaneously in different parts of the neuroaxis. Like monotreme mammals, ostriches often exhibit brainstem-mediated features of REM sleep (muscle atonia and REMs) while the hyperpallium shows EEG slow waves typical of NREM sleep. Finally, although mice show slow waves in thalamic input layers of primary sensory cortices during REM sleep, this is not the case in the hyperpallium of pigeons, suggesting that this phenomenon is not a universal feature of REM sleep. Collectively, the local aspects of sleep described in birds and mammals reveal that wakefulness, NREM sleep, and REM sleep are not always discrete states.
Collapse
Affiliation(s)
| | | | - Gabriël J. L. Beckers
- Cognitive Neurobiology and Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - John A. Lesku
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Ferrarelli F, Kaskie R, Laxminarayan S, Ramakrishnan S, Reifman J, Germain A. An increase in sleep slow waves predicts better working memory performance in healthy individuals. Neuroimage 2019; 191:1-9. [DOI: 10.1016/j.neuroimage.2019.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/14/2019] [Accepted: 02/07/2019] [Indexed: 11/16/2022] Open
|
13
|
Wigren HK, Porkka-Heiskanen T. Novel concepts in sleep regulation. Acta Physiol (Oxf) 2018; 222:e13017. [PMID: 29253320 DOI: 10.1111/apha.13017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
Knowledge regarding the cellular mechanisms of sleep regulation is accumulating rapidly. In addition to neurones, also non-neuronal brain cells (astrocytes and microglia) are emerging as potential players. New techniques, particularly optogenetics and designed receptors activated by artificial ligands (DREADD), have provided also sleep research with important additional tools to study the effect of either silencing or activating specific neuronal groups/neuronal networks by opening or shutting ion channels on cells. The advantages of these strategies are the possibility to genetically target specific cell populations and the possibility to either activate or inhibit them with inducing light signal into the brain. Studies probing circuits of NREM and REM sleep regulation, as well as their role in memory consolidation, have been conducted recently. In addition, fundamentally new thoughts and potential mechanisms have been introduced to the field. The role of non-neuronal tissues in the regulation of many brain functions has become evident. These non-neuronal cells, particularly astrocytes, integrate large number of neurones, and it has been suggested that one of their functions is to integrate the (neural) activity in larger brain areas-a feature that is one of the prominent features of also the state of sleep.
Collapse
Affiliation(s)
- H.-K. Wigren
- Department of Physiology; University of Helsinki; Helsinki Finland
| | | |
Collapse
|
14
|
Tanaka N, Sano K, Rahman MA, Miyata R, Capi G, Kawahara S. Change in hippocampal theta oscillation associated with multiple lever presses in a bimanual two-lever choice task for robot control in rats. PLoS One 2018; 13:e0192593. [PMID: 29432436 PMCID: PMC5809047 DOI: 10.1371/journal.pone.0192593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/28/2018] [Indexed: 01/06/2023] Open
Abstract
Hippocampal theta oscillations have been implicated in working memory and attentional process, which might be useful for the brain-machine interface (BMI). To further elucidate the properties of the hippocampal theta oscillations that can be used in BMI, we investigated hippocampal theta oscillations during a two-lever choice task. During the task body-restrained rats were trained with a food reward to move an e-puck robot towards them by pressing the correct lever, ipsilateral to the robot several times, using the ipsilateral forelimb. The robot carried food and moved along a semicircle track set in front of the rat. We demonstrated that the power of hippocampal theta oscillations gradually increased during a 6-s preparatory period before the start of multiple lever pressing, irrespective of whether the correct lever choice or forelimb side were used. In addition, there was a significant difference in the theta power after the first choice, between correct and incorrect trials. During the correct trials the theta power was highest during the first lever-releasing period, whereas in the incorrect trials it occurred during the second correct lever-pressing period. We also analyzed the hippocampal theta oscillations at the termination of multiple lever pressing during the correct trials. Irrespective of whether the correct forelimb side was used, the power of hippocampal theta oscillations gradually decreased with the termination of multiple lever pressing. The frequency of theta oscillation also demonstrated an increase and decrease, before and after multiple lever pressing, respectively. There was a transient increase in frequency after the first lever press during the incorrect trials, while no such increase was observed during the correct trials. These results suggested that hippocampal theta oscillations reflect some aspects of preparatory and cognitive neural activities during the robot controlling task, which could be used for BMI.
Collapse
Affiliation(s)
- Norifumi Tanaka
- Graduate School of Innovative Life Science, University of Toyama, Toyama-shi, Toyama-ken, Japan
- * E-mail:
| | - Katsunari Sano
- Graduate School of Science and Engineering, University of Toyama, Toyama-shi, Toyama-ken, Japan
| | - Md Ashrafur Rahman
- Graduate School of Innovative Life Science, University of Toyama, Toyama-shi, Toyama-ken, Japan
| | - Ryota Miyata
- Department of Mechanical Systems Engineering, University of Ryukyus, Okinawa-ken, Japan
| | - Genci Capi
- Department of Electrical and Electronic System Engineering, University of Toyama, Toyama-shi, Toyama-ken, Japan
| | - Shigenori Kawahara
- Graduate School of Innovative Life Science, University of Toyama, Toyama-shi, Toyama-ken, Japan
- Graduate School of Science and Engineering, University of Toyama, Toyama-shi, Toyama-ken, Japan
| |
Collapse
|
15
|
Cohen Y, Wilson DA. Task-Correlated Cortical Asymmetry and Intra- and Inter-Hemispheric Separation. Sci Rep 2017; 7:14602. [PMID: 29097760 PMCID: PMC5668373 DOI: 10.1038/s41598-017-15109-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/20/2017] [Indexed: 01/31/2023] Open
Abstract
Cerebral lateralization is expressed at both the structural and functional levels, and can exist as either a stable characteristic or as a dynamic feature during behavior and development. The anatomically relatively simple olfactory system demonstrates lateralization in both human and non-human animals. Here, we explored functional lateralization in both primary olfactory cortex - a region critical for odor memory and perception- and orbitofrontal cortex (OFC) - a region involved in reversal learning- in rats performing an odor learning and reversal task. We find significant asymmetry in both olfactory and orbitofrontal cortical odor-evoked activity, which is expressed in a performance- and task-dependent manner. The emergence of learning-dependent asymmetry during reversal learning was associated with decreased functional connectivity both between the bilateral OFC and between the OFC-olfactory cortex. The results suggest an inter-hemispheric asymmetry and olfactory cortical functional separation that may allow multiple, specialized processing circuits to emerge during a reversal task requiring behavioral flexibility.
Collapse
Affiliation(s)
- Yaniv Cohen
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, USA.
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, USA.
| | - Donald A Wilson
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, USA.
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, USA.
| |
Collapse
|
16
|
Ambeskovic M, Soltanpour N, Falkenberg EA, Zucchi FC, Kolb B, Metz GA. Ancestral Exposure to Stress Generates New Behavioral Traits and a Functional Hemispheric Dominance Shift. Cereb Cortex 2017; 27:2126-2138. [PMID: 26965901 PMCID: PMC5963819 DOI: 10.1093/cercor/bhw063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In a continuously stressful environment, the effects of recurrent prenatal stress (PS) accumulate across generations and generate new behavioral traits in the absence of genetic variation. Here, we investigated if PS or multigenerational PS across 4 generations differentially affect behavioral traits, laterality, and hemispheric dominance in male and female rats. Using skilled reaching and skilled walking tasks, 3 findings support the formation of new behavioral traits and shifted laterality by multigenerational stress. First, while PS in the F1 generation did not alter paw preference, multigenerational stress in the F4 generation shifted paw preference to favor left-handedness only in males. Second, multigenerational stress impaired skilled reaching and skilled walking movement abilities in males, while improving these abilities in females beyond the levels of controls. Third, the shift toward left-handedness in multigenerationally stressed males was accompanied by increased dendritic complexity and greater spine density in the right parietal cortex. Thus, cumulative multigenerational stress generates sexually dimorphic left-handedness and dominance shift toward the right hemisphere in males. These findings explain the origins of apparently heritable behavioral traits and handedness in the absence of DNA sequence variations while proposing epigenetic mechanisms.
Collapse
Affiliation(s)
- Mirela Ambeskovic
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, CanadaT1K 3M4
| | - Nasrin Soltanpour
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, CanadaT1K 3M4
| | - Erin A. Falkenberg
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, CanadaT1K 3M4
| | - Fabiola C.R. Zucchi
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, CanadaT1K 3M4
- Department of Physiological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Bryan Kolb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, CanadaT1K 3M4
| | - Gerlinde A.S. Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, CanadaT1K 3M4
| |
Collapse
|
17
|
Fisher SP, Cui N, McKillop LE, Gemignani J, Bannerman DM, Oliver PL, Peirson SN, Vyazovskiy VV. Stereotypic wheel running decreases cortical activity in mice. Nat Commun 2016; 7:13138. [PMID: 27748455 PMCID: PMC5071642 DOI: 10.1038/ncomms13138] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/07/2016] [Indexed: 01/01/2023] Open
Abstract
Prolonged wakefulness is thought to gradually increase ‘sleep need' and influence subsequent sleep duration and intensity, but the role of specific waking behaviours remains unclear. Here we report the effect of voluntary wheel running during wakefulness on neuronal activity in the motor and somatosensory cortex in mice. We find that stereotypic wheel running is associated with a substantial reduction in firing rates among a large subpopulation of cortical neurons, especially at high speeds. Wheel running also has longer-term effects on spiking activity across periods of wakefulness. Specifically, cortical firing rates are significantly higher towards the end of a spontaneous prolonged waking period. However, this increase is abolished when wakefulness is dominated by running wheel activity. These findings indicate that wake-related changes in firing rates are determined not only by wake duration, but also by specific waking behaviours. Sleep need is thought to accumulate gradually over waking periods and is associated with changes in neuronal activity. Here the authors show that in mice cortical firing rates increase between the beginning and end of wakefulness periods but this increase is not seen in waking periods with voluntary stereotypic wheel running.
Collapse
Affiliation(s)
- Simon P Fisher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Nanyi Cui
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Jessica Gemignani
- European Space Agency, Advanced Concepts Team, Keplerlaan 1, 2201 Noordwijk, The Netherlands
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
18
|
Mascetti GG. Unihemispheric sleep and asymmetrical sleep: behavioral, neurophysiological, and functional perspectives. Nat Sci Sleep 2016; 8:221-38. [PMID: 27471418 PMCID: PMC4948738 DOI: 10.2147/nss.s71970] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sleep is a behavior characterized by a typical body posture, both eyes' closure, raised sensory threshold, distinctive electrographic signs, and a marked decrease of motor activity. In addition, sleep is a periodically necessary behavior and therefore, in the majority of animals, it involves the whole brain and body. However, certain marine mammals and species of birds show a different sleep behavior, in which one cerebral hemisphere sleeps while the other is awake. In dolphins, eared seals, and manatees, unihemispheric sleep allows them to have the benefits of sleep, breathing, thermoregulation, and vigilance. In birds, antipredation vigilance is the main function of unihemispheric sleep, but in domestic chicks, it is also associated with brain lateralization or dominance in the control of behavior. Compared to bihemispheric sleep, unihemispheric sleep would mean a reduction of the time spent sleeping and of the associated recovery processes. However, the behavior and health of aquatic mammals and birds does not seem at all impaired by the reduction of sleep. The neural mechanisms of unihemispheric sleep are unknown, but assuming that the neural structures involved in sleep in cetaceans, seals, and birds are similar to those of terrestrial mammals, it is suggested that they involve the interaction of structures of the hypothalamus, basal forebrain, and brain stem. The neural mechanisms promoting wakefulness dominate one side of the brain, while those promoting sleep predominates the other side. For cetaceans, unihemispheric sleep is the only way to sleep, while in seals and birds, unihemispheric sleep events are intermingled with bihemispheric and rapid eye movement sleep events. Electroencephalogram hemispheric asymmetries are also reported during bihemispheric sleep, at awakening, and at sleep onset, as well as being associated with a use-dependent process (local sleep).
Collapse
|
19
|
Mutual information analysis of sleep EEG in detecting psycho-physiological insomnia. J Med Syst 2015; 39:43. [PMID: 25732074 DOI: 10.1007/s10916-015-0219-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/26/2015] [Indexed: 10/23/2022]
Abstract
The primary goal of this study is to state the clear changes in functional brain connectivity during all night sleep in psycho-physiological insomnia (PPI). The secondary goal is to investigate the usefulness of Mutual Information (MI) analysis in estimating cortical sleep EEG arousals for detection of PPI. For these purposes, healthy controls and patients were compared to each other with respect to both linear (Pearson correlation coefficient and coherence) and nonlinear quantifiers (MI) in addition to phase locking quantification for six sleep stages (stage.1-4, rem, wake) by means of interhemispheric dependency between two central sleep EEG derivations. In test, each connectivity estimation calculated for each couple of epoches (C3-A2 and C4-A1) was identified by the vector norm of estimation. Then, patients and controls were classified by using 10 different types of data mining classifiers for five error criteria such as accuracy, root mean squared error, sensitivity, specificity and precision. High performance in a classification through a measure will validate high contribution of that measure to detecting PPI. The MI was found to be the best method in detecting PPI. In particular, the patients had lower MI, higher PCC for all sleep stages. In other words, the lower sleep EEG synchronization suffering from PPI was observed. These results probably stand for the loss of neurons that then contribute to less complex dynamical processing within the neural networks in sleep disorders an the functional central brain connectivity is nonlinear during night sleep. In conclusion, the level of cortical hemispheric connectivity is strongly associated with sleep disorder. Thus, cortical communication quantified in all existence sleep stages might be a potential marker for sleep disorder induced by PPI.
Collapse
|
20
|
Abstract
A commonly held view is that extended wakefulness is causal for a broad spectrum of deleterious effects at molecular, cellular, network, physiological, psychological, and behavioral levels. Consequently, it is often presumed that sleep plays an active role in providing renormalization of the changes incurred during preceding waking. Not surprisingly, unequivocal empirical evidence supporting such a simple bi-directional interaction between waking and sleep is often limited or controversial. One difficulty is that, invariably, a constellation of many intricately interrelated factors, including the time of day, specific activities or behaviors during preceding waking, metabolic status and stress are present at the time of measurement, shaping the overall effect observed. In addition to this, although insufficient or disrupted sleep is thought to prevent efficient recovery of specific physiological variables, it is also often difficult to attribute specific changes to the lack of sleep proper. Furthermore, sleep is a complex phenomenon characterized by a multitude of processes, whose unique and distinct contributions to the purported functions of sleep are difficult to determine, because they are interrelated. Intensive research effort over the last decades has greatly progressed current understanding of the cellular and physiological processes underlying the regulation of vigilance states. Notably, it also highlighted the infinite complexity within both waking and sleep, and revealed a number of fundamental conceptual and technical obstacles that need to be overcome in order to fully understand these processes. A promising approach could be to view sleep not as an entity, which has specific function(s) and is subject to direct regulation, but as a manifestation of the process of metaregulation, which enables efficient moment-to-moment integration between internal and external factors, preceding history and current homeostatic needs.
Collapse
|
21
|
The energy allocation function of sleep: A unifying theory of sleep, torpor, and continuous wakefulness. Neurosci Biobehav Rev 2014; 47:122-53. [DOI: 10.1016/j.neubiorev.2014.08.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/27/2014] [Accepted: 08/02/2014] [Indexed: 12/14/2022]
|
22
|
Fisher SP, Vyazovskiy VV. Local sleep taking care of high-maintenance cortical circuits under sleep restriction. Sleep 2014; 37:1727-30. [PMID: 25364066 DOI: 10.5665/sleep.4156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Simon P Fisher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
23
|
Bellesi M, Riedner BA, Garcia-Molina GN, Cirelli C, Tononi G. Enhancement of sleep slow waves: underlying mechanisms and practical consequences. Front Syst Neurosci 2014; 8:208. [PMID: 25389394 PMCID: PMC4211398 DOI: 10.3389/fnsys.2014.00208] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/02/2014] [Indexed: 02/06/2023] Open
Abstract
Even modest sleep restriction, especially the loss of sleep slow wave activity (SWA), is invariably associated with slower electroencephalogram (EEG) activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation (tDCS) and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex (KC), a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep (SWS) enhancement.
Collapse
Affiliation(s)
- Michele Bellesi
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, USA
| | - Brady A. Riedner
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, USA
| | - Gary N. Garcia-Molina
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, USA
- Clinical Sites Research Program, Philips Group InnovationBriarcliff, NY, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|
24
|
Vyazovskiy VV, Cui N, Rodriguez AV, Funk C, Cirelli C, Tononi G. The dynamics of cortical neuronal activity in the first minutes after spontaneous awakening in rats and mice. Sleep 2014; 37:1337-47. [PMID: 25083014 DOI: 10.5665/sleep.3926] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
STUDY OBJECTIVE Upon awakening from sleep, a fully awake brain state is not reestablished immediately, but the origin and physiological properties of the distinct brain state during the first min after awakening are unclear. To investigate whether neuronal firing immediately upon arousal is different from the remaining part of the waking episode, we recorded and analyzed the dynamics of cortical neuronal activity in the first 15 min after spontaneous awakenings in freely moving rats and mice. DESIGN Intracortical recordings of the local field potential and neuronal activity in freely-moving mice and rats. SETTING Basic sleep research laboratory. PATIENTS OR PARTICIPANTS WKY adult male rats, C57BL/6 adult male mice. INTERVENTIONS N/A. MEASUREMENTS AND RESULTS In both species the average population spiking activity upon arousal was initially low, though substantial variability in the dynamics of firing activity was apparent between individual neurons. A distinct population of neurons was found that was virtually silent in the first min upon awakening. The overall lower population spiking initially after awakening was associated with the occurrence of brief periods of generalized neuronal silence (OFF periods), whose frequency peaked immediately after awakening and then progressively declined. OFF periods incidence upon awakening was independent of ongoing locomotor activity but was sensitive to immediate preceding sleep/wake history. Notably, in both rats and mice if sleep before a waking episode was enriched in rapid eye movement sleep, the incidence of OFF periods was initially higher as compared to those waking episodes preceded mainly by nonrapid eye movement sleep. CONCLUSION We speculate that an intrusion of sleep-like patterns of cortical neuronal activity into the wake state immediately after awakening may account for some of the changes in the behavior and cognitive function typical of what is referred to as sleep inertia. CITATION Vyazovskiy VV, Cui N, Rodriguez AV, Funk C, Cirelli C, Tononi G. The dynamics of cortical neuronal activity in the first minutes after spontaneous awakening in rats and mice.
Collapse
Affiliation(s)
- Vladyslav V Vyazovskiy
- University of Oxford, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Nanyi Cui
- University of Oxford, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Chadd Funk
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
25
|
Rao S, Huverserian AR, Ben Abdallah A, Lees K, Willingham MD, Burnside BA, Villafranca AJ, Glick DB, Jacobsohn E, Avidan MS. Impact of right-handedness on anaesthetic sensitivity, intra-operative awareness and postoperative mortality. Anaesthesia 2014; 69:840-6. [PMID: 24819930 DOI: 10.1111/anae.12676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 11/28/2022]
Abstract
Anatomical, neurological and behavioural research has suggested differences between the brains of right- and non-right-handed individuals, including differences in brain structure, electroencephalogram patterns, explicit memory and sleep architecture. Some studies have also found decreased longevity in left-handed individuals. We therefore aimed to determine whether handedness independently affects the relationship between volatile anaesthetic concentration and the bispectral index, the incidence of definite or possible intra-operative awareness with explicit recall, or postoperative mortality. We studied 5585 patients in this secondary analysis of data collected in a multicentre clinical trial. There were 4992 (89.4%) right-handed and 593 (10.6%) non-right-handed patients. Handedness was not associated with (a) an alteration in anaesthetic sensitivity in terms of the relationship between the bispectral index and volatile anaesthetic concentration (estimated effect on the regression relationship -0.52 parallel shift; 95% CI -1.27 to 0.23, p = 0.17); (b) the incidence of intra-operative awareness with 26/4992 (0.52%) right-handed vs 1/593 (0.17%) non-right-handed (difference = 0.35%; 95% CI -0.45 to 0.63%; p = 0.35); or (c) postoperative mortality rates (90-day relative risk for non-right-handedness 1.19, 95% CI 0.76-1.86; p = 0.45). Thus, no change in anaesthetic management is indicated for non-right-handed patients.
Collapse
Affiliation(s)
- S Rao
- Washington University School of Medicine, Saint Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rachalski A, Freyburger M, Mongrain V. Contribution of transcriptional and translational mechanisms to the recovery aspect of sleep regulation. Ann Med 2014; 46:62-72. [PMID: 24428734 DOI: 10.3109/07853890.2013.866439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sleep parallels brain functioning and mental health. Neuronal activity during wakefulness leads to a subsequent increase in sleep intensity as measured using electroencephalographic slow-wave activity (SWA; index of neuronal synchrony in the low-frequency range). Wakefulness, and particularly prolonged wakefulness, also drives important changes in brain gene expression and changes in protein regulation. The role of these two cellular mechanisms in sleep-wake regulation has typically been studied independently, and their exact contribution to SWA remains poorly defined. In this review, we highlight that many transcriptional pathways driven by sleep deprivation are associated to protein regulation. We first describe the relationship between cytokines, clock genes, and markers of sleep need with an emphasis on transcriptional processes. Observations regarding the role of protein metabolism in sleep-wake regulation are then depicted while presenting interconnections between transcriptional and translational responses driven by sleep loss. Lastly, a manner by which this integrated response can feed back on neuronal network activity to determine sleep intensity is proposed. Overall, the literature supports that a complex cross-talk between transcriptional and translational regulation during prolonged wakefulness drives the changes in sleep intensity as a function of the sleep/wake history.
Collapse
Affiliation(s)
- Adeline Rachalski
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal , Montréal, QC , Canada
| | | | | |
Collapse
|
27
|
Abstract
In the last decades a substantial knowledge about sleep mechanisms has been accumulated. However, the function of sleep still remains elusive. The difficulty with unraveling sleep's function may arise from the lack of understanding of how the multitude of processes associated with waking and sleep-from gene expression and single neuron activity to the whole brain dynamics and behavior-functionally and mechanistically relate to each other. Therefore, novel conceptual frameworks, which integrate and take into account the variety of phenomena occurring during waking and sleep at different levels, will likely lead to advances in our understanding of the function of sleep, above and beyond what merely descriptive or correlative approaches can provide. One such framework, the synaptic homeostasis hypothesis, focuses on wake- and sleep-dependent changes in synaptic strength. The core claim of this hypothesis is that learning and experience during wakefulness are associated with a net increase in synaptic strength. In turn, the proposed function of sleep is to provide synaptic renormalization, which has important implications with respect to energy needs, intracranial space, metabolic supplies, and, importantly, enables further plastic changes. In this article we review the empirical evidence for this hypothesis, which was obtained at several levels-from gene expression and cellular excitability to structural synaptic modifications and behavioral outcomes. We conclude that although the mechanisms behind the proposed role of sleep in synaptic homeostasis are undoubtedly complex, this conceptual framework offers a unique opportunity to provide mechanistic and functional explanation for many previously disparate observations, and define future research strategies.
Collapse
|
28
|
Horne J. Exercise benefits for the aging brain depend on the accompanying cognitive load: insights from sleep electroencephalogram. Sleep Med 2013; 14:1208-13. [PMID: 24051117 DOI: 10.1016/j.sleep.2013.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 01/08/2023]
Abstract
Although exercise clearly offsets aging effects on the body, its benefits for the aging brain are likely to depend on the extent that physical activity (especially locomotion) facilitates multisensory encounters, curiosity, and interactions with novel environments; this is especially true for exploratory activity, which occupies much of wakefulness for most mammals in the wild. Cognition is inseparable from physical activity, with both interlinked to promote neuroplasticity and more successful brain aging. In these respects and for humans, exercising in a static, featureless, artificially lit indoor setting contrasts with exploratory outdoor walking within a novel environment during daylight. However, little is known about the comparative benefits for the aging brain of longer-term daily regimens of this latter nature including the role of sleep, to the extent that sleep enhances neuroplasticity as shown in short-term laboratory studies. More discerning analyses of sleep electroencephalogram (EEG) slow-wave activity especially 0.5-2-Hz activity would provide greater insights into use-dependent recovery processes during longer-term tracking of these regimens and complement slower changing waking neuropsychologic and resting functional magnetic resonance imaging (fMRI) measures, including those of the brain's default mode network. Although the limited research only points to ephemeral small sleep EEG effects of pure exercise, more enduring effects seem apparent when physical activity incorporates cognitive challenges. In terms of "use it or lose it," curiosity-driven "getting out and about," encountering, interacting with, and enjoying novel situations may well provide the brain with its real exercise, further reflected in changes to the dynamics of sleep.
Collapse
Affiliation(s)
- Jim Horne
- Sleep Research Centre, Loughborough University, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
29
|
Porkka-Heiskanen T, Zitting KM, Wigren HK. Sleep, its regulation and possible mechanisms of sleep disturbances. Acta Physiol (Oxf) 2013; 208:311-28. [PMID: 23746394 DOI: 10.1111/apha.12134] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/16/2013] [Accepted: 06/04/2013] [Indexed: 12/22/2022]
Abstract
The state of sleep consists of different phases that proceed in successive, tightly regulated order through the night forming a physiological program, which for each individual is different but stabile from one night to another. Failure to accomplish this program results in feeling of unrefreshing sleep and tiredness in the morning. The program core is constructed by genetic factors but regulated by circadian rhythm and duration and intensity of day time brain activity. Many environmental factors modulate sleep, including stress, health status and ingestion of vigilance-affecting nutrients or medicines (e.g. caffeine). Acute sleep loss results in compromised cognitive performance, memory deficits, depressive mood and involuntary sleep episodes during the day. Moreover, prolonged sleep curtailment has many adverse health effects, as evidenced by both epidemiological and experimental studies. These effects include increased risk for depression, type II diabetes, obesity and cardiovascular diseases. In addition to voluntary restriction of sleep, shift work, irregular working hours, jet lag and stress are important factors that induce curtailed or bad quality sleep and/or insomnia. This review covers the current theories on the function of normal sleep and describes current knowledge on the physiologic effects of sleep loss. It provides insights into the basic mechanisms of the regulation of wakefulness and sleep creating a theoretical background for understanding different disturbances of sleep.
Collapse
Affiliation(s)
| | - K.-M. Zitting
- Institute of Biomedicine; University of Helsinki; Helsinki; Finland
| | - H.-K. Wigren
- Institute of Biomedicine; University of Helsinki; Helsinki; Finland
| |
Collapse
|
30
|
Vyazovskiy VV, Harris KD. Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat Rev Neurosci 2013; 14:443-51. [PMID: 23635871 PMCID: PMC3972489 DOI: 10.1038/nrn3494] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sleep is universal in animals, but its specific functions remain elusive. We propose that sleep's primary function is to allow individual neurons to perform prophylactic cellular maintenance. Just as muscle cells must rest after strenuous exercise to prevent long-term damage, brain cells must rest after intense synaptic activity. We suggest that periods of reduced synaptic input ('off periods' or 'down states') are necessary for such maintenance. This in turn requires a state of globally synchronized neuronal activity, reduced sensory input and behavioural immobility - the well-known manifestations of sleep.
Collapse
Affiliation(s)
- Vladyslav V. Vyazovskiy
- University of Surrey, Faculty of Health and Medical Sciences, Department of Biochemistry and Physiology, Guildford, GU2 7XH, UK
| | - Kenneth D. Harris
- University College London (UCL) Institute of Neurology, UCL Department of Neuroscience, Physiology, and Pharmacology, London, WC1E 6DE, UK
| |
Collapse
|
31
|
Behavioral and electrophysiological correlates of sleep and sleep homeostasis. Curr Top Behav Neurosci 2013; 25:1-24. [PMID: 24142866 DOI: 10.1007/7854_2013_248] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The definition of what sleep is depends on the method that is applied to record sleep. Behavioral and (electro)-physiological measures of sleep clearly overlap in mammals and birds , but it is often unclear how these two relate in other vertebrates and invertebrates. Homeostatic regulation of sleep, where the amount of sleep depends on the amount of previous waking, can be observed in physiology and behavior in all animals this was tested in. In mammals and birds, sleep is generally subdivided into two states, non-rapid eye movement (NREM) sleep and REM sleep. In mammals the combination of behavioral sleep and the changes in the slow-wave range of the NREM sleep electroencephalogram (EEG) can explain and predict the occurrence and depth of sleep in great detail. For REM sleep this is far less clear. Finally, the discovery that slow-waves in the NREM sleep EEG are influenced locally on the cortex depending on prior waking behavior is an interesting new development that asks for an adaptation of the concept of homeostatic regulation of sleep. Incorporating local sleep into models of sleep regulation is needed to obtain a comprehensive picture.
Collapse
|
32
|
Imbach LL, Werth E, Kallweit U, Sarnthein J, Scammell TE, Baumann CR. Inter-hemispheric oscillations in human sleep. PLoS One 2012; 7:e48660. [PMID: 23144920 PMCID: PMC3492490 DOI: 10.1371/journal.pone.0048660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022] Open
Abstract
Sleep is generally categorized into discrete stages based on characteristic electroencephalogram (EEG) patterns. This traditional approach represents sleep architecture in a static way, but it cannot reflect variations in sleep across time and across the cortex. To investigate these dynamic aspects of sleep, we analyzed sleep recordings in 14 healthy volunteers with a novel, frequency-based EEG analysis. This approach enabled comparison of sleep patterns with low inter-individual variability. We then implemented a new probability dependent, automatic classification of sleep states that agreed closely with conventional manual scoring during consolidated sleep. Furthermore, this analysis revealed a previously unrecognized, interhemispheric oscillation during rapid eye movement (REM) sleep. This quantitative approach provides a new way of examining the dynamic aspects of sleep, shedding new light on the physiology of human sleep.
Collapse
Affiliation(s)
- Lukas L Imbach
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
33
|
Kaushal N, Nair D, Gozal D, Ramesh V. Socially isolated mice exhibit a blunted homeostatic sleep response to acute sleep deprivation compared to socially paired mice. Brain Res 2012; 1454:65-79. [PMID: 22498175 DOI: 10.1016/j.brainres.2012.03.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 03/06/2012] [Accepted: 03/08/2012] [Indexed: 12/13/2022]
Abstract
Sleep is an important physiological process underlying maintenance of physical, mental and emotional health. Consequently, sleep deprivation (SD) is associated with adverse consequences and increases the risk for anxiety, immune, and cognitive disorders. SD is characterized by increased energy expenditure responses and sleep rebound upon recovery that are regulated by homeostatic processes, which in turn are influenced by stress. Since all previous studies on SD were conducted in a setting of social isolation, the impact of the social contextual setting is unknown. Therefore, we used a relatively stress-free SD paradigm in mice to assess the impact of social isolation on sleep, wakefulness and delta electroencephalogram (EEG) power during non-rapid eye movement (NREM) sleep. Paired or isolated C57BL/6J adult chronically-implanted male mice were exposed to SD for 6h and telemetric polygraphic recordings were conducted, including 18 h recovery. Recovery from SD in the paired group showed a significant decrease in wake and significant increase in NREM sleep and rapid eye movement (REM), and a similar, albeit less robust response occurred in the isolated mice. Delta power during NREM sleep was increased in both groups immediately following SD, but paired mice exhibited significantly higher delta power throughout the dark period. The increase in body temperature and gross motor activity observed during the SD procedure was decreased during the dark period. In both open field and elevated plus maze tests, socially isolated mice showed significantly higher anxiety than paired mice. The homeostatic processes altered by SD are differentially affected in paired and isolated mice, suggesting that the social context of isolation stress may adversely affect the quantity and quality of sleep in mice.
Collapse
Affiliation(s)
- Navita Kaushal
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
34
|
Abstract
When the brain is awake, neurons in the cerebral cortex fire irregularly and the electroencephalogram (EEG) displays low amplitude, high frequency fluctuations. After falling asleep, neurons start oscillating between ON periods, when they fire as during wake, and OFF periods, when they stop firing altogether, and the EEG displays high amplitude slow waves. But what happens to neuronal firing after a long period of wake? We show here in freely behaving rats that, after prolonged wake, cortical neurons can go briefly “OFF line” as they do in sleep, accompanied by slower waves in the local EEG. Strikingly, neurons often go OFF line in one cortical area and not in another. During these periods of “local sleep”, whose incidence increases with wake duration, rats appear awake, active, and display a wake EEG. However, they are progressively impaired in a sugar pellet reaching task. Thus, though both the EEG and behavior indicate wakefulness, local populations of neurons in the cortex may be falling asleep, with negative consequences on performance.
Collapse
|
35
|
Vyazovskiy VV, Cirelli C, Tononi G. Electrophysiological correlates of sleep homeostasis in freely behaving rats. PROGRESS IN BRAIN RESEARCH 2011; 193:17-38. [PMID: 21854953 DOI: 10.1016/b978-0-444-53839-0.00002-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The electrical activity of the brain does not only reflect the current level of arousal, ongoing behavior, or involvement in a specific task but is also influenced by what kind of activity, and how much sleep and waking occurred before. The best marker of sleep-wake history is the electroencephalogram (EEG) spectral power in slow frequencies (slow-wave activity, 0.5-4 Hz, SWA) during sleep, which is high after extended wakefulness and low after consolidated sleep. While sleep homeostasis has been well characterized in various species and experimental paradigms, the specific mechanisms underlying homeostatic changes in brain activity or their functional significance remain poorly understood. However, several recent studies in humans, rats, and computer simulations shed light on the cortical mechanisms underlying sleep regulation. First, it was found that the homeostatic changes in SWA can be fully accounted for by the variations in amplitude and slope of EEG slow waves, which are in turn determined by the efficacy of corticocortical connectivity. Specifically, the slopes of sleep slow waves were steeper in early sleep compared to late sleep. Second, the slope of cortical evoked potentials, which is an established marker of synaptic strength, was steeper after waking, and decreased after sleep. Further, cortical long-term potentiation (LTP) was partially occluded if it was induced after a period of waking, but it could again be fully expressed after sleep. Finally, multiunit activity recordings during sleep revealed that cortical neurons fired more synchronously after waking, and less so after a period of consolidated sleep. The decline of all these electrophysiological measures-the slopes of slow waves and evoked potentials and neuronal synchrony-during sleep correlated with the decline of the traditional marker of sleep homeostasis, EEG SWA. Taken together, these data suggest that homeostatic changes in sleep EEG are the result of altered neuronal firing and synchrony, which in turn arise from changes in functional neuronal connectivity.
Collapse
|
36
|
Fang G, Xia Y, Zhang C, Liu T, Yao D. Optimized single electroencephalogram channel sleep staging in rats. Lab Anim 2010; 44:312-22. [DOI: 10.1258/la.2010.009081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most studies of sleep staging in rats use both multichannels electroencephalogram (EEG) and electromyogram (EMG), so it would be convenient and meaningful in some fields if sleep staging in rats could be realized using a single EEG channel. In this study, we used a single bipolar cortical EEG electrode at the frontal–parietal location with a 0.5–30 Hz filter band and a clustering sleep-staging algorithm including seven classification parameters. The agreements between the computer and two independent raters were 96.9 ± 1.1% for Wake, 97.1 ± 1.4% for non-rapid eye movement (NREM) sleep, and 91.4 ± 2.5% for rapid eye movement (REM) sleep, and the overall agreement was 96.7 ± 0.7%. These results indicate that the accuracies of sleep staging remain high even though only a single EEG channel was used and that a system based on this scheme would be suitable for realtime and long-term studies of sleep.
Collapse
Affiliation(s)
- Guangzhan Fang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Yang Xia
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Chunpeng Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Tiejun Liu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| |
Collapse
|
37
|
Ravanbod R, Torkaman G, Esteki A. Biotribological and biomechanical changes after experimental haemarthrosis in the rabbit knee. Haemophilia 2010; 17:124-33. [PMID: 20860604 DOI: 10.1111/j.1365-2516.2010.02375.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Changes in articular cartilage after haemarthrosis have not been completely elucidated in haemophilic arthropathy. Insights into the pathophysiological mechanisms of blood-induced joint damage mainly derived from histological, inflammatory and biochemical investigations. A structure-function relationship is another reasonable way to determine the joint overall health status. Cartilage, a viscoelastic connective tissue, is at least a biphasic material that should also work under minimal friction. Pendulum friction tester measures the mechanical aspects of joint lubrication and quantifies the biotribological properties of the joint. Indentation test is an in situ method characterizing the biomechanical properties of the cartilage. Gross, biotribological and biomechanical properties were determined in a rabbit model of experimental haemarthrosis. A sample of 1 mL of fresh autologous blood was injected in the left knee of rabbit's joint twice weekly for four consecutive weeks. The right knee and animals in the control group were left untreated. After 8 days, joint perimeter, biotribological and biomechanical tests were performed. In a consistent manner, all data showed detrimental effects of the blood on the overall cartilage function under loading. Non-weight bearing and early blood aspiration seem wise to be considered after haemarthrosis.
Collapse
Affiliation(s)
- R Ravanbod
- Department of Physical Therapy, Biomechanical Research Laboratory, Tarbiat Modares University, Tehran, Tehran, Iran
| | | | | |
Collapse
|
38
|
Sleep homeostasis in the rat is preserved during chronic sleep restriction. Proc Natl Acad Sci U S A 2010; 107:15939-44. [PMID: 20696898 DOI: 10.1073/pnas.1002570107] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sleep is homeostatically regulated in all animal species that have been carefully studied so far. The best characterized marker of sleep homeostasis is slow wave activity (SWA), the EEG power between 0.5 and 4 Hz during nonrapid eye movement (NREM) sleep. SWA reflects the accumulation of sleep pressure as a function of duration and/or intensity of prior wake: it increases after spontaneous wake and short-term (3-24 h) sleep deprivation and decreases during sleep. However, recent evidence suggests that during chronic sleep restriction (SR) sleep may be regulated by both allostatic and homeostatic mechanisms. Here, we performed continuous, almost completely artifact-free EEG recordings from frontal, parietal, and occipital cortex in freely moving rats (n = 11) during and after 5 d of SR. During SR, rats were allowed to sleep during the first 4 h of the light period (4S(+)) but not during the following 20 h (20S(-)). During the daily 20S(-) most sleep was prevented, whereas the number of short (<20 s) sleep attempts increased. Low-frequency EEG power (1-6 Hz) in both sleep and wake also increased during 20S(-), most notably in the occipital cortex. In all animals NREM SWA increased above baseline levels during the 4S(+) periods and in post-SR recovery. The SWA increase was more pronounced in frontal cortex, and its magnitude was determined by the efficiency of SR. Analysis of cumulative slow wave energy demonstrated that the loss of SWA during SR was compensated by the end of the second recovery day. Thus, the homeostatic regulation of sleep is preserved under conditions of chronic SR.
Collapse
|
39
|
Fang G, Xia Y, Lai Y, You Z, Yao D. Long-range correlations of different EEG derivations in rats: sleep stage-dependent generators may play a key role. Physiol Meas 2010; 31:795-808. [PMID: 20453294 DOI: 10.1088/0967-3334/31/6/005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For the electroencephalogram (EEG), topographic differences in the long-range temporal correlations would imply that these signals might be affected by specific mechanisms related to the generation of a given neuronal process. So the properties of the generators of various EEG oscillations might be investigated by their spatial differences of the long-range temporal correlations. In the present study, these correlations were characterized with respect to their topography during different vigilance states by detrended fluctuation analysis (DFA). The results indicated that (1) most of the scaling exponents acquired from different EEG derivations for various oscillations were significantly different in each vigilance state; these differences might be resulted from the different quantities and different locations of sleep stage-dependent generators of various neuronal processes; (2) there might be multiple generators of delta and theta over the brain and many of them were sleep stage-dependent; (3) the best site of the frontal electrode in a fronto-parietal bipolar electrode for sleep staging might be above the anterior midline cortex. We suggest that DFA analysis can be used to explore the properties of the generators of a given neuronal oscillation, and the localizations of these generators if more electrodes are involved.
Collapse
Affiliation(s)
- Guangzhan Fang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | | | | | | | | |
Collapse
|
40
|
Vyazovskiy VV, Olcese U, Lazimy YM, Faraguna U, Esser SK, Williams JC, Cirelli C, Tononi G. Cortical firing and sleep homeostasis. Neuron 2009; 63:865-78. [PMID: 19778514 DOI: 10.1016/j.neuron.2009.08.024] [Citation(s) in RCA: 495] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 08/21/2009] [Accepted: 08/21/2009] [Indexed: 01/05/2023]
Abstract
The need to sleep grows with the duration of wakefulness and dissipates with time spent asleep, a process called sleep homeostasis. What are the consequences of staying awake on brain cells, and why is sleep needed? Surprisingly, we do not know whether the firing of cortical neurons is affected by how long an animal has been awake or asleep. Here, we found that after sustained wakefulness cortical neurons fire at higher frequencies in all behavioral states. During early NREM sleep after sustained wakefulness, periods of population activity (ON) are short, frequent, and associated with synchronous firing, while periods of neuronal silence are long and frequent. After sustained sleep, firing rates and synchrony decrease, while the duration of ON periods increases. Changes in firing patterns in NREM sleep correlate with changes in slow-wave activity, a marker of sleep homeostasis. Thus, the systematic increase of firing during wakefulness is counterbalanced by staying asleep.
Collapse
|
41
|
Killgore WDS, Lipizzi EL, Grugle NL, Killgore DB, Balkin TJ. Handedness Correlates with Actigraphically Measured Sleep in a Controlled Environment. Percept Mot Skills 2009; 109:395-400. [DOI: 10.2466/pms.109.2.395-400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The relationship between hand preference and duration of sleep was assessed in 40 healthy subjects using self-report estimates, sleep diaries, and wrist activity monitors during an uncontrolled 7-day at-home phase and during a controlled overnight stay in a sleep laboratory. Handedness was unrelated to any index of sleep duration when assessed in the unregulated home environment. In the controlled environment of the laboratory, however, greater right-hand dominance was positively correlated with more minutes of obtained sleep and greater sleep efficiency. Findings were consistent with previous reports which suggest measures of brain lateralization may be related to sleep and health but further suggest that these relationships may be easily obscured by extraneous environmental factors when assessed in an uncontrolled setting.
Collapse
|
42
|
Hanlon EC, Faraguna U, Vyazovskiy VV, Tononi G, Cirelli C. Effects of skilled training on sleep slow wave activity and cortical gene expression in the rat. Sleep 2009; 32:719-29. [PMID: 19544747 DOI: 10.1093/sleep/32.6.719] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVE The best characterized marker of sleep homeostasis is the amount of slow wave activity (SWA, 0.5-4 Hz) during NREM sleep. SWA increases as a function of previous waking time and declines during sleep, but the underlying mechanisms remain unclear. We have suggested that SWA homeostasis is linked to synaptic potentiation associated with learning during wakefulness. Indeed, studies in rodents and humans found that SWA increases after manipulations that presumably enhance synaptic strength, but the evidence remains indirect. Here we trained rats in skilled reaching, a task known to elicit long-term potentiation in the trained motor cortex, and immediately after learning measured SWA and cortical protein levels of c-fos and Arc, 2 activity-dependent genes involved in motor learning. DESIGN Intracortical local field potential recordings and training on reaching task. SETTING Basic sleep research laboratory. PATIENTS OR PARTICIPANTS Long Evans adult male rats. INTERVENTIONS N/A. MEASUREMENTS AND RESULTS SWA increased post-training in the trained cortex (the frontal cortex contralateral to the limb used to learn the task), with smaller or no increase in other cortical areas. This increase was reversible within 1 hour, specific to NREM sleep, and positively correlated with changes in performance during the prior training session, suggesting that it reflects plasticity and not just motor activity. Fos and Arc levels were higher in the trained relative to untrained motor cortex immediately after training, but this asymmetry was no longer present after 1 hour of sleep. CONCLUSION Learning to reach specifically affects gene expression in the trained motor cortex and, in the same area, increases sleep need as measured by a local change in SWA.
Collapse
Affiliation(s)
- Erin C Hanlon
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | | | | | | | | |
Collapse
|
43
|
Fang G, Zhang C, Xia Y, Lai Y, Liu T, You Z, Yao D. The effect of different EEG derivations on sleep staging in rats: the frontal midline–parietal bipolar electrode for sleep scoring. Physiol Meas 2009; 30:589-601. [DOI: 10.1088/0967-3334/30/7/005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Rector DM, Schei JL, Van Dongen HPA, Belenky G, Krueger JM. Physiological markers of local sleep. Eur J Neurosci 2009; 29:1771-8. [PMID: 19473232 DOI: 10.1111/j.1460-9568.2009.06717.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Substantial evidence suggests that brain regions that have been disproportionately used during waking will require a greater intensity and/or duration of subsequent sleep. For example, rats use their whiskers in the dark and their eyes during the light, and this is manifested as a greater magnitude of electroencephalogram (EEG) slow-wave activity in the somatosensory and visual cortex during sleep in the corresponding light and dark periods respectively. The parsimonious interpretation of such findings is that sleep is distributed across local brain regions and is use-dependent. The fundamental properties of sleep can also be experimentally defined locally at the level of small neural assemblies such as cortical columns. In this view, sleep is orchestrated, but not fundamentally driven, by central mechanisms. We explore two physiological markers of local, use-dependent sleep, namely, an electrical marker apparent as a change in the size and shape of an electrical evoked response, and a metabolic marker evident as an evoked change in blood volume and oxygenation delivered to activated tissue. Both markers, applied to cortical columns, provide a means to investigate physiological mechanisms for the distributed homeostatic regulation of sleep, and may yield new insights into the consequences of sleep loss and sleep pathologies on waking brain function.
Collapse
Affiliation(s)
- David M Rector
- Sleep and Performance Research Center and Program in Neuroscience, Washington State University, Spokane, WA 99210-1495, USA.
| | | | | | | | | |
Collapse
|
45
|
Minamisawa G, Takahashi N, Matsuki N, Ikegaya Y. Laterality of neocortical slow-wave oscillations in anesthetized mice. Neurosci Res 2009; 64:240-2. [PMID: 19428706 DOI: 10.1016/j.neures.2009.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/15/2009] [Accepted: 02/16/2009] [Indexed: 11/15/2022]
Abstract
In the slow-wave (SW) state, the vast majority of cortical neurons exhibit mostly synchronized oscillatory activity. In this study, we examined the right-left hemispheric difference in slow-wave timings in urethane-anesthetized mice. We found that interhemispheric cross-correlograms of local field potentials (LFPs) peaked asymmetrically. Double in vivo whole-cell patch-clamp recordings also revealed the interhemispheric temporal disparity of slow wave-relevant synaptic barrages. The data suggest the hemispheric laterality in the slow wave origin.
Collapse
Affiliation(s)
- Genki Minamisawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
46
|
Abstract
Interleukin-1 beta (IL1) and tumor necrosis factor alpha (TNF) promote non-rapid eye movement sleep under physiological and inflammatory conditions. Additional cytokines are also likely involved but evidence is insufficient to conclude that they are sleep regulatory substances. Many of the symptoms induced by sleep loss, e.g. sleepiness, fatigue, poor cognition, enhanced sensitivity to pain, can be elicited by injection of exogenous IL1 or TNF. We propose that ATP, released during neurotransmission, acting via purine P2 receptors on glia releases IL1 and TNF. This mechanism may provide the means by which the brain keeps track of prior usage history. IL1 and TNF in turn act on neurons to change their intrinsic properties and thereby change input-output properties (i.e. state shift) of the local network involved. Direct evidence indicates that cortical columns oscillate between states, one of which shares properties with organism sleep. We conclude that sleep is a local use-dependent process influenced by cytokines and their effector molecules such as nitric oxide, prostaglandins and adenosine.
Collapse
Affiliation(s)
- James M Krueger
- Sleep and Performance Research Center, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA.
| |
Collapse
|
47
|
Abstract
Fur seals (pinnipeds of the family Otariidae) display two fundamentally different patterns of sleep: bilaterally symmetrical slow-wave sleep (BSWS) as seen in terrestrial mammals and slow-wave sleep (SWS) with a striking interhemispheric EEG asymmetry (asymmetrical SWS or ASWS) as observed in cetaceans. We examined the effect of preventing fur seals from sleeping in BSWS on their pattern of sleep. Four northern fur seals (Callorhinus ursinus) kept on land were sleep deprived (SD) of BSWS for 3 consecutive days, followed by 1 recovery day. EEG asymmetry was evaluated both visually and by EEG spectral analysis. SD significantly reduced the percentage of high-voltage BSWS (on average to 14% of baseline) and REM sleep (to 60% of baseline) whereas the percentage of low-voltage BSWS was not affected. During the SD period, all seals repeatedly tried to enter BSWS (109-411 attempts per day). SD significantly increased the amount of ASWS in each seal when scored visually (to 116-235% of baseline) and the difference in the EEG slow-wave activity (spectral power in the range of 1.2-4.0 Hz) between the two hemispheres (117-197%) as measured by the asymmetry index. High-voltage BSWS and the amount of SWS in each hemisphere were significantly elevated during the first 4 h of recovery. These data indicate that fur seals display a homeostatic response to the loss of SWS and that alternating SWS in the two hemispheres does not adequately compensate for the absence of BSWS.
Collapse
|
48
|
Scharf MT, Naidoo N, Zimmerman JE, Pack AI. The energy hypothesis of sleep revisited. Prog Neurobiol 2008; 86:264-80. [PMID: 18809461 DOI: 10.1016/j.pneurobio.2008.08.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 06/08/2008] [Accepted: 08/27/2008] [Indexed: 01/09/2023]
Abstract
One of the proposed functions of sleep is to replenish energy stores in the brain that have been depleted during wakefulness. Benington and Heller formulated a version of the energy hypothesis of sleep in terms of the metabolites adenosine and glycogen. They postulated that during wakefulness, adenosine increases and astrocytic glycogen decreases reflecting the increased energetic demand of wakefulness. We review recent studies on adenosine and glycogen stimulated by this hypothesis. We also discuss other evidence that wakefulness is an energetic challenge to the brain including the unfolded protein response, the electron transport chain, NPAS2, AMP-activated protein kinase, the astrocyte-neuron lactate shuttle, production of reactive oxygen species and uncoupling proteins. We believe the available evidence supports the notion that wakefulness is an energetic challenge to the brain, and that sleep restores energy balance in the brain, although the mechanisms by which this is accomplished are considerably more complex than envisaged by Benington and Heller.
Collapse
Affiliation(s)
- Matthew T Scharf
- Center for Sleep and Respiratory Neurobiology, University of Pennsylvania School of Medicine, Translational Research Building, Suite 2100, 125 S. 31st Street, Philadelphia, PA 19104-3403, USA.
| | | | | | | |
Collapse
|
49
|
Abstract
Why we sleep remains one of the enduring unanswered questions in biology. At its core, sleep can be defined behaviorally as a homeostatically regulated state of reduced movement and sensory responsiveness. The cornerstone of sleep studies in terrestrial mammals, including humans, has been the measurement of coordinated changes in brain activity during sleep measured using the electroencephalogram (EEG). Yet among a diverse set of animals, these EEG sleep traits can vary widely and, in some cases, are absent, raising questions as to whether they define a universal, or even essential, feature of sleep. Over the past decade, behaviorally defined sleep-like states have been identified in a series of genetic model organisms, including fish, flies and worms. Genetic analyses in these systems are revealing a remarkable conservation in the underlying mechanisms controlling sleep behavior. Taken together, these studies suggest an ancient origin for sleep and raise the possibility that model organism genetics may reveal the molecular mechanisms that guide sleep and wake.
Collapse
Affiliation(s)
- Ravi Allada
- Department of Neurobiology and Physiology, Northwestern University, 2205 Tech Dr., #2-160, Evanston, Illinois 60208, USA
| | - Jerome M. Siegel
- Neurobiology Research 151A3, VA GLAHS Sepulveda, Department of Psychiatry and Brain Research Institute, UCLA School of Medicine, North Hills, California 91343, USA
| |
Collapse
|