1
|
Upchurch CM, Combe CL, Knowlton CJ, Rousseau VG, Gasparini S, Canavier CC. Long-Term Inactivation of Sodium Channels as a Mechanism of Adaptation in CA1 Pyramidal Neurons. J Neurosci 2022; 42:3768-3782. [PMID: 35332085 PMCID: PMC9087813 DOI: 10.1523/jneurosci.1914-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/28/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Many hippocampal CA1 pyramidal cells function as place cells, increasing their firing rate when a specific place field is traversed. The dependence of CA1 place cell firing on position within the place field is asymmetric. We investigated the source of this asymmetry by injecting triangular depolarizing current ramps to approximate the spatially tuned, temporally diffuse depolarizing synaptic input received by these neurons while traversing a place field. Ramps were applied to CA1 pyramidal neurons from male rats in vitro (slice electrophysiology) and in silico (multicompartmental NEURON model). Under control conditions, CA1 neurons fired more action potentials at higher frequencies on the up-ramp versus the down-ramp. This effect was more pronounced for dendritic compared with somatic ramps. We incorporated a four-state Markov scheme for NaV1.6 channels into our model and calibrated the spatial dependence of long-term inactivation according to the literature; this spatial dependence was sufficient to explain the difference in dendritic versus somatic ramps. Long-term inactivation reduced the firing frequency by decreasing open-state occupancy, and reduced spike amplitude during trains by decreasing occupancy in the closed state, which comprises the available pool. PKC activator phorbol-dibutyrate, known to reduce NaV long-term inactivation, removed spike amplitude attenuation in vitro more visibly in dendrites and greatly reduced adaptation, consistent with our hypothesized mechanism. Intracellular application of a peptide inducing long-term NaV inactivation elicited spike amplitude attenuation during spike trains in the soma and greatly enhanced adaptation. Our synergistic experimental/computational approach shows that long-term inactivation of NaV1.6 is a key mechanism of adaptation in CA1 pyramidal cells.SIGNIFICANCE STATEMENT The hippocampus plays an important role in certain types of memory, in part through context-specific firing of "place cells"; these cells were first identified in rodents as being particularly active when an animal is in a specific location in an environment, called the place field of that neuron. In this in vitro/in silico study, we found that long-term inactivation of sodium channels causes adaptation in the firing rate that could potentially skew the firing of CA1 hippocampal pyramidal neurons earlier within a place field. A computational model of the sodium channel revealed differential regulation of spike frequency and amplitude by long-term inactivation, which may be a general mechanism for spike frequency adaptation in the CNS.
Collapse
Affiliation(s)
- Carol M Upchurch
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Crescent L Combe
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Christopher J Knowlton
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Valery G Rousseau
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Sonia Gasparini
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Carmen C Canavier
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
2
|
Gonzalez KC, Losonczy A, Negrean A. Dendritic Excitability and Synaptic Plasticity In Vitro and In Vivo. Neuroscience 2022; 489:165-175. [PMID: 34998890 PMCID: PMC9392867 DOI: 10.1016/j.neuroscience.2021.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
Much of our understanding of dendritic and synaptic physiology comes from in vitro experimentation, where the afforded mechanical stability and convenience of applying drugs allowed patch-clamping based recording techniques to investigate ion channel distributions, their gating kinetics, and to uncover dendritic integrative and synaptic plasticity rules. However, with current efforts to study these questions in vivo, there is a great need to translate existing knowledge between in vitro and in vivo experimental conditions. In this review, we identify discrepancies between in vitro and in vivo ionic composition of extracellular media and discuss how changes in ionic composition alter dendritic excitability and plasticity induction. Here, we argue that under physiological in vivo ionic conditions, dendrites are expected to be more excitable and the threshold for synaptic plasticity induction to be lowered. Consequently, the plasticity rules described in vitro vary significantly from those implemented in vivo.
Collapse
Affiliation(s)
- Kevin C Gonzalez
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA.
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA; Kavli Institute for Brain Science, New York, NY, USA.
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA.
| |
Collapse
|
3
|
Rotterman TM, Carrasco DI, Housley SN, Nardelli P, Powers RK, Cope TC. Axon initial segment geometry in relation to motoneuron excitability. PLoS One 2021; 16:e0259918. [PMID: 34797870 PMCID: PMC8604372 DOI: 10.1371/journal.pone.0259918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
The axon initial segment (AIS) responsible for action potential initiation is a dynamic structure that varies and changes together with neuronal excitability. Like other neuron types, alpha motoneurons in the mammalian spinal cord express heterogeneity and plasticity in AIS geometry, including length (AISl) and distance from soma (AISd). The present study aimed to establish the relationship of AIS geometry with a measure of intrinsic excitability, rheobase current, that varies by 20-fold or more among normal motoneurons. We began by determining whether AIS length or distance differed for motoneurons in motor pools that exhibit different activity profiles. Motoneurons sampled from the medial gastrocnemius (MG) motor pool exhibited values for average AISd that were significantly greater than that for motoneurons from the soleus (SOL) motor pool, which is more readily recruited in low-level activities. Next, we tested whether AISd covaried with intrinsic excitability of individual motoneurons. In anesthetized rats, we measured rheobase current intracellularly from MG motoneurons in vivo before labeling them for immunohistochemical study of AIS structure. For 16 motoneurons sampled from the MG motor pool, this combinatory approach revealed that AISd, but not AISl, was significantly related to rheobase, as AIS tended to be located further from the soma on motoneurons that were less excitable. Although a causal relation with excitability seems unlikely, AISd falls among a constellation of properties related to the recruitability of motor units and their parent motoneurons.
Collapse
Affiliation(s)
- Travis M. Rotterman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
- * E-mail: (TMR); (TCC)
| | - Darío I. Carrasco
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Stephen N. Housley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Paul Nardelli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Randall K. Powers
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States of America
| | - Timothy C. Cope
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
- W.H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
- * E-mail: (TMR); (TCC)
| |
Collapse
|
4
|
Knowlton CJ, Ziouziou TI, Hammer N, Roeper J, Canavier CC. Inactivation mode of sodium channels defines the different maximal firing rates of conventional versus atypical midbrain dopamine neurons. PLoS Comput Biol 2021; 17:e1009371. [PMID: 34534209 PMCID: PMC8480832 DOI: 10.1371/journal.pcbi.1009371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/29/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
Two subpopulations of midbrain dopamine (DA) neurons are known to have different dynamic firing ranges in vitro that correspond to distinct projection targets: the originally identified conventional DA neurons project to the dorsal striatum and the lateral shell of the nucleus accumbens, whereas an atypical DA population with higher maximum firing frequencies projects to prefrontal regions and other limbic regions including the medial shell of nucleus accumbens. Using a computational model, we show that previously identified differences in biophysical properties do not fully account for the larger dynamic range of the atypical population and predict that the major difference is that originally identified conventional cells have larger occupancy of voltage-gated sodium channels in a long-term inactivated state that recovers slowly; stronger sodium and potassium conductances during action potential firing are also predicted for the conventional compared to the atypical DA population. These differences in sodium channel gating imply that longer intervals between spikes are required in the conventional population for full recovery from long-term inactivation induced by the preceding spike, hence the lower maximum frequency. These same differences can also change the bifurcation structure to account for distinct modes of entry into depolarization block: abrupt versus gradual. The model predicted that in cells that have entered depolarization block, it is much more likely that an additional depolarization can evoke an action potential in conventional DA population. New experiments comparing lateral to medial shell projecting neurons confirmed this model prediction, with implications for differential synaptic integration in the two populations. We developed a theoretical and mathematical framework that could explain the major electrophysiological differences between the conventional midbrain dopamine (DA) neurons with a low maximum firing rate, and the more recently identified atypical DA neurons. Testable predictions from this framework were then verified with in vitro patch-clamp recordings from DA neurons with identified phenotypes and projection targets. Since different subpopulations of DA neurons participate in different circuits, and these circuits are likely differentially dysregulated in diseases such as addiction, Parkinson disease, and schizophrenia, it is important to identify the differences of their intrinsic electrophysiological properties as a prelude to developing more precisely targeted therapies.
Collapse
Affiliation(s)
- Christopher J. Knowlton
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | | | - Niklas Hammer
- Institut für Neurophysiologie, Goethe University, Frankfurt, Germany
| | - Jochen Roeper
- Institut für Neurophysiologie, Goethe University, Frankfurt, Germany
| | - Carmen C. Canavier
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
5
|
Wadsworth PA, Singh AK, Nguyen N, Dvorak NM, Tapia CM, Russell WK, Stephan C, Laezza F. JAK2 regulates Nav1.6 channel function via FGF14 Y158 phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118786. [PMID: 32599005 PMCID: PMC7984254 DOI: 10.1016/j.bbamcr.2020.118786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Protein interactions between voltage-gated sodium (Nav) channels and accessory proteins play an essential role in neuronal firing and plasticity. However, a surprisingly limited number of kinases have been identified as regulators of these molecular complexes. We hypothesized that numerous as-of-yet unidentified kinases indirectly regulate the Nav channel via modulation of the intracellular fibroblast growth factor 14 (FGF14), an accessory protein with numerous unexplored phosphomotifs and required for channel function in neurons. METHODS Here we present results from an in-cell high-throughput screening (HTS) against the FGF14: Nav1.6 complex using >3000 diverse compounds targeting an extensive range of signaling pathways. Regulation by top kinase targets was then explored using in vitro phosphorylation, biophysics, mass-spectrometry and patch-clamp electrophysiology. RESULTS Compounds targeting Janus kinase 2 (JAK2) were over-represented among HTS hits. Phosphomotif scans supported by mass spectrometry revealed FGF14Y158, a site previously shown to mediate both FGF14 homodimerization and interactions with Nav1.6, as a JAK2 phosphorylation site. Following inhibition of JAK2, FGF14 homodimerization increased in a manner directly inverse to FGF14:Nav1.6 complex formation, but not in the presence of the FGF14Y158A mutant. Patch-clamp electrophysiology revealed that through Y158, JAK2 controls FGF14-dependent modulation of Nav1.6 channels. In hippocampal CA1 pyramidal neurons, the JAK2 inhibitor Fedratinib reduced firing by a mechanism that is dependent upon expression of FGF14. CONCLUSIONS These studies point toward a novel mechanism by which levels of JAK2 in neurons could directly influence firing and plasticity by controlling the FGF14 dimerization equilibrium, and thereby the availability of monomeric species for interaction with Nav1.6.
Collapse
Affiliation(s)
- Paul A Wadsworth
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Nghi Nguyen
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, USA
| | - Nolan M Dvorak
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Cynthia M Tapia
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Clifford Stephan
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX, USA; Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
6
|
James TF, Nenov MN, Wildburger NC, Lichti CF, Luisi J, Vergara F, Panova-Electronova NI, Nilsson CL, Rudra JS, Green TA, Labate D, Laezza F. The Nav1.2 channel is regulated by GSK3. Biochim Biophys Acta Gen Subj 2015; 1850:832-44. [PMID: 25615535 DOI: 10.1016/j.bbagen.2015.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/17/2014] [Accepted: 01/14/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Phosphorylation plays an essential role in regulating voltage-gated sodium (Na(v)) channels and excitability. Yet, a surprisingly limited number of kinases have been identified as regulators of Na(v) channels. We posited that glycogen synthase kinase 3 (GSK3), a critical kinase found associated with numerous brain disorders, might directly regulate neuronal Na(v) channels. METHODS We used patch-clamp electrophysiology to record sodium currents from Na(v)1.2 channels stably expressed in HEK-293 cells. mRNA and protein levels were quantified with RT-PCR, Western blot, or confocal microscopy, and in vitro phosphorylation and mass spectrometry to identify phosphorylated residues. RESULTS We found that exposure of cells to GSK3 inhibitor XIII significantly potentiates the peak current density of Na(v)1.2, a phenotype reproduced by silencing GSK3 with siRNA. Contrarily, overexpression of GSK3β suppressed Na(v)1.2-encoded currents. Neither mRNA nor total protein expression was changed upon GSK3 inhibition. Cell surface labeling of CD4-chimeric constructs expressing intracellular domains of the Na(v)1.2 channel indicates that cell surface expression of CD4-Na(v)1.2 C-tail was up-regulated upon pharmacological inhibition of GSK3, resulting in an increase of surface puncta at the plasma membrane. Finally, using in vitro phosphorylation in combination with high resolution mass spectrometry, we further demonstrate that GSK3β phosphorylates T(1966) at the C-terminal tail of Na(v)1.2. CONCLUSION These findings provide evidence for a new mechanism by which GSK3 modulates Na(v) channel function via its C-terminal tail. GENERAL SIGNIFICANCE These findings provide fundamental knowledge in understanding signaling dysfunction common in several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Thomas F James
- Department of Pharmacology & Toxicology, USA; Neuroscience Graduate Program, USA
| | | | - Norelle C Wildburger
- Department of Pharmacology & Toxicology, USA; Neuroscience Graduate Program, USA
| | | | | | | | | | | | - Jai S Rudra
- Department of Pharmacology & Toxicology, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, USA; Center for Addiction Research, USA
| | | | - Fernanda Laezza
- Department of Pharmacology & Toxicology, USA; Center for Addiction Research, USA; Center for Biomedical Engineering, USA; Mitchell Center for Neurodegenerative Diseases, USA.
| |
Collapse
|
7
|
Buskila Y, Morley JW, Tapson J, van Schaik A. The adaptation of spike backpropagation delays in cortical neurons. Front Cell Neurosci 2013; 7:192. [PMID: 24198759 PMCID: PMC3812867 DOI: 10.3389/fncel.2013.00192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022] Open
Abstract
We measured the action potential backpropagation delays in apical dendrites of layer V pyramidal neurons of the somatosensory cortex under different stimulation regimes that exclude synaptic involvement. These delays showed robust features and did not correlate to either transient change in the stimulus strength or low frequency stimulation of suprathreshold membrane oscillations. However, our results indicate that backpropagation delays correlate with high frequency (>10 Hz) stimulation of membrane oscillations, and that persistent suprathreshold sinusoidal stimulation injected directly into the soma results in an increase of the backpropagation delay, suggesting an intrinsic adaptation of the backpropagating action potential (bAP), which does not involve any synaptic modifications. Moreover, the calcium chelator BAPTA eliminated the alterations in the backpropagation delays, strengthening the hypothesis that increased calcium concentration in the dendrites modulates dendritic excitability and can impact the backpropagation velocity. These results emphasize the impact of dendritic excitability on bAP velocity along the dendritic tree, which affects the precision of the bAP arrival at the synapse during specific stimulus regimes, and is capable of shifting the extent and polarity of synaptic strength during suprathreshold synaptic processes such as spike time-dependent plasticity.
Collapse
Affiliation(s)
- Yossi Buskila
- Bioelectronics and Neuroscience Group, The MARCS Institute, University of Western Sydney Penrith, NSW, Australia
| | | | | | | |
Collapse
|
8
|
Isaeva E, Hernan A, Isaev D, Holmes GL. Thrombin facilitates seizures through activation of persistent sodium current. Ann Neurol 2012; 72:192-8. [PMID: 22926852 DOI: 10.1002/ana.23587] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE An epileptic seizure is frequently the presenting sign of intracerebral hemorrhage (ICH) caused by stroke, head trauma, hypertension, and a wide spectrum of disorders. However, the cellular mechanisms responsible for occurrence of seizures during ICH have not been established. During intracerebral bleeding, blood constituents enter the neuronal tissue and produce both an acute and a delayed effect on brain functioning. Among the blood components, only thrombin has been shown to evoke seizures immediately after entering brain tissue. In the present study, we tested the hypothesis that thrombin increases neuronal excitability in the immature brain through alteration of voltage-gated sodium channels. METHODS The thrombin effect on neuronal excitability and voltage-gated sodium channels was assessed using extracellular and intracellular recording techniques in the hippocampal slice preparation of immature rats. RESULTS We show that thrombin increased neuronal excitability in the immature hippocampus in an N-methyl-D-aspartate-independent manner. Application of thrombin did not alter transient voltage-gated sodium channels and action potential threshold. However, thrombin significantly depolarized the membrane potential and produced a hyperpolarizing shift of tetrodotoxin-sensitive persistent voltage-gated sodium channel activation. This effect of thrombin was attenuated by application of protease-activated receptor-1 and protein kinase C antagonists. INTERPRETATION Our data indicate that thrombin amplifies the persistent voltage-gated sodium current affecting resting membrane potential and seizure threshold at the network level. Our results provide a novel explanation as to how ICH in newborns results in seizures, which may provide avenues for therapeutic intervention in the prevention of post-ICH seizures.
Collapse
Affiliation(s)
- Elena Isaeva
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Lebanon, NH, USA.
| | | | | | | |
Collapse
|
9
|
Gasparini S. Distance- and activity-dependent modulation of spike back-propagation in layer V pyramidal neurons of the medial entorhinal cortex. J Neurophysiol 2011; 105:1372-9. [PMID: 21209358 DOI: 10.1152/jn.00014.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Layer V principal neurons of the medial entorhinal cortex receive the main hippocampal output and relay processed information to the neocortex. Despite the fundamental role hypothesized for these neurons in memory replay and consolidation, their dendritic features are largely unknown. High-speed confocal and two-photon Ca(2+) imaging coupled with somatic whole cell patch-clamp recordings were used to investigate spike back-propagation in these neurons. The Ca(2+) transient associated with a single back-propagating action potential was considerably smaller at distal dendritic locations (>200 μm from the soma) compared with proximal ones. Perfusion of Ba(2+) (150 μM) or 4-aminopyridine (2 mM) to block A-type K(+) currents significantly increased the amplitude of the distal, but not proximal, Ca(2+) transients, which is strong evidence for an increased density of these channels at distal dendritic locations. In addition, the Ca(2+) transients decreased with each subsequent spike in a 20-Hz train; this activity-dependent decrease was also more prominent at more distal locations and was attenuated by the perfusion of the protein kinase C activator phorbol-di-acetate. These data are consistent with a phosphorylation-dependent control of back-propagation during trains of action potentials, attributable mainly to an increase in the time constant of recovery from voltage-dependent inactivation of dendritic Na(+) channels. In summary, dendritic Na(+) and A-type K(+) channels control spike back-propagation in layer V entorhinal neurons. Because the activity of these channels is highly modulated, the extent of the dendritic Ca(2+) influx is as well, with important functional implications for dendritic integration and associative synaptic plasticity.
Collapse
Affiliation(s)
- Sonia Gasparini
- Neuroscience Center, Louisiana State University Health Science Center, 2020 Gravier St., New Orleans, LA 70112, USA.
| |
Collapse
|
10
|
Abstract
Active invasion of the dendritic tree by action potentials (APs) generated in the axon is essential for associative synaptic plasticity and neuronal ensemble formation. In cortical pyramidal cells (PCs), this AP back-propagation is supported by dendritic voltage-gated Na+ (Nav) channels, whose molecular identity is unknown. Using a highly sensitive electron microscopic immunogold technique, we revealed the presence of the Nav1.6 subunit in hippocampal CA1 PC proximal and distal dendrites. Here, the subunit density is lower by a factor of 35 to 80 than that found in axon initial segments. A gradual decrease in Nav1.6 density along the proximodistal axis of the dendritic tree was also detected without any labeling in dendritic spines. Our results reveal the characteristic subcellular distribution of the Nav1.6 subunit, identifying this molecule as a key substrate enabling dendritic excitability.
Collapse
Affiliation(s)
- Andrea Lorincz
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| |
Collapse
|
11
|
Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation. Nat Neurosci 2009; 12:996-1002. [DOI: 10.1038/nn.2359] [Citation(s) in RCA: 502] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 05/27/2009] [Indexed: 11/09/2022]
|
12
|
Deng HM, Yin ST, Yan D, Tang ML, Li CC, Chen JT, Wang M, Ruan DY. Effects of EGCG on voltage-gated sodium channels in primary cultures of rat hippocampal CA1 neurons. Toxicology 2008; 252:1-8. [PMID: 18706964 DOI: 10.1016/j.tox.2008.07.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/26/2008] [Accepted: 07/17/2008] [Indexed: 11/24/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), the main active component of green tea, is commonly known for its beneficial properties at low doses. On the other hand, little is known about the adverse effects of EGCG. Voltage-gated sodium channel (VGSC) is responsible for both initiation and propagation of action potentials of the neurons in the hippocampus and throughout the central nervous system (CNS). In this study, the effects of EGCG on voltage-gated sodium channel currents (I(Na)) were investigated in rat primary cultures of hippocampal CA1 neurons via the conventional whole-cell patch-clamp technique. We found that I(Na) was not affected by EGCG at the concentration of 0.1microM, but was completely blocked by EGCG at the concentration of 400microM and higher, and EGCG reduced the amplitudes of I(Na) in a concentration-dependent manner in the range of 0.1-400microM. Furthermore, our results also showed that at the concentration of 100microM, EGCG was known to have the following performances: (1) it decreased the activation threshold and the voltage at which the maximum I(Na) current was evoked, caused negative shifts of I(Na) steady-state activation curve. (2) It enlarged I(Na) tail-currents. (3) It induced a left shift of the steady-state inactivation. (4) It reduced fraction of available sodium channels. (5) It delayed the activation of I(Na) in a voltage-dependent manner. (6) It prolonged the time course of the fast inactivation of sodium channels. (7) It accelerated the activity-dependent attenuation of I(Na). On the basis of these findings, we propose that EGCG could impair certain physiological functions of VGSCs, which may contribute, directly or indirectly, to EGCG's effects in CNS.
Collapse
Affiliation(s)
- Hong-Min Deng
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tang M, Xing T, Zeng J, Wang H, Li C, Yin S, Yan D, Deng H, Liu J, Wang M, Chen J, Ruan DY. Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:915-22. [PMID: 18629314 PMCID: PMC2453160 DOI: 10.1289/ehp.11225] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 03/31/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND The growing applications of nanotechnologic products, such as quantum dots (QDs), increase the likelihood of exposure. Furthermore, their accumulation in the bioenvironment and retention in cells and tissues are arousing increasing worries about the potentially harmful side effects of these nanotechnologic products. Previous studies concerning QD cytotoxicity focused on the reactive oxygen species produced by QDs. Cellular calcium homeostasis dysregulation caused by QDs may be also responsible for QD cytotoxicity. Meanwhile the interference of QDs with voltage-gated sodium channel (VGSC) current (I(Na)) may lead to changes in electrical activity and worsen neurotoxicologic damage. OBJECTIVE We aimed to investigate the potential for neurotoxicity of cadmium selenium QDs in a hippocampal neuronal culture model, focusing on cytoplasmic calcium levels and VGSCs function. METHODS We used confocal laser scanning and standard whole-cell patch clamp techniques. RESULTS We found that a) QDs induced neuron death dose dependently; b) cytoplasmic calcium levels were elevated for an extended period by QD treatment, which was due to both extracellular calcium influx and internal calcium release from endoplasmic reticulum; and c) QD treatment enhanced activation and inactivation of I(Na), prolonged the time course of activation, slowed I(Na) recovery, and reduced the fraction of available VGSCs. CONCLUSION Results in this study provide new insights into QD toxicology and reveal potential risks of their future applications in biology and medicine.
Collapse
Affiliation(s)
| | | | - Jie Zeng
- Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | | | | | | | | | | | | | | | | | - Di-Yun Ruan
- School of Life Science and
- Address correspondence to D.-Y. Ruan, School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230027, P.R. China. Telephone: 86 551 3606374. Fax: 86 551 3601443. E-mail:
| |
Collapse
|
14
|
Sjöström PJ, Rancz EA, Roth A, Häusser M. Dendritic excitability and synaptic plasticity. Physiol Rev 2008; 88:769-840. [PMID: 18391179 DOI: 10.1152/physrev.00016.2007] [Citation(s) in RCA: 428] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Most synaptic inputs are made onto the dendritic tree. Recent work has shown that dendrites play an active role in transforming synaptic input into neuronal output and in defining the relationships between active synapses. In this review, we discuss how these dendritic properties influence the rules governing the induction of synaptic plasticity. We argue that the location of synapses in the dendritic tree, and the type of dendritic excitability associated with each synapse, play decisive roles in determining the plastic properties of that synapse. Furthermore, since the electrical properties of the dendritic tree are not static, but can be altered by neuromodulators and by synaptic activity itself, we discuss how learning rules may be dynamically shaped by tuning dendritic function. We conclude by describing how this reciprocal relationship between plasticity of dendritic excitability and synaptic plasticity has changed our view of information processing and memory storage in neuronal networks.
Collapse
Affiliation(s)
- P Jesper Sjöström
- Wolfson Institute for Biomedical Research and Department of Physiology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
15
|
Johnston D, Narayanan R. Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci 2008; 31:309-16. [PMID: 18471907 DOI: 10.1016/j.tins.2008.03.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/18/2008] [Accepted: 03/25/2008] [Indexed: 02/02/2023]
Abstract
Santiago Ramón y Cajal had referred to neurons as the 'mysterious butterflies of the soul.' Wings of these butterflies--their dendrites--were traditionally considered as passive integrators of synaptic information. Owing to a growing body of experimental evidence, it is now widely accepted that these wings are colorful, endowed with a plethora of active conductances, with each family of these butterflies made of distinct hues and shades. Furthermore, rapidly evolving recent literature also provides direct and indirect demonstrations for activity-dependent plasticity of these active conductances, pointing toward chameleonic adaptability in these hues. These experimental findings firmly establish the immense computational power of a single neuron, and thus constitute a turning point toward the understanding of various aspects of neuronal information processing. In this brief historical perspective, we track important milestones in the chameleonic transmogrification of these mysterious butterflies.
Collapse
Affiliation(s)
- Daniel Johnston
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
16
|
Cai Y, Gavornik JP, Cooper LN, Yeung LC, Shouval HZ. Effect of stochastic synaptic and dendritic dynamics on synaptic plasticity in visual cortex and hippocampus. J Neurophysiol 2006; 97:375-86. [PMID: 17035360 DOI: 10.1152/jn.00895.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Various forms of synaptic plasticity, including spike timing-dependent plasticity, can be accounted for by calcium-dependent models of synaptic plasticity. However, recent results in which synaptic plasticity is induced by multi-spike protocols cannot simply be accounted for by linear superposition of plasticity due to spike pairs or by existing calcium-dependent models. In this paper, we show that multi-spike protocols can be accounted for if, in addition to the dynamics of back-propagating action potentials, stochastic synaptic dynamics are taken into account. We show that a stochastic implementation can account for the data better than a deterministic implementation and is also more robust. Our results demonstrate that differences between experimental results obtained in hippocampus and visual cortex can be accounted for by the different synaptic and dendritic dynamics in these two systems.
Collapse
Affiliation(s)
- Yidao Cai
- Department of Neurobiology and Anatomy, The University of Texas Medical School, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Depending on the behavioral state, hippocampal CA1 pyramidal neurons receive very distinct patterns of synaptic input and likewise produce very different output patterns. We have used simultaneous dendritic and somatic recordings and multisite glutamate uncaging to investigate the relationship between synaptic input pattern, the form of dendritic integration, and action potential output in CA1 neurons. We found that when synaptic input arrives asynchronously or highly distributed in space, the dendritic arbor performs a linear integration that allows the action potential rate and timing to vary as a function of the quantity of the input. In contrast, when synaptic input arrives synchronously and spatially clustered, the dendritic compartment receiving the clustered input produces a highly nonlinear integration that leads to an action potential output that is extraordinarily precise and invariant. We also present evidence that both of these forms of information processing may be independently engaged during the two distinct behavioral states of the hippocampus such that individual CA1 pyramidal neurons could perform two different state-dependent computations: input strength encoding during theta states and feature detection during sharp waves.
Collapse
|
18
|
Yue C, Remy S, Su H, Beck H, Yaari Y. Proximal persistent Na+ channels drive spike afterdepolarizations and associated bursting in adult CA1 pyramidal cells. J Neurosci 2006; 25:9704-20. [PMID: 16237175 PMCID: PMC6725731 DOI: 10.1523/jneurosci.1621-05.2005] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In many principal brain neurons, the fast, all-or-none Na+ spike initiated at the proximal axon is followed by a slow, graded after depolarization (ADP). The spike ADP is critically important in determining the firing mode of many neurons; large ADPs cause neurons to fire bursts of spikes rather than solitary spikes. Nonetheless, not much is known about how and where spike ADPs are initiated. We addressed these questions in adult CA1 pyramidal cells, which manifest conspicuous somatic spike ADPs and an associated propensity for bursting, using sharp and patch microelectrode recordings in acutely isolated hippocampal slices and single neurons. Voltage-clamp commands mimicking spike waveforms evoked transient Na+ spike currents that declined quickly after the spike but were followed by substantial sustained Na+ spike after currents. Drugs that blocked the persistent Na+ current (INaP), markedly suppressed the sustained Na+ spike after currents, as well as spike ADPs and associated bursting. Ca2+ spike after currents were much smaller, and reducing them had no noticeable effect on the spike ADPs. Truncating the apical dendrites affected neither spike ADPs nor the firing modes of these neurons. Application of INaP blockers to truncated neurons, or their focal application to the somatic region of intact neurons, suppressed spike ADPs and associated bursting, whereas their focal application to distal dendrites did not. We conclude that the somatic spike ADPs are generated predominantly by persistent Na+ channels located at or near the soma. Through this action, proximal INaP critically determines the firing mode and spike output of adult CA1 pyramidal cells.
Collapse
Affiliation(s)
- Cuiyong Yue
- Department of Physiology, Institute of Medical Sciences, Hebrew University-Hadassah Faculty of Medicine, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
19
|
Ibarz JM, Makarova I, Herreras O. Relation of apical dendritic spikes to output decision in CA1 pyramidal cells during synchronous activation: a computational study. Eur J Neurosci 2006; 23:1219-33. [PMID: 16553784 DOI: 10.1111/j.1460-9568.2006.04615.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies on the initiation and propagation of dendritic spikes have modified the classical view of postsynaptic integration. Earlier we reported that subthreshold currents and spikes recruited by synaptic currents play a critical role in defining outputs following synchronous activation. Experimental factors strongly condition these currents due to their nonlinear behaviour. Hence, we have performed a detailed parametric study in a CA1 pyramidal cell model to explore how different variables interact and initiate dendritic spiking, and how they influence cell output. The input pattern, the relative excitability of axon and dendrites, the presence/modulation of voltage-dependent channels, and inhibition were cross analysed. Subthreshold currents and spikes on synaptically excited branches fired spikes in other branches to jointly produce different modalities of apical shaft spiking with a variable impact on cell output. Synchronous activation initiated a varying number and temporal scatter of firing branches that produced in the apical shaft-soma axis nonpropagating spikes, pseudosaltatory or continuous forward conduction, or backpropagation. As few as 6-10 local spikes within a time window of 2 ms ensure cell output. However, the activation mode varied extremely when two or more variables were cross-analysed, becoming rather unpredictable when all the variables were considered. Spatially clustered inputs and upper modulation of dendritic Na(+) or Ca(2+) electrogenesis favour apical decision. In contrast, inhibition biased the output decision toward the axon and switched between dendritic firing modes. We propose that dendrites can discriminate input patterns and decide immediate cell output depending on the particular state of a variety of endogenous parameters.
Collapse
Affiliation(s)
- José M Ibarz
- Department of Investigación, Hospital Ramón y Cajal, Madrid, Spain
| | | | | |
Collapse
|
20
|
Wang L, Yan D, Gu Y, Sun LG, Ruan DY. Effects of extracellular δ-aminolaevulinic acid on sodium currents in acutely isolated rat hippocampal CA1 neurons. Eur J Neurosci 2005; 22:3122-8. [PMID: 16367778 DOI: 10.1111/j.1460-9568.2005.04471.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of delta-aminolaevulinic acid (ALA) on voltage-gated sodium channel (VGSC) currents (I(Na)) in acutely isolated hippocampal CA1 neurons from 10- to 12-day-old Wistar rats were examined by using the whole-cell patch-clamp technique under voltage-clamp conditions. ALA from 0.01 microm to 20 microm was applied to the recorded neurons. Low concentrations of ALA (0.01-1.0 microM) increased I(Na) amplitude, whereas high concentrations of ALA (5.0-20.0 microM) decreased it. The average I(Na) amplitude reached a maximum of 117.4 +/- 3.9% (n = 9, P < 0.05) with 0.1 microM ALA, and decreased to 78.1 +/- 3.8% (n = 13, P < 0.05) with 10 microm ALA. ALA shifted the steady-state activation and inactivation curves of I(Na) in the hyperpolarizing direction with different V0.5, suggesting that ALA could depress the opening threshold of the voltage-gated sodium channel (VGSC) and thus increase the excitability of neurons through facilitating the opening of VGSC. The time course of recovery from inactivation was significantly prolonged at both low and high concentrations of ALA, whereas either low or high concentrations of ALA had no significant effect on the attenuation of I(Na) during stimulation at 5 Hz, indicating that the effect of ALA on VGSC is state-independent. Furthermore, we found that application of ascorbic acid, which blocks pro-oxidative effects in neurons, could prevent the increase of I(Na) amplitude at low concentrations of ALA. Baclofen, an agonist of GABAb receptors, induced some similar effects to ALA on VGSC, whereas bicuculline, an antagonist of GABAa receptors, could not prevent ALA-induced effects on VGSC. These results suggested that ALA regulated VGSC mainly through its pro-oxidative effects and GABAb receptor-mediated effects.
Collapse
Affiliation(s)
- Lang Wang
- School of Life Science and Institute of Polar Environment, University of Science & Technology of China, Hefei, Anhui 230027, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Gu Y, Wang L, Xiao C, Guo F, Ruan DY. Effects of lead on voltage-gated sodium channels in rat hippocampal CA1 neurons. Neuroscience 2005; 133:679-90. [PMID: 15896915 DOI: 10.1016/j.neuroscience.2005.02.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 02/17/2005] [Accepted: 02/18/2005] [Indexed: 11/22/2022]
Abstract
In this study, the effects of lead (Pb2+) on voltage-gated sodium channel currents (INa) were investigated in acutely dissociated rat hippocampal CA1 neurons using the conventional whole-cell patch-clamp technique. We found that Pb2+ reduced the amplitudes of INa in a concentration-dependent manner, and the effect could be washed out by extracellular application of 3 mM EGTA. The results also showed that at the concentration of 100 microM, Pb2+ decreased the activation threshold and the voltage at which the maximum INa current was evoked and caused negative shifts of INa steady-state activation curve, and enlarged INa tail-currents; Pb2+ induces a left shift of the steady-state inactivation curve, and delayed the recovery of INa from inactivation, and reduced the fraction of available sodium channels; Pb2+ delayed the activation of INa in a concentration- and voltage-dependent manner, and prolonged the time course of the fast inactivation of sodium channels; activity-dependent attenuation of INa was not altered by Pb2+. It was suggested that Pb2+ might exert its effects on sodium channels by binding a specific site on the extracellular side of sodium channels and dragging the IIS4 voltage sensor outwardly. The interaction of Pb2+ with voltage-dependent sodium channels may lead to change in electrical activity and contribute to worsen the neurotoxicological damage.
Collapse
Affiliation(s)
- Y Gu
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | | | | | | | | |
Collapse
|
22
|
Gasparini S, Migliore M, Magee JC. On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J Neurosci 2005; 24:11046-56. [PMID: 15590921 PMCID: PMC6730267 DOI: 10.1523/jneurosci.2520-04.2004] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk and proximal tuft regions and realistic computer modeling, we have determined that highly synchronized and moderately clustered inputs are required for dendritic spike initiation: approximately 50 synaptic inputs spread over 100 mum of the apical trunk/tuft need to be activated within 3 msec. Dendritic spikes are characterized by a more depolarized voltage threshold than at the soma [-48 +/- 1 mV (n = 30) vs -56 +/- 1 mV (n = 7), respectively] and are mainly generated and shaped by dendritic Na+ and K+ currents. The relative contribution of AMPA and NMDA currents is also important in determining the actual spatiotemporal requirements for dendritic spike initiation. Once initiated, dendritic spikes can easily reach the soma, but their propagation is only moderately strong, so that it can be modulated by physiologically relevant factors such as changes in the V(m) and the ionic composition of the extracellular solution. With effective spike propagation, an extremely short-latency neuronal output is produced for greatly reduced input levels. Therefore, dendritic spikes function as efficient detectors of specific input patterns, ensuring that the neuronal response to high levels of input synchrony is a precisely timed action potential output.
Collapse
Affiliation(s)
- Sonia Gasparini
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans, Louisiana 70112, USA.
| | | | | |
Collapse
|
23
|
Abstract
Dendrites are equipped with a plethora of voltage-gated ion channels that greatly enrich the computational and storage capacity of neurons. The excitability of dendrites and dendritic function display plasticity under diverse circumstances such as neuromodulation, adaptation, learning and memory, trauma, or disorders. This adaptability arises from alterations in the biophysical properties or the expression levels of voltage-gated ion channels-induced by the activity of neurotransmitters, neuromodulators, and second-messenger cascades. In this review we discuss how this plasticity of dendritic excitability could alter information transfer and processing within dendrites, neurons, and neural networks under physiological and pathological conditions.
Collapse
Affiliation(s)
- Andreas Frick
- Baylor College of Medicine, Division of Neuroscience, Houston, Texas 77030, USA.
| | | |
Collapse
|
24
|
Clancy CE, Kass RS. Theoretical investigation of the neuronal Na+ channel SCN1A: abnormal gating and epilepsy. Biophys J 2004; 86:2606-14. [PMID: 15041696 PMCID: PMC1304107 DOI: 10.1016/s0006-3495(04)74315-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epilepsy is a paroxysmal neurological disorder resulting from abnormal cellular excitability and is a common cause of disability. Recently, some forms of idiopathic epilepsy have been causally related to genetic mutations in neuronal ion channels. To understand disease mechanisms, it is crucial to understand how a gene defect can disrupt channel gating, which in turn can affect complex cellular dynamic processes. We develop a theoretical Markovian model of the neuronal Na+ channel NaV1.1 to explore and explain gating mechanisms underlying cellular excitability and physiological and pathophysiological mechanisms of abnormal neuronal excitability in the context of epilepsy. Genetic epilepsy has been shown to result from both mutations that give rise to a gain of channel function and from those that reduce the Na+ current. These data may suggest that abnormal excitation can result from both hyperexcitability and hypoexcitability, the mechanisms of which are presumably distinct, and as yet elusive. Revelation of the molecular origins will allow for translation into targeted pharmacological interventions that must be developed to treat syndromes resulting from divergent mechanisms. This work represents a first step in developing a comprehensive theoretical model to investigate the molecular mechanisms underlying runaway excitation that cause epilepsy.
Collapse
Affiliation(s)
- Colleen E Clancy
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | |
Collapse
|
25
|
Frick A, Magee J, Johnston D. LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat Neurosci 2004; 7:126-35. [PMID: 14730307 DOI: 10.1038/nn1178] [Citation(s) in RCA: 334] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 12/16/2003] [Indexed: 11/09/2022]
Abstract
The propagation and integration of signals in the dendrites of pyramidal neurons is regulated, in part, by the distribution and biophysical properties of voltage-gated ion channels. It is thus possible that any modification of these channels in a specific part of the dendritic tree might locally alter these signaling processes. Using dendritic and somatic whole-cell recordings, combined with calcium imaging in rat hippocampal slices, we found that the induction of long-term potentiation (LTP) was accompanied by a local increase in dendritic excitability that was dependent on the activation of NMDA receptors. These changes favored the back-propagation of action potentials into this dendritic region with a subsequent boost in the Ca(2+) influx. Dendritic cell-attached patch recordings revealed a hyperpolarized shift in the inactivation curve of transient, A-type K(+) currents that can account for the enhanced excitability. These results suggest an important mechanism associated with LTP for shaping signal processing and controlling dendritic function.
Collapse
Affiliation(s)
- Andreas Frick
- Division of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
26
|
Loftis JL, King DD, Colbert CM. Kinase-dependent loss of Na+ channel slow-inactivation in rat CA1 hippocampal pyramidal cell dendrites after brief exposure to convulsants. Eur J Neurosci 2003; 18:1029-32. [PMID: 12956702 DOI: 10.1046/j.1460-9568.2003.02832.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Na+ channels in the dendrites of rat CA1 pyramidal neurons display a profound activity-dependent inactivation, termed slow inactivation, that limits excitability in the dendrites even at low physiological rates of firing. The magnitude of this slow inactivation is powerfully modulated by a protein kinase C-dependent process. Because activation of kinases is a rapid and common feature of a number of seizure models, we hypothesized that a loss of slow inactivation of Na+ channels might exacerbate other changes in excitability. Thus, we observed the effects of a brief (5 min) chemical convulsant treatment on Na+ currents and action potentials in hippocampal slices. We found that slow inactivation decreased significantly and remained decreased for at least 30 min after return to control conditions. Pretreatment with either chelerythrine, a protein kinase C inhibitor, or U0126, a mitogen-activated protein kinase/extracellular signal regulated kinase kinase (MEK) inhibitor, blocked this reduction of slow inactivation. These results demonstrate that a brief period of hyperexcitability leads to a rapid, protein kinase-dependent loss of slow inactivation of Na+ channels that would contribute to and perhaps prolong the hyperexcitable state.
Collapse
Affiliation(s)
- Jordan L Loftis
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5513, USA
| | | | | |
Collapse
|
27
|
Bernard C, Johnston D. Distance-dependent modifiable threshold for action potential back-propagation in hippocampal dendrites. J Neurophysiol 2003; 90:1807-16. [PMID: 12966178 DOI: 10.1152/jn.00286.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In hippocampal CA1 pyramidal neurons, action potentials generated in the axon back-propagate in a decremental fashion into the dendritic tree where they affect synaptic integration and synaptic plasticity. The amplitude of back-propagating action potentials (b-APs) is controlled by various biological factors, including membrane potential (Vm). We report that, at any dendritic location (x), the transition from weak (small-amplitude b-APs) to strong (large-amplitude b-APs) back-propagation occurs when Vm crosses a threshold potential, x. When Vm > x, back-propagation is strong (mostly active). Conversely, when Vm < x, back-propagation is weak (mostly passive). x varies linearly with the distance (x) from the soma. Close to the soma, x << resting membrane potential (RMP) and a strong hyperpolarization of the membrane is necessary to switch back-propagation from strong to weak. In the distal dendrites, x >> RMP and a strong depolarization is necessary to switch back-propagation from weak to strong. At approximately 260 micrometer from the soma, 260 approximately RMP, suggesting that in this dendritic region back-propagation starts to switch from strong to weak. x depends on the availability or state of Na+ and K+ channels. Partial blockade or phosphorylation of K+ channels decreases x and thereby increases the portion of the dendritic tree experiencing strong back-propagation. Partial blockade or inactivation of Na+ channels has the opposite effect. We conclude that x is a parameter that captures the onset of the transition from weak to strong back-propagation. Its modification may alter dendritic function under physiological and pathological conditions by changing how far large action potentials back-propagate in the dendritic tree.
Collapse
Affiliation(s)
- C Bernard
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
28
|
Carr DB, Day M, Cantrell AR, Held J, Scheuer T, Catterall WA, Surmeier DJ. Transmitter modulation of slow, activity-dependent alterations in sodium channel availability endows neurons with a novel form of cellular plasticity. Neuron 2003; 39:793-806. [PMID: 12948446 DOI: 10.1016/s0896-6273(03)00531-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Voltage-gated Na+ channels are major targets of G protein-coupled receptor (GPCR)-initiated signaling cascades. These cascades act principally through protein kinase-mediated phosphorylation of the channel alpha subunit. Phosphorylation reduces Na+ channel availability in most instances without producing major alterations of fast channel gating. The nature of this change in availability is poorly understood. The results described here show that both GPCR- and protein kinase-dependent reductions in Na+ channel availability are mediated by a slow, voltage-dependent process with striking similarity to slow inactivation, an intrinsic gating mechanism of Na+ channels. This process is strictly associated with neuronal activity and develops over seconds, endowing neurons with a novel form of cellular plasticity shaping synaptic integration, dendritic electrogenesis, and repetitive discharge.
Collapse
Affiliation(s)
- David B Carr
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
A dynamic dendritic refractory period regulates burst discharge in the electrosensory lobe of weakly electric fish. J Neurosci 2003. [PMID: 12598641 DOI: 10.1523/jneurosci.23-04-01524.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Na+-dependent spikes initiate in the soma or axon hillock region and actively backpropagate into the dendritic arbor of many central neurons. Inward currents underlying spike discharge are offset by outward K+ currents that repolarize a spike and establish a refractory period to temporarily prevent spike discharge. We show in a sensory neuron that somatic and dendritic K+ channels differentially control burst discharge by regulating the extent to which backpropagating dendritic spikes can re-excite the soma. During repetitive discharge a progressive broadening of dendritic spikes promotes a dynamic increase in dendritic spike refractory period. A leaky integrate-and-fire model shows that spike bursts are terminated when a decreasing somatic interspike interval and an increasing dendritic spike refractory period synergistically act to block backpropagation. The time required for the somatic interspike interval to intersect with dendritic refractory period determines burst frequency, a time that is regulated by somatic and dendritic spike repolarization. Thus, K+ channels involved in spike repolarization can efficiently control the pattern of spike output by establishing a soma-dendritic interaction that invokes dynamic shifts in dendritic spike properties.
Collapse
|
30
|
Baskys A, Segal J, Fang L. Neuroprotective properties of topiramate in organotypic hippocampal cultures: implications for treatment of vascular and other dementias. Drug Dev Res 2002. [DOI: 10.1002/ddr.10091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Serotonin receptor activation inhibits sodium current and dendritic excitability in prefrontal cortex via a protein kinase C-dependent mechanism. J Neurosci 2002. [PMID: 12177182 DOI: 10.1523/jneurosci.22-16-06846.2002] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The serotonin (5-HT) innervation of the prefrontal cortex (PFC) exerts a powerful modulatory influence on neuronal activity in this cortical region, although the mechanisms through which 5-HT modulates cellular activity are unclear. Voltage-dependent Na+ channels are one potential target of 5-HT receptor signaling that have wide-ranging effects on activity. Molecular and electrophysiological studies were used to test this potential linkage. Single cell RT-PCR profiling revealed that the vast majority of pyramidal neurons expressed detectable levels of 5-HT2a and/or 5-HT2c receptor mRNA with half of the cells expressing both mRNAs. Whole-cell voltage-clamp recordings of dissociated pyramidal neurons showed that 5-HT2a/c receptor activation reduced rapidly inactivating Na+ currents by reducing maximal current amplitude and shifting fast inactivation voltage dependence. These effects were mediated by G(q) activation of phospholipase C, leading to activation of protein kinase C (PKC). 5-HT2a/c receptor stimulation also reduced the amplitude of persistent Na+ current without altering its activation voltage dependence. This modulation was also mediated by PKC. Although 5-HT(2a,c) receptor activation did not affect somatic action potentials of layer V pyramidal neurons in PFC slices, it did reduce the amplitude of action potentials backpropagating into the apical dendrite. These findings show that 5-HT2a,c receptor activation reduces dendritic excitability and may negatively modulate activity-dependent dendritic synaptic plasticity.
Collapse
|
32
|
Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. J Neurosci 2002. [PMID: 12077183 DOI: 10.1523/jneurosci.22-12-04860.2002] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated mitogen-activated protein kinase (MAPK) modulation of dendritic, A-type K+ channels in CA1 pyramidal neurons in the hippocampus. Activation of cAMP-dependent protein kinase A (PKA) and protein kinase C (PKC) leads to an increase in the amplitude of backpropagating action potentials in distal dendrites through downregulation of transient K+ channels in CA1 pyramidal neurons in the hippocampus. We show here that both of these signaling pathways converge on extracellular-regulated kinases (ERK)-specific MAPK in mediating this reduction in dendritic K+ current, which is confirmed, in parallel, by biochemical assays using phosphospecific antibodies against the ppERK and pKv4.2. Furthermore, immunostaining indicates dendritic localization of ppERK and pKv4.2. Taken together, these results demonstrate that dendritic, A-type K+ channels are dually regulated by PKA and PKC through a common downstream pathway involving MAPK, and the modulation of these K+ channels may be accounted for by the phosphorylation of Kv4.2 subunits.
Collapse
|
33
|
Abstract
The mammalian olfactory bulb is a geometrically organized signal-processing array that utilizes lateral inhibitory circuits to transform spatially patterned inputs. A major part of the lateral circuitry consists of extensively radiating secondary dendrites of mitral cells. These dendrites are bidirectional cables: they convey granule cell inhibitory input to the mitral soma, and they conduct backpropagating action potentials that trigger glutamate release at dendrodendritic synapses. This study examined how mitral cell firing is affected by inhibitory inputs at different distances along the secondary dendrite and what happens to backpropagating action potentials when they encounter inhibition. These are key questions for understanding the range and spatial dependence of lateral signaling between mitral cells. Backpropagating action potentials were monitored in vitro by simultaneous somatic and dendritic whole cell recording from individual mitral cells in rat olfactory bulb slices, and inhibition was applied focally to dendrites by laser flash photolysis of caged GABA (2.5-microm spot). Photolysis was calibrated to activate conductances similar in magnitude to GABA(A)-mediated inhibition from granule cell spines. Under somatic voltage-clamp with CsCl dialysis, uncaging GABA onto the soma, axon initial segment, primary and secondary dendrites evoked bicuculline-sensitive currents (up to -1.4 nA at -60 mV; reversal at approximatety 0 mV). The currents exhibited a patchy distribution along the axon and dendrites. In current-clamp recordings, repetitive firing driven by somatic current injection was blocked by uncaging GABA on the secondary dendrite approximately 140 microm from the soma, and the blocking distance decreased with increasing current. In the secondary dendrites, backpropagated action potentials were measured 93-152 microm from the soma, where they were attenuated by a factor of 0.75 +/- 0.07 (mean +/- SD) and slightly broadened (1.19 +/- 0.10), independent of activity (35-107 Hz). Uncaging GABA on the distal dendrite had little effect on somatic spikes but attenuated backpropagating action potentials by a factor of 0.68 +/- 0.15 (0.45-0.60 microJ flash with 1-mM caged GABA); attenuation was localized to a zone of width 16.3 +/- 4.2 microm around the point of GABA release. These results reveal the contrasting actions of inhibition at different locations along the dendrite: proximal inhibition blocks firing by shunting somatic current, whereas distal inhibition can impose spatial patterns of dendrodendritic transmission by locally attenuating backpropagating action potentials. The secondary dendrites are designed with a high safety factor for backpropagation, to facilitate reliable transmission of the outgoing spike-coded data stream, in parallel with the integration of inhibitory inputs.
Collapse
Affiliation(s)
- Graeme Lowe
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104-3308, USA.
| |
Collapse
|
34
|
Gasparini S, Magee JC. Phosphorylation-dependent differences in the activation properties of distal and proximal dendritic Na+ channels in rat CA1 hippocampal neurons. J Physiol 2002; 541:665-72. [PMID: 12068031 PMCID: PMC2290356 DOI: 10.1113/jphysiol.2002.020503] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
At distal dendritic locations, the threshold for action potential generation is higher and the amplitude of back-propagating spikes is decreased. To study whether these characteristics depend upon Na+ channels, their voltage-dependent properties at proximal and distal dendritic locations were compared in CA1 hippocampal neurons. Distal Na+ channels activated at more hyperpolarized voltages than proximal (half-activation voltages were -20.4 +/- 2.4 mV vs. -12.0 +/- 1.7 mV for distal and proximal patches, respectively, n = 16, P < 0.01), while inactivation curves were not significantly different. The resting membrane potential of distal regions also appeared to be slightly but consistently more hyperpolarized than their proximal counterpart. Staurosporine, a non-selective protein kinase inhibitor, shifted the activation curves for both proximal and distal Na+ channels to the left so that they overlapped and also caused the resting potentials to be comparable. Staurosporine affected neither the inactivation kinetics of Na+ currents nor the reversal potential for Na+. These results suggest that the difference in the voltage dependence of activation of distal and proximal Na+ channels can be attributed to a different phosphorylation state at the two locations.
Collapse
Affiliation(s)
- Sonia Gasparini
- Neuroscience Center, Louisiana State University Health Science Center, New Orleans 70112, USA.
| | | |
Collapse
|
35
|
Dong XP, Xu TL. Radix paeoniae rubra suppression of sodium current in acutely dissociated rat hippocampal CA1 neurons. Brain Res 2002; 940:1-9. [PMID: 12020868 DOI: 10.1016/s0006-8993(02)02555-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of Radix paeoniae rubra (RPR) on voltage-gated sodium channel (VGSC) currents (I(Na)) was examined in freshly isolated rat hippocampal CA1 neurons using whole-cell patch-clamp technique under voltage-clamp conditions. RPR suppressed I(Na) without affecting the current activation, inactivation and deactivation. The amplitude of I(Na) decreased by approximately 18.4% within a few seconds of 0.8 mg/ml RPR exposure. RPR (0.8 mg/ml) shifted the steady-state inactivation curves of I(Na) to negative potentials, with hyperpolarizing direction shift of V(1/2) of 10.0 mV. The time course of I(Na) recovery from inactivation was prolonged significantly by 0.8 mg/ml RPR. RPR (0.8 mg/ml) also enhanced the activity-dependent attenuation of I(Na) and decreased the fraction of activated channels. These results suggested that RPR suppressed hippocampal CA1 I(Na) by shifting the inactivation curve in hyperpolarizing direction, slowing the recovery time course from inactivation, enhancing the activity-dependent attenuation and decreasing the number of activatable channels. RPR suppression on I(Na) might predict the protective effect during brain ischemia in hippocampal CA1 neurons.
Collapse
Affiliation(s)
- Xian-Ping Dong
- Laboratory of Receptor Pharmacology, Department of Neurobiology and Biophysics, School of Life Sciences, University of Science and Technology of China, P.O. Box 4, 230027, Hefei, PR China
| | | |
Collapse
|
36
|
Golding NL, Kath WL, Spruston N. Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. J Neurophysiol 2001; 86:2998-3010. [PMID: 11731556 DOI: 10.1152/jn.2001.86.6.2998] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In hippocampal CA1 pyramidal neurons, action potentials are typically initiated in the axon and backpropagate into the dendrites, shaping the integration of synaptic activity and influencing the induction of synaptic plasticity. Despite previous reports describing action-potential propagation in the proximal apical dendrites, the extent to which action potentials invade the distal dendrites of CA1 pyramidal neurons remains controversial. Using paired somatic and dendritic whole cell recordings, we find that in the dendrites proximal to 280 microm from the soma, single backpropagating action potentials exhibit <50% attenuation from their amplitude in the soma. However, in dendritic recordings distal to 300 microm from the soma, action potentials in most cells backpropagated either strongly (26-42% attenuation; n = 9/20) or weakly (71-87% attenuation; n = 10/20) with only one cell exhibiting an intermediate value (45% attenuation). In experiments combining dual somatic and dendritic whole cell recordings with calcium imaging, the amount of calcium influx triggered by backpropagating action potentials was correlated with the extent of action-potential invasion of the distal dendrites. Quantitative morphometric analyses revealed that the dichotomy in action-potential backpropagation occurred in the presence of only subtle differences in either the diameter of the primary apical dendrite or branching pattern. In addition, action-potential backpropagation was not dependent on a number of electrophysiological parameters (input resistance, resting potential, voltage sensitivity of dendritic spike amplitude). There was, however, a striking correlation of the shape of the action potential at the soma with its amplitude in the dendrite; larger, faster-rising, and narrower somatic action potentials exhibited more attenuation in the distal dendrites (300-410 microm from the soma). Simple compartmental models of CA1 pyramidal neurons revealed that a dichotomy in action-potential backpropagation could be generated in response to subtle manipulations of the distribution of either sodium or potassium channels in the dendrites. Backpropagation efficacy could also be influenced by local alterations in dendritic side branches, but these effects were highly sensitive to model parameters. Based on these findings, we hypothesize that the observed dichotomy in dendritic action-potential amplitude is conferred primarily by differences in the distribution, density, or modulatory state of voltage-gated channels along the somatodendritic axis.
Collapse
Affiliation(s)
- N L Golding
- Department of Neurobiology and Physiology, Institute for Neuroscience, Illinois 60208-3520, USA
| | | | | |
Collapse
|
37
|
Henze DA, Buzsáki G. Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity. Neuroscience 2001; 105:121-30. [PMID: 11483306 DOI: 10.1016/s0306-4522(01)00167-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Understanding the mechanisms that influence the initiation of action potentials in single neurons is an important step in determining the way information is processed by neural networks. Therefore, we have investigated the properties of action potential thresholds for hippocampal neurons using in vivo intracellular recording methods in Sprague-Dawley rats. The use of in vivo recording has the advantage of the presence of naturally occurring spatio-temporal patterns of synaptic activity which lead to action potential initiation. We have found there is a large variability in the threshold voltage (5.7+/-1.7 mV; n=22) of individual action potentials. We have identified two separate factors that contribute to this variation in threshold: (1) fast rates of membrane potential change prior to the action potential are associated with more hyperpolarized thresholds (increased excitability) and (2) the occurrence of other action potentials in the 1 s prior to any given action potential is associated with more depolarized thresholds (decreased excitability). We suggest that prior action potentials cause sodium channel inactivation that recovers with approximately a 1-s time constant and thus depresses action potential threshold during this period.
Collapse
Affiliation(s)
- D A Henze
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | | |
Collapse
|
38
|
Abstract
A fundamental problem in neuroscience is understanding how a neuron transduces synaptic input into action potentials. The dendrites form the substrate for consolidating thousands of synaptic inputs and are the first stage for signal processing in the neuron. Traditionally, dendrites are viewed as passive structures whose main function is to funnel synaptic input into the soma. However, dendrites contain a wide variety of voltage- and time-dependent ion channels. When activated, the currents through these channels can alter the amplitude and time course of the synaptic input and under certain conditions even evoke all-or-none regenerative potentials. The synaptic input that ultimately reaches the soma is likely to be a highly transformed version of the original signal. Thus, a key step in understanding the relationship between synaptic input and neuronal firing is to elucidate the signal processing that occurs in the dendrites.
Collapse
Affiliation(s)
- A Reyes
- Center for Neural Science, New York University, New York, New York 10003, USA.
| |
Collapse
|
39
|
Tsubokawa H. Control of Na+ spike backpropagation by intracellular signaling in the pyramidal neuron dendrites. Mol Neurobiol 2000; 22:129-41. [PMID: 11414276 DOI: 10.1385/mn:22:1-3:129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The integrative function of neurons depends on the somato-dendritic distribution and properties of voltage-gated ion channels. Sodium, potassium, calcium, and hyperpolarization-activated cyclic nucleotide-gated K+ (HCN) channels expressed in the dendrites can be modulated by a number of neurotransmitters and second-messenger systems. For example, activation of protein kinases leads to an increase in dendritic excitability by removing a slow inactivation of Na+ channels and decreasing the activity of transient K+ channels in the apical dendrites of hippocampal pyramidal neurons. Consequently, action potentials propagating along the dendrites can be modified significantly by a variety of neuromodulatory synaptic inputs.
Collapse
Affiliation(s)
- H Tsubokawa
- Section of Brain Information, Center for Brain Experiment, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
40
|
Abstract
Sodium-dependent action potentials initiated near the soma are known to backpropagate over the dendrites of CA1 pyramidal neurons in an activity-dependent manner. Consequently, later spikes in a train have smaller amplitude when recorded in the apical dendrites. We found that depolarization and resultant Ca(2+) influx into dendrites caused a persistent facilitation of spike backpropagation. Dendritic patch recordings were made from CA1 pyramidal neurons in mouse hippocampal slices under blockade of fast excitatory and inhibitory synaptic inputs. Trains of 10 backpropagating action potentials induced by antidromic stimulation showed a clear decrement in the amplitude of later spikes when recorded in the middle apical dendrites. After several depolarizing current pulses, the amplitude of later spikes increased persistently, and all spikes in a train became almost equal in size. BAPTA (10 mm) contained in the pipette or low-Ca(2+) perfusing solution abolished this depolarization-induced facilitation, indicating that Ca(2+) influx is required. This facilitation was present in Galpha(q) knock-out mice that lack the previously reported muscarinic receptor-mediated enhancement of spike backpropagation. Therefore, these two forms of facilitation are clearly distinct in their intracellular mechanisms. Intracellular injection of either calmodulin binding domain (100 micrometer) or Ca(2+)/calmodulin-kinase II (CaMKII) inhibitor 281-301 (10 micrometer) blocked the depolarization-induced facilitation. Bath application of a membrane-permeable CaMKII inhibitor KN-93 (10 micrometer) also blocked the facilitation, but KN-92 (10 micrometer), an inactive isomer of KN-93, had no effect. These results suggest that increases in [Ca(2+)](i) cause persistent facilitation of spike backpropagation in the apical dendrite of CA1 pyramidal neuron by CaMKII-dependent mechanisms.
Collapse
|
41
|
Sourdet V, Debanne D. The role of dendritic filtering in associative long-term synaptic plasticity. Learn Mem 1999; 6:422-47. [PMID: 10541464 DOI: 10.1101/lm.6.5.422] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several forms of synaptic plasticity in the neocortex and hippocampus depend on the temporal coincidence of presynaptic activity and postsynaptic trains of action potentials (APs). This requirement is consistent with the Hebbian, or correlational, type of cellular learning rule used in many studies of associative synaptic plasticity. Recent experimental evidence suggests that APs initiated in the axosomatic area are actively back-propagated to the dendritic arborization of neocortical and pyramidal cells. High-frequency trains of postsynaptic APs that are used as conditioning stimuli for the induction of Hebbian-like plasticity in both neocortical and hippocampal pyramidal cells display attenuation of the dendritic AP amplitude during the train. This attenuation has been shown to be modulated by neurotransmitters and by electrical activity. We suggest here that both spike train attenuation in the dendrite and its modulation by neurotransmitters and electrical activity may have important functional consequences on the magnitude and/or the sign of the synaptic plasticity induced by a Hebbian pairing procedure.
Collapse
Affiliation(s)
- V Sourdet
- Unité de Neurocybernétique Cellulaire, Centre National de la Recherche Scientifique, Unité Propre de Recherche, Marseille, France
| | | |
Collapse
|
42
|
Migliore M, Hoffman DA, Magee JC, Johnston D. Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci 1999; 7:5-15. [PMID: 10481998 DOI: 10.1023/a:1008906225285] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Action potentials elicited in the axon actively back-propagate into the dendritic tree. During this process their amplitudes can be modulated by internal and external factors. We used a compartmental model of a hippocampal CA1 pyramidal neuron to illustrate how this modulation could depend on (1) the properties of an A-type K+ conductance that is expressed at high density in hippocampal dendrites and (2) the relative timing of synaptic activation. The simulations suggest that the time relationship between pre- and postsynaptic activity could help regulate the amplitude of back-propagating action potentials, especially in the distal portion of the dendritic tree.
Collapse
Affiliation(s)
- M Migliore
- National Research Council, Institute of Advanced Diagnostic Methodologies, Palermo, Italy.
| | | | | | | |
Collapse
|
43
|
Johnston D, Hoffman DA, Colbert CM, Magee JC. Regulation of back-propagating action potentials in hippocampal neurons. Curr Opin Neurobiol 1999; 9:288-92. [PMID: 10395568 DOI: 10.1016/s0959-4388(99)80042-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Protein kinase C has recently been shown to modulate the slow recovery from inactivation of Na+ channels in apical dendrites of hippocampal CA1 pyramidal neurons. Moreover, dendritic, A-type K+ channels have been found to be modulated by protein kinases A and C and by mitogen-activated protein kinase. The electrical signalling ability of these dendrites is thus highly regulated by a number of neurotransmitters and second-messenger systems.
Collapse
Affiliation(s)
- D Johnston
- Division of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas, 77030-3498, USA.
| | | | | | | |
Collapse
|
44
|
Abstract
Antibodies directed against the mammalian alpha and beta subunits of calcium/calmodulin-dependent kinase 2 (CaMK2) and brain dissection were used for immunoblot analysis of these proteins in various brain regions of Apteronotus leptorhynchus. Western blots revealed that the CaMK2alpha antibody labeled a single band of the expected molecular mass (approximately 50 kDa) for this enzyme in rat cortex and electric fish brain. CaMK2alpha was enriched in fish forebrain and hypothalamus and also strongly expressed in midbrain sensory areas. Western blots revealed that CaMK2beta antibodies labeled bands in an appropriate molecular mass range (approximately 58-64 kDa) for this enzyme in mammalian cortex and electric fish brain. However, a higher molecular mass band (approximately 80 kDa) was also labeled; because all these bands were eliminated by preadsorbtion with the CaMK2-derived peptide antigen, they may all represent CaMK2beta-like isoforms. We mapped the brain distribution of CaMK2 isoforms with emphasis on the electrosensory system. CaMK2alpha was present at high density in dorsal forebrain, hypothalamic nuclei, torus semicircularis, and tectum. It was also enriched in discrete fiber tracts in forebrain, diencephalon, and rhombencephalon. CaMK2beta-like isoforms were enriched in ventral forebrain, hypothalamic nuclei, torus semicircularis and the reticular formation. Unlike CaMK2alpha, CaMK2beta -like isoforms were predominantly present in cell bodies and rarely found in fiber tracts or neuropil. In the electrosensory lateral line lobe, CaMK2alpha was restricted to specific feedback fibers, i.e., tractus stratum fibrosum and its terminal field in the ventral molecular layer. In contrast, CaMK2beta-like isoforms were enriched in somata and dendrites of pyramidal cells and granular interneurons.
Collapse
Affiliation(s)
- L Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ontario, Canada.
| | | |
Collapse
|
45
|
Mickus T, Jung HY, Spruston N. Properties of slow, cumulative sodium channel inactivation in rat hippocampal CA1 pyramidal neurons. Biophys J 1999; 76:846-60. [PMID: 9929486 PMCID: PMC1300086 DOI: 10.1016/s0006-3495(99)77248-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Sodium channels in the somata and dendrites of hippocampal CA1 pyramidal neurons undergo a form of long-lasting, cumulative inactivation that is involved in regulating back-propagating action potential amplitude and can influence dendritic excitation. Using cell-attached patch-pipette recordings in the somata and apical dendrites of CA1 pyramidal neurons, we determined the properties of slow inactivation on response to trains of brief depolarizations. We find that the amount of slow inactivation gradually increases as a function of distance from the soma. Slow inactivation is also frequency and voltage dependent. Higher frequency depolarizations increase both the amount of slow inactivation and its rate of recovery. Hyperpolarized resting potentials and larger command potentials accelerate recovery from slow inactivation. We compare this form of slow inactivation to that reported in other cell types, using longer depolarizations, and construct a simplified biophysical model to examine the possible gating mechanisms underlying slow inactivation. Our results suggest that sodium channels can enter slow inactivation rapidly from the open state during brief depolarizations or slowly from a fast inactivation state during longer depolarizations. Because of these properties of slow inactivation, sodium channels will modulate neuronal excitability in a way that depends in a complicated manner on the resting potential and previous history of action potential firing.
Collapse
Affiliation(s)
- T Mickus
- Department of Neurobiology and Physiology, Institute for Neuroscience, Northwestern University, Evanston, Illinois 60208-3520 USA
| | | | | |
Collapse
|
46
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|
47
|
Abstract
The extent to which regenerative action potentials invade hippocampal CA1 pyramidal dendrites is dependent on both recent activity and distance from the soma. Previously, we have shown that the amplitude of back-propagating dendritic action potentials can be increased by activating either protein kinase A (PKA) or protein kinase C (PKC) and a subsequent depolarizing shift in the activation curve for dendritic K+ channels. Physiologically, an increase in intracellular PKA and PKC would be expected upon activation of beta-adrenergic and muscarinic acetylcholine receptors, respectively. Accordingly, we report here that activation of either of these neurotransmitter systems results in an increase in dendritic action-potential amplitude. Activation of the dopaminergic neurotransmitter system, which is also expected to raise intracellular adenosine 3',5'-cyclic monophosphate (cAMP) and PKA levels, increased action-potential amplitude in only a subpopulation of neurons tested.
Collapse
Affiliation(s)
- D A Hoffman
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
48
|
Golding NL, Spruston N. Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 1998; 21:1189-200. [PMID: 9856473 DOI: 10.1016/s0896-6273(00)80635-2] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several early studies suggested that spikes can be generated in the dendrites of CA1 pyramidal neurons, but their functional significance and the conditions under which they occur remain poorly understood. Here, we provide direct evidence from simultaneous dendritic and somatic patch-pipette recordings that excitatory synaptic inputs can elicit dendritic sodium spikes prior to axonal action potential initiation in hippocampal CA1 pyramidal neurons. Both the probability and amplitude of dendritic spikes depended on the previous synaptic and firing history of the cell. Moreover, some dendritic spikes occurred in the absence of somatic action potentials, indicating that their propagation to the soma and axon is unreliable. We show that dendritic spikes contribute a variable depolarization that summates with the synaptic potential and can act as a trigger for action potential initiation in the axon.
Collapse
Affiliation(s)
- N L Golding
- Department of Neurobiology and Physiology, Institute for Neuroscience, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
49
|
Abstract
The voltage dependent ionic conductances and the passive properties of the neural membrane determine how external inputs are processed by the dendritic tree, and define the computational characteristics of neurons. However, what controls these characteristics and how they are implemented at the single neuron level, in such a way that an external input results in the coding of the appropriate output, is essentially unknown. We show here that a slow inactivation of the Na+ channel, involved in the attenuation and/or failure of APs in the dendrites, acts as an active and energy efficient filter of synaptic input, and results in an activity-dependent control of the properties of individual neurons. Thus, the activation or expression of this mechanisms could be an efficient way to selectively modulate the input/output processing properties of dendrites, and could be needed to limit or suppress the onset of a number of pathological brain disorders.
Collapse
Affiliation(s)
- M Migliore
- Institute for Interdisciplinary Applications of Physics, National Research Council, Palermo, Italy.
| | | |
Collapse
|
50
|
Astman N, Gutnick MJ, Fleidervish IA. Activation of protein kinase C increases neuronal excitability by regulating persistent Na+ current in mouse neocortical slices. J Neurophysiol 1998; 80:1547-51. [PMID: 9744958 DOI: 10.1152/jn.1998.80.3.1547] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effects of the protein kinase C activating phorbol ester, phorbol 12-myristate 13-acetate (PMA), were studied in whole cell recordings from layer V neurons in slices of mouse somatosensory neocortex. PMA was applied intracellularly (100 nM to 1 microM) to restrict its action to the cell under study. In current-clamp recordings, it enhanced neuronal excitability by inducing a 10- to 20-mV decrease in voltage threshold for action-potential generation. Because spike threshold in neocortical neurons critically depends on the properties of persistent Na+ current (INaP), effects of PMA on this current were studied in voltage clamp. After blocking K+ and Ca2+ currents, INaP was revealed by applying slow depolarizing voltage ramps from -70 to 0 mV. Intracellular PMA induced a decrease in INaP at very depolarized membrane potentials. It also shifted activation of INaP in the hyperpolarizing direction, however, such that there was a significant increase in persistent inward current at potentials more negative than -45 mV. When tetrodotoxin (TTX) was added to the bath, blocking INaP and leaving only an outward nonspecific cationic current (Icat), PMA had no apparent effect on responses to voltage ramps. Thus PMA did not affect Icat, and it did not induce any additional current. Intracellular application of the inactive PMA analogue, 4 alpha-PMA, did not affect INaP. The specific protein kinase C inhibitors, chelerythrine (20 microM) and calphostin C (10 microM), blocked the effect of PMA on INaP. The data suggest that PMA enhances neuronal excitability via a protein kinase C-mediated increase in INaP at functionally critical subthreshold voltages. This novel effect would modulate all neuronal functions that are influenced by INaP, including synaptic integration and active backpropagation of action potential from the soma into the dendrites.
Collapse
Affiliation(s)
- N Astman
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | | | | |
Collapse
|