1
|
Bartonjo JJ, Lundy RF. Distinct Populations of Amygdala Somatostatin-Expressing Neurons Project to the Nucleus of the Solitary Tract and Parabrachial Nucleus. Chem Senses 2021; 45:687-698. [PMID: 32940663 DOI: 10.1093/chemse/bjaa059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rostral forebrain structures, such as the central nucleus of the amygdala (CeA), send projections to the nucleus of the solitary tract (NST) and the parabrachial nucleus (PBN) that modulate taste-elicited responses. However, the proportion of forebrain-induced excitatory and inhibitory effects often differs when taste cell recording changes from the NST to the PBN. The present study investigated whether this descending influence might originate from a shared or distinct population of neurons marked by expression of somatostatin (Sst). In Sst-reporter mice, the retrograde tracers' cholera toxin subunit B AlexaFluor-488 and -647 conjugates were injected into the taste-responsive regions of the NST and the ipsilateral PBN. In Sst-cre mice, the cre-dependent retrograde tracers' enhanced yellow fluorescent protein Herpes Simplex Virus (HSV) and mCherry fluorescent protein HSV were injected into the NST and the ipsilateral PBN. The results showed that ~40% of CeA-to-PBN neurons expressed Sst compared with ~ 23% of CeA-to-NST neurons. For both the CeA Sst-positive and -negative populations, the vast majority projected to the NST or PBN but not both nuclei. Thus, a subset of CeA-to-NST and CeA-to-PBN neurons are marked by Sst expression and are largely distinct from one another. Separate populations of CeA/Sst neurons projecting to the NST and PBN suggest that differential modulation of taste processing might, in part, rely on differences in local brainstem/forebrain synaptic connections.
Collapse
Affiliation(s)
- Jane J Bartonjo
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Robert F Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
2
|
Martin LJ, Breza JM, Sollars SI. Taste activity in the parabrachial region in adult rats following neonatal chorda tympani transection. J Neurophysiol 2021; 125:2178-2190. [PMID: 33909497 DOI: 10.1152/jn.00552.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The chorda tympani is a gustatory nerve that fails to regenerate if sectioned in rats 10 days of age or younger. This early denervation causes an abnormally high preference for NH4Cl in adult rats, but the impact of neonatal chorda tympani transection on the development of the gustatory hindbrain is unclear. Here, we tested the effect of neonatal chorda tympani transection (CTX) on gustatory responses in the parabrachial nucleus (PbN). We recorded in vivo extracellular spikes in single PbN units of urethane-anesthetized adult rats following CTX at P5 (chronic CTX group) or immediately prior to recording (acute CTX group). Thus, all sampled PbN neurons received indirect input from taste nerves other than the CT. Compared to acute CTX rats, chronic CTX animals had significantly higher responses to stimulation with 0.1 and 0.5 M NH4Cl, 0.1 and 0.5 M NaCl, and 0.01 M citric acid. Activity to 0.5 M sucrose and 0.01 M quinine stimulation was not significantly different between groups. Neurons from chronic CTX animals also had larger interstimulus correlations and significantly higher entropy, suggesting that neurons in this group were more likely to be activated by stimulation with multiple tastants. Although neural responses were higher in the PbN of chronic CTX rats compared to acute-sectioned controls, taste-evoked activity was much lower than observed in previous reports, suggesting permanent deficits in taste signaling. These findings demonstrate that the developing gustatory hindbrain exhibits high functional plasticity following early nerve injury.NEW & NOTEWORTHY Early and chronic loss of taste input from the chorda tympani is associated with abnormal taste behaviors. We found that compared to when the chorda tympani is sectioned acutely, chronic nerve loss leads to amplification of spared inputs in the gustatory pons, with higher response to salty and sour stimuli. Findings point to plasticity that may compensate for sensory loss, but permanent deficits in taste signaling also occur following early denervation.
Collapse
Affiliation(s)
- Louis J Martin
- Department of Psychology, University of Nebraska at Omahagrid.266815.e, Omaha, Nebraska
| | - Joseph M Breza
- Department of Psychology, Eastern Michigan University, Ypsilanti, Michigan
| | - Suzanne I Sollars
- Department of Psychology, University of Nebraska at Omahagrid.266815.e, Omaha, Nebraska
| |
Collapse
|
3
|
Lundy R. Comparison of GABA, Somatostatin, and Corticotrophin-Releasing Hormone Expression in Axon Terminals That Target the Parabrachial Nucleus. Chem Senses 2020; 45:275-282. [PMID: 32107535 DOI: 10.1093/chemse/bjaa010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several forebrain areas have been shown to project to the parabrachial nucleus (PBN) and exert inhibitory and excitatory influences on taste processing. Some sources of descending input such as the central nucleus of the amygdala (CeA) might utilize somatostatin (Sst) and/or corticotrophin-releasing hormone (Crh) to influence taste processing in the PBN (Panguluri S, Saggu S, Lundy R. 2009. Comparison of somatostatin and corticotrophin-releasing hormone immunoreactivity in forebrain neurons projecting to taste-responsive and non-responsive regions of the parabrachial nucleus in rat. Brain Res 1298:57-69; Magableh A, Lundy R. 2014. Somatostatin and corticotrophin releasing hormone cell types are a major source of descending input from the forebrain to the parabrachial nucleus in mice. Chem Senses 39:673-682). Since the predominate effect of CeA stimulation on PBN taste-evoked responses is inhibition, this study used transgenic reporter lines (Sst/TdTomato and Crh/TdTomato) and electron microscopy to assess Sst/gamma aminobutyric acid (GABA) and Crh/GABA coexpression in axon terminals within the PBN. Robust expression of Sst and Crh axon terminals was observed in the PBN. The majority of Sst-positive axon terminals were positive for GABA expression, while the majority of Crh terminals were not. The results indicate that Sst-expressing neurons, but not Crh neurons, are a source of GABAergic input to the PBN. To assess whether the CeA is a source of GABAergic input to the PBN, the CeA of Sst-cre mice was injected with cre-dependent enhanced yellow fluorescent protein (EYFP) virus and PBN tissue processed for GABA and EYFP expression. Again, the majority of EYFP Sst-positive axon terminals in the PBN coexpressed GABA. Together, the present results suggest that CeA neurons marked by Sst expression represent a major extrinsic source of GABAergic input to the PBN and this could underlie the predominate inhibitory effect of CeA stimulation on taste-evoked responses in the PBN.
Collapse
Affiliation(s)
- Robert Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 500 South Preston St., HSC A, rm 1003, Louisville, KY, USA
| |
Collapse
|
4
|
Abstract
The gustatory system contributes to the flavor of foods and beverages and communicates information about nutrients and poisons. This system has evolved to detect and ultimately respond to hydrophilic molecules dissolved in saliva. Taste receptor cells, located in taste buds and distributed throughout the oral cavity, activate nerve afferents that project to the brainstem. From here, information propagates to thalamic, subcortical, and cortical areas, where it is integrated with information from other sensory systems and with homeostatic, visceral, and affective processes. There is considerable divergence, as well as convergence, of information between multiple regions of the central nervous system that interact with the taste pathways, with reciprocal connections occurring between the involved regions. These widespread interactions among multiple systems are crucial for the perception of food. For example, memory, hunger, satiety, and visceral changes can directly affect and can be affected by the experience of tasting. In this chapter, we review the literature on the central processing of taste with a specific focus on the anatomic and physiologic responses of single neurons. Emphasis is placed on how information is distributed along multiple systems with the goal of better understanding how the rich and complex sensations associated with flavor emerge from large-scale, systems-wide, interactions.
Collapse
|
5
|
Martin LJ, Sollars SI. Contributory role of sex differences in the variations of gustatory function. J Neurosci Res 2016; 95:594-603. [DOI: 10.1002/jnr.23819] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/31/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Louis J. Martin
- Department of Psychology; University of Nebraska at Omaha; Omaha Nebraska
| | - Suzanne I. Sollars
- Department of Psychology; University of Nebraska at Omaha; Omaha Nebraska
| |
Collapse
|
6
|
|
7
|
Li CS, Lu DP, Cho YK. Descending projections from the nucleus accumbens shell excite activity of taste-responsive neurons in the nucleus of the solitary tract in the hamster. J Neurophysiol 2015; 113:3778-86. [PMID: 25744880 DOI: 10.1152/jn.00362.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 03/04/2015] [Indexed: 11/22/2022] Open
Abstract
The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first and second relays in the rodent central taste pathway. A series of electrophysiological experiments revealed that spontaneous and taste-evoked activities of brain stem gustatory neurons are altered by descending input from multiple forebrain nuclei in the central taste pathway. The nucleus accumbens shell (NAcSh) is a key neural substrate of reward circuitry, but it has not been verified as a classical gustatory nucleus. A recent in vivo electrophysiological study demonstrated that the NAcSh modulates the spontaneous and gustatory activities of hamster pontine taste neurons. In the present study, we investigated whether activation of the NAcSh modulates gustatory responses of the NST neurons. Extracellular single-unit activity was recorded from medullary neurons in urethane-anesthetized hamsters. After taste response was confirmed by delivery of sucrose, NaCl, citric acid, and quinine hydrochloride to the anterior tongue, the NAcSh was stimulated bilaterally with concentric bipolar stimulating electrodes. Stimulation of the ipsilateral and contralateral NAcSh induced firings from 54 and 37 of 90 medullary taste neurons, respectively. Thirty cells were affected bilaterally. No inhibitory responses or antidromic invasion was observed after NAcSh activation. In the subset of taste cells tested, high-frequency electrical stimulation of the NAcSh during taste delivery enhanced taste-evoked neuronal firing. These results demonstrate that two-thirds of the medullary gustatory neurons are under excitatory descending influence from the NAcSh, which is a strong indication of communication between the gustatory pathway and the mesolimbic reward pathway.
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale, Illinois; Jiamusi Stomatological Hospital, School of Stomatology, Jiamusi University, Heilongjiang, People's Republic of China
| | - Da-Peng Lu
- Laboratory of Oral Cell Biology, Department of Emergency, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Beijing, People's Republic of China; and
| | - Young K Cho
- Department of Physiology and Neuroscience, College of Dentistry, and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| |
Collapse
|
8
|
Kim Y, Cho YK. Comparison of sucrose and ethanol-induced c-Fos-like immunoreactivity in the parabrachial nuclei and accumbens nucleus. J Biomed Res 2015. [DOI: 10.12729/jbr.2015.16.1.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Nagai M, Matsumoto S, Endo J, Sakamoto R, Wada M. Sweet taste threshold for sucrose inversely correlates with depression symptoms in female college students in the luteal phase. Physiol Behav 2015; 141:92-6. [PMID: 25576640 DOI: 10.1016/j.physbeh.2015.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 12/25/2014] [Accepted: 01/06/2015] [Indexed: 11/26/2022]
Abstract
Influences of depression symptoms on the sweet taste threshold were investigated in healthy college students (30 males and 40 females). Depression symptoms were scored by SDS (Self-Rating Depression Scale), and anxiety levels by STAI (State- and Trait-Anxiety Inventory). Recognition thresholds for sucrose were determined. In female students, the menstrual phase on the day of the experiment was self-reported. Depression symptoms, anxiety levels, and the recognition threshold for sucrose were not different among the 3 groups, i.e. males, females in the follicular phase, and females in the luteal phase. Depression symptoms were positively correlated with state and trait anxiety in all groups. The sweet taste threshold was inversely correlated with depression symptoms (r=-0.472, p=0.031) and trait anxiety (r=-0.506, p=0.019) in females in the luteal phase. In males as well as females in the follicular phase, however, no correlation between sweet taste threshold and depression was found. The results show that the recognition threshold for sucrose reduces with increased depression in females with a higher anxiety trait, but only in the luteal phase. It is hypothesized that brain regions, which spatially overlap and are responsible for both aversive emotions and gustatory processing, are susceptible to periodic changes in gonadal hormones due to the menstrual cycle.
Collapse
Affiliation(s)
- Masanori Nagai
- Department of Physiology, Yamanashi Institute of Environmental Sciences, Kenmarubi 5597-1, Fujiyoshida 4030005, Japan.
| | - Sayaka Matsumoto
- Department of Physiology, Yamanashi Institute of Environmental Sciences, Kenmarubi 5597-1, Fujiyoshida 4030005, Japan
| | - Junko Endo
- Department of Physiology, Yamanashi Institute of Environmental Sciences, Kenmarubi 5597-1, Fujiyoshida 4030005, Japan
| | - Reiko Sakamoto
- Department of Human Welfare, Prefectural University of Yamanashi, Iida 5-11-1, Kofu 4000035, Japan
| | - Maki Wada
- College of Law, Nihon University, Misaki-cho 2-3-1, Tokyo 1018375, Japan
| |
Collapse
|
10
|
Neurotensin: revealing a novel neuromodulator circuit in the nucleus accumbens–parabrachial nucleus projection of the domestic chick. Brain Struct Funct 2014; 221:605-16. [DOI: 10.1007/s00429-014-0928-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/18/2014] [Indexed: 11/30/2022]
|
11
|
Magableh A, Lundy R. Somatostatin and corticotrophin releasing hormone cell types are a major source of descending input from the forebrain to the parabrachial nucleus in mice. Chem Senses 2014; 39:673-82. [PMID: 25086873 DOI: 10.1093/chemse/bju038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pontine parabrachial nucleus (PBN) receives substantial descending input from higher order forebrain regions that exerts inhibitory and excitatory influences on taste-evoked responses. Somatostatin (Sst) and corticotrophin releasing hormone (Crh) reporter mice were used in conjunction with injection of the retrograde tracer CTb-488 into the caudal PBN to determine the extent to which Sst and Crh cell types contribute to the descending pathways originating in the lateral hypothalamus (LH), central nucleus of the amygdala (CeA), bed nucleus of the stria terminalis (BNST), and insular cortex (IC). Five to 7 days following injections, the animals were euthanized and tissue sections prepared for confocal microscopy. Crh cell types in each forebrain site except IC project to the PBN with the greatest percentage originating in the BNST. For Sst cell types, the largest percentage of double-labeled cells was found in the CeA followed by the BNST. Few retrogradely labeled cells in the LH coexpressed Sst, whereas no double-labeled cells were observed in IC. The present results suggest that Sst and Crh cell types are a substantial component of the descending pathways from the amygdala and/or BNST to the PBN and are positioned to exert neuromodulatory effects on central taste processing.
Collapse
Affiliation(s)
- Ali Magableh
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Robert Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
12
|
King CT, Garcea M, Spector AC. Restoration of quinine-stimulated Fos-immunoreactive neurons in the central nucleus of the amygdala and gustatory cortex following reinnervation or cross-reinnervation of the lingual taste nerves in rats. J Comp Neurol 2014; 522:2498-517. [PMID: 24477770 PMCID: PMC4157664 DOI: 10.1002/cne.23546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 01/18/2014] [Accepted: 01/22/2014] [Indexed: 11/12/2022]
Abstract
Remarkably, when lingual gustatory nerves are surgically rerouted to inappropriate taste fields in the tongue, some taste functions recover. We previously demonstrated that quinine-stimulated oromotor rejection reflexes and neural activity (assessed by Fos immunoreactivity) in subregions of hindbrain gustatory nuclei were restored if the posterior tongue, which contains receptor cells that respond strongly to bitter compounds, was cross-reinnervated by the chorda tympani nerve. Such functional recovery was not seen if instead, the anterior tongue, where receptor cells are less responsive to bitter compounds, was cross-reinnervated by the glossopharyngeal nerve, even though this nerve typically responds robustly to bitter substances. Thus, recovery depended more on the taste field being reinnervated than on the nerve itself. Here, the distribution of quinine-stimulated Fos-immunoreactive neurons in two taste-associated forebrain areas was examined in these same rats. In the central nucleus of the amygdala (CeA), a rostrocaudal gradient characterized the normal quinine-stimulated Fos response, with the greatest number of labeled cells situated rostrally. Quinine-stimulated neurons were found throughout the gustatory cortex, but a "hot spot" was observed in its anterior-posterior center in subregions approximating the dysgranular/agranular layers. Fos neurons here and in the rostral CeA were highly correlated with quinine-elicited gapes. Denervation of the posterior tongue eliminated, and its reinnervation by either nerve restored, numbers of quinine-stimulated labeled cells in the rostralmost CeA and in the subregion approximating the dysgranular gustatory cortex. These results underscore the remarkable plasticity of the gustatory system and also help clarify the functional anatomy of neural circuits activated by bitter taste stimulation.
Collapse
Affiliation(s)
| | - Mircea Garcea
- Department of Psychology and Center for Smell and Taste, University of Florida, Gainesville, Florida 32611
| | - Alan C. Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee FL 32306
| |
Collapse
|
13
|
Salivary peptide tyrosine-tyrosine 3-36 modulates ingestive behavior without inducing taste aversion. J Neurosci 2014; 33:18368-80. [PMID: 24259562 DOI: 10.1523/jneurosci.1064-13.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hormone peptide tyrosine-tyrosine (PYY) is secreted into circulation from the gut L-endocrine cells in response to food intake, thus inducing satiation during interaction with its preferred receptor, Y2R. Clinical applications of systemically administered PYY for the purpose of reducing body weight were compromised as a result of the common side effect of visceral sickness. We describe here a novel approach of elevating PYY in saliva in mice, which, although reliably inducing strong anorexic responses, does not cause aversive reactions. The augmentation of salivary PYY activated forebrain areas known to mediate feeding, hunger, and satiation while minimally affecting brainstem chemoreceptor zones triggering nausea. By comparing neuronal pathways activated by systemic versus salivary PYY, we identified a metabolic circuit associated with Y2R-positive cells in the oral cavity and extending through brainstem nuclei into hypothalamic satiety centers. The discovery of this alternative circuit that regulates ingestive behavior without inducing taste aversion may open the possibility of a therapeutic application of PYY for the treatment of obesity via direct oral application.
Collapse
|
14
|
Dayawansa S, Ruch S, Norgren R. Parabrachial-hypothalamic interactions are required for normal conditioned taste aversions. Am J Physiol Regul Integr Comp Physiol 2013; 306:R190-200. [PMID: 24259462 DOI: 10.1152/ajpregu.00333.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rats with bilateral excitotoxic lesions of the parabrachial nuclei (PBN) fail to acquire a conditioned taste aversion (CTA), yet they retain the ability to express a CTA learned prior to incurring the damage. Rats with bilateral electrolytic lesions of the lateral hypothalamus (LH) also have CTA learning deficits. The PBN have reciprocal neural connections with the LH. This suggests that these CTA deficits may be functionally related. Electrolytic lesions damage fibers of passage, as well as intrinsic neurons. Thus, these LH lesions might also interrupt reciprocal connections between the PBN and other ventral forebrain areas, such as the amygdala and bed nucleus of the stria terminalis. To distinguish the source of the LH-lesion deficit, we tested for CTA first after bilateral excitotoxic lesions of LH and subsequently with a second set of animals that had asymmetric excitotoxic PBN and LH lesions. The rats with bilateral excitotoxic LH lesions showed deficits when acquiring a postlesion CTA. The asymmetrical PBN-LH lesions not only slowed acquisition of a CTA but also sped up extinction. This implies that interaction between the two structures, at minimum, facilitates CTA learning and may have a role in its consolidation.
Collapse
Affiliation(s)
- Samantha Dayawansa
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | | | | |
Collapse
|
15
|
Riley CA, King MS. Differential effects of electrical stimulation of the central amygdala and lateral hypothalamus on fos-immunoreactive neurons in the gustatory brainstem and taste reactivity behaviors in conscious rats. Chem Senses 2013; 38:705-17. [PMID: 23978688 PMCID: PMC3777562 DOI: 10.1093/chemse/bjt039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Projections from the central amygdala (CeA) and lateral hypothalamus (LH) modulate the activity of gustatory brainstem neurons, however, the role of these projections in gustatory behaviors is unclear. The goal of the current study was to determine the effects of electrical stimulation of the CeA or LH on unconditioned taste reactivity (TR) behaviors in response to intra-oral infusion of tastants. In conscious rats, electrical stimulation of the CeA or LH was delivered with and without simultaneous intra-oral infusion of taste solutions via an intra-oral cannula. Immunohistochemistry for the Fos protein was used to identify neurons in the gustatory brainstem activated by the electrical and/or intra-oral stimulation. In the absence of intra-oral infusion of a tastant, electrical stimulation of either the CeA or the LH increased the number of ingestive, but not aversive, TR behaviors performed. During intra-oral infusions of taste solutions, CeA stimulation tended to increase aversive behaviors whereas LH stimulation dramatically reduced the number of aversive responses to quinine hydrochloride (QHCl). These data indicate that projections from the CeA and LH alter TR behaviors. A few of the behavioral effects were accompanied by changes in the number of Fos-immunoreactive neurons in the gustatory brainstem, suggesting a possible anatomical substrate for these effects.
Collapse
Affiliation(s)
- Christopher A Riley
- Department of Biology Department, Unit 8264, Stetson University, 421 North Woodland Boulevard, DeLand, FL 32723, USA.
| | | |
Collapse
|
16
|
Li CS, Chung S, Lu DP, Cho YK. Descending projections from the nucleus accumbens shell suppress activity of taste-responsive neurons in the hamster parabrachial nuclei. J Neurophysiol 2012; 108:1288-98. [DOI: 10.1152/jn.00121.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The parabrachial nuclei (PbN), the second central relay for the gustatory pathway, transfers taste information to various forebrain gustatory nuclei and to the gustatory cortex. The nucleus accumbens is one of the critical neural substrates of the reward system, and the nucleus accumbens shell region (NAcSh) is associated with feeding behavior. Taste-evoked neuronal responses of PbN neurons are modulated by descending projections from the gustatory nuclei in the forebrain. In the present study, we investigated whether taste-responsive neurons in the PbN project to the NAcSh and whether pontine gustatory neurons are subject to modulatory influence from the NAcSh in urethane-anesthetized hamsters. Extracellular single-unit activity was recorded in the PbN, and taste responses were confirmed by the delivery of 32 mM sucrose, NaCl, quinine hydrochloride, and 3.2 mM citric acid to the anterior tongue. The NAcSh was then stimulated (0.5 ms, ≤100 μA) bilaterally using concentric bipolar stimulating electrodes. A total of 98 taste neurons were recorded from the PbN. Eighteen neurons were antidromically invaded from the NAcSh, mostly the ipsilateral NAcSh ( n = 16). Stimulation of the ipsilateral and contralateral NAcSh suppressed the neuronal activity of 88 and 55 neurons, respectively; 52 cells were affected bilaterally. In a subset of pontine neurons tested, electrical stimulation of the NAcSh during taste stimulation also suppressed taste-evoked neuronal firing. These results demonstrated that taste-responsive neurons in the PbN not only project to the NAcSh but also are under substantial descending inhibitory influence from the bilateral NAcSh.
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy, School of Medicine, Southern Illinois University, Carbondale, Illinois
- Jiamusi Stomatological Hospital, School of Stomatology, Jiamusi University, Jiamusi, People's Republic of China
| | - Sooyoung Chung
- Center for Neural Science L7313, Korea Institute of Science and Technology, Seoul, Korea
| | - Da-Peng Lu
- Laboratory of Oral Cell Biology, Department of Emergency, Beijing Stomatological Hospital, and School of Stomatology, Capital Medical University, Beijing, People's Republic of China; and
| | - Young K. Cho
- Department of Physiology and Neuroscience, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangwon, Korea
| |
Collapse
|
17
|
Involvement of brain ANG II in acute sodium depletion induced salty taste changes. ACTA ACUST UNITED AC 2012; 179:15-22. [PMID: 22846885 DOI: 10.1016/j.regpep.2012.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 10/09/2011] [Accepted: 07/20/2012] [Indexed: 02/07/2023]
Abstract
Many investigations have been devoted to determining the role of angiotensin II (ANG II) and aldosterone (ALD) in sodium-depletion-induced sodium appetite, but few were focused on the mechanisms mediating the salty taste changes accompanied with sodium depletion. To further elucidate the mechanism of renin-angiotensin-aldosterone system (RAAS) action in mediating sodium intake behavior and accompanied salty taste changes, the present study examined the salty taste function changes accompanied with sodium depletion induced by furosemide (Furo) combined with different doses of angiotensin converting enzyme (ACE) inhibitor, captopril (Cap). Both the peripheral and central RAAS activity and the nuclei Fos immunoreactivity (Fos-ir) expression in the forebrain area were investigated. Results showed that sodium depletion induced by Furo+low-Cap increased taste preference for hypertonic NaCl solution with amplified brain action of ANG II but without peripheral action, while Furosemide combined with a high dose of captopril can partially inhibit the formation of brain ANG II, with parallel decreased effects on salty taste changes. And the resulting elevating forebrain ANG II may activate a variety of brain areas including SFO, PVN, SON and OVLT in sodium depleted rats injected with Furo+low-Cap, which underlines salty taste function and sodium intake behavioral changes. Neurons in SFO and OVLT may be activated mainly by brain ANG II, while PVN and SON activation may not be completely ANG II dependent. These findings suggested that forebrain derived ANG II may play a critical role in the salty taste function changes accompanied with acute sodium depletion.
Collapse
|
18
|
Lesions of the central nucleus of the amygdala decrease taste threshold for sodium chloride in rats. Brain Res Bull 2012; 89:8-15. [PMID: 22796484 DOI: 10.1016/j.brainresbull.2012.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
Abstract
Previous studies reported that NaCl intake was down-regulated in rats with bilateral lesions of the central nucleus of the amygdala (CeA). In line with the evidence from anatomical and physiological studies, such an inhibition could be the result of altered taste threshold for NaCl, one of the important factors in assessing taste functions. To assess the effect of CeA on the taste threshold for NaCl, a conditioned taste aversion (CTA) to a suprathreshold concentration of NaCl (0.1M) in rats with bilateral lesions of CeA or sham lesions was first established. And then, two-bottle choice tests between water and a series of concentrations of NaCl were conducted. The taste threshold for NaCl is defined as the lowest concentration at which there is a reliable difference scores between conditioned and control subjects. Rats with CeA lesions acquired a taste aversion for 0.1M NaCl when it was paired with LiCl and still retained the aversion after the two-bottle choice test. The results of the two-bottle choice test showed that the taste threshold for NaCl was 0.0006M in rats with CeA lesions, whereas in rats with sham lesions the threshold was 0.005M, which was identical to that of normal rats. The conditioned results confirm the claim that CeA is not essential in the profile of conditioned taste aversion. Our findings demonstrate that lesions of the CeA increased the sensitivity to NaCl taste in rats, indicating that the CeA may be involved in encoding the intensity of salty gustation elicited by NaCl.
Collapse
|
19
|
Tandon S, Simon SA, Nicolelis MAL. Appetitive changes during salt deprivation are paralleled by widespread neuronal adaptations in nucleus accumbens, lateral hypothalamus, and central amygdala. J Neurophysiol 2012; 108:1089-105. [PMID: 22572944 DOI: 10.1152/jn.00236.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Salt appetite is a goal-directed behavior in which salt-deprived animals ingest high salt concentrations that they otherwise find aversive. Because forebrain areas such as the lateral hypothalamus (LH), central amygdala (CeA), and nucleus accumbens (NAc) are known to play an important role in this behavior, we recorded from these areas while water-deprived (WD) and salt-deprived (SD) rats performed a two-bottle choice test between 0.5 M salt (NaCl) and 0.4 M sucrose. In the SD state, the preference ratio for high molar salt markedly increased. Electrophysiological recordings analyzed with respect to the onset of licking clusters revealed the presence of both excitatory and inhibitory neuronal responses during salt and/or sucrose consumption. In the NAc, putative medium spiny neurons and tonically active neurons exhibited excitatory and inhibitory responses. In all areas, compared with those recorded during the WD state, neurons recorded during the SD state showed an increase in the percentage of salt-evoked excitatory responses and a decrease in the percentage of sucrose-evoked inhibitory responses, suggesting that a subset of the neuronal population in these areas codes for the increased motivational and/or hedonic value of the salt solution. In addition, in the SD state, the firing of excitatory neurons in LH and CeA became more synchronized, indicating a greater functional connectivity between salt-responsive neurons in these areas. We propose that plastic changes in the feeding-related neuronal populations of these forebrain areas arise when changes in metabolic state alter the hedonic and motivational value of a particular taste stimulus.
Collapse
Affiliation(s)
- Shashank Tandon
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| | | | | |
Collapse
|
20
|
DiFeliceantonio AG, Berridge KC. Which cue to 'want'? Opioid stimulation of central amygdala makes goal-trackers show stronger goal-tracking, just as sign-trackers show stronger sign-tracking. Behav Brain Res 2012; 230:399-408. [PMID: 22391118 PMCID: PMC3322261 DOI: 10.1016/j.bbr.2012.02.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 02/10/2012] [Accepted: 02/18/2012] [Indexed: 10/28/2022]
Abstract
Pavlovian cues that have been paired with reward can gain incentive salience. Drug addicts find drug cues motivationally attractive and binge eaters are attracted by food cues. But the level of incentive salience elicited by a cue re-encounter still varies across time and brain states. In an animal model, cues become attractive and 'wanted' in an 'autoshaping' paradigm, where different targets of incentive salience emerge for different individuals. Some individuals (sign-trackers) find a predictive discrete cue attractive while others find a reward contiguous goal cue more attractive (location where reward arrives: goal-trackers). Here we assessed whether central amygdala mu opioid receptor stimulation enhances the phasic incentive salience of the goal-cue for goal-trackers during moments of predictive cue presence (expressed in both approach and consummatory behaviors to goal cue), just as it enhances the attractiveness of the predictive cue target for sign-trackers. Using detailed video analysis we measured the approaches, nibbles, sniffs, and bites directed at their preferred target for both sign-trackers and goal-trackers. We report that DAMGO microinjections in central amygdala made goal-trackers, like sign-trackers, show phasic increases in appetitive nibbles and sniffs directed at the goal-cue expressed selectively whenever the predictive cue was present. This indicates enhancement of incentive salience attributed by both goal trackers and sign-trackers, but attributed in different directions: each to their own target cue. For both phenotypes, amygdala opioid stimulation makes the individual's prepotent cue into a stronger motivational magnet at phasic moments triggered by a CS that predicts the reward UCS.
Collapse
|
21
|
Zhang C, Kang Y, Lundy RF. Terminal field specificity of forebrain efferent axons to the pontine parabrachial nucleus and medullary reticular formation. Brain Res 2011; 1368:108-18. [PMID: 21040715 PMCID: PMC3053030 DOI: 10.1016/j.brainres.2010.10.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 02/06/2023]
Abstract
The pontine parabrachial nucleus (PBN) and medullary reticular formation (RF) are hindbrain regions that, respectively, process sensory input and coordinate motor output related to ingestive behavior. Neural processing in each hindbrain site is subject to modulation originating from several forebrain structures including the insular gustatory cortex (IC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH). The present study combined electrophysiology and retrograde tracing techniques to determine the extent of overlap between neurons within the IC, BNST, CeA and LH that target both the PBN and RF. One fluorescent retrograde tracer, red (RFB) or green (GFB) latex microbeads, was injected into the gustatory PBN under electrophysiological guidance and a different retrograde tracer, GFB or fluorogold (FG), into the ipsilateral RF using the location of gustatory NST as a point of reference. Brain tissue containing each forebrain region was sectioned, scanned using a confocal microscope, and scored for the number of single and double labeled neurons. Neurons innervating the RF only, the PBN only, or both the medullary RF and PBN were observed, largely intermingled, in each forebrain region. The CeA contained the largest number of cells retrogradely labeled after tracer injection into either hindbrain region. For each forebrain area except the IC, the origin of descending input to the RF and PBN was almost entirely ipsilateral. Axons from a small percentage of hindbrain projecting forebrain neurons targeted both the PBN and RF. Target specific and non-specific inputs from a variety of forebrain nuclei to the hindbrain likely reflect functional specialization in the control of ingestive behaviors.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Yi Kang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Robert F. Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
22
|
Hajnal A, Kovacs P, Ahmed T, Meirelles K, Lynch CJ, Cooney RN. Gastric bypass surgery alters behavioral and neural taste functions for sweet taste in obese rats. Am J Physiol Gastrointest Liver Physiol 2010; 299:G967-79. [PMID: 20634436 PMCID: PMC2957340 DOI: 10.1152/ajpgi.00070.2010] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Roux-en-Y gastric bypass surgery (GBS) is the most effective treatment for morbid obesity. GBS is a restrictive malabsorptive procedure, but many patients also report altered taste preferences. This study investigated the effects of GBS or a sham operation (SH) on body weight, glucose tolerance, and behavioral and neuronal taste functions in the obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats lacking CCK-1 receptors and lean controls (LETO). OLETF-GBS rats lost body weight (-26%) and demonstrated improved glucose tolerance. They also expressed a reduction in 24-h two-bottle preference for sucrose (0.3 and 1.0 M) and decreased 10-s lick responses for sucrose (0.3 through 1.5 M) compared with OLETF-SH or LETO-GBS. A similar effect was noted for other sweet compounds but not for salty, sour, or bitter tastants. In lean rats, GBS did not alter responses to any stimulus tested. Extracellular recordings from 170 taste-responsive neurons of the pontine parabrachial nucleus revealed a rightward shift in concentration responses to oral sucrose in obese compared with lean rats (OLETF-SH vs. LETO-SH): overall increased response magnitudes (above 0.9 M), and maximum responses occurring at higher concentrations (+0.46 M). These effects were reversed by GBS, and neural responses in OLETF-GBS were statistically not different from those in any LETO groups. These findings confirm obesity-related alterations in taste functions and demonstrate the ability of GBS to alleviate these impairments. Furthermore, the beneficial effects of GBS appear to be independent of CCK-1 receptor signaling. An understanding of the underlying mechanisms for reduced preferences for sweet taste could help in developing less invasive treatments for obesity.
Collapse
Affiliation(s)
- Andras Hajnal
- Dept. of Neural and Behavioral Sciences, The Milton S. Hershey Medical Center, The Pennsylvania State Univ., Hershey, PA 17033, USA.
| | | | | | | | - Christopher J. Lynch
- 3Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | | |
Collapse
|
23
|
Blonde G, Jiang E, Garcea M, Spector AC. Learning-based recovery from perceptual impairment in salt discrimination after permanently altered peripheral gustatory input. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1027-36. [PMID: 20554935 DOI: 10.1152/ajpregu.00843.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rats lacking input to the chorda tympani (CT) nerve, a facial nerve branch innervating anterior tongue taste buds, show robust impairments in salt discrimination demonstrating its necessity. We tested the sufficiency of the CT for salt taste discrimination and whether the remaining input provided by the greater superficial petrosal (GSP) nerve, a facial nerve branch innervating palatal taste buds, or by the glossopharyngeal (GL) nerve, innervating posterior tongue taste buds, could support performance after extended postsurgical testing. Rats presurgically trained and tested in a two-response operant task to discriminate NaCl from KCl were subjected to sham surgery or transection of the CT (CTx), GL (GLx), or GSP (GSPx), alone or in combination. While initially reduced postsurgically, performance by rats with an intact GSP after CTx + GLx increased to normal over 6 wk of testing. Rats with CTx + GSPx consistently performed near chance levels. In contrast, rats with GSPx + GLx were behaviorally normal. A subset of rats subjected to sham surgery and exposed to lower concentrations during postsurgical testing emulating decreased stimulus intensity after neurotomy showed no significant impairment. These results demonstrate that CTx changes the perceptual nature of NaCl and/or KCl, leading to severe initial postsurgical impairments in discriminability, but a "new" discrimination can be relearned based on the input of the GSP. Despite losing ∼75% of their taste buds, rats are unaffected after GSPx + GLx, demonstrating that the CT is not only necessary, but also sufficient, for maintaining salt taste discrimination, notwithstanding the unlikely contribution of the small percentage of taste receptors innervated by the superior laryngeal nerve.
Collapse
Affiliation(s)
- Ginger Blonde
- Department of Psychology, Center for Smell and Taste, University of Florida, Gainesville, 32306-4301, USA
| | | | | | | |
Collapse
|
24
|
Kang Y, Lundy RF. Amygdalofugal influence on processing of taste information in the nucleus of the solitary tract of the rat. J Neurophysiol 2010; 104:726-41. [PMID: 20519577 DOI: 10.1152/jn.00341.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown that corticofugal input to the first central synapse of the ascending gustatory system, the nucleus of the solitary tract (NST), can alter the way taste information is processed. Activity in other forebrain structures, such as the central nucleus of the amygdala (CeA), similarly influence activation of NST taste cells, although the effects of amygdalofugal input on neural coding of taste information is not well understood. The present study examined responses of 110 NST neurons to 15 taste stimuli before, during, and after electrical stimulation of the CeA in rats. The taste stimuli consisted of different concentrations of NaCl (0.03, 0.1, 0.3 M), sucrose (0.1, 0.3, 1.0 M), citric acid (0.005, 0.01 M), quinine HCl (0.003, 0.03 M), and 0.03 M MSG, 0.1 M KCl, as well as 0.1 M NaCl, 0.01 M citric acid, and 0.03 M MSG mixed with 10 muM amiloride. In 66% of NST cells sampled (73/110) response rates to the majority of effective taste stimuli were either inhibited or augmented. Nevertheless, the magnitude of effect across stimuli was often differential, which provides a neurophysiological mechanism to alter neural coding. Subsequent analysis of across-unit patterns showed that amygdalofugal input plays a role in shaping spatial patterns of activation and could potentially influence the perceptual similarity and/or discrimination of gustatory stimuli by altering this feature of neural coding.
Collapse
Affiliation(s)
- Yi Kang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | |
Collapse
|
25
|
Vendramini RC, Pereira DT, Borella TL, Menani JV, De Luca LA. Damage to the central amygdala produces differential encephalic c-fos expression in the water deprivation–partial rehydration protocol. Brain Res 2009; 1304:80-9. [DOI: 10.1016/j.brainres.2009.09.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 09/11/2009] [Accepted: 09/15/2009] [Indexed: 01/14/2023]
|
26
|
Panguluri S, Saggu S, Lundy R. Comparison of somatostatin and corticotrophin-releasing hormone immunoreactivity in forebrain neurons projecting to taste-responsive and non-responsive regions of the parabrachial nucleus in rat. Brain Res 2009; 1298:57-69. [PMID: 19699720 PMCID: PMC2769563 DOI: 10.1016/j.brainres.2009.08.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 02/06/2023]
Abstract
Several forebrain areas have been shown to project to the parabrachial nucleus (PBN) and exert inhibitory and excitatory influences on taste processing. The neurochemicals by which descending forebrain inputs modulate neural taste-evoked responses remain to be established. This study investigated the existence of somatostatin (SS) and corticotrophin-releasing factor (CRF) in forebrain neurons that project to caudal regions of the PBN responsive to chemical stimulation of the anterior tongue as well as more rostral unresponsive regions. Retrograde tracer was iontophoretically or pressure ejected from glass micropipettes, and 7 days later the animals were euthanized for subsequent immunohistochemical processing for co-localization of tracer with SS and CRF in tissue sections containing the lateral hypothalamus (LH), central nucleus of the amygdala (CeA), bed nucleus of the stria terminalis (BNST), and insular cortex (IC). In each forebrain site, robust labeling of cells with distinguishable nuclei and short processes was observed for SS and CRF. The results indicate that CRF neurons in each forebrain site send projections throughout the rostral caudal extent of the PBN with a greater percentage terminating in regions rostral to the anterior tongue-responsive area. For SS, the percentage of double-labeled neurons was more forebrain site specific in that only BNST and CeA exhibited significant numbers of double-labeled neurons. Few retrogradely labeled cells in LH co-expressed SS, while no double-labeled cells were observed in IC. Again, tracer injections into rostral PBN resulted in a greater percentage of double-labeled neurons in BNST and CeA compared to caudal injections. The present results suggest that some sources of descending forebrain input might utilize somatostatin and/or CRF to exert a broad influence on sensory information processing in the PBN.
Collapse
Affiliation(s)
- Siva Panguluri
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Shalini Saggu
- Department of Pharmaceutical Sciences, Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina 29425
| | - Robert Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| |
Collapse
|
27
|
Small DM, Scott TR. Symposium overview: What Happens to the pontine processing? repercussions of interspecies differences in pontine taste representation for tasting and feeding. Ann N Y Acad Sci 2009; 1170:343-6. [PMID: 19686158 DOI: 10.1111/j.1749-6632.2009.03918.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dana M Small
- Department of Psychiatry, The John B Pierce Laboratory, Yale University School of Medicine, New Haven, Connecticut 06519, USA.
| | | |
Collapse
|
28
|
Hajnal A, Norgren R, Kovacs P. Parabrachial coding of sapid sucrose: relevance to reward and obesity. Ann N Y Acad Sci 2009; 1170:347-64. [PMID: 19686159 DOI: 10.1111/j.1749-6632.2009.03930.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cumulative evidence in rats suggests that the pontine parabrachial nuclei (PBN) are necessary for assigning hedonic value to taste stimuli. In a series of studies, our laboratory has investigated the parabrachial coding of sapid sucrose in normal and obese rats. First, using chronic microdialysis, we demonstrated that sucrose intake increases dopamine release in the nucleus accumbens, an effect that is dependent on oral stimulation and on concentration. The dopamine response was independent of the thalamocortical gustatory system but was blunted substantially by lesions of the PBN. Similar lesions of the PBN but not the thalamic taste relay diminished cFos activation in the nucleus accumbens caused by sucrose ingestion. Recent single-neuron recording studies have demonstrated that processing of sucrose-evoked activity in the PBN is altered in Otsuka Long Evans Tokushima Fatty (OLETF) rats, which develop obesity due to chronic overeating and express increased avidity to sweet. Compared with lean controls, taste neurons in OLETF rats had reduced overall sensitivity to sucrose and altered concentration responses, with decreased responses to lower concentrations and augmented responses to higher concentrations. The decreased sensitivity to sucrose was specific to NaCl-best neurons that also responded to sucrose, but the concentration effects were carried by the sucrose-specific neurons. Collectively, these findings support the hypothesis that the PBN enables taste stimuli to engage the reward system and, in doing so, influences food intake and body weight regulation. Obesity, in turn, may further alter the gustatory code via forebrain connections to the taste relays or hormonal changes consequent to weight gain.
Collapse
Affiliation(s)
- Andras Hajnal
- Department of Neural & Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
29
|
Tokita K, Inoue T, Boughter JD. Afferent connections of the parabrachial nucleus in C57BL/6J mice. Neuroscience 2009; 161:475-88. [PMID: 19327389 PMCID: PMC2705209 DOI: 10.1016/j.neuroscience.2009.03.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
Abstract
Although the mouse is an experimental model with an increasing importance in various fields of neuroscience, the characteristics of its central gustatory pathways have not yet been well documented. Recent electrophysiological studies using the rat and hamster have revealed that taste processing in the brainstem gustatory relays is under the strong influence of inputs from forebrain gustatory structures. In the present study, we investigated the organization of afferent projections to the mouse parabrachial nucleus (PbN), which is located at a key site between the brainstem and gustatory, viscerosensory and autonomic centers in the forebrain. We made injections of the retrograde tracer fluorogold centered around the "waist" area of the PbN, whose neurons are known to be highly responsive to taste stimuli. Retrogradely labeled neurons were found in the infralimbic, dysgranular and agranular insular cortex as well as the claustrum; the bed nucleus of the stria terminalis and the substantia innominata; the central nucleus of the amygdala; the lateral and medial preoptic areas, the paraventricular, the dorsomedial, the ventromedial, the arcuate, and the lateral hypothalamic areas; the periaqueductal gray, the substantia nigra pars compacta, and the ventral tegmental area; the supratrigeminal nucleus, rostral and caudal nucleus of the solitary tract; the parvicellular intermediate and gigantocellular reticular nucleus; the caudal and interpolar divisions of the spinal trigeminal nucleus, dorsomedial spinal trigeminal nucleus, and the area postrema. Numbers of labeled neurons in the main components of the gustatory system including the insular cortex, bed nucleus of the stria terminalis, central nucleus of the amygdala, lateral hypothalamus, and rostral nucleus of the solitary tract were quantified. These results are basically consistent with those of the previous rat and hamster studies, but some species differences were found. Functional implications of these afferent inputs are discussed with an emphasis on their role in taste.
Collapse
Affiliation(s)
- K Tokita
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
30
|
Terminal field specificity of forebrain efferent axons to brainstem gustatory nuclei. Brain Res 2008; 1248:76-85. [PMID: 19028464 DOI: 10.1016/j.brainres.2008.10.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/28/2008] [Accepted: 10/28/2008] [Indexed: 11/22/2022]
Abstract
Rostral forebrain structures like the gustatory cortex (GC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH) send projections to the nucleus of solitary tract (NST) and the parabrachial nucleus (PBN) that modulate taste-elicited responses. However, the proportion of forebrain-induced excitatory and inhibitory effects often differs when taste cell recording changes from the NST to the PBN. The present study investigated whether this descending influence originates from a shared or distinct population of forebrain neurons. Under electrophysiological guidance, the retrograde tracers fast blue (FB) and fluorogold (FG) or green (GFB) and red (RFB) fluorescent latex microbeads were injected iontophoretically or by pressure pulses (10 ms at 20 psi) into the taste-responsive regions of the NST and the ipsilateral PBN in six rats. Seven days later, the animals were euthanized and tissue sections containing the LH, CeA, BNST, and GC were processed for co-localization of FB and FG or GFB and RFB. The results showed that the CeA is the major source of input to the NST (82.3+/-7.6 cells/section) and the PBN (76.7+/-11.5), compared to the BNST (31.8+/-4.5; 37.0+/-4.8), the LH (35.0+/-5.4; 33.6+/-5.7), and the GC (27.5+/-4.0; 29.0+/-4.6). Of the total number of retrogradely labeled cells, the incidence of tracer co-localization was 17+/-3% in the GC, 17+/-2% in the CeA, 15+/-3% in the BNST and 16+/-1% in the LH. Thus, irrespective of forebrain source the majority of descending input to the gustatory NST and PBN originates from distinct neuronal populations. This arrangement provides an anatomical substrate for differential modulation of taste processing in the first and second central relays of the ascending gustatory system.
Collapse
|
31
|
Roussin AT, Di Lorenzo PM. Oh, How Sweet It Is. Focus on “Altered Pontine Processing in a Rat Model of Obesity”. J Neurophysiol 2008; 100:1697-8. [DOI: 10.1152/jn.90823.2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
32
|
Mungarndee SS, Lundy RF, Norgren R. Expression of Fos during sham sucrose intake in rats with central gustatory lesions. Am J Physiol Regul Integr Comp Physiol 2008; 295:R751-63. [PMID: 18635449 DOI: 10.1152/ajpregu.90344.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For humans and rodents, ingesting sucrose is rewarding. This experiment tested the prediction that the neural activity produced by sapid sucrose reaches reward systems via projections from the pons through the limbic system. Gastric cannulas drained ingested fluid before absorption. For 10 days, the rats alternated an hour of this sham ingestion between sucrose and water. On the final test day, half of them sham drank water and the other half 0.6 M sucrose. Thirty minutes later, the rats were killed and their brains immunohistochemically stained for Fos. The groups consisted of controls and rats with excitotoxic lesions in the gustatory thalamus (TTA), the medial (gustatory) parabrachial nucleus (PBN), or the lateral (visceral afferent) parabrachial nucleus. In controls, compared with water, sham ingesting sucrose produced significantly more Fos-positive neurons in the nucleus of the solitary tract, PBN, TTA, and gustatory cortex (GC). In the ventral forebrain, sucrose sham licking increased Fos in the bed nucleus of the stria terminalis, central nucleus of amygdala, and the shell of nucleus accumbens. Thalamic lesions blocked the sucrose effect in GC but not in the ventral forebrain. After lateral PBN lesions, the Fos distributions produced by distilled H(2)O or sucrose intake did not differ from controls. Bilateral medial PBN damage, however, eliminated the sucrose-induced Fos increase not only in the TTA and GC but also in the ventral forebrain. Thus ventral forebrain areas associated with affective responses appear to be activated directly by PBN gustatory neurons rather than via the thalamocortical taste system.
Collapse
Affiliation(s)
- Suriyaphun S Mungarndee
- Dept. of Neural and Behavioral Sciences, MC H-181, The Pennsylvania State Univ., College of Medicine, 500 Univ. Drive, Hershey, PA 17033-0850, USA
| | | | | |
Collapse
|
33
|
Lundy RF. Gustatory hedonic value: potential function for forebrain control of brainstem taste processing. Neurosci Biobehav Rev 2008; 32:1601-6. [PMID: 18675299 DOI: 10.1016/j.neubiorev.2008.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/29/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
Abstract
Among well-nourished populations, eating beyond homeostatic needs when presented with caloric-dense palatable food evidences the assertion that an increasing proportion of consumption is driven by pleasure, not just by the need for calories. This presents a major health crisis because the affective component of foods constitutes a behavioral risk factor that promotes over consumption [Sorensen, L.B., Moller, P., Flint, A., Martens, M., Raben, A., 2003. Effect of sensory perception of foods on appetite and food intake: a review of studies on humans. Int. J. Obes. Relat. Metab. Disord. 27, 1152-1166; Yeomans, M.R., Blundell, J.E., Leshem, M., 2004. Palatability: response to nutritional need or need-free stimulation of appetite? Br. J. Nutr. 92 (Suppl. 1), S3-S14]. Overweight or obese individuals have an increased risk of developing hypertension, stroke, heart disease, chronic musculoskeletal problems, type-2 diabetes, and certain types of cancers [Hill, J.O., Catenacci, V., Wyatt, H.R., 2005. Obesity: overview of an epidemic. Psychiatr. Clin. N. Am. 28, 1-23, vii]. The etiology of obesity is complex involving genetic, metabolic, and behavioral factors, but ultimately results from long-term energy imbalance. Evidence indicates that learned and some forms of unlearned control of ingestive behavior driven by palatability (i.e. hedonic value) are critically dependent on reciprocal interactions between brainstem gustatory nuclei and the ventral forebrain. This review discusses the current understanding of centrifugal control of taste processing in subcortical gustatory nuclei and the potential role of such modulation in hedonic responding.
Collapse
Affiliation(s)
- Robert F Lundy
- University of Louisville School of Medicine, Department of Anatomical Sciences and Neurobiology, 500 South Preston Street, Louisville, KY 40292, United States.
| |
Collapse
|
34
|
Kovacs P, Hajnal A. Altered pontine taste processing in a rat model of obesity. J Neurophysiol 2008; 100:2145-57. [PMID: 18550724 DOI: 10.1152/jn.01359.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The increased palatability of modern diet contributes to eating beyond homeostatic need and in turn to the growing prevalence of obesity. How palatability is coded in taste-evoked neural activity and whether this activity differs between obese and lean remains unknown. To investigate this, we used extracellular single-unit recording in the second central gustatory relay, the pontine parabrachial nucleus while stimulating the tongue with various concentrations of sucrose (0.01-1.5 M) in Otsuka Long Evans Tokushima Fatty (OLETF) rats, lacking CCK-1R. The analyses included a total of 179 taste-responsive neurons in age-matched prediabetic, obese OLETF and lean Long Evans Tokushima Otsuka (LETO) controls. Compared with LETO, we found more NaCl-, and fewer sucrose-responsive neurons (67 vs. 47% and 14 vs. 32%), and an overall reduced response magnitude to sucrose in the OLETF rats. Further, in the obese rats there was a rightward shift in sucrose concentration-response functions relative to lean controls with a higher response-threshold (0.37+/-0.05 vs. 0.23+/-0.2 M, P<0.05) and maximal neural response to higher sucrose concentrations (0.96+/-0.07 vs. 0.56+/-0.5 M, P<0.001). These findings demonstrate altered central gustatory processing for sucrose in obese OLETF rat and further support the notion that palatability is encoded in the across neuron pattern.
Collapse
Affiliation(s)
- Peter Kovacs
- Department of Neural and Behavioral Sciences H181, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | | |
Collapse
|
35
|
Abstract
The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first and second central relays for the taste pathway, respectively. Taste neurons in the NST project to the PbN, which further transmits taste information to the rostral taste centers. Nevertheless, details of the neural connections among the brain stem gustatory nuclei are obscure. Here, we investigated these relationships in the hamster brain stem. Three electrode assemblies were used to record the activity of taste neurons extracellularly and then to electrically stimulate these same areas in the order: left PbN, right PbN, and right NST. A fourth electrode, a glass micropipette, was used to record from gustatory cells in the left NST. Results showed extensive bilateral communication between brain stem nuclei at the same level: 1) 10% of 96 NST neurons projected to the contralateral NST and 58% received synaptic input from the contralateral NST; and 2) 12% of 43 PbN neurons projected to the contralateral PbN and 21% received synaptic input from the contralateral PbN. Results also showed extensive communication between levels: 1) as expected, the majority of 119 NST neurons, 82%, projected to the ipsilateral PbN, but 85% of the 20 NST neurons tested received synaptic input from the ipsilateral PbN, as did 59% of 22 NST neurons that did not project to the PbN; and 2) although few, 3%, of 119 NST cells projected to the contralateral PbN and 38% received synaptic input from the contralateral PbN. These results demonstrated that taste neurons in the NST not only project to, but also receive descending input from the bilateral PbN and that gustatory neurons in the NST and PbN also communicate with the corresponding nucleus on the contralateral side.
Collapse
Affiliation(s)
- Young K Cho
- Department of Physiology and Neuroscience, Kangnung National University College of Dentistry, Kangnung, Kangwon, South Korea
| | | |
Collapse
|
36
|
Mao L, Cho YK, Li CS. Modulation of activity of gustatory neurons in the hamster parabrachial nuclei by electrical stimulation of the ventroposteromedial nucleus of the thalamus. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1461-73. [PMID: 18321954 DOI: 10.1152/ajpregu.00802.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The parvicellular part of the ventroposteromedial nucleus of the thalamus (VPMpc) is positioned at the key site between the gustatory parabrachial nuclei (PbN) and the gustatory cortex for relaying and processing gustatory information via the thalamocortical pathway. Although neuroanatomical and electrophysiological studies have provided information regarding the gustatory projection from PbN to VPMpc, the exact relationship between PbN and VPMpc, especially the efferent projection involving VPMpc to PbN, is obscure. Here we investigated the reciprocal connection between these two gustatory relays in urethane-anesthetized hamsters. We recorded from 114 taste-responsive neurons in the PbN and examined their responsiveness to electrical stimulation of the VPMpc bilaterally. Stimulation of either or both of the ipsilateral or contralateral VPMpc antidromically activated 109 gustatory PbN neurons. Seventy-two PbN neurons were antidromically activated after stimulation of both sides of the VPMpc, indicating that taste neurons in the PbN project heavily to the bilateral VPMpc. Stimulation of VPMpc also orthodromically activated 110 of PbN neurons, including 106 VPMpc projection neurons. Seventy-eight neurons were orthodromically activated bilaterally. Among orthodromic activations of the PbN cells, the inhibitory response was the dominant response; 106 cells were inhibited, including 10 neurons that were also excited contralaterally, indicating that taste neurons in the PbN are subject to strong inhibitory control from VPMpc. Moreover, stimulation of VPMpc altered taste responses of the neurons in the PbN, indicating that VPMpc modulates taste responses of PbN neurons. These results may provide functional insight of neural circuitry for taste processing and modulation involving these two nuclei.
Collapse
Affiliation(s)
- Limin Mao
- Department of Oral and Maxillofacial Surgery, Harbin Medical University School of Dentistry, Harbin, Heilongjiang, PR China
| | | | | |
Collapse
|
37
|
Saggu S, Lundy R. Forebrain neurons that project to the gustatory parabrachial nucleus in rat lack glutamic acid decarboxylase. Am J Physiol Regul Integr Comp Physiol 2008; 294:R52-7. [PMID: 17989138 PMCID: PMC2194648 DOI: 10.1152/ajpregu.00635.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence suggests that GABA might mediate the inhibitory influence of centrifugal inputs on taste-evoked responses in the parabrachial nucleus (PBN). Previous studies show that activation of the gustatory cortex (GC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH) inhibits PBN taste responses, GABAergic neurons are present in these forebrain regions, and GABA reduces the input resistance of PBN neurons. The present study investigated the expression of glutamic acid decarboxylase immunoreactivity (GAD_67 ir) in GC, BNST, CeA, and LH neurons that project to the PBN in rats. After anesthesia (50 mg/kg ip Nembutal), injections of the retrograde tracer Fluorogold (FG) were made in the physiologically defined gustatory PBN. Brain tissue containing the above forebrain structures was processed and examined for FG and GAD_67 ir. Similar to previous studies, each forebrain site contained retrogradely labeled neurons. Our results suggest further that the major source of input to the PBN taste region is the CeA (608 total cells) followed by GC (257 cells), LH (106 cells), and BNST (92 cells). This suggests a differential contribution to centrifugal control of PBN taste processing. We further show that despite the presence of GAD_67 neurons in each forebrain area, colocalization was extremely rare, occurring only in 3 out of 1,063 FG-labeled cells. If we assume that the influence of centrifugal input is mediated by direct projections to the gustatory region of the PBN, then GABAergic forebrain neurons apparently are not part of this descending pathway.
Collapse
Affiliation(s)
- Shalini Saggu
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Robert Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| |
Collapse
|
38
|
Soares ES, Stapleton JR, Rodriguez A, Fitzsimmons N, Oliveira L, Nicolelis MAL, Simon SA. Behavioral and neural responses to gustatory stimuli delivered non-contingently through intra-oral cannulas. Physiol Behav 2007; 92:629-42. [PMID: 17588623 PMCID: PMC2148501 DOI: 10.1016/j.physbeh.2007.05.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/04/2007] [Accepted: 05/10/2007] [Indexed: 12/23/2022]
Abstract
The act of eating requires a decision by an animal to place food in its mouth. The reasons to eat are varied and include hunger as well as the food's expected reward value. Previous studies of tastant processing in the rat primary gustatory cortex (GC) have used either anesthetized or awake behaving preparations that yield somewhat different results. Here we have developed a new preparation in which we explore the influences of intra-oral and non-contingent tastant delivery on rats' behavior and on their GC neural responses. We recorded single-unit activity in the rat GC during two sequences of tastant deliveries, PRE and POST, which were separated by a waiting period. Six tastants ranging in hedonic value from sucrose to quinine were delivered in the first two protocols called 4TW and L-S. In the third one, the App L-S protocol, only hedonically positive tastants were used. In the 4TW protocol, tastants were delivered in blocks whereas in the two L-S protocols tastants were randomly interleaved. In the 4TW and L-S protocols the probability of ingesting tastants in the PRE sequence decreased exponentially with the trial number. Moreover, in both protocols this decrease was greater in the POST than in the PRE sequence likely because the subjects learned that unpleasant tastants were to be delivered. In the App L-S protocol the decrease in ingestion was markedly slower than in the other protocols, thus supporting the hypothesis that the decrease in appetitive behavior arises from the non-contingent intra-oral delivery of hedonically negative tastants like quinine. Although neuronal responses in the three protocols displayed similar variability levels, significant differences existed between the protocols in the way the variability was partitioned between chemosensory and non-chemosensory neurons. While in the 4TW and L-S protocols the former population displayed more changes than the latter, in the App L-S protocol variability was homogeneously distributed between the two populations. We posit that these tuning changes arise, at least in part, from compounds released upon ingestion, and also from differences in areas of the oral cavity that are bathed as the animals ingest or reject the tastants.
Collapse
Affiliation(s)
- Ernesto S. Soares
- Department of Neurobiology, Duke University, Durham NC, USA
- Evolutionary Systems and Biomedical Engineering Lab, Institute for Systems and Robotics, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisbon, Portugal
| | | | - Abel Rodriguez
- Institute of Statistics and Decision Sciences, Duke University, Durham NC, USA
| | | | - Laura Oliveira
- Department of Neurobiology, Duke University, Durham NC, USA
| | - Miguel A. L. Nicolelis
- Department of Neurobiology, Duke University, Durham NC, USA
- Dept. of Biomedical Engineering, Duke University, Durham NC, USA
- Center for Neuroengineering, Duke University, Durham NC, USA
- Dept. of Psychological and Brain Sciences, Duke University, Durham NC, USA
| | - Sidney A. Simon
- Department of Neurobiology, Duke University, Durham NC, USA
- Dept. of Biomedical Engineering, Duke University, Durham NC, USA
- Center for Neuroengineering, Duke University, Durham NC, USA
| |
Collapse
|
39
|
Tokita K, Shimura T, Nakamura S, Inoue T, Yamamoto T. Involvement of forebrain in parabrachial neuronal activation induced by aversively conditioned taste stimuli in the rat. Brain Res 2007; 1141:188-96. [PMID: 17276421 DOI: 10.1016/j.brainres.2007.01.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/05/2007] [Accepted: 01/06/2007] [Indexed: 11/15/2022]
Abstract
We previously have shown that forebrain inputs increase responses of amiloride-sensitive NaCl-best neurons to the conditioned stimulus (CS) in the rat parabrachial nucleus (PBN) after the establishment of conditioned taste aversion (CTA) to NaCl. In the present study, we examined the effects of aversively-conditioned NaCl taste stimulation on Fos-like immunoreactivity (FLI) in the PBN using awake intact and decerebrate rats. In Experiment 1, the CTA-trained and sham-conditioned control rats were intraorally infused with 0.1 M NaCl or 0.1 M NaCl mixed with 10(-4) M amiloride, a sodium-channel blocker. Significantly more NaCl-stimulated FLI was observed in the central medial (cms) and external lateral subnuclei (els) of PBN in the CTA-trained group than in the control group. In both groups, amiloride markedly reduced NaCl-stimulated FLI in the cms but not in the els. In Experiment 2, we found that after decerebration, there was no significant difference in FLI between the CTA-trained and sham-conditioned groups. These results suggest that (1) amirolide-sensitive taste information of NaCl projects mainly to the cms; (2) sensory information of aversive taste stimuli is likely to be represented in the els; and (3) forebrain inputs are required for elevated FLI in the PBN after CTA.
Collapse
Affiliation(s)
- Kenichi Tokita
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | | | |
Collapse
|
40
|
Li CS, Cho YK. Efferent projection from the bed nucleus of the stria terminalis suppresses activity of taste-responsive neurons in the hamster parabrachial nuclei. Am J Physiol Regul Integr Comp Physiol 2006; 291:R914-26. [PMID: 16966389 DOI: 10.1152/ajpregu.00750.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the reciprocal projections between the bed nucleus of the stria terminalis (BNST) and the gustatory parabrachial nuclei (PbN) have been demonstrated neuroanatomically, there is no direct evidence showing that the projections from the PbN to the BNST carry taste information or that descending inputs from the BNST to the PbN modulate the activity of PbN gustatory neurons. A recent electrophysiological study has demonstrated that the BNST exerts modulatory influence on taste neurons in the nucleus of the solitary tract (NST), suggesting that the BNST may also modulate the activity of taste neurons in the PbN. In the present study, we recorded from 117 taste-responsive neurons in the PbN and examined their responsiveness to electrical stimulation of the BNST bilaterally. Thirteen neurons (11.1%) were antidromically invaded from the BNST, mostly from the ipsilateral side (12 cells), indicating that a subset of taste neurons in the PbN project their axons to the BNST. The BNST stimulation induced orthodromic responses on most of the PbN neurons: 115 out of 117 (98.3%), including all BNST projection units. This descending modulation on the PbN gustatory neurons was exclusively inhibitory. We also confirmed that activation of this efferent inhibitory projection from the BNST reduces taste responses of PbN neurons in all units tested. The BNST is part of the neural circuits that involve stress-associated feeding behavior. It is also known that brain stem gustatory nuclei, including the PbN, are associated with feeding behavior. Therefore, this neural substrate may be important in the stress-elicited alteration in ingestive behavior.
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy, Southern Illinois University School of Medicine, Life Science III Rm. 2073, 1135 Lincoln Dr., Carbondale, IL 62901, USA.
| | | |
Collapse
|
41
|
Geran LC, Travers SP. Single neurons in the nucleus of the solitary tract respond selectively to bitter taste stimuli. J Neurophysiol 2006; 96:2513-27. [PMID: 16899635 DOI: 10.1152/jn.00607.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Molecular data suggest that receptors for all bitter ligands are coexpressed in the same taste receptor cells (TRCs), whereas physiological results indicate that individual TRCs respond to only a subset of bitter stimuli. It is also unclear to what extent bitter-responsive neurons are stimulated by nonbitter stimuli. To explore these issues, single neuron responses were recorded from the rat nucleus of the solitary tract (NST) during whole mouth stimulation with a variety of bitter compounds: 10 microM cycloheximide, 7 mM propylthiouracil, 10 mM denatonium benzoate, and 3 mM quinine hydrochloride at intensities matched for behavioral effectiveness. Stimuli representing the remaining putative taste qualities were also tested. Particular emphasis was given to activating taste receptors in the foliate papillae innervated by the quinine-sensitive glossopharyngeal nerve. This method revealed a novel population of bitter-best (B-best) cells with foliate receptive fields and significant selectivity for bitter tastants. Across all neurons, multidimensional scaling depicted bitter stimuli as loosely clustered yet clearly distinct from nonbitter tastants. When neurons with posterior receptive fields were analyzed alone, bitter stimuli formed a tighter cluster. Nevertheless, responses to bitter stimuli were variable across B-best neurons, with cycloheximide the most, and quinine the least frequent optimal stimulus. These results indicate heterogeneity for the processing of ionic and nonionic bitter tastants, which is dependent on receptive field. Further, they suggest that neurons selective for bitter substances could contribute to taste coding.
Collapse
Affiliation(s)
- Laura C Geran
- Section of Oral Biology, College of Dentistry, Ohio State University, 305 W. 12th Ave. Postle Hall, Columbus, OH 43210, USA
| | | |
Collapse
|
42
|
Spector AC, Travers SP. The representation of taste quality in the mammalian nervous system. ACTA ACUST UNITED AC 2006; 4:143-91. [PMID: 16510892 DOI: 10.1177/1534582305280031] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The process by which the mammalian nervous system represents the features of a sapid stimulus that lead to a perception of taste quality has long been controversial. The labeled-line (sparse coding) view differs from the across-neuron pattern (ensemble) counterpoint in proposing that activity in a given class of neurons is necessary and sufficient to generate a specific taste perception. This article critically reviews molecular, electro-physiological, and behavioral findings that bear on the issue. In the peripheral gustatory system, the authors conclude that most qualities appear to be signaled by labeled lines; however, elements of both types of coding characterize signaling of sodium salts. Given the heterogeneity of neuronal tuning functions in the brain, the central coding mechanism is less clear. Both sparse coding and neuronal ensemble models remain viable possibilities. Furthermore, temporal patterns of discharge could contribute additional information. Ultimately, until specific classes of neurons can be selectively manipulated and perceptual consequences assessed, it will be difficult to go beyond mere correlation and conclusively discern the validity of these coding models.
Collapse
Affiliation(s)
- Alan C Spector
- Department of Psychology and Center for Smell and Taste, University of Florida
| | | |
Collapse
|
43
|
De Gobbi JIF, Barbosa SP, De Luca LA, Thunhorst RL, Johnson AK, Menani JV. Activation of serotonergic 5-HT1A receptors in the lateral parabrachial nucleus increases NaCl intake. Brain Res 2005; 1066:1-9. [PMID: 16360657 DOI: 10.1016/j.brainres.2005.04.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 03/28/2005] [Accepted: 04/01/2005] [Indexed: 11/27/2022]
Abstract
Previous studies using non-specific serotonergic agonists and antagonists have shown the importance of serotonergic inhibitory mechanisms in the lateral parabrachial nucleus (LPBN) for controlling sodium and water intake. In the present study, we investigated whether the serotonergic 5-HT(1A) receptor subtype in the LPBN participates in this control. Male Holtzman rats had cannulas implanted bilaterally into the LPBN. Bilateral injections of the 5-HT(1A) receptor agonist, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT, 0.1, 1.25, and 2.5 microg/0.2 microl), into the LPBN enhanced 0.3 M NaCl and water intake of rats injected subcutaneously with the diuretic furosemide (10 mg/kg bw) and a low dose of the angiotensin-converting enzyme inhibitor, captopril (5 mg/kg bw). The increase in NaCl intake produced by 8-OH-DPAT injections was reduced in dose-related manner by pre-treating the LPBN with the selective 5-HT(1A) serotonergic antagonist, WAY-100635 (WAY, 1 and 2 microg/0.2 microl). In contrast, WAY did not affect water intake produced by 8-OH-DPAT. WAY-100635 injected alone into the LPBN had no effect on NaCl ingestion. Injections of 8-OH-DAPT (0.1 microg/0.2 microl) into the LPBN also increased 0.3 M NaCl intake induced by 24-h sodium depletion (furosemide, 20 mg/kg bw plus 24 h of sodium-free diet). Serotonin (5-HT, 20 mug/0.2 mul) injected alone or combined with 8-OH-DPAT into the LPBN reduced 24-h sodium depletion-induced 0.3 M NaCl intake. Therefore, the activation of serotonergic 5-HT(1A) receptors in the LPBN increases stimulated hypertonic NaCl and water intake, while 5-HT injections into the LPBN reduce NaCl intake and prevent the effects of serotonergic 5-HT(1A) receptor activation.
Collapse
Affiliation(s)
- Juliana Irani Fratucci De Gobbi
- Department of Physiology and Pathology, School of Dentistry, Paulista State University (UNESP), Rua Humaitá 1680, 14801-903 Araraquara, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
44
|
Jia HG, Zhang GY, Wan Q. A GABAergic projection from the central nucleus of the amygdala to the parabrachial nucleus: an ultrastructural study of anterograde tracing in combination with post-embedding immunocytochemistry in the rat. Neurosci Lett 2005; 382:153-7. [PMID: 15911140 DOI: 10.1016/j.neulet.2005.03.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 02/23/2005] [Accepted: 03/04/2005] [Indexed: 11/23/2022]
Abstract
To determine whether axonal terminals emanating from the central nucleus of amygdala (Ce) to the parabrachial nucleus (PBN) contain gamma-aminobutyric acid (GABA) as their neurotransmitter, an electron microscopic study was performed employing the combined techniques of WGA-HRP anterograde tracing and post-embedding immunocytochemistry for GABA. Our analysis distinguished a large population of GABA immunopositive axonal terminals from the Ce that exhibited symmetrical synaptic contacts with neurons in the lateral parabrachial nucleus. Additionally, most retrogradely labeled dendrites and perikarya received synaptic contacts from GABA immunoreactive terminals, with some of them originating from the Ce. The present study provides the first direct ultrastructural evidence for a monosynaptic, GABAergic link between Ce axons and neurons of the parabrachial nucleus via classical symmetrical synapses.
Collapse
Affiliation(s)
- Hong-Ge Jia
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710033, People's Republic of China.
| | | | | |
Collapse
|
45
|
Cooper SJ. Endocannabinoids and food consumption: comparisons with benzodiazepine and opioid palatability-dependent appetite. Eur J Pharmacol 2005; 500:37-49. [PMID: 15464019 DOI: 10.1016/j.ejphar.2004.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 01/22/2023]
Abstract
The endocannabinoid system consists of several endogenous lipids, including anandamide and 2-arachidonoyl-glycerol (2-AG), and constitute a retrograde signalling system, which modulates neurotransmitter release and synaptic plasticity. Specific brain-type cannabinoid receptors (CB(1)) are widely distributed in the central nervous system, and are localized presynaptically. Mounting evidence, reviewed here, indicates that cannabinoids can act to increase food consumption, and cannabinoid CB(1) receptor antagonists/inverse agonists reduce food intake and suppress operant responding for food rewards. Hence, endocannabinoids provide the first example of a retrograde signalling system, which is strongly implicated in the control of food intake. Benzodiazepine and opioid palatability-dependent appetite are well-established processes supported by several sources of convergent evidence; they provide pharmacological benchmarks against which to evaluate the endocannabinoids. To date, evidence that endocannabinoids specifically modulate palatability as an affective evaluative process is insufficient and not compelling. Endocannabinoids may have important clinical utility in the treatment of human obesity and forms of eating disorders.
Collapse
Affiliation(s)
- Steven J Cooper
- Kissileff Laboratory for the Study of Human Ingestive Behaviour, School of Psychology, University of Liverpool, Liverpool L69 7ZA, UK.
| |
Collapse
|
46
|
Smith DV, Ye MK, Li CS. Medullary taste responses are modulated by the bed nucleus of the stria terminalis. Chem Senses 2005; 30:421-34. [PMID: 15872146 DOI: 10.1093/chemse/bji037] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies have shown a modulatory influence of limbic forebrain areas, such as the central nucleus of the amygdala and lateral hypothalamus, on the activity of taste-responsive cells in the nucleus of the solitary tract (NST). The bed nucleus of the stria terminalis (BST), which receives gustatory afferent information, also sends descending axons to the NST. The present studies were designed to investigate the role of the BST in the modulation of NST gustatory activity. Extracellular action potentials were recorded from 101 taste-responsive cells in the NST of urethane-anesthetized hamsters and analyzed for a change in excitability following bilateral electrical stimulation of the BST. The response of NST taste cells to stimulation of the BST was predominately inhibitory. Orthodromic inhibitory responses were observed in 29 of 101 (28.7%) NST taste-responsive cells, with four cells inhibited bilaterally. An increase in excitability was observed in seven of the 101 (6.9%) NST taste cells. Of the 34 cells showing these responses, 25 were modulated by the ipsilateral BST and 15 by the contralateral; four were inhibited bilaterally and two inhibited ipsilaterally and excited contralaterally. The duration of inhibitory responses (mean = 177.9 ms) was significantly longer than that of excitatory responses (35.4 ms). Application of subthreshold electrical stimulation to the BST during taste trials inhibited or excited the taste responses of every BST-responsive NST cell tested with this protocol. NST neurons that were most responsive to sucrose, NaCl, citric acid or quinine hydrochloride were all affected by BST stimulation, although citric acid-best cells were significantly more often modulated and NaCl-best less often modulated than expected by chance. These results combine with excitatory and inhibitory modulation of NST neurons by the insular cortex, lateral hypothalamus and central nucleus of the amygdala to demonstrate extensive centrifugal modulation of brainstem gustatory neurons.
Collapse
Affiliation(s)
- David V Smith
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
47
|
Kang Y, Yan J, Huang T. Microinjection of bicuculline into the central nucleus of the amygdala alters gustatory responses of the rat parabrachial nucleus. Brain Res 2005; 1028:39-47. [PMID: 15518640 DOI: 10.1016/j.brainres.2004.08.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2004] [Indexed: 11/25/2022]
Abstract
The central amygdaloid nucleus (CeA) receives projection from the parabrachial nucleus (PBN) gustatory neurons and descendingly projects to the PBN, and taste responses in the PBN are significantly affected by stimulation or lesion of the CeA. To examine whether the GABA receptors within the CeA are involved in this modulation, the effects of microinjection of bicuculline, a GABA(A)-selective antagonist, into the CeA on the activities of PBN taste neurons were observed by using extracellular recording technique. In general, after bicuculline was administered to ipsilateral CeA, the responses of PBN neurons to four tastants all increased, with the magnitudes significantly higher than those obtained before drug administration (P<0.01), respectively. However, after bicuculline was delivered into the contralateral CeA, only the responses to NaCl, HCl and QHCl increased. According to the best-stimulus category, 47% NaCl-best (8/17), 64% HCl-best (7/11), 80% QHCl-best (4/5), and 33% sucrose-best (1/3) increased their responses to at least one basic taste stimulus after GABA(A) receptors within the ipsilateral CeA were blocked. After contralteral CeA injection, more NaCl-best neurons (6/8) increased responses than that after ipsilateral CeA injection, but other best-stimulus units showed no differences before and after drug injection into the contralateral CeA. Analyses of across-unit patterns indicated that the correlation coefficient of responses between NaCl and sucrose was apparently higher after drug administration to the CeA. However, after drug injection into the contralateral CeA, the correlations between NaCl and the other three tastants were higher than those before. These results indicate that the GABA(A) receptors within the CeA play an important role in modulating the gustatory activities of PBN neurons.
Collapse
Affiliation(s)
- Yi Kang
- Department of Physiology, School of Medicine, Xi'an Jiaotong University, 245 Zhuque Street, Xi'an, Shaanxi 710061, People's Republic of China
| | | | | |
Collapse
|
48
|
Koh MT, Bernstein IL. Mapping Conditioned Taste Aversion Associations Using c-Fos Reveals a Dynamic Role for Insular Cortex. Behav Neurosci 2005; 119:388-98. [PMID: 15839785 DOI: 10.1037/0735-7044.119.2.388] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Novel tastes are more effective than familiar tastes as conditioned stimuli (CSs) in taste aversion learning. Parallel to this, a novel CS-unconditioned stimulus (US) pairing induced stronger Fos-like immunoreactivity (FLI) in insular cortex (IC), amygdala, and brainstem than familiar CS-US pairing, suggesting a large circuit is recruited for acquisition. To better define the role of IC, the authors combined immunostaining with lesion or reversible inactivation of IC. Lesions abolished FLI increases to novel taste pairing in amygdala, suggesting a role in novelty detection. Reversible inactivation during taste preexposure increased FLI to familiar taste pairing in amygdala and brainstem. The difference between temporary inactivation, which blocked establishment of "safe" taste memory, and lesions points to a dual role for IC in taste learning.
Collapse
Affiliation(s)
- Ming Teng Koh
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, USA
| | | |
Collapse
|
49
|
Li CS, Cho YK, Smith DV. Modulation of parabrachial taste neurons by electrical and chemical stimulation of the lateral hypothalamus and amygdala. J Neurophysiol 2004; 93:1183-96. [PMID: 15483060 DOI: 10.1152/jn.00828.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lateral hypothalamus (LH) and the central nucleus of the amygdala (CeA) exert an influence on ingestive behavior and are reciprocally connected to gustatory and viscerosensory areas, including the nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN). We investigated the effects of LH and CeA stimulation on the activity of 101 taste-responsive neurons in the hamster PbN. Eighty three of these neurons were antidromically activated by stimulation of these sites; 57 were antidromically driven by both. Of these 83 neurons, 21 were also orthodromically activated--8 by the CeA and 3 by the LH. Additional neurons were excited (n = 5) or inhibited (n = 8) by these forebrain nuclei but not antidromically activated. Taste stimuli were: 0.032 M sucrose, 0.032 M sodium chloride (NaCl), 0.032 M quinine hydrochloride (QHCl), and 0.0032 M citric acid. Among the 34 orthodromically activated neurons, more sucrose-best neurons were excited than inhibited, whereas the opposite occurred for citric-acid- and QHCl-best cells. Neurons inhibited by the forebrain responded significantly more strongly to citric acid and QHCl than cells excited by these sites. The effects of electrical stimulation were mimicked by microinjection of DL-homocysteic acid, indicating that cells at these forebrain sites were responsible for these effects. These data demonstrate that many individual PbN gustatory neurons project to both the LH and CeA and that these areas modulate the gustatory activity of a subset of PbN neurons. This neural substrate is likely involved in the modulation of taste activity by physiological and experiential factors.
Collapse
Affiliation(s)
- Cheng-Shu Li
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Ave., Suite 515, Memphis, TN 38163, USA
| | | | | |
Collapse
|
50
|
Tokita K, Karádi Z, Shimura T, Yamamoto T. Centrifugal inputs modulate taste aversion learning associated parabrachial neuronal activities. J Neurophysiol 2004; 92:265-79. [PMID: 14973323 DOI: 10.1152/jn.01090.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous studies have demonstrated that gustatory neurons in the parabrachial nucleus (PBN) show altered responses after the acquisition of conditioned taste aversion (CTA) to NaCl. The present study was conducted 1) to examine centrifugal influences on the altered gustatory activity of CTA-trained rats, and 2) to evaluate the role of amiloride-sensitive (ASN) and -insensitive NaCl (AIN) best units in coding the taste of NaCl. Animals were separated into 2 groups: a CTA group that had acquired taste aversion to 0.1 M NaCl and a control group that underwent pseudoconditioning before the recording experiment. Single-neuron activity, in 2 separate series of experiments, was extracellularly recorded in anesthetized rats. In the stimulation studies, the effects of electrical stimulation of the gustatory cortex (GC) or the central nucleus of amygdala (CeA) were examined on firing of PBN taste units. CeA stimulation produced excitatory effect in significantly more neurons in the CTA group (n = 8) than in the control group (n = 1). Furthermore, ASN-best units in the CTA group showed larger responses to NaCl than similar units in the control group. In the decerebration experiment, there was no statistical difference among the taste responses between the 2 groups in any best-stimulus category. These results suggest that CTA conditioning uses an effective central amygdaloid input to modulate activity of gustatory neurons in the PBN. Data also substantiate that amiloride-sensitive components of NaCl-best neurons play a critical role in the recognition of distinctive taste of NaCl.
Collapse
Affiliation(s)
- Ken'ichi Tokita
- Department of Behavioral Physiology, Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|