1
|
Wood CM, Eom J. Accounting for the role of the gastro-intestinal tract in the ammonia and urea nitrogen dynamics of freshwater rainbow trout on long-term satiation feeding. J Exp Biol 2025; 228:jeb249654. [PMID: 39817460 DOI: 10.1242/jeb.249654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
The contribution of the gut to the ingestion, production, absorption and excretion of the extra ammonia and urea nitrogen (urea-N) associated with feeding ('exogenous' fraction) has received limited attention. Analysis of commercial pellet food revealed appreciable concentrations of ammonia and urea-N. Long-term satiation feeding increased whole-trout ammonia and urea-N excretion rates by 2.5-fold above fasting levels. Blood was sampled from the dorsal aorta, posterior, mid- and anterior sub-intestinal veins, as well as the hepatic portal vein in situ. Ammonia, urea-N and fluid flux rates were measured in vitro using novel gut sac preparations filled with native chyme. The sacs maintained the extreme physico-chemical conditions of the lumen seen in vivo. Overall, these results confirmed our hypothesis that the stomach, and anterior intestine and pyloric caecae regions play important roles in ammonia and urea-N production and/or absorption. There was a very high rate of urea-N production in the anterior intestine and pyloric caecae, whereas the posterior intestine dominated for ammonia synthesis. The stomach was the major site of ammonia absorption, and the anterior intestine and pyloric caecae region dominated for urea-N absorption. Model calculations indicated that over 50% of the exogenous ammonia and urea-N excretion associated with satiation feeding was produced in the anaerobic gut. This challenges standard metabolic theory used in fuel-use calculations. The novel gut sac preparations gained fluid during incubation, especially in the anterior intestine and pyloric caecae, owing to marked hyperosmolality in the chyme. Thus, satiation feeding with commercial pellets is beneficial to the water balance of freshwater trout.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, BC, Canada
- Department of Biology, McMaster University, Hamilton L8S 4K1, ON, Canada
| | - Junho Eom
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, BC, Canada
| |
Collapse
|
2
|
Morris C, Martins C, Zulian S, Smith DS, Brauner CJ, Wood CM. The effects of dissolved organic carbon and model compounds (DOC analogues) on diffusive water flux, oxygen consumption, nitrogenous waste excretion rates and gill transepithelial potential in Pacific sanddab (Citharichthys sordidus) at two salinities. J Comp Physiol B 2024; 194:805-825. [PMID: 39245661 DOI: 10.1007/s00360-024-01580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Many flatfish species are partially euryhaline, such as the Pacific sanddab which spawn and feed in highly dynamic estuaries ranging from seawater to near freshwater. With the rapid increase in saltwater invasion of freshwater habitats, it is very likely that in these estuaries, flatfish will be exposed to increasing levels of dissolved organic carbon (DOC) of freshwater origin at a range of salinities. As salinity fluctuations often coincide with changes in DOC concentration, two natural freshwater DOCs [Luther Marsh (LM, allochthonous) and Lake Ontario (LO, autochthonous) were investigated at salinities of 30 and 7.5 ppt. Optical characterization of the two natural DOC sources indicate salinity-dependent differences in their physicochemistry. LO and LM DOCs, as well as three model compounds [tannic acid (TA), sodium dodecyl sulfate (SDS) and bovine serum albumin (BSA)] representing key chemical moieties of DOC, were used to evaluate physiological effects on sanddabs. In the absence of added DOC, an acute decrease in salinity resulted in an increase in diffusive water flux (a proxy for transcellular water permeability), ammonia excretion and a change in TEP from positive (inside) to negative (inside). The effects of DOC (10 mg C L-1) were salinity and source-dependent, with generally more pronounced effects at 30 than 7.5 ppt, and greater potency of LM relative to LO. Both LM DOC and SDS increased diffusive water flux at 30 ppt but only SDS had an effect at 7.5 ppt. TA decreased ammonia excretion at 7.5 ppt. LO DOC decreased urea-N excretion at both salinities whereas the stimulatory effect of BSA occurred only at 30 ppt. Likewise, the effects of LM DOC and BSA to reduce TEP were present at 30 ppt but not 7.5 ppt. None of the treatments affected oxygen consumption rates. Our results demonstrate that DOCs and salinity interact to alter key physiological processes in marine flatfish, reflecting changes in both gill function and the physicochemistry of DOCs between 30 and 7.5 ppt.
Collapse
Affiliation(s)
- Carolyn Morris
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, V0R 1B0, Canada.
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Camila Martins
- Institute of Biological Sciences, Federal University of Rio Grande - FURG, Italia avenue, s/n, Carreiros, Rio Grande, 96203-900, RS, Brazil
| | - Samantha Zulian
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, ON, N2L 3C5, Canada
| | - D Scott Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, ON, N2L 3C5, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Chris M Wood
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, V0R 1B0, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
3
|
Leonard EM, Porteus CS, Brink D, Milsom WK. Fish gill chemosensing: knowledge gaps and inconsistencies. J Comp Physiol B 2024; 194:1-33. [PMID: 38758303 DOI: 10.1007/s00360-024-01553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
In this review, we explore the inconsistencies in the data and gaps in our knowledge that exist in what is currently known regarding gill chemosensors which drive the cardiorespiratory reflexes in fish. Although putative serotonergic neuroepithelial cells (NEC) dominate the literature, it is clear that other neurotransmitters are involved (adrenaline, noradrenaline, acetylcholine, purines, and dopamine). And although we assume that these agents act on neurons synapsing with the NECs or in the afferent or efferent limbs of the paths between chemosensors and central integration sites, this process remains elusive and may explain current discrepancies or species differences in the literature. To date it has been impossible to link the distribution of NECs to species sensitivity to different stimuli or fish lifestyles and while the gills have been shown to be the primary sensing site for respiratory gases, the location (gills, oro-branchial cavity or elsewhere) and orientation (external/water or internal/blood sensing) of the NECs are highly variable between species of water and air breathing fish. Much of what has been described so far comes from studies of hypoxic responses in fish, however, changes in CO2, ammonia and lactate have all been shown to elicit cardio-respiratory responses and all have been suggested to arise from stimulation of gill NECs. Our view of the role of NECs is broadening as we begin to understand the polymodal nature of these cells. We begin by presenting the fundamental picture of gill chemosensing that has developed, followed by some key unanswered questions about gill chemosensing in general.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Cosima S Porteus
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| | - Deidre Brink
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Zimmer AM. Ammonia excretion by the fish gill: discoveries and ideas that shaped our current understanding. J Comp Physiol B 2024; 194:697-715. [PMID: 38849577 DOI: 10.1007/s00360-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
The fish gill serves many physiological functions, among which is the excretion of ammonia, the primary nitrogenous waste in most fishes. Although it is the end-product of nitrogen metabolism, ammonia serves many physiological functions including acting as an acid equivalent and as a counter-ion in mechanisms of ion regulation. Our current understanding of the mechanisms of ammonia excretion have been influenced by classic experimental work, clever mechanistic approaches, and modern molecular and genetic techniques. In this review, I will overview the history of the study of ammonia excretion by the gills of fishes, highlighting the important advancements that have shaped this field with a nearly 100-year history. The developmental and evolutionary implications of an ammonia and gill-dominated nitrogen regulation strategy in most fishes will also be discussed. Throughout the review, I point to areas in which more work is needed to push forward this field of research that continues to produce novel insights and discoveries that will undoubtedly shape our overall understanding of fish physiology.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, Saint John, New Brunswick, E2L 4L5, Canada.
| |
Collapse
|
5
|
Williamson G, Harris T, Bizior A, Hoskisson PA, Pritchard L, Javelle A. Biological ammonium transporters: evolution and diversification. FEBS J 2024; 291:3786-3810. [PMID: 38265636 DOI: 10.1111/febs.17059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/14/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Although ammonium is the preferred nitrogen source for microbes and plants, in animal cells it is a toxic product of nitrogen metabolism that needs to be excreted. Thus, ammonium movement across biological membranes, whether for uptake or excretion, is a fundamental and ubiquitous biological process catalysed by the superfamily of the Amt/Mep/Rh transporters. A remarkable feature of the Amt/Mep/Rh family is that they are ubiquitous and, despite sharing low amino acid sequence identity, are highly structurally conserved. Despite sharing a common structure, these proteins have become involved in a diverse range of physiological process spanning all domains of life, with reports describing their involvement in diverse biological processes being published regularly. In this context, we exhaustively present their range of biological roles across the domains of life and after explore current hypotheses concerning their evolution to help to understand how and why the conserved structure fulfils diverse physiological functions.
Collapse
Affiliation(s)
- Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Paul Alan Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Leighton Pritchard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
6
|
Li D, Wan X, Yun Y, Li Y, Duan W. Genes Selectively Expressed in Rat Organs. Curr Genomics 2024; 25:261-297. [PMID: 39156728 PMCID: PMC11327808 DOI: 10.2174/0113892029273121240401060228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 08/20/2024] Open
Abstract
Background Understanding organic functions at a molecular level is important for scientists to unveil the disease mechanism and to develop diagnostic or therapeutic methods. Aims The present study tried to find genes selectively expressed in 11 rat organs, including the adrenal gland, brain, colon, duodenum, heart, ileum, kidney, liver, lung, spleen, and stomach. Materials and Methods Three normal male Sprague-Dawley (SD) rats were anesthetized, their organs mentioned above were harvested, and RNA in the fresh organs was extracted. Purified RNA was reversely transcribed and sequenced using the Solexa high-throughput sequencing technique. The abundance of a gene was measured by the expected value of fragments per kilobase of transcript sequence per million base pairs sequenced (FPKM). Genes in organs with the highest expression level were sought out and compared with their median value in organs. If a gene in the highest expressed organ was significantly different (p < 0.05) from that in the medianly expressed organ, accompanied by q value < 0.05, and accounted for more than 70% of the total abundance, the gene was assumed as the selective gene in the organ. Results & Discussion The Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) pathways were enriched by the highest expressed genes. Based on the criterion, 1,406 selective genes were screened out, 1,283 of which were described in the gene bank and 123 of which were waiting to be described. KEGG and GO pathways in the organs were partly confirmed by the known understandings and a good portion of the pathways needed further investigation. Conclusion The novel selective genes and organic functional pathways are useful for scientists to unveil the mechanisms of the organs at the molecular level, and the selective genes' products are candidate disease markers for organs.
Collapse
Affiliation(s)
- Dan Li
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xulian Wan
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Yu Yun
- The Department of Pharmacology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yongkun Li
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Weigang Duan
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
7
|
Caneos WG, Shrivastava J, Ndugwa M, De Boeck G. Physiological responses of European sea bass (Dicentrarchus labrax) exposed to increased carbon dioxide and reduced seawater salinities. Mol Biol Rep 2024; 51:496. [PMID: 38587695 DOI: 10.1007/s11033-024-09460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND The iono- and osmoregulatory capacities of marine teleosts, such as European sea bass (Dicentrarchus labrax) are expected to be challenged by high carbon dioxide exposure, and the adverse effects of elevated CO2 could be amplified when such fish migrate into less buffered hypo-osmotic estuarine environments. Therefore, the effects of increased CO2 on the physiological responses of European sea bass (Dicentrarchus labrax) acclimated to 32 ppt, 10 ppt and 2.5 ppt were investigated. METHODS Following acclimation to different salinities for two weeks, fish were exposed to present-day (400 µatm) and future (1000 µatm) atmospheric CO2 for 1, 3, 7 and 21 days. Blood pH, plasma ions (Na+, K+, Cl-), branchial mRNA expression of ion transporters such as Na+/K+-ATPase (NKA), Na+/K+/2Cl- co-transporters (NKCC) and ammonia transporters (e.g. Rhesus glycoproteins Rhbg, Rhcg1 and Rhcg2) were examined to understand the iono- and osmoregulatory consequences of elevated CO2. RESULTS A transient but significant increase in the blood pH of exposed fish acclimated at 10 ppt (day 1) and 2.5 ppt (day 21) was observed possibly due to an overshoot of the blood HCO3- accumulation while a significant reduction of blood pH was observed after 21 days at 2.5ppt. However, no change was seen at 32 ppt. Generally, Na + concentration of control fish was relatively higher at 10 ppt and lower at 2.5 ppt compared to 32 ppt control group at all sampling periods. Additionally, NKA was upregulated in gill of juvenile sea bass when acclimated to lower salinities compared to 32 ppt control group. CO2 exposure generally downregulated NKA mRNA expression at 32ppt (day 1), 10 ppt (days 3, 7 and 21) and 2.5ppt (days 1 and 7) and also a significant reduction of NKCC mRNA level of the exposed fish acclimated at 32 ppt (1-3 days) and 10 ppt (7-21 days) was observed. Furthermore, Rhesus glycoproteins were generally upregulated in the fish acclimated at lower salinities indicating a higher dependance on gill ammonia excretion. Increased CO2 led to a reduced expression of Rhbg and may therefore reduce ammonia excretion rate. CONCLUSION Juvenile sea bass were relatively successful in keeping acid base balance under an ocean acidification scenario. However, this came at a cost for ionoregulation with reduced NKA, NKCC and Rhbg expression rates as a consequence.
Collapse
Affiliation(s)
- Warren G Caneos
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, BE-2020, Belgium.
- Fisheries Department, College of Fisheries and Aquatic Sciences, Mindanao State University-Marawi, Marawi City, 9700, Philippines.
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines.
| | - Jyotsna Shrivastava
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, BE-2020, Belgium
| | - Moses Ndugwa
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, BE-2020, Belgium
| | - Gudrun De Boeck
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, BE-2020, Belgium
| |
Collapse
|
8
|
Zhao XF, Huang J, Li W, Wang SY, Liang LQ, Zhang LM, Liew HJ, Chang YM. Rh proteins and H + transporters involved in ammonia excretion in Amur Ide (Leuciscus waleckii) under high alkali exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116160. [PMID: 38432157 DOI: 10.1016/j.ecoenv.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
High alkaline environment can lead to respiratory alkalosis and ammonia toxification to freshwater fish. However, the Amur ide (Leuciscus waleckii), which inhabits an extremely alkaline lake in China with titratable alkalinity up to 53.57 mM (pH 9.6) has developed special physiological and molecular mechanisms to adapt to such an environment. Nevertheless, how the Amur ide can maintain acid-base balance and perform ammonia detoxification effectively remains unclear. Therefore, this study was designed to study the ammonia excretion rate (Tamm), total nitrogen accumulation in blood and tissues, including identification, expression, and localization of ammonia-related transporters in gills of both the alkali and freshwater forms of the Amur ide. The results showed that the freshwater form Amur ide does not have a perfect ammonia excretion mechanism exposed to high-alkaline condition. Nevertheless, the alkali form of Amur ide was able to excrete ammonia better than freshwater from Amur ide, which was facilitated by the ionocytes transporters (Rhbg, Rhcg1, Na+/H+ exchanger 2 (NHE2), and V-type H+ ATPase (VHA)) in the gills. Converting ammonia into urea served as an ammonia detoxication strategy to reduced endogenous ammonia accumulation under high-alkaline environment.
Collapse
Affiliation(s)
- Xue Fei Zhao
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Jing Huang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Wen Li
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 2000, China
| | - Shuang Yi Wang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Li Qun Liang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Li Min Zhang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Hon Jung Liew
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti of Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Yu Mei Chang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| |
Collapse
|
9
|
Quijada-Rodriguez AR, Fehsenfeld S, Marini AM, Wilson JM, Nash MT, Sachs M, Towle DW, Weihrauch D. Branchial CO 2 and ammonia excretion in crustaceans: Involvement of an apical Rhesus-like glycoprotein. Acta Physiol (Oxf) 2024; 240:e14078. [PMID: 38205922 DOI: 10.1111/apha.14078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
AIM To determine whether the crustacean Rh1 protein functions as a dual CO2 /ammonia transporter and investigate its role in branchial ammonia excretion and acid-base regulation. METHODS Sequence analysis of decapod Rh1 proteins was used to determine the conservation of amino acid residues putatively involved in ammonia transport and CO2 binding in human and bacterial Rh proteins. Using the Carcinus maenas Rh1 protein (CmRh1) as a representative of decapod Rh1 proteins, we test the ammonia and CO2 transport capabilities of CmRh1 through heterologous expression in yeast and Xenopus oocytes coupled with site-directed mutagenesis. Quantitative PCR was used to assess the distribution of CmRh1 mRNA in various tissues. Western blotting was used to assess CmRh1 protein expression changes in response to high environmental ammonia and CO2 . Further, immunohistochemistry was used to assess sub-cellular localization of CmRh1 and a membrane-bound carbonic anhydrase (CmCAg). RESULTS Sequence analysis of decapod Rh proteins revealed high conservation of several amino acid residues putatively involved in conducting ammonia transport and CO2 binding. Expression of CmRh1 in Xenopus oocytes enhanced both ammonia and CO2 transport which was nullified in CmRh1 D180N mutant oocytes. Transport of the ammonia analog methylamine by CmRh1 is dependent on both ionized and un-ionized ammonia/methylamine species. CmRh1 was co-localized with CmCAg to the apical membrane of the crustacean gill and only experienced decreased protein expression in the anterior gills when exposed to high environmental ammonia. CONCLUSION CmRh1 is the first identified apical transporter-mediated route for ammonia and CO2 excretion in the crustacean gill. Our findings shed further light on the potential universality of dual ammonia and CO2 transport capacity of Rhesus glycoproteins in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Alex R Quijada-Rodriguez
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Sandra Fehsenfeld
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Anna-Maria Marini
- Biology of Membrane Transport Laboratory, Molecular Biology Department, Université Libre de Bruxelles, Bruxelles, Belgium
- WELBIO, Wavre, Belgium
| | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Mikyla T Nash
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maria Sachs
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David W Towle
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Edwards TM, Puglis HJ, Kent DB, Durán JL, Bradshaw LM, Farag AM. Ammonia and aquatic ecosystems - A review of global sources, biogeochemical cycling, and effects on fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167911. [PMID: 37871823 DOI: 10.1016/j.scitotenv.2023.167911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
The purpose of this review is to better understand the full life cycle and influence of ammonia from an aquatic biology perspective. While ammonia has toxic properties in water and air, it also plays a central role in the biogeochemical nitrogen (N) cycle and regulates mechanisms of normal and abnormal fish physiology. Additionally, as the second most synthesized chemical on Earth, ammonia contributes economic value to many sectors, particularly fertilizers, energy storage, explosives, refrigerants, and plastics. But, with so many uses, industrial N2-fixation effectively doubles natural reactive N concentrations in the environment. The consequence is global, with excess fixed nitrogen driving degradation of soils, water, and air; intensifying eutrophication, biodiversity loss, and climate change; and creating health risks for humans, wildlife, and fisheries. Thus, the need for ammonia research in aquatic systems is growing. In response, we prepared this review to better understand the complexities and connectedness of environmental ammonia. Even the term "ammonia" has multiple meanings. So, we have clarified the nomenclature, identified units of measurement, and summarized methods to measure ammonia in water. We then discuss ammonia in the context of the N-cycle, review its role in fish physiology and mechanisms of toxicity, and integrate the effects of human N-fixation, which continuously expands ammonia's sources and uses. Ammonia is being developed as a carbon-free energy carrier with potential to increase reactive nitrogen in the environment. With this in mind, we review the global impacts of excess reactive nitrogen and consider the current monitoring and regulatory frameworks for ammonia. The presented synthesis illustrates the complex and interactive dynamics of ammonia as a plant nutrient, energy molecule, feedstock, waste product, contaminant, N-cycle participant, regulator of animal physiology, toxicant, and agent of environmental change. Few molecules are as influential as ammonia in the management and resilience of Earth's resources.
Collapse
Affiliation(s)
- Thea M Edwards
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA.
| | - Holly J Puglis
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Douglas B Kent
- U.S. Geological Survey, Earth Systems Processes Division, Menlo Park, CA, USA
| | - Jonathan López Durán
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Lillian M Bradshaw
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Aïda M Farag
- U.S. Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, Jackson, WY, USA
| |
Collapse
|
11
|
Liu W, Xu C, Li Z, Chen L, Wang X, Li E. Reducing Dietary Protein Content by Increasing Carbohydrates Is More Beneficial to the Growth, Antioxidative Capacity, Ion Transport, and Ammonia Excretion of Nile Tilapia ( Oreochromis niloticus) under Long-Term Alkalinity Stress. AQUACULTURE NUTRITION 2023; 2023:9775823. [PMID: 38023982 PMCID: PMC10667043 DOI: 10.1155/2023/9775823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023]
Abstract
Alkalinity stress is the main stress experienced by aquatic animals in saline-alkali water, which hinders the aquaculture development and the utilization of water resources. The two-factor (2 × 3) test was adopted to study the influence of dietary protein to carbohydrate ratios on the energy metabolism of Nile tilapia (Oreochromis niloticus) under different alkalinity stress levels. Three diets with different protein-carbohydrate ratios (P27/C35, P35/C25, and P42/C15) were fed to fish cultured in freshwater (FW, 1.3 mmol/L carbonate alkalinity) or alkaline water (AW, 35.7 mmol/L carbonate alkalinity) for 50 days. Ambient alkalinity decreased tilapia growth performance. Although ambient alkalinity caused oxidative stress and enhanced ion transport and ammonia metabolism in tilapia, tilapia fed the P27/C35 diet showed better adaptability than fish fed the other two diets in alkaline water. Further metabolomic analysis showed that tilapia upregulated all the pathways enriched in this study to cope with alkalinity stress. Under alkalinity stress, tilapia fed the P27/C35 diet exhibited enhanced pyruvate metabolism and purine metabolism compared with tilapia fed the P42/C15 diet. This study indicated that ambient alkalinity could significantly decrease growth performance and cause oxidative stress and osmotic regulation. However, reducing dietary protein content by increasing carbohydrates could weaken stress and improve growth performance, ion transport, and ammonia metabolism in tilapia under long-term hyperalkaline exposure.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China
| | - Zhao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodan Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
12
|
Takvam M, Wood CM, Kryvi H, Nilsen TO. Role of the kidneys in acid-base regulation and ammonia excretion in freshwater and seawater fish: implications for nephrocalcinosis. Front Physiol 2023; 14:1226068. [PMID: 37457024 PMCID: PMC10339814 DOI: 10.3389/fphys.2023.1226068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Maintaining normal pH levels in the body fluids is essential for homeostasis and represents one of the most tightly regulated physiological processes among vertebrates. Fish are generally ammoniotelic and inhabit diverse aquatic environments that present many respiratory, acidifying, alkalinizing, ionic and osmotic stressors to which they are able to adapt. They have evolved flexible strategies for the regulation of acid-base equivalents (H+, NH4 +, OH- and HCO3 -), ammonia and phosphate to cope with these stressors. The gills are the main regulatory organ, while the kidneys play an important, often overlooked accessory role in acid-base regulation. Here we outline the kidneys role in regulation of acid-base equivalents and two of the key 'urinary buffers', ammonia and phosphate, by integrating known aspects of renal physiology with recent advances in the molecular and cellular physiology of membrane transport systems in the teleost kidneys. The renal transporters (NHE3, NBC1, AE1, SLC26A6) and enzymes (V-type H+ATPase, CAc, CA IV, ammoniagenic enzymes) involved in H+ secretion, bicarbonate reabsorption, and the net excretion of acidic and basic equivalents, ammonia, and inorganic phosphate are addressed. The role of sodium-phosphate cotransporter (Slc34a2b) and rhesus (Rh) glycoproteins (ammonia channels) in conjunction with apical V-type H+ ATPase and NHE3 exchangers in these processes are also explored. Nephrocalcinosis is an inflammation-like disorder due to the precipitation of calcareous material in the kidneys, and is listed as one of the most prevalent pathologies in land-based production of salmonids in recirculating aquaculture systems. The causative links underlying the pathogenesis and etiology of nephrocalcinosis in teleosts is speculative at best, but acid-base perturbation is probably a central pathophysiological cause. Relevant risk factors associated with nephrocalcinosis are hypercapnia and hyperoxia in the culture water. These raise internal CO2 levels in the fish, triggering complex branchial and renal acid-base compensations which may promote formation of kidney stones. However, increased salt loads through the rearing water and the feed may increase the prevalence of nephrocalcinosis. An increased understanding of the kidneys role in acid-base and ion regulation and how this relates to renal diseases such as nephrocalcinosis will have applied relevance for the biologist and aquaculturist alike.
Collapse
Affiliation(s)
- Marius Takvam
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Chris M. Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - H. Kryvi
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tom O. Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Ramírez JFP, Amanajás RD, Val AL. Ammonia Increases the Stress of the Amazonian Giant Arapaima gigas in a Climate Change Scenario. Animals (Basel) 2023; 13:1977. [PMID: 37370487 DOI: 10.3390/ani13121977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ammonia is toxic to fish, and when associated with global warming, it can cause losses in aquaculture. In this study, we investigated the physiological and zootechnical responses of Arapaima gigas to the current scenarios and to RCP8.5, a scenario predicted by the IPCC for the year 2100 which is associated with high concentrations of environmental ammonia (HEA). Forty-eight chipped juvenile A. gigas were distributed in two experimental rooms (current scenario and RCP8.5) in aquariums with and without the addition of ammonia (0.0 mM and 2.44 mM) for a period of 30 days. The HEA, the RCP8.5 scenario, and the association of these factors affects the zootechnical performance, the ionic regulation pattern, and the levels of ammonia, glucose, triglycerides, sodium, and potassium in pirarucu plasma. The branchial activity of H+-ATPase was reduced and AChE activity increased, indicating that the species uses available biological resources to prevent ammonia intoxication. Thus, measures such as monitoring water quality in regard to production, densities, and the feed supplied need to be more rigorous and frequent in daily management in order to avoid the accumulation of ammonia in water, which, in itself, proved harmful and more stressful to the animals subjected to a climate change scenario.
Collapse
Affiliation(s)
- José Fernando Paz Ramírez
- Programa de Pós-Graduação em Aquicultura, Universidade Nilton Lins, Avenida Professor Nilton Lins, 3259, Parques das Laranjeiras, Manaus CEP 69058-030, Brazil
| | - Renan Diego Amanajás
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Petrópolis, Manaus CEP 69067-375, Brazil
- Programa de Pós-Graduação em Biologia de Água Doce e Pesca Interior, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Petrópolis, Manaus CEP 69067-375, Brazil
| | - Adalberto Luis Val
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Petrópolis, Manaus CEP 69067-375, Brazil
| |
Collapse
|
14
|
Jung EH, Nguyen J, Nelson C, Brauner CJ, Wood CM. Ammonia transport is independent of PNH 3 gradients across the gastrointestinal epithelia of the rainbow trout: A role for the stomach. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:180-192. [PMID: 36369634 DOI: 10.1002/jez.2670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022]
Abstract
Although the gastrointestinal tract (GIT) is an important site for nitrogen metabolism in teleosts, the mechanisms of ammonia absorption and transport remain to be elucidated. Both protein catabolism in the lumen and the metabolism of the GIT tissues produce ammonia which, in part, enters the portal blood through the anterior region of the GIT. The present study examined the possible roles of different GIT sections of rainbow trout (Oncorhynchus mykiss) in transporting ammonia in its unionized gas form-NH3 -by changing the PNH3 gradient across GIT epithelia using in vitro gut sac preparations. We also surveyed messenger RNA expression patterns of three of the identified Rh proteins (Rhbg, Rhcg1, and Rhcg2) as potential NH3 transporters and NKCC as a potential ammonium ion (NH4 + ) transporter along the GIT of rainbow trout. We found that ammonia absorption is not dependent on the PNH3 gradient despite expression of Rhbg and Rhcg2 in the intestinal tissues, and Rhcg2 in the stomach. We detected no expression of Rhbg in the stomach and no expression of Rhcg1 in any GIT tissues. There was also a lack of correlation between ammonia transport and [NH4 + ] gradient despite NKCC expression in all GIT tissues. Regardless of PNH3 gradients, the stomach showed the greatest absorption and net tissue consumption of ammonia. Overall, our findings suggest nitrogen metabolism zonation of GIT, with stomach serving as an important site for the absorption, handling and transport of ammonia that is independent of the PNH3 gradient.
Collapse
Affiliation(s)
- Ellen H Jung
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica Nguyen
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte Nelson
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Jung EH, Brauner CJ, Wood CM. Do extreme postprandial levels of oxygen, carbon dioxide, and ammonia in the digestive tract equilibrate with the bloodstream in the freshwater rainbow trout (Oncorhynchus mykiss)? J Comp Physiol B 2023; 193:193-205. [PMID: 36656334 DOI: 10.1007/s00360-023-01475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
The gastrointestinal tract (GIT) lumen of teleosts harbors extreme conditions, especially after feeding: high PCO2 (20-115 Torr), total ammonia (415-3710 μM), PNH3 (79-1760 μTorr in the intestine), and virtual anoxia (PO2 < 1 Torr). These levels could be dangerous if they were to equilibrate with the bloodstream. Thus, we investigated the potential equilibration of O2, CO2, and ammonia across the GIT epithelia in freshwater rainbow trout by monitoring postprandial arterial and venous blood gases in vivo and in situ. In vivo blood was sampled from the indwelling catheters in the dorsal aorta (DA) and subintestinal vein (SIV) draining the posterior intestine in the fasting state and at 4 to 48 h following catheter-feeding. To investigate possible ammonia absorption in the anterior part of the GIT, blood was sampled from the DA, SIV and hepatic portal vein (HPV) from anaesthetized fish in situ following voluntary feeding. We found minimal equilibration of all three gases between the GIT lumen and the SIV blood, with the latter maintaining pre-feeding levels (PO2 = 25-49 Torr, PCO2 = 6-8 Torr, and total ammonia = 117-134 μM and PNH3 = 13-30 μTorr at 48 h post-feeding). In contrast to the SIV, we found that the HPV total ammonia more than doubled 24 h after feeding (128 to 297 μM), indicative of absorption in the anterior GIT. Overall, the GIT epithelia of trout, although specialized for absorption, prevent dangerous levels of PO2, PCO2 and ammonia from equilibrating with the blood circulation.
Collapse
Affiliation(s)
- Ellen H Jung
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
16
|
Mes W, Kersten P, Maas RM, Eding EH, Jetten MSM, Siepel H, Lücker S, Gorissen M, Van Kessel MAHJ. Effects of demand-feeding and dietary protein level on nitrogen metabolism and symbiont dinitrogen gas production of common carp ( Cyprinus carpio, L.). Front Physiol 2023; 14:1111404. [PMID: 36824463 PMCID: PMC9941540 DOI: 10.3389/fphys.2023.1111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Ammonia accumulation is a major challenge in intensive aquaculture, where fish are fed protein-rich diets in large rations, resulting in increased ammonia production when amino acids are metabolized as energy source. Ammonia is primarily excreted via the gills, which have been found to harbor nitrogen-cycle bacteria that convert ammonia into dinitrogen gas (N2) and therefore present a potential in situ detoxifying mechanism. Here, we determined the impact of feeding strategies (demand-feeding and batch-feeding) with two dietary protein levels on growth, nitrogen excretion, and nitrogen metabolism in common carp (Cyprinus carpio, L.) in a 3-week feeding experiment. Demand-fed fish exhibited significantly higher growth rates, though with lower feed efficiency. When corrected for feed intake, nitrogen excretion was not impacted by feeding strategy or dietary protein, but demand-fed fish had significantly more nitrogen unaccounted for in the nitrogen balance and less retained nitrogen. N2 production of individual fish was measured in all experimental groups, and production rates were in the same order of magnitude as the amount of nitrogen unaccounted for, thus potentially explaining the missing nitrogen in the balance. N2 production by carp was also observed when groups of fish were kept in metabolic chambers. Demand feeding furthermore caused a significant increase in hepatic glutamate dehydrogenase activities, indicating elevated ammonia production. However, branchial ammonia transporter expression levels in these animals were stable or decreased. Together, our results suggest that feeding strategy impacts fish growth and nitrogen metabolism, and that conversion of ammonia to N2 by nitrogen cycle bacteria in the gills may explain the unaccounted nitrogen in the balance.
Collapse
Affiliation(s)
- Wouter Mes
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands.,Department of Microbiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Philippe Kersten
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Roel M Maas
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, Netherlands
| | - Ep H Eding
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Henk Siepel
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| | - Maartje A H J Van Kessel
- Department of Microbiology, Radboud Institute for Biological and Ecological Sciences, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
17
|
Heuer RM, Wang Y, Pasparakis C, Zhang W, Scholey V, Margulies D, Grosell M. Effects of elevated CO 2 on metabolic rate and nitrogenous waste handling in the early life stages of yellowfin tuna (Thunnus albacares). Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111398. [PMID: 36775093 DOI: 10.1016/j.cbpa.2023.111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/05/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Ocean acidification is predicted to have a wide range of impacts on fish, but there has been little focus on broad-ranging pelagic fish species. Early life stages of fish are thought to be particularly susceptible to CO2 exposure, since acid-base regulatory faculties may not be fully developed. We obtained yellowfin tuna (Thunnus albacares) from a captive spawning broodstock population and exposed them to control or 1900 μatm CO2 through the first three days of development as embryos transitioned into yolk sac larvae. Metabolic rate, yolk sac depletion, and oil globule depletion were measured to assess overall energy usage. To determine if CO2 altered protein catabolism, tissue nitrogen content and nitrogenous waste excretion were quantified. CO2 exposure did not significantly impact embryonic metabolic rate, yolk sac depletion, or oil globule depletion, however, there was a significant decrease in metabolic rate at the latest measured yolk sac larval stage (36 h post fertilization). CO2-exposure led to a significant increase in nitrogenous waste excretion in larvae, but there were no differences in nitrogen tissue accumulation. Nitrogenous waste accumulated in embryos as they developed but decreased after hatch, coinciding with a large increase in nitrogenous waste excretion and increased metabolic rate in newly hatched larvae. Our results provide insight into how yellowfin tuna are impacted by increases in CO2 in early development, but more research with higher levels of replication is needed to better understand long-term impacts and acid-base regulatory mechanisms in this important pelagic fish.
Collapse
Affiliation(s)
- Rachael M Heuer
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
| | - Yadong Wang
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Christina Pasparakis
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA. https://twitter.com/ChristinaP47
| | - Wenlong Zhang
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Vernon Scholey
- Inter-American Tropical Tuna Commission, Achotines Laboratory, Las Tablas, Los Santos Province, Panama
| | - Daniel Margulies
- Inter-American Tropical Tuna Commission, 8901 La Jolla Shores Drive, La Jolla, California, USA
| | - Martin Grosell
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA. https://twitter.com/MartinGrosell
| |
Collapse
|
18
|
Lee CE, Charmantier G, Lorin-Nebel C. Mechanisms of Na + uptake from freshwater habitats in animals. Front Physiol 2022; 13:1006113. [PMID: 36388090 PMCID: PMC9644288 DOI: 10.3389/fphys.2022.1006113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 07/20/2023] Open
Abstract
Life in fresh water is osmotically and energetically challenging for living organisms, requiring increases in ion uptake from dilute environments. However, mechanisms of ion uptake from freshwater environments are still poorly understood and controversial, especially in arthropods, for which several hypothetical models have been proposed based on incomplete data. One compelling model involves the proton pump V-type H+ ATPase (VHA), which energizes the apical membrane, enabling the uptake of Na+ (and other cations) via an unknown Na+ transporter (referred to as the "Wieczorek Exchanger" in insects). What evidence exists for this model of ion uptake and what is this mystery exchanger or channel that cooperates with VHA? We present results from studies that explore this question in crustaceans, insects, and teleost fish. We argue that the Na+/H+ antiporter (NHA) is a likely candidate for the Wieczorek Exchanger in many crustaceans and insects; although, there is no evidence that this is the case for fish. NHA was discovered relatively recently in animals and its functions have not been well characterized. Teleost fish exhibit redundancy of Na+ uptake pathways at the gill level, performed by different ion transporter paralogs in diverse cell types, apparently enabling tolerance of low environmental salinity and various pH levels. We argue that much more research is needed on overall mechanisms of ion uptake from freshwater habitats, especially on NHA and other potential Wieczorek Exchangers. Such insights gained would contribute greatly to our general understanding of ionic regulation in diverse species across habitats.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI, United States
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guy Charmantier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | |
Collapse
|
19
|
Huang M, Shang ZH, Wu MX, Zhang LJ, Zhang YL. Regulation of Rhesus glycoprotein-related genes in large-scale loach Paramisgurnus dabryanus during ammonia loading. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114077. [PMID: 36108439 DOI: 10.1016/j.ecoenv.2022.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/04/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Waterborne ammonia is one of the crucial issues that limited production and animal health in aquaculture. Ammonia-tolerant varieties are highly desired in intensive fish farming. Screening for the key regulatory genes of ammonia tolerance is essential for variety breeding. According to the previous hypothesis, Rh glycoproteins play an important role in ammonia excretion in teleosts. However, the ammonia defensive mechanisms are not well described at present for large-scale loach (Paramisgurnus dabryanus), a typical air-breathing and commercially important fish in East Asia. Here we show that the transcription of Rh glycoprotein-related genes was significantly affected by ammonia exposure in this species. Probit analysis showed that 96 h-LC50 of NH4Cl at 23 ℃ and pH 7.2 was 92.64 mmol/L. A significant increase of Rhcg expression in gills was observed after 48 h of 60 mmol/L and 36 h of 80 mmol/L NH4Cl exposure, suggesting that Rhcg present on the apical side of the branchial epithelium facilitates NH3 excretion out of gills. A high concentration of acute ammonia exposure induced elevated Rhbg transcript in the gills of large-scale loaches, while a slight change in Rhbg expression was observed in response to lower ammonia, suggesting that transcriptions of Rhbg genes are activated by a considerably high level of ambient ammonia to eliminate excessive endogenous nitrogen. The Rhag mRNA level in gills of large-scale loaches increased markedly with the prolonging of exposure time from 0 to 36 h of ammonia loading, suggesting Rhag localized in gills may be primarily associated with ammonia handling. During 7-21 days of ammonia exposure, the expression of most Rh glycoproteins-related genes in the gills decreased, indicating that the functional role of Rh glycoproteins is not primarily associated with ammonia defense over a long period (more than 7 days). Although a significant transcript of Rhbg was found in the skin of a large-scale loach, the lack of Rhcg and down-regulation of Rhag may indicate that the skin is not an essential location of ammonia excretion, at least when submerged to high levels of ammonia in the environment. In conclusion, Rh glycoproteins localized in gills as ammonia transporters play a momentous role in ammonia detoxification in this species during acute ammonia loading. However, it does not show a positive function during long-term ammonia exposure. Furthermore, the physiological function of Rh glycoproteins localized in the skin is still unclear and deserves further study.
Collapse
Affiliation(s)
- Mei Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Ze-Hao Shang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Meng-Xiao Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Lin-Jiang Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Yun-Long Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
20
|
Clifford AM, Wilkie MP, Edwards SL, Tresguerres M, Goss GG. Dining on the dead in the deep: Active NH 4 + excretion via Na + /H + (NH 4 + ) exchange in the highly ammonia tolerant Pacific hagfish, Eptatretus stoutii. Acta Physiol (Oxf) 2022; 236:e13845. [PMID: 35620804 DOI: 10.1111/apha.13845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 01/29/2023]
Abstract
AIM Pacific hagfish are exceptionally tolerant to high environmental ammonia (HEA). Here, we elucidated a cellular mechanism that enables hagfish to actively excrete ammonia against steep ammonia gradients expected to be found inside a decomposing whale carcass. METHODS Hagfish were exposed to varying concentrations of HEA in the presence or absence of environmental Na+ , while plasma ammonia levels were tracked. 14 C-methylammonium was used as a proxy for NH4 + to measure efflux in whole animals and in isolated gill pouches; the latter allowed us to assess the effects of amiloride specifically on Na+ /H+ exchangers (NHEs) in gill cells. Western blotting and immunohistochemistry were utilized to evaluate the abundance and sub-cellular localization of Rhesus glycoprotein (Rh) channels in the response to HEA. RESULTS Hagfish actively excreted NH4 + against steep inwardly directed ENH4 + (ΔENH4 + ~ 35 mV) and pNH3 (ΔpNH3 ~ 2000 μtorr) gradients. Active NH4 + excretion and plasma ammonia hypo-regulation were contingent on the presence of environmental Na+ , indicating a Na+ /NH4 + exchange mechanism. Active NH4 + excretion across isolated gill pouches was amiloride-sensitive. Exposure to HEA resulted in decreased abundance of Rh channels in the apical membrane of gill ionocytes. CONCLUSIONS During HEA exposure, hagfish can actively excrete ammonia against a steep concentration gradient using apical NHEs energized by Na+ -K+ -ATPase in gill ionocytes. Additionally, apical Rh channels are removed from the apical membrane, presumably to reduce ammonia loading from the environment. We suggest that this mechanism allows hagfish to maintain tolerable ammonia levels while feeding inside decomposing carrion, allowing them to exploit nutrient-rich food-falls.
Collapse
Affiliation(s)
- Alexander M Clifford
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, La Jolla, California, USA.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Michael P Wilkie
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Susan L Edwards
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, La Jolla, California, USA
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| |
Collapse
|
21
|
Ip YK, Leong CWQ, Boo MV, Wong WP, Lam SH, Chew SF. Evidence for the involvement of branchial Vacuolar-type H +-ATPase in the acidification of the external medium by the West African lungfish, Protopterus annectens, exposed to ammonia-loading conditions. Comp Biochem Physiol A Mol Integr Physiol 2022; 273:111297. [PMID: 35987338 DOI: 10.1016/j.cbpa.2022.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
African lungfishes are obligatory air-breathers with exceptionally high environmental ammonia tolerance. They can lower the pH of the external medium during exposure to ammonia-loading conditions. This study aimed to demonstrate the possible involvement of branchial vacuolar-type H+-ATPase (Vha) in the ammonia-induced acidification of the external medium by the West African lungfish, Protopterus annectens, and to examine whether its capacity to acidify the medium could be augmented after exposure to 100 mmol l-1 NH4Cl for six days. Two full coding cDNA sequences of Vha subunit B (atp6v1b), atp6v1b1 and atp6v1b2, were obtained from the internal gills of P. annectens. The sequence of atp6v1b1 comprised 1548 bp, encoding 515 amino acids (57.4 kDa), while that of atp6v1b2 comprised 1536 bp, encoding 511 amino acids (56.6 kDa). Using a custom-made antibody reactive to both isoforms, immunofluorescence microscopy revealed the collective localization of Atp6v1b (atp6v1b1 and atp6v1b2) at the apical or the basolateral membrane of two different types of branchial Na+/K+-ATPase-immunoreactive ionocyte. The ionocytes labelled apically with Atp6v1b presumably expressed Atp6v1b1 containing a PDZ-binding domain, indicating that the apical Vha was positioned to transport H+ to the external medium. The expression of Atp6v1b was regulated post-transcriptionally, as the protein abundance of Atp6v1b and Vha activity increased significantly in the gills of fish exposed to 100 mmol l-1 NH4Cl for six days. Correspondingly, the fish exposed to ammonia had a greater capacity to acidify the external medium, presumably to decrease the ratio of [NH3] to [NH4+] in order to reduce the influx of exogenous NH3.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore.
| | - Charmaine W Q Leong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Mel V Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Siew H Lam
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| |
Collapse
|
22
|
Tripp A, Allen GJP, Quijada-Rodriguez AR, Yoon GR, Weihrauch D. Effects of single and dual-stressor elevation of environmental temperature and P CO2 on metabolism and acid-base regulation in the Louisiana red swamp crayfish, Procambarus clarkii. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111151. [PMID: 35026389 DOI: 10.1016/j.cbpa.2022.111151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/01/2022]
Abstract
Elevation of temperature and CO2 levels within the world's aquatic environments is expected to cause numerous physiological challenges to their inhabitants. While effects on marine ecosystems have been well studied, freshwater ecosystems have rarely been examined using a dual-stressor approach leaving our understanding of its inhabitants upon these challenges unclear. We aimed to identify the affects of elevated temperature and hypercapnia in isolation and in combination on the metabolic and acid-base regulatory processes of a freshwater crayfish, Procambarus clarkii. Crayfish were exposed to freshwater conditions that may be prevalent by the year 2100 and metabolic responses were determined after 14-days of exposure. In addition, changes in branchial mRNA expression of acid-base linked transporters were investigated. Interactions between exposure conditions influenced extracellular pH as well as the nitrogen physiology and routine metabolic rate of the crayfish. Crayfish exposed to individual and combined elevations in temperature and/or hypercapnia maintained an extracellular pH similar to that of control crayfish. Dual-stressor exposed crayfish seem to elevate the importance of ammonium as an excretable acid-equivalent based on an overall increase in the branchial mRNA expression of transporters related to ammonia excretion including the Na+/K+-ATPase, Rhesus-protein, and the V-type H+-ATPase. Overall, hypercapnia and dual-stressor conditions caused a metabolic depression that may have long-lasting consequences such as limited locomotion, growth, and reproduction. Future generations of crayfish given the chance to adapt over several generations may ameliorate these consequences.
Collapse
Affiliation(s)
- Ashley Tripp
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Garett J P Allen
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | | | - Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada.
| |
Collapse
|
23
|
Clifford AM, Tresguerres M, Goss GG, Wood CM. A novel K + -dependent Na + uptake mechanism during low pH exposure in adult zebrafish (Danio rerio): New tricks for old dogma. Acta Physiol (Oxf) 2022; 234:e13777. [PMID: 34985194 DOI: 10.1111/apha.13777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/27/2021] [Accepted: 01/01/2022] [Indexed: 12/16/2022]
Abstract
AIM To determine whether Na+ uptake in adult zebrafish (Danio rerio) exposed to acidic water adheres to traditional models reliant on Na+ /H+ Exchangers (NHEs), Na+ channels and Na+ /Cl- Cotransporters (NCCs) or if it occurs through a novel mechanism. METHODS Zebrafish were exposed to control (pH 8.0) or acidic (pH 4.0) water for 0-12 hours during which 22 Na+ uptake ( J Na in ), ammonia excretion, net acidic equivalent flux and net K+ flux ( J H net ) were measured. The involvement of NHEs, Na+ channels, NCCs, K+ -channels and K+ -dependent Na+ /Ca2+ exchangers (NCKXs) was evaluated by exposure to Cl- -free or elevated [K+ ] water, or to pharmacological inhibitors. The presence of NCKXs in gill was examined using RT-PCR. RESULTS J Na in was strongly attenuated by acid exposure, but gradually recovered to control rates. The systematic elimination of each of the traditional models led us to consider K+ as a counter substrate for Na+ uptake during acid exposure. Indeed, elevated environmental [K+ ] inhibited J Na in during acid exposure in a concentration-dependent manner, with near-complete inhibition at 10 mM. Moreover, J H net loss increased approximately fourfold at 8-10 hours of acid exposure which correlated with recovered J Na in in 1:1 fashion, and both J Na in and J H net were sensitive to tetraethylammonium (TEA) during acid exposure. Zebrafish gills expressed mRNA coding for six NCKX isoforms. CONCLUSIONS During acid exposure, zebrafish engage a novel Na+ uptake mechanism that utilizes the outwardly directed K+ gradient as a counter-substrate for Na+ and is sensitive to TEA. NKCXs are promising candidates to mediate this K+ -dependent Na+ uptake, opening new research avenues about Na+ uptake in zebrafish and other acid-tolerant aquatic species.
Collapse
Affiliation(s)
- Alexander M. Clifford
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
- Marine Biology Research Division Scripps Institution of Oceanography University of California San Diego La Jolla California USA
| | - Martin Tresguerres
- Marine Biology Research Division Scripps Institution of Oceanography University of California San Diego La Jolla California USA
| | - Greg G. Goss
- Department of Biological Sciences University of Alberta Edmonton Alberta Canada
| | - Chris M. Wood
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
24
|
Aranda-Morales SA, Peña-Marín ES, Jiménez-Martínez LD, Martínez-Burguete T, Martínez-Bautista G, Álvarez-Villagómez CS, De la Rosa-García S, Camarillo-Coop S, Martínez-García R, Guzmán-Villanueva LT, Álvarez-González CA. Expression of ion transport proteins and routine metabolism in juveniles of tropical gar (Atractosteus tropicus) exposed to ammonia. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109166. [PMID: 34411697 DOI: 10.1016/j.cbpc.2021.109166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Tropical gar (Atractosteus tropicus) thrives in aquatic habitats with high levels of total nitrogen (TAN) and unionized ammonia (NH3). However, the tolerance of TAN and NH3, the excretion mechanisms involved, and the effects of these chemicals on routine metabolism are still unknown. Therefore, our objectives were to assess the acute toxicity of TAN and NH3 in A. tropicus juveniles after a 96-h exposure (LC50-96 h) to NH4Cl and after chronic exposure to two concentrations (15% and 30% of LC50-96 h TAN) for 12 days, as well as to evaluate the transcriptional effects associated with Rhesus proteins (rhag, rhbg, rhcg) and ion transporters (NHE, NKA, NKCC, and CFTR) in gills and skin; and to determine the effects of TAN and NH3 on routine metabolism through oxygen consumption (μM g-1 h-1) and gill ventilation frequency (beats min-1). LC50-96 h values were 100.20 ± 11.21 mg/L for TAN and 3.756 ± 0.259 mg/L for NH3. The genes encoding Rhesus proteins and ion transporters in gills and skin showed a differential expression according to TAN concentrations and exposure time. Oxygen consumption on day 12 showed significant differences between treatments with 15% and 30% TAN. Gill ventilation frequency on day 12 was higher in fish exposed to 30% TAN. In conclusion, A. tropicus juveniles are highly tolerant to TAN, showing upregulation of the genes involved in TAN excretion through gills and skin, which affects routine oxygen consumption and energetic cost. These findings are relevant for understanding adaptations in the physiological response of a tropical ancestral air-breathing fish.
Collapse
Affiliation(s)
- Sonia A Aranda-Morales
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Emyr S Peña-Marín
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico; Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez C.P. 03940, Mexico
| | - Luis D Jiménez-Martínez
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Carretera Nacajuca-Jalpa de Méndez R/a Rivera Alta, C.P. 86200 Jalpa de Méndez, Tabasco, Mexico
| | - Talhia Martínez-Burguete
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Gil Martínez-Bautista
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Carina S Álvarez-Villagómez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Susana De la Rosa-García
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Susana Camarillo-Coop
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Rafael Martínez-García
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico
| | - Laura T Guzmán-Villanueva
- Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez C.P. 03940, Mexico; Centro de Investigaciones Biológicas del Noroeste S.C., Av. Instituto Politécnico Nacional 195. Col. Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Carlos A Álvarez-González
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km 0.5, C.P.86139 Villahermosa, Tabasco, Mexico.
| |
Collapse
|
25
|
Marina G, Glover CN, Goss GG, Zimmer AM. The skin of adult rainbow trout is not a significant site of ammonia clearance from the blood. JOURNAL OF FISH BIOLOGY 2021; 99:1529-1534. [PMID: 34159596 DOI: 10.1111/jfb.14831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
We hypothesized that the skin acts as an extrabranchial route for ammonia excretion in adult rainbow trout (Oncorhynchus mykiss) following high environmental ammonia (HEA) exposure. Trunks of control or HEA-exposed trout were perfused with saline containing 0 or 1 mmol l-1 NH4 + . Cutaneous ammonia excretion rates increased 2.5-fold following HEA exposure, however there was no difference in rates between trunks perfused with 0 or 1 mmol l-1 NH4 + . The skin is therefore capable of excreting its own ammonia load, but it does not clear circulating ammonia from the plasma.
Collapse
Affiliation(s)
- Giacomin Marina
- Department of Biological Sciences, CW 405, Biological Sciences Bldg, University of Alberta, Edmonton, Alberta, Canada
| | - Chris N Glover
- Department of Biological Sciences, CW 405, Biological Sciences Bldg, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada
| | - Greg G Goss
- Department of Biological Sciences, CW 405, Biological Sciences Bldg, University of Alberta, Edmonton, Alberta, Canada
| | - Alex M Zimmer
- Department of Biological Sciences, CW 405, Biological Sciences Bldg, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
Wang Y, Pasparakis C, Grosell M. Role of the cardiovascular system in ammonia excretion in early life stages of zebrafish ( Danio rerio). Am J Physiol Regul Integr Comp Physiol 2021; 321:R377-R384. [PMID: 34318705 DOI: 10.1152/ajpregu.00284.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate if the cardiovascular system is important for ammonia excretion in the early life stages of zebrafish. Morpholino knockdowns of cardiac troponin T (TNNT2) or vascular endothelial growth factor A (VEGFA) provided morphants with nonfunctional circulation. At the embryonic stage [30-36 h postfertilization (hpf)], ammonia excretion was not constrained by a lack of cardiovascular function. At 2 days postfertilization (dpf) and 4 dpf, morpholino knockdowns of TNNT2 or VEGFA significantly reduced ammonia excretion in all morphants. Expression of rhag, rhbg, and rhcgb showed no significant changes but the mRNA levels of the urea transporter (ut) were upregulated in the 4 dpf morphants. Taken together, rhag, rhbg, rhcgb, and ut gene expression and an unchanged tissue ammonia concentration but an increased tissue urea concentration, suggest that impaired ammonia excretion led to increased urea synthesis. However, in larvae anesthetized with tricaine or clove oil, ammonia excretion was not reduced in the 4 dpf morphants compared with controls. Furthermore, oxygen consumption was reduced in morphants regardless of anesthesia. These results suggest that cardiovascular function is not directly involved in ammonia excretion, but rather reduced activity and external convection may explain reduced ammonia excretion and compensatory urea accumulation in morphants with reduced cardiovascular function.
Collapse
Affiliation(s)
- Y Wang
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - C Pasparakis
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - M Grosell
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| |
Collapse
|
27
|
Limbaugh N, Romano N, Egnew N, Shrivastava J, Bishop WM, Sinha AK. Coping strategies in response to different levels of elevated water hardness in channel catfish (Ictalurus punctatus): Insight into ion-regulatory and histopathological modulations. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111040. [PMID: 34298192 DOI: 10.1016/j.cbpa.2021.111040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Water hardness above the optimal level can incite toxic effects in fish, which are often species specific. Hence, we aimed at obtaining insights on the potential effects of elevated water hardness as well as coping strategies in channel catfish (Ictalurus punctatus). First, a toxicity assay was performed where the 96 h-LC50 was calculated as 4939 mg/L CaCO3. Thereafter, to gain knowledge on the underlying adaptive strategies to high water hardness, fish were exposed to seven hardness levels (150, 600, 1000, 1500, 2000, 3000 and 4000 mg/L CaCO3 at pH 8.15) for 15 days. Results showed that branchial activities of Ca2+-ATPase and Na+/K+-ATPase, which facilitate Ca2+ uptake, reduced starting respectively from 1000 mg/L and 1500 mg/L CaCO3. Nevertheless, Ca2+ burden in plasma and tissue (gills, liver and intestine) remained elevated. Hardness exposure also disturbed cations (Na+, K+, Mg2+) and minerals (iron and phosphorus) homeostasis in a tissue-specific and dose-dependent manner. Both hemoglobin content and hematocrit dropped significantly at 3000-4000 mg/L CaCO3, with a parallel decline in iron content in plasma and gills. Muscle water content rose dramatically at 4000 mg/L CaCO3, indicating an osmo-regulation disruption. Higher hardness of 3000-4000 mg/L CaCO3 also incited a series of histopathological modifications in gills, liver and intestine; most likely due to excess Ca2+ accumulation. Overall, these data suggest that channel catfish can adapt to a wide range of elevated hardness by modulating Ca2+ regulatory pathways and histomorphological alterations, however, 1500 mg/L CaCO3 and above can impair the performance of this species.
Collapse
Affiliation(s)
- Noah Limbaugh
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff 71601, AR, USA
| | - Nicholas Romano
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff 71601, AR, USA
| | - Nathan Egnew
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff 71601, AR, USA; Genetics and Physiology Laboratory, USDA-ARS Honey Bee Breeding, Baton Rogue, LA 70820, USA
| | - Jyotsna Shrivastava
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff 71601, AR, USA
| | - West M Bishop
- SePRO Research and Technology Campus, 16013 Watson Seed Farm Rd., Whitakers, NC 27891, USA
| | - Amit Kumar Sinha
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff 71601, AR, USA.
| |
Collapse
|
28
|
Morris C, Val AL, Brauner CJ, Wood CM. The physiology of fish in acidic waters rich in dissolved organic carbon, with specific reference to the Amazon basin: Ionoregulation, acid-base regulation, ammonia excretion, and metal toxicity. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:843-863. [PMID: 33970558 DOI: 10.1002/jez.2468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/06/2022]
Abstract
Although blackwaters, named for their rich content of dissolved organic carbon (DOC), are often very poor in ions and very acidic, they support great fish biodiversity. Indeed, about 8% of all freshwater fish species live in the blackwaters of the Rio Negro watershed in the Amazon basin. We review how native fish survive these harsh conditions that would kill most freshwater fish, with a particular focus on the role of DOC, a water quality parameter that has been relatively understudied. DOC, which is functionally defined by its ability to pass through a 0.45-µm filter, comprises a diverse range of compounds formed by the breakdown of organic matter and is quantified by its carbon component that is approximately 50% by mass. Adaptations of fish to acidic blackwaters include minimal acid-base disturbances associated with a unique, largely unknown, high-affinity Na+ uptake system that is resistant to inhibition by low pH in members of the Characiformes, and very tight regulation of Na+ efflux at low pH in the Cichliformes. Allochthonous (terrigenous) DOC, which predominates in blackwaters, consists of larger, more highly colored, reactive molecules than autochthonous DOC. The dissociation of protons from allochthonous components such as humic and fulvic acids is largely responsible for the acidity of these blackwaters, yet at the same time, these components may help protect organisms against the damaging effects of low water pH. DOC lowers the transepithelial potential (TEP), mitigates the inhibition of Na+ uptake and ammonia excretion, and protects against the elevation of diffusive Na+ loss in fish exposed to acidic waters. It also reduces the gill binding and toxicity of metals. At least in part, these actions reflect direct biological effects of DOC on the gills that are beneficial to ionoregulation. After chronic exposure to DOC, some of these protective effects persist even in the absence of DOC. Two characteristics of allochthonous DOC, the specific absorbance coefficient at 340 nm (determined optically) and the PBI (determined by titration), are indicative of both the biological effectiveness of DOC and the ability to protect against metal toxicity. Future research needs are highlighted, including a greater mechanistic understanding of the actions of DOCs on gill ionoregulatory function, morphology, TEP, and metal toxicity. These should be investigated in a wider range of native fish Orders that inhabit one of the world's greatest biodiversity hotspots for freshwater fishes.
Collapse
Affiliation(s)
- Carolyn Morris
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| |
Collapse
|
29
|
West AC, Mizoro Y, Wood SH, Ince LM, Iversen M, Jørgensen EH, Nome T, Sandve SR, Martin SAM, Loudon ASI, Hazlerigg DG. Immunologic Profiling of the Atlantic Salmon Gill by Single Nuclei Transcriptomics. Front Immunol 2021; 12:669889. [PMID: 34017342 PMCID: PMC8129531 DOI: 10.3389/fimmu.2021.669889] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/05/2022] Open
Abstract
Anadromous salmonids begin life adapted to the freshwater environments of their natal streams before a developmental transition, known as smoltification, transforms them into marine-adapted fish. In the wild, smoltification is a photoperiod-regulated process, involving radical remodeling of gill function to cope with the profound osmotic and immunological challenges of seawater (SW) migration. While prior work has highlighted the role of specialized "mitochondrion-rich" cells (MRCs) and accessory cells (ACs) in delivering this phenotype, recent RNA profiling experiments suggest that remodeling is far more extensive than previously appreciated. Here, we use single-nuclei RNAseq to characterize the extent of cytological changes in the gill of Atlantic salmon during smoltification and SW transfer. We identify 20 distinct cell clusters, including known, but also novel gill cell types. These data allow us to isolate cluster-specific, smoltification-associated changes in gene expression and to describe how the cellular make-up of the gill changes through smoltification. As expected, we noted an increase in the proportion of seawater mitochondrion-rich cells, however, we also identify previously unknown reduction of several immune-related cell types. Overall, our results provide fresh detail of the cellular complexity in the gill and suggest that smoltification triggers unexpected immune reprogramming.
Collapse
Affiliation(s)
- Alexander C. West
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Yasutaka Mizoro
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège, Belgium
| | - Shona H. Wood
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Louise M. Ince
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marianne Iversen
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Even H. Jørgensen
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Torfinn Nome
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Simen Rød Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Samuel A. M. Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Andrew S. I. Loudon
- Division of Diabetes, Endocrinology & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David G. Hazlerigg
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
30
|
Zimmer AM, Goss GG, Glover CN. Reductionist approaches to the study of ionoregulation in fishes. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110597. [PMID: 33781928 DOI: 10.1016/j.cbpb.2021.110597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms underlying ionoregulation in fishes have been studied for nearly a century, and reductionist methods have been applied at all levels of biological organization in this field of research. The complex nature of ionoregulatory systems in fishes makes them ideally suited to reductionist methods and our collective understanding has been dramatically shaped by their use. This review provides an overview of the broad suite of techniques used to elucidate ionoregulatory mechanisms in fishes, from the whole-animal level down to the gene, discussing some of the advantages and disadvantages of these methods. We provide a roadmap for understanding and appreciating the work that has formed the current models of organismal, endocrine, cellular, molecular, and genetic regulation of ion balance in fishes and highlight the contribution that reductionist techniques have made to some of the fundamental leaps forward in the field throughout its history.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Chris N Glover
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, AB T9S 3A3, Canada
| |
Collapse
|
31
|
Egnew N, Renukdas N, Romano N, Kelly AM, Lohakare J, Bishop WM, Lochmann RT, Sinha AK. Physio-biochemical, metabolic nitrogen excretion and ion-regulatory assessment in largemouth bass (Micropterus salmoides) following exposure to high environmental iron. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111526. [PMID: 33099141 DOI: 10.1016/j.ecoenv.2020.111526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 05/20/2023]
Abstract
Iron overload is a significant water quality issue in many parts of the world. Therefore, we evaluated the potential toxic effects of waterborne elevated iron on largemouth bass (Micropterus salmoides), a highly valued sport and aquaculture fish species. First, a 96 h-LC50 toxicity assay was performed to understand the tolerance limit of this species to iron; and was determined to be 22.07 mg/L (as Fe3+). Thereafter, to get a better insight on the fish survival during long-term exposure to high environmental iron (HEI) (5.52 mg/L, 25% of the determined 96 h-LC50 value), a suite of physio-biochemical, nitrogenous metabolic and ion-regulatory compensatory responses were examined at 7, 14, 21 and 28 days. Results showed that oxygen consumption dropped significantly at 21 and 28 days of HEI exposure. Ammonia excretion rate (Jamm) was significantly inhibited from day 14 and remained suppressed until the last exposure period. The transcript concentration of Rhesus glycoproteins Rhcg2 declined; likely diminishing ammonia efflux out of gills. These changes were also reflected by a parallel increment in plasma ammonia levels. Under HEI exposure, ion-balance was negatively affected, manifested by reduced plasma [Na+] and parallel inhibition in branchial Na+/K+-ATPase activity. Muscle water content was elevated in HEI-exposed fish, signifying an osmo-regulatory compromise. HEI exposure also increased iron burden in plasma and gills. The iron accumulation pattern in gills was significantly correlated with a suppression of Jamm, branchial Rhcg2 expression and Na+/K+-ATPase activity. There was also a decline in the glycogen, protein and lipid reserves in the hepatic tissue from 14 days, 28 days and 21 days, respectively. Overall, we conclude that sub-lethal chronic iron exposure can impair normal physio-biochemical and ion-regulatory functions in largemouth bass. Moreover, this data set can be applied in assessing the environmental risk posed by a waterborne iron overload on aquatic life.
Collapse
Affiliation(s)
- Nathan Egnew
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA
| | - Nilima Renukdas
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA
| | - Nicholas Romano
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA
| | - Anita M Kelly
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA; Alabama Fish Farming Center, Auburn University, Greensboro, AL 36744, USA
| | - Jayant Lohakare
- Department of Agriculture-Animal Science, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA
| | - West M Bishop
- SePRO Research and Technology Campus, 16013 Watson Seed Farm Rd., Whitakers, NC 27891, USA
| | - Rebecca T Lochmann
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA
| | - Amit Kumar Sinha
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA.
| |
Collapse
|
32
|
Porteus C, Kumai Y, Abdallah SJ, Yew HM, Kwong RW, Pan Y, Milsom WK, Perry SF. Respiratory responses to external ammonia in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2021; 251:110822. [DOI: 10.1016/j.cbpa.2020.110822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023]
|
33
|
Romano N, Renukdas N, Fischer H, Shrivastava J, Baruah K, Egnew N, Sinha AK. Differential modulation of oxidative stress, antioxidant defense, histomorphology, ion-regulation and growth marker gene expression in goldfish (Carassius auratus) following exposure to different dose of virgin microplastics. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108862. [PMID: 32781290 DOI: 10.1016/j.cbpc.2020.108862] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 01/03/2023]
Abstract
Goldfish (Carassius auratus) juveniles were exposed to virgin polyvinyl chloride microplastics (PVC-MPs) in triplicate at 0, 0.1 or 0.5 mg/L for four days. Afterwards, the histopathology of the gills, liver and intestines were examined, along with various antioxidant enzymes and indicators of oxidative damage (malondialdehyde (MDA) and hydrogen peroxide (H2O2)), in the brain, liver and gills. In addition, we also studied the expression of hepatic insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein 1 (IGFBP-1) and growth hormone (GH) receptor, while cortisol receptor (CR) and cytochrome P450 1A (CYP1A) gene expression were assayed in both the liver and gills. Histological analysis revealed PVC-MPs in the intestines at 0.1 and 0.5 mg/L, along with substantially shorter villi. The gills appeared undamaged by PVC-MPs exposure and had limited or no effect to antioxidant activity, Na+/K+-ATPase and H+-ATPase activity or plasma ion levels, but there was a prominent upsurge of the detoxification enzymes glutatione S-transferase (GST) activity and CYP1A expression. Livers showed inflammation and some occurrences of hemorrhaging and necrosis at 0.5 mg/L. While the brain showed some evidence of oxidative damage, the liver was the most susceptible to oxidative damage, based on increased MDA, H2O2 and various antioxidant enzymes. Hepatic expression of IGFBP-1 and GH receptor were significantly downregulated at 0.5 mg/L while CR was upregulated. Results indicate that exposure to environmentally relevant PVC-MP can cause oxidative damage in the brain and liver, adverse histomorphological changes to the intestine and liver and alter the gene expression in goldfish.
Collapse
Affiliation(s)
- Nicholas Romano
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA.
| | - Nilima Renukdas
- Fish Disease Diagnostic Laboratory, University of Arkansas at Pine Bluff, Lonoke, 72086, AR, USA
| | - Hayden Fischer
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA
| | - Jyotsna Shrivastava
- Fish Disease Diagnostic Laboratory, University of Arkansas at Pine Bluff, Lonoke, 72086, AR, USA
| | - Kartik Baruah
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Nathan Egnew
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA
| | - Amit Kumar Sinha
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA.
| |
Collapse
|
34
|
Shir-Mohammadi K, Perry SF. Expression of ion transport genes in ionocytes isolated from larval zebrafish ( Danio rerio) exposed to acidic or Na +-deficient water. Am J Physiol Regul Integr Comp Physiol 2020; 319:R412-R427. [PMID: 32755465 DOI: 10.1152/ajpregu.00095.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In zebrafish (Danio rerio), a specific ionocyte subtype, the H+-ATPase-rich (HR) cell, is presumed to be a significant site of transepithelial Na+ uptake/acid secretion. During acclimation to environments differing in ionic composition or pH, ionic and acid-base regulations are achieved by adjustments to the activity level of HR cell ion transport proteins. In previous studies, the quantitative assessment of mRNA levels for genes involved in ionic and acid-base regulations relied on measurements using homogenates derived from the whole body (larvae) or the gill (adult). Such studies cannot distinguish whether any differences in gene expression arise from adjustments of ionocyte subtype numbers or transcriptional regulation specifically within individual ionocytes. The goal of the present study was to use fluorescence-activated cell sorting to separate the HR cells from other cellular subpopulations to facilitate the measurement of gene expression of HR cell-specific transporters and enzymes from larvae exposed to low pH (pH 4.0) or low Na+ (5 μM) conditions. The data demonstrate that treatment of larvae with acidic water for 4 days postfertilization caused cell-specific increases in H+-ATPase (atp6v1aa), ca17a, ca15a, nhe3b, and rhcgb mRNA in addition to increases in mRNA linked to cell proliferation. In fish exposed to low Na+, expression of nhe3b and rhcgb was increased owing to HR cell-specific regulation and elevated numbers of HR cells. Thus, the results of this study demonstrate that acclimation to low pH or low Na+ environmental conditions is facilitated by HR cell-specific transcriptional control and by HR cell proliferation.
Collapse
Affiliation(s)
| | - S F Perry
- Department of Biology, University of Ottawa, Ontario, Canada
| |
Collapse
|
35
|
Sunga J, Wilson JM, Wilkie MP. Functional re-organization of the gills of metamorphosing sea lamprey (Petromyzon marinus): preparation for a blood diet and the freshwater to seawater transition. J Comp Physiol B 2020; 190:701-715. [PMID: 32852575 DOI: 10.1007/s00360-020-01305-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/31/2020] [Accepted: 06/18/2020] [Indexed: 11/28/2022]
Abstract
Sea lamprey (Petromyzon marinus) begin life as filter-feeding larvae (ammocoetes) before undergoing a complex metamorphosis into parasitic juveniles, which migrate to the sea where they feed on the blood of large-bodied fishes. The greater protein intake during this phase results in marked increases in the production of nitrogenous wastes (N-waste), which are excreted primarily via the gills. However, it is unknown how gill structure and function change during metamorphosis and how it is related to modes of ammonia excretion, nor do we have a good understanding of how the sea lamprey's transition from fresh water (FW) to sea water (SW) affects patterns and mechanisms of N-waste excretion in relation to ionoregulation. Using immunohistochemistry, we related changes in the gill structure of larval, metamorphosing, and juvenile sea lampreys to their patterns of ammonia excretion (Jamm) and urea excretion (Jurea) in FW, and following FW to artificial seawater (ASW) transfer. Rates of Jamm and Jurea were low in larval sea lamprey and increased in feeding juvenile, parasitic sea lamprey. In freshwater-dwelling ammocoetes, immunohistochemical analysis revealed that Rhesus glycoprotein C-like protein (Rhcg-like) was diffusely distributed on the lamellar epithelium, but following metamorphosis, Rhcg-like protein was restricted to SW mitochondrion-rich cells (MRCs; ionocytes) between the gill lamellae. Notably, these interlamellar Rhcg-like proteins co-localized with Na+/K+-ATPase (NKA), which increased in expression and activity by almost tenfold during metamorphosis. The distribution of V-type H+-ATPase (V-ATPase) on the lamellae decreased following metamorphosis, indicating it may have a more important role in acid-base regulation and Na+ uptake in FW, compared to SW. We conclude that the re-organization of the sea lamprey gill during metamorphosis not only plays a critical role in allowing them to cope with greater salinity following the FW-SW transition, but that it simultaneously reflects fundamental changes in methods used to excrete ammonia.
Collapse
Affiliation(s)
- Julia Sunga
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Jonathan M Wilson
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Michael P Wilkie
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
36
|
Fehsenfeld S, Wood CM. A potential role for hyperpolarization-activated cyclic nucleotide-gated sodium/potassium channels (HCNs) in teleost acid-base and ammonia regulation. Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110469. [PMID: 32653509 DOI: 10.1016/j.cbpb.2020.110469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 11/27/2022]
Abstract
Increasing evidence suggests the involvement of hyperpolarization-activated cyclic nucleotide-gated sodium/potassium channels (HCNs) not only in cardiac and neural function, but also in more general physiological processes including acid-base and ammonia regulation. We have identified four different HCN paralogs/isoforms in the goldfish Carassius auratus (CaHCN1, CaHCN2b, CaHCN4a and CaHCN4b) as likely candidates to contribute to renal, branchial and intestinal acid-base and ammonia regulation in this teleost. Quantitative real-time PCR showed not only high mRNA abundance of all isoforms in heart and brain, but also detectable levels (particularly of CaHCN2b and CaHCN4b) in non-excitable tissues, including gills and kidneys. In response to an internal or external acid-base and/or ammonia disturbance caused by feeding or high environmental ammonia, respectively, we observed differential and tissue-specific changes in mRNA abundance of all isoforms except CaHCN4b. Furthermore, our data suggest that the functions of specific HCN channels are supplemented by certain Rhesus glycoprotein functions to help in the protection of tissues from elevated ammonia levels, or as potential direct routes for ammonia transport in gills, kidney, and gut. The present results indicate important individual roles for each HCN isoform in response to acid-base and ammonia disturbances.
Collapse
Affiliation(s)
- Sandra Fehsenfeld
- Université du Quebec à Rimouski, Département de biologie, chimie et géographie, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada; University of British Columbia, Department of Zoology, 4200 - 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| | - Chris M Wood
- University of British Columbia, Department of Zoology, 4200 - 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
37
|
Pelster B, Wood CM, Braz-Mota S, Val AL. Gills and air-breathing organ in O 2 uptake, CO 2 excretion, N-waste excretion, and ionoregulation in small and large pirarucu (Arapaima gigas). J Comp Physiol B 2020; 190:569-583. [PMID: 32529591 DOI: 10.1007/s00360-020-01286-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/15/2020] [Accepted: 05/29/2020] [Indexed: 01/11/2023]
Abstract
In the pirarucu (Arapaima gigas), gill surface area and thus gas exchange capacity of the gills are reduced with proceeding development. It, therefore, is expected that A. gigas, starting as a water breather, progressively turns into an obligate air-breathing fish using an air-breathing organ (ABO) for gas exchange. We assessed the air-breathing activity, O2 and CO2 exchange into air and water, ammonia-N and urea-N excretion, ion flux rates, and activities of ion transport ATPases in large versus small pirarucu. We found that even very young A. gigas (4-6 g, 2-3 weeks post-hatch) with extensive gills are air-breathers (18.1 breaths*h-1) and cover most (63%) of their O2 requirements from the air whereas 600-700-g animals (about 3-4 months post-hatch), with reduced gills, obtain 75% of their O2 from the air (10.8 breaths*h-1). Accordingly, the reduction in gill surface area hardly affected O2 uptake, but development had a significant effect on aerial CO2 excretion, which was very low (3%) in small fish and increased to 12% in larger fish, yielding a hyper-allometric scaling coefficient (1.12) in contrast to 0.82-0.84 for aquatic and total CO2 excretion. Mass-specific ammonia excretion decreased in approximate proportion to mass-specific O2 consumption as the fish grew, but urea-N excretion dropped from 18% (at 4-6 g) to 8% (at 600-700 g) of total N-excretion; scaling coefficients for all these parameters were 0.70-0.80. Mass-specific sodium influx and efflux rates, as well as potassium net loss rates, departed from this pattern, being greater in larger fish; hyper-allometric scaling coefficients were > 1.0. Gill V-type H+ ATPase activities were greater than Na+, K+-ATPase activities, but levels were generally low and comparable in large and small fish, and similar activities were detected in the ABO. A. gigas is a carnivorous fish throughout its lifecycle, and, despite fasting, protein oxidation accounted for the major portion (61-82%) of aerobic metabolism in both large and small animals. ABO PO2 and PCO2 (measured in 600-700-g fish) were quite variable, and aerial hypoxia resulted in lower ABO PO2 values. Under normoxic conditions, a positive correlation between breath volume and ABP PO2 was detected, and on average with a single breath more than 50% of the ABO volume was exchanged. ABO PCO2 values were in the range of 1.95-3.89 kPa, close to previously recorded blood PCO2 levels. Aerial hypoxia (PO2 down to 12.65 kPa) did not increase either air-breathing frequency or breath volume.
Collapse
Affiliation(s)
- Bernd Pelster
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - Susana Braz-Mota
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| |
Collapse
|
38
|
Zimmer AM, Perry SF. The Rhesus glycoprotein Rhcgb is expendable for ammonia excretion and Na + uptake in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2020; 247:110722. [PMID: 32437959 DOI: 10.1016/j.cbpa.2020.110722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 11/27/2022]
Abstract
In zebrafish (Danio rerio), the ammonia-transporting Rhesus glycoprotein Rhcgb is implicated in mechanisms of ammonia excretion and Na+ uptake. In particular, Rhcgb is thought to play an important role in maintaining ammonia excretion in response to alkaline conditions and high external ammonia (HEA) exposure, in addition to facilitating Na+ uptake via a functional metabolon with the Na+/H+-exchanger Nhe3b, specifically under low Na+ conditions. In the present study, we hypothesized that CRISPR/Cas9 knockout of rhcgb would reduce ammonia excretion and Na+ uptake capacity, particularly under the conditions listed above that have elicited increases in Rhcgb-mediated ammonia excretion and/or Na+ uptake. Contrary to this hypothesis, however, larval and juvenile rhcgb knockout (KO) mutants showed no reductions in ammonia excretion or Na+ uptake under any of the conditions tested in our study. In fact, under control conditions, rhcgb KO mutants generally displayed an increase in ammonia excretion, potentially due to increased transcript abundance of another rh gene, rhbg. Under alkaline conditions, rhcgb KO mutants were also able to maintain ammonia excretion, similar to wild-type fish, and stimulation of ammonia excretion after HEA exposure also was not affected by rhcgb KO. Surprisingly, ammonia excretion and Na+ uptake were unaffected by rhcgb or nhe3b KO in juvenile zebrafish acclimated to normal (800 μmol/L) or low (10 μmol/L) Na+ conditions. These results demonstrate that Rhcgb is expendable for ammonia excretion and Na+ uptake in zebrafish, highlighting the plasticity and flexibility of these physiological systems in this species.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
39
|
Eom J, Fehsenfeld S, Wood CM. Is ammonia excretion affected by gill ventilation in the rainbow trout Oncorhynchus mykiss? Respir Physiol Neurobiol 2020; 275:103385. [DOI: 10.1016/j.resp.2020.103385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 02/08/2023]
|
40
|
Bernard B, Leguen I, Mandiki SNM, Cornet V, Redivo B, Kestemont P. Impact of temperature shift on gill physiology during smoltification of Atlantic salmon smolts (Salmo salar L.). Comp Biochem Physiol A Mol Integr Physiol 2020; 244:110685. [PMID: 32165323 DOI: 10.1016/j.cbpa.2020.110685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 11/15/2022]
Abstract
Exposure to a temperature increase may disrupt smoltification and delay or stop the downstream migration of smolts. Thermal regimes are often different between a river and its tributaries, but the effects of a relative temperature shift are not well described. We used expression of smoltification genes coupled with gill Na+/K+-ATPase activity (NKA) and plasma cortisol and growth hormone (GH) levels to investigate the impact of a 5 °C difference between tributary and river on salmon juveniles. Responses to a temperature challenge were examined at four time points during the smoltification period, with juveniles reared under three regimes including control, early and late temperature increase. The temperature shifts reduced gill NKA, plasma GH and cortisol levels which indicate hypo-osmoregulation impairment and may reduce the survival of smolts. Out of the 22 genes examined, the expression of six genes was influenced by the temperature treatments, while changes in further eleven genes were influenced by the date of sampling. Genes usually known to be upregulated during smoltification were downregulated after the temperature increase, notably nkaα1b, nkcc1a and igf1r. Upregulation of some genes involved in the hormonal regulation and acid-base equilibrium in early June may indicate a switch towards desmoltification. This study gives further insights about the impact of temperature increase on the molecular processes underlying smoltification and possible responses to human-related water temperature increase. The data also suggest dual roles in the smoltification and desmoltification for GH and IGF1 and points to the implication of genes in the smoltification process, that have previously been unstudied (nbc) or with little data available (igf2).
Collapse
Affiliation(s)
- Benoît Bernard
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium..
| | - Isabelle Leguen
- Fish Physiology and Genomics Institute, Campus of Beaulieu, Building 16A, 35042 Rennes Cedex, France.
| | - Syaghalirwa N M Mandiki
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium..
| | - Valerie Cornet
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium..
| | - Baptiste Redivo
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium..
| | - Patrick Kestemont
- University of Namur, Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology (URBE), Rue de Bruxelles, 61, B-5000 Namur, Belgium..
| |
Collapse
|
41
|
Acute Exposure to key Aquaculture Environmental Stressors Impaired the Aerobic Metabolism of Carassius auratus gibelio. BIOLOGY 2020; 9:biology9020027. [PMID: 32050708 PMCID: PMC7168137 DOI: 10.3390/biology9020027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/17/2022]
Abstract
Carassius auratus gibelio is an omnivore favored for its flavor and is commonly used as a benthic species in traditional pond polyculture. This study investigated the effects of common aquaculture stressors, such as high ammonia, high nitrite, high pH, and hypoxia on the aerobic metabolism of C. auratus gibelio. The results showed that the standard metabolic rate (SMR) was positively correlated with ammonia, nitrite, and pH, while the maximum metabolic rate (MMR) was negatively correlated with all four stressors. Thus, aerobic scope (AS) was reduced when C. auratus gibelio was exposed to high ammonia, high nitrite, high pH, and hypoxia. The peak of post-prandial O2 consumption was positively correlated with nitrite, pH, and the occurrence of the peak metabolic rate post-prandial was delayed in high ammonia, high nitrite, hypoxia, and high pH conditions. These findings indicated that, in experimental conditions, exposure to these environmental stressors can influence aerobic metabolism in C. auratus gibelio. With more energy required to maintain standard metabolic rates, less will be available for growth. While the C. auratus gibelio is one of the most hypoxia tolerance species, the reduction we observed in AS caused by stressors that commonly occur in ponds and in nature will likely affect growth in ponds and fitness in nature. These data have provided insight into the optimal, fitness-maximizing thresholds for these common stressors in this species of interest.
Collapse
|
42
|
Liew HJ, Pelle A, Chiarella D, Faggio C, Tang CH, Blust R, De Boeck G. Common carp, Cyprinus carpio, prefer branchial ionoregulation at high feeding rates and kidney ionoregulation when food supply is limited: additional effects of cortisol and exercise. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:451-469. [PMID: 31773438 DOI: 10.1007/s10695-019-00736-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
This study aims to examine ionoregulatory parameters during exercise and cortisol elevation in common carp fed different food rations. Fish subjected to two different feeding regimes (0.5 or 3.0% body mass (BM) daily) received no implant or an intraperitoneal cortisol implant (250 mg/kg BM) or sham, and were monitored over a 168-h post-implant (PI) period under resting, low aerobic swimming or exhaustive swimming conditions. Plasma osmolality was maintained at relatively stable levels without much influence of feeding, swimming or cortisol, especially in low feeding groups. Nevertheless, a transient hyponatremia was observed in all low feeding fish implanted with cortisol. The hyponatremia was more pronounced in fish swum to exhaustion but even in this group, Na+ levels returned to control levels as cortisol levels recovered (168 h-PI). Cortisol-implanted fish also had lower plasma Cl- levels, and this loss of plasma Cl- was more prominent in fish fed a high ration during exhaustive swimming (recovered at 168 h-PI). Cortisol stimulated branchial NKA and H+ ATPase activities, especially in high ration fish. In contrast, low ration fish upregulated kidney NKA and H+ ATPase activities when experiencing elevated levels of cortisol. In conclusion, low feeding fish experience an ionoregulatory disturbance in response to cortisol implantation especially when swum to exhaustion in contrast to high feeding fish.
Collapse
Affiliation(s)
- Hon Jung Liew
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia.
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerp, Belgium.
| | - Antonella Pelle
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerp, Belgium
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 CAP, 98166, Messina, Italy
| | - Daniela Chiarella
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerp, Belgium
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 CAP, 98166, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 CAP, 98166, Messina, Italy
| | - Cheng-Hao Tang
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan, Republic of China
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerp, Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020, Antwerp, Belgium
| |
Collapse
|
43
|
Malakpour Kolbadinezhad S, Coimbra J, Wilson JM. Is the dendritic organ of the striped eel catfish Plotosus lineatus an ammonia excretory organ? Comp Biochem Physiol A Mol Integr Physiol 2019; 241:110640. [PMID: 31870932 DOI: 10.1016/j.cbpa.2019.110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022]
Abstract
The dendritic organ (DO) is a salt secretory organ in the Plotosidae marine catfishes. The potential role of the DO in ammonia excretion was investigated by examining the effects of salinity [brackishwater (BW 3‰), seawater (SW 34‰) and hypersaline water (HSW 60‰)] acclimation and DO ligation on ammonia excretion and ammonia transporter expression by immunohistochemistry (IHC), immunoblotting (IB) and qPCR. Ammonia flux rates (JAmm) were significantly lower in BW compared to SW and HSW. DO ligation resulted in a significantly lower JAmm in SW but not BW fish. IHC demonstrated apical and basolateral localization of Rhesus-associated glycoprotein (Rhag-like) and Rhbg-like proteins, respectively, in parenchymal cells of the DO acini. In the gills, which are the primary site of ammonia excretion in teleost fishes, IHC showed an apical localization of Rhag-like protein in some Na+/K+-ATPase (NKA) immunoreactive (IR) cells limited to a few interlamellar regions of the filament and, in both apical and basolateral membranes of pillar cells irrespective of treatment group. In gills, the distribution of NKA-IR cells showed no salinity and/or ligation dependency. IB of Rhag and Rhbg-like proteins was found only in the gills and expression levels did not change with salinity but ligation in BW decreased Rhbg-like levels. Although Rhcg was not detected with heterologous antibodies, rhcg1 mRNA expression was detected in both gills and DO. HSW was associated with the lowest expression in DO and ligations in SW and BW were without effect on branchial expression levels. Taken together these results indicate the DO potentially has a physiological role in ammonia excretion under SW conditions.
Collapse
Affiliation(s)
- Salman Malakpour Kolbadinezhad
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; Coldwater Fisheries Research Center (CFRC), Iranian Fisheries Sciences Research Institute (IFSRI), Agricultural Research, Education and Extension Organization, Tonekabon, Iran.
| | - João Coimbra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.
| | - Jonathan M Wilson
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal; Department of Biology, Wilfrid Laurier University, Waterloo, Canada.
| |
Collapse
|
44
|
Wang Y, Pasparakis C, Stieglitz JD, Benetti DD, Grosell M. The effects of Deepwater Horizon crude oil on ammonia and urea handling in mahi-mahi (Coryphaena hippurus) early life stages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105294. [PMID: 31585273 DOI: 10.1016/j.aquatox.2019.105294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Many ecologically important fishes, including mahi-mahi (Coryphaena hippurus), and their offspring were directly exposed to crude oil following the Deepwater Horizon (DWH) oil spill. Early life stage fish are especially vulnerable to the toxicity of crude oil-derived polycyclic aromatic hydrocarbons (PAHs). In teleosts, yolk sac proteins are the main energy source during development and are usually catabolized into ammonia or urea among other byproducts. Although excretion of these waste products is sensitive to oil exposure, we know little about the underlying mechanisms of this process. In this study, we examined the effects of crude oil on ammonia and urea handling in the early life stages of mahi. Mahi embryos exposed to 30-32 μg L-1 ∑PAH exhibited increased urea excretion rates and greater accumulation of urea in the tissues before hatch suggesting that ammonia, which is highly toxic, was converted into less-toxic urea. Oil-exposed embryos (6.3-32 μg L-1 ∑PAH) displayed significantly increased tissue ammonia levels at 42 hpf and upregulated mRNA levels of ammonia transporters (Rhag, Rhbg and Rhcg1) from 30 to 54 hpf. However, despite increased accumulation and higher expression of ammonia transporters, the larvae exposed to higher ∑PAH (30 μg L-1 ∑PAH) showed reduced ammonia excretion rates after hatch. Together, the increased production of nitrogenous waste reinforces previous work that increased energy demand in oil-exposed embryos is fueled, at least in part, by protein metabolism and that urea synthesis plays a role in ammonia detoxification in oil-exposed mahi embryos. To our knowledge, this study is the first to combine physiological and molecular approaches to assess the impact of crude-oil on both nitrogenous waste excretion and accumulation in the early life stages of any teleosts.
Collapse
Affiliation(s)
- Y Wang
- Department of Marine Biology and Ecology, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States.
| | - C Pasparakis
- Department of Marine Biology and Ecology, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - J D Stieglitz
- Department of Marine Ecosystems and Society, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - D D Benetti
- Department of Marine Ecosystems and Society, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - M Grosell
- Department of Marine Biology and Ecology, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| |
Collapse
|
45
|
Effect of salinity and temperature on the expression of genes involved in branchial ion transport processes in European sea bass. J Therm Biol 2019; 85:102422. [DOI: 10.1016/j.jtherbio.2019.102422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022]
|
46
|
Xiao J, Li QY, Tu JP, Chen XL, Chen XH, Liu QY, Liu H, Zhou XY, Zhao YZ, Wang HL. Stress response and tolerance mechanisms of ammonia exposure based on transcriptomics and metabolomics in Litopenaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:491-500. [PMID: 31121556 DOI: 10.1016/j.ecoenv.2019.05.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Ammonia, one of the major limiting environment factors in aquaculture, may pose a threat to the shrimp growth, reproduction and survival. In this study, to understand molecular differences of transcriptomic and metabolomic responses and investigate the tolerance mechanisms underlying ammonia stress in Litopenaeus vannamei, ammonia-tolerant family (LV-AT) and ammonia-sensitive family (LV-AS) of these two extreme families were exposed to high-concentration (NH4Cl, 46 mg/L) ammonia for 24 h. The comparative transcriptome analysis between ammonia-treated and control (LV-C) groups revealed involvement of immune defense, cytoskeleton remodeling, antioxidative system and metabolic pathway in ammonia-stress response of L. vannamei. Likewise, metabolomics analysis showed that ammonia exposure could disturb amino acid metabolism, nucleotide metabolism and lipid metabolism, with metabolism related-genes changed according to RNA-seq analysis. The comparison of metabolite and transcript profiles between LV-AT and LV-AS indicated that LV-AT used the enhanced glycolysis and tricarboxylic acid (TCA) cycle strategies for energy supply and ammonia excretion to adapt high-concentration ammonia. Furthermore, some of genes involved in the detoxification and ammonia excretion were highly expressed in LV-AT. We speculate that the higher ability of ammonia excretion and detoxification and the accelerated energy metabolism for energy supplies might be the adaptive strategies for LV-AT relative to LV-AS after ammonia stress. Collectively, the combination of transcriptomics and metabolomics results will greatly contribute to incrementally understand the stress responses on ammonia exposure to L. vannamei and supply molecular level support for evaluating the environmental effects of ammonia on aquatic organisms. The results further constitute new sights on the potential molecular mechanisms of ammonia adaptive strategies in shrimps at the transcriptomics and metabolomics levels.
Collapse
Affiliation(s)
- Jie Xiao
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan, PR China
| | - Qiang-Yong Li
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi, Nanning, 530021, China, PR China
| | - Jia-Peng Tu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan, PR China
| | - Xiu-Li Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi, Nanning, 530021, China, PR China
| | - Xiao-Han Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi, Nanning, 530021, China, PR China
| | - Qing-Yun Liu
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi, Nanning, 530021, China, PR China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan, PR China
| | - Xiao-Yun Zhou
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan, PR China
| | - Yong-Zhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi, Nanning, 530021, China, PR China.
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
47
|
An in vitro analysis of intestinal ammonia transport in fasted and fed freshwater rainbow trout: roles of NKCC, K + channels, and Na +, K + ATPase. J Comp Physiol B 2019; 189:549-566. [PMID: 31486919 DOI: 10.1007/s00360-019-01231-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/15/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
We examined mechanisms of ammonia handling in the anterior, mid, and posterior intestine of unfed and fed freshwater rainbow trout (Oncorhynchus mykiss), with a focus on the Na+:K+:2Cl- co-transporter (NKCC), Na+:K +-ATPase (NKA), and K+ channels. NKCC was localized by immunohistochemistry to the mucosal (apical) surface of enterocytes, and NKCC mRNA was upregulated after feeding in the anterior and posterior segments. NH4+ was equally potent to K+ in supporting NKA activity in all intestinal sections. In vitro gut sac preparations were employed to examine mucosal ammonia flux rates (Jmamm, disappearance from the mucosal saline), serosal ammonia flux rates (Jsamm, appearance in the serosal saline), and total tissue ammonia production rates (Jtamm = Jsamm - Jmamm). Bumetanide (10-4 mol L-1), a blocker of NKCC, inhibited Jsamm in most preparations, but this was largely due to reduction of Jtamm; Jmamm was significantly inhibited only in the anterior intestine of fed animals. Ouabain (10-4 mol L-1), a blocker of NKA, generally reduced both Jmamm and Jsamm without effects on Jtamm in most preparations, though the anterior intestine was resistant after feeding. Barium (10-2 mol L-1), a blocker of K+ channels, inhibited Jmamm in most preparations, and Jsamm in some, without effects on Jtamm. These pharmacological results, together with responses to manipulations of serosal and mucosal Na+ and K+ concentrations, suggest that NKCC is not as important in ammonia absorption as previously believed. NH4+ appears to be taken up through barium-sensitive K+ channels on the mucosal surface. Mucosal NH4+ uptake via both NKCC and K+ channels is energized by basolateral NKA, which plays an additional role in scavenging NH4+ on the serosal surface to possibly minimize blood toxicity or enhance ion uptake and amino acid synthesis following feeding. Together with recent findings from other studies, we have provided an updated model to describe the current understanding of intestinal ammonia transport in teleost fish.
Collapse
|
48
|
Abdulnour‐Nakhoul S, Hering‐Smith K, Hamm LL, Nakhoul NL. Effects of chronic hypercapnia on ammonium transport in the mouse kidney. Physiol Rep 2019; 7:e14221. [PMID: 31456326 PMCID: PMC6712239 DOI: 10.14814/phy2.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/24/2022] Open
Abstract
Hypercapnia and subsequent respiratory acidosis are serious complications in many patients with respiratory disorders. The acute response to hypercapnia is buffering of H+ by hemoglobin and cellular proteins but this effect is limited. The chronic response is renal compensation that increases HCO3- reabsorption, and stimulates urinary excretion of titratable acids (TA) and NH4+ . However, the main effective pathway is the excretion of NH4+ in the collecting duct. Our hypothesis is that, the renal NH3 /NH4+ transporters, Rhbg and Rhcg, in the collecting duct mediate this response. The effect of hypercapnia on these transporters is unknown. We conducted in vivo experiments on mice subjected to chronic hypercapnia. One group breathed 8% CO2 and the other breathed normal air as control (0.04% CO2 ). After 3 days, the mice were euthanized and kidneys, blood, and urine samples were collected. We used immunohistochemistry and Western blot analysis to determine the effects of high CO2 on localization and expression of the Rh proteins, carbonic anhydrase IV, and pendrin. In hypercapnic animals, there was a significant increase in urinary NH4+ excretion but no change in TA. Western blot analysis showed a significant increase in cortical expression of Rhbg (43%) but not of Rhcg. Expression of CA-IV was increased but pendrin was reduced. These data suggest that hypercapnia leads to compensatory upregulation of Rhbg that contributes to excretion of NH3 /NH4+ in the kidney. These studies are the first to show a link among hypercapnia, NH4+ excretion, and Rh expression.
Collapse
Affiliation(s)
- Solange Abdulnour‐Nakhoul
- Section of Nephrology, Departments of Medicine and PhysiologyTulane University School of MedicineNew OrleansLouisiana
| | - Kathleen Hering‐Smith
- Section of Nephrology, Departments of Medicine and PhysiologyTulane University School of MedicineNew OrleansLouisiana
| | - L. Lee Hamm
- Section of Nephrology, Departments of Medicine and PhysiologyTulane University School of MedicineNew OrleansLouisiana
| | - Nazih L. Nakhoul
- Section of Nephrology, Departments of Medicine and PhysiologyTulane University School of MedicineNew OrleansLouisiana
| |
Collapse
|
49
|
Shrivastava J, Ndugwa M, Caneos W, De Boeck G. Physiological trade-offs, acid-base balance and ion-osmoregulatory plasticity in European sea bass (Dicentrarchus labrax) juveniles under complex scenarios of salinity variation, ocean acidification and high ammonia challenge. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:54-69. [PMID: 31075620 DOI: 10.1016/j.aquatox.2019.04.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
In this era of global climate change, ocean acidification is becoming a serious threat to the marine ecosystem. Despite this, it remains almost unknown how fish will respond to the co-occurrence of ocean acidification with other conventional environmental perturbations typically salinity fluctuation and high ammonia threat. Therefore, the present work evaluated the interactive effects of elevated pCO2, salinity reduction and high environmental ammonia (HEA) on the ecophysiological performance of European sea bass (Dicentrarchus labrax). Fish were progressively acclimated to seawater (32 ppt), to brackish water (10 ppt) and to hyposaline water (2.5 ppt). Following acclimation to different salinities for at least two weeks, fish were exposed to CO2-induced water acidification representing present-day (control pCO2, 400 μatm, LoCO2) and future (high pCO2, 1000 μatm, HiCO2) sea-surface CO2 level for 3, 7 and 21 days. At the end of each exposure period, fish were challenged with HEA for 6 h (1.18 mM representing 50% of 96 h LC50). Results show that, in response to the individual HiCO2 exposure, fish within each salinity compensated for blood acidosis. Fish subjected to HiCO2 were able to maintain ammonia excretion rate (Jamm) within control levels, suggesting that HiCO2 exposure alone had no impact on Jamm at any of the salinities. For 32 and 10 ppt fish, up-regulated expression of Na+/K+-ATPase was evident in all exposure groups (HEA, HiCO2 and HEA/HiCO2 co-exposed), whereas Na+/K+/2Cl- co-transporter was up-regulated mainly in HiCO2 group. Plasma glucose and lactate content were augmented in all exposure conditions for all salinity regimes. During HEA and HEA/HiCO2, Jamm was inhibited at different time points for all salinities, which resulted in a significant build-up of ammonia in plasma and muscle. Branchial expressions of Rhesus glycoproteins (Rhcg isoforms and Rhbg) were upregulated in response to HiCO2 as well as HEA at 10 ppt, with a more moderate response in 32 ppt groups. Overall, our findings denote that the adverse effect of single exposures of ocean acidification or HEA is exacerbated when present together, and suggests that fish are more vulnerable to these environmental threats at low salinities.
Collapse
Affiliation(s)
- Jyotsna Shrivastava
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium.
| | - Moses Ndugwa
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Warren Caneos
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| |
Collapse
|
50
|
Wang Y, Pasparakis C, Mager EM, Stieglitz JD, Benetti D, Grosell M. Ontogeny of urea and ammonia transporters in mahi-mahi (Coryphaena hippurus) early life stages. Comp Biochem Physiol A Mol Integr Physiol 2019; 229:18-24. [PMID: 30503629 DOI: 10.1016/j.cbpa.2018.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 01/17/2023]
Abstract
The mechanism(s) of ammonia and urea excretion in freshwater fish have received considerable attention; however, parallel investigations of seawater fish, specifically in the early life stages are scarce. The first objective of this study was to evaluate the patterns of ammonia and urea excretion in mahi-mahi (Coryphaena hippurus) up to 102 hours post fertilization (hpf). Similar to other teleosts, mahi embryos are ureotelic before hatch and gradually switch to being ammoniotelic around the time of hatch. The second objective was to characterize mRNA levels of ammonia transporters (Rhag, Rhbg, Rhcg1 and Rhcg2), as well as urea transporter (UT) and sodium hydrogen exchangers (NHE3 and NHE2) during mahi development. As predicted, the mRNA levels of the Rhesus glycoprotein (Rh) genes, especially Rhag, Rhbg and the UT gene were highly consistent with the ontogeny of ammonia and urea excretion rates. Further, the localization of each transporter was examined in larvae collected at 60 and 102 hpf using in situ hybridization. Rhag was expressed in the gills, yolk sac, and operculum. Rhbg was expressed in the gills and upper mouth. Rhcg1 and NHE3 were co-localized in the sub-operculum, and Rhcg2 was expressed in the skin. Together, these results indicate that urea excretion is critical for ammonia detoxification during embryonic development and that Rh proteins are involved in ammonia excretion via gills and yolk sac, possibly facilitated by NHE3.
Collapse
Affiliation(s)
- Y Wang
- RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States.
| | - C Pasparakis
- RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - E M Mager
- RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States; Department of Biological Sciences & Advanced Environmental Research Institute, University of North Texas, Denton, TX 76203, United States
| | - J D Stieglitz
- RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - D Benetti
- RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - M Grosell
- RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| |
Collapse
|