1
|
Qu Q, Chen Y, Wang Y, Long S, Wang W, Yang HY, Li M, Tian X, Wei X, Liu YH, Xu S, Zhang C, Zhu M, Lam SM, Wu J, Yun C, Chen J, Xue S, Zhang B, Zheng ZZ, Piao HL, Jiang C, Guo H, Shui G, Deng X, Zhang CS, Lin SC. Lithocholic acid phenocopies anti-ageing effects of calorie restriction. Nature 2024:10.1038/s41586-024-08329-5. [PMID: 39695227 DOI: 10.1038/s41586-024-08329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 10/31/2024] [Indexed: 12/20/2024]
Abstract
Calorie restriction (CR) is a dietary intervention used to promote health and longevity1,2. CR causes various metabolic changes in both the production and the circulation of metabolites1; however, it remains unclear which altered metabolites account for the physiological benefits of CR. Here we use metabolomics to analyse metabolites that exhibit changes in abundance during CR and perform subsequent functional validation. We show that lithocholic acid (LCA) is one of the metabolites that alone can recapitulate the effects of CR in mice. These effects include activation of AMP-activated protein kinase (AMPK), enhancement of muscle regeneration and rejuvenation of grip strength and running capacity. LCA also activates AMPK and induces life-extending and health-extending effects in Caenorhabditis elegans and Drosophila melanogaster. As C. elegans and D. melanogaster are not able to synthesize LCA, these results indicate that these animals are able to transmit the signalling effects of LCA once administered. Knockout of AMPK abrogates LCA-induced phenotypes in all the three animal models. Together, we identify that administration of the CR-mediated upregulated metabolite LCA alone can confer anti-ageing benefits to metazoans in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shating Long
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Weiche Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Heng-Ye Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shengrong Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | | | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Fujian, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
| | - Junjie Chen
- Analysis and Measurement Centre, School of Pharmaceutical Sciences, Xiamen University, Fujian, China
| | - Shengye Xue
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhong-Zheng Zheng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, Department of Immunology, School of Basic Medical Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodelling, Peking University, Beijing, China
| | - Hao Guo
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
- Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Guanghou Shui
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
2
|
Deota S, Lin T, Chaix A, Williams A, Le H, Calligaro H, Ramasamy R, Huang L, Panda S. Diurnal transcriptome landscape of a multi-tissue response to time-restricted feeding in mammals. Cell Metab 2023; 35:150-165.e4. [PMID: 36599299 PMCID: PMC10026518 DOI: 10.1016/j.cmet.2022.12.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/08/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023]
Abstract
Time-restricted feeding (TRF) is an emerging behavioral nutrition intervention that involves a daily cycle of feeding and fasting. In both animals and humans, TRF has pleiotropic health benefits that arise from multiple organ systems, yet the molecular basis of TRF-mediated benefits is not well understood. Here, we subjected mice to isocaloric ad libitum feeding (ALF) or TRF of a western diet and examined gene expression changes in samples taken from 22 organs and brain regions collected every 2 h over a 24-h period. We discovered that TRF profoundly impacts gene expression. Nearly 80% of all genes show differential expression or rhythmicity under TRF in at least one tissue. Functional annotation of these changes revealed tissue- and pathway-specific impacts of TRF. These findings and resources provide a critical foundation for future mechanistic studies and will help to guide human time-restricted eating (TRE) interventions to treat various disease conditions with or without pharmacotherapies.
Collapse
Affiliation(s)
- Shaunak Deota
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Terry Lin
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Amandine Chaix
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - April Williams
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hiep Le
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hugo Calligaro
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ramesh Ramasamy
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ling Huang
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Satchidananda Panda
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Shi J, Zhuo D, Lu M, Wang H, Gu H, Liu X, Wang Z. Partial immune responses in Sichuan bream ( Sinibrama taeniatus) after starvation. Front Immunol 2023; 14:1098741. [PMID: 36949943 PMCID: PMC10025346 DOI: 10.3389/fimmu.2023.1098741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Background Food deprivation is a severe stress across multiple fields and it might be a challenge to immune system. Methods In the present study, adult male Sinibrama taeniatus were deprived of feed for 7 to 28 days. We explored the effects of starvation on immunity in S. taeniatus through hematological analysis, antioxidant capacity analysis, detection of the content or activity of immune factors in plasma, and transcriptomic analysis. Results The results indicated that biometric indexes significantly decreased in the fish after starvation, the proportion of thrombocyte, neutrophil and monocyte increased and, conversely, the proportion of lymphocyte decreased. The antioxidant indexes (SOD and CAT) and innate immune parameters (LZM, C3) were upregulated in fish suffering from a short period of starvation, while adaptive immune parameter (IgM) conversely declined. The transcriptome analysis revealed the changes of various metabolic regulatory pathways involved in fatty acids and amino acids, as well as the immune responses and antioxidant capacity. Conclusions Taken together, this research in the present study suggested an induced innate immunity while a partly suppressed adaptive immunity under a short period starvation.
Collapse
Affiliation(s)
- Jinfeng Shi
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Chongqing, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, China
- School of Life Sciences, Southwest University, Chongqing, China
| | - Dayou Zhuo
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Chongqing, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, China
- School of Life Sciences, Southwest University, Chongqing, China
| | - Minfang Lu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Chongqing, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, China
- School of Life Sciences, Southwest University, Chongqing, China
| | - Haoyu Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Chongqing, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, China
- School of Life Sciences, Southwest University, Chongqing, China
| | - Haoran Gu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Chongqing, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, China
- School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaohong Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Chongqing, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, China
- School of Life Sciences, Southwest University, Chongqing, China
- *Correspondence: Zhijian Wang, ; Xiaohong Liu,
| | - Zhijian Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Chongqing, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, China
- School of Life Sciences, Southwest University, Chongqing, China
- *Correspondence: Zhijian Wang, ; Xiaohong Liu,
| |
Collapse
|
4
|
Afrouziyeh M, Zukiwsky NM, You J, Kwakkel RP, Korver DR, Zuidhof MJ. Architecture of broiler breeder energy partitioning models. Poult Sci 2021; 101:101518. [PMID: 34823174 PMCID: PMC8627977 DOI: 10.1016/j.psj.2021.101518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
A robust model that estimates the ME intake over broiler breeder lifetime is essential for formulating diets with optimum nutrient levels. The experiment was conducted as a randomized controlled trial with 40 Ross 708 broiler breeder pullets reared on 1 of 10 target growth trajectories, which were designed with 2 levels of cumulative BW gain in prepubertal growth phase and 5 levels of timing of growth around puberty. This study investigated the effect of growth pattern on energy efficiency of birds and tested the effects of dividing data into daily, 4-d, weekly, 2-wk, and 3-wk periods and the inclusion of random terms associated with individual maintenance ME and ADG requirements, and age on ME partitioning model fit and predictive performance. Model [I] was: MEId = a × BWb + c × ADGp + d × ADGn + e × EM + ε, where MEId was daily ME intake (kcal/d); BW in kg; ADGp was positive ADG; ADGn was negative ADG (g/d); EM was egg mass (g/d); ε was the model residual. Models [II to IV] were nonlinear mixed models based on the model [I] with inclusion of a random term for individual maintenance requirement, age, and ADG, respectively. Model [II] – 3 wk was chosen as the most parsimonious based on lower autocorrelation bias, closer fit of the estimates to the actual data (lower model MSE and closer R2 to 1), and greater predictive performance among the models. Estimated ME partitioned to maintenance in model [II] – 3 wk was 100.47 ± 7.43 kcal/kg0.56, and the ME requirement for ADGp, ADGn, and EM were 3.49 ± 0.37; 3.16 ± 3.91; and 2.96 ± 0.13 kcal/g, respectively. Standard treatment had lower residual heat production (RHP; -0.68 kcal/kg BW0.56) than high early growth treatment (0.79 kcal/kg BW0.56), indicating greater efficiency in utilizing the ME consumed. Including random term associated with individual maintenance ME in a 3-wk chunk size provided a robust, biologically sound life-time energy partitioning model for breeders.
Collapse
Affiliation(s)
- Mohammad Afrouziyeh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - Nicole M Zukiwsky
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - Jihao You
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - René P Kwakkel
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5; Department of Animal Sciences, Animal Nutrition Group, Wageningen University, Wageningen, The Netherlands (6700 AH)
| | - Douglas R Korver
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - Martin J Zuidhof
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5.
| |
Collapse
|
5
|
Mass recovery following caloric restriction reverses lipolysis and proteolysis, but not gluconeogenesis, in insulin resistant OLETF rats. PLoS One 2021; 16:e0252360. [PMID: 34727112 PMCID: PMC8562784 DOI: 10.1371/journal.pone.0252360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
Caloric restriction (CR) is one of the most important behavioral interventions to reduce excessive abdominal adiposity, which is a risk factor for the development of insulin resistance. Previous metabolomics studies have characterized substrate metabolism during healthy conditions; however, the effects of CR and subsequent mass recovery on shifts in substrate metabolism during insulin resistance (IR) have not been widely investigated. To assess the effects of acute CR and the subsequent mass recovery on shifts in substrate metabolism, a cohort of 15-week old Long Evans Tokushima Otsuka (LETO) and Otsuka Long Evans Tokushima Fatty (OLETF) rats were calorie restricted (CR: 50% × 10 days) with or without partial body mass recovery (PR; 73% x 7 days), along with their respective ad libitum controls. End-of-study plasma samples were analyzed for primary carbon metabolites by gas chromatography (GC) time-of-flight (TOF) mass spectrometry (MS) data acquisition. Data analysis included PCA, Pearson correlation vs previously reported variables (adipose and body masses, and insulin resistance index, IRI), and metabolomics maps (MetaMapp) generated for the most significant group comparisons. All treatments elicited a significant group differentiation in at least one principal component. CR improved TCA cycle in OLETF, and increased lipolysis and proteolysis. These changes were reversed after PR except for gluconeogenesis. Plasma lipid concentrations were inversely correlated to IRI in LETO, but not OLETF. These shifts in substrate metabolism suggest that the CR-induced decreases in adipose may not be sufficient to more permanently alter substrate metabolism to improve IR status during metabolic syndrome.
Collapse
|
6
|
Chumachenko MS, Waseem TV, Fedorovich SV. Metabolomics and metabolites in ischemic stroke. Rev Neurosci 2021; 33:181-205. [PMID: 34213842 DOI: 10.1515/revneuro-2021-0048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
Stroke is a major reason for disability and the second highest cause of death in the world. When a patient is admitted to a hospital, it is necessary to identify the type of stroke, and the likelihood for development of a recurrent stroke, vascular dementia, and depression. These factors could be determined using different biomarkers. Metabolomics is a very promising strategy for identification of biomarkers. The advantage of metabolomics, in contrast to other analytical techniques, resides in providing low molecular weight metabolite profiles, rather than individual molecule profiles. Technically, this approach is based on mass spectrometry and nuclear magnetic resonance. Furthermore, variations in metabolite concentrations during brain ischemia could alter the principal neuronal functions. Different markers associated with ischemic stroke in the brain have been identified including those contributing to risk, acute onset, and severity of this pathology. In the brain, experimental studies using the ischemia/reperfusion model (IRI) have shown an impaired energy and amino acid metabolism and confirmed their principal roles. Literature data provide a good basis for identifying markers of ischemic stroke and hemorrhagic stroke and understanding metabolic mechanisms of these diseases. This opens an avenue for the successful use of identified markers along with metabolomics technologies to develop fast and reliable diagnostic tools for ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Maria S Chumachenko
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Kurchatova St., 10, Minsk220030, Belarus
| | | | - Sergei V Fedorovich
- Department of Biochemistry, Faculty of Biology, Belarusian State University, Kurchatova St., 10, Minsk220030, Belarus
| |
Collapse
|
7
|
Liao J, Suen HC, Luk ACS, Yang L, Lee AWT, Qi H, Lee TL. Transcriptomic and epigenomic profiling of young and aged spermatogonial stem cells reveals molecular targets regulating differentiation. PLoS Genet 2021; 17:e1009369. [PMID: 34237055 PMCID: PMC8291634 DOI: 10.1371/journal.pgen.1009369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/20/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Spermatogonial stem cells (SSC), the foundation of spermatogenesis and male fertility, possess lifelong self-renewal activity. Aging leads to the decline in stem cell function and increased risk of paternal age-related genetic diseases. In the present study, we performed a comparative genomic analysis of mouse SSC-enriched undifferentiated spermatogonia (Oct4-GFP+/KIT-) and differentiating progenitors (Oct4-GFP+/KIT+) isolated from young and aged testes. Our transcriptome data revealed enormous complexity of expressed coding and non-coding RNAs and alternative splicing regulation during SSC differentiation. Further comparison between young and aged undifferentiated spermatogonia suggested these differentiation programs were affected by aging. We identified aberrant expression of genes associated with meiosis and TGF-β signaling, alteration in alternative splicing regulation and differential expression of specific lncRNAs such as Fendrr. Epigenetic profiling revealed reduced H3K27me3 deposition at numerous pro-differentiation genes during SSC differentiation as well as aberrant H3K27me3 distribution at genes in Wnt and TGF-β signaling upon aging. Finally, aged undifferentiated spermatogonia exhibited gene body hypomethylation, which is accompanied by an elevated 5hmC level. We believe this in-depth molecular analysis will serve as a reference for future analysis of SSC aging.
Collapse
Affiliation(s)
- Jinyue Liao
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hoi Ching Suen
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Alfred Chun Shui Luk
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lele Yang
- Guangzhou Regenerative Medicine and Health Bioland Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Annie Wing Tung Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Huayu Qi
- Guangzhou Regenerative Medicine and Health Bioland Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Tin-Lap Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
8
|
Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nat Commun 2021; 12:3208. [PMID: 34050173 PMCID: PMC8163764 DOI: 10.1038/s41467-021-23545-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Aging leads to a gradual decline in physical activity and disrupted energy homeostasis. The NAD+-dependent SIRT6 deacylase regulates aging and metabolism through mechanisms that largely remain unknown. Here, we show that SIRT6 overexpression leads to a reduction in frailty and lifespan extension in both male and female B6 mice. A combination of physiological assays, in vivo multi-omics analyses and 13C lactate tracing identified an age-dependent decline in glucose homeostasis and hepatic glucose output in wild type mice. In contrast, aged SIRT6-transgenic mice preserve hepatic glucose output and glucose homeostasis through an improvement in the utilization of two major gluconeogenic precursors, lactate and glycerol. To mediate these changes, mechanistically, SIRT6 increases hepatic gluconeogenic gene expression, de novo NAD+ synthesis, and systemically enhances glycerol release from adipose tissue. These findings show that SIRT6 optimizes energy homeostasis in old age to delay frailty and preserve healthy aging.
Collapse
|
9
|
Günther I, Rimbach G, Mack CI, Weinert CH, Danylec N, Lüersen K, Birringer M, Bracher F, Soukup ST, Kulling SE, Pallauf K. The Putative Caloric Restriction Mimetic Resveratrol has Moderate Impact on Insulin Sensitivity, Body Composition, and the Metabolome in Mice. Mol Nutr Food Res 2020; 64:e1901116. [PMID: 31962371 DOI: 10.1002/mnfr.201901116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/12/2019] [Indexed: 01/23/2023]
Abstract
SCOPE Data on resveratrol-(trans-3,5,4'-trihydroxystilbene)-induced caloric-restriction-(CR)-mimicking effects in mice receiving a high-fat diet (HFD) are contradictory. It is hypothesized that this can possibly stem from different bioactivities of resveratrol (RSV) microbial metabolites. METHODS AND RESULTS C57BL/6Rj mice are fed an ad-libitum HFD supplemented with RSV or its metabolites, dihydroresveratrol (DHR) and lunularin (LUN) (≈28 mg (dihydro)stilbene kg-1 mouse per day). A 40% CR group was included in the study. While CR mice show robust changes in bodyweight and composition, hormone levels and mRNA expression, slight changes are found (more muscle, less adipose tissue) in body composition, leptin, and insulin levels in RSV-supplemented mice compared to ad libitum controls. LUN hardly and DHR does not change the hormone levels measured. Metabolome analysis of serum shows changes in CR mice but only slight, if any, changes in RSV-, DHR-, or LUN-supplemented mice compared to the controls. Evaluating the capability of RSV and its metabolites to inhibit carbohydrate-hydrolyzing enzymes in vitro, it is found that RSV reduced α-glucosidase activity to a stronger extent than DHR and LUN. CONCLUSION Decelerated carbohydrate breakdown by RSV may have contributed to the moderate impact of dietary RSV on mouse insulin sensitivity (lowered fasting and post-glucose-bolus insulin levels).
Collapse
Affiliation(s)
- Ilka Günther
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Straße 6, 24118, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Straße 6, 24118, Kiel, Germany
| | - Carina I Mack
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Christoph H Weinert
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Nicolas Danylec
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Straße 6, 24118, Kiel, Germany
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Leipziger Straße 123, 36037, Fulda, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Sebastian T Soukup
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Sabine E Kulling
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Kathrin Pallauf
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Straße 6, 24118, Kiel, Germany
| |
Collapse
|
10
|
Martins AD, Jarak I, Morais T, Carvalho RA, Oliveira PF, Monteiro MP, Alves MG. Caloric restriction alters the hormonal profile and testicular metabolome, resulting in alterations of sperm head morphology. Am J Physiol Endocrinol Metab 2020; 318:E33-E43. [PMID: 31770015 DOI: 10.1152/ajpendo.00355.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Energy homeostasis is crucial for all physiological processes. Thus, when there is low energy intake, negative health effects may arise, including in reproductive function. We propose to study whether caloric restriction (CR) changes testicular metabolic profile and ultimately sperm quality. Male Wistar rats (n = 12) were randomized into a CR group fed with 30% fewer calories than weight-matched, ad libitum-fed animals (control group). Circulating hormonal profile, testicular glucagon-like peptide-1 (GLP-1), ghrelin and leptin receptors expression, and sperm parameters were analyzed. Testicular metabolite abundance and glycolysis-related enzymes were studied by NMR and Western blot, respectively. Oxidative stress markers were analyzed in testicular tissue and spermatozoa. Expressions of mitochondrial complexes and mitochondrial biogenesis in testes were determined. CR induced changes in body weight along with altered GLP-1, ghrelin, and leptin circulating levels. In testes, CR led to changes in receptor expression that followed those of the hormone levels; modified testicular metabolome, particularly amino acid content; and decreased oxidative stress-induced damage in testis and spermatozoa, although sperm head defects increased. In sum, CR induced changes in body weight, altering circulating hormonal profile and testicular metabolome and increasing sperm head defects. Ultimately, our data highlight that conditions of CR may compromise male fertility.
Collapse
Affiliation(s)
- Ana D Martins
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
| | - Ivana Jarak
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
| | - Tiago Morais
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rui A Carvalho
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Mariana P Monteiro
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Obesity and Bariatric Services and Centre for Obesity Research, University College of London Hospitals, UCL, London, United Kingdom
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Pradas I, Jové M, Cabré R, Ayala V, Mota-Martorell N, Pamplona R. Effects of Aging and Methionine Restriction on Rat Kidney Metabolome. Metabolites 2019; 9:E280. [PMID: 31739579 PMCID: PMC6918429 DOI: 10.3390/metabo9110280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Methionine restriction (MetR) in animal models extends maximum longevity and seems to promote renoprotection by attenuating kidney injury. MetR has also been proven to affect several metabolic pathways including lipid metabolism. However, there is a lack of studies about the effect of MetR at old age on the kidney metabolome. In view of this, a mass spectrometry-based high-throughput metabolomic and lipidomic profiling was undertaken of renal cortex samples of three groups of male rats-An 8-month-old Adult group, a 26-month-old Aged group, and a MetR group that also comprised of 26-month-old rats but were subjected to an 80% MetR diet for 7 weeks. Additionally, markers of mitochondrial stress and protein oxidative damage were analyzed by mass spectrometry. Our results showed minor changes during aging in the renal cortex metabolome, with less than 59 differential metabolites between the Adult and Aged groups, which represents about 4% of changes in the kidney metabolome. Among the compounds identified are glycerolipids and lipid species derived from arachidonic acid metabolism. MetR at old age preferentially induces lipid changes affecting glycerophospholipids, docosanoids, and eicosanoids. No significant differences were observed between the experimental groups in the markers of mitochondrial stress and tissue protein damage. More than rejuvenation, MetR seems to induce a metabolic reprogramming.
Collapse
Affiliation(s)
| | | | | | | | | | - Reinald Pamplona
- Department of Experimental Medicine, Lleida University-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), 25198 Lleida, Spain; (I.P.); (M.J.); (R.C.); (V.A.); (N.M.-M.)
| |
Collapse
|
12
|
Abstract
The way cancer cells utilize nutrients to support their growth and proliferation is determined by cancer cell-intrinsic and cancer cell-extrinsic factors, including interactions with the environment. These interactions can define therapeutic vulnerabilities and impact the effectiveness of cancer therapy. Diet-mediated changes in whole-body metabolism and systemic nutrient availability can affect the environment that cancer cells are exposed to within tumours, and a better understanding of how diet modulates nutrient availability and utilization by cancer cells is needed. How diet impacts cancer outcomes is also of great interest to patients, yet clear evidence for how diet interacts with therapy and impacts tumour growth is lacking. Here we propose an experimental framework to probe the connections between diet and cancer metabolism. We examine how dietary factors may affect tumour growth by altering the access to and utilization of nutrients by cancer cells. Our growing understanding of how certain cancer types respond to various diets, how diet impacts cancer cell metabolism to mediate these responses and whether dietary interventions may constitute new therapeutic opportunities will begin to provide guidance on how best to use diet and nutrition to manage cancer in patients.
Collapse
Affiliation(s)
- Evan C Lien
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
13
|
Green CL, Soltow QA, Mitchell SE, Derous D, Wang Y, Chen L, Han JDJ, Promislow DEL, Lusseau D, Douglas A, Jones DP, Speakman JR. The Effects of Graded Levels of Calorie Restriction: XIII. Global Metabolomics Screen Reveals Graded Changes in Circulating Amino Acids, Vitamins, and Bile Acids in the Plasma of C57BL/6 Mice. J Gerontol A Biol Sci Med Sci 2019; 74:16-26. [PMID: 29718123 PMCID: PMC6298180 DOI: 10.1093/gerona/gly058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Indexed: 12/15/2022] Open
Abstract
Calorie restriction (CR) remains the most robust intervention to extend life span and improve health span. Using a global mass spectrometry–based metabolomics approach, we identified metabolites that were significantly differentially expressed in the plasma of C57BL/6 mice, fed graded levels of calorie restriction (10% CR, 20% CR, 30% CR, and 40% CR) compared with mice fed ad libitum for 12 hours a day. The differential expression of metabolites increased with the severity of CR. Pathway analysis revealed that graded CR had an impact on vitamin E and vitamin B levels, branched chain amino acids, aromatic amino acids, and fatty acid pathways. The majority of amino acids correlated positively with fat-free mass and visceral fat mass, indicating a strong relationship with body composition and vitamin E metabolites correlated with stomach and colon size, which may allude to the beneficial effects of investing in gastrointestinal organs with CR. In addition, metabolites that showed a graded effect, such as the sphinganines, carnitines, and bile acids, match our previous study on liver, which suggests not only that CR remodels the metabolome in a way that promotes energy efficiency, but also that some changes are conserved across tissues.
Collapse
Affiliation(s)
- Cara L Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Quinlyn A Soltow
- Division of Pulmonary, Allergy and Critical Care Medicine, Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Yingchun Wang
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - Luonan Chen
- Key laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | - Daniel E L Promislow
- Department of Pathology, Seattle.,Department of Biology, University of Washington, Seattle
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK.,State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| |
Collapse
|
14
|
Xue Y, Guo C, Hu F, Zhu W, Mao S. PPARA/RXRA signalling regulates the fate of hepatic non-esterified fatty acids in a sheep model of maternal undernutrition. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158548. [PMID: 31676441 DOI: 10.1016/j.bbalip.2019.158548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 01/06/2023]
Abstract
Maternal undernutrition during late gestation accelerates body fat mobilization to provide more energy for foetal growth and development, which unbalances metabolic homeostasis and results in serious lipid metabolism disorder. However, detailed regulatory mechanisms are poorly understood. Here, a sheep model was used to explore the regulatory role of PPARA/RXRA signalling in hepatic lipid metabolism in undernutrition based on RNA sequencing and cell experiments. KOG function classification showed that lipid transport and metabolism was markedly altered in an undernourished model. In detail, when compared with the controls, fatty acid transport and oxidation and triglyceride metabolism were up-regulated in an undernourished model, while fatty acid synthesis, steroid synthesis, and phospholipid metabolism were down-regulated. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis demonstrated that PPARA/RXRA signalling pathway was altered. Moreover, PPARA signalling associated genes were positively correlated with hepatic non-esterified fatty acid (NEFA) levels, while retinol metabolism associated genes were negatively correlated with blood beta-hydroxybutyric acid (BHBA) levels. Results of primary hepatocytes showed that NEFAs could activate PPARA signalling and facilitate fatty acid oxidation (FAO) and ketogenesis, while BHBA could inhibit RXRA signalling and repress FAO and ketogenesis. Excessively accumulated NEFAs in hepatocytes promoted triglyceride synthesis. Furthermore, activation of PPARA/RXRA signalling by WY14643 and 9-cis-retinoic acid could enhance FAO and ketogenesis and reduce NEFAs accumulation and esterification. Our findings elucidate the regulatory mechanisms of NEFAs and BHBA on lipid metabolism as well as the potential role of the PPARA/RXRA signalling pathway in hepatic lipid metabolism, which may contribute to exploring new strategies to maintain lipid metabolic homeostasis in human beings.
Collapse
Affiliation(s)
- Yanfeng Xue
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Changzheng Guo
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fan Hu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Identification and Application of Gene Expression Signatures Associated with Lifespan Extension. Cell Metab 2019; 30:573-593.e8. [PMID: 31353263 PMCID: PMC6907080 DOI: 10.1016/j.cmet.2019.06.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 04/14/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023]
Abstract
Several pharmacological, dietary, and genetic interventions that increase mammalian lifespan are known, but general principles of lifespan extension remain unclear. Here, we performed RNA sequencing (RNA-seq) analyses of mice subjected to 8 longevity interventions. We discovered a feminizing effect associated with growth hormone regulation and diminution of sex-related differences. Expanding this analysis to 17 interventions with public data, we observed that many interventions induced similar gene expression changes. We identified hepatic gene signatures associated with lifespan extension across interventions, including upregulation of oxidative phosphorylation and drug metabolism, and showed that perturbed pathways may be shared across tissues. We further applied the discovered longevity signatures to identify new lifespan-extending candidates, such as chronic hypoxia, KU-0063794, and ascorbyl-palmitate. Finally, we developed GENtervention, an app that visualizes associations between gene expression changes and longevity. Overall, this study describes general and specific transcriptomic programs of lifespan extension in mice and provides tools to discover new interventions.
Collapse
|
16
|
Page MM, Schuster EF, Mudaliar M, Herzyk P, Withers DJ, Selman C. Common and unique transcriptional responses to dietary restriction and loss of insulin receptor substrate 1 (IRS1) in mice. Aging (Albany NY) 2019; 10:1027-1052. [PMID: 29779018 PMCID: PMC5990393 DOI: 10.18632/aging.101446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/08/2018] [Indexed: 11/25/2022]
Abstract
Dietary restriction (DR) is the most widely studied non-genetic intervention capable of extending lifespan across multiple taxa. Modulation of genes, primarily within the insulin/insulin-like growth factor signalling (IIS) and the mechanistic target of rapamycin (mTOR) signalling pathways also act to extend lifespan in model organisms. For example, mice lacking insulin receptor substrate-1 (IRS1) are long-lived and protected against several age-associated pathologies. However, it remains unclear how these particular interventions act mechanistically to produce their beneficial effects. Here, we investigated transcriptional responses in wild-type and IRS1 null mice fed an ad libitum diet (WTAL and KOAL) or fed a 30% DR diet (WTDR or KODR). Using an RNAseq approach we noted a high correlation coefficient of differentially expressed genes existed within the same tissue across WTDR and KOAL mice and many metabolic features were shared between these mice. Overall, we report that significant overlap exists in the tissue-specific transcriptional response between long-lived DR mice and IRS1 null mice. However, there was evidence of disconnect between transcriptional signatures and certain phenotypic measures between KOAL and KODR, in that additive effects on body mass were observed but at the transcriptional level DR induced a unique set of genes in these already long-lived mice.
Collapse
Affiliation(s)
- Melissa M Page
- Institute des Sciences de la Vie, Faculty of Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Eugene F Schuster
- The Breast Cancer Now Toby Robins Research Centre The Institute of Cancer Research, London, UK
| | - Manikhandan Mudaliar
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Glasgow Molecular Pathology Node, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Present address: Cerevance, Cambridge Science Park, Cambridge, UK
| | - Pawel Herzyk
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Campus, Bearsden, UK.,Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dominic J Withers
- MRC London Institute of Medical Sciences, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
17
|
Jiang Y, Xie M, Fan W, Xue J, Zhou Z, Tang J, Chen G, Hou S. Transcriptome Analysis Reveals Differential Expression of Genes Regulating Hepatic Triglyceride Metabolism in Pekin Ducks During Dietary Threonine Deficiency. Front Genet 2019; 10:710. [PMID: 31428138 PMCID: PMC6688585 DOI: 10.3389/fgene.2019.00710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Dietary threonine (Thr) deficiency increases hepatic triglyceride accumulation in Pekin ducks, which results in fatty liver disease and impairs hepatic function. However, the underlying molecular mechanisms altered by dietary Thr deficiency are still unknown. To identify the underlying molecular changes, 180 one-day-old ducklings were divided into three groups, including Thr deficiency group (Thr-D), Thr sufficiency group (Thr-S), and pair-fed group (Pair-F) that was fed with a Thr-sufficient diet but with reduced daily feed intake. The results showed that feed intake was similar between Thr-D and Pair-F groups, but weight gain rate and final body weight in the Thr-D group were lower than those in the Pair-F group. Feed intake, weight gain, and body weight in Thr-D and Pair-F groups were lower than those in the Thr-S group. The Thr-D diet reduced abdominal fat percentage but increased hepatic triglyceride content when compared with that of the Thr-S and Pair-F groups. The Pair-F reduced hepatic levels of C15:0, C17:0, C18:0, C20:0, C20:4n6, and C22:0 and also reduced total fatty acid, saturated fatty acid, and unsaturated fatty acid content when compared with those of the Thr-D and Thr-S groups. The Thr-D diet increased hepatic content of C6:0, C17:1, C18:3n6, C20:0, C20:1n9, and C22:2, as well as reduced the content of C18:2n6t and C23:0 when compared with those of the Thr-S group. Transcriptome analysis in the liver indicated that the Thr-D diet upregulated genes related to fatty acid and triglyceride synthesis and downregulated genes related to fatty acid oxidation and triglyceride transport. Gene ontology analysis showed that more genes related to lipid metabolism processes and molecular function were differentially expressed in the Thr-D group relative to Thr-S and Pair-F groups than in the Pair-F group relative to the Thr-S group. KEGG pathway analysis showed that differentially expressed genes were enriched in signal transduction, immune, hormone, lipid, and amino acid metabolism pathways. Our findings indicated that the Thr-D diet increased hepatic triglyceride and fatty acid accumulation via increasing fatty acid and triglyceride synthesis and reducing fatty acid oxidation and triglyceride transport. These findings provide novel insights into our understanding of the molecular mechanisms underlying fat accumulation in the liver caused by dietary threonine deficiency.
Collapse
Affiliation(s)
- Yong Jiang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ming Xie
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlei Fan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jiajia Xue
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengkui Zhou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Tang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuisheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Iwamura H, Kondo K, Kikuta S, Nishijima H, Kagoya R, Suzukawa K, Ando M, Fujimoto C, Toma-Hirano M, Yamasoba T. Caloric restriction reduces basal cell proliferation and results in the deterioration of neuroepithelial regeneration following olfactotoxic mucosal damage in mouse olfactory mucosa. Cell Tissue Res 2019; 378:175-193. [PMID: 31168693 DOI: 10.1007/s00441-019-03047-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/10/2019] [Indexed: 01/18/2023]
Abstract
The effects of caloric restriction (CR) on cell dynamics and gene expression in the mouse olfactory neuroepithelium are evaluated. Eight-week-old male C57BL/6 mice were fed either control pellets (104 kcal/week) or CR pellets (67 kcal/week). The cytoarchitecture of the olfactory neuroepithelium in the uninjured condition and its regeneration after injury by an olfactotoxic chemical, methimazole, were compared between mice fed with the control and CR diets. In the uninjured condition, there were significantly fewer olfactory marker protein (OMP)-positive olfactory receptor neurons and Ki67-positive proliferating basal cells at 3 months in the CR group than in the control group. The number of Ki67-positive basal cells increased after methimazole-induced mucosal injury in both the control and the CR groups, but the increase was less robust in the CR group. The recovery of the neuroepithelium at 2 months after methimazole administration was less complete in the CR group than in the control group. These histological changes were region-specific. The decrease in the OMP-positive neurons was prominent in the anterior region of the olfactory mucosa. Gene expression analysis using a DNA microarray and quantitative real-time polymerase chain reaction demonstrated that the expression levels of two inflammatory cytokines, interleukin-6 and chemokine ligand 1, were elevated in the olfactory mucosa of the CR group compared with the control group. These findings suggest that CR may be disadvantageous to the maintenance of the olfactory neuroepithelium, especially when it is injured.
Collapse
Affiliation(s)
- Hitoshi Iwamura
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kenji Kondo
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hironobu Nishijima
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ryoji Kagoya
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keigo Suzukawa
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mizuo Ando
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Chisato Fujimoto
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Makiko Toma-Hirano
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
19
|
Calorie restriction and its impact on gut microbial composition and global metabolism. Front Med 2018; 12:634-644. [PMID: 30446879 DOI: 10.1007/s11684-018-0670-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 09/27/2018] [Indexed: 02/08/2023]
Abstract
Calorie restriction (CR) is a dietary regimen that reduces calorie intake without incurring malnutrition or a reduction in essential nutrients. It has long been recognized as a natural strategy for promoting health, extending longevity, and prevents the development of metabolic and age-related diseases. In the present review, we focus on the general effect of CR on gut microbiota composition and global metabolism. We also propose mechanisms for its beneficial effect. Results showed that probiotic and butyrate-producing microbes increased their relative abundance, whereas proinflammatory strains exhibited suppressed relative abundance following CR. Analyses of the gut microbial and host metabolisms revealed that most host microbial co-metabolites were changed due to CR. Examples of dramatic CR-induced changes in host metabolism included a decrease in the rate of lipid biosynthesis and an increase in the rates of fatty acid catabolism, β-oxidation, glycogenolysis, and gluconeogenesis. The observed phenotypes and the further verification of the direct link between gut microbiota and metabolome may benefit patients that are at risk for developing metabolic disease. Thus, improved gut microbiota composition and metabolome are potential biomarkers for determining the effectiveness of dietary interventions for age-related and metabolic diseases.
Collapse
|
20
|
Duszka K, Ellero-Simatos S, Ow GS, Defernez M, Paramalingam E, Tett A, Ying S, König J, Narbad A, Kuznetsov VA, Guillou H, Wahli W. Complementary intestinal mucosa and microbiota responses to caloric restriction. Sci Rep 2018; 8:11338. [PMID: 30054525 PMCID: PMC6063912 DOI: 10.1038/s41598-018-29815-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022] Open
Abstract
The intestine is key for nutrient absorption and for interactions between the microbiota and its host. Therefore, the intestinal response to caloric restriction (CR) is thought to be more complex than that of any other organ. Submitting mice to 25% CR during 14 days induced a polarization of duodenum mucosa cell gene expression characterised by upregulation, and downregulation of the metabolic and immune/inflammatory pathways, respectively. The HNF, PPAR, STAT, and IRF families of transcription factors, particularly the Pparα and Isgf3 genes, were identified as potentially critical players in these processes. The impact of CR on metabolic genes in intestinal mucosa was mimicked by inhibition of the mTOR pathway. Furthermore, multiple duodenum and faecal metabolites were altered in CR mice. These changes were dependent on microbiota and their magnitude corresponded to microbial density. Further experiments using mice with depleted gut bacteria and CR-specific microbiota transfer showed that the gene expression polarization observed in the mucosa of CR mice is independent of the microbiota and its metabolites. The holistic interdisciplinary approach that we applied allowed us to characterize various regulatory aspects of the host and microbiota response to CR.
Collapse
Affiliation(s)
- Kalina Duszka
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland.
- Department of Nutritional Sciences, University of Vienna, Vienna, 1090, Austria.
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, 31300, France
| | - Ghim Siong Ow
- Bioinformatics Institute, A*STAR Biomedical Sciences Institutes, Singapore, 13867, Singapore
| | - Marianne Defernez
- Quadram Institute Bioscience, , Norwich Science Park, Norwich, Norfolk, NR7UA, UK
| | - Eeswari Paramalingam
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore
| | - Adrian Tett
- Quadram Institute Bioscience, , Norwich Science Park, Norwich, Norfolk, NR7UA, UK
| | - Shi Ying
- Quadram Institute Bioscience, , Norwich Science Park, Norwich, Norfolk, NR7UA, UK
| | - Jürgen König
- Department of Nutritional Sciences, University of Vienna, Vienna, 1090, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, 1090, Austria
| | - Arjan Narbad
- Quadram Institute Bioscience, , Norwich Science Park, Norwich, Norfolk, NR7UA, UK
| | - Vladimir A Kuznetsov
- Bioinformatics Institute, A*STAR Biomedical Sciences Institutes, Singapore, 13867, Singapore
- SUNY Upstate Medical University Syracuse, Syracuse, NY, 13210, USA
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, 31300, France
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland.
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, 31300, France.
| |
Collapse
|
21
|
Khan RI, Nirzhor SSR, Akter R. A Review of the Recent Advances Made with SIRT6 and its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets. Biomolecules 2018; 8:biom8030044. [PMID: 29966233 PMCID: PMC6164879 DOI: 10.3390/biom8030044] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide+ (NAD+) dependent enzyme and stress response protein that has sparked the curiosity of many researchers in different branches of the biomedical sciences. A unique member of the known Sirtuin family, SIRT6 has several different functions in multiple different molecular pathways related to DNA repair, glycolysis, gluconeogenesis, tumorigenesis, neurodegeneration, cardiac hypertrophic responses, and more. Only in recent times, however, did the potential usefulness of SIRT6 come to light as we learned more about its biochemical activity, regulation, biological roles, and structure Frye (2000). Even until very recently, SIRT6 was known more for chromatin signaling but, being a nascent topic of study, more information has been ascertained and its potential involvement in major human diseases including diabetes, cancer, neurodegenerative diseases, and heart disease. It is pivotal to explore the mechanistic workings of SIRT6 since future research may hold the key to engendering strategies involving SIRT6 that may have significant implications for human health and expand upon possible treatment options. In this review, we are primarily concerned with exploring the latest advances in understanding SIRT6 and how it can alter the course of several life-threatening diseases such as processes related to aging, cancer, neurodegenerative diseases, heart disease, and diabetes (SIRT6 has also shown to be involved in liver disease, inflammation, and bone-related issues) and any recent promising pharmacological investigations or potential therapeutics that are of interest.
Collapse
Affiliation(s)
| | | | - Raushanara Akter
- Department of Pharmacy, BRAC University, 1212 Dhaka, Bangladesh.
| |
Collapse
|
22
|
Zheng X, Zhou K, Zhang Y, Han X, Zhao A, Liu J, Qu C, Ge K, Huang F, Hernandez B, Yu H, Panee J, Chen T, Jia W, Jia W. Food withdrawal alters the gut microbiota and metabolome in mice. FASEB J 2018; 32:4878-4888. [PMID: 29620942 DOI: 10.1096/fj.201700614r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food withdrawal as a health-enhancing measure has beneficial effects on aging, disease prevention, and treatment. However, the cellular and molecular mechanisms involving gut microbial changes and metabolic consequences resulting from food withdrawal have yet to be elucidated. In this study, we subjected lean and obese mice to a dietary intervention that consisted of a 4-d complete food withdrawal and an 8-d 50% food withdrawal, and we studied changes in cecal microbiome and host serum metabolome. The abundance of potentially pathogenic Proteobacteria was decreased and Akkermansia muciniphila was elevated by food withdrawal in mice fed a high-fat diet (HFD). Meanwhile, food withdrawal decreased the abundance of metabolites in branched chain amino acid, lipid, and free fatty acid metabolisms in host serum, more so in HFD mice than in normal mice. Microbial predicted function also showed that food withdrawal decreased the abundance of microbes associated with predicted diseases in the HFD group but not in the normal chow group. Correlation between the microbiome data and metabolomics data revealed a strong association between gut microbial and host metabolic changes in response to food withdrawal. In summary, our results showed that food withdrawal was safer and more metabolically beneficial to HFD-induced obese mice than to normal lean mice, and the beneficial effects were primarily derived from the changes in gut microbiota, which were closely associated with the host metabolome.-Zheng, X., Zhou, K., Zhang, Y., Han, X., Zhao, A., Liu, J., Qu, C., Ge, K., Huang, F., Hernandez, B., Yu, H., Panee, J., Chen, T., Jia, W., Jia, W. Food withdrawal alters the gut microbiota and metabolome in mice.
Collapse
Affiliation(s)
- Xiaojiao Zheng
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kejun Zhou
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Yunjing Zhang
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaolong Han
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Aihua Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiajian Liu
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chun Qu
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kun Ge
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fengjie Huang
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | - Herbert Yu
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Jun Panee
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Tianlu Chen
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| |
Collapse
|
23
|
Zullo A, Simone E, Grimaldi M, Musto V, Mancini FP. Sirtuins as Mediator of the Anti-Ageing Effects of Calorie Restriction in Skeletal and Cardiac Muscle. Int J Mol Sci 2018; 19:E928. [PMID: 29561771 PMCID: PMC5979282 DOI: 10.3390/ijms19040928] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
Fighting diseases and controlling the signs of ageing are the major goals of biomedicine. Sirtuins, enzymes with mainly deacetylating activity, could be pivotal targets of novel preventive and therapeutic strategies to reach such aims. Scientific proofs are accumulating in experimental models, but, to a minor extent, also in humans, that the ancient practice of calorie restriction could prove an effective way to prevent several degenerative diseases and to postpone the detrimental signs of ageing. In the present review, we summarize the evidence about the central role of sirtuins in mediating the beneficial effects of calorie restriction in skeletal and cardiac muscle since these tissues are greatly damaged by diseases and advancing years. Moreover, we entertain the possibility that the identification of sirtuin activators that mimic calorie restriction could provide the benefits without the inconvenience of this dietary style.
Collapse
Affiliation(s)
- Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
- CEINGE Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Emanuela Simone
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | - Maddalena Grimaldi
- Department of Pediatric Oncology and Hematology, Charité University Hospital, 13353 Berlin, Germany.
| | - Vincenzina Musto
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy.
| | | |
Collapse
|
24
|
Manchishi SM, Cui RJ, Zou XH, Cheng ZQ, Li BJ. Effect of caloric restriction on depression. J Cell Mol Med 2018; 22:2528-2535. [PMID: 29465826 PMCID: PMC5908110 DOI: 10.1111/jcmm.13418] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Recently, most of evidence shows that caloric restriction could induce antidepressant‐like effects in animal model of depression. Based on studies of the brain–gut axis, some signal pathways were common between the control of caloric restriction and depression. However, the specific mechanism of the antidepressant‐like effects induced by caloric restriction remains unclear. Therefore, in this article, we summarized clinical and experimental studies of caloric restriction on depression. This review may provide a new therapeutic strategy for depression.
Collapse
Affiliation(s)
- Stephen Malunga Manchishi
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China.,Department of Physiology, University of Cambridge, Cambridge, UK
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao Han Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zi Qian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
25
|
Green CL, Mitchell SE, Derous D, Wang Y, Chen L, Han JDJ, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The effects of graded levels of calorie restriction: IX. Global metabolomic screen reveals modulation of carnitines, sphingolipids and bile acids in the liver of C57BL/6 mice. Aging Cell 2017; 16:529-540. [PMID: 28139067 PMCID: PMC5418186 DOI: 10.1111/acel.12570] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2016] [Indexed: 12/12/2022] Open
Abstract
Calorie restriction (CR) remains the most robust intervention to extend lifespan and improve health span. Using a global mass spectrometry-based metabolomic approach, we identified 193 metabolites that were significantly differentially expressed (SDE) in the livers of C57BL/6 mice, fed graded levels of CR (10, 20, 30 and 40% CR) compared to mice fed ad libitum for 12 h a day. The differential expression of metabolites also varied with the different feeding groups. Pathway analysis revealed that graded CR had an impact on carnitine synthesis and the carnitine shuttle pathway, sphingosine-1-phosphate (S1P) signalling and methionine metabolism. S1P, sphingomyelin and L-carnitine were negatively correlated with body mass, leptin, insulin-like growth factor- 1 (IGF-1) and major urinary proteins (MUPs). In addition, metabolites which showed a graded effect, such as ceramide, S1P, taurocholic acid and L-carnitine, responded in the opposite direction to previously observed age-related changes. We suggest that the modulation of this set of metabolites may improve liver processes involved in energy release from fatty acids. S1P also negatively correlated with catalase activity and body temperature, and positively correlated with food anticipatory activity. Injecting mice with S1P or an S1P receptor 1 agonist did not precipitate changes in body temperature, physical activity or food intake suggesting that these correlations were not causal relationships.
Collapse
Affiliation(s)
- Cara L. Green
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Sharon E. Mitchell
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Davina Derous
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Chaoyang Beijing China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network; Institute of Biochemistry and Cell Biology; Shanghai Institute of Biological Sciences; Chinese Academy of Sciences; Shanghai China
| | - Jing-Dong J. Han
- Key Laboratory of Computational Biology; Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai China
| | - Daniel E. L. Promislow
- Department of Pathology and Department of Biology; University of Washington; Seattle WA USA
| | - David Lusseau
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - John R. Speakman
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Chaoyang Beijing China
| |
Collapse
|
26
|
O'Flanagan CH, Smith LA, McDonell SB, Hursting SD. When less may be more: calorie restriction and response to cancer therapy. BMC Med 2017; 15:106. [PMID: 28539118 PMCID: PMC5442682 DOI: 10.1186/s12916-017-0873-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/15/2017] [Indexed: 12/18/2022] Open
Abstract
Calorie restriction (CR) extends lifespan and has been shown to reduce age-related diseases including cancer, diabetes, and cardiovascular and neurodegenerative diseases in experimental models. Recent translational studies have tested the potential of CR or CR mimetics as adjuvant therapies to enhance the efficacy of chemotherapy, radiation therapy, and novel immunotherapies. Chronic CR is challenging to employ in cancer patients, and therefore intermittent fasting, CR mimetic drugs, or alternative diets (such as a ketogenic diet), may be more suitable. Intermittent fasting has been shown to enhance treatment with both chemotherapy and radiation therapy. CR and fasting elicit different responses in normal and cancer cells, and reduce certain side effects of cytotoxic therapy. Findings from preclinical studies of CR mimetic drugs and other dietary interventions, such as the ketogenic diet, are promising for improving the efficacy of anticancer therapies and reducing the side effects of cytotoxic treatments. Current and future clinical studies will inform on which cancers, and at which stage of the cancer process, CR, fasting, or CR mimetic regimens will prove most effective.
Collapse
Affiliation(s)
- Ciara H O'Flanagan
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, 27517, USA
| | - Laura A Smith
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, 27517, USA
| | - Shannon B McDonell
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, 27517, USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, 27517, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27517, USA. .,Nutrition Research Institute, University of North Carolina, Kannapolis, NC, 28081, USA. .,Department of Nutrition, University of North Carolina at Chapel Hill, 2100 Michael Hooker Research Center, Campus Box 7461, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
27
|
Chen GQ, Gong RH, Yang DJ, Zhang G, Lu AP, Yan SC, Lin SH, Bian ZX. Halofuginone dually regulates autophagic flux through nutrient-sensing pathways in colorectal cancer. Cell Death Dis 2017; 8:e2789. [PMID: 28492544 PMCID: PMC5520722 DOI: 10.1038/cddis.2017.203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/11/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
Abstract
Autophagy has a key role in metabolism and impacts on tumorigenesis. Our previous study found that halofuginone (HF) exerts anticancer activity in colorectal cancer (CRC) by downregulating Akt/mTORC1 (mechanistic target of rapamycin complex 1) signaling pathway. But whether and how HF regulates autophagy and metabolism to inhibit cancer growth remains an open question. Here, we unveil that HF activates ULK1 by downregulation of its phosphorylation site at Ser757 through Akt/mTORC1 signaling pathway, resulting in induction of autophagic flux under nutrient-rich condition. On the other hand, HF inactivates ULK1 by downregulation of its phosphorylation sites at Ser317 and Ser777 through LKB1/AMPK signaling pathway, resulting in autophagic inhibition under nutrient-poor condition. Furthermore, Atg7-dependent autophagosome formation is also induced under nutrient-rich condition or blocked in nutrient-poor environment, respectively, upon HF treatment. More interestingly, we also found that HF inhibits glycolysis under nutrient-rich condition, whereas inhibits gluconeogenesis under nutrient-poor condition in an Atg7-dependent manner, suggesting that autophagy has a pivotal role of glucose metabolism upon HF treatment. Subsequent studies showed that HF treatment retarded tumor growth in xenograft mice fed with either standard chow diet or caloric restriction through dual regulation of autophagy in vivo. Together, HF has a dual role in autophagic modulation depending on nutritional conditions for anti-CRC.
Collapse
Affiliation(s)
- Guo-Qing Chen
- Laboratory of Brain and Gut Research, Center for Clinical Research on Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Rui-Hong Gong
- Laboratory of Brain and Gut Research, Center for Clinical Research on Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Da-Jian Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Ge Zhang
- Laboratory of Brain and Gut Research, Center for Clinical Research on Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ai-Ping Lu
- Laboratory of Brain and Gut Research, Center for Clinical Research on Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Siu-Cheong Yan
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Shu-Hai Lin
- Laboratory of Brain and Gut Research, Center for Clinical Research on Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Zhao-Xiang Bian
- Laboratory of Brain and Gut Research, Center for Clinical Research on Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
28
|
Sawashita J, Li L, Liu Y, Ding X, Yang M, Xu Z, Higuchi K. Caloric restriction prevents the progression of murine AApoAII amyloidosis. Amyloid 2017; 24:171-172. [PMID: 28434314 DOI: 10.1080/13506129.2017.1295948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jinko Sawashita
- a Department of Biological Sciences for Intractable Neurological Diseases , IBS-ICCER, Shinshu University , Matsumoto , Japan and.,b Department of Aging Biology , Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto , Japan
| | - Lin Li
- b Department of Aging Biology , Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto , Japan
| | - Yingye Liu
- b Department of Aging Biology , Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto , Japan
| | - Xin Ding
- b Department of Aging Biology , Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto , Japan
| | - Mu Yang
- b Department of Aging Biology , Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto , Japan
| | - Zhe Xu
- b Department of Aging Biology , Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto , Japan
| | - Keiichi Higuchi
- a Department of Biological Sciences for Intractable Neurological Diseases , IBS-ICCER, Shinshu University , Matsumoto , Japan and.,b Department of Aging Biology , Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto , Japan
| |
Collapse
|
29
|
Li L, Sawashita J, Ding X, Yang M, Xu Z, Miyahara H, Mori M, Higuchi K. Caloric restriction reduces the systemic progression of mouse AApoAII amyloidosis. PLoS One 2017; 12:e0172402. [PMID: 28225824 PMCID: PMC5321440 DOI: 10.1371/journal.pone.0172402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
In mouse senile amyloidosis, apolipoprotein (Apo) A-II is deposited extracellularly in many organs in the form of amyloid fibrils (AApoAII). Reduction of caloric intake, known as caloric restriction (CR), slows the progress of senescence and age-related disorders in mice. In this study, we intravenously injected 1 μg of isolated AApoAII fibrils into R1.P1-Apoa2c mice to induce experimental amyloidosis and investigated the effects of CR for the next 16 weeks. In the CR group, AApoAII amyloid deposits in the liver, tongue, small intestine and skin were significantly reduced compared to those of the ad libitum feeding group. CR treatment led to obvious reduction in body weight, improvement in glucose metabolism and reduction in the plasma concentration of ApoA-II. Our molecular biological analyses of the liver suggested that CR treatment might improve the symptoms of inflammation, the unfolded protein response induced by amyloid deposits and oxidative stress. Furthermore, we suggest that CR treatment might improve mitochondrial functions via the sirtuin 1-peroxisome proliferator-activated receptor γ coactivator 1α (SIRT1-PGC-1α) pathway. We suggest that CR is a promising approach for treating the onset and/or progression of amyloidosis, especially for systemic amyloidosis such as senile AApoAII amyloidosis. Our analysis of CR treatment for amyloidosis should provide useful information for determining the cause of amyloidosis and developing effective preventive treatments.
Collapse
Affiliation(s)
- Lin Li
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Jinko Sawashita
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
- Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
- * E-mail:
| | - Xin Ding
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Mu Yang
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Zhe Xu
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Hiroki Miyahara
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Masayuki Mori
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
- Department of Advanced Medicine for Health Promotion, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Keiichi Higuchi
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
- Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| |
Collapse
|
30
|
Nutrient Intake Is Associated with Longevity Characterization by Metabolites and Element Profiles of Healthy Centenarians. Nutrients 2016; 8:nu8090564. [PMID: 27657115 PMCID: PMC5037549 DOI: 10.3390/nu8090564] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/03/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022] Open
Abstract
The relationships between diet and metabolites as well as element profiles in healthy centenarians are important but remain inconclusive. Therefore, to test the interesting hypothesis that there would be distinctive features of metabolites and element profiles in healthy centenarians, and that these would be associated with nutrient intake; the short chain fatty acids (SCFAs), total bile acids and ammonia in feces, phenol, p-cresol, uric acid, urea, creatinine and ammonia in urine, and element profiles in fingernails were determined in 90 healthy elderly people, including centenarians from Bama county (China)—a famous longevous region—and elderly people aged 80–99 from the longevous region and a non-longevous region. The partial least squares-discriminant analysis was used for pattern recognition. As a result, the centenarians showed a distinct metabolic pattern. Seven characteristic components closely related to the centenarians were identified, including acetic acid, total SCFA, Mn, Co, propionic acid, butyric acid and valeric acid. Their concentrations were significantly higher in the centenarians group (p < 0.05). Additionally, the dietary fiber intake was positively associated with butyric acid contents in feces (r = 0.896, p < 0.01), and negatively associated with phenol in urine (r = −0.326, p < 0.01). The results suggest that the specific metabolic pattern of centenarians may have an important and positive influence on the formation of the longevity phenomenon. Elevated dietary fiber intake should be a path toward health and longevity.
Collapse
|
31
|
Abstract
Dietary restriction (DR), a moderate reduction in food intake, improves health during aging and extends life span across multiple species. Specific nutrients, rather than overall calories, mediate the effects of DR, with protein and specific amino acids (AAs) playing a key role. Modulations of single dietary AAs affect traits including growth, reproduction, physiology, health, and longevity in animals. Epidemiological data in humans also link the quality and quantity of dietary proteins to long-term health. Intricate nutrient-sensing pathways fine tune the metabolic responses to dietary AAs in a highly conserved manner. In turn, these metabolic responses can affect the onset of insulin resistance, obesity, neurodegenerative disease, and other age-related diseases. In this review we discuss how AA requirements are shaped and how ingested AAs regulate a spectrum of homeostatic processes. Finally, we highlight the resulting opportunity to develop nutritional strategies to improve human health during aging.
Collapse
Affiliation(s)
- George A Soultoukis
- Max Planck Institute for Biology of Ageing, Department of Biological Mechanisms of Ageing, Cologne 50931, Germany; ,
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Department of Biological Mechanisms of Ageing, Cologne 50931, Germany; , .,Institute of Healthy Ageing and Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
32
|
Conover CA, Bale LK, Nair KS. Comparative gene expression and phenotype analyses of skeletal muscle from aged wild-type and PAPP-A-deficient mice. Exp Gerontol 2016; 80:36-42. [PMID: 27086066 DOI: 10.1016/j.exger.2016.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/17/2022]
Abstract
Mice deficient in pregnancy-associated plasma protein-A (PAPP-A) have extended lifespan associated with decreased incidence and severity of degenerative diseases of age, such as cardiomyopathy and nephropathy. In this study, the effect of PAPP-A deficiency on aging skeletal muscle was investigated. Whole-genome expression profiling was performed on soleus muscles from 18-month-old wild-type (WT) and PAPP-A knock-out (KO) mice of the same sex and from the same litter ('womb-mates') to identify potential mechanisms of skeletal muscle aging and its retardation in PAPP-A deficiency. Top genes regulated in PAPP-A KO compared to WT muscle were associated with increased muscle function, increased metabolism, in particular lipid metabolism, and decreased stress. Fiber cross-sectional area was significantly increased in solei from PAPP-A KO mice. In vitro contractility experiments indicated increased specific force and decreased fatigue in solei from PAPP-A KO mice. Intrinsic mitochondrial oxidative capacity was significantly increased in skeletal muscle of aged PAPP-A KO compared to WT mice. Moreover, 18-month-old PAPP-A KO mice exhibited significantly enhanced endurance running on a treadmill. Thus, PAPP-A deficiency in mice is associated with indices of healthy skeletal muscle function with age.
Collapse
Affiliation(s)
- Cheryl A Conover
- Division of Endocrinology, Metabolism, and Nutrition, Endocrine Research Unit, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States.
| | - Laurie K Bale
- Division of Endocrinology, Metabolism, and Nutrition, Endocrine Research Unit, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States.
| | - K Sreekumaran Nair
- Division of Endocrinology, Metabolism, and Nutrition, Endocrine Research Unit, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States.
| |
Collapse
|
33
|
Effect of Dietary Restriction and Subsequent Re-Alimentation on the Transcriptional Profile of Bovine Skeletal Muscle. PLoS One 2016; 11:e0149373. [PMID: 26871690 PMCID: PMC4752344 DOI: 10.1371/journal.pone.0149373] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/01/2016] [Indexed: 11/19/2022] Open
Abstract
Compensatory growth (CG), an accelerated growth phenomenon which occurs following a period of dietary restriction is exploited worldwide in animal production systems as a method to lower feed costs. However the molecular mechanisms regulated CG expression remain to be elucidated fully. This study aimed to uncover the underlying biology regulating CG in cattle, through an examination of skeletal muscle transcriptional profiles utilising next generation mRNA sequencing technology. Twenty Holstein Friesian bulls were fed either a restricted diet for 125 days, with a target growth rate of 0.6 kg/day (Period 1), following which they were allowed feed ad libitum for a further 55 days (Period 2) or fed ad libitum for the entirety of the trial. M. longissimus dorsi biopsies were harvested from all bulls on days 120 and 15 of periods 1 and 2 respectively and RNAseq analysis was performed. During re-alimentation in Period 2, previously restricted animals displayed CG, growing at 1.8 times the rate of the ad libitum control animals. Compensating animals were also more feed efficient during re-alimentation and compensated for 48% of their previous dietary restriction. 1,430 and 940 genes were identified as significantly differentially expressed (Benjamini Hochberg adjusted P < 0.1) in periods 1 and 2 respectively. Additionally, 2,237 genes were differentially expressed in animals undergoing CG relative to dietary restriction. Dietary restriction in Period 1 was associated with altered expression of genes involved in lipid metabolism and energy production. CG expression in Period 2 occurred in association with greater expression of genes involved in cellular function and organisation. This study highlights some of the molecular mechanisms regulating CG in cattle. Differentially expressed genes identified are potential candidate genes for the identification of biomarkers for CG and feed efficiency, which may be incorporated into future breeding programmes.
Collapse
|
34
|
López-Domínguez JA, Cánovas Á, Medrano JF, Islas-Trejo A, Kim K, Taylor SL, Villalba JM, López-Lluch G, Navas P, Ramsey JJ. Omega-3 fatty acids partially revert the metabolic gene expression profile induced by long-term calorie restriction. Exp Gerontol 2016; 77:29-37. [PMID: 26875793 DOI: 10.1016/j.exger.2016.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 11/18/2022]
Abstract
Calorie restriction (CR) consistently extends longevity and delays age-related diseases across several animal models. We have previously shown that different dietary fat sources can modulate life span and mitochondrial ultrastructure, function and membrane fatty acid composition in mice maintained on a 40% CR. In particular, animals consuming lard as the main fat source (CR-Lard) lived longer than CR mice consuming diets with soybean oil (CR-Soy) or fish oil (CR-Fish) as the predominant lipid source. In the present work, a transcriptomic analysis in the liver and skeletal muscle was performed in order to elucidate possible mechanisms underlying the changes in energy metabolism and longevity induced by dietary fat in CR mice. After 8 months of CR, transcription downstream of several mediators of inflammation was inhibited in liver. In contrast, proinflammatory signaling was increased in the CR-Fish versus other CR groups. Dietary fish oil induced a gene expression pattern consistent with increased transcriptional regulation by several cytokines (TNF, GM-CSF, TGF-β) and sex hormones when compared to the other CR groups. The CR-Fish also had lower expression of genes involved in fatty acid biosynthesis and increased expression of mitochondrial and peroxisomal fatty acid β-oxidation genes than the other CR diet groups. Our data suggest that a diet high in n-3 PUFA, partially reverts CR-related changes in gene expression of key processes, such as inflammation and steroid hormone signaling, and this may mitigate life span extension with CR in mice consuming diets high in fish oil.
Collapse
Affiliation(s)
| | - Ángela Cánovas
- Department of Animal Science, University of California, Davis, USA
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, USA
| | - Alma Islas-Trejo
- Department of Animal Science, University of California, Davis, USA
| | - Kyoungmi Kim
- Department of Public Health, School of Medicine, University of California, Davis, USA
| | - Sandra L Taylor
- Department of Public Health, School of Medicine, University of California, Davis, USA
| | - José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, USA
| |
Collapse
|
35
|
Yoo JY, Kim TH, Kong S, Lee JH, Choi W, Kim KS, Kim HJ, Jeong JW, Ku BJ. Role of Mig-6 in hepatic glucose metabolism. J Diabetes 2016; 8:86-97. [PMID: 25594850 DOI: 10.1111/1753-0407.12261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 12/03/2014] [Accepted: 12/19/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mitogen-inducible gene 6 (Mig-6) has an important role in the regulation of cholesterol homeostasis and bile acid synthesis. However, the physiological functions of Mig-6 in the liver remain poorly understood. METHODS To investigate Mig-6 functioning in the liver, we used conditionally ablated Mig-6 using the Albumin-Cre mouse model (Alb(cre/+) Mig-6(f/f) ; Mig-6(d/d) ). Male mice were killed after a 24-h fast and refed after 24 h fasting. Fasting glucose and insulin levels were measured and western blot analyses were performed to determine epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK) 1/2, AKT, mammalian target of rapamycin (mTOR), c-Jun N-terminal kinase (JNK), and Insulin receptor substrate-1 (IRS-1) in liver tissue samples. In addition, human hepatocellular carcinoma HepG2 cells were transfected with Mig-6 short interference (si) RNA before western blot analysis. RESULTS Serum fasting glucose levels were significantly higher in Mig-6(d/d) versus Mig-6(f/f) mice. On an insulin tolerance test, insulin sensitivity was decreased in Mig-6(d/d) versus Mig-6(f/f) mice. Furthermore, hepatic expression of the glucokinase (Gck), glucose-6-phosphatase (G6pc), and phosphoenolpyruvate carboxykinase 1 (Pck1) genes was decreased significantly in Mig-6(d/d) mice. Phosphorylation of EGFR, ERK1/2, AKT, mTOR, JNK, and IRS-1 was increased in Mig-6(d/d) compared with Mig-6(f/f) mice. CONCLUSION Liver-specific ablation of Mig-6 caused hyperglycemia by hepatic insulin resistance. Increased EGFR signaling following Mig-6 ablation activated JNK and eventually induced insulin resistance by increasing phosphorylation of IRS-1 at serine 307. This is the first report of Mig-6 involvement in hepatic insulin resistance and a new mechanism that explains hepatic insulin resistance.
Collapse
Affiliation(s)
- Jung-Yoon Yoo
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Sieun Kong
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ju Hee Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Wonseok Choi
- Department of Food Science and Technology, Korea National University of Transportation, Chungju, Korea
| | - Koon Soon Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
36
|
Nestor G, Eriksson J, Sandström C, Malmlöf K. Nuclear Magnetic Resonance-Based Blood Metabolic Profiles of Rats Exposed to Short-Term Caloric Restriction. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1041028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Zidek LM, Ackermann T, Hartleben G, Eichwald S, Kortman G, Kiehntopf M, Leutz A, Sonenberg N, Wang ZQ, von Maltzahn J, Müller C, Calkhoven CF. Deficiency in mTORC1-controlled C/EBPβ-mRNA translation improves metabolic health in mice. EMBO Rep 2015; 16:1022-36. [PMID: 26113365 PMCID: PMC4552494 DOI: 10.15252/embr.201439837] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/21/2015] [Indexed: 01/17/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of physiological adaptations in response to changes in nutrient supply. Major downstream targets of mTORC1 signalling are the mRNA translation regulators p70 ribosomal protein S6 kinase 1 (S6K1p70) and the 4E-binding proteins (4E-BPs). However, little is known about vertebrate mRNAs that are specifically controlled by mTORC1 signalling and are engaged in regulating mTORC1-associated physiology. Here, we show that translation of the CCAAT/enhancer binding protein beta (C/EBPβ) mRNA into the C/EBPβ-LIP isoform is suppressed in response to mTORC1 inhibition either through pharmacological treatment or through calorie restriction. Our data indicate that the function of 4E-BPs is required for suppression of LIP. Intriguingly, mice lacking the cis-regulatory upstream open reading frame (uORF) in the C/EBPβ-mRNA, which is required for mTORC1-stimulated translation into C/EBPβ-LIP, display an improved metabolic phenotype with features also found under calorie restriction. Thus, our data suggest that translational adjustment of C/EBPβ-isoform expression is one of the key processes that direct metabolic adaptation in response to changes in mTORC1 activity.
Collapse
Affiliation(s)
- Laura M Zidek
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | - Tobias Ackermann
- European Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Götz Hartleben
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany European Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sabrina Eichwald
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | - Gertrud Kortman
- European Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michael Kiehntopf
- Department of Clinical Chemistry and Laboratory Diagnostics, University Hospital Jena, Jena, Germany
| | - Achim Leutz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nahum Sonenberg
- Department of Biochemistry & Goodman Cancer Research Center, McGill University, Montreal, QC, Canada
| | - Zhao-Qi Wang
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | - Julia von Maltzahn
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | - Christine Müller
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany European Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cornelis F Calkhoven
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany European Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
38
|
Montoliu I, Scherer M, Beguelin F, DaSilva L, Mari D, Salvioli S, Martin FPJ, Capri M, Bucci L, Ostan R, Garagnani P, Monti D, Biagi E, Brigidi P, Kussmann M, Rezzi S, Franceschi C, Collino S. Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging (Albany NY) 2014; 6:9-25. [PMID: 24457528 PMCID: PMC3927806 DOI: 10.18632/aging.100630] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As centenarians well represent the model of healthy aging, there are many important implications in revealing the underlying molecular mechanisms behind such successful aging. By combining NMR metabonomics and shot-gun lipidomics in serum we analyzed metabolome and lipidome composition of a group of centenarians with respect to elderly individuals. Specifically, NMR metabonomics profiling of serum revealed that centenarians are characterized by a metabolic phenotype distinct from that of elderly subjects, in particular regarding amino acids and lipid species. Shot- gun lipidomics approach displays unique changes in lipids biosynthesis in centenarians, with 41 differently abundant lipid species with respect to elderly subjects. These findings reveal phospho/sphingolipids as putative markers and biological modulators of healthy aging, in humans. Considering the particular actions of these metabolites, these data are suggestive of a better counteractive antioxidant capacity and a well-developed membrane lipid remodelling process in the healthy aging phenotype.
Collapse
Affiliation(s)
- Ivan Montoliu
- NESTEC SA, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jové M, Naudí A, Ramírez‐Núñez O, Portero‐Otín M, Selman C, Withers DJ, Pamplona R. Caloric restriction reveals a metabolomic and lipidomic signature in liver of male mice. Aging Cell 2014; 13:828-37. [PMID: 25052291 PMCID: PMC4331741 DOI: 10.1111/acel.12241] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2014] [Indexed: 12/31/2022] Open
Abstract
Lipid composition, particularly membrane unsaturation, has been proposed as being a lifespan determinant, but it is currently unknown whether caloric restriction (CR), an accepted life-extending intervention, affects cellular lipid profiles. In this study, we employ a liquid chromatography quadrupole time-of-flight-based methodology to demonstrate that CR in the liver of male C57BL/6 mice: (i) induces marked changes in the cellular lipidome, (ii) specifically reduces levels of a phospholipid peroxidation product, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphatidylcholine, (iii) alters cellular phosphoethanolamine and triglyceride distributional profiles, (iv) affects mitochondrial electron transport chain complexes, increasing complex II and decreasing complex III and (v) is associated with specific changes in liver metabolic pathways. These data demonstrate that CR induces a specific lipidome and metabolome reprogramming event in mouse liver which is associated with lower protein oxidative damage, as assessed by mass spectrometry-based measurements. Such changes may be critical to the increased lifespan and healthspan observed in C57BL/6 mice following CR.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine University of Lleida‐Biomedical Research Institute of Lleida Lleida 25198Spain
| | - Alba Naudí
- Department of Experimental Medicine University of Lleida‐Biomedical Research Institute of Lleida Lleida 25198Spain
| | - Omar Ramírez‐Núñez
- Department of Experimental Medicine University of Lleida‐Biomedical Research Institute of Lleida Lleida 25198Spain
| | - Manuel Portero‐Otín
- Department of Experimental Medicine University of Lleida‐Biomedical Research Institute of Lleida Lleida 25198Spain
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQUK
| | - Dominic J. Withers
- Metabolic Signaling Group Medical Research Council Clinical Sciences Centre Imperial College London London W12 0NNUK
| | - Reinald Pamplona
- Department of Experimental Medicine University of Lleida‐Biomedical Research Institute of Lleida Lleida 25198Spain
| |
Collapse
|
40
|
Identification of a metabolic biomarker panel in rats for prediction of acute and idiosyncratic hepatotoxicity. Comput Struct Biotechnol J 2014; 10:78-89. [PMID: 25379137 PMCID: PMC4204381 DOI: 10.1016/j.csbj.2014.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It has been estimated that 10% of acute liver failure is due to “idiosyncratic hepatotoxicity”. The inability to identify such compounds with classical preclinical markers of hepatotoxicity has driven the need to discover a mechanism-based biomarker panel for hepatotoxicity. Seven compounds were included in this study: two overt hepatotoxicants (acetaminophen and carbon tetrachloride), two idiosyncratic hepatotoxicants (felbamate and dantrolene), and three non-hepatotoxicants (meloxicam, penicillin and metformin). Male Sprague–Dawley rats were orally gavaged with a single dose of vehicle, low dose or high dose of the compounds. At 6 h and 24 h post-dosing, blood was collected for metabolomics and clinical chemistry analyses, while organs were collected for histopathology analysis. Forty-one metabolites from previous hepatotoxicity studies were semi-quantified and were used to build models to predict hepatotoxicity. The selected metabolites were involved in various pathways, which have been noted to be linked to the underlying mechanisms of hepatotoxicity. PLS models based on all 41 metabolite or smaller subsets of 6 (6 h), 7 (24 h) and 20 (6 h and 24 h) metabolites resulted in models with an accuracy of at least 97.4% for the hold-out test set and 100% for training sets. When applied to the external test sets, the PLS models predicted that 1 of 9 rats at both 6 h and 24 h treated with idiosyncratic liver toxicants was exposed to a hepatotoxic chemical. In conclusion, the biomarker panel might provide information that along with other endpoint data (e.g., transcriptomics and proteomics) may diagnose acute and idiosyncratic hepatotoxicity in a clinical setting.
Collapse
|
41
|
Metabolomics of Human Brain Aging and Age-Related Neurodegenerative Diseases. J Neuropathol Exp Neurol 2014; 73:640-57. [DOI: 10.1097/nen.0000000000000091] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
42
|
Pontoizeau C, Mouchiroud L, Molin L, Mergoud-Dit-Lamarche A, Dallière N, Toulhoat P, Elena-Herrmann B, Solari F. Metabolomics analysis uncovers that dietary restriction buffers metabolic changes associated with aging in Caenorhabditis elegans. J Proteome Res 2014; 13:2910-9. [PMID: 24819046 PMCID: PMC4059273 DOI: 10.1021/pr5000686] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Dietary restriction (DR) is one of
the most universal means of
extending lifespan. Yet, whether and how DR specifically affects the
metabolic changes associated with aging is essentially unknown. Here,
we present a comprehensive and unbiased picture of the metabolic variations
that take place with age at the whole organism level in Caenorhabditis elegans by using 1H high-resolution
magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) analysis
of intact worms. We investigate metabolic variations potentially important
for lifespan regulation by comparing the metabolic fingerprint of
two previously described genetic models of DR, the long-lived eat-2(ad465) and slcf-1(tm2258) worms,
as single mutants or in combination with a genetic suppressor of their
lifespan phenotype. Our analysis shows that significant changes in
metabolite profiles precede the major physiological decline that accompanies
aging and that DR protects from some of those metabolic changes. More
specifically, low phosphocholine (PCho) correlates with high life
expectancy. A mutation in the tumor suppressor gene PTEN/DAF-18, which
suppresses the beneficial effects of DR in both C.
elegans and mammals, increases both PCho level and
choline kinase expression. Furthermore, we show that choline kinase
function in the intestine can regulate lifespan. This study highlights
the relevance of NMR metabolomic approaches for identifying potential
biomarkers of aging.
Collapse
Affiliation(s)
- Clément Pontoizeau
- Centre de RMN à très hauts champs, Institut des sciences analytiques, CNRS/ENS Lyon/UCB Lyon1 , 5 rue de la Doua, 69100 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Dietary restriction (DR) has been shown to extend both median and maximum lifespan in a range of animals, although recent findings suggest that these effects are not universally enjoyed across all animals. In particular, the lifespan effect following DR in mice is highly strain-specific and there is little current evidence that DR induces a positive effect on all-cause mortality in non-human primates. However, the positive effects of DR on health appear to be highly conserved across the vast majority of species, including human subjects. Despite these effects on health, it is highly unlikely that DR will become a realistic or popular life choice for most human subjects given the level of restraint required. Consequently significant research is focusing on identifying compounds that will bestow the benefits of DR without the obligation to adhere to stringent reductions in daily food intake. Several such compounds, including rapamycin, metformin and resveratrol, have been identified as potential DR mimetics. Although these compounds show significant promise, there is a need to properly understand the mechanisms through which these drugs act. This review will discuss the importance in understanding the role that genetic background and heterogeneity play in mediating the lifespan and healthspan effects of DR. It will also provide an overview of the most promising current DR mimetics and their effects on healthy lifespan.
Collapse
|
44
|
Ala-Korpela M. Potential role of body fluid1H NMR metabonomics as a prognostic and diagnostic tool. Expert Rev Mol Diagn 2014; 7:761-73. [DOI: 10.1586/14737159.7.6.761] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Fu ZD, Klaassen CD. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice. Toxicol Appl Pharmacol 2013; 274:137-46. [PMID: 24240088 DOI: 10.1016/j.taap.2013.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/15/2013] [Accepted: 11/04/2013] [Indexed: 01/22/2023]
Abstract
Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver.
Collapse
Affiliation(s)
- Zidong Donna Fu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
46
|
Transcriptomics and Metabonomics Identify Essential Metabolic Signatures in Calorie Restriction (CR) Regulation across Multiple Mouse Strains. Metabolites 2013; 3:881-911. [PMID: 24958256 PMCID: PMC3937836 DOI: 10.3390/metabo3040881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 12/19/2022] Open
Abstract
Calorie restriction (CR) has long been used to study lifespan effects and oppose the development of a broad array of age-related biological and pathological changes (increase healthspan). Yet, a comprehensive comparison of the metabolic phenotype across different genetic backgrounds to identify common metabolic markers affected by CR is still lacking. Using a system biology approach comprising metabonomics and liver transcriptomics we revealed the effect of CR across multiple mouse strains (129S1/SvlmJ, C57BL6/J, C3H/HeJ, CBA/J, DBA/2J, JC3F1/J). Oligonucleotide microarrays identified 76 genes as differentially expressed in all six strains confirmed. These genes were subjected to quantitative RT-PCR analysis in the C57BL/6J mouse strain, and a CR-induced change expression was confirmed for 14 genes. To fully depict the metabolic pathways affected by CR and complement the changes observed through differential gene expression, the metabolome of C57BL6/J was further characterized in liver tissues, urine and plasma levels using a combination or targeted mass spectrometry and proton nuclear magnetic resonance spectroscopy. Overall, our integrated approach commonly confirms that energy metabolism, stress response, lipids regulators and the insulin/IGF-1 are key determinants factors involved in CR regulation.
Collapse
|
47
|
Ions LJ, Wakeling LA, Bosomworth HJ, Hardyman JEJ, Escolme SM, Swan DC, Valentine RA, Mathers JC, Ford D. Effects of Sirt1 on DNA methylation and expression of genes affected by dietary restriction. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1835-1849. [PMID: 23229445 PMCID: PMC3776097 DOI: 10.1007/s11357-012-9485-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 10/23/2012] [Indexed: 05/30/2023]
Abstract
Changes in DNA methylation across the life course may contribute to the ageing process. We hypothesised that some effects of dietary restriction to extend lifespan and/or mitigate against features of ageing result from changes in DNA methylation, so we determined if genes that respond to dietary restriction also show age-related changes in DNA methylation. In support of our hypothesis, the intersection of lists of genes compiled from published sources that (1) were differentially expressed in response to dietary restriction and (2) showed altered methylation with increased age was greater than expected. We also hypothesised that some effects of Sirt1, which may play a pivotal role in beneficial effects of dietary restriction, are mediated through DNA methylation. We thus measured effects of Sirt1 overexpression and knockdown in a human cell line on DNA methylation and expression of a panel of eight genes that respond to dietary restriction and show altered methylation with age. Six genes were affected at the level of DNA methylation, and for six expressions were affected. In further support of our hypothesis, we observed by DNA microarray analysis that genes showing differential expression in response to Sirt1 knockdown were over-represented in the complied list of genes that respond to dietary restriction. The findings reveal that Sirt1 has effects on DNA methylation across the genome and affects, in particular, the expression of genes that respond to dietary restriction. Sirt1-mediated effects on DNA methylation and, consequently, gene expression may thus be one of the mechanisms underlying the response to dietary restriction.
Collapse
Affiliation(s)
- Laura J Ions
- />Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, NE4 5PL UK
- />Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4NN UK
| | - Luisa A Wakeling
- />Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, NE4 5PL UK
- />Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4NN UK
| | - Helen J Bosomworth
- />Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, NE4 5PL UK
- />Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4NN UK
- />School of Dental Sciences, Newcastle University, Newcastle upon Tyne, NE2 4BW UK
| | - Joy EJ Hardyman
- />Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, NE4 5PL UK
- />Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4NN UK
| | - Suzanne M Escolme
- />Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, NE4 5PL UK
- />Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4NN UK
| | - Daniel C Swan
- />Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4NN UK
| | - Ruth A Valentine
- />Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, NE4 5PL UK
- />Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4NN UK
- />School of Dental Sciences, Newcastle University, Newcastle upon Tyne, NE2 4BW UK
| | - John C Mathers
- />Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, NE4 5PL UK
- />Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, NE4 5PL UK
| | - Dianne Ford
- />Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, NE4 5PL UK
- />Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4NN UK
- />Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, NE4 5PL UK
- />Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
48
|
Xu Y, Shao C, Fedorov VB, Goropashnaya AV, Barnes BM, Yan J. Molecular signatures of mammalian hibernation: comparisons with alternative phenotypes. BMC Genomics 2013; 14:567. [PMID: 23957789 PMCID: PMC3751779 DOI: 10.1186/1471-2164-14-567] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/17/2013] [Indexed: 12/12/2022] Open
Abstract
Background Mammalian hibernators display phenotypes similar to physiological responses to calorie restriction and fasting, sleep, cold exposure, and ischemia-reperfusion in non-hibernating species. Whether biochemical changes evident during hibernation have parallels in non-hibernating systems on molecular and genetic levels is unclear. Results We identified the molecular signatures of torpor and arousal episodes during hibernation using a custom-designed microarray for the Arctic ground squirrel (Urocitellus parryii) and compared them with molecular signatures of selected mouse phenotypes. Our results indicate that differential gene expression related to metabolism during hibernation is associated with that during calorie restriction and that the nuclear receptor protein PPARα is potentially crucial for metabolic remodeling in torpor. Sleep-wake cycle-related and temperature response genes follow the same expression changes as during the torpor-arousal cycle. Increased fatty acid metabolism occurs during hibernation but not during ischemia-reperfusion injury in mice and, thus, might contribute to protection against ischemia-reperfusion during hibernation. Conclusions In this study, we systematically compared hibernation with alternative phenotypes to reveal novel mechanisms that might be used therapeutically in human pathological conditions.
Collapse
Affiliation(s)
- Yichi Xu
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
49
|
De Guzman JM, Ku G, Fahey R, Youm YH, Kass I, Ingram DK, Dixit VD, Kheterpal I. Chronic caloric restriction partially protects against age-related alteration in serum metabolome. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1091-1104. [PMID: 22661299 PMCID: PMC3705111 DOI: 10.1007/s11357-012-9430-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
Calorie restriction (CR) remains the most robust metabolic intervention to extend lifespan and improve healthspan in several species. Using global and targeted mass spectrometry-based metabolomics approaches, here we show that chronic CR prevents age-related changes in specific metabolic signatures. Global metabolomic analysis using ultra-performance liquid chromatography-tandem mass spectrometry detected more than 7,000 metabolites in sera from ad-libitum-fed young, aged, and aged C57BL/6 mice maintained on 40 % CR. Multivariate statistical analysis of mass spectrometry data revealed a clear separation among the young, aged, and aged-CR mice demonstrating the potential of this approach for producing reliable metabolic profiles that discriminate based on age and diet. We have identified 168 discriminating features with high statistical significance (p ≤ 0.001) and validated and quantified three of these metabolites using targeted metabolite analysis. Calorie restriction prevented the age-related alteration in specific metabolites, namely lysophosphatidylcholines (16:1 and 18:4), sphingomyelin (d18:1/12:0), tetracosahexaenoic acid, and 7α-dihydroxy-4-cholesten-3-one, in the serum. Pathway analysis revealed that CR impacted the age-related changes in metabolic byproducts of lipid metabolism, fatty acid metabolism, and bile acid biosynthesis. Our data suggest that metabolomics approach has the potential to elucidate the metabolic mechanism of CR's potential anti-aging effects in larger-scale investigations.
Collapse
Affiliation(s)
- Jennifer M. De Guzman
- />Protein Structural Biology and Proteomics and Metabolomics Core, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 USA
| | - Ginger Ku
- />Protein Structural Biology and Proteomics and Metabolomics Core, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 USA
| | - Ryan Fahey
- />Protein Structural Biology and Proteomics and Metabolomics Core, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 USA
| | - Yun-Hee Youm
- />Immunobiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA USA
| | | | - Donald K. Ingram
- />Nutritional Neuroscience and Aging, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA USA
| | - Vishwa Deep Dixit
- />Immunobiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA USA
| | - Indu Kheterpal
- />Protein Structural Biology and Proteomics and Metabolomics Core, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808 USA
| |
Collapse
|
50
|
Richards SE, Wang Y, Claus SP, Lawler D, Kochhar S, Holmes E, Nicholson JK. Metabolic phenotype modulation by caloric restriction in a lifelong dog study. J Proteome Res 2013; 12:3117-27. [PMID: 23713866 DOI: 10.1021/pr301097k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Modeling aging and age-related pathologies presents a substantial analytical challenge given the complexity of gene-environment influences and interactions operating on an individual. A top-down systems approach is used to model the effects of lifelong caloric restriction, which is known to extend life span in several animal models. The metabolic phenotypes of caloric-restricted (CR; n = 24) and pair-housed control-fed (CF; n = 24) Labrador Retriever dogs were investigated by use of orthogonal projection to latent structures discriminant analysis (OPLS-DA) to model both generic and age-specific responses to caloric restriction from the ¹H NMR blood serum profiles of young and older dogs. Three aging metabolic phenotypes were resolved: (i) an aging metabolic phenotype independent of diet, characterized by high levels of glutamine, creatinine, methylamine, dimethylamine, trimethylamine N-oxide, and glycerophosphocholine and decreasing levels of glycine, aspartate, creatine and citrate indicative of metabolic changes associated largely with muscle mass; (ii) an aging metabolic phenotype specific to CR dogs that consisted of relatively lower levels of glucose, acetate, choline, and tyrosine and relatively higher serum levels of phosphocholine with increased age in the CR population; (iii) an aging metabolic phenotype specific to CF dogs including lower levels of liproprotein fatty acyl groups and allantoin and relatively higher levels of formate with increased age in the CF population. There was no diet metabotype that consistently differentiated the CF and CR dogs irrespective of age. Glucose consistently discriminated between feeding regimes in dogs (≥312 weeks), being relatively lower in the CR group. However, it was observed that creatine and amino acids (valine, leucine, isoleucine, lysine, and phenylalanine) were lower in the CR dogs (<312 weeks), suggestive of differences in energy source utilization. ¹H NMR spectroscopic analysis of longitudinal serum profiles enabled an unbiased evaluation of the metabolic markers modulated by a lifetime of caloric restriction and showed differences in the metabolic phenotype of aging due to caloric restriction, which contributes to longevity studies in caloric-restricted animals. Furthermore, OPLS-DA provided a framework such that significant metabolites relating to life extension could be differentiated and integrated with aging processes.
Collapse
Affiliation(s)
- Selena E Richards
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK.
| | | | | | | | | | | | | |
Collapse
|