1
|
Rehmani T, Dias AP, Applin BD, Salih M, Tuana BS. SLMAP3 is essential for neurulation through mechanisms involving cytoskeletal elements, ABP, and PCP. Life Sci Alliance 2024; 7:e202302545. [PMID: 39366759 PMCID: PMC11452652 DOI: 10.26508/lsa.202302545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
SLMAP3 is a tail-anchored membrane protein that targets subcellular organelles and is believed to regulate Hippo signaling. The global loss of SLMAP3 causes late embryonic lethality in mice, with some embryos exhibiting neural tube defects such as craniorachischisis. We show here that SLMAP3 -/- embryos display reduced length and increased width of neural plates, signifying arrested convergent extension. The expression of planar cell polarity (PCP) components Dvl2/3 and the activity of the downstream targets ROCK2, cofilin, and JNK1/2 were dysregulated in SLMAP3 -/- E12.5 brains. Furthermore, the cytoskeletal proteins (γ-tubulin, actin, and nestin) and apical components (PKCζ and ZO-1) were mislocalized in neural tubes of SLMAP3 -/- embryos, with a subsequent decrease in colocalization of PCP proteins (Fzd6 and pDvl2). However, no changes in PCP or cytoskeleton proteins were found in cultured neuroepithelial cells depleted of SLMAP3, suggesting an essential requirement for SLMAP3 for these processes in vivo for neurulation. The loss of SLMAP3 had no impact on Hippo signaling in SLMAP3 -/- embryos, brains, and neural tubes. Proteomic analysis revealed SLMAP3 in an interactome with cytoskeletal components, including nestin, tropomyosin 4, intermediate filaments, plectin, the PCP protein SCRIB, and STRIPAK members in embryonic brains. These results reveal a crucial role of SLMAP3 in neural tube development by regulating the cytoskeleton organization and PCP pathway.
Collapse
Affiliation(s)
- Taha Rehmani
- https://ror.org/03c4mmv16 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Ana Paula Dias
- https://ror.org/03c4mmv16 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Billi Dawn Applin
- https://ror.org/03c4mmv16 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Maysoon Salih
- https://ror.org/03c4mmv16 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Balwant S Tuana
- https://ror.org/03c4mmv16 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
2
|
Cheung JKW, Li KK, Zhou L, To CH, Lam TC. Identification of Potential Growth-Related Proteins in Chick Vitreous during Emmetropization Using SWATH-MS and Targeted-Based Proteomics (MRMHR). Int J Mol Sci 2024; 25:10644. [PMID: 39408973 PMCID: PMC11476992 DOI: 10.3390/ijms251910644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The vitreous humor (VH) is a transparent gelatin-like substance that occupies two-thirds of the eyeball and undergoes the most significant changes during eye elongation. Quantitative proteomics on the normal growth period in the VH could provide new insights into understanding its progression mechanism in the early stages of myopia. In this study, a data-independent acquisition (SWATH-MS) was combined with targeted LC-ESI-MS/MS to identify and quantify the relative protein changes in the vitreous during the normal growth period (4, 7, 14, 21 and 28 days old) in the chick model. Chicks were raised under normal growing conditions (12/12 h Dark/light cycle) for 28 days, where ocular measurements, including refractive and biometric measurements, were performed on days 4 (baseline), 7, 14, 21 and 28 (n = 6 chicks at each time point). Extracted vitreous proteins from individual animals were digested and pooled into a left eye pool and a right pool at each time point for protein analysis. The vitreous proteome for chicks was generated using an information-dependent acquisition (IDA) method by combining injections from individual time points. Using individual pool samples, SWATH-MS was employed to quantify proteins between each time point. DEPs were subsequently confirmed in separate batches of animals individually on random eyes (n = 4) using MRMHR between day 7 and day 14. Refraction and vitreous chamber depth (VCD) were found to be significantly changed (p < 0.05, n = 6 at each time point) during the period. A comprehensive vitreous protein ion library was built with 1576 non-redundant proteins (22987 distinct peptides) identified at a 1% false discovery rate (FDR). A total of 12 up-regulated and 26 down-regulated proteins were found across all time points compared to day 7 using SWATH-MS. Several DEPs, such as alpha-fetoprotein, the cadherin family group, neurocan, and reelin, involved in structural and growth-related pathways, were validated for the first time using MRMHR under this experimental condition. This study provided the first comprehensive spectral library of the vitreous for chicks during normal growth as well as a list of potential growth-related protein biomarker candidates using SWATH-MS and MRMHR during the emmetropization period.
Collapse
Affiliation(s)
- Jimmy Ka-Wai Cheung
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
| | - King-Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
| | - Lei Zhou
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
| | - Chi-Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (J.K.-W.C.); (K.-K.L.); (L.Z.); (C.-H.T.)
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
3
|
Halmi C, Leonard CE, McIntosh A, Taneyhill L. N-cadherin facilitates trigeminal sensory neuron outgrowth and target tissue innervation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594965. [PMID: 38826314 PMCID: PMC11142107 DOI: 10.1101/2024.05.20.594965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
During embryonic development, diverse cell types coordinate to form functionally complex tissues. Exemplifying this process, the trigeminal ganglion emerges from the condensation of two distinct precursor cell populations, cranial placodes and neural crest, with neuronal differentiation of the former preceding the latter. While its dual cellular origin has been understood for decades, the molecules orchestrating trigeminal ganglion formation remain relatively obscure. Initial assembly of the trigeminal ganglion is mediated by cell adhesion molecules, including neural cadherin (N-cadherin), which is first expressed by placodal neurons and is required for their proper condensation with other neurons and neural crest cells. Axon outgrowth first occurs from placodal neurons, but as gangliogenesis proceeds, neural crest cells also differentiate into N-cadherin-expressing neurons, and together both extend axons toward target tissues. However, a role for N-cadherin in regulating axon outgrowth and innervation of target tissues by trigeminal neurons has not been explored. To this end, we depleted N-cadherin from chick trigeminal placode cells and observed decreases in trigeminal ganglion size, nerve growth, and target innervation in vivo, phenotypes that could only partially be attributed to increased apoptosis early in gangliogenesis. Accordingly, neurite number and branching of neural crest-derived neurons was decreased in vitro in response to N-cadherin knockdown in placode cells, providing a novel non-cell autonomous explanation for these morphological changes. Inhibiting N-cadherin-mediated adhesion with a function-blocking antibody prevented axon extension in most, but not all, placode-derived trigeminal neurons in vitro, indicating potential unique requirements for N-cadherin in various neuronal subtypes. Collectively, these findings reveal persistent cell autonomous and non-cell autonomous functions for N-cadherin, thus highlighting the critical role of N-cadherin in mediating reciprocal interactions between neural crest and placode neuronal derivatives during trigeminal ganglion development.
Collapse
|
4
|
Anandi L, Garcia J, Ros M, Janská L, Liu J, Carmona-Fontaine C. Direct visualization of emergent metastatic features within an ex vivo model of the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.09.523294. [PMID: 36712084 PMCID: PMC9882016 DOI: 10.1101/2023.01.09.523294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Metabolic conditions such as hypoxia, nutrient starvation, and media acidification, together with interactions with stromal cells are critical drivers of metastasis. Since these conditions arise deep within tumor tissues with poor access to the bloodstream, the observation of nascent metastases in vivo is exceedingly challenging. On the other hand, conventional cell culture studies cannot capture the complex nature of metastatic processes. We thus designed and implemented an ex vivo model of the tumor microenvironment to study the emergence of metastatic features in tumor cells in their native 3-dimensional (3D) context. In this system, named 3MIC, tumor cells spontaneously create ischemic-like conditions, and it allows the direct visualization of tumor-stroma interactions with high spatial and temporal resolution. We studied how 3D tumor spheroids evolve in the 3MIC when cultured under different metabolic environments and in the presence or absence of stromal cells. Consistent with previous experimental and clinical data, we show that ischemic environments increase cell migration and invasion. Importantly, the 3MIC allowed us to directly observe the emergence of these pro-metastatic features with single-cell resolution allowing us to track how changes in tumor motility were modulated by macrophages and endothelial cells. With these tools, we determined that the acidification of the extracellular media was more important than hypoxia in the induction of pro-metastatic tumor features. We also illustrate how the 3MIC can be used to test the effects of anti-metastatic drugs on cells experiencing different metabolic conditions. Overall, the 3MIC allows us to directly observe the emergence of metastatic tumor features in a physiologically relevant model of the tumor microenvironment. This simple and cost-effective system can dissect the complexity of the tumor microenvironment to test perturbations that may prevent tumors from becoming metastatic.
Collapse
|
5
|
Noronha C, Ribeiro AS, Carvalho R, Mendes N, Reis J, Faria CC, Taipa R, Paredes J. Cadherin Expression Profiles Define Glioblastoma Differentiation and Patient Prognosis. Cancers (Basel) 2024; 16:2298. [PMID: 39001361 PMCID: PMC11240393 DOI: 10.3390/cancers16132298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Cadherins are cell-cell adhesion proteins which have been strongly implicated in cancer invasion, dissemination and metastasis capacity; thus, they are key players in the epithelial-to-mesenchymal transition (EMT) program. However, their role in glioblastoma (GBM), a primary central nervous system aggressive tumor, remains to be clarified. N-, E- and P-cadherin expression was analyzed on a large series of GBMs, characterized with clinical, imaging and neuropathological parameters, as well as with patients' survival data. In addition, cadherins' expression was studied in match-recurrent cases. Using TCGA data, cadherin expression profiles were also evaluated according to GBM transcription subtypes. N-cadherin expression was observed in 81.5% of GBM, followed by E-cadherin in 31% and P-cadherin in 20.8%. Upon tumor recurrence, P-cadherin was the only significantly upregulated cadherin compared with the primary tumor, being positive in 65.8% of the cases. Actually, P-cadherin gain was observed in 51.4% of matched primary-recurrent cases. Cadherins' co-expression was also explored. Interestingly, E- and N-cadherin co-expression identified a GBM subgroup with frequent epithelial differentiation and a significant survival benefit. On the other hand, subgroups with P-cadherin expression carried the worse prognosis. P- and N-cadherin co-expression correlated with the presence of a mesenchymal phenotype. Expressions of isolated P-cadherin or E- and P-cadherin co-expression were associated with imaging characteristics of aggressiveness, to highly heterogeneous tumors, an d to worse patient survival. Classical cadherins co-expression subgroups present consistent clinical, imaging, neuropathological and survival differences, which probably reflect different states of an EMT-like program in GBM.
Collapse
Affiliation(s)
- Carolina Noronha
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar e Universitário do Porto, 4050-366 Porto, Portugal
- Cancer Metastasis, i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, 4200-135 Porto, Portugal
| | - Ana Sofia Ribeiro
- Cancer Metastasis, i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Rita Carvalho
- Cancer Metastasis, i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Nuno Mendes
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Histology and Electron Microscopy, i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Joaquim Reis
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar e Universitário do Porto, 4050-366 Porto, Portugal
| | - Claudia C Faria
- Neurosurgery Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal
- IMM-Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Ricardo Taipa
- Neuropathology Department, Hospital de Santo António, Centro Hospitalar Universitário de Santo António, 4050-342 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-346 Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
| | - Joana Paredes
- Cancer Metastasis, i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
6
|
Jiang Q, Geng P, Zhang Y, Yang M, Zhu J, Zhang M, Wang Y, Feng Y, Sun X. Associations between CDH1 gene polymorphisms and the risk of gastric cancer: A meta-analysis based on 44 studies. Medicine (Baltimore) 2024; 103:e38244. [PMID: 38847676 PMCID: PMC11155553 DOI: 10.1097/md.0000000000038244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Numerous studies have investigated the association between CDH1 polymorphisms and gastric cancer (GC) risk. However, the results have been inconsistent and controversial. To further determine whether CDH1 polymorphisms increase the risk of GC, we conducted a meta-analysis by pooling the data. METHODS Relevant case-control studies were collected from PubMed, Embase, Web of Science and Cochrane databases up to January 7, 2024. Subsequently, odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the strength of correlations. A sensitivity analysis was performed to evaluate the robustness and reliability of these included studies. RESULTS A total of 25 articles including 44 studies, were included in this meta-analysis, including 26 studies on rs16260, 6 studies on rs3743674, 7 studies on rs5030625, and 5 studies on rs1801552. The pooled results showed that rs16260 was remarkably associated with an increased GC risk of GC among Caucasians. Moreover, the rs5030625 variation dramatically enhanced GC predisposition in the Asian population. However, no evident correlations between CDH1 rs3743674 and rs1801552 polymorphisms and GC risk were observed. CONCLUSIONS Our findings suggested that CDH1 gene polymorphisms were significantly correlated with GC risk, especially in rs16260 and rs5030625 polymorphisms.
Collapse
Affiliation(s)
- Qiqi Jiang
- Department of Gastroenterology, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Peizhen Geng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Yuying Zhang
- Department of Gastroenterology, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Maoquan Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Jiafeng Zhu
- School of Nursing, Shandong Second Medical University, Weifang, Shandong, China
| | - Mingwei Zhang
- Department of Pathology, Shandong University School of Basic Medical Sciences, Jinan, Shandong, China
| | - Yamei Wang
- Department of Occupational Diseases, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yikuan Feng
- Department of Gastroenterology, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xiaojuan Sun
- Department of Occupational Diseases, Weifang People’s Hospital, The First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
7
|
Rathod ML, Aw WY, Huang S, Lu J, Doherty EL, Whithworth CP, Xi G, Roy-Chaudhury P, Polacheck WJ. Donor-Derived Engineered Microvessels for Cardiovascular Risk Stratification of Patients with Kidney Failure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307901. [PMID: 38185718 PMCID: PMC11168887 DOI: 10.1002/smll.202307901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Cardiovascular disease is the cause of death in ≈50% of hemodialysis patients. Accumulation of uremic solutes in systemic circulation is thought to be a key driver of the endothelial dysfunction that underlies elevated cardiovascular events. A challenge in understanding the mechanisms relating chronic kidney disease to cardiovascular disease is the lack of in vitro models that allow screening of the effects of the uremic environment on the endothelium. Here, a method is described for microfabrication of human blood vessels from donor cells and perfused with donor serum. The resulting donor-derived microvessels are used to quantify vascular permeability, a hallmark of endothelial dysfunction, in response to serum spiked with pathophysiological levels of indoxyl sulfate, and in response to serum from patients with chronic kidney disease and from uremic pigs. The uremic environment has pronounced effects on microvascular integrity as demonstrated by irregular cell-cell junctions and increased permeability in comparison to cell culture media and healthy serum. Moreover, the engineered microvessels demonstrate an increase in sensitivity compared to traditional 2D assays. Thus, the devices and the methods presented here have the potential to be utilized to risk stratify and to direct personalized treatments for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Mitesh L. Rathod
- Joint Department of Biomedical Engineering, University of
North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and
Raleigh, NC, United States of America
| | - Wen Yih Aw
- Joint Department of Biomedical Engineering, University of
North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and
Raleigh, NC, United States of America
| | - Stephanie Huang
- Joint Department of Biomedical Engineering, University of
North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and
Raleigh, NC, United States of America
| | - Jingming Lu
- Joint Department of Biomedical Engineering, University of
North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and
Raleigh, NC, United States of America
| | - Elizabeth L. Doherty
- Joint Department of Biomedical Engineering, University of
North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and
Raleigh, NC, United States of America
| | - Chloe P. Whithworth
- Department of Genetics, University of North Carolina at
Chapel Hill School of Medicine, Chapel Hill, NC, United States of America
| | - Gang Xi
- UNC Kidney Centre, University of North Carolina at Chapel
Hill, NC, United States of America
| | - Prabir Roy-Chaudhury
- UNC Kidney Centre, University of North Carolina at Chapel
Hill, NC, United States of America
- WG (Bill Hefner) Salisbury VA Medical Center, United States
of America
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of
North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and
Raleigh, NC, United States of America
- Department of Cell Biology and Physiology, University of
North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- McAllister Heart Institute, University of North Carolina at
Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
8
|
Stein WD. Orthologs at the Base of the Olfactores Clade. Genes (Basel) 2024; 15:657. [PMID: 38927593 PMCID: PMC11203038 DOI: 10.3390/genes15060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Tunicate orthologs in the human genome comprise just 84 genes of the 19,872 protein-coding genes and 23 of the 16,528 non-coding genes, yet they stand at the base of the Olfactores clade, which radiated to generate thousands of tunicate and vertebrate species. What were the powerful drivers among these genes that enabled this process? Many of these orthologs are present in gene families. We discuss the biological role of each family and the orthologs' quantitative contribution to the family. Most important was the evolution of a second type of cadherin. This, a Type II cadherin, had the property of detaching the cell containing that cadherin from cells that expressed the Type I class. The set of such Type II cadherins could now detach and move away from their Type I neighbours, a process which would eventually evolve into the formation of the neural crest, "the fourth germ layer", providing a wide range of possibilities for further evolutionary invention. A second important contribution were key additions to the broad development of the muscle and nerve protein and visual perception toolkits. These developments in mobility and vision provided the basis for the development of the efficient predatory capabilities of the Vertebrata.
Collapse
Affiliation(s)
- Wilfred D Stein
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
9
|
Chen Z, Tang H, Gan S, Yang C, Li S, Li J, Yao L. Ferroptosis mediates airway epithelial E-cadherin dysfunction in LPS-induced acute lung injury. Pulm Pharmacol Ther 2024; 84:102284. [PMID: 38154519 DOI: 10.1016/j.pupt.2023.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Loss of E-cadherin in the airway epithelial cells is a critical contributor to the development of ALI/ARDS. Yet the underlying mechanisms are largely unknown. Increasing evidences have revealed the significance of ferroptosis in the pathophysiological process of ALI/ARDS. The aim of this study was to investigate the role of ferroptosis in dysregulation of airway epithelial E-cadherin in ALI/ARDS. METHODS BALB/c mice were subjected to intratracheal instillation of lipopolysaccharide (LPS) to establish an ALI model. Two inhibitors of ferroptosis, liproxstatin-1 (Lip-1, at the dose of 10 mg/kg and 30 mg/kg) and ferrostatin-1 (Fer-1, at the dose of 1 mg/kg and 5 mg/kg), were respectively given to the mice through intraperitoneal injection after LPS challenge. The expression of ferroptotic markers, full-length E-cadherin and soluble E-cadherin (sE-cadherin) were both detected. RESULTS LPS exposure dramatically down-regulated pulmonary expression of E-cadherin in mice, with profound loss of membrane E-cadherin in the airway epithelial cells and increased secretion of sE-cadherin in the airway lumen. At the same time, we found that the mitochondrial of airway epithelial cells in LPS-exposed mice exhibited significant morphological alterations that are hallmark features of ferroptosis, with smaller volume and increased membrane density. Other makers of ferroptosis were also detected, including increased cytoplasmic levels of iron and lipid peroxidates (MDA), as well as decreased GPX4 expression. 30 mg/kg of Lip-1 not only showed potent protective effects against the LPS-induced injury, inflammation, edema of the lung in those mice, but also rescued airway epithelial E-cadherin expression and decreased the release of sE-cadherin through inhibiting ferroptosis. While no noticeable changes induced by LPS were observed in mice treated with Lip-1 at 10 mg/kg nor Fer-1 at 1 mg/kg or 5 mg/kg. CONCLUSIONS Taken together, these data demonstrated that ferroptosis mediates airway epithelial E-cadherin dysfunction in LPS-induced ALI.
Collapse
Affiliation(s)
- Zemin Chen
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haixiong Tang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sudan Gan
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changyun Yang
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyue Li
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lihong Yao
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Ge Z, Dai S, Yu H, Zhao J, Yang W, Tan W, Sun J, Gan Q, Liu L, Wang Z. Nanomechanical Analysis of Living Small Extracellular Vesicles to Identify Gastric Cancer Cell Malignancy Based on a Biomimetic Peritoneum. ACS NANO 2024; 18:6130-6146. [PMID: 38349890 PMCID: PMC10906078 DOI: 10.1021/acsnano.3c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/15/2024]
Abstract
Gastric cancer is one of the most prevalent digestive malignancies. The lack of effective in vitro peritoneal models has hindered the exploration of the potential mechanisms behind gastric cancer's peritoneal metastasis. An accumulating body of research indicates that small extracellular vesicles (sEVs) play an indispensable role in peritoneal metastasis of gastric cancer cells. In this study, a biomimetic peritoneum was constructed. The biomimetic model is similar to real peritoneum in internal microstructure, composition, and primary function, and it enables the recurrence of peritoneal metastasis process in vitro. Based on this model, the association between the mechanical properties of sEVs and the invasiveness of gastric cancer was identified. By performing nanomechanical analysis on sEVs, we found that the Young's modulus of sEVs can be utilized to differentiate between malignant clinical samples (ascites) and nonmalignant clinical samples (peritoneal lavage). Furthermore, patients' ascites-derived sEVs were verified to stimulate the mesothelial-to-mesenchymal transition, thereby promoting peritoneal metastasis. In summary, nanomechanical analysis of living sEVs could be utilized for the noninvasive diagnosis of malignant degree and peritoneal metastasis of gastric cancer. This finding is expected to contribute future treatments.
Collapse
Affiliation(s)
- Zhixing Ge
- State
Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes
for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Songchen Dai
- Department
of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110016, China
- Key
Laboratory of Precision Diagnosis and Treatment of Gastrointestinal
Tumors, Ministry of Education, Shenyang 110016, China
| | - Haibo Yu
- State
Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes
for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Junhua Zhao
- Department
of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110016, China
- Key
Laboratory of Precision Diagnosis and Treatment of Gastrointestinal
Tumors, Ministry of Education, Shenyang 110016, China
| | - Wenguang Yang
- School of
Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Wenjun Tan
- State
Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes
for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingxu Sun
- Department
of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110016, China
- Key
Laboratory of Precision Diagnosis and Treatment of Gastrointestinal
Tumors, Ministry of Education, Shenyang 110016, China
| | - Quan Gan
- State
Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes
for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianqing Liu
- State
Key Laboratory of Robotics, Shenyang Institute
of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes
for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhenning Wang
- Department
of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110016, China
- Key
Laboratory of Precision Diagnosis and Treatment of Gastrointestinal
Tumors, Ministry of Education, Shenyang 110016, China
| |
Collapse
|
11
|
Tafrihi M, Naeimi A, Eizadifard F. Methanolic extract of Teucrium persicum up-regulates and induces the membrane restoration of E-cadherin protein in PC-3 cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1034-1043. [PMID: 36970877 DOI: 10.1080/09603123.2023.2196058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Teucrium persicum Boiss. an Iranian endemic plant is used in Iranian traditional medicine. E-cadherin transmembrane protein participates in adherens junctions and is the main partner for β-catenin protein. The GC-MS analysis was used to detect the chemical constituents of the methanolic extract. Its effects on the transcription of the E-cadherin encoding gene, cellular levels, and localization of E-cadherin protein in PC-3 cells were investigated. About 70 chemical constituents were identified. Indirect immunofluorescence microscopy and western blotting results revealed the restoration of E-cadherin protein at cell adhesion contact sites in cells treated with T. persicum extract. Gene expression studies revealed that the extract increased the transcription of the E-cadherin encoding gene in PC-3 cells. These results suggest that T. persicum extract may contain potent compounds that provide further support for the anticancer properties of T. persicum. Surely, detailed molecular investigations are needed to find the mechanism(s) behind these effects.
Collapse
Affiliation(s)
- Majid Tafrihi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Anahita Naeimi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Fatemeh Eizadifard
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
12
|
Xiong S, Zhang Y, Zeng J, Zhou J, Liu S, Wei P, Liu H, Yi F, Wan Z, Xiong L, Zhang B, Li J. DLP fabrication of HA scaffold with customized porous structures to regulate immune microenvironment and macrophage polarization for enhancing bone regeneration. Mater Today Bio 2024; 24:100929. [PMID: 38229884 PMCID: PMC10789648 DOI: 10.1016/j.mtbio.2023.100929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/24/2023] [Accepted: 12/23/2023] [Indexed: 01/18/2024] Open
Abstract
The immune microenvironment plays a pivotal role in osteoanagenesis. Biomaterials can modulate osteogenic efficacy by inducing specific local immune reactions. As 3D-printing technology advances, digital light projection printing has emerged as a promising method for creating large scale, high-precision biomaterial scaffolds. By adjusting the solid content and the sintering conditions during printing, the pore size of biomaterials can be meticulously controlled. Yet, the systematic influence of pore size on the immune microenvironment remains uncharted. We fabricated 3D-printed hydroxyapatite bioceramic scaffolds with three distinct pore sizes: 400 μm, 600 μm, and 800 μm. Our study revealed that scaffolds with a pore size of 600 μm promote macrophage M2 polarization, which is achieved by upregulating interferon-beta and HIF-1α production. When these materials were implanted subcutaneously in rats and within rabbit skulls, we observed that the 600 μm scaffolds notably improved the long-term inflammatory response, fostered vascular proliferation, and augmented new bone growth. This research paves the way for innovative therapeutic strategies for treating large segmental bone defects in clinical settings.
Collapse
Affiliation(s)
- Shilang Xiong
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Yinuo Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Jianhua Zeng
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jingyu Zhou
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shiwei Liu
- Department of Orthopedics, Ganzhou People's Hospital No.16, Mei Guan Road, Zhang Gong District, Ganzhou, Jiangxi, 341000, China
| | - Peng Wei
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hantian Liu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Feng Yi
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zongmiao Wan
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Long Xiong
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi, 330006, China
| | - Jingtang Li
- Department of Traumatology, Jiangxi Provincial People's Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
13
|
Arslan FN, Hannezo É, Merrin J, Loose M, Heisenberg CP. Adhesion-induced cortical flows pattern E-cadherin-mediated cell contacts. Curr Biol 2024; 34:171-182.e8. [PMID: 38134934 DOI: 10.1016/j.cub.2023.11.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Metazoan development relies on the formation and remodeling of cell-cell contacts. Dynamic reorganization of adhesion receptors and the actomyosin cell cortex in space and time plays a central role in cell-cell contact formation and maturation. Nevertheless, how this process is mechanistically achieved when new contacts are formed remains unclear. Here, by building a biomimetic assay composed of progenitor cells adhering to supported lipid bilayers functionalized with E-cadherin ectodomains, we show that cortical F-actin flows, driven by the depletion of myosin-2 at the cell contact center, mediate the dynamic reorganization of adhesion receptors and cell cortex at the contact. E-cadherin-dependent downregulation of the small GTPase RhoA at the forming contact leads to both a depletion of myosin-2 and a decrease of F-actin at the contact center. At the contact rim, in contrast, myosin-2 becomes enriched by the retraction of bleb-like protrusions, resulting in a cortical tension gradient from the contact rim to its center. This tension gradient, in turn, triggers centrifugal F-actin flows, leading to further accumulation of F-actin at the contact rim and the progressive redistribution of E-cadherin from the contact center to the rim. Eventually, this combination of actomyosin downregulation and flows at the contact determines the characteristic molecular organization, with E-cadherin and F-actin accumulating at the contact rim, where they are needed to mechanically link the contractile cortices of the adhering cells.
Collapse
Affiliation(s)
- Feyza Nur Arslan
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria; Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Édouard Hannezo
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Jack Merrin
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Martin Loose
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | | |
Collapse
|
14
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
15
|
Nishimura Y. Technology using simulated microgravity. Regen Ther 2023; 24:318-323. [PMID: 37662695 PMCID: PMC10470365 DOI: 10.1016/j.reth.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023] Open
Abstract
The human body experiences constant stimulation from Earth's gravity, and the absence of gravity leads to various impacts at the cellular and tissue levels. Simulated microgravity (s-μg) has been employed on Earth to investigate these effects, circumventing the challenges of conducting experiments in space and providing an opportunity to understand the influence of microgravity on living organisms. Research focusing on stem cells and utilizing s-μg has enhanced our understanding of how microgravity affects stem cell morphology, migration, proliferation, and differentiation. Studies have used systems such as rotating wall vessels, random positioning machines, and clinostats. By uncovering the mechanisms underlying the observed changes in these studies, there is potential to identify therapeutic targets that regulate stem cell function and explore a range of applications, including stem cell-based regenerative medicine. This review will focus on the features of each device designed to simulate microgravity on Earth, as well as the stem cell experiments performed with those devices.
Collapse
Affiliation(s)
- Yusuke Nishimura
- Department of Clinical Engineering, Faculty of Medical Science and Technology, Gunma Paz University, 3-3-4 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
| |
Collapse
|
16
|
Karagöz Z, Passanha FR, Robeerst L, van Griensven M, LaPointe VLS, Carlier A. Computational evidence for multi-layer crosstalk between the cadherin-11 and PDGFR pathways. Sci Rep 2023; 13:15804. [PMID: 37737289 PMCID: PMC10517159 DOI: 10.1038/s41598-023-42624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Various cell surface receptors play an important role in the differentiation and self-renewal of human mesenchymal stem cells (hMSCs). One example of such receptors are the cadherins, which maintain cell-cell adhesion and mechanically couple cells together. Recently, cadherin-11, which is a member of the type II classical cadherin family, has been shown to be involved in the fate commitment of hMSCs. Interestingly, cadherin-11 has no known intrinsic signaling activity and is thought to affect cell behavior via interactions with other cell surface receptors. Members of the platelet-derived growth factor receptor (PDGFR) family are hypothesized to be one of the interaction partners of cadherin-11. Experiments confirmed that PDGFR-α binding to extracellular cadherin-11 regions increases the PDGFR-α activity, whereas the interaction between PDGFR-β and cadherin-11 suppresses the activity of the growth factor receptor. Cadherin-11 knockdown experiments also decreased cell proliferation. These interactions between cadherin-11 and PDGFRs indicate a crosstalk between these receptors and their downstream signaling activities but the nature of this crosstalk is not entirely known. In this study, we used a computational model to represent the experimentally proven interactions between cadherin-11 and the two PDGFRs and we inspected whether the crosstalk also exists downstream of the signaling initiated by the two receptor families. The computational framework allowed us to monitor the relative activity levels of each protein in the network. We performed model simulations to mimic the conditions of previous cadherin-11 knockdown experiments and to predict the effect of crosstalk on cell proliferation. Overall, our predictions suggest the existence of another layer of crosstalk, namely between β-catenin (downstream to cadherin-11) and an ERK inhibitor protein (e.g. DUSP1), different than the crosstalk at the receptor level between cadherin-11 and PDGFR-α and -β. By investigating the multi-level crosstalk between cadherin and PDGFRs computationally, this study contributes to an improved understanding of the effect of cell surface receptors on hMSCs proliferation.
Collapse
Affiliation(s)
- Zeynep Karagöz
- Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Fiona R Passanha
- Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Lars Robeerst
- Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering (cBITE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
17
|
Nagendra K, Izzet A, Judd NB, Zakine R, Friedman L, Harrison OJ, Pontani LL, Shapiro L, Honig B, Brujic J. Push-pull mechanics of E-cadherin ectodomains in biomimetic adhesions. Biophys J 2023; 122:3506-3515. [PMID: 37528581 PMCID: PMC10502478 DOI: 10.1016/j.bpj.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023] Open
Abstract
E-cadherin plays a central role in cell-cell adhesion. The ectodomains of wild-type cadherins form a crystalline-like two-dimensional lattice in cell-cell interfaces mediated by both trans (apposed cell) and cis (same cell) interactions. In addition to these extracellular forces, adhesive strength is further regulated by cytosolic phenomena involving α and β catenin-mediated interactions between cadherin and the actin cytoskeleton. Cell-cell adhesion can be further strengthened under tension through mechanisms that have not been definitively characterized in molecular detail. Here we quantitatively determine the role of the cadherin ectodomain in mechanosensing. To this end, we devise an E-cadherin-coated emulsion system, in which droplet surface tension is balanced by protein binding strength to give rise to stable areas of adhesion. To reach the honeycomb/cohesive limit, an initial emulsion compression by centrifugation facilitates E-cadherin trans binding, whereas a high protein surface concentration enables the cis-enhanced stabilization of the interface. We observe an abrupt concentration dependence on recruitment into adhesions of constant crystalline density, reminiscent of a first-order phase transition. Removing the lateral cis interaction with a "cis mutant" shifts this transition to higher surface densities leading to denser, yet weaker adhesions. In both proteins, the stabilization of progressively larger areas of deformation is consistent with single-molecule experiments that show a force-dependent lifetime enhancement in the cadherin ectodomain, which may be attributed to the "X-dimer" bond.
Collapse
Affiliation(s)
- Kartikeya Nagendra
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York; Molecular Biophysics and Biochemistry Training Program, NYU Grossman School of Medicine, New York, New York
| | - Adrien Izzet
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York
| | - Nicolas B Judd
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York
| | - Ruben Zakine
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York
| | - Leah Friedman
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York; Département de Physique, École Normale Supérieure, PSL University, Paris, France
| | - Oliver J Harrison
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York
| | - Léa-Laetitia Pontani
- Laboratoire Jean Perrin, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York; Department of Medicine, Division of Nephrology, Columbia University, New York, New York; Department of Systems Biology, Columbia University, New York, New York
| | - Jasna Brujic
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York; Laboratoire de Physique et Mécanique de Milieux Hétérogènes, UMR 7636, CNRS, ESPCI Paris-PSL, Sorbonne Université, Université Paris Cité, Paris, France.
| |
Collapse
|
18
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
19
|
Osman IO, Caputo A, Pinault L, Mege JL, Levasseur A, Devaux CA. Identification and Characterization of an HtrA Sheddase Produced by Coxiella burnetii. Int J Mol Sci 2023; 24:10904. [PMID: 37446087 PMCID: PMC10342153 DOI: 10.3390/ijms241310904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Having previously shown that soluble E-cadherin (sE-cad) is found in sera of Q fever patients and that infection of BeWo cells by C. burnetii leads to modulation of the E-cad/β-cat pathway, our purpose was to identify which sheddase(s) might catalyze the cleavage of E-cad. Here, we searched for a direct mechanism of cleavage initiated by the bacterium itself, assuming the possible synthesis of a sheddase encoded in the genome of C. burnetii or an indirect mechanism based on the activation of a human sheddase. Using a straightforward bioinformatics approach to scan the complete genomes of four laboratory strains of C. burnetii, we demonstrate that C. burnetii encodes a 451 amino acid sheddase (CbHtrA) belonging to the HtrA family that is differently expressed according to the bacterial virulence. An artificial CbHtrA gene (CoxbHtrA) was expressed, and the CoxbHtrA recombinant protein was found to have sheddase activity. We also found evidence that the C. burnetii infection triggers an over-induction of the human HuHtrA gene expression. Finally, we demonstrate that cleavage of E-cad by CoxbHtrA on macrophages-THP-1 cells leads to an M2 polarization of the target cells and the induction of their secretion of IL-10, which "disarms" the target cells and improves C. burnetii replication. Taken together, these results demonstrate that the genome of C. burnetii encodes a functional HtrA sheddase and establishes a link between the HtrA sheddase-induced cleavage of E-cad, the M2 polarization of the target cells and their secretion of IL-10, and the intracellular replication of C. burnetii.
Collapse
Affiliation(s)
- Ikram Omar Osman
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Aurelia Caputo
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Lucile Pinault
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Jean-Louis Mege
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
- Laboratory of Immunology, Assitance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Anthony Levasseur
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Christian A. Devaux
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
- Centre National de la Recherche Scientifique (CNRS), 13009 Marseille, France
| |
Collapse
|
20
|
Green RM, Lo Vercio LD, Dauter A, Barretto EC, Devine J, Vidal-García M, Marchini M, Robertson S, Zhao X, Mahika A, Shakir MB, Guo S, Boughner JC, Dean W, Lander AD, Marcucio RS, Forkert ND, Hallgrímsson B. Quantifying the relationship between cell proliferation and morphology during development of the face. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540515. [PMID: 37214859 PMCID: PMC10197725 DOI: 10.1101/2023.05.12.540515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Morphogenesis requires highly coordinated, complex interactions between cellular processes: proliferation, migration, and apoptosis, along with physical tissue interactions. How these cellular and tissue dynamics drive morphogenesis remains elusive. Three dimensional (3D) microscopic imaging poses great promise, and generates elegant images. However, generating even moderate through-put quantified images is challenging for many reasons. As a result, the association between morphogenesis and cellular processes in 3D developing tissues has not been fully explored. To address this critical gap, we have developed an imaging and image analysis pipeline to enable 3D quantification of cellular dynamics along with 3D morphology for the same individual embryo. Specifically, we focus on how 3D distribution of proliferation relates to morphogenesis during mouse facial development. Our method involves imaging with light-sheet microscopy, automated segmentation of cells and tissues using machine learning-based tools, and quantification of external morphology via geometric morphometrics. Applying this framework, we show that changes in proliferation are tightly correlated to changes in morphology over the course of facial morphogenesis. These analyses illustrate the potential of this pipeline to investigate mechanistic relationships between cellular dynamics and morphogenesis during embryonic development.
Collapse
Affiliation(s)
- Rebecca M Green
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lucas D Lo Vercio
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| | - Andreas Dauter
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| | - Elizabeth C Barretto
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| | - Jay Devine
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| | - Marta Vidal-García
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| | | | - Samuel Robertson
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Xiang Zhao
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Anandita Mahika
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| | - M Bilal Shakir
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| | - Sienna Guo
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| | - Julia C Boughner
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wendy Dean
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Arthur D Lander
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Nils D Forkert
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Tokarz VL, Pereira RVS, Jaldin-Fincati JR, Mylvaganam S, Klip A. Junctional integrity and directional mobility of lymphatic endothelial cell monolayers are disrupted by saturated fatty acids. Mol Biol Cell 2023; 34:ar28. [PMID: 36735487 PMCID: PMC10092641 DOI: 10.1091/mbc.e22-08-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The lymphatic circulation regulates transfer of tissue fluid and immune cells toward the venous circulation. While obesity impairs lymphatic vessel function, the contribution of lymphatic endothelial cells (LEC) to metabolic disease phenotypes is poorly understood. LEC of lymphatic microvessels are in direct contact with the interstitial fluid, whose composition changes during the development of obesity, markedly by increases in saturated fatty acids. Palmitate, the most prevalent saturated fatty acid in lymph and blood, is detrimental to metabolism and function of diverse tissues, but its impact on LEC function is relatively unknown. Here, palmitate (but not its unsaturated counterpart palmitoleate) destabilized adherens junctions in human microvascular LEC in culture, visualized as changes in VE-cadherin, α-catenin, and β-catenin localization. Detachment of these proteins from cortical actin filaments was associated with abundant actomyosin stress fibers. The effects were Rho-associated protein kinase (ROCK)- and myosin-dependent, as inhibition with Y27632 or blebbistatin, respectively, prevented stress fiber accumulation and preserved junctions. Without functional junctions, palmitate-treated LEC failed to directionally migrate to close wounds in two dimensions and failed to form endothelial tubes in three dimensions. A reorganization of the lymphatic endothelial actin cytoskeleton may contribute to lymphatic dysfunction in obesity and could be considered as a therapeutic target.
Collapse
Affiliation(s)
- Victoria L Tokarz
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Rafaela V S Pereira
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Sivakami Mylvaganam
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
22
|
Zhou J, Xiong S, Liu M, Yang H, Wei P, Yi F, Ouyang M, Xi H, Long Z, Liu Y, Li J, Ding L, Xiong L. Study on the influence of scaffold morphology and structure on osteogenic performance. Front Bioeng Biotechnol 2023; 11:1127162. [PMID: 37051275 PMCID: PMC10083331 DOI: 10.3389/fbioe.2023.1127162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/17/2023] [Indexed: 03/28/2023] Open
Abstract
The number of patients with bone defects caused by various bone diseases is increasing yearly in the aging population, and people are paying increasing attention to bone tissue engineering research. Currently, the application of bone tissue engineering mainly focuses on promoting fracture healing by carrying cytokines. However, cytokines implanted into the body easily cause an immune response, and the cost is high; therefore, the clinical treatment effect is not outstanding. In recent years, some scholars have proposed the concept of tissue-induced biomaterials that can induce bone regeneration through a scaffold structure without adding cytokines. By optimizing the scaffold structure, the performance of tissue-engineered bone scaffolds is improved and the osteogenesis effect is promoted, which provides ideas for the design and improvement of tissue-engineered bones in the future. In this study, the current understanding of the bone tissue structure is summarized through the discussion of current bone tissue engineering, and the current research on micro-nano bionic structure scaffolds and their osteogenesis mechanism is analyzed and discussed.
Collapse
Affiliation(s)
- Jingyu Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Shilang Xiong
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hao Yang
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Wei
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Yi
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Min Ouyang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hanrui Xi
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Zhisheng Long
- Department of Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yayun Liu
- Department of Traumatology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Jingtang Li
- Department of Traumatology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Linghua Ding
- Department of Orthopedics, Jinhua People’s Hospital, Jinhua, Zhejiang, China
| | - Long Xiong
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Long Xiong,
| |
Collapse
|
23
|
Xu W, Gao L, Li W, Wang J, Yue Y, Li X. The adaptation of bovine embryonic stem cells to the changes of feeder layers. In Vitro Cell Dev Biol Anim 2023; 59:85-99. [PMID: 36847888 DOI: 10.1007/s11626-022-00731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/17/2022] [Indexed: 03/01/2023]
Abstract
Although the feeder-free culture system has been established, the microenvironment provided by the feeder cells still possesses a unique advantage in maintaining the long-term stability and the rapid proliferation of pluripotent stem cells (PSCs). The aim of this study is to discover the adaptive ability of PSCs upon changes of feeder layers. In this study, the morphology, pluripotent marker expression, differentiation ability of bovine embryonic stem cells (bESCs) cultured on low-density, or methanol fixed mouse embryonic fibroblasts were examined by immunofluorescent staining, Western blotting, real-time reverse transcription polymerase chain reaction, and RNA-seq. The results showed that the changes of feeder layers did not induce the rapid differentiation of bESCs, while resulting in the differentiation initiation and alteration of pluripotent state of bESCs. More importantly, the expression of endogenous growth factors and extracellular matrix were increased, and the expression of cell adhesion molecules was altered, which indicated that bESCs may compensate some functions of the feeder layers upon its changes. This study shows the PSCs have the self-adaptive ability responded to the feeder layer alteration.
Collapse
Affiliation(s)
- Wenqiang Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, Inner Mongolia, People's Republic of China
| | - Lingna Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Wei Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Yongli Yue
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.
| | - Xueling Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.
| |
Collapse
|
24
|
Ouchi R, Koike H. Modeling human liver organ development and diseases with pluripotent stem cell-derived organoids. Front Cell Dev Biol 2023; 11:1133534. [PMID: 36875751 PMCID: PMC9974642 DOI: 10.3389/fcell.2023.1133534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The discoveries of human pluripotent stem cells (PSCs) including embryonic stem cells and induced pluripotent stem cells (iPSCs) has led to dramatic advances in our understanding of basic human developmental and cell biology and has also been applied to research aimed at drug discovery and development of disease treatments. Research using human PSCs has been largely dominated by studies using two-dimensional cultures. In the past decade, however, ex vivo tissue "organoids," which have a complex and functional three-dimensional structure similar to human organs, have been created from PSCs and are now being used in various fields. Organoids created from PSCs are composed of multiple cell types and are valuable models with which it is better to reproduce the complex structures of living organs and study organogenesis through niche reproduction and pathological modeling through cell-cell interactions. Organoids derived from iPSCs, which inherit the genetic background of the donor, are helpful for disease modeling, elucidation of pathophysiology, and drug screening. Moreover, it is anticipated that iPSC-derived organoids will contribute significantly to regenerative medicine by providing treatment alternatives to organ transplantation with which the risk of immune rejection is low. This review summarizes how PSC-derived organoids are used in developmental biology, disease modeling, drug discovery, and regenerative medicine. Highlighted is the liver, an organ that play crucial roles in metabolic regulation and is composed of diverse cell types.
Collapse
Affiliation(s)
- Rie Ouchi
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroyuki Koike
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
25
|
Beedle AEM, Garcia-Manyes S. The role of single protein elasticity in mechanobiology. NATURE REVIEWS. MATERIALS 2023; 8:10-24. [PMID: 37469679 PMCID: PMC7614781 DOI: 10.1038/s41578-022-00488-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 07/21/2023]
Abstract
In addition to biochemical signals and genetic considerations, mechanical forces are rapidly emerging as a master regulator of human physiology. Yet the molecular mechanisms that regulate force-induced functionalities across a wide range of scales, encompassing the cell, tissue or organ levels, are comparatively not so well understood. With the advent, development and refining of single molecule nanomechanical techniques, enabling to exquisitely probe the conformational dynamics of individual proteins under the effect of a calibrated force, we have begun to acquire a comprehensive knowledge on the rich plethora of physicochemical principles that regulate the elasticity of single proteins. Here we review the major advances underpinning our current understanding of how the elasticity of single proteins regulates mechanosensing and mechanotransduction. We discuss the present limitations and future challenges of such a prolific and burgeoning field.
Collapse
Affiliation(s)
- Amy EM Beedle
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
| |
Collapse
|
26
|
Ippolito A, Deshpande VS. The influence of entropic crowding in cell monolayers. Biophys J 2022; 121:4394-4404. [PMID: 36004781 PMCID: PMC9703008 DOI: 10.1016/j.bpj.2022.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022] Open
Abstract
Cell-cell interaction dictates cell morphology and organization, which play a crucial role in the micro-architecture of tissues that guides their biological and mechanical functioning. Here, we investigate the effect of cell density on the responses of cells seeded on flat substrates using a novel statistical thermodynamics framework. The framework recognizes the existence of nonthermal fluctuations in cellular response and thereby naturally captures entropic interactions between cells in monolayers. In line with observations, the model predicts that cell area and elongation decrease with increasing cell seeding density-both are a direct outcome of the fluctuating nature of the cellular response that gives rise to enhanced cell-cell interactions with increasing cell crowding. The modeling framework also predicts the increase in cell alignment with increasing cell density: this cellular ordering is also due to enhanced entropic interactions and is akin to nematic ordering in liquid crystals. Our simulations provide physical insights that suggest that entropic cell-cell interactions play a crucial role in governing the responses of cell monolayers.
Collapse
Affiliation(s)
- Alberto Ippolito
- Department of Engineering, Cambridge University, Cambridge CB2 1PZ, UK
| | | |
Collapse
|
27
|
Ghosh B, Loube J, Thapa S, Ryan H, Capodanno E, Chen D, Swaby C, Chen S, Mahmud S, Girgis M, Nishida K, Ying L, Chengala PP, Tieng E, Burnim M, Wally A, Bhowmik D, Zaykaner M, Yeung-Luk B, Mitzner W, Biswal S, Sidhaye VK. Loss of E-cadherin is causal to pathologic changes in chronic lung disease. Commun Biol 2022; 5:1149. [PMID: 36309587 PMCID: PMC9617938 DOI: 10.1038/s42003-022-04150-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Epithelial cells line the lung mucosal surface and are the first line of defense against toxic exposures to environmental insults, and their integrity is critical to lung health. An early finding in the lung epithelium of patients with chronic obstructive pulmonary disease (COPD) is the loss of a key component of the adherens junction protein called E-cadherin. The cause of this decrease is not known and could be due to luminal insults or structural changes in the small airways. Irrespective, it is unknown whether the loss of E-cadherin is a marker or a driver of disease. Here we report that loss of E-cadherin is causal to the development of chronic lung disease. Using cell-type-specific promoters, we find that knockout of E-cadherin in alveolar epithelial type II but not type 1 cells in adult mouse models results in airspace enlargement. Furthermore, the knockout of E-cadherin in airway ciliated cells, but not club cells, increase airway hyperreactivity. We demonstrate that strategies to upregulate E-cadherin rescue monolayer integrity and serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jeffrey Loube
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shreeti Thapa
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hurley Ryan
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Daniel Chen
- Johns Hopkins University, Baltimore, MD, USA
| | | | - Si Chen
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Saborny Mahmud
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Kristine Nishida
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Linyan Ying
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Respiration, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Pratulya Pragadaraju Chengala
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ethan Tieng
- Johns Hopkins University, Baltimore, MD, USA
| | - Michael Burnim
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ara Wally
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Debarshi Bhowmik
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael Zaykaner
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bonnie Yeung-Luk
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Venkataramana K Sidhaye
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Serre JM, Lucas B, Martin SCT, Heier JA, Shao X, Hardin J. C. elegans srGAP is an α-catenin M domain-binding protein that strengthens cadherin-dependent adhesion during morphogenesis. Development 2022; 149:dev200775. [PMID: 36125129 PMCID: PMC10655919 DOI: 10.1242/dev.200775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
The cadherin-catenin complex (CCC) is central to embryonic development and tissue repair, yet how CCC binding partners function alongside core CCC components remains poorly understood. Here, we establish a previously unappreciated role for an evolutionarily conserved protein, the slit-robo GTPase-activating protein SRGP-1/srGAP, in cadherin-dependent morphogenetic processes in the Caenorhabditis elegans embryo. SRGP-1 binds to the M domain of the core CCC component, HMP-1/α-catenin, via its C terminus. The SRGP-1 C terminus is sufficient to target it to adherens junctions, but only during later embryonic morphogenesis, when junctional tension is known to increase. Surprisingly, mutations that disrupt stabilizing salt bridges in the M domain block this recruitment. Loss of SRGP-1 leads to an increase in mobility and decrease of junctional HMP-1. In sensitized genetic backgrounds with weakened adherens junctions, loss of SRGP-1 leads to late embryonic failure. Rescue of these phenotypes requires the C terminus of SRGP-1 but also other domains of the protein. Taken together, these data establish a role for an srGAP in stabilizing and organizing the CCC during epithelial morphogenesis by binding to a partially closed conformation of α-catenin at junctions.
Collapse
Affiliation(s)
- Joel M. Serre
- Program in Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bethany Lucas
- Department of Biology, Regis University, 3333 Regis Blvd., Denver, CO 80221, USA
| | - Sterling C. T. Martin
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jonathon A. Heier
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiangqiang Shao
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
29
|
di Vito R, Conte C, Traina G. A Multi-Strain Probiotic Formulation Improves Intestinal Barrier Function by the Modulation of Tight and Adherent Junction Proteins. Cells 2022; 11:cells11162617. [PMID: 36010692 PMCID: PMC9406415 DOI: 10.3390/cells11162617] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
In healthy individuals, tight junction proteins (TJPs) maintain the integrity of the intestinal barrier. Dysbiosis and increased intestinal permeability are observed in several diseases, such as inflammatory bowel disease. Many studies highlight the role of probiotics in preventing intestinal barrier dysfunction. The present study aims to investigate the effects of a commercially available probiotic formulation of L. rhamnosus LR 32, B. lactis BL 04, and B. longum BB 536 (Serobioma, Bromatech s.r.l., Milan, Italy) on TJPs and the integrity of the intestinal epithelial barrier, and the ability of this formulation to prevent lipopolysaccharide-induced, inflammation-associated damage. An in vitro model of the intestinal barrier was developed using a Caco-2 cell monolayer. The mRNA expression levels of the TJ genes were analyzed using real-time PCR. Changes in the amounts of proteins were assessed with Western blotting. The effect of Serobioma on the intestinal epithelial barrier function was assessed using transepithelial electrical resistance (TEER) measurements. The probiotic formulation tested in this study modulates the expression of TJPs and prevents inflammatory damage. Our findings provide new insights into the mechanisms by which probiotics are able to prevent damage to the gut epithelial barrier.
Collapse
|
30
|
Arnaud T, Rodrigues-Lima F, Viguier M, Deshayes F. Interplay between EGFR, E-cadherin, and PTP1B in epidermal homeostasis. Tissue Barriers 2022:2104085. [PMID: 35875939 PMCID: PMC10364651 DOI: 10.1080/21688370.2022.2104085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Maintaining epithelial homeostasis is crucial to allow embryo development but also the protective barrier which is ensured by the epidermis. This homeostasis is regulated through the expression of several molecules among which EGFR and E-cadherin which are of major importance. Indeed, defects in the regulation of these proteins lead to abnormalities in cell adhesion, proliferation, differentiation, and migration. Hence, regulation of these two proteins is of the utmost importance as they are involved in numerous skin pathologies and cancers. In the last decades it has been described several pathways of regulation of these two proteins and notably several mechanisms of cross-regulation between these partners. In this review, we aimed to describe the current understanding of the regulation of EGFR and interactions between EGFR and E-cadherin and, in particular, the implication of these cross-regulations in epithelium homeostasis. We pay particular attention to PTP1B, a phosphatase involved in the regulation of EGFR.
Collapse
Affiliation(s)
- Tessa Arnaud
- Université Paris Cité, BFA, UMR 8251, CNRS, Paris, France
| | | | | | | |
Collapse
|
31
|
Sağsöz H, Liman N, Akbalık ME, Alan E, Saruhan BG, Ketani MA, Erdoğan S. Expression of cadherins and some connective tissue components in cow uterus and placenta during pregnancy. Res Vet Sci 2022; 151:64-79. [PMID: 35870371 DOI: 10.1016/j.rvsc.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
The implantation and placental development processes are regulated with cell adhesion molecules and remodeling of the maternal endometrium's extracellular matrices (ECM) and fetal chorion. This study aimed to investigate the distribution and localization of some classical cadherins (E-, N-, and P-cadherins) and extracellular matrix components collagen type 5α1, fibronectin, and laminin in the cow placentomes during pregnancy using immunohistochemical and Western blotting analyses. The study results confirmed the expression of E- and P-cadherins, collagen type Vα1 (COLVα1), fibronectin, and laminin in the cow placentomes, but not N-cadherin. Throughout the pregnancy, E- and P- cadherins, COLVα1, and laminin were localized in the luminal and glandular epithelium of the inter-caruncular endometrium, caruncular epithelium, and the uninucleate (UNCs) and binucleate trophoblast giant cells (BNCs/TGCs). E- cadherin immunoreactivity in the first pregnancy period was strong in the UNCs while moderate in the BNCs/TGCs. However, it was weak in both trophoblast in the second and third pregnancy periods. In the fetal trophoblasts, P- cadherin and laminin immunostainings were more intense in the BNCs/TGCs than UNCs. The fetal and maternal stromal cells were also positive for P- cadherin, COLVα1, fibronectin, and laminin. The immunostaining intensity of COLVα1 and fibronectin in the stromal extracellular matrix of the placentomes decreased as the pregnancy progressed. The endothelia of fetal and maternal vessels were positive for all proteins. The presence and distinct localization of cadherins and ECM proteins in the cow placentome components support the role of these molecules in regulating placental cell growth, migration, and matrix production during pregnancy.
Collapse
Affiliation(s)
- Hakan Sağsöz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey.
| | - Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, 38039 Kayseri, Turkey.
| | - M Erdem Akbalık
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey
| | - Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, 38039 Kayseri, Turkey
| | - Berna Güney Saruhan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey
| | - M Aydın Ketani
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey
| | - Serkan Erdoğan
- Department of Anatomy, Faculty of Veterinary Medicine, Tekirdağ Namık Kemal University, 59000, Tekirdağ, Turkey
| |
Collapse
|
32
|
Shang Y, Zeng J, Xie Z, Sasaki N, Matsusaki M. Effect of Extracellular Matrix Density and Cell Number on Blood Capillary Formation in Three-dimensional Tissue. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yucheng Shang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Zhengtian Xie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoko Sasaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Man K, Liu J, Phan KM, Wang K, Lee JY, Sun X, Story M, Saha D, Liao J, Sadat H, Yang Y. Dimensionality-Dependent Mechanical Stretch Regulation of Cell Behavior. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17081-17092. [PMID: 35380801 DOI: 10.1021/acsami.2c01266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A variety of cells are subject to mechanical stretch in vivo, which plays a critical role in the function and homeostasis of cells, tissues, and organs. Deviations from the physiologically relevant mechanical stretch are often associated with organ dysfunction and various diseases. Although mechanical stretch is provided in some in vitro cell culture models, the effects of stretch dimensionality on cells are often overlooked and it remains unclear whether and how stretch dimensionality affects cell behavior. Here we develop cell culture platforms that provide 1-D uniaxial, 2-D circumferential, or 3-D radial mechanical stretches, which recapitulate the three major types of mechanical stretches that cells experience in vivo. We investigate the behavior of human microvascular endothelial cells and human alveolar epithelial cells cultured on these platforms, showing that the mechanical stretch influences cell morphology and cell-cell and cell-substrate interactions in a stretch dimensionality-dependent manner. Furthermore, the endothelial and epithelial cells are sensitive to the physiologically relevant 2-D and 3-D stretches, respectively, which could promote the formation of endothelium and epithelium. This study underscores the importance of recreating the physiologically relevant mechanical stretch in the development of in vitro tissue/organ models.
Collapse
Affiliation(s)
- Kun Man
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Jiafeng Liu
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Khang Minh Phan
- Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Kai Wang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Jung Yeon Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Michael Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Hamid Sadat
- Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| |
Collapse
|
34
|
Usami C, Inomata H. Rapalog-induced cell adhesion molecule inhibits mesoderm migration in Xenopus embryos by increasing frequency of adhesion to the ectoderm. Genes Cells 2022; 27:436-450. [PMID: 35437867 DOI: 10.1111/gtc.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
During the gastrula stage of Xenopus laevis, mesodermal cells migrate on the blastocoel roof (BCR) toward the animal pole. In this process, mesodermal cells directly adhere to the BCR via adhesion molecules, such as cadherins, which in turn trigger a repulsive reaction through factors such as Eph/ephrin. Therefore, the mesoderm and BCR repeatedly adhere to and detach from each other, and the frequency of this adhesion is thought to control mesoderm migration. Although knockdown of cadherin or Eph/ephrin causes severe gastrulation defects, these molecules have been reported to contribute not only to boundary formation but also to the internal function of each tissue. Therefore, it is possible that the defect caused by knockdown occurs due to tissue function abnormalities. To address this problem, we developed a method to specifically induce adhesion between different tissues using rapalog (an analog of rapamycin). When adhesion between the BCR and mesoderm was specifically enhanced by rapalog, mesoderm migration was strongly suppressed. Furthermore, we confirmed that rapalog significantly increased the frequency of adhesion between the two tissues. These results support the idea that the adhesion frequency controls mesoderm migration, and demonstrate that our method effectively enhances adhesion between specific tissues in vivo.
Collapse
Affiliation(s)
- Chisa Usami
- Axial Pattern Dynamics Team, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hidehiko Inomata
- Axial Pattern Dynamics Team, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
35
|
Bhattacharyya S, Mote RD, Freimer JW, Tiwari M, Singh SB, Arumugam S, Narayana YV, Rajan R, Subramanyam D. Cell-cell adhesions in embryonic stem cells regulate the stability and transcriptional activity of β-catenin. FEBS Lett 2022; 596:1647-1660. [PMID: 35344589 PMCID: PMC10156795 DOI: 10.1002/1873-3468.14341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 11/07/2022]
Abstract
E-cadherin (CDH1) is involved in maintaining cell-cell adhesions in embryonic stem cells (ESCs). However, its function in the context of cell fate decisions is largely unknown. Using mouse ESCs (mESCs), we demonstrate that E-cadherin and β-catenin interact at the membrane and continue to do so upon internalization within the cell. Cdh1-/- mESCs failed to form tight colonies, with altered differentiation marker expression, and retention of pluripotency factors during differentiation. Interestingly, Cdh1-/- mESCs showed dramatically reduced β-catenin levels. Transcriptional profiling of Cdh1-/- mESCs displayed a significant alteration in the expression of a subset of β-catenin targets in a cell state- and GSK3β-dependent manner. Our findings hint at hitherto unknown roles played by E-cadherin in regulating the activity of β-catenin in ESCs.
Collapse
Affiliation(s)
- Sinjini Bhattacharyya
- National Centre for Cell Science, Ganeshkhind Road.,SP Pune University, Ganeshkhind Road
| | - Ridim D Mote
- National Centre for Cell Science, Ganeshkhind Road
| | - Jacob W Freimer
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.,UCSF Institute of Genomic Immunology, San Francisco, CA, 94158, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mahak Tiwari
- National Centre for Cell Science, Ganeshkhind Road.,SP Pune University, Ganeshkhind Road
| | - Surya Bansi Singh
- National Centre for Cell Science, Ganeshkhind Road.,SP Pune University, Ganeshkhind Road
| | | | - Yadavalli V Narayana
- National Centre for Cell Science, Ganeshkhind Road.,SP Pune University, Ganeshkhind Road
| | - Raghav Rajan
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, 411008
| | | |
Collapse
|
36
|
Microenvironmental stiffness mediates cytoskeleton re-organization in chondrocytes through laminin-FAK mechanotransduction. Int J Oral Sci 2022; 14:15. [PMID: 35277477 PMCID: PMC8917190 DOI: 10.1038/s41368-022-00165-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractMicroenvironmental biophysical factors play a fundamental role in controlling cell behaviors including cell morphology, proliferation, adhesion and differentiation, and even determining the cell fate. Cells are able to actively sense the surrounding mechanical microenvironment and change their cellular morphology to adapt to it. Although cell morphological changes have been considered to be the first and most important step in the interaction between cells and their mechanical microenvironment, their regulatory network is not completely clear. In the current study, we generated silicon-based elastomer polydimethylsiloxane (PDMS) substrates with stiff (15:1, PDMS elastomer vs. curing agent) and soft (45:1) stiffnesses, which showed the Young’s moduli of ~450 kPa and 46 kPa, respectively, and elucidated a new path in cytoskeleton re-organization in chondrocytes in response to changed substrate stiffnesses by characterizing the axis shift from the secreted extracellular protein laminin β1, focal adhesion complex protein FAK to microfilament bundling. We first showed the cellular cytoskeleton changes in chondrocytes by characterizing the cell spreading area and cellular synapses. We then found the changes of secreted extracellular linkage protein, laminin β1, and focal adhesion complex protein, FAK, in chondrocytes in response to different substrate stiffnesses. These two proteins were shown to be directly interacted by Co-IP and colocalization. We next showed that impact of FAK on the cytoskeleton organization by showing the changes of microfilament bundles and found the potential intermediate regulators. Taking together, this modulation axis of laminin β1-FAK-microfilament could enlarge our understanding about the interdependence among mechanosensing, mechanotransduction, and cytoskeleton re-organization.
Collapse
|
37
|
Kasamkattil J, Gryadunova A, Martin I, Barbero A, Schären S, Krupkova O, Mehrkens A. Spheroid-Based Tissue Engineering Strategies for Regeneration of the Intervertebral Disc. Int J Mol Sci 2022; 23:2530. [PMID: 35269672 PMCID: PMC8910276 DOI: 10.3390/ijms23052530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Degenerative disc disease, a painful pathology of the intervertebral disc (IVD), often causes disability and reduces quality of life. Although regenerative cell-based strategies have shown promise in clinical trials, none have been widely adopted clinically. Recent developments demonstrated that spheroid-based approaches might help overcome challenges associated with cell-based IVD therapies. Spheroids are three-dimensional multicellular aggregates with architecture that enables the cells to differentiate and synthesize endogenous ECM, promotes cell-ECM interactions, enhances adhesion, and protects cells from harsh conditions. Spheroids could be applied in the IVD both in scaffold-free and scaffold-based configurations, possibly providing advantages over cell suspensions. This review highlights areas of future research in spheroid-based regeneration of nucleus pulposus (NP) and annulus fibrosus (AF). We also discuss cell sources and methods for spheroid fabrication and characterization, mechanisms related to spheroid fusion, as well as enhancement of spheroid performance in the context of the IVD microenvironment.
Collapse
Affiliation(s)
- Jesil Kasamkattil
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Anna Gryadunova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| | - Olga Krupkova
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (I.M.); (A.B.)
- Lepage Research Institute, University of Prešov, 17. Novembra 1, 081 16 Prešov, Slovakia
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, 4031 Basel, Switzerland; (J.K.); (A.G.); (S.S.); (A.M.)
| |
Collapse
|
38
|
Proteolytic Landscapes in Gastric Pathology and Cancerogenesis. Int J Mol Sci 2022; 23:ijms23052419. [PMID: 35269560 PMCID: PMC8910283 DOI: 10.3390/ijms23052419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Gastric cancer is a leading cause of cancer-related death, and a large proportion of cases are inseparably linked to infections with the bacterial pathogen and type I carcinogen Helicobacter pylori. The development of gastric cancer follows a cascade of transformative tissue events in an inflammatory environment. Proteases of host origin as well as H. pylori-derived proteases contribute to disease progression at every stage, from chronic gastritis to gastric cancer. In the present article, we discuss the importance of (metallo-)proteases in colonization, epithelial inflammation, and barrier disruption in tissue transformation, deregulation of cell proliferation and cell death, as well as tumor metastasis and neoangiogenesis. Proteases of the matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase domain-containing protein (ADAM) families, caspases, calpain, and the H. pylori proteases HtrA, Hp1012, and Hp0169 cleave substrates including extracellular matrix molecules, chemokines, and cytokines, as well as their cognate receptors, and thus shape the pathogenic microenvironment. This review aims to summarize the current understanding of how proteases contribute to disease progression in the gastric compartment.
Collapse
|
39
|
Zinc Oxide Nanoparticles Promote YAP/TAZ Nuclear Localization in Alveolar Epithelial Type II Cells. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated roles of Hippo signaling pathway components in alveolar type II cells (AECII) after zinc oxide nanoparticle (ZnONP) exposure. ZnONPs physicochemistry was characterized using field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray (EDX) microanalysis. ZnONP deposition in human respiratory tract was estimated using multiple-path particle dosimetry (MPPD) model. MLE-12 AECII were cultured and exposed to 0, 1, and 5 μg/mL of ZnONPs for 24 h. Western blots were used to investigate signaling pathways associated with Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ), cell adherens junctions, differentiation, and senescence. ZnONPs morphology was irregular, with Zn and O identified. Approximately 72% of inhaled ZnONPs were deposited in lungs, with 26% being deposited in alveolar regions. ZnONP exposure increased nuclear YAP expression and decreased cytoplasmic YAP expression by AECII. Adherens junction proteins, E-cadherin, α-catenin, and β-catenin, on AECII decreased after ZnONP exposure. ZnONP exposure of AECII increased alveolar type I (AECI) transition protein, LGALS3, and the AECI protein, T1α, while decreasing AECII SPC expression. ZnONP exposure induced Sirt1 and p53 senescence proteins by AECII. Our findings showed that inhalable ZnONPs can deposit in alveoli, which promotes YAP nuclear localization in AECII, resulting in decrease tight junctions, cell differentiation, and cell senescence.
Collapse
|
40
|
Wang J, Jiang J, Yang X, Zhou G, Wang L, Xiao B. Tethering Piezo channels to the actin cytoskeleton for mechanogating via the cadherin-β-catenin mechanotransduction complex. Cell Rep 2022; 38:110342. [PMID: 35139384 DOI: 10.1016/j.celrep.2022.110342] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/12/2021] [Accepted: 01/14/2022] [Indexed: 12/22/2022] Open
Abstract
The mechanically activated Piezo channel plays a versatile role in conferring mechanosensitivity to various cell types. However, how it incorporates its intrinsic mechanosensitivity and cellular components to effectively sense long-range mechanical perturbation across a cell remains elusive. Here we show that Piezo channels are biochemically and functionally tethered to the actin cytoskeleton via the cadherin-β-catenin mechanotransduction complex, whose perturbation significantly impairs Piezo-mediated responses. Mechanistically, the adhesive extracellular domain of E-cadherin interacts with the cap domain of Piezo1, which controls the transmembrane gate, while its cytosolic tail might interact with the cytosolic domains of Piezo1, which are in close proximity to its intracellular gates, allowing a direct focus of adhesion-cytoskeleton-transmitted force for gating. Specific disruption of the intermolecular interactions prevents cytoskeleton-dependent gating of Piezo1. Thus, we propose a force-from-filament model to complement the previously suggested force-from-lipids model for mechanogating of Piezo channels, enabling them to serve as versatile and tunable mechanotransducers.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jinghui Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xuzhong Yang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Gewei Zhou
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Li Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Bailong Xiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
41
|
Yang YA, Nguyen E, Sankara Narayana GHN, Heuzé M, Fu C, Yu H, Mège RM, Ladoux B, Sheetz MP. Local contractions regulate E-cadherin rigidity sensing. SCIENCE ADVANCES 2022; 8:eabk0387. [PMID: 35089785 PMCID: PMC8797795 DOI: 10.1126/sciadv.abk0387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
E-cadherin is a major cell-cell adhesion molecule involved in mechanotransduction at cell-cell contacts in tissues. Because epithelial cells respond to rigidity and tension in tissue through E-cadherin, there must be active processes that test and respond to the mechanical properties of these adhesive contacts. Using submicrometer, E-cadherin-coated polydimethylsiloxane pillars, we find that cells generate local contractions between E-cadherin adhesions and pull to a constant distance for a constant duration, irrespective of pillar rigidity. These cadherin contractions require nonmuscle myosin IIB, tropomyosin 2.1, α-catenin, and binding of vinculin to α-catenin. Cells spread to different areas on soft and rigid surfaces with contractions, but spread equally on soft and rigid without. We further observe that cadherin contractions enable cells to test myosin IIA-mediated tension of neighboring cells and sort out myosin IIA-depleted cells. Thus, we suggest that epithelial cells test and respond to the mechanical characteristics of neighboring cells through cadherin contractions.
Collapse
Affiliation(s)
- Yi-An Yang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Emmanuelle Nguyen
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | | | - Melina Heuzé
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Chaoyu Fu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Physiology, Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, Singapore 117593, Singapore
- Institute of Bioengineering and Bioimaging, A*STAR, Singapore 138669, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - René-Marc Mège
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Université de Paris, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Corresponding author. (M.P.S.); (B.L.)
| | - Michael P. Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Corresponding author. (M.P.S.); (B.L.)
| |
Collapse
|
42
|
Sullivan B, Light T, Vu V, Kapustka A, Hristova K, Leckband D. Mechanical disruption of E-cadherin complexes with epidermal growth factor receptor actuates growth factor-dependent signaling. Proc Natl Acad Sci U S A 2022; 119:e2100679119. [PMID: 35074920 PMCID: PMC8794882 DOI: 10.1073/pnas.2100679119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Increased intercellular tension is associated with enhanced cell proliferation and tissue growth. Here, we present evidence for a force-transduction mechanism that links mechanical perturbations of epithelial (E)-cadherin (CDH1) receptors to the force-dependent activation of epidermal growth factor receptor (EGFR, ERBB1)-a key regulator of cell proliferation. Here, coimmunoprecipitation studies first show that E-cadherin and EGFR form complexes at the plasma membrane that are disrupted by either epidermal growth factor (EGF) or increased tension on homophilic E-cadherin bonds. Although force on E-cadherin bonds disrupts the complex in the absence of EGF, soluble EGF is required to mechanically activate EGFR at cadherin adhesions. Fully quantified spectral imaging fluorescence resonance energy transfer further revealed that E-cadherin and EGFR directly associate to form a heterotrimeric complex of two cadherins and one EGFR protein. Together, these results support a model in which the tugging forces on homophilic E-cadherin bonds trigger force-activated signaling by releasing EGFR monomers to dimerize, bind EGF ligand, and signal. These findings reveal the initial steps in E-cadherin-mediated force transduction that directly link intercellular force fluctuations to the activation of growth regulatory signaling cascades.
Collapse
Affiliation(s)
- Brendan Sullivan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Taylor Light
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Vinh Vu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Adrian Kapustka
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218;
| | - Deborah Leckband
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Center for Quantitative Biology and Biophysics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
43
|
Hegazy M, Perl AL, Svoboda SA, Green KJ. Desmosomal Cadherins in Health and Disease. ANNUAL REVIEW OF PATHOLOGY 2022; 17:47-72. [PMID: 34425055 PMCID: PMC8792335 DOI: 10.1146/annurev-pathol-042320-092912] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Desmosomal cadherins are a recent evolutionary innovation that make up the adhesive core of highly specialized intercellular junctions called desmosomes. Desmosomal cadherins, which are grouped into desmogleins and desmocollins, are related to the classical cadherins, but their cytoplasmic domains are tailored for anchoring intermediate filaments instead of actin to sites of cell-cell adhesion. The resulting junctions are critical for resisting mechanical stress in tissues such as the skin and heart. Desmosomal cadherins also act as signaling hubs that promote differentiation and facilitate morphogenesis, creating more complex and effective tissue barriers in vertebrate tissues. Interference with desmosomal cadherin adhesive and supra-adhesive functions leads to a variety of autoimmune, hereditary, toxin-mediated, and malignant diseases. We review our current understanding of how desmosomal cadherins contribute to human health and disease, highlight gaps in our knowledge about their regulation and function, and introduce promising new directions toward combatting desmosome-related diseases.
Collapse
Affiliation(s)
- Marihan Hegazy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Abbey L. Perl
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Sophia A. Svoboda
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Kathleen J. Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA,Department of Dermatology, Feinberg School of Medicine, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
44
|
The Autophagic Route of E-Cadherin and Cell Adhesion Molecules in Cancer Progression. Cancers (Basel) 2021; 13:cancers13246328. [PMID: 34944948 PMCID: PMC8699259 DOI: 10.3390/cancers13246328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary A hallmark of carcinoma progression is the loss of epithelial integrity. In this context, the deregulation of adhesion molecules, such as E-cadherin, affects epithelial structures and associates with epithelial to mesenchymal transition (EMT). This, in turn, fosters cancer progression. Autophagy endows cancer cells with the ability to overcome intracellular and environmental stress stimuli, such as anoikis, nutrient deprivation, hypoxia, and drugs. Furthermore, it plays an important role in the degradation of cell adhesion proteins and in EMT. This review focuses on the interplay between the turnover of adhesion molecules, primarily E-cadherin, and autophagy in cancer progression. Abstract Cell-to-cell adhesion is a key element in epithelial tissue integrity and homeostasis during embryogenesis, response to damage, and differentiation. Loss of cell adhesion and gain of mesenchymal features, a phenomenon known as epithelial to mesenchymal transition (EMT), are essential steps in cancer progression. Interestingly, downregulation or degradation by endocytosis of epithelial adhesion molecules (e.g., E-cadherin) associates with EMT and promotes cell migration. Autophagy is a physiological intracellular degradation and recycling process. In cancer, it is thought to exert a tumor suppressive role in the early phases of cell transformation but, once cells have gained a fully transformed phenotype, autophagy may fuel malignant progression by promoting EMT and conferring drug resistance. In this review, we discuss the crosstalk between autophagy, EMT, and turnover of epithelial cell adhesion molecules, with particular attention to E-cadherin.
Collapse
|
45
|
Janshoff A. Viscoelasticity of basal plasma membranes and cortices derived from MDCK II cells. BIOPHYSICAL REPORTS 2021; 1:100024. [PMID: 36425463 PMCID: PMC9680774 DOI: 10.1016/j.bpr.2021.100024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/08/2021] [Indexed: 06/16/2023]
Abstract
The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile, cross-linked actin mesh attached to the plasma membrane via linker proteins. Measuring the mechanical properties of adherent, polarized epithelial cells is usually limited to the upper, i.e., apical side, of the cells because of their accessibility on culture dishes. Therefore, less is known about the viscoelastic properties of basal membranes. Here, I investigate the viscoelastic properties of basolateral membranes derived from polarized MDCK II epithelia in response to external deformation and compare them to living cells probed at the apical side. MDCK II cells were grown on porous surfaces to confluence, and the upper cell body was removed via a squirting-lysis protocol. The free-standing, defoliated basal membranes were subject to force indentation and relaxation experiments permitting a precise assessment of cortical viscoelasticity. A new theoretical framework to describe the force cycles is developed and applied to obtain the time-dependent area compressibility modulus of cell cortices from adherent cells. Compared with the viscoelastic response of living cells, the basolateral membranes are substantially less fluid and stiffer but obey to the same universal scaling law if excess area is taken correctly into account.
Collapse
Affiliation(s)
- Andreas Janshoff
- Department of Chemistry, Institute of Physical Chemistry, Göttingen
| |
Collapse
|
46
|
DiNapoli KT, Robinson DN, Iglesias PA. A mesoscale mechanical model of cellular interactions. Biophys J 2021; 120:4905-4917. [PMID: 34687718 PMCID: PMC8633826 DOI: 10.1016/j.bpj.2021.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 10/18/2021] [Indexed: 01/16/2023] Open
Abstract
Computational models of cell mechanics allow the precise interrogation of cell shape change. These morphological changes are required for cells to survive in diverse tissue environments. Here, we present a mesoscale mechanical model of cell-substrate interactions using the level set method based on experimentally measured parameters. By implementing a viscoelastic mechanical equivalent circuit, we accurately model whole-cell deformations that are important for a variety of cellular processes. To effectively model shape changes as a cell interacts with a substrate, we have included receptor-mediated adhesion, which is governed by catch-slip bond behavior. The effect of adhesion was explored by subjecting cells to a variety of different substrates including flat, curved, and deformable surfaces. Finally, we increased the accuracy of our simulations by including a deformable nucleus in our cells. This model sets the foundation for further exploration into computational analyses of multicellular interactions.
Collapse
Affiliation(s)
- Kathleen T DiNapoli
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pablo A Iglesias
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Electrical & Computer Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland.
| |
Collapse
|
47
|
Guo Y, Nitzan M, Brenner MP. Programming cell growth into different cluster shapes using diffusible signals. PLoS Comput Biol 2021; 17:e1009576. [PMID: 34748539 PMCID: PMC8601629 DOI: 10.1371/journal.pcbi.1009576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/18/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Advances in genetic engineering technologies have allowed the construction of artificial genetic circuits, which have been used to generate spatial patterns of differential gene expression. However, the question of how cells can be programmed, and how complex the rules need to be, to achieve a desired tissue morphology has received less attention. Here, we address these questions by developing a mathematical model to study how cells can collectively grow into clusters with different structural morphologies by secreting diffusible signals that can influence cellular growth rates. We formulate how growth regulators can be used to control the formation of cellular protrusions and how the range of achievable structures scales with the number of distinct signals. We show that a single growth inhibitor is insufficient for the formation of multiple protrusions but may be achieved with multiple growth inhibitors, and that other types of signals can regulate the shape of protrusion tips. These examples illustrate how our approach could potentially be used to guide the design of regulatory circuits for achieving a desired target structure.
Collapse
Affiliation(s)
- Yipei Guo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- Program in Biophysics, Harvard University, Boston, Massachusetts, United States of America
- * E-mail:
| | - Mor Nitzan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Michael P. Brenner
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
48
|
Bernegger S, Vidmar R, Fonovic M, Posselt G, Turk B, Wessler S. Identification of Desmoglein-2 as a novel target of Helicobacter pylori HtrA in epithelial cells. Cell Commun Signal 2021; 19:108. [PMID: 34742300 PMCID: PMC8571890 DOI: 10.1186/s12964-021-00788-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND High temperature requirement A (HtrA) is an active serine protease secreted by the group-I carcinogen Helicobacter pylori (H. pylori). The human cell adhesion protein and tumor suppressor E-cadherin (hCdh1) expressed on the surface of gastric epithelial cells was identified as the first HtrA substrate. HtrA-mediated hCdh1 cleavage and subsequent disruption of intercellular adhesions are considered as important steps in H. pylori pathogenesis. In this study, we performed a proteomic profiling of H. pylori HtrA (HpHtrA) to decipher the complex mechanism of H. pylori interference with the epithelial barrier integrity. RESULTS Using a proteomic approach we identified human desmoglein-2 (hDsg2), neuropilin-1, ephrin-B2, and semaphorin-4D as novel extracellular HpHtrA substrates and confirmed the well characterized target hCdh1. HpHtrA-mediated hDsg2 cleavage was further analyzed by in vitro cleavage assays using recombinant proteins. In infection experiments, we demonstrated hDsg2 shedding from H. pylori-colonized MKN28 and NCI-N87 cells independently of pathogen-induced matrix-metalloproteases or ADAM10 and ADAM17. CONCLUSIONS Characterizing the substrate specificity of HpHtrA revealed efficient hDsg2 cleavage underlining the importance of HpHtrA in opening intercellular junctions. Video Abstract.
Collapse
Affiliation(s)
- Sabine Bernegger
- Division of Microbiology, Department of Biosciences, Paris-Lodron University of Salzburg, Billroth Str. 11, 5020 Salzburg, Austria
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Marko Fonovic
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Gernot Posselt
- Division of Microbiology, Department of Biosciences, Paris-Lodron University of Salzburg, Billroth Str. 11, 5020 Salzburg, Austria
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Silja Wessler
- Division of Microbiology, Department of Biosciences, Paris-Lodron University of Salzburg, Billroth Str. 11, 5020 Salzburg, Austria
- Cancer Cluster Salzburg and Allergy-Cancer-BioNano Research Centre, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| |
Collapse
|
49
|
Kasthuriarachchi TDW, Harasgama JC, Lee S, Kwon H, Wan Q, Lee J. Cytosolic β-catenin is involved in macrophage M2 activation and antiviral defense in teleosts: Delineation through molecular characterization of β-catenin homolog from redlip mullet (Planiliza haematocheila). FISH & SHELLFISH IMMUNOLOGY 2021; 118:228-240. [PMID: 34284111 DOI: 10.1016/j.fsi.2021.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
β-catenin is a structural protein that makes the cell-cell connection in adherence junctions. Besides the structural functions, it also plays a role as a central transducer of the canonical Wnt signaling cascade, regulating nearly four hundred genes related to various cellular processes. Recently the immune functions of β-catenin during pathogenic invasion have gained more attention. In the present study, we elucidated the immune function of fish β-catenin by identifying and characterizing the β-catenin homolog (PhCatβ) from redlip mullet, Planiliza haematocheila. The complete open reading frame of PhCatβ consists of 2352 bp, which encodes a putative β-catenin homolog (molecular weight: 85.7 kDa). Multiple sequence alignment analysis revealed that β-catenin is highly conserved in vertebrates. Phylogenetic reconstruction demonstrated the close evolutionary relationship between PhCatβ and other fish β-catenin counterparts. The tissue distribution analysis showed the highest mRNA expression of PhCatβ in heart tissues of the redlip mullet under normal physiological conditions. While in response to pathogenic stress, the PhCatβ transcription level was dramatically increased in the spleen and gill tissues. The overexpression of PhCatβ stimulated M2 polarization and cell proliferation of murine RAW 264.7 macrophage. In fish cells, the overexpression of PhCatβ resulted in a significant upregulation of antiviral gene transcription and vice versa. Moreover, the overexpression of PhCatβ could inhibit the replication of VHSV in FHM cells. Our results strongly suggest that PhCatβ plays a role in macrophage activation and antiviral immune response in redlip mullet.
Collapse
Affiliation(s)
- T D W Kasthuriarachchi
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - J C Harasgama
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Seongdo Lee
- National Fishery Product Quality Management Service, Busan, 49111, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
50
|
Passanha FR, Geuens T, LaPointe VLS. Sticking together: Harnessing cadherin biology for tissue engineering. Acta Biomater 2021; 134:107-115. [PMID: 34358698 DOI: 10.1016/j.actbio.2021.07.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022]
Abstract
Directing cell behavior and building a tissue for therapeutic impact is the main goal of regenerative medicine, for which scientists need to modulate the interaction of cells with biomaterials. The focus of the field thus far has been on the incorporation of cues from the extracellular matrix but we propose that scientists take lessons from cell-cell adhesion proteins, more specifically cadherin biology, as these proteins make multicellularity possible. In this perspective, we re-examine cadherins through the lens of a tissue engineer for the purpose of advancing regenerative medicine. Furthermore, we summarize exciting developments in biomaterials inspired by cadherins and discuss some challenges and opportunities for the future. STATEMENT OF SIGNIFICANCE: Tissue engineers need tools to direct cell behavior. To date, tissue engineers have designed many sophisticated materials to positively influence cell behavior but are faced with the challenge where these materials sometimes work and sometimes fail. This uncertainty is a big unanswered question that challenges the community. We propose that tissue engineering could be more successful if they would take lessons from cell-cell adhesion proteins, more specifically cadherin biology. In the article, we discuss key structural and functional characteristics that make cadherins ideal for tissue engineering approaches. Furthermore, by providing a state-of-the-art overview of exemplary studies that have used cadherins to influence cell behavior, we show tissue engineers that they already have the tools necessary to incorporate this knowledge.
Collapse
Affiliation(s)
- Fiona R Passanha
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| | - Thomas Geuens
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Vanessa L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| |
Collapse
|