1
|
Liu Y, Li X, Xu H, Sun K, Gong HJ, Luo C. Spinal cord stimulation induces Neurotrophin-3 to improve diabetic foot disease. Med Mol Morphol 2024:10.1007/s00795-024-00410-2. [PMID: 39550735 DOI: 10.1007/s00795-024-00410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
Low-extremity ischemic disease is a common complication in diabetic patients, leading to reduced quality of life and potential amputation. This study investigated the therapeutic effect of spinal cord stimulation (SCS) on patients with diabetic foot disease and a rat model of diabetic foot injury. SCS was applied to patients with diabetic foot disease, with clinical assessments performed before and after therapy. Blood levels of NGF, BDNF, and NT-3 were determined by ELISA. A rat model of diabetic foot injury was established to validate NT-3's role in SCS therapy. SCS therapy improved the condition of patients with diabetic ischemic foot disease and promoted wound healing in the rat model. NT-3 levels significantly increased after SCS therapy in both patients and rats. Recombinant NT-3 administration improved wound healing and re-vascularization in the rat model, while NT-3 neutralization abrogated SCS's therapeutic effect. SCS improves the condition of patients with diabetic ischemic foot disease by inducing NT-3 production. Both SCS and NT-3 supplementation show therapeutic potential for ameliorating diabetic foot disease.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurosurgery, National Regional Trauma Center, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, Yunnan Province, China
| | - XuanPeng Li
- Department of Neurosurgery, National Regional Trauma Center, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, Yunnan Province, China
| | - HaiWen Xu
- Department of Neurosurgery, National Regional Trauma Center, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, Yunnan Province, China
| | - Ke Sun
- Department of Neurosurgery, National Regional Trauma Center, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, Yunnan Province, China
| | - Hui Jun Gong
- Department of Neurosurgery, National Regional Trauma Center, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, Yunnan Province, China.
| | - Cheng Luo
- The Second Department of Neurosurgery, the First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Kunming, Yunnan Province, China.
| |
Collapse
|
2
|
Petrella C, Ferraguti G, Tarani L, Tarani F, Messina MP, Fiore M. Nerve Growth Factor and Brain-Derived Neurotrophic Factor in COVID-19. BIOLOGY 2024; 13:907. [PMID: 39596862 PMCID: PMC11591877 DOI: 10.3390/biology13110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024]
Abstract
Neurotrophins (NTs) constitute a family of small protein messengers that play a fundamental role in both the central and peripheral nervous systems. In particular, the nerve growth factor (NGF) and the brain-derived neurotrophic factor (BDNF) play a subtle role in the survival, differentiation, and functioning of neuronal populations, as well as in the fine regulation of immune functions. The SARS-CoV-2 infection was characterized by a sequela of symptoms (serious respiratory pathology, inflammatory storm, neurological discomfort, up to the less serious flu-like symptoms), which caused, at the end of 2023, more than 7 million deaths worldwide. Despite the official end of the pandemic, the physical and psychological consequences are currently the object of scientific research, both acute and chronic/long-lasting (Long-COVID-19). Given the multifactorial nature of the outcomes of SARS-CoV-2 infection in adults and children, several studies have investigated the potential involvement of the NGF and BDNF systems in the pathology. This narrative review aims to summarize the most recent evidence on this crucial topic.
Collapse
Affiliation(s)
- Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.T.); (M.P.M.)
| | - Francesca Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.T.); (M.P.M.)
| | - Marisa Patrizia Messina
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.T.); (M.P.M.)
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy
| |
Collapse
|
3
|
Plott C, Harb T, Arvanitis M, Gerstenblith G, Blumenthal R, Leucker T. Neurocardiac Axis Physiology and Clinical Applications. IJC HEART & VASCULATURE 2024; 54:101488. [PMID: 39224460 PMCID: PMC11367645 DOI: 10.1016/j.ijcha.2024.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The neurocardiac axis constitutes the neuronal circuits between the arteries, heart, brain, and immune organs (including thymus, spleen, lymph nodes, and mucosal associated lymphoid tissue) that together form the cardiovascular brain circuit. This network allows the individual to maintain homeostasis in a variety of environmental situations. However, in dysfunctional states, such as exposure to environments with chronic stressors and sympathetic activation, this axis can also contribute to the development of atherosclerotic vascular disease as well as other cardiovascular pathologies and it is increasingly being recognized as an integral part of the pathogenesis of cardiovascular disease. This review article focuses on 1) the normal functioning of the neurocardiac axis; 2) pathophysiology of the neurocardiac axis; 3) clinical implications of this axis in hypertension, atherosclerotic disease, and heart failure with an update on treatments under investigation; and 4) quantification methods in research and clinical practice to measure components of the axis and future research areas.
Collapse
Affiliation(s)
- Caroline Plott
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Tarek Harb
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Marios Arvanitis
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Gary Gerstenblith
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Roger Blumenthal
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Thorsten Leucker
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
4
|
Szydełko J, Czop M, Petniak A, Lenart-Lipińska M, Kocki J, Zapolski T, Matyjaszek-Matuszek B. Identification of plasma miR-4505, miR-4743-5p and miR-4750-3p as novel diagnostic biomarkers for coronary artery disease in patients with type 2 diabetes mellitus: a case-control study. Cardiovasc Diabetol 2024; 23:278. [PMID: 39080630 PMCID: PMC11287982 DOI: 10.1186/s12933-024-02374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD) are commonly coexisting clinical entities with still growing incidence worldwide. Recently, circulating microRNAs (miRNAs) have emerged as novel molecular players in cardiometabolic diseases. This study aimed to identify a specific miRNA signature as a candidate biomarker for CAD in T2DM and to delineate potential miRNA-dependent mechanisms contributing to diabetic atherosclerosis. METHODS A total of 38 plasma samples from T2DM patients with and without CAD, CAD patients and healthy controls were collected for expression profiling of 2,578 miRNAs using microarrays. To investigate the regulatory role of differentially expressed (DE)-miRNA target genes, functional annotation and pathway enrichment analyses were performed utilizing multiple bioinformatics tools. Then, protein-protein interaction networks were established leveraging the STRING database in Cytoscape software, followed by cluster analysis and hub gene identification. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was carried out for microarray data validation in the larger replication cohort of 94 participants. Receiver operating characteristic analysis was applied to evaluate the diagnostic values of miRNAs. Multivariate logistic regression analysis was used to develop miRNA-based diagnostic models. RESULTS In the discovery stage, overexpression of hsa-miR-4505, hsa-miR-4743-5p, hsa-miR-6846-5p, and down-regulation of hsa-miR-3613-3p, hsa-miR-4668-5p, hsa-miR-4706, hsa-miR-6511b-5p, hsa-miR-6750-5p, hsa-miR-4750-3p, hsa-miR-320e, hsa-miR-4717-3p, hsa-miR-7850-5p were detected in T2DM-CAD patients. The DE-miRNA target genes were significantly enriched in calcium ion binding, regulation of actin cytoskeleton, and gene expression. hsa-miR-4505, hsa-miR-4743-5p, and hsa-miR-4750-3p were found to be involved in fatty acid metabolism, leukocyte transendothelial migration, and neurotrophin signaling pathway. Dysregulation of hsa-miR-4505, hsa-miR-4743-5p, and hsa-miR-4750-3p in T2DM-CAD patients compared with T2DM subjects and controls (all p < 0.001) was further confirmed by RT-qPCR. All validated miRNAs demonstrated good discriminatory values for T2DM-CAD (AUC = 0.833-0.876). The best performance in detecting CAD in T2DM was achieved for a combination of three miRNAs (AUC = 0.959, 100% sensitivity, 86.67% specificity). CONCLUSIONS Our study revealed a unique profile of plasma-derived miRNAs in T2DM patients with CAD. Potential miRNA-regulated pathways were also identified, exploring the underlying pathogenesis of CAD in T2DM. We developed a specific three-miRNA panel of hsa-miR-4505, hsa-miR-4743-5p and hsa-miR-4750-3p, that could serve as a novel non-invasive biomarker for CAD in patients with T2DM.
Collapse
Affiliation(s)
- Joanna Szydełko
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Monika Lenart-Lipińska
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Tomasz Zapolski
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Beata Matyjaszek-Matuszek
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| |
Collapse
|
5
|
Shanks HRC, Chen K, Reiman EM, Blennow K, Cummings JL, Massa SM, Longo FM, Börjesson-Hanson A, Windisch M, Schmitz TW. p75 neurotrophin receptor modulation in mild to moderate Alzheimer disease: a randomized, placebo-controlled phase 2a trial. Nat Med 2024; 30:1761-1770. [PMID: 38760589 PMCID: PMC11186782 DOI: 10.1038/s41591-024-02977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/04/2024] [Indexed: 05/19/2024]
Abstract
p75 neurotrophin receptor (p75NTR) signaling pathways substantially overlap with degenerative networks active in Alzheimer disease (AD). Modulation of p75NTR with the first-in-class small molecule LM11A-31 mitigates amyloid-induced and pathological tau-induced synaptic loss in preclinical models. Here we conducted a 26-week randomized, placebo-controlled, double-blinded phase 2a safety and exploratory endpoint trial of LM11A-31 in 242 participants with mild to moderate AD with three arms: placebo, 200 mg LM11A-31 and 400 mg LM11A-31, administered twice daily by oral capsules. This trial met its primary endpoint of safety and tolerability. Within the prespecified secondary and exploratory outcome domains (structural magnetic resonance imaging, fluorodeoxyglucose positron-emission tomography and cerebrospinal fluid biomarkers), significant drug-placebo differences were found, consistent with the hypothesis that LM11A-31 slows progression of pathophysiological features of AD; no significant effect of active treatment was observed on cognitive tests. Together, these results suggest that targeting p75NTR with LM11A-31 warrants further investigation in larger-scale clinical trials of longer duration. EU Clinical Trials registration: 2015-005263-16 ; ClinicalTrials.gov registration: NCT03069014 .
Collapse
Grants
- R35 AG071476 NIA NIH HHS
- P30 AG072980 NIA NIH HHS
- SG-23-1038904 QC Alzheimer's Association
- 2022-00732 Vetenskapsrådet (Swedish Research Council)
- P20 GM109025 NIGMS NIH HHS
- R01 AG053798 NIA NIH HHS
- R35AG71476 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- ZEN-21-848495 Alzheimer's Association
- R01 AG051596 NIA NIH HHS
- P20GM109025 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- 453677 Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
- P20 AG068053 NIA NIH HHS
- 2017-00915 Vetenskapsrådet (Swedish Research Council)
- U01 AG024904 NIA NIH HHS
- R01AG053798 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R25 AG083721-01 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R25 AG083721 NIA NIH HHS
- Jonathan and Joshua Memorial Foundation Government of Ontario
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- State of Arizona
- Alzheimer’s Association
- the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the Swedish Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), La Fondation Recherche Alzheimer (FRA), Paris, France, the Kirsten and Freddy Johansen Foundation, Copenhagen, Denmark, and Familjen Rönströms Stiftelse, Stockholm, Sweden.
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- Alzheimer’s Drug Discovery Foundation (ADDF)
- Ted and Maria Quirk Endowment; Joy Chambers-Grundy Endowment.
- San Francisco VA Health Care System
- National Institutes of Aging (NIA AD Pilot Trial 1R01AG051596) PharmatrophiX (Menlo Park, California)
- Alzheimer’s Society of Canada (176677)
Collapse
Affiliation(s)
- Hayley R C Shanks
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
- Robarts Research Institute, Western University, London, Ontario, Canada.
- Western Institute for Neuroscience, Western University, London, Ontario, Canada.
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- College of Health Solutions, Arizona State University, Downtown, Phoenix, AZ, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Translational Genomics Research Institute, Phoenix, AZ, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Stephen M Massa
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Anne Börjesson-Hanson
- Clinical Trials, Department of Aging, Karolinska University Hospital, Stockholm, Sweden
| | | | - Taylor W Schmitz
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
- Robarts Research Institute, Western University, London, Ontario, Canada.
- Western Institute for Neuroscience, Western University, London, Ontario, Canada.
| |
Collapse
|
6
|
Zou J, Hao S. A potential research target for cardiac rehabilitation: brain-derived neurotrophic factor. Front Cardiovasc Med 2024; 11:1348645. [PMID: 38707889 PMCID: PMC11069312 DOI: 10.3389/fcvm.2024.1348645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/19/2024] [Indexed: 05/07/2024] Open
Abstract
Cardiovascular diseases pose a major threat to human life, functional activity, and quality of life. Once the disease is present, patients can experience varying degrees of problems or limitations on three levels: physical, psychological, and social. Patients with cardiovascular disease are always at risk for adverse cardiac events, decreased physical activity, psychoemotional disturbances, and limited social participation due to their varying pathologies. Therefore, personalized cardiac rehabilitation is of great significance in improving patients' physical and mental functions, controlling disease progression, and preventing deterioration. There is a consensus on the benefits of cardiac rehabilitation in improving patients' quality of life, enhancing functional activity, and reducing mortality. As an important part of cardiac rehabilitation, Exercise plays an irreplaceable role. Aerobic exercise, resistance training, flexibility training, and other forms of exercise are recommended by many experts. Improvements in exercise tolerance, lipid metabolism, cardiac function, and psychological aspects of the patients were evident with appropriate exercise interventions based on a comprehensive assessment. Further studies have found that brain-derived neurotrophic factor may be an important mediator of exercise's ability to improve cardiovascular health. Brain-derived neurotrophic factor exerts multiple biological effects on the cardiovascular system. This article provides another perspective on the cardiac effects of exercise and further looks at the prospects for the use of brain-derived neurotrophic factor in cardiac rehabilitation. Meanwhile, the new idea that brain-derived neurotrophic factor is a key mediator connecting the brain-cardiac axis is proposed in light of the current research progress, to provide new ideas for clinical rehabilitation and scientific research.
Collapse
Affiliation(s)
- Jianpeng Zou
- Department of Rehabilitation and Physiotherapy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shijie Hao
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
D'Amico F, Lugarà C, Luppino G, Giuffrida C, Giorgianni Y, Patanè EM, Manti S, Gambadauro A, La Rocca M, Abbate T. The Influence of Neurotrophins on the Brain-Lung Axis: Conception, Pregnancy, and Neonatal Period. Curr Issues Mol Biol 2024; 46:2528-2543. [PMID: 38534776 DOI: 10.3390/cimb46030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Neurotrophins (NTs) are four small proteins produced by both neuronal and non-neuronal cells; they include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). NTs can exert their action through both genomic and non-genomic mechanisms by interacting with specific receptors. Initial studies on NTs have identified them only as functional molecules of the nervous system. However, recent research have shown that some tissues and organs (such as the lungs, skin, and skeletal and smooth muscle) as well as some structural cells can secrete and respond to NTs. In addition, NTs perform several roles in normal and pathological conditions at different anatomical sites, in both fetal and postnatal life. During pregnancy, NTs are produced by the mother, placenta, and fetus. They play a pivotal role in the pre-implantation process and in placental and embryonic development; they are also involved in the development of the brain and respiratory system. In the postnatal period, it appears that NTs are associated with some diseases, such as sudden infant death syndrome (SIDS), asthma, congenital central hypoventilation syndrome (CCHS), and bronchopulmonary dysplasia (BPD).
Collapse
Affiliation(s)
- Federica D'Amico
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Cecilia Lugarà
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Giovanni Luppino
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Carlo Giuffrida
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Ylenia Giorgianni
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Eleonora Maria Patanè
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Mariarosaria La Rocca
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Tiziana Abbate
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| |
Collapse
|
8
|
Viikinkoski E, Aittokallio J, Lehto J, Ollila H, Relander A, Vasankari T, Jalkanen J, Gunn J, Jalkanen S, Airaksinen J, Hollmén M, Kiviniemi TO. Prolonged Systemic Inflammatory Response Syndrome After Cardiac Surgery. J Cardiothorac Vasc Anesth 2024; 38:709-716. [PMID: 38220516 DOI: 10.1053/j.jvca.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVES Cardiac surgery induces systemic inflammatory response syndrome (SIRS), leading to higher morbidity and mortality. There are no individualized predictors for worse outcomes or biomarkers for the multifactorial, excessive inflammatory response. The interest of this study was to evaluate whether a systematic use of the SIRS criteria could be used to predict postoperative outcomes beyond infection and sepsis, and if the development of an exaggerated inflammation response could be observed preoperatively. DESIGN The study was observational, with prospectively enrolled patients. SETTING This was a single institution study in a hospital setting combined with laboratory findings. PARTICIPANTS The study included a cohort of 261 volunteer patients. INTERVENTIONS Patients underwent cardiac surgery with cardiopulmonary bypass, and were followed up to 90 days. Biomarker profiling was run preoperatively. MEASUREMENTS AND MAIN RESULTS Altogether, 17 of 261 (6.4%) patients had prolonged SIRS, defined as fulfilling at least 2 criteria on 4 consecutive postoperative days. During hospitalization, postoperative atrial fibrillation (POAF) was found in 42.2% of patients, and stroke and transient ischemic attack in 3.8% of patients. Prolonged SIRS was a significant predictor of POAF (odds ratio [OR] 4.5, 95% CI 1.2-17.3), 90-day stroke (OR 4.5, 95% CI 1.1-18.0), and mortality (OR 10.7, 95% CI 1.7-68.8). Biomarker assays showed that preoperative nerve growth factor and interleukin 5 levels were associated with prolonged SIRS (OR 5.6, 95%, CI 1.4-23.2 and OR 0.7, 95%, CI 0.4-1.0, respectively). CONCLUSIONS Nerve growth factor and interleukin 5 can be used to predict prolonged systemic inflammatory response, which is associated with POAF, stroke, and mortality.
Collapse
Affiliation(s)
- Emma Viikinkoski
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Jenni Aittokallio
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Joonas Lehto
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Helena Ollila
- Turku Clinical Research Center, Turku University Hospital, Turku, Finland
| | - Arto Relander
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Tuija Vasankari
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Juho Jalkanen
- MediCity Research Laboratory, Department of Microbiology and Immunology, InFLAMES Flagship, University of Turku, Turku, Finland
| | - Jarmo Gunn
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, Department of Microbiology and Immunology, InFLAMES Flagship, University of Turku, Turku, Finland
| | - Juhani Airaksinen
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Maija Hollmén
- MediCity Research Laboratory, Department of Microbiology and Immunology, InFLAMES Flagship, University of Turku, Turku, Finland
| | - Tuomas O Kiviniemi
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland.
| |
Collapse
|
9
|
Boukhatem I, Fleury S, Jourdi G, Lordkipanidzé M. The intriguing role of platelets as custodians of brain-derived neurotrophic factor. Res Pract Thromb Haemost 2024; 8:102398. [PMID: 38706782 PMCID: PMC11066552 DOI: 10.1016/j.rpth.2024.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 05/07/2024] Open
Abstract
A State of the Art lecture titled "Platelets and neurotrophins" was presented at the International Society on Thrombosis and Haemostasis Congress in 2023. Neurotrophins, a family of neuronal growth factors known to support cognitive function, are increasingly recognized as important players in vascular health. Indeed, along with their canonical receptors, neurotrophins are expressed in peripheral tissues, particularly in the vasculature. The better-characterized neurotrophin in vascular biology is the brain-derived neurotrophic factor (BDNF). Its largest extracerebral pool resides within platelets, partly inherited from megakaryocytes and also likely internalized from circulation. Activation of platelets releases vast amounts of BDNF into their milieu and interestingly leads to platelet aggregation through binding of its receptor, the tropomyosin-related kinase B, on the platelet surface. As BDNF is readily available in plasma, a mechanism to preclude excessive platelet activation and aggregation appears critical. As such, binding of BDNF to α2-macroglobulin hinders its ability to bind its receptor and limits its platelet-activating effects to the site of vascular injury. Altogether, addition of BDNF to a forming clot facilitates not only paracrine platelet activation but also binding to fibrinogen, rendering the resulting clot more porous and plasma-permeable. Importantly, release of BDNF into circulation also appears to be protective against adverse cardiovascular and cerebrovascular outcomes, which has been reported in both animal models and epidemiologic studies. This opens an avenue for platelet-based strategies to deliver BDNF to vascular lesions and facilitate wound healing through its regenerative properties. Finally, we summarize relevant new data on this topic presented during the 2023 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- Imane Boukhatem
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Samuel Fleury
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Georges Jourdi
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
- Université Paris Cité, Institut National de la Santé Et de la Recherche Médicale, Innovative Therapies in Haemostasis, Paris, France
- Service d’Hématologie Biologique, Assistance Publique : Hôpitaux de Paris, Hôpital Lariboisière, Paris, France
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Wang B, Starr AL, Fraser HB. Cell-type-specific cis-regulatory divergence in gene expression and chromatin accessibility revealed by human-chimpanzee hybrid cells. eLife 2024; 12:RP89594. [PMID: 38358392 PMCID: PMC10942608 DOI: 10.7554/elife.89594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Although gene expression divergence has long been postulated to be the primary driver of human evolution, identifying the genes and genetic variants underlying uniquely human traits has proven to be quite challenging. Theory suggests that cell-type-specific cis-regulatory variants may fuel evolutionary adaptation due to the specificity of their effects. These variants can precisely tune the expression of a single gene in a single cell-type, avoiding the potentially deleterious consequences of trans-acting changes and non-cell type-specific changes that can impact many genes and cell types, respectively. It has recently become possible to quantify human-specific cis-acting regulatory divergence by measuring allele-specific expression in human-chimpanzee hybrid cells-the product of fusing induced pluripotent stem (iPS) cells of each species in vitro. However, these cis-regulatory changes have only been explored in a limited number of cell types. Here, we quantify human-chimpanzee cis-regulatory divergence in gene expression and chromatin accessibility across six cell types, enabling the identification of highly cell-type-specific cis-regulatory changes. We find that cell-type-specific genes and regulatory elements evolve faster than those shared across cell types, suggesting an important role for genes with cell-type-specific expression in human evolution. Furthermore, we identify several instances of lineage-specific natural selection that may have played key roles in specific cell types, such as coordinated changes in the cis-regulation of dozens of genes involved in neuronal firing in motor neurons. Finally, using novel metrics and a machine learning model, we identify genetic variants that likely alter chromatin accessibility and transcription factor binding, leading to neuron-specific changes in the expression of the neurodevelopmentally important genes FABP7 and GAD1. Overall, our results demonstrate that integrative analysis of cis-regulatory divergence in chromatin accessibility and gene expression across cell types is a promising approach to identify the specific genes and genetic variants that make us human.
Collapse
Affiliation(s)
- Ban Wang
- Department of Biology, Stanford UniversityStanfordUnited States
| | | | - Hunter B Fraser
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
11
|
Fioranelli M, Spadafora L, Bernardi M, Roccia MG, Del Buono MG, Cacioli G, Biondi-Zoccai G. Impact of low-dose Brain-Derived Neurotrophic Factor (BDNF) on atrial fibrillation recurrence. Minerva Cardiol Angiol 2023; 71:673-680. [PMID: 37337698 DOI: 10.23736/s2724-5683.23.06324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
BACKGROUND Atrial fibrillation is the most common arrhythmia worldwide and is associated with significant morbidity and mortality. Despite the effectiveness of catheter-based ablation, periprocedural complication and recurrences remain a concern. In this context, we aim to appraise the potential impact of brain-derived neurotrophic factor (BDNF) on reducing episodes of paroxysmal atrial fibrillation (PAF). METHODS 22 patients with an established diagnosis of PAF and without structural heart disease were considered. Every patient received 20 drops of GUNA-BDNF administered in the morning. During the 24 months of follow-up, the arrhythmic burden was measured by the average monthly duration of PAF episodes. RESULTS At the end of the follow-up period (24 months), data from 22 patients, of whom 17 men and five women, were analyzed. The arrhythmic burden, measured in terms of average monthly duration of PAF episodes, was found significantly reduced after the administration of low dose BDNF (9.5 vs. 65.3 minutes per month, P<0.001). A total of 17 out of 22 patients saw their arrhythmic burden eliminated or consistently reduced, furthermore two patients underwent a drastic reduction of the average monthly duration of AF (more than 200 minutes compared to the baseline). Only four patients, despite the administration of BDNF, still experienced an arrhythmic burden of 20 minutes or more. Considering the age groups, the major reduction was observed in people aged 70 or more, who were also the most represented in the sample. These results are coherent with the poor literature currently available. CONCLUSIONS BDNF low dose therapy has shown to have an impacting role in reducing the arrhythmic burden and recurrences of AF, with a particular effectiveness in patients over 70 and without structural heart disease. We should welcome this work, despite it limitations. Further clinical and molecular studies are needed before-considering BDNF low dose as a tool against PAF.
Collapse
Affiliation(s)
| | - Luigi Spadafora
- Department of Clinical Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy -
| | - Marco Bernardi
- Department of Clinical Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Maria G Roccia
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Giulio Cacioli
- Institute for Systemic Integrated Therapies, Rome, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|
12
|
Wang B, Starr AL, Fraser HB. Cell type-specific cis-regulatory divergence in gene expression and chromatin accessibility revealed by human-chimpanzee hybrid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541747. [PMID: 37292820 PMCID: PMC10245923 DOI: 10.1101/2023.05.22.541747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although gene expression divergence has long been postulated to be the primary driver of human evolution, identifying the genes and genetic variants underlying uniquely human traits has proven to be quite challenging. Theory suggests that cell type-specific cis-regulatory variants may fuel evolutionary adaptation due to the specificity of their effects. These variants can precisely tune the expression of a single gene in a single cell type, avoiding the potentially deleterious consequences of trans-acting changes and non-cell type-specific changes that can impact many genes and cell types, respectively. It has recently become possible to quantify human-specific cis-acting regulatory divergence by measuring allele-specific expression in human-chimpanzee hybrid cells-the product of fusing induced pluripotent stem (iPS) cells of each species in vitro. However, these cis-regulatory changes have only been explored in a limited number of cell types. Here, we quantify human-chimpanzee cis-regulatory divergence in gene expression and chromatin accessibility across six cell types, enabling the identification of highly cell type-specific cis-regulatory changes. We find that cell type-specific genes and regulatory elements evolve faster than those shared across cell types, suggesting an important role for genes with cell type-specific expression in human evolution. Furthermore, we identify several instances of lineage-specific natural selection that may have played key roles in specific cell types, such as coordinated changes in the cis-regulation of dozens of genes involved in neuronal firing in motor neurons. Finally, using novel metrics and a machine learning model, we identify genetic variants that likely alter chromatin accessibility and transcription factor binding, leading to neuron-specific changes in the expression of the neurodevelopmentally important genes FABP7 and GAD1. Overall, our results demonstrate that integrative analysis of cis-regulatory divergence in chromatin accessibility and gene expression across cell types is a promising approach to identify the specific genes and genetic variants that make us human.
Collapse
Affiliation(s)
- Ban Wang
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
13
|
Jourdi G, Boukhatem I, Barcelona PF, Fleury S, Welman M, Saragovi HU, Pasquali S, Lordkipanidzé M. Alpha-2-macroglobulin prevents platelet aggregation induced by brain-derived neurotrophic factor. Biochem Pharmacol 2023; 215:115701. [PMID: 37487878 DOI: 10.1016/j.bcp.2023.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) has been recently shown to have activating effects in isolated platelets. However, BDNF circulates in plasma and a mechanism to preclude constant activation of platelets appears necessary. Hence, we investigated the mechanism regulating BDNF bioavailability in blood. Protein-protein interactions were predicted by molecular docking and validated through immunoprecipitation. Platelet aggregation was assessed using light transmission aggregometry with washed platelets in response to classical agonists or BDNF, in the absence or presence of alpha-2-macroglobulin (α2M), and in platelet-rich plasma. BDNF signaling was assessed with phospho-blots. As little as 25% autologous plasma was sufficient to completely abolish platelet aggregation in response to BDNF. Docking predicted two forms of BDNF binding to native or activated α2M, in parallel and perpendicular arrangements, and the model suggested that the BDNF-α2M complex cannot bind to the high-affinity BDNF receptor, tropomyosin receptor kinase B (TrkB). Experimentally, native and activated α2M formed stable complexes with BDNF preventing BDNF-induced TrkB activation and signal transduction. Both native and activated α2M inhibited BDNF induced-platelet aggregation in a concentration-dependent manner with comparable half-maximal inhibitory concentrations (IC50≈ 125-150 nM). Our study implicates α2M as a physiological regulator of BDNF bioavailability, and as an inhibitor of BDNF-induced platelet activation in blood.
Collapse
Affiliation(s)
- Georges Jourdi
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada; Université Paris Cité, INSERM, Innovative Therapies in Haemostasis, F-75006 Paris, France; Service d'Hématologie Biologique, AP-HP, Hôpital Lariboisière, F-75010 Paris, France
| | - Imane Boukhatem
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Pablo F Barcelona
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e, Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Samuel Fleury
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Melanie Welman
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - H Uri Saragovi
- Lady Davis Institute-Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3A 0G4, Canada
| | - Samuela Pasquali
- Université Paris Cité, CNRS UMR 8038, Laboratoire Cibles Thérapeutiques et Conception de Médicaments, F-75006 Paris, France; Université Paris Cité, CNRS UMR 8251, Laboratoire Biologie Fonctionnelle et Adaptative, F-75006 Paris, France
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
14
|
Leo DG, Ozdemir H, Lane DA, Lip GYH, Keller SS, Proietti R. At the heart of the matter: how mental stress and negative emotions affect atrial fibrillation. Front Cardiovasc Med 2023; 10:1171647. [PMID: 37408656 PMCID: PMC10319071 DOI: 10.3389/fcvm.2023.1171647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023] Open
Abstract
Atrial fibrillation (AF) is the most common form of cardiac arrhythmia, affecting 2%-3% of the world's population. Mental and emotional stress, as well as some mental health conditions (e.g., depression) have been shown to significantly impact the heart and have been suggested to act both as independent risk factors and triggers in the onset of AF. In this paper, we review the current literature to examine the role that mental and emotional stress have in the onset of AF and summarise the current knowledge on the interaction between the brain and heart, and the cortical and subcortical pathways involved in the response to stress. Review of the evidence suggests that mental and emotional stress negatively affect the cardiac system, potentially increasing the risk for developing and/or triggering AF. Further studies are required to further understand the cortical and sub-cortical structures involved in the mental stress response and how these interact with the cardiac system, which may help in defining new strategies and interventions to prevent the development of, and improve the management of AF.
Collapse
Affiliation(s)
- Donato Giuseppe Leo
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Hizir Ozdemir
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, United Kingdom
| | - Deirdre A. Lane
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Danish Center for Clinical Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Danish Center for Clinical Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Simon S. Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Riccardo Proietti
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
15
|
Fang L, Li CH, Zhang Q, Jiang TJ, Liu Y, Shi FP, Yu P, Yu L, Chen AP, Li T, Wan YZ, Shi L. Ciliated Cells Express a Novel Pattern of Brain-Derived Neurotrophic Factor in Allergic Rhinitis. J Inflamm Res 2023; 16:2595-2606. [PMID: 37360625 PMCID: PMC10289300 DOI: 10.2147/jir.s407368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Background Mounting research indicates that brain-derived neurotrophic factor (BDNF), has great potential to increase neuro-hyperresponsiveness and airway resistance in airway allergic disease. The expression level of BDNF has been found to be notably elevated in lung/nasal lavage (NAL) fluid. However, the expression and position of BDNF in ciliated cells with allergic rhinitis remains unclear. Methods Nasal mucosal cells were collected from patients with allergic rhinitis (AR) and mice which were performed under different allergen challenge time, then observed the expression and position of BDNF located in ciliated cells through the immunofluorescence staining. Nasal mucosa, serum and NAL fluid were collected also. The expression level of BDNF and IL-4/5/13 were detected by RT-PCR. The expressions of BDNF (in serum and NAL fluid), and total-IgE, ovalbumin sIgE (in serum) were detected by ELISA. Results We found that MFI of BDNF in AR group's ciliated cells was obviously lower than that in the control group, and a negative correlation was discovered between MFI and VAS score. It can be roughly divided into 5 patterns according to its location in the cytoplasm of ciliated cells. In the mouse model, the expressions of BDNF in serum and NAL fluid increased temporarily after allergen stimulation. The MFI of BDNF in ciliated cells displayed an initial increase followed by a subsequent decrease. Conclusion Our study shows for the first time that, the expression and localization of BNDF were observed in the human nasal ciliated epithelial cells of allergic rhinitis, and the expression of level was less than the control group under the persistent state of allergy. BDNF expression in ciliated cells was transient increased after allergen stimulation and decreased to normal level after 24h in mouse model of allergic rhinitis. This might be the possible source of the transient increase of BNDF in serum and NAL fluid.
Collapse
Affiliation(s)
- Li Fang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Otolaryngology Head & Neck Surgery, The Second People’s Hospital of Shenzhen, Shenzhen, Guangdong, People’s Republic of China
| | - Chun-Hao Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, People’s Republic of China
| | - Qian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, People’s Republic of China
| | - Tian-Jiao Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, People’s Republic of China
| | - Yuan Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Otolaryngology Head & Neck Surgery, The Second People’s Hospital of Shenzhen, Shenzhen, Guangdong, People’s Republic of China
| | - Feng-Po Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, People’s Republic of China
| | - Peng Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, People’s Republic of China
| | - Liang Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, People’s Republic of China
| | - Ai-Ping Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, People’s Republic of China
| | - Tao Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, People’s Republic of China
| | - Yu-Zhu Wan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, People’s Republic of China
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
16
|
Shamsol Azman ANS, Tan JJ, Abdullah MNH, Bahari H, Lim V, Yong YK. Network Pharmacology and Molecular Docking Analysis of Active Compounds in Tualang Honey against Atherosclerosis. Foods 2023; 12:foods12091779. [PMID: 37174317 PMCID: PMC10178747 DOI: 10.3390/foods12091779] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Atherosclerosis, a pathological condition marked by the accumulation of lipids and fibrous substances in the arterial walls, is a leading cause of heart failure and death. The present study aimed to utilize network pharmacology to assess the potential pharmacological effects of bioactive compounds in Tualang honey on atherosclerosis. This is significant as previous studies have indicated the cardioprotective effects of Tualang honey, yet a comprehensive evaluation using network pharmacology has yet to be conducted. The bioactive compounds in Tualang honey were screened and the potential gene targets for these compounds were predicted through Swiss Target Prediction and SuperPred databases. Atherosclerosis genes were retrieved from the OMIM, DisGeNet, and GeneCards databases. The interaction between these compounds and atherosclerosis genes was established through protein-protein interaction, gene ontology, and KEGG pathway analysis. The results of these analyses were then further confirmed through molecular docking studies using the AutoDock Tools software. The results revealed that 6 out of 103 compounds in Tualang honey met the screening criteria, with a total of 336 potential gene targets, 238 of which were shared with atherosclerosis. Further analysis showed that these active compounds had a good affinity with key targets and were associated with biological processes related to protein phosphorylation and inflammation as well as pathways related to lipid and atherosclerosis and other signaling pathways. In conclusion, the study provides insight into the potential pharmacological effects of Tualang honey bioactive compounds on atherosclerosis, supporting its use as a promising treatment for the disease.
Collapse
Affiliation(s)
- Ain Nabila Syahira Shamsol Azman
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia
| | - Muhammad Nazrul Hakim Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
17
|
Manti S, Xerra F, Spoto G, Butera A, Gitto E, Di Rosa G, Nicotera AG. Neurotrophins: Expression of Brain-Lung Axis Development. Int J Mol Sci 2023; 24:ijms24087089. [PMID: 37108250 PMCID: PMC10138985 DOI: 10.3390/ijms24087089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Neurotrophins (NTs) are a group of soluble growth factors with analogous structures and functions, identified initially as critical mediators of neuronal survival during development. Recently, the relevance of NTs has been confirmed by emerging clinical data showing that impaired NTs levels and functions are involved in the onset of neurological and pulmonary diseases. The alteration in NTs expression at the central and peripheral nervous system has been linked to neurodevelopmental disorders with an early onset and severe clinical manifestations, often named "synaptopathies" because of structural and functional synaptic plasticity abnormalities. NTs appear to be also involved in the physiology and pathophysiology of several airway diseases, neonatal lung diseases, allergic and inflammatory diseases, lung fibrosis, and even lung cancer. Moreover, they have also been detected in other peripheral tissues, including immune cells, epithelium, smooth muscle, fibroblasts, and vascular endothelium. This review aims to provide a comprehensive description of the NTs as important physiological and pathophysiological players in brain and lung development.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Unit, Department of Human and Pediatric Pathology "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy
| | - Federica Xerra
- Pediatric Unit, Department of Human and Pediatric Pathology "Gaetano Barresi", AOUP G. Martino, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, "Gaetano Barresi" University of Messina, 98124 Messina, Italy
| | - Ambra Butera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, "Gaetano Barresi" University of Messina, 98124 Messina, Italy
| | - Eloisa Gitto
- Intensive Pediatric Unit, Department of Human Pathology of the Adult and Developmental Age, "Gaetano Barresi" University of Messina, 98124 Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, "Gaetano Barresi" University of Messina, 98124 Messina, Italy
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age, "Gaetano Barresi" University of Messina, 98124 Messina, Italy
| |
Collapse
|
18
|
Arutjunyan AV, Kerkeshko GO, Milyutina YP, Shcherbitskaia AD, Zalozniaia IV, Mikhel AV, Inozemtseva DB, Vasilev DS, Kovalenko AA, Kogan IY. Imbalance of Angiogenic and Growth Factors in Placenta in Maternal Hyperhomocysteinemia. BIOCHEMISTRY (MOSCOW) 2023; 88:262-279. [PMID: 37072327 DOI: 10.1134/s0006297923020098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Numerous studies have shown that various adverse factors of different nature and action mechanisms have similar negative influence on placental angiogenesis, resulting in insufficiency of placental blood supply. One of the risk factors for pregnancy complications with placental etiology is an increased level of homocysteine in the blood of pregnant women. However, the effect of hyperhomocysteinemia (HHcy) on the development of the placenta and, in particular, on the formation of its vascular network is at present poorly understood. The aim of this work was to study the effect of maternal HHcy on the expression of angiogenic and growth factors (VEGF-A, MMP-2, VEGF-B, BDNF, NGF), as well as their receptors (VEGFR-2, TrkB, p75NTR), in the rat placenta. The effects of HHcy were studied in the morphologically and functionally different maternal and fetal parts of the placenta on the 14th and 20th day of pregnancy. The maternal HHcy caused increase in the levels of oxidative stress and apoptosis markers accompanied by an imbalance of the studied angiogenic and growth factors in the maternal and/or fetal part of the placenta. The influence of maternal HHcy in most cases manifested in a decrease in the protein content (VEGF-A), enzymatic activity (MMP-2), gene expression (VEGFB, NGF, TRKB), and accumulation of precursor form (proBDNF) of the investigated factors. In some cases, the effects of HHcy differed depending on the placental part and stage of development. The influence of maternal HHcy on signaling pathways and processes controlled by the studied angiogenic and growth factors could lead to incomplete development of the placental vasculature and decrease in the placental transport, resulting in fetal growth restriction and impaired fetal brain development.
Collapse
Affiliation(s)
- Alexander V Arutjunyan
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia.
| | - Gleb O Kerkeshko
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Yulia P Milyutina
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- St. Petersburg State Pediatric Medical University, Russian Ministry of Health, St. Petersburg, 194100, Russia
| | - Anastasiia D Shcherbitskaia
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Irina V Zalozniaia
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Anastasiia V Mikhel
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Daria B Inozemtseva
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Dmitrii S Vasilev
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Anna A Kovalenko
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Igor Yu Kogan
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| |
Collapse
|
19
|
Li L, Guo H, Lai B, Liang C, Chen H, Chen Y, Guo W, Yuan Z, Huang R, Zeng Z, Liang L, Zhao H, Zheng X, Li Y, Pu Q, Qi X, Cai D. Ablation of cardiomyocyte-derived BDNF during development causes myocardial degeneration and heart failure in the adult mouse heart. Front Cardiovasc Med 2022; 9:967463. [PMID: 36061561 PMCID: PMC9433718 DOI: 10.3389/fcvm.2022.967463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Brain-derived neurotrophic factor (BDNF) and its receptor TrkB-T1 were recently found to be expressed in cardiomyocytes. However, the functional role of cardiomyocyte-derived BDNF in heart pathophysiology is not yet fully known. Recent studies revealed that BDNF-TrkB pathway plays a critical role to maintain integrity of cardiac structure and function, cardiac pathology and regeneration of myocardial infarction (MI). Therefore, the BDNF-TrkB pathway may be a novel target for myocardial pathophysiology in the adult heart. Approach and results In the present study, we established a cardiomyocyte-derived BDNF conditional knockout mouse in which BDNF expression in developing cardiomyocytes is ablated under the control of the Myosin heavy chain 6 (MYH6) promoter. The results of the present study show that ablation of cardiomyocyte-derived BDNF during development does not impair survival, growth or reproduction; however, in the young adult heart, it causes cardiomyocyte death, degeneration of the myocardium, cardiomyocyte hypertrophy, left atrial appendage thrombosis, decreased cardiac function, increased cardiac inflammation and ROS activity, and metabolic disorders, leading to heart failure (HF) in the adult heart and eventually resulting in a decrease in the one-year survival rate. In addition, ablation of cardiomyocyte-derived BDNF during the developmental stage leads to exacerbation of cardiac dysfunction and poor regeneration after MI in adult hearts. Conclusion Cardiomyocyte-derived BDNF is irreplaceable for maintaining the integrity of cardiac structure and function in the adult heart and regeneration after MI. Therefore, the BDNF-TrkB pathway will be a novel target for myocardial pathophysiology in the adult heart.
Collapse
Affiliation(s)
- Lilin Li
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Hongyan Guo
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
- Jiangxi Provincial Key Laboratory of Medical Immunology and Immunotherapy, Jiangxi Academy of Medical Sciences, Nanchang, China
| | - Binglin Lai
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Chunbao Liang
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Hongyi Chen
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Yilin Chen
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Weimin Guo
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Ziqiang Yuan
- Department of Medical Oncology, Robert Wood Johnson of Medical School, Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Ruijin Huang
- Department of Neuroanatomy, Institute of Anatomy, University of Bonn, Bonn, Germany
- Department of Anatomy and Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Zhaohua Zeng
- Division of Cardiology, Department of Internal Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liying Liang
- Division of Cardiology, Department of Internal Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Zhao
- Stem Cell and Regeneration TRP, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xin Zheng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Yanmei Li
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Qin Pu
- Department of Neuroanatomy, Institute of Anatomy, University of Bonn, Bonn, Germany
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
- *Correspondence: Xufeng Qi,
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Joint Laboratory for Regenerative Medicine, Chinese University of Hong Kong-Jinan University, Guangzhou, China
- International Base of Collaboration for Science and Technology (JNU), The Ministry of Science and Technology and Guangdong Province, Guangzhou, China
- Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
- Dongqing Cai,
| |
Collapse
|
20
|
Shityakov S, Nagai M, Ergün S, Braunger BM, Förster CY. The Protective Effects of Neurotrophins and MicroRNA in Diabetic Retinopathy, Nephropathy and Heart Failure via Regulating Endothelial Function. Biomolecules 2022; 12:biom12081113. [PMID: 36009007 PMCID: PMC9405668 DOI: 10.3390/biom12081113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a common disease affecting more than 537 million adults worldwide. The microvascular complications that occur during the course of the disease are widespread and affect a variety of organ systems in the body. Diabetic retinopathy is one of the most common long-term complications, which include, amongst others, endothelial dysfunction, and thus, alterations in the blood-retinal barrier (BRB). This particularly restrictive physiological barrier is important for maintaining the neuroretina as a privileged site in the body by controlling the inflow and outflow of fluid, nutrients, metabolic end products, ions, and proteins. In addition, people with diabetic retinopathy (DR) have been shown to be at increased risk for systemic vascular complications, including subclinical and clinical stroke, coronary heart disease, heart failure, and nephropathy. DR is, therefore, considered an independent predictor of heart failure. In the present review, the effects of diabetes on the retina, heart, and kidneys are described. In addition, a putative common microRNA signature in diabetic retinopathy, nephropathy, and heart failure is discussed, which may be used in the future as a biomarker to better monitor disease progression. Finally, the use of miRNA, targeted neurotrophin delivery, and nanoparticles as novel therapeutic strategies is highlighted.
Collapse
Affiliation(s)
- Sergey Shityakov
- Division of Chemoinformatics, Infochemistry Scientific Center, Lomonosova Street 9, 191002 Saint-Petersburg, Russia
| | - Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, 2-1-1 Kabeminami, Aaskita-ku, Hiroshima 731-0293, Japan
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
| | - Barbara M. Braunger
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
- Correspondence: (B.M.B.); (C.Y.F.)
| | - Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University, 97080 Würzburg, Germany
- Correspondence: (B.M.B.); (C.Y.F.)
| |
Collapse
|
21
|
Dehghan Z, Mirmotalebisohi SA, Sameni M, Bazgiri M, Zali H. A Motif-Based Network Analysis of Regulatory Patterns in Doxorubicin Effects on Treating Breast Cancer, a Systems Biology Study. Avicenna J Med Biotechnol 2022; 14:137-153. [PMID: 35633986 PMCID: PMC9077660 DOI: 10.18502/ajmb.v14i2.8889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background Breast cancer is the most common malignancy worldwide. Doxorubicin is an anthracycline used to treat breast cancer as the first treatment choice. Nevertheless, the molecular mechanisms underlying the response to Doxorubicin and its side effects are not comprehensively understood so far. We used systems biology and bioinformatics methods to identify essential genes and molecular mechanisms behind the body response to Doxorubicin and its side effects in breast cancer patients. Methods Omics data were extracted and analyzed to construct the protein-protein interaction and gene regulatory networks. Network analysis was performed to identify hubs, bottlenecks, clusters, and regulatory motifs to evaluate crucial genes and molecular mechanisms behind the body response to Doxorubicin and its side effects. Results Analyzing the constructed PPI and gene-TF-miRNA regulatory network showed that MCM3, MCM10, and TP53 are key hub-bottlenecks and seed proteins. Enrichment analysis also revealed cell cycle, TP53 signaling, Forkhead box O (FoxO) signaling, and viral carcinogenesis as essential pathways in response to this drug. Besides, SNARE interactions in vesicular transport and neurotrophin signaling were identified as pathways related to the side effects of Doxorubicin. The apoptosis induction, DNA repair, invasion inhibition, metastasis, and DNA replication are suggested as critical molecular mechanisms underlying Doxorubicin anti-cancer effect. SNARE interactions in vesicular transport and neurotrophin signaling and FoxO signaling pathways in glucose metabolism are probably the mechanisms responsible for side effects of Doxorubicin. Conclusion Following our model validation using the existing experimental data, we recommend our other newly predicted biomarkers and pathways as possible molecular mechanisms and side effects underlying the response to Doxorubicin in breast cancer requiring further investigations.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Bazgiri
- Department of Animal Science, Agriculture and Natural Resources University of Khuzestan, Ahvaz, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Liu K, Li L, Liu Z, Li G, Wu Y, Jiang X, Wang M, Chang Y, Jiang T, Luo J, Zhu J, Li H, Wang Y. Acute Administration of Metformin Protects Against Neuronal Apoptosis Induced by Cerebral Ischemia-Reperfusion Injury via Regulation of the AMPK/CREB/BDNF Pathway. Front Pharmacol 2022; 13:832611. [PMID: 35431946 PMCID: PMC9010658 DOI: 10.3389/fphar.2022.832611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Metformin is a first-line anti-diabetic agent with a powerful hypoglycemic effect. Several studies have reported that metformin can improve the prognosis of stroke patients and that this effect is independent of its hypoglycemic effect; however, the specific mechanism remains unclear. In this research, we explored the effect and specific mechanism of metformin in cerebral ischemia-reperfusion (I/R) injury by constructing a transient middle cerebral artery occlusion model in vivo and a glucose and oxygen deprivation/reoxygenation (OGD/R) model in vitro. The results of the in vivo experiments showed that acute treatment with low-dose metformin (10 mg/kg) ameliorated cerebral edema, reduced the cerebral infarction volume, improved the neurological deficit score, and ameliorated neuronal apoptosis in the ischemic penumbra. Moreover, metformin up-regulated the brain-derived neurotrophic factor (BDNF) expression and increased phosphorylation levels of AMP-activated protein kinase (AMPK) and cAMP-response element binding protein (CREB) in the ischemia penumbra. Nevertheless, the above-mentioned effects of metformin were reversed by Compound C. The results of the in vitro experiments showed that low metformin concentrations (20 μM) could reduce apoptosis of human umbilical vein endothelial cells (HUVECs) under OGD/R conditions and promote cell proliferation. Moreover, metformin could further promote BDNF expression and release in HUVECs under OGD/R conditions via the AMPK/CREB pathway. The Transwell chamber assay showed that HUVECs treated with metformin could reduce apoptosis of SH-SY5Y cells under OGD/R conditions and this effect could be partially reversed by transfection of BDNF siRNA in HUVECs. In summary, our results suggest that metformin upregulates the level of BDNF in the cerebral ischemic penumbra via the AMPK/CREB pathway, thereby playing a protective effect in cerebral I/R injury.
Collapse
Affiliation(s)
- Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Li
- Department of Neurology, People’s Hospital of Zhengzhou, People’s Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhijun Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengdie Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianheng Luo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongge Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongge Li, ; Yong Wang,
| | - Yong Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongge Li, ; Yong Wang,
| |
Collapse
|
23
|
Moscoso I, Cebro-Márquez M, Martínez-Gómez Á, Abou-Jokh C, Martínez-Monzonís MA, Martínez-Sande JL, González-Melchor L, García-Seara J, Fernández-López XA, Moraña-Fernández S, González-Juanatey JR, Rodríguez-Mañero M, Lage R. Circulating miR-499a and miR-125b as Potential Predictors of Left Ventricular Ejection Fraction Improvement after Cardiac Resynchronization Therapy. Cells 2022; 11:cells11020271. [PMID: 35053387 PMCID: PMC8773679 DOI: 10.3390/cells11020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiac resynchronization therapy represents a therapeutic option for heart failure drug-refractory patients. However, due to the lack of success in 30% of the cases, there is a demand for an in-depth analysis of individual heterogeneity. In this study, we aimed to evaluate the prognostic value of circulating miRNA differences. Responder patients were defined by a composite endpoint of the presence of left ventricular reverse remodelling (a reduction ≥15% in telesystolic volume and an increment ≥10% in left ventricular ejection fraction). Circulating miRNAs signature was analysed at the time of the procedure and at a 6-month follow-up. An expression analysis showed, both at baseline and at follow-up, differences between responders and non-responders. Responders presented lower baseline expressions of miR-499, and at follow-up, downregulation of miR-125b-5p, both associated with a significant improvement in left ventricular ejection fraction. The miRNA profile differences showed a marked sensitivity to distinguish between responders and non-responders. Our data suggest that miRNA differences might contribute to prognostic stratification of patients undergoing cardiac resynchronization therapy and suggest that preimplant cardiac context as well as remodelling response are key to therapeutic success.
Collapse
Affiliation(s)
- Isabel Moscoso
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (I.M.); (M.C.-M.); (J.R.G.-J.)
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - María Cebro-Márquez
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (I.M.); (M.C.-M.); (J.R.G.-J.)
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - Álvaro Martínez-Gómez
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - Charigan Abou-Jokh
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - María Amparo Martínez-Monzonís
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José Luis Martínez-Sande
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Laila González-Melchor
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - Javier García-Seara
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Xesús Alberte Fernández-López
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - Sandra Moraña-Fernández
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
| | - José R. González-Juanatey
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (I.M.); (M.C.-M.); (J.R.G.-J.)
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Moisés Rodríguez-Mañero
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Ricardo Lage
- Cardiology Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (I.M.); (M.C.-M.); (J.R.G.-J.)
- Department of Cardiology and Coronary Unit and Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, 15706 Santiago de Compostela, Spain; (Á.M.-G.); (C.A.-J.); (M.A.M.-M.); (J.L.M.-S.); (L.G.-M.); (J.G.-S.); (X.A.F.-L.); (S.M.-F.); (M.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
24
|
Sydney-Smith JD, Spejo AB, Warren PM, Moon LDF. Peripherally delivered Adeno-associated viral vectors for spinal cord injury repair. Exp Neurol 2021; 348:113945. [PMID: 34896114 DOI: 10.1016/j.expneurol.2021.113945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
Via the peripheral and autonomic nervous systems, the spinal cord directly or indirectly connects reciprocally with many body systems (muscular, intengumentary, respiratory, immune, digestive, excretory, reproductive, cardiovascular, etc). Accordingly, spinal cord injury (SCI) can result in catastrophe for multiple body systems including muscle paralysis affecting movement and loss of normal sensation, as well as neuropathic pain, spasticity, reduced fertility and autonomic dysreflexia. Treatments and cure for an injured spinal cord will likely require access of therapeutic agents across the blood-CNS (central nervous system) barrier. However, some types of repair within the CNS may be possible by targeting treatment to peripherally located cells or by delivering Adeno-Associated Viral vectors (AAVs) by peripheral routes (e.g., intrathecal, intravenous). This review will consider some future possibilities for SCI repair generated by therapeutic peripheral gene delivery. There are now six gene therapies approved worldwide as safe and effective medicines of which three were created by modification of the apparently nonpathogenic Adeno-Associated Virus. One of these AAVs, Zolgensma, is injected intrathecally for treatment of spinal muscular atrophy in children. One day, delivery of AAVs into peripheral tissues might improve recovery after spinal cord injury in humans; we discuss experiments by us and others delivering transgenes into nerves or muscles for sensorimotor recovery in animal models of SCI or of stroke including human Neurotrophin-3. We also describe ongoing efforts to develop AAVs that are delivered to particular targets within and without the CNS after peripheral administration using capsids with improved tropisms, promoters that are selective for particular cell types, and methods for controlling the dose and duration of expression of a transgene. In conclusion, in the future, minimally invasive administration of AAVs may improve recovery after SCI with minimal side effects.
Collapse
Affiliation(s)
- Jared D Sydney-Smith
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom
| | - Aline B Spejo
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom
| | - Philippa M Warren
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom
| | - Lawrence D F Moon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom.
| |
Collapse
|
25
|
Fujitani M, Otani Y, Miyajima H. Do Neurotrophins Connect Neurological Disorders and Heart Diseases? Biomolecules 2021; 11:1730. [PMID: 34827728 PMCID: PMC8615910 DOI: 10.3390/biom11111730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
Neurotrophins (NTs) are one of the most characterized neurotrophic factor family members and consist of four members in mammals. Growing evidence suggests that there is a complex inter- and bi-directional relationship between central nervous system (CNS) disorders and cardiac dysfunction, so-called "brain-heart axis". Recent studies suggest that CNS disorders, including neurodegenerative diseases, stroke, and depression, affect cardiovascular function via various mechanisms, such as hypothalamic-pituitary-adrenal axis augmentation. Although this brain-heart axis has been well studied in humans and mice, the involvement of NT signaling in the axis has not been fully investigated. In the first half of this review, we emphasize the importance of NTs not only in the nervous system, but also in the cardiovascular system from the embryonic stage to the adult state. In the second half, we discuss the involvement of NTs in the pathogenesis of cardiovascular diseases, and then examine whether an alteration in NTs could serve as the mediator between neurological disorders and heart dysfunction. The further investigation we propose herein could contribute to finding direct evidence for the involvement of NTs in the axis and new treatment for cardiovascular diseases.
Collapse
Affiliation(s)
- Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan; (Y.O.); (H.M.)
| | | | | |
Collapse
|
26
|
The brain-derived neurotrophic factor prompts platelet aggregation and secretion. Blood Adv 2021; 5:3568-3580. [PMID: 34546355 DOI: 10.1182/bloodadvances.2020004098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has both autocrine and paracrine roles in neurons, and its release and signaling mechanisms have been extensively studied in the central nervous system. Large quantities of BDNF have been reported in circulation, essentially stored in platelets with concentrations reaching 100- to 1000-fold those of neurons. Despite this abundance, the function of BDNF in platelet biology has not been explored. At low concentrations, BDNF primed platelets, acting synergistically with classical agonists. At high concentrations, BDNF induced complete biphasic platelet aggregation that in part relied on amplification from secondary mediators. Neurotrophin-4, but not nerve growth factor, and an activating antibody against the canonical BDNF receptor tropomyosin-related kinase B (TrkB) induced similar platelet responses to BDNF, suggesting TrkB could be the mediator. Platelets expressed, both at their surface and in their intracellular compartment, a truncated form of TrkB lacking its tyrosine kinase domain. BDNF-induced platelet aggregation was prevented by inhibitors of Ras-related C3 botulinum toxin substrate 1 (Rac1), protein kinase C, and phosphoinositide 3-kinase. BDNF-stimulated platelets secreted a panel of angiogenic and inflammatory cytokines, which may play a role in maintaining vascular homeostasis. Two families with autism spectrum disorder were found to carry rare missense variants in the BDNF gene. Platelet studies revealed defects in platelet aggregation to low concentrations of collagen, as well as reduced adenosine triphosphate secretion in response to adenosine diphosphate. In summary, circulating BDNF levels appear to regulate platelet activation, aggregation, and secretion through activation of a truncated TrkB receptor and downstream kinase-dependent signaling.
Collapse
|
27
|
Schlecht A, Vallon M, Wagner N, Ergün S, Braunger BM. TGFβ-Neurotrophin Interactions in Heart, Retina, and Brain. Biomolecules 2021; 11:biom11091360. [PMID: 34572573 PMCID: PMC8464756 DOI: 10.3390/biom11091360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic insults to the heart and brain, i.e., myocardial and cerebral infarction, respectively, are amongst the leading causes of death worldwide. While there are therapeutic options to allow reperfusion of ischemic myocardial and brain tissue by reopening obstructed vessels, mitigating primary tissue damage, post-infarction inflammation and tissue remodeling can lead to secondary tissue damage. Similarly, ischemia in retinal tissue is the driving force in the progression of neovascular eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD), which eventually lead to functional blindness, if left untreated. Intriguingly, the easily observable retinal blood vessels can be used as a window to the heart and brain to allow judgement of microvascular damages in diseases such as diabetes or hypertension. The complex neuronal and endocrine interactions between heart, retina and brain have also been appreciated in myocardial infarction, ischemic stroke, and retinal diseases. To describe the intimate relationship between the individual tissues, we use the terms heart-brain and brain-retina axis in this review and focus on the role of transforming growth factor β (TGFβ) and neurotrophins in regulation of these axes under physiologic and pathologic conditions. Moreover, we particularly discuss their roles in inflammation and repair following ischemic/neovascular insults. As there is evidence that TGFβ signaling has the potential to regulate expression of neurotrophins, it is tempting to speculate, and is discussed here, that cross-talk between TGFβ and neurotrophin signaling protects cells from harmful and/or damaging events in the heart, retina, and brain.
Collapse
|
28
|
Ribeiro D, Petrigna L, Pereira FC, Muscella A, Bianco A, Tavares P. The Impact of Physical Exercise on the Circulating Levels of BDNF and NT 4/5: A Review. Int J Mol Sci 2021; 22:ijms22168814. [PMID: 34445512 PMCID: PMC8396229 DOI: 10.3390/ijms22168814] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: One mechanism through which physical activity (PA) provides benefits is by triggering activity at a molecular level, where neurotrophins (NTs) are known to play an important role. However, the expression of the circulating levels of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4/5), in response to exercise, is not fully understood. Therefore, the aim was to provide an updated overview on the neurotrophin (NT) variation levels of BDNF and NT-4/5 as a consequence of a long-term aerobic exercise intervention, and to understand and describe whether the upregulation of circulating NT levels is a result of neurotrophic factors produced and released from the brain, and/or from neurotrophic secreting peripheral organs. (2) Methods: The articles were collected from PubMed, SPORTDiscus, Web of Science, MEDLINE, and Embase. Data were analyzed through a narrative synthesis. (3) Results: 30 articles studied humans who performed training protocols that ranged from 4 to 48 weeks; 22 articles studied rodents with an intervention period that ranged from 4 to 64 weeks. (4) Conclusions: There is no unanimity between the upregulation of BDNF in humans; conversely, concerning both BDNF and NT-4/5 in animal models, the results are heterogeneous. Whilst BDNF upregulation appears to be in relative agreement, NT-4/5 seems to display contradictory and inconsistent conclusions.
Collapse
Affiliation(s)
- Daniel Ribeiro
- University of Coimbra, Faculty of Sport Sciences and Physical Education, Coimbra Institute for Clinical and Biomedical Research, 3004-504 Coimbra, Portugal; (D.R.); (P.T.)
- University of Coimbra, Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, 3004-504 Coimbra, Portugal;
- University of Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, 3004-504 Coimbra, Portugal
| | - Luca Petrigna
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
- Correspondence:
| | - Frederico C. Pereira
- University of Coimbra, Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, 3004-504 Coimbra, Portugal;
- University of Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, 3004-504 Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
| | - Antonella Muscella
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy;
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Paula Tavares
- University of Coimbra, Faculty of Sport Sciences and Physical Education, Coimbra Institute for Clinical and Biomedical Research, 3004-504 Coimbra, Portugal; (D.R.); (P.T.)
- University of Coimbra, Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, 3004-504 Coimbra, Portugal;
- University of Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, 3004-504 Coimbra, Portugal
| |
Collapse
|
29
|
Zhasem Z, Fanaei H, Komeili G, Naderi M, Toloei A. Association between serum level of brain-derived neurotrophic factor (BDNF) and cardiac function in patients with β-thalassemia major. PROGRESS IN PEDIATRIC CARDIOLOGY 2021. [DOI: 10.1016/j.ppedcard.2020.101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Montone RA, Camilli M, Del Buono MG, Russo M, Rinaldi R, Canonico F, Pedicino D, Severino A, D'Amario D, Trani C, Liuzzo G, Crea F, Niccoli G. Brain-derived neurotrophic factor in patients with acute coronary syndrome. Transl Res 2021; 231:39-54. [PMID: 33221484 DOI: 10.1016/j.trsl.2020.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor highly expressed in coronary plaques, particularly in macrophages, and in activated platelets. Thus, a possible role in the pathogenesis of acute coronary syndrome (ACS) has been suggested. We evaluated systemic BDNF levels according to the different clinical presentations of ACS. Moreover, we assessed the relationship between BDNF levels and the presence of optical coherence tomography (OCT)-defined macrophage infiltrates (MØI) and healed plaques along the culprit vessel. We enrolled consecutive patients presenting with ST-elevation myocardial infarction (STEMI) or non-ST-elevation (NSTE)-ACS. Serum BDNF levels were assessed by enzyme-linked immunosorbent assay. Plaque characteristics of the culprit vessel were assessed by OCT. Among 126 ACS patients (median age 68.00, interquartile range [IQR] 59.75-75.25 years, male 74.6%, 71 (56.3%) were NSTE-ACS and 55 (43.7%) were STEMI. BDNF levels were higher in STEMI patients compared to NSTE-ACS. OCT assessment was performed in 53 (42.1%) patients. Patients with MØI (n = 27) had higher BDNF levels compared to patients without MØI. Furthermore, patients with healed plaques (n = 13) had lower BDNF levels than patients without healed plaques. At multivariate regression analysis BDNF levels independently predicted the presence of MØI (odds ratio [OR] = 2.856; 95% confidence interval [CI] [1.151-7.090], P = 0.024) and the absence of healed plaques (OR = 0.438, 95% CI [0.185-0.992], P= 0.050). Among ACS patients, BDNF levels were higher in patients with STEMI. Moreover, BDNF levels were independently associated with MØI and with the absence of healed plaques along the culprit vessel, suggesting a possible role of BDNF in promoting plaque inflammation, destabilization and occlusive thrombosis.
Collapse
Affiliation(s)
- Rocco A Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Michele Russo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Riccardo Rinaldi
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco Canonico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Daniela Pedicino
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Severino
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Domenico D'Amario
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Carlo Trani
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Giovanna Liuzzo
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Giampaolo Niccoli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy; Division of Cardiology, University of Parma, Parma University Hospital
| |
Collapse
|
31
|
Esmaeili F, Mansouri E, Emami MA, Montazerghaem H, Hosseini Teshnizi S, Kheirandish M, Koochakkhani S, Eftekhar E. Association of Serum Level and DNA Methylation Status of Brain-Derived Neurotrophic Factor with the Severity of Coronary Artery Disease. Indian J Clin Biochem 2021; 37:159-168. [PMID: 35463104 PMCID: PMC8993966 DOI: 10.1007/s12291-021-00974-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/03/2021] [Indexed: 11/25/2022]
Abstract
New investigations suggest a pivotal role of brain-derived neurotrophic factor (BDNF) in cardiovascular homeostasis. However, no data could indicate the association between BDNF methylation status and the risk of coronary artery disease (CAD). The aim of the present study was to assess the association of BDNF methylation status and its serum level with the severity of CAD. According to the angiography report, a total of 84 non-diabetic CAD patients with at least 50% stenosis in one of the major coronary arteries were selected as the CAD group. For comparison, 62 angiographically proven non-CAD participants were selected as control. Additionally, subjects were categorized according to the Gensini Scoring system. Blood sample was used for genomic DNA isolation. Methylation status of the BDNF gene in exonic region was determined using the MS-PCR method and serum BDNF levels were measured with ELISA. BDNF gene methylation was significantly higher in the CAD group than in the non-CAD group. After adjustment for confounding factors, BDNF gene hypermethylation increases the risk of CAD in the total population (OR = 2.769; 95% CI, 1.033-7.423; P = 0.043). BDNF gene hypermethylation was higher in patients with severe CAD than patients with mild CAD. Additionally, the serum BDNF level was not different from non-diabetic CAD and control groups. Our findings indicate that BDNF hypermethylation was associated with an increased risk of CAD, which may help identify subjects being at the risk of developing CAD. In addition, BDNF hypermethylation shows a significant correlation with the severity of CAD.
Collapse
Affiliation(s)
- Fataneh Esmaeili
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Mansouri
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Amin Emami
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Montazerghaem
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Saeed Hosseini Teshnizi
- Social Determinants in Health Promotion Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Masoumeh Kheirandish
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Jomhori St, 7919915519 Bandar Abbas, Iran
| | - Shabnaz Koochakkhani
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ebrahim Eftekhar
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Jomhori St, 7919915519 Bandar Abbas, Iran
| |
Collapse
|
32
|
Bové M, Monto F, Guillem-Llobat P, Ivorra MD, Noguera MA, Zambrano A, Sirerol-Piquer MS, Requena AC, García-Alonso M, Tejerina T, Real JT, Fariñas I, D’Ocon P. NT3/TrkC Pathway Modulates the Expression of UCP-1 and Adipocyte Size in Human and Rodent Adipose Tissue. Front Endocrinol (Lausanne) 2021; 12:630097. [PMID: 33815288 PMCID: PMC8015941 DOI: 10.3389/fendo.2021.630097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Neurotrophin-3 (NT3), through activation of its tropomyosin-related kinase receptor C (TrkC), modulates neuronal survival and neural stem cell differentiation. It is widely distributed in peripheral tissues (especially vessels and pancreas) and this ubiquitous pattern suggests a role for NT3, outside the nervous system and related to metabolic functions. The presence of the NT3/TrkC pathway in the adipose tissue (AT) has never been investigated. Present work studies in human and murine adipose tissue (AT) the presence of elements of the NT3/TrkC pathway and its role on lipolysis and adipocyte differentiation. qRT-PCR and immunoblot indicate that NT3 (encoded by NTF3) was present in human retroperitoneal AT and decreases with age. NT3 was also present in rat isolated adipocytes and retroperitoneal, interscapular, perivascular, and perirenal AT. Histological analysis evidences that NT3 was mainly present in vessels irrigating AT close associated to sympathetic fibers. Similar mRNA levels of TrkC (encoded by NTRK3) and β-adrenoceptors were found in all ATs assayed and in isolated adipocytes. NT3, through TrkC activation, exert a mild effect in lipolysis. Addition of NT3 during the differentiation process of human pre-adipocytes resulted in smaller adipocytes and increased uncoupling protein-1 (UCP-1) without changes in β-adrenoceptors. Similarly, transgenic mice with reduced expression of NT3 (Ntf3 knock-in lacZ reporter mice) or lacking endothelial NT3 expression (Ntf3flox1/flox2;Tie2-Cre+/0) displayed enlarged white and brown adipocytes and lower UCP-1 expression. Conclusions NT3, mainly released by blood vessels, activates TrkC and regulates adipocyte differentiation and browning. Disruption of NT3/TrkC signaling conducts to hypertrophied white and brown adipocytes with reduced expression of the thermogenesis marker UCP-1.
Collapse
Affiliation(s)
- María Bové
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Fermi Monto
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Paloma Guillem-Llobat
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - M Dolores Ivorra
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - M Antonia Noguera
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Andrea Zambrano
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - M Salome Sirerol-Piquer
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- CIBER en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ana Cristina Requena
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
| | - Mauricio García-Alonso
- Servicio de Cirugía General y Aparato Digestivo, Hospital Clínico San Carlos, Madrid, Spain
| | - Teresa Tejerina
- Servicio de Cirugía General y Aparato Digestivo, Hospital Clínico San Carlos, Madrid, Spain
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - José T. Real
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario e INCLIVA, Valencia, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Isabel Fariñas
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
- CIBER en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pilar D’Ocon
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| |
Collapse
|
33
|
He Y, Cai Y, Pai PM, Ren X, Xia Z. The Causes and Consequences of miR-503 Dysregulation and Its Impact on Cardiovascular Disease and Cancer. Front Pharmacol 2021; 12:629611. [PMID: 33762949 PMCID: PMC7982518 DOI: 10.3389/fphar.2021.629611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
microRNAs (miRs) are short, non-coding RNAs that regulate gene expression by mRNA degradation or translational repression. Accumulated studies have demonstrated that miRs participate in various biological processes including cell differentiation, proliferation, apoptosis, metabolism and development, and the dysregulation of miRs expression are involved in different human diseases, such as neurological, cardiovascular disease and cancer. microRNA-503 (miR-503), one member of miR-16 family, has been studied widely in cardiovascular disease and cancer. In this review, we summarize and discuss the studies of miR-503 in vitro and in vivo, and how miR-503 regulates gene expression from different aspects of pathological processes of diseases, including carcinogenesis, angiogenesis, tissue fibrosis and oxidative stress; We will also discuss the mechanisms of dysregulation of miR-503, and whether miR-503 could be applied as a diagnostic marker or therapeutic target in cardiovascular disease or cancer.
Collapse
Affiliation(s)
- Yanjing He
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Pearl Mingchu Pai
- Department of Medicine, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
- Department of Medicine, The University of Hong Kong - Queen Mary Hospital, Hong Kong, China
| | - Xinling Ren
- Department of Respiratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
34
|
Bi W, Wang J, Jiang Y, Li Q, Wang S, Liu M, Liu Q, Li F, Paul C, Wang Y, Yang HT. Neurotrophin-3 contributes to benefits of human embryonic stem cell-derived cardiovascular progenitor cells against reperfused myocardial infarction. Stem Cells Transl Med 2021; 10:756-772. [PMID: 33529481 PMCID: PMC8046156 DOI: 10.1002/sctm.20-0456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/22/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction (MI) resulting from coronary ischemia is a major cause of disability and death worldwide. Transplantation of human embryonic stem cell (hESC)‐derived cardiovascular progenitor cells (hCVPCs) promotes the healing of infarcted hearts by secreted factors. However, the hCVPC‐secreted proteins contributing to cardiac repair remain largely unidentified. In this study, we investigated protective effects of neurotrophin (NT)‐3 secreted from hCVPCs in hearts against myocardial ischemia/reperfusion (I/R) injury and explored the underlying mechanisms to determine the potential of using hCVPC products as a new therapeutic strategy. The implantation of hCVPCs into infarcted myocardium at the beginning of reperfusion following 1 hour of ischemia improved cardiac function and scar formation of mouse hearts. These beneficial effects were concomitant with reduced cardiomyocyte death and increased angiogenesis. Moreover, hCVPCs secreted a rich abundance of NT‐3. The cardioreparative effect of hCVPCs in the I/R hearts was mimicked by human recombinant NT‐3 (hNT‐3) but canceled by NT‐3 neutralizing antibody (NT‐3‐Ab). Furthermore, endogenous NT‐3 was detected in mouse adult cardiomyocytes and its level was enhanced in I/R hearts. Adenovirus‐mediated NT‐3 knockdown exacerbated myocardial I/R injury. Mechanistically, hNT‐3 and endogenous NT‐3 inhibited I/R‐induced cardiomyocyte apoptosis through activating the extracellular signal‐regulated kinase (ERK) and reducing the Bim level, resulting in the cardioreparative effects of infarcted hearts together with their effects in the improvement of angiogenesis. These results demonstrate for the first time that NT‐3 is a cardioprotective factor secreted by hCVPCs and exists in adult cardiomyocytes that reduces I/R‐induced cardiomyocyte apoptosis via the ERK‐Bim signaling pathway and promotes angiogenesis. As a cell product, NT‐3 may represent as a noncell approach for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Wei Bi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Jinxi Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Yun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Qiang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Shihui Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Meilan Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Qiao Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Fang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Jiao Tong University School of Medicine & Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China.,Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine and Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China.,Institute for Stem Cell and Regeneration, CAS, Beijing, People's Republic of China
| |
Collapse
|
35
|
Brain-derived neurotrophic factor, depressive symptoms and somatic comorbidity in patients with coronary heart disease. Acta Neuropsychiatr 2021; 33:22-30. [PMID: 32967752 DOI: 10.1017/neu.2020.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Depression and coronary heart disease (CHD) are highly comorbid conditions. Brain-derived neurotrophic factor (BDNF) plays an important role in cardiovascular processes. Depressed patients typically show decreased BDNF concentrations. We analysed the relationship between BDNF and depression in a sample of patients with CHD and additionally distinguished between cognitive-affective and somatic depression symptoms. We also investigated whether BDNF was associated with somatic comorbidity burden, acute coronary syndrome (ACS) or congestive heart failure (CHF). METHODS The following variables were assessed for 225 hospitalised patients with CHD: BDNF concentrations, depression [Patient Health Questionnaire-9 (PHQ-9)], somatic comorbidity (Charlson Comorbidity Index), CHF, ACS, platelet count, smoking status and antidepressant treatment. RESULTS Regression models revealed that BDNF was not associated with severity of depression. Although depressed patients (PHQ-9 score >7) had significantly lower BDNF concentrations compared to non-depressed patients (p = 0.04), this was not statistically significant after controlling for confounders (p = 0.15). Cognitive-affective symptoms and somatic comorbidity burden each closely missed a statistically significant association with BDNF concentrations (p = 0.08, p = 0.06, respectively). BDNF was reduced in patients with CHF (p = 0.02). There was no covariate-adjusted, significant association between BDNF and ACS. CONCLUSION Serum BDNF concentrations are associated with cardiovascular dysfunction. Somatic comorbidities should be considered when investigating the relationship between depression and BDNF.
Collapse
|
36
|
Pius-Sadowska E, Machaliński B. Pleiotropic activity of nerve growth factor in regulating cardiac functions and counteracting pathogenesis. ESC Heart Fail 2021; 8:974-987. [PMID: 33465292 PMCID: PMC8006610 DOI: 10.1002/ehf2.13138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022] Open
Abstract
Cardiac innervation density generally reflects the levels of nerve growth factor (NGF) produced by the heart—changes in NGF expression within the heart and vasculature contribute to neuronal remodelling (e.g. sympathetic hyperinnervation or denervation). Its synthesis and release are altered under different pathological conditions. Although NGF is well known for its survival effects on neurons, it is clear that these effects are more wide ranging. Recent studies reported both in vitro and in vivo evidence for beneficial actions of NGF on cardiomyocytes in normal and pathological hearts, including prosurvival and antiapoptotic effects. NGF also plays an important role in the crosstalk between the nervous and cardiovascular systems. It was the first neurotrophin to be implicated in postnatal angiogenesis and vasculogenesis by autocrine and paracrine mechanisms. In connection with these unique cardiovascular properties of NGF, we have provided comprehensive insight into its function and potential effect of NGF underlying heart sustainable/failure conditions. This review aims to summarize the recent data on the effects of NGF on various cardiovascular neuronal and non‐neuronal functions. Understanding these mechanisms with respect to the diversity of NGF functions may be crucial for developing novel therapeutic strategies, including NGF action mechanism‐guided therapies.
Collapse
Affiliation(s)
- Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin, 70111, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin, 70111, Poland
| |
Collapse
|
37
|
Trombetta IC, DeMoura JR, Alves CR, Carbonari-Brito R, Cepeda FX, Lemos JR. Serum Levels of BDNF in Cardiovascular Protection and in Response to Exercise. Arq Bras Cardiol 2020; 115:263-269. [PMID: 32876194 PMCID: PMC8384297 DOI: 10.36660/abc.20190368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
As doenças cardiovasculares (DCV) são atualmente a maior causa de morte no Brasil e no mundo. Em 2016 as DCV foram responsáveis por mais de 17 milhões de mortes, representando 31% de todas as mortes em nível global. Mecanismos moleculares e genéticos podem estar envolvidos na proteção cardiovascular e devem ser considerados nas novas abordagens terapêuticas. Nesse sentido, recentes estudos têm relatado que o Fator Neurotrófico Derivado do Encéfalo (Brain-Derived Neurotrophic Factor, BDNF) está reduzido em indivíduos predispostos a desenvolverem DCV, e que o treinamento físico aeróbio aumenta as quantidades de BDNF circulante. O BDNF é uma neurotrofina encontrada em altas concentrações no hipocampo e córtex cerebral, sendo considerada molécula-chave na manutenção da plasticidade sináptica e na sobrevivência das células neuronais. Além da plasticidade neuronal, BDNF também é importante na função vascular, promovendo angiogênese por meio da regulação por espécies reativas de oxigênio (ROS). Entretanto, uma variante do gene do BDNF em humanos, o polimorfismo Val66Met (substituição do aminoácido valina por uma metionina na posição 66 do códon), que ocorre em 20-30% da população caucasiana, pode afetar as concentrações de BDNF no plasma e sua atividade em todos os tecidos periféricos contendo receptores tirosina quinase B (TrkB), como o endotélio. De fato, recentemente observamos que o polimorfismo Val66Met prejudica a reatividade vascular e o BDNF circulante em resposta ao treinamento físico. Dessa forma, apresentaremos a seguir uma discussão sobre os níveis séricos de BDNF na proteção cardiovascular, a variante genética Val66Met na reatividade vascular e o efeito do exercício físico.
Collapse
Affiliation(s)
| | - José Roberto DeMoura
- Universidade Nove de Julho (UNINOVE), São Paulo, SP - Brasil.,Escola de Educação Física da Polícia Militar do Estado de São Paulo, São Paulo, SP - Brasil
| | | | | | | | - José Ribeiro Lemos
- Escola de Educação Física da Polícia Militar do Estado de São Paulo, São Paulo, SP - Brasil
| |
Collapse
|
38
|
Wang X, Xu J, Kang Q. Neuromodulation of bone: Role of different peptides and their interactions (Review). Mol Med Rep 2020; 23:32. [PMID: 33179112 PMCID: PMC7684869 DOI: 10.3892/mmr.2020.11670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Our understanding of the skeletal system has been expanded upon the recognition of several neural pathways that serve important roles in bone metabolism and skeletal homeostasis, as bone tissue is richly innervated. Considerable evidence provided by in vitro, animal and human studies have further elucidated the importance of a host of hormones and local factors, including neurotransmitters, in modulating bone metabolism and osteo-chondrogenic differentiation, both peripherally and centrally. Various cells of the musculoskeletal system not only express receptors for these neurotransmitters, but also influence their endogenous levels in the skeleton. As with a number of physiological systems in nature, a neuronal pathway regulating bone turnover will be neutralized by another pathway exerting an opposite effect. These neuropeptides are also critically involved in articular cartilage homeostasis and pathogenesis of degenerative joint disorders, such as osteoarthritis. In the present Review, data on the role of several neuronal populations in nerve-dependent skeletal metabolism is examined, and the molecular events involved are explored, which may reveal broader relationships between two apparently unrelated organs.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
39
|
Goldsteen PA, Dolga AM, Gosens R. Advanced Modeling of Peripheral Neuro-Effector Communication and -Plasticity. Physiology (Bethesda) 2020; 35:348-357. [PMID: 32783607 DOI: 10.1152/physiol.00010.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The peripheral nervous system (PNS) plays crucial roles in physiology and disease. Neuro-effector communication and neuroplasticity of the PNS are poorly studied, since suitable models are lacking. The emergence of human pluripotent stem cells (hPSCs) has great promise to resolve this deficit. hPSC-derived PNS neurons, integrated into organ-on-a-chip systems or organoid cultures, allow co-cultures with cells of the local microenvironment to study neuro-effector interactions and to probe mechanisms underlying neuroplasticity.
Collapse
Affiliation(s)
- Pien A Goldsteen
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
40
|
Fang J, Wei Z, Zheng D, Ying T, Hong H, Hu D, Lin Y, Jiang X, Wu L, Lan T, Yang Z, Zhou X, Chen L. Recombinant Extracellular Domain (p75ECD) of the Neurotrophin Receptor p75 Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting the p-JNK/Caspase-3 Signaling Pathway in Rat Microvascular Pericytes. J Am Heart Assoc 2020; 9:e016047. [PMID: 32567476 PMCID: PMC7670530 DOI: 10.1161/jaha.119.016047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Pro-NTs (precursor of neurotrophins) and their receptor p75 are potential targets for preventing microvascular dysfunction induced by myocardial ischemia-reperfusion injury (IRI). p75ECD (ectodomain of neurotrophin receptor p75) may physiologically produce neurocytoprotective effects by scavenging pro-NTs. We therefore hypothesized that p75ECD may have a cardioprotective effect on IRI through microvascular mechanisms. Methods and Results Myocardial IRI was induced in Sprague-Dawley rats by occluding the left main coronary arteries for 45 minutes before a subsequent relaxation. Compared with the ischemia-reperfusion group, an intravenous injection of p75ECD (3 mg/kg) 5 minutes before reperfusion reduced the myocardial infarct area at 24 hours after reperfusion (by triphenyltetrazolium chloride, 44.9±3.9% versus 34.6±5.7%, P<0.05); improved the left ventricular ejection fraction (by echocardiography), with less myocardial fibrosis (by Masson's staining), and prevented microvascular dysfunction (by immunofluorescence) at 28 days after reperfusion; and reduced myocardial pro-NTs expression at 24 hours and 28 days after reperfusion (by Western blotting). A simulative IRI model using rat microvascular pericytes was established in vitro by hypoxia-reoxygenation (2/6 hours) combined with pro-NTs treatment (3 nmol/L) at R. p75ECD (3 μg/mL) given at R improved pericyte survival (by methyl thiazolyl tetrazolium assay) and attenuated apoptosis (by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling). In the reperfused hearts and hypoxia-reoxygenation +pro-NTs-injured pericytes, p75ECD inhibited the expression of p-JNK (phospho of c-Jun N-terminal kinase)/caspase-3 (by Western blotting). SP600125, an inhibitor of JNK, did not enhance the p75ECD-induced infarct-sparing effects and pericyte protection. Conclusions p75ECD may attenuate myocardial IRI via pro-NTs reduction-induced inhibition of p-JNK/caspase-3 pathway of microvascular pericytes in rats.
Collapse
Affiliation(s)
- Jun Fang
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - ZhiXiong Wei
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - DeDong Zheng
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - Teng Ying
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - HuaShan Hong
- Fujian Key Laboratory of Vascular Aging Department of Geriatrics Fujian Institute of Geriatrics Fujian Medical University Union Hospital Fuzhou P. R. China
| | - DanQing Hu
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - YunLing Lin
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - XiaoLiang Jiang
- Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medicine Centre, Peking Union Medical Collage, and Beijing Collaborative Innovation Center for Cardiovascular Disorders Beijing P. R. China
| | - LingZhen Wu
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - TingXiang Lan
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - ZhiWei Yang
- Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medicine Centre, Peking Union Medical Collage, and Beijing Collaborative Innovation Center for Cardiovascular Disorders Beijing P. R. China
| | - XinFu Zhou
- Neuroregeneration Laboratory Division of Health Sciences School of Pharmacy and Medical Sciences University of South Australia Adelaide South Australia Australia
| | - LiangLong Chen
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| |
Collapse
|
41
|
Petyunina OV, Kopytsya MP, Berezin AE, Skrynnyk OV. Subclinical emotional distress predicts 6-month clinical outcomes after ST-segment elevation myocardial infarction. Future Cardiol 2020; 16:457-467. [PMID: 32508125 DOI: 10.2217/fca-2019-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate associations between subclinical distress and 6-month clinical outcomes after ST-segment elevation myocardial infarction (STEMI). Materials & methods: The case-control study involved 144 STEMI patients (72 STEMI having subclinical emotional disturbances were included to the case group and 72 STEMI individuals matched with age, sex and cardiovascular risk factors were enrolled to the control group). The primary end point was the combination of 6-month events including CV death, recurrent angina, newly diagnosed heart failure and re-hospitalization. Results: The emotional distress predicted out-hospital combined end point (odds ratio [OR] = 2.48; 95% CI: 1.12-5.33; p = 0.034). Other independent predictors of out-hospital end point were Type 2 diabetes mellitus (OR = 1.10; 95% CI: 1.02-1.23; p = 0.048), thrombolysis in myocardial infarction score <6 units (OR = 0.86; 95% CI: 0.67-0.92; p = 0.001) and the number of culprit vessels (OR = 1.19; 95% CI: 1.02-1.34; p = 0.002). Conclusion: Premorbid emotional distress independently predicted 6 month combined clinical end point in STEMI patients.
Collapse
Affiliation(s)
- Olga V Petyunina
- Senior researcher of department of prevention & treatment of emergency conditions, "LT Malaya Therapy National Institute NAMSU", 2A Liubovi Maloy av., Kharkiv 61039, Ukraine
| | - Mykola P Kopytsya
- Chief of Department of prevention & treatment of emergency conditions, "LT Malaya Therapy National Institute NAMSU", 2A Liubovi Maloy av., Kharkiv 61039, Ukraine
| | - Alexander E Berezin
- Senior Consultant of Therapeutic Unit, Internal Medicine Department, State Medical University of Zaporozhye, 26, Mayakovsky av., Zaporozhye UA-69035, Ukraine
| | - Olga V Skrynnyk
- Senior Staff of the Department of Clinical, Social & Child Psychiatry of the State Institution "Institute of Neurology, Psychiatry & Narcology of The National Academy of Medical Sciences of Ukraine", Assistant of The Department of Clinical Neurology, Psychiatry & Narcology of V. N. Karazin's Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|
42
|
Jadhav A, Khaire A, Joshi S. Exploring the role of oxidative stress, fatty acids and neurotrophins in gestational diabetes mellitus. Growth Factors 2020; 38:226-234. [PMID: 33703982 DOI: 10.1080/08977194.2021.1895143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gestational diabetes mellitus (GDM) constitutes an unfavorable intrauterine environment for embryonic and feto-placental development. Women with GDM are at higher risk for materno-fetal complications and placental abnormalities. The placenta acts as an interface between the maternal and fetal circulations and also plays an important role in protecting the fetus from adverse effects of maternal metabolic conditions. One of the earliest abnormalities observed in GDM pregnancies is increased oxidative stress in the placenta which affects fetal development. Imbalances in maternal nutrition particularly long-chain polyunsaturated fatty acid (LCPUFA) intake and/or metabolism lead to increased oxidative stress. Reports indicate that oxidative stress and LCPUFA such as docosahexaenoic acid affect the levels of neurotrophins. The present review aims to provide insights into a mechanistic link between oxidative stress, LCPUFA and neurotrophin in the placenta in women with GDM and its implications for neurodevelopmental outcomes in children.
Collapse
Affiliation(s)
- Anjali Jadhav
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Amrita Khaire
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
43
|
D'Angelo A, Ceccanti M, Petrella C, Greco A, Tirassa P, Rosso P, Ralli M, Ferraguti G, Fiore M, Messina MP. Role of neurotrophins in pregnancy, delivery and postpartum. Eur J Obstet Gynecol Reprod Biol 2020; 247:32-41. [PMID: 32058187 DOI: 10.1016/j.ejogrb.2020.01.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 01/09/2023]
Abstract
Neurotrophins (NTs) are a family of polypeptides whose functions have been extensively studied in the past two decades. In particular, Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF) play a major role in the development, nutrition and growth of the central and peripheral nervous system and in the pathogenesis of neurodegenerative, cardiometabolic and (auto)immune diseases. However, NGF and BDNF have subtle functions for follicular development, implantation, and placentation. This short narrative review summarizes the existing evidence, published between 2000 and 2019, about the role of NTs in many different conditions that might affect women during and after pregnancy such as preeclampsia, gestational diabetes, obesity, depression, anxiety, smoking and alcohol abuse. Literature suggests that the dysregulation of synthesis and release of NTs may lead to decisive effects on both maternal and fetal health. Some piece of evidences was found about a possible association between NGF/BDNF and breastfeeding. Additional studies on human models are necessary to further characterize the role of NTs in life-changing experiences like labor and delivery.
Collapse
Affiliation(s)
- Alessio D'Angelo
- Department of Gynecology, Obstetric, and Urology, Sapienza University of Rome, Italy
| | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio, Sapienza University of Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Italy
| | | | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy.
| | | |
Collapse
|
44
|
Judd J, Lovas J, Huang GN. Defined factors to reactivate cell cycle activity in adult mouse cardiomyocytes. Sci Rep 2019; 9:18830. [PMID: 31827131 PMCID: PMC6906479 DOI: 10.1038/s41598-019-55027-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Adult mammalian cardiomyocytes exit the cell cycle during the neonatal period, commensurate with the loss of regenerative capacity in adult mammalian hearts. We established conditions for long-term culture of adult mouse cardiomyocytes that are genetically labeled with fluorescence. This technique permits reliable analyses of proliferation of pre-existing cardiomyocytes without complications from cardiomyocyte marker expression loss due to dedifferentiation or significant contribution from cardiac progenitor cell expansion and differentiation in culture. Using this system, we took a candidate gene approach to screen for fetal-specific proliferative gene programs that can induce proliferation of adult mouse cardiomyocytes. Using pooled gene delivery and subtractive gene elimination, we identified a novel functional interaction between E2f Transcription Factor 2 (E2f2) and Brain Expressed X-Linked (Bex)/Transcription elongation factor A-like (Tceal) superfamily members Bex1 and Tceal8. Specifically, Bex1 and Tceal8 both preserved cell viability during E2f2-induced cell cycle re-entry. Although Tceal8 inhibited E2f2-induced S-phase re-entry, Bex1 facilitated DNA synthesis while inhibiting cell death. In sum, our study provides a valuable method for adult cardiomyocyte proliferation research and suggests that Bex family proteins may function in modulating cell proliferation and death decisions during cardiomyocyte development and maturation.
Collapse
Affiliation(s)
- Justin Judd
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jonathan Lovas
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Guo N Huang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA. .,Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA. .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
45
|
Nivet AL, Dufort I, Gilbert I, Sirard MA. Short-term effect of FSH on gene expression in bovine granulosa cells in vitro. Reprod Fertil Dev 2019. [PMID: 29529392 DOI: 10.1071/rd17469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In reproduction, FSH is one of the most important hormones, especially in females, because it controls the number of follicles and the rate of follicular growth. Although several studies have examined the follicular response at the transcriptome level, it is difficult to obtain a clear and complete picture of the genes responding to an increase in FSH in an in vivo context because follicles undergo rapid morphological and physical changes during their growth. To help define the transcriptome downstream response to FSH, an in vitro model was used in the present study to observe the short-term (4h) cellular response. Gene expression analysis highlighted a set of novel transcripts that had not been reported previously as being part of the FSH response. Moreover, the results of the present study indicate that the epithelial to mesenchymal transition pathway is inhibited by short-term FSH stimuli, maintaining follicles in a growth phase and preventing differentiation. Modulating gene expression in vitro has physiological limitations, but it can help assess the potential downstream response and begin the mapping of the granulosa cell transcriptome in relation to FSH. This information is a key feature to help discriminate between the effects of FSH and LH, or to elucidate the overlapping of insulin-like growth factor 1 and FSH in the granulosa mitogenic response.
Collapse
Affiliation(s)
- Anne-Laure Nivet
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - Isabelle Dufort
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - Isabelle Gilbert
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
46
|
Descamps B, Saif J, Benest AV, Biglino G, Bates DO, Chamorro-Jorganes A, Emanueli C. BDNF (Brain-Derived Neurotrophic Factor) Promotes Embryonic Stem Cells Differentiation to Endothelial Cells Via a Molecular Pathway, Including MicroRNA-214, EZH2 (Enhancer of Zeste Homolog 2), and eNOS (Endothelial Nitric Oxide Synthase). Arterioscler Thromb Vasc Biol 2019; 38:2117-2125. [PMID: 30354255 DOI: 10.1161/atvbaha.118.311400] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective- The NTs (neurotrophins), BDNF (brain-derived neurotrophic factor) and NT-3 promote vascular development and angiogenesis. This study investigated the contribution of endogenous NTs in embryonic stem cell (ESC) vascular differentiation and the potential of exogenous BDNF to improve the process of ESC differentiation to endothelial cells (ECs). Approach and Results- Mouse ESCs were differentiated into vascular cells using a 2-dimensional embryoid body (EB) model. Supplementation of either BDNF or NT-3 increased EC progenitors' abundance at day 7 and enlarged the peripheral vascular plexus with ECs and SM22α+ (smooth muscle 22 alpha-positive) smooth muscle cells by day 13. Conversely, inhibition of either BDNF or NT-3 receptor signaling reduced ECs, without affecting smooth muscle cells spread. This suggests that during vascular development, endogenous NTs are especially relevant for endothelial differentiation. At mechanistic level, we have identified that BDNF-driven ESC-endothelial differentiation is mediated by a pathway encompassing the transcriptional repressor EZH2 (enhancer of zeste homolog 2), microRNA-214 (miR-214), and eNOS (endothelial nitric oxide synthase). It was known that eNOS, which is needed for endothelial differentiation, can be transcriptionally repressed by EZH2. In turn, miR-214 targets EZH2 for inhibition. We newly found that in ESC-ECs, BDNF increases miR-214 expression, reduces EZH2 occupancy of the eNOS promoter, and increases eNOS expression. Moreover, we found that NRP-1 (neuropilin 1), KDR (kinase insert domain receptor), and pCas130 (p130 Crk-associated substrate kinase), which reportedly induce definitive endothelial differentiation of pluripotent cells, were increased in BDNF-conditioned ESC-EC. Mechanistically, miR-214 mediated the BDNF-induced expressional changes, contributing to BDNF-driven endothelial differentiation. Finally, BDNF-conditioned ESC-ECs promoted angiogenesis in vitro and in vivo. Conclusions- BDNF promotes ESC-endothelial differentiation acting via miR-214.
Collapse
Affiliation(s)
- Betty Descamps
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom (B.D., J.S., G.B., C.E.)
| | - Jaimy Saif
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom (B.D., J.S., G.B., C.E.)
| | - Andrew V Benest
- Tumour and Vascular Biology Laboratories, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, United Kingdom (A.V.B., D.O.B.)
| | - Giovanni Biglino
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom (B.D., J.S., G.B., C.E.)
| | - David O Bates
- Tumour and Vascular Biology Laboratories, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, United Kingdom (A.V.B., D.O.B.)
| | | | - Costanza Emanueli
- From the Bristol Heart Institute, School of Clinical Sciences, University of Bristol, United Kingdom (B.D., J.S., G.B., C.E.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (A.C.-J., C.E.)
| |
Collapse
|
47
|
Dang Z, Avolio E, Albertario A, Sala-Newby GB, Thomas AC, Wang N, Emanueli C, Madeddu P. Nerve growth factor gene therapy improves bone marrow sensory innervation and nociceptor-mediated stem cell release in a mouse model of type 1 diabetes with limb ischaemia. Diabetologia 2019; 62:1297-1311. [PMID: 31016359 PMCID: PMC6560027 DOI: 10.1007/s00125-019-4860-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/04/2019] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Sensory neuropathy is common in people with diabetes; neuropathy can also affect the bone marrow of individuals with type 2 diabetes. However, no information exists on the state of bone marrow sensory innervation in type 1 diabetes. Sensory neurons are trophically dependent on nerve growth factor (NGF) for their survival. The aim of this investigation was twofold: (1) to determine if sensory neuropathy affects the bone marrow in a mouse model of type 1 diabetes, with consequences for stem cell liberation after tissue injury; and (2) to verify if a single systemic injection of the NGF gene exerts long-term beneficial effects on these phenomena. METHODS A mouse model of type 1 diabetes was generated in CD1 mice by administration of streptozotocin; vehicle was administered to non-diabetic control animals. Diabetic animals were randomised to receive systemic gene therapy with either human NGF or β-galactosidase. After 13 weeks, limb ischaemia was induced in both groups to study the recovery post injury. When the animals were killed, samples of tissue and peripheral blood were taken to assess stem cell mobilisation and homing, levels of substance P and muscle vascularisation. An in vitro cellular model was adopted to verify signalling downstream to human NGF and related neurotrophic or pro-apoptotic effects. Normally distributed variables were compared between groups using the unpaired Student's t test and non-normally distributed variables were assessed by the Wilcoxon-Mann-Whitney test. The Fisher's exact test was employed for categorical variables. RESULTS Immunohistochemistry indicated a 3.3-fold reduction in the number of substance P-positive nociceptive fibres in the bone marrow of type 1 diabetic mice (p < 0.001 vs non-diabetic). Moreover, diabetes abrogated the creation of a neurokinin gradient which, in non-diabetic mice, favoured the mobilisation and homing of bone-marrow-derived stem cells expressing the substance P receptor neurokinin 1 receptor (NK1R). Pre-emptive gene therapy with NGF prevented bone marrow denervation, contrasting with the inhibitory effect of diabetes on the mobilisation of NK1R-expressing stem cells, and restored blood flow recovery from limb ischaemia. In vitro hNGF induced neurite outgrowth and exerted anti-apoptotic actions on rat PC12 cells exposed to high glucose via activation of the canonical neurotrophic tyrosine kinase receptor type 1 (TrkA) signalling pathway. CONCLUSIONS/INTERPRETATION This study shows, for the first time, the occurrence of sensory neuropathy in the bone marrow of type 1 diabetic mice, which translates into an altered modulation of substance P and depressed release of substance P-responsive stem cells following ischaemia. NGF therapy improves bone marrow sensory innervation, with benefits for healing on the occurrence of peripheral ischaemia. Nociceptors may represent a new target for the treatment of ischaemic complications in diabetes.
Collapse
Affiliation(s)
- Zexu Dang
- Experimental Cardiovascular Medicine, Faculty of Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Elisa Avolio
- Experimental Cardiovascular Medicine, Faculty of Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Ambra Albertario
- Experimental Cardiovascular Medicine, Faculty of Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Graciela B Sala-Newby
- Experimental Cardiovascular Medicine, Faculty of Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Anita C Thomas
- Experimental Cardiovascular Medicine, Faculty of Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Nianhong Wang
- Experimental Cardiovascular Medicine, Faculty of Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Pudong, Shanghai, China
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine, Faculty of Translational Health Sciences, Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
48
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
49
|
Kizilyer A, Singh MV, Singh VB, Suwunnakorn S, Palis J, Maggirwar SB. Inhibition of Tropomyosin Receptor Kinase A Signaling Negatively Regulates Megakaryopoiesis and induces Thrombopoiesis. Sci Rep 2019; 9:2781. [PMID: 30808933 PMCID: PMC6391490 DOI: 10.1038/s41598-019-39385-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
Neurotrophin signaling modulates the differentiation and function of mature blood cells. The expression of neurotrophin receptors and ligands by hematopoietic and stromal cells of the bone marrow indicates that neurotrophins have the potential to regulate hematopoietic cell fate decisions. This study investigates the role of neurotrophins and Tropomyosin receptor kinases (Trk) in the development of megakaryocytes (MKs) and their progeny cells, platelets. Results indicate that primary human MKs and MK cells lines, DAMI, Meg-01 and MO7e express TrkA, the primary receptor for Nerve Growth Factor (NGF) signaling. Activation of TrkA by NGF enhances the expansion of human MK progenitors (MKPs) and, to some extent, MKs. Whereas, inhibition of TrkA receptor by K252a leads to a 50% reduction in the number of both MKPs and MKs and is associated with a 3-fold increase in the production of platelets. In order to further confirm the role of TrkA signaling in platelet production, TrkA deficient DAMI cells were generated using CRISPR-Cas9 technology. Comparative analysis of wild-type and TrkA-deficient Dami cells revealed that loss of TrkA signaling induced apoptosis of MKs and increased platelet production. Overall, these findings support a novel role for TrkA signaling in platelet production and highlight its potential as therapeutic target for Thrombocytopenia.
Collapse
Affiliation(s)
- Ayse Kizilyer
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Meera V Singh
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Vir B Singh
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Sumanun Suwunnakorn
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - James Palis
- Department of Pediatrics, Hematology and Oncology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States of America.
| |
Collapse
|
50
|
Dokanehiifard S, Soltani BM. TrkC-miR2 regulates TGFβ signaling pathway through targeting of SMAD3 transcript. J Cell Biochem 2019; 120:2634-2641. [PMID: 30304551 DOI: 10.1002/jcb.27572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023]
Abstract
TrkC, neurotrophin receptor, functions inside and outside of the nervous system and has a crucial effect on the regulation of cardiovascular formation. Recently, we introduced TrkC-miR2 as a novel microRNA located in TrkC gene, which is a regulator of the Wnt signaling pathway. Here, we presented a lot of evidence showing that TrkC-miR2 also regulates the transforming growth factor-beta (TGFβ) signaling pathway. Bioinformatics studies predicted SMAD3 as one of the bona fide TrkC-miR2 target genes. Quantitative reverse transcription PCR (RT-qPCR), Western blot analysis, and dual luciferase assay analysis confirmed that SMAD3 is targeted by TrkC-miR2. On the other hand, overexpression of TrkC-miR2 in cardiosphere-derived cells (CDCs) rendered downregulation of TGFβR1, TGFβR2, and SMAD7 detected by RT-qPCR. Consistently, an inverse correlation of expression between TrkC-miR2 and SMAD3 genes was detected during the course of CDC differentiation, and also during the course of human embryonic stem cells differentiation to cardiomyocytes. Overall, we conclude that TrkC-miR2 downregulates the expression of SMAD3 and potentially regulates the TGFβ signaling pathway. Knowing its approved effect on Wnt signaling, TrkC-miR2 here is introduced as a common regulator of both the Wnt and TGFβ signaling pathways. Therefore, it may be a potential key element in controlling both of these signaling pathways in cell processes like colorectal cancer and cardiogenesis.
Collapse
Affiliation(s)
- Sadat Dokanehiifard
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|