1
|
De Angelis E, Borghetti P, Passeri B, Cavalli V, Ferrari L, Andrani M, Martelli P, Saleri R. Hyperosmotic Stress Induces the Expression of Organic Osmolyte Transporters in Porcine Intestinal Cells and Betaine Exerts a Protective Effect on the Barrier Function. Biomedicines 2024; 12:2391. [PMID: 39457703 PMCID: PMC11503993 DOI: 10.3390/biomedicines12102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/objectives: The porcine intestinal epithelium plays a fundamental role as a defence interface against pathogens. Its alteration can cause severe inflammatory conditions and diseases. Hyperosmotic stress under physiological conditions and upon pathogen challenge can cause malabsorption. Different cell types counteract the osmolarity increase by accumulating organic osmolytes such as betaine, taurine, and myo-inositol through specific transporters. Betaine is known for protecting cells from hyperosmotic stress and has positive effects when fed to pigs. The aim of this study is to demonstrate the modulation of osmolyte transporters gene expression in IPEC-J2 during osmolarity changes and assess the effects of betaine. Methods: IPEC-J2 were seeded in transwells, where differentiate as a polarized monolayer. Epithelial cell integrity (TEER), oxidative stress (NO) and gene expression of osmolyte transporters, tight junction proteins (TJp) and pro-inflammatory cytokines were evaluated. Results: Cells treated with NaCl hyperosmolar medium (500 mOsm/L) showed a TEER decrease at 3 h and detachment within 24 h, associated with an osmolyte transporters reduction. IPEC-J2 treated with mannitol hyperosmolar medium (500 mOsm/L) upregulated taurine (TauT), myo-inositol (SMIT) and betaine (BGT1) transporters expression. A decrease in TJp expression was associated with a TEER decrease and an increase in TNFα, IL6, and IL8. Betaine could attenuate the hyperosmolarity-induced reduction in TEER and TJp expression, the NO increase and cytokines upregulation. Conclusions: This study demonstrates the expression of osmolyte transporters in IPEC-J2, which was upregulated upon hyperosmotic treatment. Betaine counteracts changes in intracellular osmolarity by contributing to maintaining the epithelial barrier function and reducing the inflammatory condition. Compatible osmolytes may provide beneficial effects in therapies for diseases characterized by inflammation and TJp-related dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | | | - Melania Andrani
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (E.D.A.); (P.B.); (B.P.); (V.C.); (L.F.); (P.M.); (R.S.)
| | | | | |
Collapse
|
2
|
Gupta A, Gomes I, Osman A, Fujita W, Devi LA. Regulation of Cannabinoid and Opioid Receptor Levels by Endogenous and Pharmacological Chaperones. J Pharmacol Exp Ther 2024; 391:279-288. [PMID: 39103231 PMCID: PMC11493451 DOI: 10.1124/jpet.124.002187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Cannabinoid and opioid receptor activities can be modulated by a variety of post-translational mechanisms including the formation of interacting complexes. This study examines the involvement of endogenous and exogenous chaperones in modulating the abundance and activity of cannabinoid CB1 receptor (CB1R), δ opioid receptor (DOR), and CB1R-DOR interacting complexes. Focusing on endogenous protein chaperones, namely receptor transporter proteins (RTPs), we examined relative mRNA expression in the mouse spinal cord and found RTP4 to be expressed at higher levels compared with other RTPs. Next, we assessed the effect of RTP4 on receptor abundance by manipulating RTP4 expression in cell lines. Overexpression of RTP4 causes an increase and knock-down causes a decrease in the levels of CB1R, DOR, and CB1R-DOR interacting complexes; this is accompanied by parallel changes in signaling. The ability of small molecule lipophilic ligands to function as exogenous chaperones was examined using receptor-selective antagonists. Long-term treatment leads to increases in receptor abundance and activity with no changes in mRNA supporting a role as pharmacological chaperones. Finally, the effect of cannabidiol (CBD), a small molecule ligand and a major active component of cannabis, on receptor abundance and activity in mice was examined. We find that CBD administration leads to increases in receptor abundance and activity in mouse spinal cord. Together, these results highlight a role for chaperones (proteins and small molecules) in modulating levels and activity of CB1R, DOR, and their interacting complexes potentially through mechanisms including receptor maturation and trafficking. SIGNIFICANCE STATEMENT: This study highlights a role for chaperones (endogenous and small membrane-permeable molecules) in modulating levels of cannabinoid CB1 receptor, delta opioid receptor, and their interacting complexes. These chaperones could be developed as therapeutics for pathologies involving these receptors.
Collapse
MESH Headings
- Animals
- Mice
- Molecular Chaperones/metabolism
- Receptor, Cannabinoid, CB1/metabolism
- Mice, Inbred C57BL
- Spinal Cord/metabolism
- Spinal Cord/drug effects
- Humans
- Cannabidiol/pharmacology
- Receptors, Opioid, delta/metabolism
- Male
- Receptors, Opioid/metabolism
- Receptors, Opioid/genetics
- HEK293 Cells
- Receptors, Cannabinoid/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aya Osman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wakako Fujita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
3
|
Lippi A, Krisko A. Protein aggregation: A detrimental symptom or an adaptation mechanism? J Neurochem 2024; 168:1426-1441. [PMID: 37694504 DOI: 10.1111/jnc.15955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Protein quality control mechanisms oversee numerous aspects of protein lifetime. From the point of protein synthesis, protein homeostasis machineries take part in folding, solubilization, and/or degradation of impaired proteins. Some proteins follow an alternative path upon loss of their solubility, thus are secluded from the cytosol and form protein aggregates. Protein aggregates differ in their function and composition, rendering protein aggregation a complex phenomenon that continues to receive plenty of attention in the scientific and medical communities. Traditionally, protein aggregates have been associated with aging and a large spectrum of protein folding diseases, such as neurodegenerative diseases, type 2 diabetes, or cataract. However, a body of evidence suggests that they may act as an adaptive mechanism to overcome transient stressful conditions, serving as a sink for the removal of misfolded proteins from the cytosol or storage compartments for machineries required upon stress release. In this review, we present examples and evidence elaborating different possible roles of protein aggregation and discuss their potential roles in stress survival, aging, and disease, as well as possible anti-aggregation interventions.
Collapse
Affiliation(s)
- Alice Lippi
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Tai MDS, Gamiz-Arco G, Martinez A. Dopamine synthesis and transport: current and novel therapeutics for parkinsonisms. Biochem Soc Trans 2024; 52:1275-1291. [PMID: 38813865 PMCID: PMC11346439 DOI: 10.1042/bst20231061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Parkinsonism is the primary type of movement disorder in adults, encompassing a set of clinical symptoms, including rigidity, tremors, dystonia, bradykinesia, and postural instability. These symptoms are primarily caused by a deficiency in dopamine (DA), an essential neurotransmitter in the brain. Currently, the DA precursor levodopa (synthetic L-DOPA) is the standard medication to treat DA deficiency, but it only addresses symptoms rather than provides a cure. In this review, we provide an overview of disorders associated with DA dysregulation and deficiency, particularly Parkinson's disease and rare inherited disorders leading predominantly to dystonia and/or parkinsonism, even in childhood. Although levodopa is relatively effective for the management of motor dysfunctions, it is less effective for severe forms of parkinsonism and is also associated with side effects and a loss of efficacy over time. We present ongoing efforts to reinforce the effect of levodopa and to develop innovative therapies that target the underlying pathogenic mechanisms affecting DA synthesis and transport, increasing neurotransmission through disease-modifying approaches, such as cell-based therapies, nucleic acid- and protein-based biologics, and small molecules.
Collapse
Affiliation(s)
| | - Gloria Gamiz-Arco
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, 5020 Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
5
|
Nasilli G, Verkerk AO, O’Reilly M, Yiangou L, Davis RP, Casini S, Remme CA. Chronic Mexiletine Administration Increases Sodium Current in Non-Diseased Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Biomedicines 2024; 12:1212. [PMID: 38927420 PMCID: PMC11200762 DOI: 10.3390/biomedicines12061212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
A sodium current (INa) reduction occurs in the setting of many acquired and inherited conditions and is associated with cardiac conduction slowing and increased arrhythmia risks. The sodium channel blocker mexiletine has been shown to restore the trafficking of mutant sodium channels to the membrane. However, these studies were mostly performed in heterologous expression systems using high mexiletine concentrations. Moreover, the chronic effects on INa in a non-diseased cardiomyocyte environment remain unknown. In this paper, we investigated the chronic and acute effects of a therapeutic dose of mexiletine on INa and the action potential (AP) characteristics in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) of a healthy individual. Control hiPSC-CMs were incubated for 48 h with 10 µM mexiletine or vehicle. Following the wash-out of mexiletine, patch clamp analysis and immunocytochemistry experiments were performed. The incubation of hiPSC-CMs for 48 h with mexiletine (followed by wash-out) induced a significant increase in peak INa of ~75%, without any significant change in the voltage dependence of (in)activation. This was accompanied by a significant increase in AP upstroke velocity, without changes in other AP parameters. The immunocytochemistry experiments showed a significant increase in membrane Nav1.5 fluorescence following a 48 h incubation with mexiletine. The acute re-exposure of hiPSC-CMs to 10 µM mexiletine resulted in a small but significant increase in AP duration, without changes in AP upstroke velocity, peak INa density, or the INa voltage dependence of (in)activation. Importantly, the increase in the peak INa density and resulting AP upstroke velocity induced by chronic mexiletine incubation was not counteracted by the acute re-administration of the drug. In conclusion, the chronic administration of a clinically relevant concentration of mexiletine increases INa density in non-diseased hiPSC-CMs, likely by enhancing the membrane trafficking of sodium channels. Our findings identify mexiletine as a potential therapeutic strategy to enhance and/or restore INa and cardiac conduction.
Collapse
Affiliation(s)
- Giovanna Nasilli
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
| | - Arie O. Verkerk
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Molly O’Reilly
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
| | - Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Richard P. Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - Simona Casini
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (A.O.V.)
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Wang YC, Lan LC, Yang X, Xiao J, Liu HX, Shan QW. A case report of classic galactosemia with a GALT gene variant and a literature review. BMC Pediatr 2024; 24:352. [PMID: 38778342 PMCID: PMC11110268 DOI: 10.1186/s12887-024-04769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Galactosemia is an autosomal recessive disorder resulting from an enzyme defect in the galactose metabolic pathway. The most severe manifestation of classic galactosemia is caused by galactose-1-phosphate uridylyltransferase (GALT) deficiency, and this condition can be fatal during infancy if left untreated. It also may result in long-term complications in affected individuals. CASE PRESENTATION This report describes a patient whose initial clinical symptoms were jaundice and liver dysfunction. The patient's liver and coagulation functions did not improve after multiple admissions and treatment with antibiotics, hepatoprotective and choleretic agents and blood transfusion. Genetic analysis revealed the presence of two variants in the GALT gene in the compound heterozygous state: c.377 + 2dup and c.368G > C (p.Arg123Pro). Currently, the variant locus (c.377 + 2dup) in the GALT gene has not been reported in the Human Gene Mutation Database (HGMD), while c.368G > C (p.Arg123Pro) has not been reported in the Genome Aggregation Database (GnomAD) nor the HGMD in East Asian population. We postulated that the two variants may contribute to the development of classical galactosemia. CONCLUSIONS Applications of whole-exome sequencing to detect the two variants can improve the detection and early diagnosis of classical galactosemia and, more specifically, may identify individuals who are compound heterozygous with variants in the GALT gene. Variants in the GALT gene have a potential therapeutic significance for classical galactosemia.
Collapse
Affiliation(s)
- Yong-Cai Wang
- Difficult and Critical Illness Center, Pediatric Clinical Medical Research Center of Guangxi, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Dazhou Central Hosptial, No. 56 Nanyuemiao Street, Tongchuan District, Dazhou, 635000, Sichuan Province, China
| | - Lian-Cheng Lan
- Difficult and Critical Illness Center, Pediatric Clinical Medical Research Center of Guangxi, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Xia Yang
- Difficult and Critical Illness Center, Pediatric Clinical Medical Research Center of Guangxi, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Juan Xiao
- Difficult and Critical Illness Center, Pediatric Clinical Medical Research Center of Guangxi, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Hai-Xin Liu
- Difficult and Critical Illness Center, Pediatric Clinical Medical Research Center of Guangxi, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Qing-Wen Shan
- Difficult and Critical Illness Center, Pediatric Clinical Medical Research Center of Guangxi, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
7
|
Borie-Guichot M, Lan Tran M, Garcia V, Oukhrib A, Rodriguez F, Turrin CO, Levade T, Génisson Y, Ballereau S, Dehoux C. Multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease. Bioorg Chem 2024; 146:107295. [PMID: 38513326 DOI: 10.1016/j.bioorg.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
A concise asymmetric synthesis of clickable enantiomeric pyrrolidines was achieved using Crabbé-Ma allenation. The synthesized iminosugars were grafted by copper-free strain-promoted alkyne-azide cycloaddition onto phosphorus dendrimers. The hexavalent and dodecavalent pyrrolidines were evaluated as β-glucocerebrosidase inhibitors. The level of inhibition suggests that monofluorocyclooctatriazole group may contribute to the affinity for the protein leading to potent multivalent inhibitors. Docking studies were carried out to rationalize these results. Then, the iminosugars clusters were evaluated as pharmacological chaperones in Gaucher patients' fibroblasts. An increase in β-glucocerebrosidase activity was observed with hexavalent and dodecavalent pyrrolidines at concentrations as low as 1 µM and 0.1 µM, respectively. These iminosugar clusters constitute the first example of multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease.
Collapse
Affiliation(s)
- Marc Borie-Guichot
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - My Lan Tran
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Virginie Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, France
| | | | - Frédéric Rodriguez
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Cédric-Olivier Turrin
- IMD-Pharma, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France; Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099 31077 Toulouse CEDEX 4, France; LCC-CNRS, Université de Toulouse, CNRS 31013 Toulouse CEDEX 6, France
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, France; Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, F-31059 Toulouse, France
| | - Yves Génisson
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Stéphanie Ballereau
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Cécile Dehoux
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France.
| |
Collapse
|
8
|
Fernandez‐Luna JL, Hernández JL, Curiel‐Olmo S, Martínez‐Amador NA, Vega AI, Quirce R, Montes‐Moreno S, Gutierrez O, del Real A, Sañudo C, Riancho JA. Osteomesopyknosis associated with a novel ALOX5 variant that impacts the RANKL pathway. Mol Genet Genomic Med 2024; 12:e2471. [PMID: 38803233 PMCID: PMC11130582 DOI: 10.1002/mgg3.2471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Bone tissue homeostasis relies on the coordinated activity of the bone-forming osteoblasts and bone-resorbing osteoclasts. Osteomesopyknosis is considered a distinctive rare sclerosing skeletal disorder of unelucidated pathophysiology and presumably autosomal dominant transmission. However, the causal genes are unknown. METHODS We present a case report encompassing clinical assessments, imaging studies, and whole-exome sequencing analysis, complemented by functional in vitro experiments. RESULTS This new case of osteomesopyknosis was associated with a missense ALOX5 variant predicted to induce protein misfolding and proteasomal degradation. Transfection experiments demonstrated that the variant was associated with reduced protein levels restored by proteasomal inhibition with bortezomib. Likewise, gene expression analysis showed that the mutated gene was associated with a decreased RANKL/OPG ratio, which is a critical driver of osteoclast precursor differentiation. CONCLUSION Our data indicate impaired bone resorption as the underlying mechanism of this rare osteosclerosis, implicating ALOX5 pathogenic variants as potential etiological factors.
Collapse
Affiliation(s)
- Jose L. Fernandez‐Luna
- Unidad de Genética, Hospital UM ValdecillaSantanderSpain
- Instituto de Investigación Valdecilla (IDIVAL)SantanderSpain
- Centro de investigación biomédica en red de Enfermedades Raras (CIBERER)SantanderSpain
| | - José L. Hernández
- Instituto de Investigación Valdecilla (IDIVAL)SantanderSpain
- Servicio de Medicina Interna, Hospital UM ValdecillaSantanderSpain
- Departamento de Medicina y PsiquiatríaUniversidad de CantabriaSantanderSpain
| | - Soraya Curiel‐Olmo
- Unidad de Genética, Hospital UM ValdecillaSantanderSpain
- Instituto de Investigación Valdecilla (IDIVAL)SantanderSpain
| | | | - Ana I. Vega
- Unidad de Genética, Hospital UM ValdecillaSantanderSpain
- Instituto de Investigación Valdecilla (IDIVAL)SantanderSpain
| | - Remedios Quirce
- Instituto de Investigación Valdecilla (IDIVAL)SantanderSpain
- Servicio de Medicina NuclearHospital UM ValdecillaSantanderSpain
| | - Santiago Montes‐Moreno
- Instituto de Investigación Valdecilla (IDIVAL)SantanderSpain
- Servicio de Anatomía PatológicaHospital UM ValdecillaSantanderSpain
| | - Olga Gutierrez
- Unidad de Genética, Hospital UM ValdecillaSantanderSpain
- Instituto de Investigación Valdecilla (IDIVAL)SantanderSpain
| | - Alvaro del Real
- Instituto de Investigación Valdecilla (IDIVAL)SantanderSpain
- Departamento de Medicina y PsiquiatríaUniversidad de CantabriaSantanderSpain
| | - Carolina Sañudo
- Instituto de Investigación Valdecilla (IDIVAL)SantanderSpain
- Departamento de Medicina y PsiquiatríaUniversidad de CantabriaSantanderSpain
| | - Jose A. Riancho
- Instituto de Investigación Valdecilla (IDIVAL)SantanderSpain
- Centro de investigación biomédica en red de Enfermedades Raras (CIBERER)SantanderSpain
- Servicio de Medicina Interna, Hospital UM ValdecillaSantanderSpain
- Departamento de Medicina y PsiquiatríaUniversidad de CantabriaSantanderSpain
| |
Collapse
|
9
|
Medegan Fagla B, Buhimschi IA. Protein Misfolding in Pregnancy: Current Insights, Potential Mechanisms, and Implications for the Pathogenesis of Preeclampsia. Molecules 2024; 29:610. [PMID: 38338354 PMCID: PMC10856193 DOI: 10.3390/molecules29030610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Protein misfolding disorders are a group of diseases characterized by supra-physiologic accumulation and aggregation of pathogenic proteoforms resulting from improper protein folding and/or insufficiency in clearance mechanisms. Although these processes have been historically linked to neurodegenerative disorders, such as Alzheimer's disease, evidence linking protein misfolding to other pathologies continues to emerge. Indeed, the deposition of toxic protein aggregates in the form of oligomers or large amyloid fibrils has been linked to type 2 diabetes, various types of cancer, and, in more recent years, to preeclampsia, a life-threatening pregnancy-specific disorder. While extensive physiological mechanisms are in place to maintain proteostasis, processes, such as aging, genetic factors, or environmental stress in the form of hypoxia, nutrient deprivation or xenobiotic exposures can induce failure in these systems. As such, pregnancy, a natural physical state that already places the maternal body under significant physiological stress, creates an environment with a lower threshold for aberrant aggregation. In this review, we set out to discuss current evidence of protein misfolding in pregnancy and potential mechanisms supporting a key role for this process in preeclampsia pathogenesis. Improving our understanding of this emerging pathophysiological process in preeclampsia can lead to vital discoveries that can be harnessed to create better diagnoses and treatment modalities for the disorder.
Collapse
Affiliation(s)
| | - Irina Alexandra Buhimschi
- Department of Obstetrics and Gynecology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
10
|
Noori L, Saqagandomabadi V, Di Felice V, David S, Caruso Bavisotto C, Bucchieri F, Cappello F, Conway de Macario E, Macario AJL, Scalia F. Putative Roles and Therapeutic Potential of the Chaperone System in Amyotrophic Lateral Sclerosis and Multiple Sclerosis. Cells 2024; 13:217. [PMID: 38334609 PMCID: PMC10854686 DOI: 10.3390/cells13030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
The putative pathogenic roles and therapeutic potential of the chaperone system (CS) in amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) are reviewed to provide a bibliographic and conceptual platform for launching research on the diagnostic and therapeutic applications of CS components. Various studies suggest that dysfunction of the CS contributes to the pathogenesis of ALS and MS, and here, we identify some of the implicated CS members. The physiology and pathophysiology of the CS members can be properly understood if they are studied or experimentally or clinically manipulated for diagnostic or therapeutic purposes, bearing in mind that they belong to a physiological system with multiple interacting and dynamic components, widespread throughout the body, intra- and extracellularly. Molecular chaperones, some called heat shock protein (Hsp), are the chief components of the CS, whose canonical functions are cytoprotective. However, abnormal chaperones can be etiopathogenic factors in a wide range of disorders, chaperonopathies, including ALS and MS, according to the data reviewed. Chaperones typically form teams, and these build functional networks to maintain protein homeostasis, the canonical role of the CS. However, members of the CS also display non-canonical functions unrelated to protein homeostasis. Therefore, chaperones and other members of the CS, if abnormal, may disturb not only protein synthesis, maturation, and migration but also other physiological processes. Thus, in elucidating the role of CS components in ALS and MS, one must look at protein homeostasis abnormalities and beyond, following the clues emerging from the works discussed here.
Collapse
Affiliation(s)
- Leila Noori
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (L.N.); (V.S.); (V.D.F.); (S.D.); (C.C.B.); (F.B.); (F.C.)
- Department of Anatomy, School of Medicine, Medical University of Babol, Babol 47176-47745, Iran
| | - Vahid Saqagandomabadi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (L.N.); (V.S.); (V.D.F.); (S.D.); (C.C.B.); (F.B.); (F.C.)
| | - Valentina Di Felice
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (L.N.); (V.S.); (V.D.F.); (S.D.); (C.C.B.); (F.B.); (F.C.)
| | - Sabrina David
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (L.N.); (V.S.); (V.D.F.); (S.D.); (C.C.B.); (F.B.); (F.C.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (L.N.); (V.S.); (V.D.F.); (S.D.); (C.C.B.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (L.N.); (V.S.); (V.D.F.); (S.D.); (C.C.B.); (F.B.); (F.C.)
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (L.N.); (V.S.); (V.D.F.); (S.D.); (C.C.B.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore—Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore—Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (L.N.); (V.S.); (V.D.F.); (S.D.); (C.C.B.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| |
Collapse
|
11
|
Gonzalo-Gobernado R, Moreno-Martínez L, González P, Dopazo XM, Calvo AC, Pidal-Ladrón de Guevara I, Seisdedos E, Díaz-Muñoz R, Mellström B, Osta R, Naranjo JR. Repaglinide Induces ATF6 Processing and Neuroprotection in Transgenic SOD1G93A Mice. Int J Mol Sci 2023; 24:15783. [PMID: 37958767 PMCID: PMC10648964 DOI: 10.3390/ijms242115783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The interaction of the activating transcription factor 6 (ATF6), a key effector of the unfolded protein response (UPR) in the endoplasmic reticulum, with the neuronal calcium sensor Downstream Regulatory Element Antagonist Modulator (DREAM) is a potential therapeutic target in neurodegeneration. Modulation of the ATF6-DREAM interaction with repaglinide (RP) induced neuroprotection in a model of Huntington's disease. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with no cure, characterized by the progressive loss of motoneurons resulting in muscle denervation, atrophy, paralysis, and death. The aim of this work was to investigate the potential therapeutic significance of DREAM as a target for intervention in ALS. We found that the expression of the DREAM protein was reduced in the spinal cord of SOD1G93A mice compared to wild-type littermates. RP treatment improved motor strength and reduced the expression of the ALS progression marker collagen type XIXα1 (Col19α1 mRNA) in the quadriceps muscle in SOD1G93A mice. Moreover, treated SOD1G93A mice showed reduced motoneuron loss and glial activation and increased ATF6 processing in the spinal cord. These results indicate that the modulation of the DREAM-ATF6 interaction ameliorates ALS symptoms in SOD1G93A mice.
Collapse
Affiliation(s)
- Rafael Gonzalo-Gobernado
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| | - Laura Moreno-Martínez
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Paz González
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| | - Xose Manuel Dopazo
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Ana Cristina Calvo
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Isabel Pidal-Ladrón de Guevara
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Elisa Seisdedos
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Rodrigo Díaz-Muñoz
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Britt Mellström
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| | - Rosario Osta
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - José Ramón Naranjo
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| |
Collapse
|
12
|
Ferrero E, Di Gregorio E, Ferrero M, Ortolan E, Moon YA, Di Campli A, Pavinato L, Mancini C, Tripathy D, Manes M, Hoxha E, Costanzi C, Pozzi E, Rossi Sebastiano M, Mitro N, Tempia F, Caruso D, Borroni B, Basso M, Sallese M, Brusco A. Spinocerebellar ataxia 38: structure-function analysis shows ELOVL5 G230V is proteotoxic, conformationally altered and a mutational hotspot. Hum Genet 2023; 142:1055-1076. [PMID: 37199746 PMCID: PMC10449689 DOI: 10.1007/s00439-023-02572-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Fatty acid elongase ELOVL5 is part of a protein family of multipass transmembrane proteins that reside in the endoplasmic reticulum where they regulate long-chain fatty acid elongation. A missense variant (c.689G>T p.Gly230Val) in ELOVL5 causes Spinocerebellar Ataxia subtype 38 (SCA38), a neurodegenerative disorder characterized by autosomal dominant inheritance, cerebellar Purkinje cell demise and adult-onset ataxia. Having previously showed aberrant accumulation of p.G230V in the Golgi complex, here we further investigated the pathogenic mechanisms triggered by p.G230V, integrating functional studies with bioinformatic analyses of protein sequence and structure. Biochemical analysis showed that p.G230V enzymatic activity was normal. In contrast, SCA38-derived fibroblasts showed reduced expression of ELOVL5, Golgi complex enlargement and increased proteasomal degradation with respect to controls. By heterologous overexpression, p.G230V was significantly more active than wild-type ELOVL5 in triggering the unfolded protein response and in decreasing viability in mouse cortical neurons. By homology modelling, we generated native and p.G230V protein structures whose superposition revealed a shift in Loop 6 in p.G230V that altered a highly conserved intramolecular disulphide bond. The conformation of this bond, connecting Loop 2 and Loop 6, appears to be elongase-specific. Alteration of this intramolecular interaction was also observed when comparing wild-type ELOVL4 and the p.W246G variant which causes SCA34. We demonstrate by sequence and structure analyses that ELOVL5 p.G230V and ELOVL4 p.W246G are position-equivalent missense variants. We conclude that SCA38 is a conformational disease and propose combined loss of function by mislocalization and gain of toxic function by ER/Golgi stress as early events in SCA38 pathogenesis.
Collapse
Affiliation(s)
- Enza Ferrero
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Eleonora Di Gregorio
- Unit of Medical Genetics, Città della Salute e Della Scienza Hospital, Turin, Italy
| | - Marta Ferrero
- Experimental Zooprophylactic Institute of Piedmont, Liguria and Aosta Valley, Turin, Italy
| | - Erika Ortolan
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Antonella Di Campli
- Institute of Protein Biochemistry, Italian National Research Council, Naples, Italy
- Department of Innovative Technologies in Medicine and Dentistry, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Cecilia Mancini
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Marta Manes
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano and Department of Neuroscience, University of Torino, Turin, Italy
| | | | - Elisa Pozzi
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Matteo Rossi Sebastiano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano and Department of Neuroscience, University of Torino, Turin, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michele Sallese
- Centre for Advanced Studies and Technology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy.
- Unit of Medical Genetics, Città della Salute e Della Scienza Hospital, Turin, Italy.
| |
Collapse
|
13
|
Li X, He F, Hu S, Sun N, Huo C, Liu R. The culprits of superoxide dismutase inactivation under size-dependent stress of ultrafine carbon black: Superoxide anion, genotoxicity and protein corona. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160770. [PMID: 36502967 DOI: 10.1016/j.scitotenv.2022.160770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
As a critical component of atmospheric ultrafine particulates, ultrafine carbon black (UFCB) brings great exposure risk to organisms. At present, the action pathway and activity regulation mechanism of UFCB on functional proteins in vivo are not clear, and the size-dependent effects of UFCB during this process need to be elucidated. Superoxide dismutase (SOD), one of the most applied biomarkers to assess the environmental impact of pollutants, plays crucial roles in resistance to oxidative stress. Here, based on the inactivation of SOD (84.79 %, 86.81 % and 91.70 %) in primary mouse hepatocytes exposed to UFCB (13 nm, 50 nm and 95 nm), oxidative stress, genotoxicity and protein molecular studies were employed to elucidate the inactivation mechanisms. Results showed that inhibition of UFCB-mediated superoxide anion (O2-) contributed to a decrease in SOD activity. Furthermore, the significant increase in 8-hydroxy-2-deoxyguanosine content and the comet tail formation indicated the occurrence of DNA damage, supporting that concomitant aberrant transcriptional and protein translational under gene regulation should be responsible for SOD inactivation. At the molecular level, the constricted backbone, reduced content of α-helix and fluorescence sensitization all demonstrated that the attachment-type binding of SOD on UFCB to form the 'protein corona' disrupted protein structure. Enzyme activity assays indicated that SOD backbone tightening and helix decay resulted in decreased activity, which should be another reason for intracellular SOD inactivation. More importantly, the particle sizes of UFCB exert powerful influences on SOD inactivation mechanisms. Smaller UFCB (13 nm) induced more severe O2- inhibition and DNA damage, while UFCB50nm with the best dispersity bound more SOD and induced stronger molecular toxicity, which are their different strengths in stressing SOD inactivation in hepatocytes. Our findings provide novel insights for exploring functional proteins activity and underscore a potentially size-dependent risk of nanoparticles.
Collapse
Affiliation(s)
- Xiangxiang Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Ning Sun
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Chenqian Huo
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
14
|
Bhaduri S, Scott NA, Neal SE. The Role of the Rhomboid Superfamily in ER Protein Quality Control: From Mechanisms and Functions to Diseases. Cold Spring Harb Perspect Biol 2023; 15:a041248. [PMID: 35940905 PMCID: PMC9899648 DOI: 10.1101/cshperspect.a041248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) is an essential organelle in eukaryotic cells and is a major site for protein folding, modification, and lipid synthesis. Perturbations within the ER, such as protein misfolding and high demand for protein folding, lead to dysregulation of the ER protein quality control network and ER stress. Recently, the rhomboid superfamily has emerged as a critical player in ER protein quality control because it has diverse cellular functions, including ER-associated degradation (ERAD), endosome Golgi-associated degradation (EGAD), and ER preemptive quality control (ERpQC). This breadth of function both illustrates the importance of the rhomboid superfamily in health and diseases and emphasizes the necessity of understanding their mechanisms of action. Because dysregulation of rhomboid proteins has been implicated in various diseases, such as neurological disorders and cancers, they represent promising potential therapeutic drug targets. This review provides a comprehensive account of the various roles of rhomboid proteins in the context of ER protein quality control and discusses their significance in health and disease.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Nicola A Scott
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Sonya E Neal
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
15
|
Erdem Tuncdemir B. Gαs and Gαq/11 protein coupling bias of two AVPR2 mutants (R68W and V162A) that cause nephrogenic diabetes insipidus. J Recept Signal Transduct Res 2022; 42:573-579. [PMID: 35901021 DOI: 10.1080/10799893.2022.2102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Loss-of-function mutations of the arginine vasopressin receptor 2 gene (AVPR2) cause Nephrogenic diabetes insipidus (NDI). AVPR2 is a kind of G protein coupled receptor (GPCR) and mainly couples with Gαs protein leading to cAMP accumulation in the cell as a secondary messenger. Recent studies showed that some AVPR2 mutations could cause biased Gαq/11 protein coupling rather than Gαs. Investigation into the characterization of biased receptors may give insights into the relationship between the conformational change of the receptor because of the mutation and related downstream signaling. In this study, R68W and V162A were analyzed to whether they show a bias to Gαs or Gαq/11 proteins. Their functionality in terms of cAMP production via Gαs protein coupling was decreased compared to the wild-type receptor. On the other hand, they showed the ability to couple with Gαq/11 protein and make Ca2+ mobilization at different levels in the cell. R68W showed bias to coupling with Gαq/11 protein rather than V162A and wild-type receptor. Studies about the Gα protein coupling bias of mutant AVPR2s may broaden our understanding of the relationship between the changed conformation of the receptor and consequently activated signaling pathways, and also may shed light on the development of more effective new therapeutics.
Collapse
|
16
|
Gil-Martínez J, Bernardo-Seisdedos G, Mato JM, Millet O. The use of pharmacological chaperones in rare diseases caused by reduced protein stability. Proteomics 2022; 22:e2200222. [PMID: 36205620 DOI: 10.1002/pmic.202200222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Rare diseases are most often caused by inherited genetic disorders that, after translation, will result in a protein with altered function. Decreased protein stability is the most frequent mechanism associated with a congenital pathogenic missense mutation and it implies the destabilization of the folded conformation in favour of unfolded or misfolded states. In the cellular context and when experimental data is available, a mutant protein with altered thermodynamic stability often also results in impaired homeostasis, with the deleterious accumulation of protein aggregates, metabolites and/or metabolic by-products. In the last decades, a significant effort has enabled the characterization of rare diseases associated to protein stability defects and triggered the development of innovative therapeutic intervention lines, say, the use of pharmacological chaperones to correct the intracellular impaired homeostasis. Here, we review the current knowledge on rare diseases caused by reduced protein stability, paying special attention to the thermodynamic aspects of the protein destabilization, also focusing on some examples where pharmacological chaperones are being tested.
Collapse
Affiliation(s)
- Jon Gil-Martínez
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | | | - José M Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,ATLAS Molecular Pharma, Bizkaia, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Yuan XC, Tao YX. Ligands for Melanocortin Receptors: Beyond Melanocyte-Stimulating Hormones and Adrenocorticotropin. Biomolecules 2022; 12:biom12101407. [PMID: 36291616 PMCID: PMC9599618 DOI: 10.3390/biom12101407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The discovery of melanocortins in 1916 has resulted in more than 100 years of research focused on these peptides. Extensive studies have elucidated well-established functions of melanocortins mediated by cell surface receptors, including MSHR (melanocyte-stimulating hormone receptor) and ACTHR (adrenocorticotropin receptor). Subsequently, three additional melanocortin receptors (MCRs) were identified. Among these five MCRs, MC3R and MC4R are expressed primarily in the central nervous system, and are therefore referred to as the neural MCRs. Since the central melanocortin system plays important roles in regulating energy homeostasis, targeting neural MCRs is emerging as a therapeutic approach for treating metabolic conditions such as obesity and cachexia. Early efforts modifying endogenous ligands resulted in the development of many potent and selective ligands. This review focuses on the ligands for neural MCRs, including classical ligands (MSH and agouti-related peptide), nonclassical ligands (lipocalin 2, β-defensin, small molecules, and pharmacoperones), and clinically approved ligands (ACTH, setmelanotide, bremelanotide, and several repurposed drugs).
Collapse
Affiliation(s)
- Xiao-Chen Yuan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| |
Collapse
|
18
|
Lysosomal functions and dysfunctions: Molecular and cellular mechanisms underlying Gaucher disease and its association with Parkinson disease. Adv Drug Deliv Rev 2022; 187:114402. [DOI: 10.1016/j.addr.2022.114402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 01/18/2023]
|
19
|
Tao YX. Mutations in melanocortin-4 receptor: From fish to men. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:215-257. [PMID: 35595350 DOI: 10.1016/bs.pmbts.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Melanocortin-4 receptor (MC4R), expressed abundantly in the hypothalamus, is a critical regulator of energy homeostasis, including both food intake and energy expenditure. Shortly after the publication in 1997 of the Mc4r knockout phenotypes in mice, including increased food intake and severe obesity, the first mutations in MC4R were reported in humans in 1998. Studies in the subsequent two decades have established MC4R mutation as the most common monogenic form of obesity, especially in early-onset severe obesity. Studies in animals, from fish to mammals, have established the conserved physiological roles of MC4R in all vertebrates in regulating energy balance. Drug targeting MC4R has been recently approved for treating morbid genetic obesity. How the MC4R can be exploited for animal production is highly worthy of active investigation.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
20
|
Ji RL, Tao YX. Melanocortin-1 receptor mutations and pigmentation: Insights from large animals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:179-213. [PMID: 35595349 DOI: 10.1016/bs.pmbts.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The melanocortin-1 receptor (MC1R) is a G protein-coupled receptor expressed in cutaneous and hair follicle melanocytes, and plays a central role in coat color determination in vertebrates. Numerous MC1R variants have been identified in diverse species. Some of these variants have been associated with specific hair and skin color phenotypes in humans as well as coat color in animals. Gain-of-function mutations of the MC1R gene cause dominant or partially dominant black/dark coat color, and loss-of-function mutations of the MC1R gene cause recessive or partially recessive red/yellow/pale coat color phenotypes. These have been well documented in a large number of mammals, including human, dog, cattle, horse, sheep, pig, and fox. Higher similarities between large mammals and humans makes them better models to understand pathogenesis of human diseases caused by MC1R mutations. High identities in MC1Rs and similar variants identified in both humans and large mammals also provide an opportunity for receptor structure and function study. In this review, we aim to summarize the naturally occurring mutations of MC1R in humans and large animals.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
21
|
Mutations in rhodopsin, endothelin B receptor, and CC chemokine receptor 5 in large animals: Modeling human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:155-178. [PMID: 35595348 DOI: 10.1016/bs.pmbts.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell membrane receptors involved in modulating almost all physiological processes by transducing extracellular signals into the cytoplasm. Dysfunctions of GPCR-regulated signaling result in diverse human diseases, making GPCRs the most popular drug targets for human medicine. Large animals share higher similarities (in physiology and metabolism) with humans than rodents. Similar to findings in human genetics, diverse diseases caused by mutations in GPCR genes have also been discovered in large animals. Rhodopsin, endothelin B receptor, and CC chemokine receptor type 5 have been shown to be involved in human retinitis pigmentosa, Hirschsprung disease, and HIV infection/AIDS, respectively, and several mutations of these GPCRs have also been identified from large animals. The large animals with naturally occurring mutations of these GPCRs provide an opportunity to gain a better understanding of the pathogenesis of human diseases, and can be used for preclinical trials of therapies for human diseases. In this review, we aim to summarize the naturally occurring mutations of these three GPCRs in large animals and humans.
Collapse
|
22
|
Wang JZ, Shimadate Y, Kise M, Kato A, Jia YM, Li YX, Fleet G, Yu CY. Trans, trans-2-C-aryl-3,4-dihydroxypyrrolidines as potent and selective β-glucosidase inhibitors: Pharmacological chaperones for gaucher disease. Eur J Med Chem 2022; 238:114499. [DOI: 10.1016/j.ejmech.2022.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
|
23
|
Wang J, Dong H, Leng T, Yu Y, Li Y. Turning the structure of the Aβ 42 peptide by different functionalized carbon nanotubes: a molecular dynamics simulation study. Phys Chem Chem Phys 2022; 24:4270-4279. [PMID: 35107452 DOI: 10.1039/d1cp04278e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functionalized carbon nanotubes (CNTs) can inhibit the self-assembly of amyloid-beta (Aβ) peptides. Under abnormal conditions, the structure of the Aβ peptides undergoes a fundamental transformation, and this transformation will induce conformational conversions of other polymerized Aβ peptides. Here, we explore the interactions between different functionalized CNTs and Aβ42 peptides by molecular dynamics simulations. Our results show that compared to the original CNTs, the highly functionalized CNTs induce different adsorption patterns of the peptides. This adsorption pattern destroys the α-helix structure and increases the β-turn and random coil content significantly. The hydrogen bonds formed by the peptide and water molecules or CNTs further reveal the reasons for the structural transformation of the peptide. Due to electrostatic interactions and π-π stacking interactions, some amino acids (such as Phe4, Lys16, Phe20, and Lys28) are tightly fixed on the surfaces, and other amino acids move around these amino acids to accelerate the unfolding and denaturation of the peptide. Our research shows that functionalized CNTs have excellent potential to inhibit the abnormal aggregation of Aβ42 peptides. Our research also provides theoretical guidance in the design and synthesis of carbon nanomedicines for protein conformation diseases.
Collapse
Affiliation(s)
- Jiawen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Tianle Leng
- Dougherty Valley High School, 10550 Albion Rd, San Ramon, CA 94582, USA
| | - Yi Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China. .,Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
24
|
Kato A, Nakagome I, Kanekiyo U, Lu TT, Li YX, Yoshimura K, Kishida M, Shinzawa K, Yoshida T, Tanaka N, Jia YM, Nash RJ, Fleet GWJ, Yu CY. 5-C-Branched Deoxynojirimycin: Strategy for Designing a 1-Deoxynojirimycin-Based Pharmacological Chaperone with a Nanomolar Affinity for Pompe Disease. J Med Chem 2022; 65:2329-2341. [DOI: 10.1021/acs.jmedchem.1c01673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Izumi Nakagome
- School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan
| | - Uta Kanekiyo
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tian-Tian Lu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kosuke Yoshimura
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mana Kishida
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kenta Shinzawa
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tomoki Yoshida
- School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan
| | - Nobutada Tanaka
- School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Robert J. Nash
- Institute of Biological, Environmental and Rural Sciences / Phytoquest Limited, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, U.K
| | - George W. J. Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Bueno-Carrasco MT, Cuéllar J, Flydal MI, Santiago C, Kråkenes TA, Kleppe R, López-Blanco JR, Marcilla M, Teigen K, Alvira S, Chacón P, Martinez A, Valpuesta JM. Structural mechanism for tyrosine hydroxylase inhibition by dopamine and reactivation by Ser40 phosphorylation. Nat Commun 2022; 13:74. [PMID: 35013193 PMCID: PMC8748767 DOI: 10.1038/s41467-021-27657-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the biosynthesis of dopamine (DA) and other catecholamines, and its dysfunction leads to DA deficiency and parkinsonisms. Inhibition by catecholamines and reactivation by S40 phosphorylation are key regulatory mechanisms of TH activity and conformational stability. We used Cryo-EM to determine the structures of full-length human TH without and with DA, and the structure of S40 phosphorylated TH, complemented with biophysical and biochemical characterizations and molecular dynamics simulations. TH presents a tetrameric structure with dimerized regulatory domains that are separated 15 Å from the catalytic domains. Upon DA binding, a 20-residue α-helix in the flexible N-terminal tail of the regulatory domain is fixed in the active site, blocking it, while S40-phosphorylation forces its egress. The structures reveal the molecular basis of the inhibitory and stabilizing effects of DA and its counteraction by S40-phosphorylation, key regulatory mechanisms for homeostasis of DA and TH. Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of the catecholamine neurotransmitters and hormones dopamine (DA), adrenaline and noradrenaline. Here, the authors present the cryo-EM structures of full-length human TH in the apo form and bound with DA, as well as the structure of Ser40 phosphorylated TH, and discuss the inhibitory and stabilizing effects of DA on TH and its counteraction by Ser40-phosphorylation.
Collapse
Affiliation(s)
| | - Jorge Cuéllar
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Marte I Flydal
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - César Santiago
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Rune Kleppe
- Norwegian Centre for Maritime and Diving Medicine, Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | - Knut Teigen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sara Alvira
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Pablo Chacón
- Instituto de Química Física Rocasolano (IQFR-CSIC), Madrid, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | | |
Collapse
|
26
|
Ulloa-Aguirre A, Zariñán T, Gutiérrez-Sagal R, Tao YX. Targeting trafficking as a therapeutic avenue for misfolded GPCRs leading to endocrine diseases. Front Endocrinol (Lausanne) 2022; 13:934685. [PMID: 36093106 PMCID: PMC9452723 DOI: 10.3389/fendo.2022.934685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are plasma membrane proteins associated with an array of functions. Mutations in these receptors lead to a number of genetic diseases, including diseases involving the endocrine system. A particular subset of loss-of-function mutant GPCRs are misfolded receptors unable to traffic to their site of function (i.e. the cell surface plasma membrane). Endocrine disorders in humans caused by GPCR misfolding include, among others, hypo- and hyper-gonadotropic hypogonadism, morbid obesity, familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism, X-linked nephrogenic diabetes insipidus, congenital hypothyroidism, and familial glucocorticoid resistance. Several in vitro and in vivo experimental approaches have been employed to restore function of some misfolded GPCRs linked to endocrine disfunction. The most promising approach is by employing pharmacological chaperones or pharmacoperones, which assist abnormally and incompletely folded proteins to refold correctly and adopt a more stable configuration to pass the scrutiny of the cell's quality control system, thereby correcting misrouting. This review covers the most important aspects that regulate folding and traffic of newly synthesized proteins, as well as the experimental approaches targeted to overcome protein misfolding, with special focus on GPCRs involved in endocrine diseases.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre,
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology & Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| |
Collapse
|
27
|
Charif SE, Vassallu MF, Salvañal L, Igaz LM. Protein synthesis modulation as a therapeutic approach for amyotrophic lateral sclerosis and frontotemporal dementia. Neural Regen Res 2021; 17:1423-1430. [PMID: 34916412 PMCID: PMC8771112 DOI: 10.4103/1673-5374.330593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Protein synthesis is essential for cells to perform life metabolic processes. Pathological alterations of protein content can lead to particular diseases. Cells have an intrinsic array of mechanisms and pathways that are activated when protein misfolding, accumulation, aggregation or mislocalization occur. Some of them (like the unfolded protein response) represent complex interactions between endoplasmic reticulum sensors and elongation factors that tend to increase expression of chaperone proteins and/or repress translation in order to restore protein homeostasis (also known as proteostasis). This is even more important in neurons, as they are very susceptible to harmful effects associated with protein overload and proteostatic mechanisms are less effective with age. Several neurodegenerative pathologies such as Alzheimer's, Parkinson's, and Huntington's diseases, amyotrophic lateral sclerosis and frontotemporal dementia exhibit a particular molecular signature of distinct, unbalanced protein overload. In amyotrophic lateral sclerosis and frontotemporal dementia, the majority of cases present intracellular inclusions of ubiquitinated transactive response DNA-binding protein of 43 kDa (TDP-43). TDP-43 is an RNA binding protein that participates in RNA metabolism, among other functions. Dysregulation of TDP-43 (e.g. aggregation and mislocalization) can dramatically affect neurons, and this has been linked to disease development. Expression of amyotrophic lateral sclerosis/frontotemporal dementia TDP-43-related mutations in cellular and animal models has been shown to recapitulate key features of the amyotrophic lateral sclerosis/frontotemporal dementia disease spectrum. These variants can be causative of degeneration onset and progression. Most neurodegenerative diseases (including amyotrophic lateral sclerosis and frontotemporal dementia) have no cure at the moment; however, modulating translation has recently emerged as an attractive approach that can be performed at several steps (i.e. regulating activation of initiation and elongation factors, inhibiting unfolded protein response activation or inducing chaperone expression and activity). This review focuses on the features of protein imbalance in neurodegenerative disorders and the relevance of developing therapeutical compounds aiming at restoring proteostasis. We strive to highlight the importance of research on drugs that, not only restore protein imbalance without compromising translational activity of cells, but are also as safe as possible for the patients.
Collapse
Affiliation(s)
- Santiago E Charif
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires -CONICET, Buenos Aires, Argentina
| | - M Florencia Vassallu
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires -CONICET, Buenos Aires, Argentina
| | - Lara Salvañal
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires -CONICET, Buenos Aires, Argentina
| | - Lionel M Igaz
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires -CONICET, Buenos Aires, Argentina
| |
Collapse
|
28
|
Pharmacological Chaperone Therapy for Pompe Disease. Molecules 2021; 26:molecules26237223. [PMID: 34885805 PMCID: PMC8659197 DOI: 10.3390/molecules26237223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Pompe disease (PD), a lysosomal storage disease, is caused by mutations of the GAA gene, inducing deficiency in the acid alpha-glucosidase (GAA). This enzymatic impairment causes glycogen burden in lysosomes and triggers cell malfunctions, especially in cardiac, smooth and skeletal muscle cells and motor neurons. To date, the only approved treatment available for PD is enzyme replacement therapy (ERT) consisting of intravenous administration of rhGAA. The limitations of ERT have motivated the investigation of new therapies. Pharmacological chaperone (PC) therapy aims at restoring enzymatic activity through protein stabilization by ligand binding. PCs are divided into two classes: active site-specific chaperones (ASSCs) and the non-inhibitory PCs. In this review, we summarize the different pharmacological chaperones reported against PD by specifying their PC class and activity. An emphasis is placed on the recent use of these chaperones in combination with ERT.
Collapse
|
29
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
30
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E. Misfolded G Protein-Coupled Receptors and Endocrine Disease. Molecular Mechanisms and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms222212329. [PMID: 34830210 PMCID: PMC8622668 DOI: 10.3390/ijms222212329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Misfolding of G protein-coupled receptors (GPCRs) caused by mutations frequently leads to disease due to intracellular trapping of the conformationally abnormal receptor. Several endocrine diseases due to inactivating mutations in GPCRs have been described, including X-linked nephrogenic diabetes insipidus, thyroid disorders, familial hypocalciuric hypercalcemia, obesity, familial glucocorticoid deficiency [melanocortin-2 receptor, MC2R (also known as adrenocorticotropin receptor, ACTHR), and reproductive disorders. In these mutant receptors, misfolding leads to endoplasmic reticulum retention, increased intracellular degradation, and deficient trafficking of the abnormal receptor to the cell surface plasma membrane, causing inability of the receptor to interact with agonists and trigger intracellular signaling. In this review, we discuss the mechanisms whereby mutations in GPCRs involved in endocrine function in humans lead to misfolding, decreased plasma membrane expression of the receptor protein, and loss-of-function diseases, and also describe several experimental approaches employed to rescue trafficking and function of the misfolded receptors. Special attention is given to misfolded GPCRs that regulate reproductive function, given the key role played by these particular membrane receptors in sexual development and fertility, and recent reports on promising therapeutic interventions targeting trafficking of these defective proteins to rescue completely or partially their normal function.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
- Correspondence:
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
| | - Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada 52005, Estado de México, Mexico;
| |
Collapse
|
31
|
Huang Y, Chang Y, Liu L, Wang J. Nanomaterials for Modulating the Aggregation of β-Amyloid Peptides. Molecules 2021; 26:4301. [PMID: 34299575 PMCID: PMC8305396 DOI: 10.3390/molecules26144301] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
The aberrant aggregation of amyloid-β (Aβ) peptides in the brain has been recognized as the major hallmark of Alzheimer's disease (AD). Thus, the inhibition and dissociation of Aβ aggregation are believed to be effective therapeutic strategiesforthe prevention and treatment of AD. When integrated with traditional agents and biomolecules, nanomaterials can overcome their intrinsic shortcomings and boost their efficiency via synergistic effects. This article provides an overview of recent efforts to utilize nanomaterials with superior properties to propose effective platforms for AD treatment. The underlying mechanismsthat are involved in modulating Aβ aggregation are discussed. The summary of nanomaterials-based modulation of Aβ aggregation may help researchers to understand the critical roles in therapeutic agents and provide new insight into the exploration of more promising anti-amyloid agents and tactics in AD theranostics.
Collapse
Affiliation(s)
- Yaliang Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Yong Chang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| |
Collapse
|
32
|
Marabotti A, Del Prete E, Scafuri B, Facchiano A. Performance of Web tools for predicting changes in protein stability caused by mutations. BMC Bioinformatics 2021; 22:345. [PMID: 34225665 PMCID: PMC8256537 DOI: 10.1186/s12859-021-04238-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/18/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Despite decades on developing dedicated Web tools, it is still difficult to predict correctly the changes of the thermodynamic stability of proteins caused by mutations. Here, we assessed the reliability of five recently developed Web tools, in order to evaluate the progresses in the field. RESULTS The results show that, although there are improvements in the field, the assessed predictors are still far from ideal. Prevailing problems include the bias towards destabilizing mutations, and, in general, the results are unreliable when the mutation causes a ΔΔG within the interval ± 0.5 kcal/mol. We found that using several predictors and combining their results into a consensus is a rough, but effective way to increase reliability of the predictions. CONCLUSIONS We suggest all developers to consider in their future tools the usage of balanced data sets for training of predictors, and all users to combine the results of multiple tools to increase the chances of having correct predictions about the effect of mutations on the thermodynamic stability of a protein.
Collapse
Affiliation(s)
- Anna Marabotti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano, SA, Italy.
| | - Eugenio Del Prete
- CNR-IAC, National Research Council, Institute for Applied Mathematics "Mauro Picone", Naples, Italy
| | - Bernardina Scafuri
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Fisciano, SA, Italy
| | - Angelo Facchiano
- CNR-ISA, National Research Council, Institute of Food Science, Avellino, Italy.
| |
Collapse
|
33
|
Wei Z, Xu X, Fang Y, Khater M, Naughton SX, Hu G, Terry AV, Wu G. Rab43 GTPase directs postsynaptic trafficking and neuron-specific sorting of G protein-coupled receptors. J Biol Chem 2021; 296:100517. [PMID: 33676895 PMCID: PMC8050390 DOI: 10.1016/j.jbc.2021.100517] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022] Open
Abstract
G protein–coupled receptors (GPCRs) are important modulators of synaptic functions. A fundamental but poorly addressed question in neurobiology is how targeted GPCR trafficking is achieved. Rab GTPases are the master regulators of vesicle-mediated membrane trafficking, but their functions in the synaptic presentation of newly synthesized GPCRs are virtually unknown. Here, we investigate the role of Rab43, via dominant-negative inhibition and CRISPR–Cas9–mediated KO, in the export trafficking of α2-adrenergic receptor (α2-AR) and muscarinic acetylcholine receptor (mAChR) in primary neurons and cells. We demonstrate that Rab43 differentially regulates the overall surface expression of endogenous α2-AR and mAChR, as well as their signaling, in primary neurons. In parallel, Rab43 exerts distinct effects on the dendritic and postsynaptic transport of specific α2B-AR and M3 mAChR subtypes. More interestingly, the selective actions of Rab43 toward α2B-AR and M3 mAChR are neuronal cell specific and dictated by direct interaction. These data reveal novel, neuron-specific functions for Rab43 in the dendritic and postsynaptic targeting and sorting of GPCRs and imply multiple forward delivery routes for different GPCRs in neurons. Overall, this study provides important insights into regulatory mechanisms of GPCR anterograde traffic to the functional destination in neurons.
Collapse
Affiliation(s)
- Zhe Wei
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yinquan Fang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Mostafa Khater
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sean X Naughton
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Gang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
34
|
Azoulay-Ginsburg S, Di Salvio M, Weitman M, Afri M, Ribeiro S, Ebbinghaus S, Cestra G, Gruzman A. Chemical chaperones targeted to the endoplasmic reticulum (ER) and lysosome prevented neurodegeneration in a C9orf72 repeat expansion drosophila amyotrophic lateral sclerosis (ALS) model. Pharmacol Rep 2021; 73:536-550. [PMID: 33661518 DOI: 10.1007/s43440-021-00226-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND ALS is an incurable neuromuscular degenerative disorder. A familiar form of the disease (fALS) is related to point mutations. The most common one is an expansion of a noncoding GGGGCC hexanucleotide repeat of the C9orf72 gene on chromosome 9p21. An abnormal translation of the C9orf72 gene generates dipeptide repeat proteins that aggregate in the brain. One of the classical approaches for developing treatment against protein aggregation-related diseases is to use chemical chaperones (CSs). In this work, we describe the development of novel 4-phenylbutyric acid (4-PBA) lysosome/ER-targeted derivatives. We assumed that 4-PBA targeting to specific organelles, where protein degradation takes place, might reduce the 4-PBA effective concentration. METHODS Organic chemistry synthetic methods and solid-phase peptide synthesis (SPPS) were used for preparing the 4-PBA derivatives. The obtained compounds were evaluated in an ALS Drosophila model that expressed C9orf72 repeat expansion, causing eye degeneration. Targeting to lysosome was validated by the 19F-nuclear magnetic resonance (NMR) technique. RESULTS Several synthesized compounds exhibited a significant biological effect by ameliorating the eye degeneration. They blocked the neurodegeneration of fly retina at different efficacy levels. The most active CS was compound 9, which is a peptide derivative and was targeted to ER. Another active compound targeted to lysosome was compound 4. CONCLUSIONS Novel CSs were more effective than 4-PBA; therefore, they might be used as a new class of drug candidates to treat ALS and other protein misfolding disorders.
Collapse
Affiliation(s)
| | - Michela Di Salvio
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council, Sapienza University of Rome, 00185, Rome, Italy
| | | | - Michal Afri
- Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Sara Ribeiro
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, 38106, Braunschweig, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, 38106, Braunschweig, Germany
| | - Gianluca Cestra
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy. .,Institute of Molecular Biology and Pathology, National Research Council, Sapienza University of Rome, 00185, Rome, Italy.
| | - Arie Gruzman
- Bar-Ilan University, 5290002, Ramat-Gan, Israel.
| |
Collapse
|
35
|
Banford S, McCorvie TJ, Pey AL, Timson DJ. Galactosemia: Towards Pharmacological Chaperones. J Pers Med 2021; 11:jpm11020106. [PMID: 33562227 PMCID: PMC7914515 DOI: 10.3390/jpm11020106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Galactosemia is a rare inherited metabolic disease resulting from mutations in the four genes which encode enzymes involved in the metabolism of galactose. The current therapy, the removal of galactose from the diet, is inadequate. Consequently, many patients suffer lifelong physical and cognitive disability. The phenotype varies from almost asymptomatic to life-threatening disability. The fundamental biochemical cause of the disease is a decrease in enzymatic activity due to failure of the affected protein to fold and/or function correctly. Many novel therapies have been proposed for the treatment of galactosemia. Often, these are designed to treat the symptoms and not the fundamental cause. Pharmacological chaperones (PC) (small molecules which correct the folding of misfolded proteins) represent an exciting potential therapy for galactosemia. In theory, they would restore enzyme function, thus preventing downstream pathological consequences. In practice, no PCs have been identified for potential application in galactosemia. Here, we review the biochemical basis of the disease, identify opportunities for the application of PCs and describe how these might be discovered. We will conclude by considering some of the clinical issues which will affect the future use of PCs in the treatment of galactosemia.
Collapse
Affiliation(s)
- Samantha Banford
- South Eastern Health and Social Care Trust, Downpatrick BT30 6RL, UK;
| | - Thomas J. McCorvie
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK;
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia de Química aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain;
| | - David J. Timson
- School of Pharmacy and Biomolecular Sciences, The University of Brighton, Brighton BN2 4GJ, UK
- Correspondence:
| |
Collapse
|
36
|
Bustad HJ, Kallio JP, Vorland M, Fiorentino V, Sandberg S, Schmitt C, Aarsand AK, Martinez A. Acute Intermittent Porphyria: An Overview of Therapy Developments and Future Perspectives Focusing on Stabilisation of HMBS and Proteostasis Regulators. Int J Mol Sci 2021; 22:E675. [PMID: 33445488 PMCID: PMC7827610 DOI: 10.3390/ijms22020675] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Acute intermittent porphyria (AIP) is an autosomal dominant inherited disease with low clinical penetrance, caused by mutations in the hydroxymethylbilane synthase (HMBS) gene, which encodes the third enzyme in the haem biosynthesis pathway. In susceptible HMBS mutation carriers, triggering factors such as hormonal changes and commonly used drugs induce an overproduction and accumulation of toxic haem precursors in the liver. Clinically, this presents as acute attacks characterised by severe abdominal pain and a wide array of neurological and psychiatric symptoms, and, in the long-term setting, the development of primary liver cancer, hypertension and kidney failure. Treatment options are few, and therapies preventing the development of symptomatic disease and long-term complications are non-existent. Here, we provide an overview of the disorder and treatments already in use in clinical practice, in addition to other therapies under development or in the pipeline. We also introduce the pathomechanistic effects of HMBS mutations, and present and discuss emerging therapeutic options based on HMBS stabilisation and the regulation of proteostasis. These are novel mechanistic therapeutic approaches with the potential of prophylactic correction of the disease by totally or partially recovering the enzyme functionality. The present scenario appears promising for upcoming patient-tailored interventions in AIP.
Collapse
Affiliation(s)
- Helene J. Bustad
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; (H.J.B.); (J.P.K.)
| | - Juha P. Kallio
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; (H.J.B.); (J.P.K.)
| | - Marta Vorland
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; (M.V.); (S.S.)
| | - Valeria Fiorentino
- INSERM U1149, Center for Research on Inflammation (CRI), Université de Paris, 75018 Paris, France; (V.F.); (C.S.)
| | - Sverre Sandberg
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; (M.V.); (S.S.)
- Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, 5009 Bergen, Norway
| | - Caroline Schmitt
- INSERM U1149, Center for Research on Inflammation (CRI), Université de Paris, 75018 Paris, France; (V.F.); (C.S.)
- Assistance Publique Hôpitaux de Paris (AP-HP), Centre Français des Porphyries, Hôpital Louis Mourier, 92700 Colombes, France
| | - Aasne K. Aarsand
- Norwegian Porphyria Centre (NAPOS), Department for Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway; (M.V.); (S.S.)
- Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, 5009 Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; (H.J.B.); (J.P.K.)
| |
Collapse
|
37
|
Zhang HJ, Cui ZH, Liu M, Min TQ, Xiao X, Wang ZQ, Tao YX. Pharmacological characterization of three chicken melanocortin-3 receptor mutants. Domest Anim Endocrinol 2021; 74:106507. [PMID: 32841887 DOI: 10.1016/j.domaniend.2020.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
The melanocortin-3 receptor (MC3R) is a G protein-coupled receptor and potentially important in production traits. Three naturally occurring mutations (M54L, G104S, and L151R) in chicken MC3R (cMC3R) were reported previously to be associated with production traits. Here, we inserted the full-length cMC3R coding sequence into pcDNA3.1(+) and generated the 3 mutations by site-directed mutagenesis. The total and cell surface expression of the receptors was measured by flow cytometry. We analyzed the pharmacological characteristics, including binding and cyclic adenosine monophosphate (cAMP) and mitogen-activated protein kinase (MAPK) signaling, using 6 ligands ([Nle4, D-Phe7]-α-melanocyte stimulating hormone (MSH), α-, β-, γ-, and D-Trp8-γ-MSHs, and agouti-related peptide). All mutants had similar total and cell surface expression as the wild-type (WT) cMC3R. M54L had similar pharmacological properties as the WT cMC3R. G104S did not exhibit any specific binding but had minimal response to α-, β-, γ-, and D-Trp8-γ-MSH, although it generated 24% WT response when stimulated by NDP-MSH. Although L151R had normal binding, the responses to agonists were reduced to approximately 25% of that of the WT. In MAPK signaling, all 3 mutants showed significantly increased agonist-stimulated phosphorylation of extracellular signal-regulated protein kinases 1/2, indicating the existence of biased signaling at G104S and L151R. In summary, our studies demonstrated that although all 3 mutations are significantly associated with production traits, only G104S and L151R had severe defects in receptor pharmacology. How M54L might cause production trait differences remains to be investigated.
Collapse
Affiliation(s)
- H-J Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Z-H Cui
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - M Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - T-Q Min
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - X Xiao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Z-Q Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China.
| | - Y-X Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
38
|
Suzuki Y. Chaperone therapy for molecular pathology in lysosomal diseases. Brain Dev 2021; 43:45-54. [PMID: 32736903 DOI: 10.1016/j.braindev.2020.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
In lysosomal diseases, enzyme deficiency is caused by misfolding of mutant enzyme protein with abnormal steric structure that is expressed by gene mutation. Chaperone therapy is a new molecular therapeutic approach primarily for lysosomal diseases. The misfolded mutant enzyme is digested rapidly or aggregated to induce endoplasmic reticulum stress. As a result, the catalytic activity is lost. The following sequence of events results in chaperone therapy to achieve correction of molecular pathology. An orally administered low molecular competitive inhibitor (chaperone) is absorbed into the bloodstream and reaches the target cells and tissues. The mutant enzyme is stabilized by the chaperone and subjected to normal enzyme proteinfolding (proteostasis). The first chaperone drug was developed for Fabry disease and is currently available in medical practice. At present three types of chaperones are available: competitive chaperone with enzyme inhibitory bioactivity (exogenous), non-competitive (or allosteric) chaperone without inhibitory bioactivity (exogenous), and molecular chaperone (heat shock protein; endogenous). The third endogenous chaperone would be directed to overexpression or activated by an exogenous low-molecular inducer. This new molecular therapeutic approach, utilizing the three types of chaperone, is expected to apply to a variety of diseases, genetic or non-genetic, and neurological or non-neurological, in addition to lysosomal diseases.
Collapse
|
39
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2020; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
40
|
Castellan T, Garcia V, Rodriguez F, Fabing I, Shchukin Y, Tran ML, Ballereau S, Levade T, Génisson Y, Dehoux C. Concise asymmetric synthesis of new enantiomeric C-alkyl pyrrolidines acting as pharmacological chaperones against Gaucher disease. Org Biomol Chem 2020; 18:7852-7861. [PMID: 32975266 DOI: 10.1039/d0ob01522a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A concise and asymmetric synthesis of the enantiomeric pyrrolidines 2 and ent-2 are herein reported. Both enantiomers were assessed as β-GCase inhibitors. While compound ent-2 acted as a poor competitive inhibitor, its enantiomer 2 proved to be a potent non-competitive inhibitor. Docking studies were carried out to substantiate their respective protein binding mode. Both pyrrolidines were also able to enhance lysosomal β-GCase residual activity in N370S homozygous Gaucher fibroblasts. Notably, the non-competitive inhibitor 2 displayed an enzyme activity enhancement comparable to that of reference compounds IFG and NN-DNJ. This work highlights the impact of inhibitors chirality on their protein binding mode and shows that, beyond competitive inhibitors, the study of non-competitive ones can lead to the identification of new relevant parmacological chaperones.
Collapse
Affiliation(s)
- Tessa Castellan
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 Route de Narbonne, F-31062 Toulouse, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tang X, Gao G, Zhang T, Li J, Yu M, He M, Sun T. Charge effects at nano-bio interfaces: a model of charged gold nanoclusters on amylin fibrillation. NANOSCALE 2020; 12:18834-18843. [PMID: 32895690 DOI: 10.1039/d0nr03877f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The misfolding and abnormal amyloid fibrillation of proteins/peptides are associated with more than 20 human diseases. Although dozens of nanoparticles have been investigated for the inhibition effect on the misfolding and fibrillation of pathogenesis-related proteins/peptides, there are few reports on charge effects of nano inhibitors on amyloid fibrillation. Herein, same-sized gold nanoclusters modified with 2-aminoethanethiol hydrochloride (CSH-AuNCs, positively charged in pH 7.4) or 3-mercaptopropionic acid (MPA-AuNCs, negatively charged in pH 7.4) were synthesized and adopted as models to explore the charge effect of nano inhibitors on amylin fibrillation at the nano-bio interface. ThT fluorescence kinetics analysis, AFM images and circular dichroism (CD) spectra showed that electropositive CSH-AuNCs inhibited the misfolding and fibrillation of amylin in a dosage-dependent manner, but electronegative MPA-AuNCs accelerated the misfolding and fibrillation of amylin in a dosage-dependent manner. Moreover, the theoretical and experimental results revealed the interaction mechanism between amylin and ligands of AuNCs at the nano-bio interfaces. Electropositive CSH-AuNCs could be bound to the main nucleating region of amylin via hydrogen bonding and endowed the nanocomplex with more positive net charges (amylin monomer with a positive +26.23 ± 0.80 mV zeta potential), which would inhibit the misfolding and aggregation of amylin via electrostatic repulsion and steric hindrance. In contrast, electronegative MPA-AuNCs could absorb electropositive amylin via strong electrostatic attractions, which accelerated the fibrillation process of amylin via enhancing local concentrations. Moreover, cell experiments showed that both the charged AuNCs had good biocompatibility and electronegetive MPA-AuNCs showed a better protective effect in the amylin-induced cell model than electropositive CSH-AuNCs. These results provide an insight into structure-based nanodrug design for protein conformational diseases.
Collapse
Affiliation(s)
- Xintong Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Tran ML, Génisson Y, Ballereau S, Dehoux C. Second-Generation Pharmacological Chaperones: Beyond Inhibitors. Molecules 2020; 25:molecules25143145. [PMID: 32660097 PMCID: PMC7397201 DOI: 10.3390/molecules25143145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023] Open
Abstract
Protein misfolding induced by missense mutations is the source of hundreds of conformational diseases. The cell quality control may eliminate nascent misfolded proteins, such as enzymes, and a pathological loss-of-function may result from their early degradation. Since the proof of concept in the 2000s, the bioinspired pharmacological chaperone therapy became a relevant low-molecular-weight compound strategy against conformational diseases. The first-generation pharmacological chaperones were competitive inhibitors of mutant enzymes. Counterintuitively, in binding to the active site, these inhibitors stabilize the proper folding of the mutated protein and partially rescue its cellular function. The main limitation of the first-generation pharmacological chaperones lies in the balance between enzyme activity enhancement and inhibition. Recent research efforts were directed towards the development of promising second-generation pharmacological chaperones. These non-inhibitory ligands, targeting previously unknown binding pockets, limit the risk of adverse enzymatic inhibition. Their pharmacophore identification is however challenging and likely requires a massive screening-based approach. This review focuses on second-generation chaperones designed to restore the cellular activity of misfolded enzymes. It intends to highlight, for a selected set of rare inherited metabolic disorders, the strategies implemented to identify and develop these pharmacologically relevant small organic molecules as potential drug candidates.
Collapse
Affiliation(s)
| | | | | | - Cécile Dehoux
- Correspondence: (S.B.); (C.D.); Tel.: +33-5-6155-6127 (C.D.)
| |
Collapse
|
43
|
Tao YX. Molecular chaperones and G protein-coupled receptor maturation and pharmacology. Mol Cell Endocrinol 2020; 511:110862. [PMID: 32389798 DOI: 10.1016/j.mce.2020.110862] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) are highly conserved versatile signaling molecules located at the plasma membrane that respond to diverse extracellular signals. They regulate almost all physiological processes in the vertebrates. About 35% of current drugs target these receptors. Mutations in these genes have been identified as causes of numerous diseases. The seven transmembrane domain structure of GPCRs implies that the folding of these transmembrane proteins is extremely complicated and difficult. Indeed, many wild type GPCRs are not folded optimally. The most common defect in genetic diseases caused by GPCR mutations is misfolding and failure to reach the plasma membrane where it functions. General molecular chaperones aid the folding of all proteins, including GPCRs, by preventing aggregation, promoting folding and disaggregating small aggregates. Some GPCRs need additional receptor-specific chaperones to assist their folding. Many of these receptor-specific chaperones interact with additional receptors and alter receptor pharmacology, expanding the understanding of these chaperone proteins.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849-5519, USA.
| |
Collapse
|
44
|
Leal AF, Espejo-Mojica AJ, Sánchez OF, Ramírez CM, Reyes LH, Cruz JC, Alméciga-Díaz CJ. Lysosomal storage diseases: current therapies and future alternatives. J Mol Med (Berl) 2020; 98:931-946. [PMID: 32529345 DOI: 10.1007/s00109-020-01935-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of monogenic diseases characterized by progressive accumulation of undegraded substrates into the lysosome, due to mutations in genes that encode for proteins involved in normal lysosomal function. In recent years, several approaches have been explored to find effective and successful therapies, including enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, hematopoietic stem cell transplantation, and gene therapy. In the case of gene therapy, genome editing technologies have opened new horizons to accelerate the development of novel treatment alternatives for LSD patients. In this review, we discuss the current therapies for this group of disorders and present a detailed description of major genome editing technologies, as well as the most recent advances in the treatment of LSDs. We will further highlight the challenges and current bioethical debates of genome editing.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Room 305A, Bogotá D.C, 110231, Colombia
| | - Angela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Room 305A, Bogotá D.C, 110231, Colombia
| | - Oscar F Sánchez
- Neurobiochemistry and Systems Physiology, Biochemistry and Nutrition Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Carlos Manuel Ramírez
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá D.C., Colombia
| | - Luis Humberto Reyes
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá D.C., Colombia
| | - Juan C Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá D.C., Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Cra. 7 No. 43-82 Building 54, Room 305A, Bogotá D.C, 110231, Colombia.
| |
Collapse
|
45
|
A rapid solubility assay of protein domain misfolding for pathogenicity assessment of rare DNA sequence variants. Genet Med 2020; 22:1642-1652. [PMID: 32475984 PMCID: PMC7529867 DOI: 10.1038/s41436-020-0842-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023] Open
Abstract
PURPOSE DNA sequencing technology has unmasked a vast number of uncharacterized single-nucleotide variants in disease-associated genes, and efficient methods are needed to determine pathogenicity and enable clinical care. METHODS We report an E. coli-based solubility assay for assessing the effects of variants on protein domain stability for three disease-associated proteins. RESULTS First, we examined variants in the Kv11.1 channel PAS domain (PASD) associated with inherited long QT syndrome type 2 and found that protein solubility correlated well with reported in vitro protein stabilities. A comprehensive solubility analysis of 56 Kv11.1 PASD variants revealed that disruption of membrane trafficking, the dominant loss-of-function disease mechanism, is largely determined by domain stability. We further validated this assay by using it to identify second-site suppressor PASD variants that improve domain stability and Kv11.1 protein trafficking. Finally, we applied this assay to several cancer-linked P53 tumor suppressor DNA-binding domain and myopathy-linked Lamin A/C Ig-like domain variants, which also correlated well with reported protein stabilities and functional analyses. CONCLUSION This simple solubility assay can aid in determining the likelihood of pathogenicity for sequence variants due to protein misfolding in structured domains of disease-associated genes as well as provide insights into the structural basis of disease.
Collapse
|
46
|
Fu SJ, Hu MC, Peng YJ, Fang HY, Hsiao CT, Chen TY, Jeng CJ, Tang CY. CUL4-DDB1-CRBN E3 Ubiquitin Ligase Regulates Proteostasis of ClC-2 Chloride Channels: Implication for Aldosteronism and Leukodystrophy. Cells 2020; 9:cells9061332. [PMID: 32466489 PMCID: PMC7348978 DOI: 10.3390/cells9061332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
Voltage-gated ClC-2 channels are essential for chloride homeostasis. Complete knockout of mouse ClC-2 leads to testicular degeneration and neuronal myelin vacuolation. Gain-of-function and loss-of-function mutations in the ClC-2-encoding human CLCN2 gene are linked to the genetic diseases aldosteronism and leukodystrophy, respectively. The protein homeostasis (proteostasis) mechanism of ClC-2 is currently unclear. Here, we aimed to identify the molecular mechanism of endoplasmic reticulum-associated degradation of ClC-2, and to explore the pathophysiological significance of disease-associated anomalous ClC-2 proteostasis. In both heterologous expression system and native neuronal and testicular cells, ClC-2 is subject to significant regulation by cullin-RING E3 ligase-mediated polyubiquitination and proteasomal degradation. The cullin 4 (CUL4)-damage-specific DNA binding protein 1 (DDB1)-cereblon (CRBN) E3 ubiquitin ligase co-exists in the same complex with and promotes the degradation of ClC-2 channels. The CRBN-targeting immunomodulatory drug lenalidomide and the cullin E3 ligase inhibitor MLN4924 promotes and attenuates, respectively, proteasomal degradation of ClC-2. Analyses of disease-related ClC-2 mutants reveal that aldosteronism and leukodystrophy are associated with opposite alterations in ClC-2 proteostasis. Modifying CUL4 E3 ligase activity with lenalidomide and MLN4924 ameliorates disease-associated ClC-2 proteostasis abnormality. Our results highlight the significant role and therapeutic potential of CUL4 E3 ubiquitin ligase in regulating ClC-2 proteostasis.
Collapse
Affiliation(s)
- Ssu-Ju Fu
- Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; (S.-J.F.); (M.-C.H.); (Y.-J.P.); (H.-Y.F.); (C.-T.H.)
| | - Meng-Chun Hu
- Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; (S.-J.F.); (M.-C.H.); (Y.-J.P.); (H.-Y.F.); (C.-T.H.)
| | - Yi-Jheng Peng
- Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; (S.-J.F.); (M.-C.H.); (Y.-J.P.); (H.-Y.F.); (C.-T.H.)
| | - Hsin-Yu Fang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; (S.-J.F.); (M.-C.H.); (Y.-J.P.); (H.-Y.F.); (C.-T.H.)
| | - Cheng-Tsung Hsiao
- Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; (S.-J.F.); (M.-C.H.); (Y.-J.P.); (H.-Y.F.); (C.-T.H.)
- Department of Neurology, Taipei Veterans General Hospital, Taipei 12217, Taiwan
| | - Tsung-Yu Chen
- Center for Neuroscience and Department of Neurology, University of California, Davis, CA 95616, USA;
| | - Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 12212, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei 12212, Taiwan
- Correspondence: (C.-J.J.); (C.-Y.T.)
| | - Chih-Yung Tang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; (S.-J.F.); (M.-C.H.); (Y.-J.P.); (H.-Y.F.); (C.-T.H.)
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Correspondence: (C.-J.J.); (C.-Y.T.)
| |
Collapse
|
47
|
Al-Sadeq DW, Nasrallah GK. The Spectrum of Mutations of Homocystinuria in the MENA Region. Genes (Basel) 2020; 11:genes11030330. [PMID: 32245022 PMCID: PMC7140887 DOI: 10.3390/genes11030330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
Homocystinuria is an inborn error of metabolism due to the deficiency in cystathionine beta-synthase (CBS) enzyme activity. It leads to the elevation of both homocysteine and methionine levels in the blood and urine. Consequently, this build-up could lead to several complications such as nearsightedness, dislocated eye lenses, a variety of psychiatric and behavioral disorders, as well as vascular system complications. The prevalence of homocystinuria is around 1/200,000 births worldwide. However, its prevalence in the Gulf region, notably Qatar, is exceptionally high and reached 1:1800. To date, more than 191 pathogenic CBS mutations have been documented. The majority of these mutations were identified in Caucasians of European ancestry, whereas only a few mutations from African-Americans or Asians were reported. Approximately 87% of all CBS mutations are missense and do not target the CBS catalytic site, but rather result in unstable misfolded proteins lacking the normal biological function, designating them for degradation. The early detection of homocystinuria along with low protein and methionine-restricted diet is the best treatment approach for all types of homocystinuria patients. Yet, less than 50% of affected individuals show a significant reduction in plasma homocysteine levels after treatment. Patients who fail to lower the elevated homocysteine levels, through high protein-restricted diet or by B6 and folic acid supplements, are at higher risk for cardiovascular diseases, neurodegenerative diseases, neural tube defects, and other severe clinical complications. This review aims to examine the mutations spectrum of the CBS gene, the disease management, as well as the current and potential treatment approaches with a greater emphasis on studies reported in the Middle East and North Africa (MENA) region.
Collapse
Affiliation(s)
- Duaa W. Al-Sadeq
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar
- College of Medicine, Member of QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
- Correspondence: (G.K.N.); (D.W.A-S.); Tel.: +974-4403-6623 (D.W.A-S.); +974-4403-4817 (G.K.N.); Fax: +974-4403-1351 (G.K.N.)
| | - Gheyath K. Nasrallah
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Qatar University, P.O. Box 2713 Doha, Qatar
- Correspondence: (G.K.N.); (D.W.A-S.); Tel.: +974-4403-6623 (D.W.A-S.); +974-4403-4817 (G.K.N.); Fax: +974-4403-1351 (G.K.N.)
| |
Collapse
|
48
|
Jeng CJ, Fu SJ, You CY, Peng YJ, Hsiao CT, Chen TY, Tang CY. Defective Gating and Proteostasis of Human ClC-1 Chloride Channel: Molecular Pathophysiology of Myotonia Congenita. Front Neurol 2020; 11:76. [PMID: 32117034 PMCID: PMC7026490 DOI: 10.3389/fneur.2020.00076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/22/2020] [Indexed: 01/17/2023] Open
Abstract
The voltage-dependent ClC-1 chloride channel, whose open probability increases with membrane potential depolarization, belongs to the superfamily of CLC channels/transporters. ClC-1 is almost exclusively expressed in skeletal muscles and is essential for stabilizing the excitability of muscle membranes. Elucidation of the molecular structures of human ClC-1 and several CLC homologs provides important insight to the gating and ion permeation mechanisms of this chloride channel. Mutations in the human CLCN1 gene, which encodes the ClC-1 channel, are associated with a hereditary skeletal muscle disease, myotonia congenita. Most disease-causing CLCN1 mutations lead to loss-of-function phenotypes in the ClC-1 channel and thus increase membrane excitability in skeletal muscles, consequently manifesting as delayed relaxations following voluntary muscle contractions in myotonic subjects. The inheritance pattern of myotonia congenita can be autosomal dominant (Thomsen type) or recessive (Becker type). To date over 200 myotonia-associated ClC-1 mutations have been identified, which are scattered throughout the entire protein sequence. The dominant inheritance pattern of some myotonia mutations may be explained by a dominant-negative effect on ClC-1 channel gating. For many other myotonia mutations, however, no clear relationship can be established between the inheritance pattern and the location of the mutation in the ClC-1 protein. Emerging evidence indicates that the effects of some mutations may entail impaired ClC-1 protein homeostasis (proteostasis). Proteostasis of membrane proteins comprises of biogenesis at the endoplasmic reticulum (ER), trafficking to the surface membrane, and protein turn-over at the plasma membrane. Maintenance of proteostasis requires the coordination of a wide variety of different molecular chaperones and protein quality control factors. A number of regulatory molecules have recently been shown to contribute to post-translational modifications of ClC-1 and play critical roles in the ER quality control, membrane trafficking, and peripheral quality control of this chloride channel. Further illumination of the mechanisms of ClC-1 proteostasis network will enhance our understanding of the molecular pathophysiology of myotonia congenita, and may also bring to light novel therapeutic targets for skeletal muscle dysfunction caused by myotonia and other pathological conditions.
Collapse
Affiliation(s)
- Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ssu-Ju Fu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Ying You
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jheng Peng
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Tsung Hsiao
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Yu Chen
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Chih-Yung Tang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
49
|
Kushwah N, Jain V, Yadav D. Osmolytes: A Possible Therapeutic Molecule for Ameliorating the Neurodegeneration Caused by Protein Misfolding and Aggregation. Biomolecules 2020; 10:biom10010132. [PMID: 31941036 PMCID: PMC7022651 DOI: 10.3390/biom10010132] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Most of the neurological disorders in the brain are caused by the abnormal buildup of misfolded or aggregated proteins. Osmolytes are low molecular weight organic molecules usually built up in tissues at a quite high amount during stress or any pathological condition. These molecules help in providing stability to the aggregated proteins and protect these proteins from misfolding. Alzheimer’s disease (AD) is the uttermost universal neurological disorder that can be described by the deposition of neurofibrillary tangles, aggregated/misfolded protein produced by the amyloid β-protein (Aβ). Osmolytes provide stability to the folded, functional form of a protein and alter the folding balance away from aggregation and/or degradation of the protein. Moreover, they are identified as chemical chaperones. Brain osmolytes enhance the pace of Aβ aggregation, combine with the nearby water molecules more promptly, and avert the aggregation/misfolding of proteins by providing stability to them. Therefore, osmolytes can be employed as therapeutic targets and may assist in potential drug design for many neurodegenerative and other diseases.
Collapse
Affiliation(s)
- Neetu Kushwah
- Functional Genomics Unit, CSIR-institute of genomics and integrative biology, Mall road, Delhi 110007, India;
| | - Vishal Jain
- Department of ECE, Carnegie Mellon University, Pittsburgh, PA 15289, USA
- Correspondence: (V.J.); (D.Y.); Tel.: +1-412-251-3042 (V.J.); +82-10-2202-1191(D.Y.)
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
- Correspondence: (V.J.); (D.Y.); Tel.: +1-412-251-3042 (V.J.); +82-10-2202-1191(D.Y.)
| |
Collapse
|
50
|
Liguori L, Monticelli M, Allocca M, Hay Mele B, Lukas J, Cubellis MV, Andreotti G. Pharmacological Chaperones: A Therapeutic Approach for Diseases Caused by Destabilizing Missense Mutations. Int J Mol Sci 2020; 21:ijms21020489. [PMID: 31940970 PMCID: PMC7014102 DOI: 10.3390/ijms21020489] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
The term “pharmacological chaperone” was introduced 20 years ago. Since then the approach with this type of drug has been proposed for several diseases, lysosomal storage disorders representing the most popular targets. The hallmark of a pharmacological chaperone is its ability to bind a protein specifically and stabilize it. This property can be beneficial for curing diseases that are associated with protein mutants that are intrinsically active but unstable. The total activity of the affected proteins in the cell is lower than normal because they are cleared by the quality control system. Although most pharmacological chaperones are reversible competitive inhibitors or antagonists of their target proteins, the inhibitory activity is neither required nor desirable. This issue is well documented by specific examples among which those concerning Fabry disease. Direct specific binding is not the only mechanism by which small molecules can rescue mutant proteins in the cell. These drugs and the properly defined pharmacological chaperones can work together with different and possibly synergistic modes of action to revert a disease phenotype caused by an unstable protein.
Collapse
Affiliation(s)
- Ludovica Liguori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.L.); (M.A.)
- Istituto di Chimica Biomolecolare–CNR, 80078 Pozzuoli, Italy;
| | - Maria Monticelli
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy;
| | - Mariateresa Allocca
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (L.L.); (M.A.)
- Istituto di Chimica Biomolecolare–CNR, 80078 Pozzuoli, Italy;
| | - Bruno Hay Mele
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Jan Lukas
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany;
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Maria Vittoria Cubellis
- Istituto di Chimica Biomolecolare–CNR, 80078 Pozzuoli, Italy;
- Dipartimento di Biologia, Università Federico II, 80126 Napoli, Italy;
- Correspondence: ; Tel.: +39-081-679118; Fax: +39-081-679233
| | | |
Collapse
|