1
|
Luo Y, Zhu J, Hu Z, Luo W, Du X, Hu H, Peng S. Progress in the Pathogenesis of Diabetic Encephalopathy: The Key Role of Neuroinflammation. Diabetes Metab Res Rev 2024; 40:e3841. [PMID: 39295168 DOI: 10.1002/dmrr.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a severe complication that occurs in the central nervous system (CNS) and leads to cognitive impairment. DE involves various pathophysiological processes, and its pathogenesis is still unclear. This review summarised current research on the pathogenesis of diabetic encephalopathy, which involves neuroinflammation, oxidative stress, iron homoeostasis, blood-brain barrier disruption, altered gut microbiota, insulin resistance, etc. Among these pathological mechanisms, neuroinflammation has been focused on. This paper summarises some of the molecular mechanisms involved in neuroinflammation, including the Mammalian Target of Rapamycin (mTOR), Lipocalin-2 (LCN-2), Pyroptosis, Advanced Glycosylation End Products (AGEs), and some common pro-inflammatory factors. In addition, we discuss recent advances in the study of potential therapeutic targets for the treatment of DE against neuroinflammation. The current research on the pathogenesis of DE is progressing slowly, and more research is needed in the future. Further study of neuroinflammation as a mechanism is conducive to the discovery of more effective treatments for DE in the future.
Collapse
Affiliation(s)
- Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Abdul Murad NA, Mohammad Noor Y, Mohd. Rani ZZ, Sulaiman SA, Chow YP, Abdullah N, Ahmad N, Ismail N, Abdul Jalal N, Kamaruddin MA, Saperi AA, Jamal R. Hypercholesterolemia in the Malaysian Cohort Participants: Genetic and Non-Genetic Risk Factors. Genes (Basel) 2023; 14:genes14030721. [PMID: 36980993 PMCID: PMC10048611 DOI: 10.3390/genes14030721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Hypercholesterolemia was prevalent in 44.9% of The Malaysian Cohort participants, of which 51% were Malay. This study aimed to identify the variants involved in hypercholesterolemia among Malays and to determine the association between genetic and non-genetic risk factors. This nested case–control study included 25 Malay participants with the highest low-density lipoprotein cholesterol (LDL-C, >4.9 mmol/L) and total cholesterol (TC, >7.5 mmol/L) and 25 participants with the lowest LDL-C/TC. Genomic DNA was extracted, and whole-exome sequencing was performed using the Ion ProtonTM system. All variants were annotated, filtered, and cross-referenced against publicly available databases. Forty-five selected variants were genotyped in 677 TMC Malay participants using the MassARRAY® System. The association between genetic and non-genetic risk factors was determined using logistic regression analysis. Age, fasting blood glucose, tobacco use, and family history of hyperlipidemia were significantly associated with hypercholesterolemia. Participants with the novel OSBPL7 (oxysterol-binding protein-like 7) c.651_652del variant had 17 times higher odds for hypercholesterolemia. Type 2 diabetes patients on medication and those with PCSK9 (proprotein convertase subtilisin/kexin type 9) rs151193009 had low odds for hypercholesterolemia. Genetic predisposition can interact with non-genetic factors to increase hypercholesterolemia risk in Malaysian Malays.
Collapse
Affiliation(s)
- Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yusuf Mohammad Noor
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
- Malaysian Genome Institute (MGI), Jalan Bangi, Bangi 43000, Malaysia
| | - Zam Zureena Mohd. Rani
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| | - Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yock Ping Chow
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| | - Noraidatulakma Abdullah
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| | - Norliza Ismail
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nazihah Abdul Jalal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mohd. Arman Kamaruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| | - Amalia Afzan Saperi
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
- Correspondence: ; Tel.: +60-3-9145-9000
| |
Collapse
|
3
|
Bagabaldo PAA, Atienza LM, Castillo-Israel KAT, Estacio MAC, Gaban PJV, Maniwang JRC, Gapasin RP, Estribillo AGM, Cena-Navarro RB. ‘Saba’ banana (Musa acuminata x balbisiana BBB Group) peel pectin supplementation improves biomarkers of obesity and associated blood lipid disorders in obese hypercholesterolemic mice. Curr Res Food Sci 2022; 5:251-260. [PMID: 35146442 PMCID: PMC8801348 DOI: 10.1016/j.crfs.2022.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 10/27/2022] Open
|
4
|
Petrovic D, Marcus K, Sandoval J, Cullati S, Piumatti G, Bodenmann P, Jackson YL, Durosier Izart C, Wolff H, Guessous I, Stringhini S. Health-related biological and non-biological consequences of forgoing healthcare for economic reasons. Prev Med Rep 2021; 24:101602. [PMID: 34976659 PMCID: PMC8683898 DOI: 10.1016/j.pmedr.2021.101602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022] Open
Abstract
Forgoing healthcare for economic reasons has been previously associated with adverse health outcomes, including a higher risk of hospitalization, a lower quality of life, and worse self-reported health. However, the exact cause-to-effect relation between forgoing healthcare and health-related outcomes has been insufficiently described. Here, we investigate the prospective health consequences of forgoing healthcare for economic reasons using data from “ReBus” (N = 400), a prospective study examining the health consequences of forgoing healthcare (Baseline: 2008–2013, Follow-up: 2014–2016). Using regression models, we explored the baseline determinants of forgoing healthcare, including socioeconomic, demographic, and pre-existing health-risk factors, and examined the associations between forgoing healthcare at baseline and health deterioration at follow-up, using highly pertinent biomarkers (glucose, glycated hemoglobin, lipids, blood pressure) and SF-36 questionnaire data. Low income, low occupation, low education, and smoking were associated with higher odds of forgoing healthcare at baseline. Forgoing healthcare for economic reasons at baseline was subsequently related to detrimental changes in glucose, high-density lipoprotein cholesterol (HDL), and blood pressure (BP) at follow-up, independently of baseline socioeconomic factors (Glucose-β = 0.19, 95%CI[0.03;0.34], HDL-β = -0.07, 95%CI[-0.14;0.01], BP-β = 3.30, 95%CI[-0.01;6.60]). Moreover, we found strong associations between forgoing healthcare and adverse SF-36 health scores at follow-up, with individuals forgoing healthcare systematically displaying worse health scores (6%–11% lower scores). For the first time, we show that forgoing healthcare for economic reasons predicts adverse health-related consequences 2–8 years later. Our findings shall further encourage the implementation of public health measures aimed at identifying individuals who forgo healthcare and preventing the adverse health consequences of unmet medical needs.
Collapse
Affiliation(s)
- Dusan Petrovic
- Department and Division of Primary Care Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland.,Department of Epidemiology and Health Systems (DESS), University Center for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland.,Centre for Environment and Health, School of Public Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Kailing Marcus
- Department and Division of Primary Care Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - José Sandoval
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Stéphane Cullati
- Population Health Laboratory (#PopHealthLab), Faculty of Science and Medicine, University of Fribourg, Switzerland.,Quality of Care Service, Department of Readaptation and Geriatrics, Faculty of Medicine, University of Geneva, Switzerland
| | | | - Patrick Bodenmann
- Department of Vulnerabilities and Social Medicine, University Center for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland.,Faculty of Biology and Medicine, Deanship, University of Lausanne, Lausanne, Switzerland
| | - Yves-Laurent Jackson
- Department and Division of Primary Care Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Claire Durosier Izart
- Department and Division of Primary Care Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Hans Wolff
- Department and Division of Primary Care Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Idris Guessous
- Department and Division of Primary Care Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Silvia Stringhini
- Department and Division of Primary Care Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland.,Department of Epidemiology and Health Systems (DESS), University Center for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland
| |
Collapse
|
5
|
Castellanos-Gutiérrez A, Rodríguez-Ramírez S, Bromage S, Fung TT, Li Y, Bhupathiraju SN, Deitchler M, Willett W, Batis C. Performance of the Global Diet Quality Score with Nutrition and Health Outcomes in Mexico with 24-h Recall and FFQ Data. J Nutr 2021; 151:143S-151S. [PMID: 34689195 PMCID: PMC8542100 DOI: 10.1093/jn/nxab202] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The Global Diet Quality Score (GDQS) is intended as a simple global diet quality metric feasible in low- and middle-income countries facing the double burden of malnutrition. OBJECTIVE The aim of this study was to evaluate the performance of the GDQS with markers of nutrient adequacy and chronic disease in nonpregnant nonlactating (NPNL) Mexican women of reproductive age and to compare it with the Alternate Healthy Eating Index-2010 (AHEI-2010) and the Minimum Dietary Diversity for Women (MDD-W). METHODS We included NPNL women aged 15 to 49 y from the Mexican National Health and Nutrition Surveys (2012 and 2016) with 24-h recall (n = 2542) or a FFQ (n = 4975) (separate samples). We evaluated the correlation of the GDQS with the energy-adjusted intake of several nutrients and evaluated its association with health parameters using covariate-adjusted linear regression models. RESULTS The GDQS was positively correlated with the intake of calcium, folate, iron, vitamin A, vitamin B-12, zinc, fiber, protein, and total fat (rho = 0.09 to 0.38, P < 0.05) and was inversely correlated with the intake of added sugar (rho = -0.37 and -0.38, P < 0.05) using both instruments, and with total fat, SFA, and MUFA only with 24-h recall data (rho = -0.06 to -0.16, P < 0.05). The GDQS was inversely associated with serum ferritin, BMI, waist circumference, and serum total and LDL cholesterol using FFQ data (P < 0.05), and was positively associated with serum folate using 24-h recall data (P < 0.05). Similar correlations and associations were observed with the MDD-W (only with micronutrients) and the AHEI-2010 (only with chronic disease-related nutrients and health markers). CONCLUSIONS In comparison to other diet metrics, the GDQS can capture both dimensions of nutrient adequacy and health markers related to the risk of chronic disease. The performance of the GDQS was satisfactory with either 24-h recall or FFQ.
Collapse
Affiliation(s)
| | - Sonia Rodríguez-Ramírez
- Health and Nutrition Research Center, National Institute of Public Health, Cuernavaca, Mexico
| | - Sabri Bromage
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Teresa T Fung
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Nutrition, Simmons University, Boston, MA, USA
| | - Yanping Li
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Megan Deitchler
- Intake – Center for Dietary Assessment, FHI Solutions, Washington, DC, USA
| | - Walter Willett
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Carolina Batis
- CONACYT—Health and Nutrition Research Center, National Institute of Public Health, Cuernavaca, Mexico
| |
Collapse
|
6
|
Bista B, Dhimal M, Bhattarai S, Neupane T, Xu YY, Pandey AR, Townsend N, Gyanwali P, Jha AK. Prevalence of non-communicable diseases risk factors and their determinants: Results from STEPS survey 2019, Nepal. PLoS One 2021; 16:e0253605. [PMID: 34329300 PMCID: PMC8323895 DOI: 10.1371/journal.pone.0253605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022] Open
Abstract
Background The World Health Organization (WHO) recommends ongoing surveillance of non-communicable diseases (NCDs) and their risk factors, using the WHO STEPwise approach to surveillance (STEPS). The aim of this study was to assess the distribution and determinants of NCD risk factors in Nepal, a low-income country, in which two-thirds (66%) of annual deaths are attributable to NCDs. Methods A nationally representative NCD risk factors STEPS survey (instrument version 3.2), was conducted between February and May 2019, among 6,475 eligible participants of age 15–69 years sampled from all 7 provinces through multistage sampling process. Data collection involved assessment of behavioral and biochemical risk factors. Complex survey analysis was completed in STATA 15, along with Poisson regression modelling to examine associations between covariates and risk factor prevalence. Results The most prevalent risk factor was consumption of less than five servings of fruit and vegetables a day (97%; 95% CI: 94.3–98.0). Out of total participants, 17% (95% CI: 15.1–19.1) were current smoker, 6.8% (95% CI: 5.3–8.2) were consuming ≥60g/month alcohol per month and 7.4% (95% CI:5.7–10.1) were having low level of physical activity. Approximately, 24.3% (95% CI: 21.6–27.2) were overweight or obese (BMI≥25kg/m2) while 24.5% (95% CI: 22.4–26.7) and 5.8% (95% CI: 4.3–7.3) had raised blood pressure (BP) and raised blood glucose respectively. Similarly, the prevalence of raised total cholesterol was 11% (95% CI: 9.6–12.6). Sex and education level of participants were statistically associated with smoking, harmful alcohol use and raised BP. Participants of age 30–44 years and 45–69 years were found to have increased risk of overweight, raised BP, raised blood sugar and raised blood cholesterol. Similarly, participants in richest wealth quintile had higher odds of insufficient physical inactivity, overweight and raised blood cholesterol. On average, each participant had 2 NCD related risk factors (2.04, 95% CI: 2.02–2.08). Conclusion A large portion of the Nepalese population are living with a variety of NCD risk factors. These surveillance data should be used to support and monitor province specific NCD prevention and control interventions throughout Nepal, supported by a multi-sectoral national coordination mechanism.
Collapse
Affiliation(s)
- Bihungum Bista
- Nepal Health Research Council, Ramshah Path, Kathmandu, Nepal
| | - Meghnath Dhimal
- Nepal Health Research Council, Ramshah Path, Kathmandu, Nepal
- * E-mail:
| | - Saroj Bhattarai
- Nepal Health Research Council, Ramshah Path, Kathmandu, Nepal
| | - Tamanna Neupane
- Nepal Health Research Council, Ramshah Path, Kathmandu, Nepal
| | | | | | - Nick Townsend
- Department for Health, University of Bath, Bath, United Kingdom
| | - Pradip Gyanwali
- Nepal Health Research Council, Ramshah Path, Kathmandu, Nepal
| | | |
Collapse
|
7
|
Effect of white matter hyperintensity on dopamine transporter availability of striatum measured by F-18 FP-CIT PET. Jpn J Radiol 2021; 39:1097-1102. [PMID: 34142306 DOI: 10.1007/s11604-021-01152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE We aimed to evaluate the white matter hyperintensity (WMH) effect on dopamine transporter availability (DAT) of striatum. MATERIALS AND METHODS A total of 48 patients who showed visually normal F-18 FP-CIT uptake were included in this study. Each FP-CIT image were pre-processed using SPM12. Co-registration and spatial normalization of FP-CIT image conducted using T1-weighted magnetic resonance imaging (MRI). And then smoothing of normalized FP-CIT image was performed. Intensity normalization was performed using cerebellum as a reference region. With pre-defined volume of interest template, the specific binding ratio (SBR) of both side of caudate nucleus and putamen was calculated. Fluid attenuated inversion recovery MRI scans were used to evaluate WMH number and volume. RESULTS SBRs of left and right caudate nucleus were correlated with age (r = - 0.615; p < 0.0001; n = 48, r = - 0.607; p < 0.0001; n = 48, respectively), high density lipoprotein cholesterol (r = 0.296; p = 0.041; n = 48, r = 0.29; p = 0.0455; n = 48, respectively), and WMH number (r = - 0.459; p = 0.001; n = 48, r = - 0.481; p = 0.0005; n = 48, respectively) and volume (r = - 0.407; p = 0.0041; n = 48, r = - 0.428; p = 0.0024; n = 48, respectively). CONCLUSION DAT availability of patients who showed visually normal F-18 FP-CIT uptake was correlated with number and volume of WMH.
Collapse
|
8
|
Chen T, Chen S, Wang D, Hung H. High‐fat diet reduces novelty‐induced expression of activity‐regulated cytoskeleton‐associated protein. J Cell Physiol 2019; 235:1065-1075. [DOI: 10.1002/jcp.29021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 06/06/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Tsan‐Ju Chen
- Department of Physiology, School of Medicine, College of Medicine Kaohsiung Medical University Kaohsiung Taiwan
| | - Shun‐Sheng Chen
- Department of Neurology, Chang Gung Memorial Hospital‐Kaohsiung Medical Center, College of Medicine Chang Gung University Kaohsiung Taiwan
| | - Dean‐Chuan Wang
- Department of Sports Medicine, College of Medicine Kaohsiung Medical University Kaohsiung Taiwan
| | - Hui‐Shan Hung
- Department of Physiology, School of Medicine, College of Medicine Kaohsiung Medical University Kaohsiung Taiwan
| |
Collapse
|
9
|
van Zutphen T, Bertolini A, de Vries HD, Bloks VW, de Boer JF, Jonker JW, Kuipers F. Potential of Intestine-Selective FXR Modulation for Treatment of Metabolic Disease. Handb Exp Pharmacol 2019; 256:207-234. [PMID: 31236687 DOI: 10.1007/164_2019_233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Farnesoid X receptor controls bile acid metabolism, both in the liver and intestine. This potent nuclear receptor not only maintains homeostasis of its own ligands, i.e., bile acids, but also regulates glucose and lipid metabolism as well as the immune system. These findings have led to substantial interest for FXR as a therapeutic target and to the recent approval of an FXR agonist for treating primary biliary cholangitis as well as ongoing clinical trials for other liver diseases. Given that FXR biology is complex, including moderate expression in tissues outside of the enterohepatic circulation, temporal expression of isoforms, posttranscriptional modifications, and the existence of several other bile acid-responsive receptors such as TGR5, clinical application of FXR modulators warrants thorough understanding of its actions. Recent findings have demonstrated remarkable physiological effects of targeting FXR specifically in the intestine (iFXR), thereby avoiding systemic release of modulators. These include local effects such as improvement of intestinal barrier function and intestinal cholesterol turnover, as well as systemic effects such as improvements in glucose homeostasis, insulin sensitivity, and nonalcoholic fatty liver disease (NAFLD). Intriguingly, metabolic improvements have been observed with both an iFXR agonist that leads to production of enteric Fgf15 and increased energy expenditure in adipose tissues and antagonists by reducing systemic ceramide levels and hepatic glucose production. Here we review the recent findings on the role of intestinal FXR and its targeting in metabolic disease.
Collapse
Affiliation(s)
- Tim van Zutphen
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
- University of Groningen, Leeuwarden, The Netherlands
| | - Anna Bertolini
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
| | - Hilde D de Vries
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
- University of Groningen, Leeuwarden, The Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan W Jonker
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands.
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
10
|
Wang X, Wang X, Jiang H, Cai C, Li G, Hao J, Yu G. Marine polysaccharides attenuate metabolic syndrome by fermentation products and altering gut microbiota: An overview. Carbohydr Polym 2018; 195:601-612. [PMID: 29805017 DOI: 10.1016/j.carbpol.2018.05.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/20/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Abstract
Marine polysaccharides (MPs), including plant, animal, and microbial-derived polysaccharides, can alleviate metabolic syndrome (MetS) by different regulation mechanisms. MPs and their derivatives can attenuate MetS by vary cellular signal pathways, such as peroxisome proliferator-activated receptor, 5' adenosine monophosphate-activated protein kinase, and CCAAT/enhancer binding protein-α. Also, most of MPs cannot be degraded by human innate enzymes, but they can be degraded and fermented by human gut microbiota. The final metabolic products of these polysaccharides are usually short-chain fatty acids (SCFAs), which can change the gut microbiota ecology by altering the existing percentage of special microorganisms. In addition, the SCFAs and changed gut microbiota can regulate enteroendocrine hormone secretion, blood glucose, lipid metabolism levels, and other MetS symptoms. Here, we summarize the up-to-date findings on the effects of MPs, particularly marine microbial-derived polysaccharides, and their metabolites on attenuating MetS.
Collapse
Affiliation(s)
- Xueliang Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Xin Wang
- Obstetrics Department (Work Number 002312), Qingdao Municipal Hospital (Group), Qingdao, 266000, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Guoyun Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
11
|
Bouamama S, Merzouk H, Medjdoub A, Merzouk-Saidi A, Merzouk SA. Effects of exogenous vitamins A, C, and E and NADH supplementation on proliferation, cytokines release, and cell redox status of lymphocytes from healthy aged subjects. Appl Physiol Nutr Metab 2017; 42:579-587. [PMID: 28177713 DOI: 10.1139/apnm-2016-0201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Aging is an inevitable biological event that is associated with immune alterations. These alterations are related to increased cellular oxidative stress and micronutrient deficiency. Antioxidant supplementation could improve these age-related abnormalities. The aim of this study was to determine in vitro effects of vitamin A, vitamin C, vitamin E, and nicotinamide adenine dinucleotide (NADH) on T cell proliferation, cytokine release, and cell redox status in the elderly compared with young adults. Peripheral blood lymphocytes were isolated using a density gradient of Histopaque. They were cultured in vitro and stimulated with concanavalin A in the presence or absence of vitamins. Cell proliferation was determined by conducting MTT assays, and based on interleukin-2 and interleukin-4 secretions. Cell oxidant/antioxidant balance was assessed by assaying reduced glutathione (GSH), malondialdehyde, carbonyl protein levels, and catalase activity. The present study demonstrated that T-lymphocyte proliferation was decreased with aging and was associated with cytokine secretion alterations, GSH depletion, and intracellular oxidative stress. In the elderly, vitamin C, vitamin E, and NADH significantly improved lymphocyte proliferation and mitigated cellular oxidative stress, whereas vitamin A did not affect cell proliferation or cell redox status. In conclusion, vitamin C, vitamin E, and NADH supplementation improved T-lymphocytes response in the elderly, and could contribute to the prevention of age-related immune alterations. Consumption of food items containing these vitamins is recommended, and further investigation is necessary to evaluate the effect of vitamin supplementation in vivo.
Collapse
Affiliation(s)
- Samia Bouamama
- a Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaïd University, Tlemcen 13000, Algeria
| | - Hafida Merzouk
- a Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaïd University, Tlemcen 13000, Algeria
| | - Amel Medjdoub
- a Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaïd University, Tlemcen 13000, Algeria
| | - Amel Merzouk-Saidi
- a Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaïd University, Tlemcen 13000, Algeria
| | - Sid Ahmed Merzouk
- b Department of Technical Sciences, Faculty of Engineering, Abou-Bekr Belkaïd University, Tlemcen 13000, Algeria
| |
Collapse
|
12
|
Protective Effect of Genistein against Neuronal Degeneration in ApoE -/- Mice Fed a High-Fat Diet. Nutrients 2016; 8:nu8110692. [PMID: 27809235 PMCID: PMC5133079 DOI: 10.3390/nu8110692] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
Altered cholesterol metabolism is believed to play a causal role in major pathophysiological changes in neurodegeneration. Several studies have demonstrated that the absence of apolipoprotein E (ApoE), a predominant apolipoprotein in the brain, leads to an increased susceptibility to neurodegeneration. Previously, we observed that genistein, a soy isoflavone, significantly alleviated apoptosis and tau hyperphosphorylation in SH-SY5Y cells. Therefore, we investigated the neuroprotective effects of dietary genistein supplementation (0.5 g/kg diet) in the cortex and hippocampus of wild-type C57BL/6 (WT) and ApoE knockout (ApoE−/−) mice fed a high-fat diet (HFD) for 24 weeks. Genistein supplementation alleviated neuroinflammation and peripheral and brain insulin resistance. Reductions in oxidative and endoplasmic reticulum stress were also observed in ApoE−/− mice fed a genistein-supplemented diet. Beta-secretase 1 and presenilin 1 mRNA levels and beta-amyloid peptide (Aβ) protein levels were reduced in response to genistein supplementation in ApoE−/− mice but not in WT mice. Although the absence of ApoE did not increase tau hyperphosphorylation, genistein supplementation reduced tau hyperphosphorylation in both WT and ApoE−/− mice. Consistent with this result, we also observed that genistein alleviated activity of c-Jun N-terminal kinase and glycogen synthase kinase 3β, which are involved in tau hyperphosphorylation. Taken together, these results demonstrate that genistein alleviated neuroinflammation, Aβ deposition, and hyperphosphorylation in ApoE−/− mice fed an HFD.
Collapse
|
13
|
Joyce SA, Gahan CGM. Bile Acid Modifications at the Microbe-Host Interface: Potential for Nutraceutical and Pharmaceutical Interventions in Host Health. Annu Rev Food Sci Technol 2016; 7:313-33. [PMID: 26772409 DOI: 10.1146/annurev-food-041715-033159] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bile acids have emerged as important signaling molecules in the host, as they interact either locally or systemically with specific cellular receptors, in particular the farnesoid X receptor (FXR) and TGR5. These signaling functions influence systemic lipid and cholesterol metabolism, energy metabolism, immune homeostasis, and intestinal electrolyte balance. Through defined enzymatic activities, the gut microbiota can significantly modify the signaling properties of bile acids and therefore can have an impact upon host health. Alterations to the gut microbiota that influence bile acid metabolism are associated with metabolic disease, obesity, diarrhea, inflammatory bowel disease (IBD), Clostridium difficile infection, colorectal cancer, and hepatocellular carcinoma. Here, we examine the regulation of this gut-microbiota-liver axis in the context of bile acid metabolism and indicate how this pathway represents an important target for the development of new nutraceutical (diet and/or probiotics) and targeted pharmaceutical interventions.
Collapse
Affiliation(s)
- Susan A Joyce
- APC Microbiome Institute.,School of Biochemistry and Cell Biology
| | - Cormac G M Gahan
- APC Microbiome Institute.,School of Microbiology.,School of Pharmacy, University College Cork, Cork, Ireland; ,
| |
Collapse
|
14
|
Zhao C, Wu Y, Yang C, Liu B, Huang Y. Hypotensive, hypoglycaemic and hypolipidaemic effects of bioactive compounds from microalgae and marine micro-organisms. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12860] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chao Zhao
- College of Food Science; Fujian Agriculture and Forestry University; Fuzhou 350002 China
- Department of Chemistry; University of California; Davis CA 95616 USA
| | - Yijing Wu
- College of Food Science; Fujian Agriculture and Forestry University; Fuzhou 350002 China
- Department of Chemistry; University of California; Davis CA 95616 USA
| | - Chengfeng Yang
- College of Food Science; Fujian Agriculture and Forestry University; Fuzhou 350002 China
| | - Bin Liu
- College of Food Science; Fujian Agriculture and Forestry University; Fuzhou 350002 China
- National Engineering Research Center of JUNCAO; Fuzhou 350002 China
| | - Yifan Huang
- College of Food Science; Fujian Agriculture and Forestry University; Fuzhou 350002 China
- National Engineering Research Center of JUNCAO; Fuzhou 350002 China
| |
Collapse
|
15
|
Raddatz BB, Sun W, Brogden G, Sun Y, Kammeyer P, Kalkuhl A, Colbatzky F, Deschl U, Naim HY, Baumgärtner W, Ulrich R. Central Nervous System Demyelination and Remyelination is Independent from Systemic Cholesterol Level in Theiler's Murine Encephalomyelitis. Brain Pathol 2015; 26:102-19. [PMID: 25959295 DOI: 10.1111/bpa.12266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/29/2015] [Indexed: 12/18/2022] Open
Abstract
High dietary fat and/or cholesterol intake is a risk factor for multiple diseases and has been debated for multiple sclerosis. However, cholesterol biosynthesis is a key pathway during myelination and disturbances are described in demyelinating diseases. To address the possible interaction of dyslipidemia and demyelination, cholesterol biosynthesis gene expression, composition of the body's major lipid repositories and Paigen diet-induced, systemic hypercholesterolemia were examined in Theiler's murine encephalomyelitis (TME) using histology, immunohistochemistry, serum clinical chemistry, microarrays and high-performance thin layer chromatography. TME-virus (TMEV)-infected mice showed progressive loss of motor performance and demyelinating leukomyelitis. Gene expression associated with cholesterol biosynthesis was overall down-regulated in the spinal cord of TMEV-infected animals. Spinal cord levels of galactocerebroside and sphingomyelin were reduced on day 196 post TMEV infection. Paigen diet induced serum hypercholesterolemia and hepatic lipidosis. However, high dietary fat and cholesterol intake led to no significant differences in clinical course, inflammatory response, astrocytosis, and the amount of demyelination and remyelination in the spinal cord of TMEV-infected animals. The results suggest that down-regulation of cholesterol biosynthesis is a transcriptional marker for demyelination, quantitative loss of myelin-specific lipids, but not cholesterol occurs late in chronic demyelination, and serum hypercholesterolemia exhibited no significant effect on TMEV infection.
Collapse
Affiliation(s)
- Barbara B Raddatz
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wenhui Sun
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Graham Brogden
- Fish Disease Research Unit, University of Veterinary Medicine Hannover, Hannover, Germany.,Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Yanyong Sun
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Patricia Kammeyer
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Arno Kalkuhl
- Department of Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach (Riß), Germany
| | - Florian Colbatzky
- Department of Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach (Riß), Germany
| | - Ulrich Deschl
- Department of Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach (Riß), Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
16
|
Jia YJ, Liu J, Guo YL, Xu RX, Sun J, Li JJ. Dyslipidemia in rat fed with high-fat diet is not associated with PCSK9-LDL-receptor pathway but ageing. J Geriatr Cardiol 2013; 10:361-8. [PMID: 24454330 PMCID: PMC3888919 DOI: 10.3969/j.issn.1671-5411.2013.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/06/2013] [Accepted: 08/11/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Obesity is associated with unfavorable alternations in plasma lipid profile and a broad spectrum of cardio-metabolic disorders. Proprotein convestase subtilisin kexin type 9 (PCSK9) is a novel circulating protein that promotes hypercholesterolemia by decreasing hepatic low lipoprotein density receptor (LDLR) protein. However, the relationship between PCSK9 concentration and lipid profile in an obesity condition has less been investigated. OBJECTIVE To examine the changes of plasma PCSK9 concentration in a rat model fed with high fat diet (HFD) and its correlation to lipid profile, body weight and ageing. METHODS Twenty male Sprague Dawley (SD) rats were divided into two groups, control group (fed with normal pellet for 4 weeks), and high-fat diet group (fed with 3% cholesterol enrich diet for 4 weeks). Blood samples of rats were obtained before and at days 14, 21, and 28 in both groups. The body weight, plasma metabolic parameters (glucose, lipid profile) and PCSK9 were determined at indicated time points. RESULTS The body weights were significantly increased in rats fed with HFD compared to that in rats with normal pellets at day 28. Additionally, total cholesterol (TC), triglyceride (TG), and low density lipoprotein cholesterol (LDL-C) levels in rat fed with HFD were also higher than that in rats fed with control diet while decreased high density lipoprotein cholesterol (HDL-C) levels were found in rats with HFD at day 28. More interesting, there were no differences of plasma PCSK9 concentrations as well as hepatic expression of LDLR between the two groups at day 28. CONCLUSIONS Although the body weight and LDL-C were significantly increased in rats fed with HFD at 4 weeks, there were no differences of changes in plasma PCSK9 concentration and LDLR expression of liver tissue in both groups at baseline and day 28, suggesting that dyslipidemia in the rat model with HFD appears not to be associated with PCSK9-LDLR pathway but ageing.
Collapse
Affiliation(s)
- Yan-Jun Jia
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Jun Liu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Rui-Xia Xu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Jiang Sun
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing 100037, China
| |
Collapse
|
17
|
Freeman LR, Haley-Zitlin V, Rosenberger DS, Granholm AC. Damaging effects of a high-fat diet to the brain and cognition: a review of proposed mechanisms. Nutr Neurosci 2013; 17:241-51. [PMID: 24192577 DOI: 10.1179/1476830513y.0000000092] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of obesity is growing and now includes at least one-third of the adult population in the United States. As obesity and dementia rates reach epidemic proportions, an even greater interest in the effects of nutrition on the brain have become evident. This review discusses various mechanisms by which a high fat diet and/or obesity can alter the brain and cognition. It is well known that a poor diet and obesity can lead to certain disorders such as type II diabetes, metabolic syndrome, and heart disease. However, long-term effects of obesity on the brain need to be further examined. The contribution of insulin resistance and oxidative stress is briefly reviewed from studies in the current literature. The role of inflammation and vascular alterations are described in more detail due to our laboratory's experience in evaluating these specific factors. It is very likely that each of these factors plays a role in diet-induced and/or obesity-induced cognitive decline.
Collapse
|
18
|
Aine CJ, Sanfratello L, Adair JC, Knoefel JE, Qualls C, Lundy SL, Caprihan A, Stone D, Stephen JM. Characterization of a normal control group: are they healthy? Neuroimage 2013; 84:796-809. [PMID: 24060318 DOI: 10.1016/j.neuroimage.2013.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/28/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022] Open
Abstract
We examined the health of a control group (18-81years) in our aging study, which is similar to control groups used in other neuroimaging studies. The current study was motivated by our previous results showing that one third of the elder control group had moderate to severe white matter hyperintensities and/or cortical volume loss which correlated with poor performance on memory tasks. Therefore, we predicted that cardiovascular risk factors (e.g., hypertension, high cholesterol) within the control group would account for significant variance on working memory task performance. Fifty-five participants completed 4 verbal and spatial working memory tasks, neuropsychological exams, diffusion tensor imaging (DTI), and blood tests to assess vascular risk. In addition to using a repeated measures ANOVA design, a cluster analysis was applied to the vascular risk measures as a data reduction step to characterize relationships between conjoint risk factors. The cluster groupings were used to predict working memory performance. The results show that higher levels of systolic blood pressure were associated with: 1) poor spatial working memory accuracy; and 2) lower fractional anisotropy (FA) values in multiple brain regions. In contrast, higher levels of total cholesterol corresponded with increased accuracy in verbal working memory. An association between lower FA values and higher cholesterol levels were identified in different brain regions from those associated with systolic blood pressure. The conjoint risk analysis revealed that Risk Cluster Group 3 (the group with the greatest number of risk factors) displayed: 1) the poorest performance on the spatial working memory tasks; 2) the longest reaction times across both spatial and verbal memory tasks; and 3) the lowest FA values across widespread brain regions. Our results confirm that a considerable range of vascular risk factors are present in a typical control group, even in younger individuals, which have robust effects on brain anatomy and function. These results present a new challenge to neuroimaging studies both for defining a cohort from which to characterize 'normative' brain circuitry and for establishing a control group to compare with other clinical populations.
Collapse
Affiliation(s)
- C J Aine
- Department of Radiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cholesterol: its regulation and role in central nervous system disorders. CHOLESTEROL 2012; 2012:292598. [PMID: 23119149 PMCID: PMC3483652 DOI: 10.1155/2012/292598] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/03/2012] [Accepted: 09/10/2012] [Indexed: 02/08/2023]
Abstract
Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer's disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules). We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.
Collapse
|
20
|
Stenger C, Pinçon A, Hanse M, Royer L, Comte A, Koziel V, Olivier JL, Pillot T, Yen FT. Brain region-specific immunolocalization of the lipolysis-stimulated lipoprotein receptor (LSR) and altered cholesterol distribution in aged LSR+/- mice. J Neurochem 2012; 123:467-76. [PMID: 22909011 DOI: 10.1111/j.1471-4159.2012.07922.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 11/29/2022]
Abstract
Brain lipid homeostasis is important for maintenance of brain cell function and synaptic communications, and is intimately linked to age-related cognitive decline. Because of the blood-brain barrier's limiting nature, this tissue relies on a complex system for the synthesis and receptor-mediated uptake of lipids between the different networks of neurons and glial cells. Using immunofluorescence, we describe the region-specific expression of the lipolysis-stimulated lipoprotein receptor (LSR), in the mouse hippocampus, cerebellum Purkinje cells, the ependymal cell interface between brain parenchyma and cerebrospinal fluid, and the choroid plexus. Colocalization with cell-specific markers revealed that LSR was expressed in neurons, but not astrocytes. Latency in arms of the Y-maze exhibited by young heterozygote LSR(+/-) mice was significantly different as compared to control LSR(+/+), and increased in older LSR(+/-) mice. Filipin and Nile red staining revealed membrane cholesterol content accumulation accompanied by significantly altered distribution of LSR in the membrane, and decreased intracellular lipid droplets in the cerebellum and hippocampus of old LSR(+/-) mice, as compared to control littermates as well as young LSR(+/-) animals. These data therefore suggest a potential role of LSR in brain cholesterol distribution, which is particularly important in preserving neuronal integrity and thereby cognitive functions during aging.
Collapse
|
21
|
Sulzner K, Kreuder Johnson C, Bonde RK, Auil Gomez N, Powell J, Nielsen K, Luttrell MP, Osterhaus ADME, Aguirre AA. Health assessment and seroepidemiologic survey of potential pathogens in wild Antillean manatees (Trichechus manatus manatus). PLoS One 2012; 7:e44517. [PMID: 22984521 PMCID: PMC3440391 DOI: 10.1371/journal.pone.0044517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/08/2012] [Indexed: 11/28/2022] Open
Abstract
The Antillean manatee (Trichechus manatus manatus), a subspecies of the West Indian manatee, inhabits fresh, brackish, and warm coastal waters distributed along the eastern border of Central America, the northern coast of South America, and throughout the Wider Caribbean Region. Threatened primarily by human encroachment, poaching, and habitat degradation, Antillean manatees are listed as endangered by the International Union for the Conservation of Nature. The impact of disease on population viability remains unknown in spite of concerns surrounding the species' ability to rebound from a population crash should an epizootic occur. To gain insight on the baseline health of this subspecies, a total of 191 blood samples were collected opportunistically from wild Antillean manatees in Belize between 1997 and 2009. Hematologic and biochemical reference intervals were established, and antibody prevalence to eight pathogens with zoonotic potential was determined. Age was found to be a significant factor of variation in mean blood values, whereas sex, capture site, and season contributed less to overall differences in parameter values. Negative antibody titers were reported for all pathogens surveyed except for Leptospira bratislava, L. canicola, and L. icterohemorrhagiae, Toxoplasma gondii, and morbillivirus. As part of comprehensive health assessment in manatees from Belize, this study will serve as a benchmark aiding in early disease detection and in the discernment of important epidemiologic patterns in the manatees of this region. Additionally, it will provide some of the initial tools to explore the broader application of manatees as sentinel species of nearshore ecosystem health.
Collapse
Affiliation(s)
- Kathryn Sulzner
- Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Christine Kreuder Johnson
- Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Robert K. Bonde
- Sirenia Project, United States Geological Survey, Gainesville, Florida, United States of America
| | - Nicole Auil Gomez
- Sea to Shore Alliance, St. Petersburg, Florida, United States of America
| | - James Powell
- Sea to Shore Alliance, St. Petersburg, Florida, United States of America
| | - Klaus Nielsen
- Canadian Food Inspection Agency, Nepean, Ontario, Canada
| | - M. Page Luttrell
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | | | - A. Alonso Aguirre
- Smithsonian-Mason School of Conservation, Front Royal, Virginia, United States of America
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, United States of America
| |
Collapse
|
22
|
Badaut J, Copin JC, Fukuda AM, Gasche Y, Schaller K, da Silva RF. Increase of arginase activity in old apolipoprotein-E deficient mice under Western diet associated with changes in neurovascular unit. J Neuroinflammation 2012; 9:132. [PMID: 22709928 PMCID: PMC3419627 DOI: 10.1186/1742-2094-9-132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/18/2012] [Indexed: 12/19/2022] Open
Abstract
Aging and atherosclerosis are well-recognized risk factors for cardiac and neurovascular diseases. The Apolipoprotein E deficient (ApoE-/-) mouse on a high-fat diet is a classical model of atherosclerosis, characterized by the presence of atherosclerotic plaques in extracranial vessels but not in cerebral arteries. Increase in arginase activity was shown to participate in vascular dysfunction in the peripheral arteries of atherosclerotic mice by changing the level of nitric oxide (NO). NO plays a key role in the physiological functions of the neurovascular unit (NVU). However, the regulation of arginase expression and activity in the brain was never investigated in association with changes in the NVU, ApoE deficiency and high fat diet.Fourteen-month-old ApoE-/- mice on high-fat diet exhibited deposition of lipids in the NVU, impairment of blood-brain barrier properties, astrogliosis and an increase of aquaporin 4 staining. In association with these changes, brain arginase activity was significantly increased in the old ApoE-/- mice as compared to old wild type mice, with an increase in the level of arginase type I in the blood vessels.In conclusion, aging in this classical mouse model of atherosclerosis induces an increase in the level and activity of arginase I that may impair NO synthesis and contribute to changes in the NVU leading to blood-brain barrier leakage and inflammation.
Collapse
Affiliation(s)
- Jérôme Badaut
- Departments of Pediatrics and Physiology, Linda University School of Medicine, Coleman Pavilion, Room A1120, 11175 Campus Street, Loma Linda, CA 92354, USA.
| | | | | | | | | | | |
Collapse
|