1
|
Kelly LS, Munley JA, Pons EE, Kannan KB, Whitley EM, Bible LE, Efron PA, Mohr AM. A rat model of multicompartmental traumatic injury and hemorrhagic shock induces bone marrow dysfunction and profound anemia. Animal Model Exp Med 2024; 7:367-376. [PMID: 38860566 PMCID: PMC11228100 DOI: 10.1002/ame2.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Severe trauma is associated with systemic inflammation and organ dysfunction. Preclinical rodent trauma models are the mainstay of postinjury research but have been criticized for not fully replicating severe human trauma. The aim of this study was to create a rat model of multicompartmental injury which recreates profound traumatic injury. METHODS Male Sprague-Dawley rats were subjected to unilateral lung contusion and hemorrhagic shock (LCHS), multicompartmental polytrauma (PT) (unilateral lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofracture), or naïve controls. Weight, plasma toll-like receptor 4 (TLR4), hemoglobin, spleen to body weight ratio, bone marrow (BM) erythroid progenitor (CFU-GEMM, BFU-E, and CFU-E) growth, plasma granulocyte colony-stimulating factor (G-CSF) and right lung histologic injury were assessed on day 7, with significance defined as p values <0.05 (*). RESULTS Polytrauma resulted in markedly more profound inhibition of weight gain compared to LCHS (p = 0.0002) along with elevated plasma TLR4 (p < 0.0001), lower hemoglobin (p < 0.0001), and enlarged spleen to body weight ratios (p = 0.004). Both LCHS and PT demonstrated suppression of CFU-E and BFU-E growth compared to naïve (p < 0.03, p < 0.01). Plasma G-CSF was elevated in PT compared to both naïve and LCHS (p < 0.0001, p = 0.02). LCHS and PT demonstrated significant histologic right lung injury with poor alveolar wall integrity and interstitial edema. CONCLUSIONS Multicompartmental injury as described here establishes a reproducible model of multicompartmental injury with worsened anemia, splenic tissue enlargement, weight loss, and increased inflammatory activity compared to a less severe model. This may serve as a more effective model to recreate profound traumatic injury to replicate the human inflammatory response postinjury.
Collapse
Affiliation(s)
- Lauren S. Kelly
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Jennifer A. Munley
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Erick E. Pons
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | | | - Letitia E. Bible
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| |
Collapse
|
2
|
李 怀, 韩 凤, 孟 静, 常 文, 冯 立. [Research progress on mechanism of traumatic brain injury promoting fracture healing]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:125-132. [PMID: 38225852 PMCID: PMC10796220 DOI: 10.7507/1002-1892.202310045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/17/2023] [Indexed: 01/17/2024]
Abstract
Objective To summarize the research progress on the mechanism related to traumatic brain injury (TBI) to promote fracture healing, and to provide theoretical basis for clinical treatment of fracture non-union. Methods The research literature on TBI to promote fracture healing at home and abroad was reviewed, the role of TBI in fracture healing was summarized from three aspects of nerves, body fluids, and immunity, to explore new ideas for the treatment of fracture non-union. Results Numerous studies have shown that fracture healing is faster in patients with fracture combined with TBI than in patients with simple fracture. It is found that the expression of various cytokines and hormones in the body fluids of patients with fracture and TBI is significantly higher than that of patients with simple fracture, and the neurofactors released by the nervous system reaches the fracture site through the damaged blood-brain barrier, and the chemotaxis and aggregation of inflammatory cells and inflammatory factors at the fracture end of patients with combined TBI also differs significantly from those of patients with simple fracture. A complex network of humoral, neural, and immunomodulatory networks together promote regeneration of blood vessels at the fracture site, osteoblasts differentiation, and inhibition of osteoclasts activity. Conclusion TBI promotes fracture healing through a complex network of neural, humoral, and immunomodulatory, and can treat fracture non-union by intervening in the perifracture microenvironment.
Collapse
Affiliation(s)
- 怀任 李
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| | - 凤平 韩
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| | - 静 孟
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| | - 文利 常
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| | - 立 冯
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| |
Collapse
|
3
|
Wong KR, Wright DK, Sgro M, Salberg S, Bain J, Li C, Sun M, McDonald SJ, Mychasiuk R, Brady RD, Shultz SR. Persistent Changes in Mechanical Nociception in Rats With Traumatic Brain Injury Involving Polytrauma. THE JOURNAL OF PAIN 2023; 24:1383-1395. [PMID: 36958460 DOI: 10.1016/j.jpain.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Traumatic brain injury (TBI) survivors often experience debilitating consequences. Due to the high impact nature of TBI, patients often experience concomitant peripheral injuries (ie, polytrauma). A common, yet often overlooked, comorbidity of TBI is chronic pain. Therefore, this study investigated how common concomitant peripheral injuries (ie, femoral fracture and muscle crush) can affect long-term behavioral and structural TBI outcomes with a particular focus on nociception. Rats were randomly assigned to 1 of 4 groups: polytrauma (POLY; ie, fracture + muscle crush + TBI), peripheral injury (PERI; ie, fracture + muscle crush + sham TBI), TBI (ie, sham fracture + sham muscle crush + TBI), and sham-injured (SHAM; ie, sham fracture + sham muscle crush + sham TBI). Rats underwent behavioral testing at 3-, 6-, and 11-weeks postinjury, and were then euthanized for postmortem magnetic resonance imaging (MRI). POLY rats had a persisting increase in pain sensitivity compared to all groups on the von Frey test. MRI revealed that POLY rats also had abnormalities in the cortical and subcortical brain structures involved in nociceptive processing. These findings have important implications and provide a foundation for future studies to determine the underlying mechanisms and potential treatment strategies for chronic pain in TBI survivors. PERSPECTIVE: Rats with TBI and concomitant peripheral trauma displayed chronic nociceptive pain and MRI images also revealed damaged brain structures/pathways that are involved in chronic pain development. This study highlights the importance of polytrauma and the affected brain regions for developing chronic pain.
Collapse
Affiliation(s)
- Ker Rui Wong
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Marissa Sgro
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Jesse Bain
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Crystal Li
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, Australia; Department of Nursing, Health and Human Services, Vancouver Island University, Nanaimo, BC, Canada.
| |
Collapse
|
4
|
Clay AM, Carr R, Dubien J, To F. Short-term behavioral and histological changes in a rodent model of mild traumatic brain injury. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
5
|
Köhli P, Otto E, Jahn D, Reisener MJ, Appelt J, Rahmani A, Taheri N, Keller J, Pumberger M, Tsitsilonis S. Future Perspectives in Spinal Cord Repair: Brain as Saviour? TSCI with Concurrent TBI: Pathophysiological Interaction and Impact on MSC Treatment. Cells 2021; 10:2955. [PMID: 34831179 PMCID: PMC8616497 DOI: 10.3390/cells10112955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Traumatic spinal cord injury (TSCI), commonly caused by high energy trauma in young active patients, is frequently accompanied by traumatic brain injury (TBI). Although combined trauma results in inferior clinical outcomes and a higher mortality rate, the understanding of the pathophysiological interaction of co-occurring TSCI and TBI remains limited. This review provides a detailed overview of the local and systemic alterations due to TSCI and TBI, which severely affect the autonomic and sensory nervous system, immune response, the blood-brain and spinal cord barrier, local perfusion, endocrine homeostasis, posttraumatic metabolism, and circadian rhythm. Because currently developed mesenchymal stem cell (MSC)-based therapeutic strategies for TSCI provide only mild benefit, this review raises awareness of the impact of TSCI-TBI interaction on TSCI pathophysiology and MSC treatment. Therefore, we propose that unravelling the underlying pathophysiology of TSCI with concomitant TBI will reveal promising pharmacological targets and therapeutic strategies for regenerative therapies, further improving MSC therapy.
Collapse
Affiliation(s)
- Paul Köhli
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ellen Otto
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Denise Jahn
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marie-Jacqueline Reisener
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
| | - Jessika Appelt
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Adibeh Rahmani
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nima Taheri
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
| | - Johannes Keller
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
- University Hospital Hamburg-Eppendorf, Department of Trauma Surgery and Orthopaedics, Martinistraße 52, 20246 Hamburg, Germany
| | - Matthias Pumberger
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Serafeim Tsitsilonis
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| |
Collapse
|
6
|
Yang C, Gao C, Liu N, Zhu Y, Zhu X, Su X, Zhang Q, Wu Y, Zhang C, Liu A, Lin W, Tao L, Yang H, Lin J. The effect of traumatic brain injury on bone healing from a novel exosome centered perspective in a mice model. J Orthop Translat 2021; 30:70-81. [PMID: 34611516 PMCID: PMC8476897 DOI: 10.1016/j.jot.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022] Open
Abstract
Background In patients with traumatic brain injury (TBI) combined with long bone fracture, the fracture healing is always faster than that of patients with single fracture, which is characterized by more callus growth at the fracture site and even ectopic ossification. Exosomes are nanoscale membrane vesicles secreted by cells, which contain cell-specific proteins, miRNAs, and mRNAs. Methods In this study, we used exosomes as the entry point to explore the mechanism of brain trauma promoting fracture healing. We established a model of tibia fracture with TBI in mice to observe the callus growth and expression of osteogenic factors at the fracture site. Blood samples of model mice were further collected, exosomes in plasma were extracted by ultra-centrifugation method, and then identified and acted on osteoblasts cultured in vitro. The effects of exosomes on osteoblast differentiation at the cell, protein and gene levels were investigated by Western Blot and q-PCR, respectively. Furthermore, miRNA sequencing of exosomes was performed to identify a pattern of miRNAs that were present at increased or decreased levels. Results The results suggested that plasma exosomes after TBI had the ability to promote the proliferation and differentiation of osteoblasts, which might be due to the increased expression of osteoblast-related miRNA in exosomes. They were transmitted to the osteoblasts at the fracture site, so as to achieve the role of promoting osteogenic differentiation. Conclusion The TBI-derived exosomes may have potential applications for promoting fracture healing in future. The Translational Potential of this Article Plasma exosomes early after TBI have the ability to promote osteoblast proliferation and differentiation. The mechanism may be achieved by miRNA in exosomes. Plasma exosomes may be used as breakthrough clinical treatment for delayed or non-union fractures.
Collapse
Affiliation(s)
- Chengyuan Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Gao
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Naicheng Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yitong Zhu
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Xu Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinlin Su
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qin Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanglin Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenhui Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ang Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weifeng Lin
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Luyang Tao
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Lin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
McDonald SJ, Sharkey JM, Sun M, Kaukas LM, Shultz SR, Turner RJ, Leonard AV, Brady RD, Corrigan F. Beyond the Brain: Peripheral Interactions after Traumatic Brain Injury. J Neurotrauma 2021; 37:770-781. [PMID: 32041478 DOI: 10.1089/neu.2019.6885] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, and there are currently no pharmacological treatments known to improve patient outcomes. Unquestionably, contributing toward a lack of effective treatments is the highly complex and heterogenous nature of TBI. In this review, we highlight the recent surge of research that has demonstrated various central interactions with the periphery as a potential major contributor toward this heterogeneity and, in particular, the breadth of research from Australia. We describe the growing evidence of how extracranial factors, such as polytrauma and infection, can significantly alter TBI neuropathology. In addition, we highlight how dysregulation of the autonomic nervous system and the systemic inflammatory response induced by TBI can have profound pathophysiological effects on peripheral organs, such as the heart, lung, gastrointestinal tract, liver, kidney, spleen, and bone. Collectively, this review firmly establishes TBI as a systemic condition. Further, the central and peripheral interactions that can occur after TBI must be further explored and accounted for in the ongoing search for effective treatments.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Jessica M Sharkey
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mujun Sun
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Lola M Kaukas
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sandy R Shultz
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Renee J Turner
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anna V Leonard
- Discipline of Anatomy and Pathology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Rhys D Brady
- Department Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Xu LB, Yue JK, Korley F, Puccio AM, Yuh EL, Sun X, Rabinowitz M, Vassar MJ, Taylor SR, Winkler EA, Puffer RC, Deng H, McCrea M, Stein MB, Robertson CS, Levin HS, Dikmen S, Temkin NR, Giacino JT, Mukherjee P, Wang KK, Okonkwo DO, Markowitz AJ, Jain S, Manley GT, Diaz-Arrastia R. High-Sensitivity C-Reactive Protein is a Prognostic Biomarker of Six-Month Disability after Traumatic Brain Injury: Results from the TRACK-TBI Study. J Neurotrauma 2021; 38:918-927. [PMID: 33161875 PMCID: PMC7987360 DOI: 10.1089/neu.2020.7177] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Systemic inflammation impacts outcome after traumatic brain injury (TBI), but most TBI biomarker studies have focused on brain-specific proteins. C-reactive protein (CRP) is a widely used biomarker of inflammation with potential as a prognostic biomarker after TBI. The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study prospectively enrolled TBI patients within 24 h of injury, as well as orthopedic injury and uninjured controls; biospecimens were collected at enrollment. A subset of hospitalized participants had blood collected on day 3, day 5, and 2 weeks. High-sensitivity CRP (hsCRP) and glial fibrillary acidic protein (GFAP) were measured. Receiver operating characteristic analysis was used to evaluate the prognostic ability of hsCRP for 6-month outcome, using the Glasgow Outcome Scale-Extended (GOSE). We included 1206 TBI subjects, 122 orthopedic trauma controls (OTCs), and 209 healthy controls (HCs). Longitudinal biomarker sampling was performed in 254 hospitalized TBI subjects and 19 OTCs. hsCRP rose between days 1 and 5 for TBI and OTC subjects, and fell by 2 weeks, but remained elevated compared with HCs (p < 0.001). Longitudinally, hsCRP was significantly higher in the first 2 weeks for subjects with death/severe disability (GOSE <5) compared with those with moderate disability/good recovery (GOSE ≥5); AUC was highest at 2 weeks (AUC = 0.892). Combining hsCRP and GFAP at 2 weeks produced AUC = 0.939 for prediction of disability. Serum hsCRP measured within 2 weeks of TBI is a prognostic biomarker for disability 6 months later. hsCRP may have utility as a biomarker of target engagement for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Linda B. Xu
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John K. Yue
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Frederick Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ava M. Puccio
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Esther L. Yuh
- Department of Radiology, University of California San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Xiaoying Sun
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, California, USA
| | - Miri Rabinowitz
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mary J. Vassar
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Sabrina R. Taylor
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Ethan A. Winkler
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Ross C. Puffer
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hansen Deng
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Michael McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Murray B. Stein
- Department of Psychiatry and Family Medicine, University of California San Diego, San Diego, California, USA
| | - Claudia S. Robertson
- Department of Neurosurgery and Critical Care, Baylor College of Medicine, Houston, Texas, USA
| | - Harvey S. Levin
- Department of Neurosurgery and Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Sureyya Dikmen
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Nancy R. Temkin
- Department of Neurosurgery and Biostatistics, University of Washington, Seattle, Washington, USA
| | - Joseph T. Giacino
- Department of Rehabilitation Medicine, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pratik Mukherjee
- Department of Radiology, University of California San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Kevin K.W. Wang
- Department of Psychiatry and Neurosciences, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - David O. Okonkwo
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Amy J. Markowitz
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Sonia Jain
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, California, USA
| | - Geoffrey T. Manley
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Should we change our approach to resuscitating victims of femoral fracture? A clinical experience in a busy trauma hospital in Shiraz, Iran. Chin J Traumatol 2021; 24:30-33. [PMID: 32893115 PMCID: PMC7878457 DOI: 10.1016/j.cjtee.2020.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Traumatic hemorrhagic shock is a life-threatening event worldwide. Severe brain trauma accompanying femoral fractures can trigger inflammatory responses in the body and increase pre-inflammatory cytokines such as TNF-α, IL-1. The primary treatment in these cases is hydration with crystalloids, which has both benefits and complications. The purpose of this study was to investigate the effects of fluid therapy on the hemodynamics, coagulation profiles, and blood gases in such patients. METHODS In this cross-sectional study, patients were divided into two groups: femoral fracture group and non-femoral group. The hemodynamic status, coagulation profile, and blood gases of patients in both groups were evaluated upon arrival at the hospital and again 2 h later. Data were analyzed by t-test and ANOVA with repeated data and paired samples t-test. RESULTS A total of 681 trauma patients (605 men and 76 women) participated in this study, including 69 (86.3%) men and 11 (13.8%) women in femoral fracture group and 536 men (89.2%) and 65 women (10.8%) in non-femoral group. The laboratory parameters were evaluated in response to the equal amount of crystalloid fluid given upon arrival and 2 h later. Blood gases decreased in the fracture group despite fluid therapy (p < 0.003), and the coagulation profile worsened although the change was not statistically significant. CONCLUSION The treatment of multiple-trauma patients with femoral bone fractures should be more concerned with the need for the infusion of vasopressors such as norepinephrine. If there is evidence of clinical shock, excessive crystalloid infusion (limited to 1 L) should be avoided, and blood and blood products should be started as soon as possible.
Collapse
|
10
|
Karthick S, Sen RK, Gopinathan NR, Dhillon MS, Nada R, Sharma R. Can IL-6 predict the development of fat embolism in polytrauma? A rabbit model pilot experimental study. J Clin Orthop Trauma 2020; 11:S86-S92. [PMID: 31992925 PMCID: PMC6976997 DOI: 10.1016/j.jcot.2019.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND There are few studies in the literature that correlates the level of IL-6 with fat embolism syndrome (FES). But there is no conclusive correlative evidence of its specific relation to the establishment of FES. Also it is a proven fact that polytrauma due to its associated multiple long bone fracture and/or associated shock can predispose an individual to FES. By hypothesizing that polytrauma induces Fat Embolism in the animal; it was considered worthwhile to study the association of IL-6 in polytrauma induced Fat Embolism (FE) and to compare it with induced FE by injecting fatty acids in rabbits. MATERIALS AND METHODS An animal study was conducted in 32 New Zealand white rabbits. The animals were divided into 3 groups: control, fat embolism and polytrauma group. We injected 6 ml of normal saline and 0.2 ml of linoleic acid in the control and fat embolism group respectively. In the polytauma group we created bilateral femur and tibial shaft factures which were stabilized with intramedullary K- wires. Blood was taken before and at 6, 12 and 24 h after the procedure to measure plasma IL-6 levels. The rabbits were euthanized at 24 h and lungs were removed and stained for fat globules. RESULTS All rabbits in the fat embolism group and around 72.22% rabbits in polytrauma group had fat embolism. The IL-6 levels were raised in all the groups reaching a peak at 6 h after procedure with a decline in the values at 12 h for polytrauma and fat embolism group. IL-6 in the control group was stationary after an initial raise at 6 h. There was no statistically significant difference seen among the groups (p value > 0.05) at 6 h. CONCLUSION IL-6 is not a specific marker to fat embolism per se or polytrauma who later develop complications like FES. Even though the recent literature says that IL-6 is an early marker of fat embolism, still the diagnosis of fat embolism syndrome is clinical only and can be supplemented by laboratory markers. None of the laboratory markers individually is good enough to predict the development of FES in an individual.
Collapse
Affiliation(s)
- S.R. Karthick
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India,Corresponding author.
| | - Ramesh Kumar Sen
- Senior Director and Professor, Max Superspeciality Hospital, Mohali, India
| | - Nirmal Raj Gopinathan
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mandeep Singh Dhillon
- Department of Orthopaedics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ritambhra Nada
- Department of Pathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - R.R. Sharma
- Department of Transfusion Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
11
|
Sribnick EA, Weber MD, Hall MW. Innate immune suppression after traumatic brain injury and hemorrhage in a juvenile rat model of polytrauma. J Neuroimmunol 2019; 337:577073. [PMID: 31670063 DOI: 10.1016/j.jneuroim.2019.577073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/16/2019] [Accepted: 09/22/2019] [Indexed: 12/20/2022]
Abstract
Traumatic injury in children is known to cause immune suppression. Polytrauma involving a traumatic brain injury (TBI) may increase this degree of immune suppression, which increases the risk of developing nosocomial infections, potentially causing secondary brain injury and worsening patient outcomes. Despite the high prevalence of polytrauma with TBI in children, mechanisms of immune suppression following such injuries remain poorly understood. Here, we used a combined animal injury model of TBI and hemorrhage to assess immune function after polytrauma. Pre-pubescent rats were injured using a prefrontal controlled cortical impact method and a controlled hemorrhage by femoral arteriotomy. Immune function was measured by whole blood ex-vivo tumor necrosis factor alpha production capacity following incubation with lipopolysaccharide, measuring the percentage of monocytes by flow cytometry, and by examining concentrations of plasma cytokines. The degree of brain injury was sufficient to produce deficits in spatial memory testing (Barnes maze). Both hemorrhage and TBI with hemorrhage (combined injury) reduced several of the measured plasma cytokines, as compared with TBI alone. The combined injury correlated with reduced concentration of monocytes and reduced tumor necrosis factor alpha production capacity at post-injury day 1. These results demonstrate that this animal model can be used to study post-injury immune suppression.
Collapse
Affiliation(s)
- Eric A Sribnick
- Department of Surgery, Division of Neurosurgery, Nationwide Children's Hospital, Columbus, OH, USA; Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, USA; Center for Clinical and Translation Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | - Michael D Weber
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | - Mark W Hall
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, Division of Critical Care, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
12
|
Lamb LE, Siggins MK, Scudamore C, Macdonald W, Turner CE, Lynskey NN, Tan LKK, Sriskandan S. Impact of contusion injury on intramuscular emm1 group a streptococcus infection and lymphatic spread. Virulence 2018; 9:1074-1084. [PMID: 30052105 PMCID: PMC6068544 DOI: 10.1080/21505594.2018.1482180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Invasive group A Streptococcus (iGAS) is frequently associated with emm1 isolates, with an attendant mortality of around 20%. Cases occasionally arise in previously healthy individuals with a history of upper respiratory tract infection, soft tissue contusion, and no obvious portal of entry. Using a new murine model of contusion, we determined the impact of contusion on iGAS bacterial burden and phenotype. Calibrated mild blunt contusion did not provide a focus for initiation or seeding of GAS that was detectable following systemic GAS bacteremia, but instead enhanced GAS migration to the local draining lymph node following GAS inoculation at the same time and site of contusion. Increased migration to lymph node was associated with emergence of mucoid bacteria, although was not specific to mucoid bacteria. In one study, mucoid colonies demonstrated a significant increase in capsular hyaluronan that was not linked to a covRS or rocA mutation, but to a deletion in the promoter of the capsule synthesis locus, hasABC, resulting in a strain with increased fitness for lymph node migration. In summary, in the mild contusion model used, we could not detect seeding of muscle by GAS. Contusion promoted bacterial transit to the local lymph node. The consequences of contusion-associated bacterial lymphatic migration may vary depending on the pathogen and virulence traits selected.
Collapse
Affiliation(s)
- L E Lamb
- a Section of Infectious Diseases and Immunity, Department of Medicine , Imperial College London , London , UK.,b Royal Centre for Defence Medicine , University of Birmingham , Birmingham , UK
| | - M K Siggins
- a Section of Infectious Diseases and Immunity, Department of Medicine , Imperial College London , London , UK
| | - C Scudamore
- c Harwell Science and Innovation Campus , MRC Harwell , Oxfordshire , UK
| | - W Macdonald
- d Department of Bio-engineering , Royal School of Mines, Imperial College London , London , UK
| | - C E Turner
- a Section of Infectious Diseases and Immunity, Department of Medicine , Imperial College London , London , UK
| | - N N Lynskey
- a Section of Infectious Diseases and Immunity, Department of Medicine , Imperial College London , London , UK
| | - L K K Tan
- a Section of Infectious Diseases and Immunity, Department of Medicine , Imperial College London , London , UK
| | - S Sriskandan
- a Section of Infectious Diseases and Immunity, Department of Medicine , Imperial College London , London , UK
| |
Collapse
|
13
|
Sun M, McDonald SJ, Brady RD, O'Brien TJ, Shultz SR. The influence of immunological stressors on traumatic brain injury. Brain Behav Immun 2018; 69:618-628. [PMID: 29355823 DOI: 10.1016/j.bbi.2018.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, and typically involves a robust immune response. Although a great deal of preclinical research has been conducted to identify an effective treatment, all phase III clinical trials have been unsuccessful to date. These translational shortcomings are in part due to a failure to recognize and account for the heterogeneity of TBI, including how extracranial factors can influence the aftermath of TBI. For example, most preclinical studies have utilized isolated TBI models in young adult males, while clinical trials typically involve highly heterogeneous patient populations (e.g., different mechanisms of injury, a range of ages, presence of polytrauma or infection). This paper will review the current, albeit limited literature related to how TBI is affected by common concomitant immunological stressors. In particular, discussion will focus on whether extracranial trauma (i.e., polytrauma), infection, and age/immunosenescence can influence TBI pathophysiology, and thereby may result in a different brain injury than what would have occurred in an isolated TBI. It is concluded that these immunological stressors are all likely to be TBI modifiers that should be further studied and could impact translational treatment strategies.
Collapse
Affiliation(s)
- Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rhys D Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3052, Australia; Departments of Neuroscience and Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
14
|
Cheng T, Xia RG, Dong SK, Yan XY, Luo CF. Interlocking Intramedullary Nailing Versus Locked Dual-Plating Fixation for Femoral Shaft Fractures in Patients with Multiple Injuries: A Retrospective Comparative Study. J INVEST SURG 2017; 32:245-254. [PMID: 29252044 DOI: 10.1080/08941939.2017.1400131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Intramedullary nailing (IMN) is a popular method in the management of femoral shaft fractures (FSFs). However, whether the association of IMN with pulmonary fat emboli can compromise the pulmonary and nervous systems is debatable. The purpose of this study is to compare IMN with the locked dual plating (LDP) method by assessing the clinical outcomes of FSF patients with head or chest injury. METHOD A total of 126 FSF patients were included in this study between January 2010 and July 2016 and divided into LDP and IMN groups. Patient demographic characteristics, operative time, blood loss, Harris Hip Score, Lysholm Knee Score, radiological outcomes, and systemic complications were collected and compared between the two treatment groups. Patients were followed up for at least 12 months. RESULTS The LDP group performed better than IMN in terms of operative time, estimated blood loss amount, and malunion rate. Differences in function scores, fracture union rate, overall pulmonary complication rate, and in-hospital mortality between the two groups were not significant. Average radiographic union time was significantly longer in the LDP group (36.3 weeks) than in the IMN group (32.5 weeks). One case of fixation failure occurred postoperatively in the LDP group, whereas one case of fracture nonunion took place in the IMN group. CONCLUSION Our findings suggest that dual-plating fixation is a promising method for FSFs with multiple injuries. However, the retrospective nature of this study necessitates high-quality trials to be performed to assess the clinical efficiency of dual plating.
Collapse
Affiliation(s)
- Tao Cheng
- a Department of Orthopaedic Surgery , Shanghai Jiao Tong University affiliated Shanghai Sixth People's Hospital , Shanghai , People's Republic of China
| | - Rong-Gang Xia
- a Department of Orthopaedic Surgery , Shanghai Jiao Tong University affiliated Shanghai Sixth People's Hospital , Shanghai , People's Republic of China
| | - Shi-Kui Dong
- a Department of Orthopaedic Surgery , Shanghai Jiao Tong University affiliated Shanghai Sixth People's Hospital , Shanghai , People's Republic of China
| | - Xiao-Yu Yan
- a Department of Orthopaedic Surgery , Shanghai Jiao Tong University affiliated Shanghai Sixth People's Hospital , Shanghai , People's Republic of China
| | - Cong-Feng Luo
- a Department of Orthopaedic Surgery , Shanghai Jiao Tong University affiliated Shanghai Sixth People's Hospital , Shanghai , People's Republic of China
| |
Collapse
|
15
|
Hu PJ, Pittet JF, Kerby JD, Bosarge PL, Wagener BM. Acute brain trauma, lung injury, and pneumonia: more than just altered mental status and decreased airway protection. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1-L15. [PMID: 28408366 DOI: 10.1152/ajplung.00485.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/24/2017] [Accepted: 04/07/2017] [Indexed: 01/25/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Even when patients survive the initial insult, there is significant morbidity and mortality secondary to subsequent pulmonary edema, acute lung injury (ALI), and nosocomial pneumonia. Whereas the relationship between TBI and secondary pulmonary complications is recognized, little is known about the mechanistic interplay of the two phenomena. Changes in mental status secondary to acute brain injury certainly impair airway- and lung-protective mechanisms. However, clinical and translational evidence suggests that more specific neuronal and cellular mechanisms contribute to impaired systemic and lung immunity that increases the risk of TBI-mediated lung injury and infection. To better understand the cellular mechanisms of that immune impairment, we review here the current clinical data that support TBI-induced impairment of systemic and lung immunity. Furthermore, we also review the animal models that attempt to reproduce human TBI. Additionally, we examine the possible role of damage-associated molecular patterns, the chlolinergic anti-inflammatory pathway, and sex dimorphism in post-TBI ALI. In the last part of the review, we discuss current treatments and future pharmacological therapies, including fever control, tracheostomy, and corticosteroids, aimed to prevent and treat pulmonary edema, ALI, and nosocomial pneumonia after TBI.
Collapse
Affiliation(s)
- Parker J Hu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jean-Francois Pittet
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and.,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey D Kerby
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Patrick L Bosarge
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
16
|
Chiu CC, Liao YE, Yang LY, Wang JY, Tweedie D, Karnati HK, Greig NH, Wang JY. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods 2016; 272:38-49. [PMID: 27382003 PMCID: PMC5201203 DOI: 10.1016/j.jneumeth.2016.06.018] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Neuroinflammation is prominent in the short and long-term consequences of neuronal injuries that occur after TBI. Neuroinflammation involves the activation of glia, including microglia and astrocytes, to release inflammatory mediators within the brain, and the subsequent recruitment of peripheral immune cells. Various animal models of TBI have been developed that have proved valuable to elucidate the pathophysiology of the disorder and to assess the safety and efficacy of novel therapies prior to clinical trials. These models provide an excellent platform to delineate key injury mechanisms that associate with types of injury (concussion, contusion, and penetration injuries) that occur clinically for the investigation of mild, moderate, and severe forms of TBI. Additionally, TBI modeling in genetically engineered mice, in particular, has aided the identification of key molecules and pathways for putative injury mechanisms, as targets for development of novel therapies for human TBI. This Review details the evidence showing that neuroinflammation, characterized by the activation of microglia and astrocytes and elevated production of inflammatory mediators, is a critical process occurring in various TBI animal models, provides a broad overview of commonly used animal models of TBI, and overviews representative techniques to quantify markers of the brain inflammatory process. A better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI.
Collapse
Affiliation(s)
- Chong-Chi Chiu
- Department of General Surgery, Chi Mei Medical Center, Tainan and Liouying, Taiwan
| | - Yi-En Liao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ling-Yu Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ya Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hanuma K Karnati
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
17
|
Grimberg-Peters D, Büren C, Windolf J, Wahlers T, Paunel-Görgülü A. Hyperbaric Oxygen Reduces Production of Reactive Oxygen Species in Neutrophils from Polytraumatized Patients Yielding in the Inhibition of p38 MAP Kinase and Downstream Pathways. PLoS One 2016; 11:e0161343. [PMID: 27529549 PMCID: PMC4986935 DOI: 10.1371/journal.pone.0161343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/03/2016] [Indexed: 01/07/2023] Open
Abstract
Trauma represents the leading cause of death among young people in western countries. Among the beneficial role of neutrophils in host defence, excessive priming and activation of neutrophils after major trauma lead to an overwhelming inflammatory response and secondary host tissue injury due to the release of toxic metabolites and enzymes. Hyperbaric oxygen (HBO) therapy has been proposed to possess antiinflammatory effects and might represent an appropriate therapeutic option to lower inflammation in a broad range of patients. Here, we studied the effects of HBO on the activity of neutrophils isolated from severely injured patients (days 1–2 after trauma), in fact on the production of reactive oxygen species (ROS) and release of neutrophil extracellular traps (NETs). We found exposure to HBO therapy to significantly diminish phorbol-12-myristate-13-acetate (PMA)-induced ROS production in neutrophils isolated from patients and healthy volunteers. At the same time, marked decrease in NETs release was found in control cells and a less pronounced reduction in patient neutrophils. Impaired ability to produce ROS following exposure to HBO was demonstrated to be linked to a strong downregulation of the activity of p38 MAPK. Only slight suppression of ERK activity could be found. In addition, HBO did not influence neutrophil chemotaxis or apoptosis, respectively. Collectively, this study shows for the first time that HBO therapy suppresses ROS production in inflammatory human neutrophils, and thus might impair ROS-dependent pathways, e.g. kinases activation and NETs release. Thus, HBO might represent a feasible therapy for patients suffering from systemic inflammation, including those with multiple trauma.
Collapse
Affiliation(s)
- Deborah Grimberg-Peters
- University Hospital Düsseldorf, Department of Trauma and Hand Surgery, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Carina Büren
- University Hospital Düsseldorf, Department of Trauma and Hand Surgery, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Joachim Windolf
- University Hospital Düsseldorf, Department of Trauma and Hand Surgery, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Thorsten Wahlers
- Heart Center of the University of Cologne, Department of Cardiothoracic Surgery, Kerpener Str. 62, 50937, Cologne, Germany
| | - Adnana Paunel-Görgülü
- Heart Center of the University of Cologne, Department of Cardiothoracic Surgery, Kerpener Str. 62, 50937, Cologne, Germany
- * E-mail:
| |
Collapse
|
18
|
Yang L, Guo Y, Wen D, Yang L, Chen Y, Zhang G, Fan Z. Bone Fracture Enhances Trauma Brain Injury. Scand J Immunol 2016; 83:26-32. [PMID: 26448486 DOI: 10.1111/sji.12393] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/25/2015] [Indexed: 01/04/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of mortality and morbidity in young individuals worldwide. However, the understanding of TBI at secondary phase remained obscure, and more knowledge of the pathophysiology of TBI is necessary. In this study, we examined the influence of bone fracture (BF) on TBI and investigated whether blocking high mobility group 1 (HMGB1) protein, an inflammatory mediator, could be effective to alleviate TBI. We found neurological severity was significantly increased by BF at 4 days post-TBI with longer removal time of adhesive tape and higher percentage of left turn in the corner test compared to TBI treatment alone. Additionally, higher brain lesion volume and severer brain oedema in TBI + BF mice supports the negative effect of BF on TBI. HMGB1 level was significantly stimulated by BF, suggesting the important role of HMGB1 in the development of secondary TBI. Notably, ablation of HMGB1 significantly reduced this negative influence of BF on TBI. These results suggest that HMGB1 can be massively induced by the systemic immune activation triggered by BF, which in turn aggravates inflammation. Blocking HMGB1 reduced the inflammatory effect of BF and therefore helps lessen the severity of secondary TBI. In conclusion, these results provided the evidence that anti-HMGB1 may be an effective and feasible method to alleviate TBI.
Collapse
Affiliation(s)
- L Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Y Guo
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - D Wen
- Department of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - L Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Y Chen
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - G Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Z Fan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
19
|
McDonald SJ, Sun M, Agoston DV, Shultz SR. The effect of concomitant peripheral injury on traumatic brain injury pathobiology and outcome. J Neuroinflammation 2016; 13:90. [PMID: 27117191 PMCID: PMC4847339 DOI: 10.1186/s12974-016-0555-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/18/2016] [Indexed: 01/08/2023] Open
Abstract
Background Traumatic injuries are physical insults to the body that are prevalent worldwide. Many individuals involved in accidents suffer injuries affecting a number of extremities and organs, otherwise known as multitrauma or polytrauma. Traumatic brain injury is one of the most serious forms of the trauma-induced injuries and is a leading cause of death and long-term disability. Despite over dozens of phase III clinical trials, there are currently no specific treatments known to improve traumatic brain injury outcomes. These failures are in part due to our still poor understanding of the heterogeneous and evolving pathophysiology of traumatic brain injury and how factors such as concomitant extracranial injuries can impact these processes. Main body Here, we review the available clinical and pre-clinical studies that have investigated the possible impact of concomitant injuries on traumatic brain injury pathobiology and outcomes. We then list the pathophysiological processes that may interact and affect outcomes and discuss promising areas for future research. Taken together, many of the clinical multitrauma/polytrauma studies discussed in this review suggest that concomitant peripheral injuries may increase the risk of mortality and functional deficits following traumatic brain injury, particularly when severe extracranial injuries are combined with mild to moderate brain injury. In addition, recent animal studies have provided strong evidence that concomitant injuries may increase both peripheral and central inflammatory responses and that structural and functional deficits associated with traumatic brain injury may be exacerbated in multiply injured animals. Conclusions The findings of this review suggest that concomitant extracranial injuries are capable of modifying the outcomes and pathobiology of traumatic brain injury, in particular neuroinflammation. Though additional studies are needed to further identify the factors and mechanisms involved in central and peripheral injury interactions following multitrauma and polytrauma, concomitant injuries should be recognized and accounted for in future pre-clinical and clinical traumatic brain injury studies.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia.
| | - Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
20
|
Pfortmueller CA, Drexel C, Krähenmann-Müller S, Leichtle AB, Fiedler GM, Lindner G, Exadaktylos AK. S-100 B Concentrations Are a Predictor of Decreased Survival in Patients with Major Trauma, Independently of Head Injury. PLoS One 2016; 11:e0152822. [PMID: 27031106 PMCID: PMC4816449 DOI: 10.1371/journal.pone.0152822] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 03/18/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Major trauma remains one of the principle causes of disability and death throughout the world. There is currently no satisfactory risk assessment to predict mortality in patients with major trauma. The aim of our study is to examine whether S-100 B protein concentrations correlate with injury severity and survival in patients with major trauma, with special emphasis on patients without head injury. METHODS Our retrospective data analysis comprised adult patients admitted to our emergency department between 1.12. 2008 and 31.12 2010 with a suspected major trauma. S-100 B concentrations were routinely assessed in major trauma patients. RESULTS A total of 27.7% (378) of all patients had major trauma. The median ISS was 24.6 (SD 8.4); 16.6% (63/378) of the patients died. S-100 B concentrations correlated overall with the ISS (p<0.0001). Patients who died had significantly higher S-100 B concentrations than survivors (8.2 μg/l versus 2.2 μg/l, p<0.0001). Polytraumatised patients with and without head trauma did not differ significantly with respect to S-100 B concentration (3.2 μg/l (SD 5.3) versus 2.9 μg/l (SD 3.8), respectively, p = 0.63) or with respect to Injury Severity Score (24.8 (SD 8.6) versus 24.2 (SD 8.1), respectively, p = 0.56). S-100 B concentrations correlated negatively with survival (p<0.0001) in all patients and in both subgroups (p = 0.001 and p = 0.006, respectively). CONCLUSIONS S-100 concentrations on admission correlate positively with greater injury severity and decreased survival in major trauma patients, independently of the presence of a head injury. S-100 B protein levels at admission in patients with major trauma may therefore be used to assess outcome in all polytraumatised patients. These measurements should be subject to further evaluation.
Collapse
Affiliation(s)
- Carmen Andrea Pfortmueller
- Clinic for General Anaesthesiology, Intensive Care and Pain Management, Vienna General Hospital and University of Vienna, Vienna, Austria
- Department of Emergency Medicine, University Hospital and University of Bern, Bern, Switzerland
- * E-mail:
| | - Christian Drexel
- Department of Emergency Medicine, University Hospital and University of Bern, Bern, Switzerland
| | | | - Alexander Benedikt Leichtle
- Centre of Laboratory Medicine, University Institute of Clinical Chemistry, Inselspital-Bern University Hospital, Inselspital, Bern, Switzerland
| | - Georg Martin Fiedler
- Centre of Laboratory Medicine, University Institute of Clinical Chemistry, Inselspital-Bern University Hospital, Inselspital, Bern, Switzerland
| | - Gregor Lindner
- Department of Emergency Medicine, University Hospital and University of Bern, Bern, Switzerland
- Department of Emergency Medicine, Hirslandenklinik am Park Zurich, Zurich, Switzerland
| | | |
Collapse
|
21
|
Simon DW, Vagni VM, Kochanek PM, Clark RSB. Combined Neurotrauma Models: Experimental Models Combining Traumatic Brain Injury and Secondary Insults. Methods Mol Biol 2016; 1462:393-411. [PMID: 27604730 DOI: 10.1007/978-1-4939-3816-2_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Patients with severe traumatic brain injury (TBI) frequently present with concomitant injuries that may cause secondary brain injury and impact outcomes. Animal models have been developed that combine contemporary models of TBI with a secondary neurologic insult such as hypoxia, shock, long bone fracture, and radiation exposure. Combined injury models may be particularly useful when modeling treatment strategies and in efforts to map basic research to a heterogeneous patient population. Here, we review these models and their collective contribution to the literature on TBI. In addition, we provide protocols and notes for two well-characterized models of TBI plus hemorrhagic shock.
Collapse
Affiliation(s)
- Dennis W Simon
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vincent M Vagni
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Anesthesiology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- The Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Tibial fracture exacerbates traumatic brain injury outcomes and neuroinflammation in a novel mouse model of multitrauma. J Cereb Blood Flow Metab 2015; 35:1339-47. [PMID: 25853909 PMCID: PMC4528010 DOI: 10.1038/jcbfm.2015.56] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/26/2015] [Accepted: 03/05/2015] [Indexed: 11/08/2022]
Abstract
Multitrauma is a common medical problem worldwide, and often involves concurrent traumatic brain injury (TBI) and bone fracture. Despite the high incidence of combined TBI and fracture, preclinical TBI research commonly employs independent injury models that fail to incorporate the pathophysiologic interactions occurring in multitrauma. Here, we developed a novel mouse model of multitrauma, and investigated whether bone fracture worsened TBI outcomes. Male mice were assigned into four groups: sham-TBI+sham-fracture (SHAM); sham-TBI+fracture (FX); TBI+sham-fracture (TBI); and TBI+fracture (MULTI). The injury methods included a closed-skull weight-drop TBI model and a closed tibial fracture. After a 35-day recovery, mice underwent behavioral testing and magnetic resonance imaging (MRI). MULTI mice displayed abnormal behaviors in the open-field compared with all other groups. On MRI, MULTI mice had enlarged ventricles and diffusion abnormalities compared with all other groups. These changes occurred in the presence of heightened neuroinflammation in MULTI mice at 24 hours and 35 days after injury, and elevated edema and blood-brain barrier disruption at 24 hours after injury. Together, these findings indicate that tibial fracture worsens TBI outcomes, and that exacerbated neuroinflammation may be an important factor that contributes to these effects, which warrants further investigation.
Collapse
|
23
|
Kleber C, Becker CA, Malysch T, Reinhold JM, Tsitsilonis S, Duda GN, Schmidt-Bleek K, Schaser KD. Temporal profile of inflammatory response to fracture and hemorrhagic shock: Proposal of a novel long-term survival murine multiple trauma model. J Orthop Res 2015; 33:965-70. [PMID: 25732126 DOI: 10.1002/jor.22857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 02/03/2015] [Indexed: 02/04/2023]
Abstract
Hemorrhagic shock (hS) interacts with the posttraumatic immune response and fracture healing in multiple trauma. Due to the lack of a long-term survival multiple trauma animal models, no standardized analysis of fracture healing referring the impact of multiple trauma on fracture healing was performed. We propose a new long-term survival (21 days) murine multiple trauma model combining hS (microsurgical cannulation of carotid artery, withdrawl of blood and continuously blood pressure measurement), femoral (osteotomy/external fixation) and tibial fracture (3-point bending technique/antegrade nail). The posttraumatic immune response was measured via IL-6, sIL-6R ELISA. The hS was investigated via macrohemodynamics, blood gas analysis, wet-dry lung ration and histologic analysis of the shock organs. We proposed a new murine long-term survival (21 days) multiple trauma model mimicking clinical relevant injury patterns and previously published human posttraumatic immune response. Based on blood gas analysis and histologic analysis of shock organs we characterized and standardized our murine multiple trauma model. Furthermore, we revealed hemorrhagic shock as a causative factor that triggers sIL-6R formation underscoring the fundamental pathophysiologic role of the transsignaling mechanism in multiple trauma.
Collapse
Affiliation(s)
- Christian Kleber
- Center for Musculoskeletal Surgery and Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Christopher A Becker
- Center for Musculoskeletal Surgery and Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tom Malysch
- Center for Musculoskeletal Surgery and Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jens M Reinhold
- Center for Musculoskeletal Surgery and Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery and Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Georg N Duda
- Center for Musculoskeletal Surgery and Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Center for Musculoskeletal Surgery and Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Klaus D Schaser
- Center for Musculoskeletal Surgery and Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
24
|
Bruce ED, Konda S, Dean DD, Wang EW, Huang JH, Little DM. Neuroimaging and traumatic brain injury: State of the field and voids in translational knowledge. Mol Cell Neurosci 2015; 66:103-13. [DOI: 10.1016/j.mcn.2015.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 01/07/2023] Open
|
25
|
Tsitsilonis S, Seemann R, Misch M, Wichlas F, Haas NP, Schmidt-Bleek K, Kleber C, Schaser KD. The effect of traumatic brain injury on bone healing: an experimental study in a novel in vivo animal model. Injury 2015; 46:661-5. [PMID: 25682315 DOI: 10.1016/j.injury.2015.01.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/07/2015] [Accepted: 01/25/2015] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Among many factors determining the outcome of complex fractures in polytrauma patients, the role of traumatic brain injury (TBI) remains only partly understood. The aim of the present study was to examine the effect of traumatic brain injury on bone healing through the establishment of a novel standardised animal model that sequentially combines traumatic brain injury (TBI) with a long bone injury. MATERIALS AND METHODS Thirty-six female twelve-week old C57/BL6 mice were randomised in two groups (fracture (Fx)-group and combined-trauma (Fx/TBI) group). The methods of the Control Cortical Impact Injury for induction of TBI and of the femoral osteotomy, fixed with an external fixator for the simulation of the long bone fracture, were combined. No TBI was induced in the Fx-group. Bone healing was examined using in vivo micro-CT measurements over a period of three weeks. RESULTS The severity of the TBI was sufficient to stimulate a significantly increased callus formation in the Fx/TBI-group with an acceptable mortality rate. The micro-CT analysis of fracture healing displayed a significantly increased callus volume in the Fx/TBI-group already from the second postoperative week. This difference remained significant throughout the entire study period. DISCUSSION The successful and standardised combination of TBI and fracture in a mouse model allows systematic and quantitative in vivo analysis of underlying pathways that trigger the mutual interaction between musculoskeletal trauma and brain injury, as well as, corresponding differences in fracture healing using micro-CT methods. CONCLUSION The present study offers three new aspects: a standardised model for combined injury of TBI and femoral osteotomy; direct and serial in vivo imaging and quantification of fracture healing response using micro-CT; testing of potentially beneficial therapeutic regimens for fracture treatment in presence of TBI. Thus this model provides a valuable basic approach for the study of the amplifying effect of TBI on callus formation seen in patients with craniocerebral injury and concomitant skeletal trauma.
Collapse
Affiliation(s)
- Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Ricarda Seemann
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Martin Misch
- Department of Neurosurgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Florian Wichlas
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Norbert P Haas
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute, Charité - University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Christian Kleber
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Klaus-Dieter Schaser
- Center for Musculoskeletal Surgery, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
26
|
Lipsky RH, Lin M. Genetic predictors of outcome following traumatic brain injury. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:23-41. [PMID: 25702208 DOI: 10.1016/b978-0-444-52892-6.00003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The nature of traumatic brain injury (TBI) has acute and chronic outcomes for those who survive. Over time, the chronic process of injury impacts multiple organ systems that may lead to disease. We discuss possible mechanisms and methodological issues in the context of candidate gene association studies using TBI patient populations. Because study population sizes have been generally limited, we discussed results on genes that have been the focus of independent studies. We also present a justification for testing more speculative candidate genes in recovery from TBI, such as those involved in circadian rhythm, to outline the importance of prioritizing functional variants in genes that may modulate recovery or provide neuroprotection from TBI. Finally, we provide a perspective on how future research will integrate population level genetic findings with the biological basis of disease in order to create a resource of predictive outcome measures for individual patients.
Collapse
Affiliation(s)
- Robert H Lipsky
- Department of Neurosciences, Inova Health System, Falls Church, VA, USA.
| | - Mingkuan Lin
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| |
Collapse
|
27
|
Valparaiso AP, Vicente DA, Bograd BA, Elster EA, Davis TA. Modeling acute traumatic injury. J Surg Res 2014; 194:220-32. [PMID: 25481528 DOI: 10.1016/j.jss.2014.10.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 11/26/2022]
Abstract
Acute traumatic injury is a complex disease that has remained a leading cause of death, which affects all ages in our society. Direct mechanical insult to tissues may result in physiological and immunologic disturbances brought about by blood loss, coagulopathy, as well as ischemia and reperfusion insults. This inappropriate response leads to an abnormal release of endogenous mediators of inflammation that synergistically contribute to the incidence of morbidity and mortality. This aberrant activation and suppression of the immune system follows a bimodal pattern, wherein activation of the innate immune responses is followed by an anti-inflammatory response with suppression of the adaptive immunity, which can subsequently lead secondary insults and multiple organ dysfunction. Traumatic injury rodent and swine models have been used to describe many of the underlying pathologic mechanisms, which have led to an improved understanding of the morbidity and mortality associated with critically ill trauma patients. The enigmatic immunopathology of the human immunologic response after severe trauma, however, has never more been apparent and there grows a need for a clinically relevant animal model, which mimics this immune physiology to enhance the care of the most severely injured. This has necessitated preclinical studies in a more closely related model system, the nonhuman primate. In this review article, we summarize animal models of trauma that have provided insight into the clinical response and understanding of cellular mechanisms involved in the onset and progression of ischemia-reperfusion injury as well as describe future treatment options using immunomodulation-based strategies.
Collapse
Affiliation(s)
- Apple P Valparaiso
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Diego A Vicente
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Benjamin A Bograd
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Eric A Elster
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Thomas A Davis
- Department of Regenerative Medicine, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
| |
Collapse
|
28
|
Chatzipanteli K, Vitarbo E, Alonso OF, Bramlett HM, Dietrich WD. Temporal profile of cerebrospinal fluid, plasma, and brain interleukin-6 after normothermic fluid-percussion brain injury: effect of secondary hypoxia. Ther Hypothermia Temp Manag 2014; 2:167-75. [PMID: 23667780 DOI: 10.1089/ther.2012.0016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine that may play multiple roles in the pathogenesis of traumatic brain injury (TBI). The present study determined time-dependent changes in IL-6 concentrations in vulnerable brain regions, cerebrospinal fluid (CSF) samples, and plasma after normothermic TBI. Because secondary insults are common in head injured patients, we also assessed the consequences of a post-traumatic secondary hypoxic insult on this pleiotropic cytokine. Male Sprague-Dawley rats were intubated, anesthetized, and underwent a moderate parasagittal fluid-percussion brain injury (1.8-2.1 atm, 37°C) followed by either 30 minutes of normoxic or hypoxic (pO₂ = 30-40 mmHg) gas levels. Rats were sacrificed 3, 6, or 24 hours after TBI or shamoperated procedures. Brain samples, including the ipsilateral cerebral cortex and hippocampus were dissected and analyzed. Plasma and CSF samples were collected at similar times and stored at -80°C until analysis. IL-6 levels were significantly increased ( p < 0.05) at 3, 6, and 24 hours in the cerebral cortex and at 6 hours in the hippocampus after TBI. IL-6 levels in the TBI normoxic group for both structures returned to control levels by 24 hours. Plasma levels of IL-6 were elevated at all time points, while CSF levels were high at 3 and 6 hours, but normalized by 24 hours. Post-traumatic hypoxia led to significantly elevated ( p < 0.05) IL-6 protein levels in the cerebral cortex at 24 hours compared to sham-operated controls. These findings demonstrate that moderate TBI leads to an early increase in IL-6 brain, plasma, and CSF protein levels. Secondary post-traumatic hypoxia, a common secondary injury mechanism, led to prolonged elevations in plasma IL-6 levels that may participate in the pathophysiology of this complicated TBI model.
Collapse
|
29
|
Dang X, Guan L, Hu W, Du G, Li J. S100B ranks as a new marker of multiple traumas in patients and may accelerate its development by regulating endothelial cell dysfunction. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:3818-3826. [PMID: 25120758 PMCID: PMC4128993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
S100 calcium binding protein B (S100B) is recently known as the markers for inflammatory diseases. However, its roles and underlying mechanism on multiple-traumas remain unclearly. In this study, total 123 patients (87 male and 36 female) were enrolled and divided into two group: Injury severity score (ISS) ≥ 16 (n = 69); ISS < 16 (n = 54). ELISA assay confirmed that the circulating S100B levels in multi-trauma were obviously higher than that in healthy volunteers. Additionally, S100B concentrations was associated with injury severity as an obviously higher levels of S100B (2.18 μg/L) in severe trauma group (ISS ≥ 16) than 1.26 μg/L in moderate trauma group (ISS < 16). Furthermore, the average concentration of S100B was 2.91 μg/L (n = 14) in fatal patients and 2.21 μg/L in survivors, suggesting an obvious correlation between S100B and the severity degree of multi-injury. Further analysis confirmed an obvious correlation between S100B levels and sE-selectin, and Von willebrand factor (vWF), both of these are the marker of endothelial cell injury. After transfection with pcDNA3.1-S100B, human umbilical vein endothelial cells (HUVECs) cell apoptotic ratio was dramatically up-regulated, concomitant with the increase in IL-6 and IL-8 levels, suggesting that S100B might regulate the development of polytrauma by mediating endothelial cell dysfunction. Together, these results suggest a potential predictive value of S100B and its underlying mechanism in the pathological process of polytrauma. Therefore, this study will support the potential clinical aspect for the diagnostic and treatment of polytrauma and its complications.
Collapse
|
30
|
Zhang YP, Cai J, Shields LBE, Liu N, Xu XM, Shields CB. Traumatic brain injury using mouse models. Transl Stroke Res 2014; 5:454-71. [PMID: 24493632 DOI: 10.1007/s12975-014-0327-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 12/09/2013] [Accepted: 01/05/2014] [Indexed: 12/14/2022]
Abstract
The use of mouse models in traumatic brain injury (TBI) has several advantages compared to other animal models including low cost of breeding, easy maintenance, and innovative technology to create genetically modified strains. Studies using knockout and transgenic mice demonstrating functional gain or loss of molecules provide insight into basic mechanisms of TBI. Mouse models provide powerful tools to screen for putative therapeutic targets in TBI. This article reviews currently available mouse models that replicate several clinical features of TBI such as closed head injuries (CHI), penetrating head injuries, and a combination of both. CHI may be caused by direct trauma creating cerebral concussion or contusion. Sudden acceleration-deceleration injuries of the head without direct trauma may also cause intracranial injury by the transmission of shock waves to the brain. Recapitulation of temporary cavities that are induced by high-velocity penetrating objects in the mouse brain are difficult to produce, but slow brain penetration injuries in mice are reviewed. Synergistic damaging effects on the brain following systemic complications are also described. Advantages and disadvantages of CHI mouse models induced by weight drop, fluid percussion, and controlled cortical impact injuries are compared. Differences in the anatomy, biomechanics, and behavioral evaluations between mice and humans are discussed. Although the use of mouse models for TBI research is promising, further development of these techniques is warranted.
Collapse
Affiliation(s)
- Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA,
| | | | | | | | | | | |
Collapse
|
31
|
Chen B, Mutschler M, Yuan Y, Neugebauer E, Huang Q, Maegele M. Superimposed traumatic brain injury modulates vasomotor responses in third-order vessels after hemorrhagic shock. Scand J Trauma Resusc Emerg Med 2013; 21:77. [PMID: 24257108 PMCID: PMC3843561 DOI: 10.1186/1757-7241-21-77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) and hemorrhagic shock (HS) are the leading causes of death in trauma. Recent studies suggest that TBI may influence physiological responses to acute blood loss. This study was designed to assess to what extent superimposed TBI may modulate physiologic vasomotor responses in third-order blood vessels in the context of HS. METHODS We have combined two established experimental models of pressure-controlled hemorrhagic shock (HS; MAP 50 mmHg/60 min) and TBI (lateral fluid percussion (LFP)) to assess vasomotor responses and microcirculatory changes in third-order vessels by intravital microscopy in a spinotrapezius muscle preparation. 23 male Sprague-Dawley rats (260-320 g) were randomly assigned to experimental groups: i) Sham, ii) HS, iii) TBI + HS, subjected to impact or sham operation, and assessed. RESULTS HS led to a significant decrease in arteriolar diameters by 20% to baseline (p < 0.01). In TBI + HS this vasoconstriction was less pronounced (5%, non-significant). At completed and at 60 minutes of resuscitation arteriolar diameters had recovered to pre-injury baseline values. Assessment of venular diameters revealed similar results. Arteriolar and venular RBC velocity and blood flow decreased sharply to < 20% of baseline in HS and TBI + HS (p < 0.01). Immediately after and at 60 minutes of resuscitation, an overshoot in arterial RBC velocity (140% of baseline) and blood flow (134.2%) was observed in TBI + HS. CONCLUSION Superimposed TBI modulated arteriolar and venular responses to HS in third-order vessels in a spinotrapezius muscle preparation. Further research is necessary to precisely define the role of TBI on the microcirculation in tissues vulnerable to HS.
Collapse
Affiliation(s)
| | | | | | | | - Qiaobing Huang
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research, Southern Medical University (SMU), Tong He, 510515 Guangzhou, People's Republic of China.
| | | |
Collapse
|
32
|
Systemic inflammatory responses and lung injury following hip fracture surgery increases susceptibility to infection in aged rats. Mediators Inflamm 2013; 2013:536435. [PMID: 24163505 PMCID: PMC3791802 DOI: 10.1155/2013/536435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/19/2022] Open
Abstract
Pulmonary infections frequently occur following hip fracture surgery in aged patients. However, the underlying reasons are not fully understood. The present study investigates the systemic inflammatory response and pulmonary conditions following hip fracture surgery as a means of identifying risk factors for lung infections using an aged rodent model. Aged, male Sprague-Dawley rats (8 animals per group) underwent a sham procedure or hip fracture plus femoral intramedullary pinning. Animals were sacrificed 1, 3, and 7 days after the injury. Markers of systemic inflammation and pulmonary injury were analyzed. Both sham-operated and injured/surgical group animals underwent intratracheal inoculation with Pseudomonas aeruginosa 1, 3, and 7 days after surgery. P. aeruginosa counts in blood and bronchoalveolar lavage (BAL) fluid and survival rates were recorded. Serum TNF-α, IL-6, IL-1β, and IL-10 levels and markers of pulmonary injury were significantly increased at 1 and 3 days following hip fracture and surgery. Animals challenged with P. aeruginosa at 1 and 3 days after injury had a significantly decreased survival rate and more P. aeruginosa recovered from blood and BAL fluid. This study shows that hip fracture and surgery in aged rats induced a systemic inflammatory response and lung injury associated with increased susceptibility to infection during the acute phase after injury and surgery.
Collapse
|
33
|
Mrozek S, Gaussiat F, Geeraerts T. The management of femur shaft fracture associated with severe traumatic brain injury. ACTA ACUST UNITED AC 2013; 32:510-5. [DOI: 10.1016/j.annfar.2013.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Chowdhury T, Cappellani RB, Daya J. Neuroanesthetic considerations for emergent extracranial surgeries: What to know? Saudi J Anaesth 2013; 6:408-11. [PMID: 23493049 PMCID: PMC3591564 DOI: 10.4103/1658-354x.105889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Neuroanaesthetic considerations in non neurosurgical cases are utmost important for the optimal management of such cases. These considerations become even more challenging in patients undergoing emergency surgeries. We have highlighted the neuroanesthetic considerations for three broad categories. The two most important considerations in this type of surgery will be the avoidance of secondary brain insult and maintenance of optimal cerebral perfusion pressure.
Collapse
Affiliation(s)
- Tumul Chowdhury
- Department of Anesthesiology, Health Sciences Center, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
35
|
Crownover J, Galang GNF, Wagner A. Rehabilitation Considerations for Traumatic Brain Injury in the Geriatric Population: Epidemiology, Neurobiology, Prognosis, and Management. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13670-012-0021-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|