1
|
Xu WD, Yang C, Huang AF. The role of Nrf2 in immune cells and inflammatory autoimmune diseases: a comprehensive review. Expert Opin Ther Targets 2024; 28:789-806. [PMID: 39256980 DOI: 10.1080/14728222.2024.2401518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Nrf2 regulates mild stress, chronic inflammation, and metabolic changes by regulating different immune cells via downstream signaling. Collection of information about the role of Nrf2 in inflammatory autoimmune diseases will better understand the therapeutic potential of targeting Nrf2 in these diseases. AREAS COVERED In this review, we comprehensively discussed biological function of Nrf2 in different immune cells, including Nrf2 preventing oxidative tissue injury, affecting apoptosis of immune cells and inflammatory cytokine production. Moreover, we discussed the role of Nrf2 in the development of inflammatory autoimmune diseases. EXPERT OPINION Nrf2 binds to downstream signaling molecules and then provides durable protection against different cellular and organ stress. It has emerged as an important target for inflammatory autoimmune diseases. Development of Nrf2 modulator drugs needs to consider factors such as target specificity, short/long term safety, disease indication identification, and the extent of variation in Nrf2 activity. We carefully discussed the dual role of Nrf2 in some diseases, which helps to better target Nrf2 in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Preventive Health Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Ai M, Zhou X, Carrer M, Jafar-nejad P, Li Y, Gades N, Alexander M, Bautista MA, Garcia AAD, Zeng H. Targeting mechanistic target of rapamycin complex 2 attenuates immunopathology in Systemic Lupus Erythematosus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606069. [PMID: 39131369 PMCID: PMC11312597 DOI: 10.1101/2024.08.01.606069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Objective We aim to explore the role of mechanistic target of rapamycin complex (mTORC) 2 in systemic lupus erythematosus (SLE) development, the in vivo regulation of mTORC2 by type I interferon (IFN) signaling in autoimmunity, and to use mTORC2 targeting therapy to ameliorate lupus-like symptoms in an in vivo lupus mouse model and an in vitro coculture model using human PBMCs. Method We first induced lupus-like disease in T cell specific Rictor, a key component of mTORC2, deficient mice by topical application of imiquimod (IMQ) and monitored disease development. Next, we investigated the changes of mTORC2 signaling and immunological phenotypes in type I IFNAR deficient Lpr mice. We then tested the beneficial effects of anti-Rictor antisense oligonucleotide (Rictor-ASO) in a mouse model of lupus: MRL/lpr mice. Finally, we examined the beneficial effects of RICTOR-ASO on SLE patients' PBMCs using an in vitro T-B cell coculture assay. Results T cell specific Rictor deficient mice have reduced age-associated B cells, plasma cells and germinal center B cells, and less autoantibody production than WT mice following IMQ treatment. IFNAR1 deficient Lpr mice have reduced mTORC2 activity in CD4+ T cells accompanied by restored CD4+ T cell glucose metabolism, partially recovered T cell trafficking, and reduced systemic inflammation. In vivo Rictor-ASO treatment improves renal function and pathology in MRL/lpr mice, along with improved immunopathology. In human SLE (N = 5) PBMCs derived T-B coculture assay, RICTOR-ASO significantly reduce immunoglobulin and autoantibodies production (P < 0.05). Conclusion Targeting mTORC2 could be a promising therapeutic for SLE.
Collapse
Affiliation(s)
- Minji Ai
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN, USA
| | - Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN, USA
| | | | | | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN, USA
| | - Naomi Gades
- Department of Comparative Medicine, Mayo Clinic Arizona, USA
| | - Mariam Alexander
- Division of Laboratory Medicine and Pathology, Mayo Clinic Rochester, MN, USA
| | - Mario A. Bautista
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN, USA
| | - Ali A. Duarte Garcia
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN, USA
- Department of Immunology, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
3
|
Peng L, Wang P, Xu X, Chen D, Xu F, Yang F, Yang S, Xia H, Liu ZH, Qin W. Inhibition of receptor interacting protein kinase-1 (RIPK1) in the treatment of murine lupus. Lupus Sci Med 2024; 11:e001146. [PMID: 38906550 PMCID: PMC11191810 DOI: 10.1136/lupus-2024-001146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a type of autoimmune disease that involves multiple organs involved as well as cytokine dysregulation. The treatment of SLE is still challenging due to the side effects of the different drugs used. Receptor-interacting protein kinase 1 (RIPK1) is a kinase involved in T cell homeostasis and autoinflammation. Although clinical trials have shown that RIPK1 inhibition exhibits significant efficacy in different autoimmune diseases, its role in SLE remains unclear. METHODS MRL/lpr lupus-prone mice received RIPK1 inhibitor ZJU37 or vehicle intraperitoneally for 10 weeks. A BM12-induced chronic graft-versus-host-disease (cGVHD) lupus-like model was introduced in RIPK1 D138N mice or C57BL/6 mice. Nephritis, serum autoantibody levels, dysregulation of adaptive immune response and cytokines were compared in treated and untreated mice. RESULTS ZJU37 alleviated the clinical features of the MRL/lpr mice including nephritis and anti-dsDNA antibody production. In addition, ZJU37 treatment reduced the proportion of double-negative T cells in the spleen and the cytokines of TNFα, IFN-γ, IL-6, IL-17 and IL-1β in the serum. Moreover, RIPK1 D138N mice were able to prevent the cGVHD lupus-like model from SLE attack, manifesting as anti-dsDNA antibody production, the proliferation of germinal centre B cells, plasma cells, and T follicular helper cells as well as IgG and C3 deposits in kidneys. CONCLUSION RIPK1 inhibition has a protective effect in the mouse model of SLE and can potentially become a new therapeutic target for SLE in humans.
Collapse
Affiliation(s)
- Lin Peng
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Pengcheng Wang
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaodong Xu
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dacheng Chen
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Feng Xu
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Fan Yang
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Shuying Yang
- Department of Biochemistry and Molecular Medical Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongguang Xia
- Department of Biochemistry and Molecular Medical Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhi-Hong Liu
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Weisong Qin
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Hou J, Gong H, Gong Z, Tan X, Qin X, Nie J, Zhu H, Zhong S. Structural characterization and anti-inflammatory activities of a purified polysaccharide from fruits remnants of Alpinia zerumbet (Pers.) Burtt. et Smith. Int J Biol Macromol 2024; 267:131534. [PMID: 38636158 DOI: 10.1016/j.ijbiomac.2024.131534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/16/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
We reported here an interesting source of Alpinia zerumbet Polysaccharides (named AZPs) from the residues after extracting essential oil by steam distillation from Alpinia zerumbet fructus. After a series of purifications, a homogeneous polysaccharide (AZP-2) of molecular weight 1.25 × 105 Da was obtained. Structure, anti-inflammatory activity, and anti-inflammatory mechanism were investigated. AZP-2 was mainly composed of galactose, arabinose, xylopyranose, glucose, and galacturonic acid. The main linkage structure of AZP-2 was determined after integrating the nuclear magnetic resonance (NMR) and methylation analysis, and the structure was comparatively complex. The results indicated that AZP-2 significantly decreased the production of NO and ROS in the inflammatory model established by lipopolysaccharide (LPS) stimulated RAW264.7, particularly at the concentration of 200 μg/mL. Furthermore, AZP-2 significantly modulated the secretion of both pro-inflammatory and anti-inflammatory cytokines. Notably, the mechanism of AZP-2 exhibiting inhibitory effects was related to regulating the NF-κB signaling pathway. Overall, AZP-2 could be used as a potential anti-inflammatory agent for further in-depth studies.
Collapse
Affiliation(s)
- Jiaojiao Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huxuan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiao Tan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiangxiang Qin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jing Nie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hua Zhu
- GuangXi University of Chinese Medicine, Nanning 530200, China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
5
|
Li F, Ouyang J, Chen Z, Zhou Z, Milon Essola J, Ali B, Wu X, Zhu M, Guo W, Liang XJ. Nanomedicine for T-Cell Mediated Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301770. [PMID: 36964936 DOI: 10.1002/adma.202301770] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Indexed: 06/18/2023]
Abstract
T-cell immunotherapy offers outstanding advantages in the treatment of various diseases, and with the selection of appropriate targets, efficient disease treatment can be achieved. T-cell immunotherapy has made great progress, but clinical results show that only a small proportion of patients can benefit from T-cell immunotherapy. The extensive mechanistic work outlines a blueprint for using T cells as a new option for immunotherapy, but also presents new challenges, including the balance between different fractions of T cells, the inherent T-cell suppression patterns in the disease microenvironment, the acquired loss of targets, and the decline of T-cell viability. The diversity, flexibility, and intelligence of nanomedicines give them great potential for enhancing T-cell immunotherapy. Here, how T-cell immunotherapy strategies can be adapted with different nanomaterials to enhance therapeutic efficacy is discussed. For two different pathological states, immunosuppression and immune activation, recent advances in nanomedicines for T-cell immunotherapy in diseases such as cancers, rheumatoid arthritis, systemic lupus erythematosus, ulcerative colitis, and diabetes are summarized. With a focus on T-cell immunotherapy, this review highlights the outstanding advantages of nanomedicines in disease treatment, and helps advance one's understanding of the use of nanotechnology to enhance T-cell immunotherapy.
Collapse
Affiliation(s)
- Fangzhou Li
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Jiang Ouyang
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Zuqin Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Ziran Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Julien Milon Essola
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Barkat Ali
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- Food Sciences Research Institute, Pakistan Agricultural Research Council, 44000, Islamabad, Pakistan
| | - Xinyue Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengliang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Xing-Jie Liang
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Meng X, Lv A, Tang M, Liu X, Wang X, Li Y, Chai Y, Yang Q, Kou C, Zhang L, Li M, Zhang H. Non-thyroidal disease syndrome in patients with systemic lupus erythematosus: relation to disease inflammatory activity. Clin Rheumatol 2024; 43:1551-1558. [PMID: 38578510 DOI: 10.1007/s10067-024-06947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVE To identify risk factors for the development of non-thyroidal illness syndrome (NTIS) in patients with systemic lupus erythematosus (SLE). METHODS A retrospective analysis of 517 SLE patients and 1034 age-and sex-matched healthy population was conducted to compare the prevalence of NTIS in these two groups, and to analyze the laboratory and clinical characteristics of SLE patients with NTIS. Finally Logistic regression analysis was used to determine the risk factors for NTIS in SLE patients. RESULTS The prevalence of NTIS in the SLE patients was significantly higher than that in controls (39.7% vs. 1.0%, P < 0.001). In SLE patients, compared with euthyroidism patients, NTIS patients exhibited higher levels of neutrophils, hepatic enzymes, kidney damage markers, inflammatory markers and SLE disease activity index (SLEDAI). They also had a higher incidence of organ insufficiency and positive antibodies such as anti-ds-DNA antibodies and anti-SSA antibodies. However, NTIS patients had lower levels of hemoglobin, lymphocytes, platelets, serum albumin, and complement. Additionally, NTIS patients had a shorter duration of lupus and lower utilization of disease-modifying antirheumatic drugs (DMARDs) (P < 0.05). Logistic regression analysis showed that elevated SLEDAI (OR = 1.060, 95%CI 1.022-1.099, P = 0.002), elevated systemic immune-inflammation index (SII) (OR = 1.003, 95%CI 1.001-1.007, P = 0.026), elevated erythrocyte sedimentation rate (ESR) (OR = 1.019, 95%CI 1.010-1.028, P < 0.001), and hepatic insufficiency (OR = 1.916, 95% CI 1.173-3.131, P = 0.009) were independent risk factors for the development of NTIS in SLE. DMARDs treatment (OR = 0.495, 95% CI 0.306-0.799, P < 0.001) was an independent protective factor for NTIS. CONCLUSIONS Inflammatory activity in SLE patients is associated with the development of NTIS. Key Points • Inflammatory activity indexes such as SLEDAI, SII, and ESR are independent risk factors for NTIS in SLE patients.
Collapse
Affiliation(s)
- Xue Meng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ang Lv
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mulin Tang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xue Liu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xinhui Wang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Yuchen Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Yuwei Chai
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qingqing Yang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Chunjia Kou
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Li Zhang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ming Li
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Haiqing Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021, China.
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, 250021, China.
| |
Collapse
|
7
|
Tu YC, Wang YM, Yao LJ. Macrophage-Targeting DNA Nanomaterials: A Future Direction of Biological Therapy. Int J Nanomedicine 2024; 19:3641-3655. [PMID: 38681094 PMCID: PMC11055528 DOI: 10.2147/ijn.s459288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
DNA can be used for precise construction of complex and flexible micro-nanostructures, including DNA origami, frame nucleic acids, and DNA hydrogels. DNA nanomaterials have good biocompatibility and can enter macrophages via scavenger receptor-mediated endocytosis. DNA nanomaterials can be uniquely and flexibly designed to ensure efficient uptake by macrophages, which represents a novel strategy to regulate macrophage function. With the development of nanotechnology, major advances have been made in the design and manufacturing of DNA nanomaterials for clinical therapy. In diseases accompanied by macrophage disturbances including tumor, infectious diseases, arthritis, fibrosis, acute lung injury, and atherosclerosis, DNA nanomaterials received considerable attention as potential treatments. However, we lack sufficient information to guarantee precise targeting of macrophages by DNA nanomaterials, which precludes their therapeutic applications. In this review, we summarize recent studies of macrophage-targeting DNA nanomaterials and discuss the limitations and challenges of this approach with regard to its potential use as a biological therapy.
Collapse
Affiliation(s)
- Yu-Chi Tu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yu-Mei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Li-Jun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
8
|
Mok CC. Outlook of the jakinibs in systemic lupus erythematous after baricitinib failed. Int J Rheum Dis 2024; 27:e15082. [PMID: 38375760 DOI: 10.1111/1756-185x.15082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024]
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong, China
| |
Collapse
|
9
|
Hosseini S, Mahmoudi M, Rezaieyazdi Z, Shapouri-Moghaddam A, Hosseinzadeh A, Arab FL, Tabasi NS, Esmaeili SA. Lupus mice derived mesenchymal stromal cells: Beneficial or detrimental on SLE disease outcome. Int Immunopharmacol 2024; 126:111306. [PMID: 38039717 DOI: 10.1016/j.intimp.2023.111306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease characterized by the presence of autoantibodies against nuclear genes, deposition of immune complexes, and autoimmune T cells, through which, tissue damage would ultimately occur. Furthermore, loss of immune tolerance and imbalance of Th1/Th2 cells in addition to Th17/Treg are contributed to the pathogenesis of SLE. Mesenchymal stromal cells (MSCs) infusion is a potential therapy for SLE disease. Despite a majority of SLE patients achieving clinical remission after allogeneic MSC infusion from healthy individuals, SLE patients have less benefited from autologous MSC infusion, justifying the probable compromised function of SLE patients-derived MSCs. In this study, we aim to further investigate the potential immunoregulatory mechanisms in which mesenchymal stromal cells derived from pristane-induced lupus mice, following injection into healthy and lupus mice, exert their possible effects on the lupus process. METHOD 40 female Balb/c mice aged 3 weeks were purchased and randomly divided into six groups. First, lupus disease was induced into the lupus groups by intraperitoneal injection of pristane and then the mice were surveyed for 6 months. The body weight, anti-dsDNA autoantibody levels, serum creatinine, and Blood Urea Nitrogen (BUN) levels were measured in two-month intervals. After 6 months, the group of lupus mice was sacrificed, and lupus MSCs were isolated. Two months later, cultured lupus MSCs were intravenously injected into two groups of healthy and lupus mice. After two months, the mice were euthanized and the kidneys of each group were examined histologically by hematoxylin & eosin (H&E) staining and the immunofluorescence method was also performed to evaluate IgG and C3 deposition. The frequency of splenic Th1, Th2, Th17, and Treg cells was measured by flow cytometry. Moreover, the cytokine levels of IFN-γ, IL-4, IL-17, and TGF-β in sera were measured by ELISA method. RESULTS Our results showed that the induction of lupus disease by pristane in Balb/c mice caused the formation of lipogranuloma, increased levels of anti-dsDNA autoantibodies, and impaired renal function in all pristane-induced lupus groups. In addition, the injection of lupus mesenchymal stromal cells (L-MSC) into healthy and lupus mice led to a further rise in anti-dsDNA serum levels, IgG and C3 deposition, and further dysfunction of mice renal tissue. Also, the flow cytometry results implicated that compared to the control groups, splenic Th1, Th2, and Th17 inflammatory cell subtypes and their secreted cytokines (IFN-γ, IL-4, and IL-17) in the sera of healthy and lupus mice were increased after the intake of L-MSC. Additionally, the splenic Treg cells were also significantly increased in the lupus mice receiving L-MSC. However, a decrease in serum levels of TGF-β cytokine was observed in healthy and lupus mice following L-MSC injection. In contrast, the lupus mice receiving healthy mesenchymal stem cells (H-MSC) manifested opposite results. CONCLUSION In a nutshell, our results suggest that although allogeneic MSCs are encouraging candidates for SLE treatment, syngeneic MSCs may not be eligible for treating SLE patients due to their defects in regulating the immune system in addition to their capability in promoting inflammation which would consequently worsen the SLE disease status.
Collapse
Affiliation(s)
- Sara Hosseini
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Shapouri-Moghaddam
- Department of Immunology, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akram Hosseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Sadat Tabasi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Mia GK, Hawley E, Yusuf M, Amat S, Ward AK, Keller WL, Dorsam G, Swanson KC. The impact of exogenous vasoactive intestinal polypeptide on inflammatory responses and mRNA expression of tight junction genes in lambs fed a high-grain diet. J Anim Sci 2024; 102:skae309. [PMID: 39396104 PMCID: PMC11537799 DOI: 10.1093/jas/skae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024] Open
Abstract
This study assessed the impact of administering vasoactive intestinal polypeptide (VIP) on inflammation and intestinal VIP and tight junction mRNA expression in lambs fed grain-based finishing diets. Sixteen wether lambs (69.6 ± 1.9 kg) were individually housed, adapted to a corn-based diet containing no forage, and randomly assigned to 2 treatment groups. Lambs were intraperitoneally injected every other day for 28 d with either saline (0.9% NaCl) with no VIP (n = 8; control) or saline with VIP (n = 8; 1.3 nmol/kg BW). Blood samples were collected weekly for analysis of cytokine concentrations, and on days 0 and 28 for lipopolysaccharide (LPS), and LPS-binding protein (LBP) concentrations. Upon completion of the treatment period, lambs were euthanized and gastrointestinal tissues, including rumen, jejunum, cecum, and colon samples, were collected for analysis of the expression of tight junction mRNA (claudin-1, claudin-4, occludin, and ZO-1), endogenous VIP, and VIP receptor (VPAC-1). No treatment effects (P ≥ 0.38) were observed for VIP and VPAC-1 mRNA expression in the colon. Supplementation with VIP did not influence (P ≥ 0.28) the expression of claudin-1, claudin-4, occludin, and ZO-1 tight junction mRNA in the rumen, jejunum, cecum, and colon. Lambs treated with VIP had greater (P ≤ 0.01) plasma concentrations of the anti-inflammatory cytokines, IL-10 and IL-36RA. There were treatment-by-day interactions observed (P ≤ 0.02) for concentrations of the pro-inflammatory cytokines, MIP-1α and MIP-1β. Lambs that did not receive VIP had greater serum concentrations of LPS (P = 0.05) than the lambs receiving VIP. These data suggest that VIP administration may not influence tight junction mRNA expression but may decrease LPS concentrations and thus inflammation in lambs fed a grain-based diet.
Collapse
Affiliation(s)
- Golam K Mia
- Departments of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Emma Hawley
- Departments of Microbiological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Mustapha Yusuf
- Departments of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Departments of Microbiological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Alison K Ward
- Departments of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Wanda L Keller
- Departments of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Glenn Dorsam
- Departments of Microbiological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Kendall C Swanson
- Departments of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
11
|
Rahmé Z, Franco C, Cruciani C, Pettorossi F, Zaramella A, Realdon S, Iaccarino L, Frontini G, Moroni G, Doria A, Ghirardello A, Gatto M. Characterization of Serum Cytokine Profiles of Patients with Active Lupus Nephritis. Int J Mol Sci 2023; 24:14883. [PMID: 37834330 PMCID: PMC10573765 DOI: 10.3390/ijms241914883] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Cytokines contribute to the pathogenesis of lupus nephritis (LN), yet their value as prognostic biomarkers is still debated. We aimed to describe the serum cytokines' profiles and prospectively assess correlations with disease features and renal response in a multicentric cohort of consecutive adult patients with biopsy-proven active LN. Cytokine associations with clinical and serological data were performed at LN diagnosis (T0), and at 3 (T3) and 6 months (T6) of follow up. Renal response according to EULAR definition was assessed at T3, T6 and T12. BAFF and interleukin (IL)-37 were measured by ELISA; IL-2, IL-10, IL-17A and IL-18 by a bead-based multiplex cytokine assay (Luminex). Thirty-nine patients with active LN (age 40.5 ± 15.6 years; F 71.8%; 84.6% proliferative LN) were enrolled, of whom twenty-nine displayed complete longitudinal records. At T0, we observed higher levels of IL-37 and IL-17 in proliferative vs. non-proliferative LN (IL-37: 0.0510 (0.0110-0.2300) vs. 0.0000 (0.0000-0.0397) ng/mL, p = 0.0441; IL-17: 2.0920 (0.5125-17.9400) vs. 0.0000 (0.0000-0.6025) pg/mL, p = 0.0026, respectively), and positive correlations between IL-10 and 24 h proteinuria (r = 0.416, p = 0.0249) and anti-dsDNA levels (r = 0.639, p = 0.0003). BAFF was higher in patients with low complement (p < 0.0001). We observed a sustained correlation between BAFF and IL-10 throughout T6 (r = 0.654, p = 0.0210). Higher baseline IL-37 and BAFF levels were associated with renal response at T3 and T6, respectively, while baseline IL-18 levels were higher in patients achieving response at T12. Our study highlights the complexity of the cytokine network and its potential value as a marker of active LN and renal response.
Collapse
Affiliation(s)
- Zahrà Rahmé
- Unit of Rheumatology, Department of Medicine, University of Padova, 35128 Padova, Italy; (Z.R.); (C.F.); (C.C.); (L.I.); (A.D.); (A.G.)
| | - Chiara Franco
- Unit of Rheumatology, Department of Medicine, University of Padova, 35128 Padova, Italy; (Z.R.); (C.F.); (C.C.); (L.I.); (A.D.); (A.G.)
| | - Claudio Cruciani
- Unit of Rheumatology, Department of Medicine, University of Padova, 35128 Padova, Italy; (Z.R.); (C.F.); (C.C.); (L.I.); (A.D.); (A.G.)
| | - Federico Pettorossi
- Unit of Rheumatology, Department of Medicine, University of Padova, 35128 Padova, Italy; (Z.R.); (C.F.); (C.C.); (L.I.); (A.D.); (A.G.)
| | - Alice Zaramella
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35128 Padova, Italy
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Stefano Realdon
- Oncology Referral Center of Aviano (CRO)-IRCCS, 33081 Aviano, Italy;
| | - Luca Iaccarino
- Unit of Rheumatology, Department of Medicine, University of Padova, 35128 Padova, Italy; (Z.R.); (C.F.); (C.C.); (L.I.); (A.D.); (A.G.)
| | - Giulia Frontini
- Nephrology and Dialysis Unit, San Paolo Hospital, 20153 Milan, Italy;
| | - Gabriella Moroni
- Nephrology and Dialysis Division, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Andrea Doria
- Unit of Rheumatology, Department of Medicine, University of Padova, 35128 Padova, Italy; (Z.R.); (C.F.); (C.C.); (L.I.); (A.D.); (A.G.)
| | - Anna Ghirardello
- Unit of Rheumatology, Department of Medicine, University of Padova, 35128 Padova, Italy; (Z.R.); (C.F.); (C.C.); (L.I.); (A.D.); (A.G.)
| | - Mariele Gatto
- Unit of Rheumatology, Department of Medicine, University of Padova, 35128 Padova, Italy; (Z.R.); (C.F.); (C.C.); (L.I.); (A.D.); (A.G.)
- Unit of Rheumatology, Department of Clinical and Biological Sciences, University of Turin, 10124 Torino, Italy
| |
Collapse
|
12
|
Winikajtis-Burzyńska A, Brzosko M, Przepiera-Będzak H. Increased Serum Interleukin 10 Levels Are Associated with Increased Disease Activity and Increased Risk of Anti-SS-A/Ro Antibody Positivity in Patients with Systemic Lupus Erythematosus. Biomolecules 2023; 13:974. [PMID: 37371554 PMCID: PMC10296207 DOI: 10.3390/biom13060974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Interleukin 10 (IL-10) plays a role in inflammation and cell-type responses. The anti-SS-A/Ro antibody contributes to leucopenia, and cutaneous and neonatal lupus. OBJECTIVES To evaluate the association between serum IL-10 levels and autoantibodies, disease activity and organ involvement in systemic lupus erythematosus (SLE) patients. PATIENTS AND METHODS We studied 200 SLE patients and 50 controls. We analyzed organ involvement, disease activity, serum IL-10 and interleukin-6 (IL-6) levels, and antinuclear and antiphospholipid antibody profiles. RESULTS Serum IL-10 and IL-6 levels were higher in SLE patients than in controls (all p < 0.00001). Serum IL-10 levels were positively correlated with IL-6 (p < 0.00001), CRP (p < 0.00001), fibrinogen (p = 0.003), and ESR (p < 0.00001), and negatively correlated with hemoglobin (p = 0.0004) and lymphocytes (p = 0.01). Serum IL-6 levels were positively correlated with CRP (p < 0.00001), fibrinogen (p = 0.001), and ESR (p < 0.00001); and negatively correlated with hemoglobin (p = 0.008) and lymphocytes (p = 0.03). Elevated serum IL-10 levels were associated with an increased risk of anti-SS-A/Ro antibody positivity (p = 0.03). Elevated serum IL-6 levels were associated with an increased risk of heart (p = 0.007) and lung (p = 0.04) involvement. CONCLUSIONS In SLE patients, increased serum IL-10 levels were associated with increased disease activity and risk of anti-SS-A/Ro antibody positivity.
Collapse
Affiliation(s)
- Agnieszka Winikajtis-Burzyńska
- Individual Laboratory for Rheumatologic Diagnostics, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Marek Brzosko
- Department of Rheumatology, Internal Medicine, Geriatrics and Clinical Immunology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Hanna Przepiera-Będzak
- Department of Rheumatology, Internal Medicine, Geriatrics and Clinical Immunology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| |
Collapse
|
13
|
Wautier JL, Wautier MP. Pro- and Anti-Inflammatory Prostaglandins and Cytokines in Humans: A Mini Review. Int J Mol Sci 2023; 24:ijms24119647. [PMID: 37298597 DOI: 10.3390/ijms24119647] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammation has been described for two millennia, but cellular aspects and the paradigm involving different mediators have been identified in the recent century. Two main groups of molecules, the prostaglandins (PG) and the cytokines, have been discovered and play a major role in inflammatory processes. The activation of prostaglandins PGE2, PGD2 and PGI2 results in prominent symptoms during cardiovascular and rheumatoid diseases. The balance between pro- and anti-inflammatory compounds is nowadays a challenge for more targeted therapeutic approaches. The first cytokine was described more than a century ago and is now a part of different families of cytokines (38 interleukins), including the IL-1 and IL-6 families and TNF and TGFβ families. Cytokines can perform a dual role, being growth promotors or inhibitors and having pro- and anti-inflammatory properties. The complex interactions between cytokines, vascular cells and immune cells are responsible for dramatic conditions and lead to the concept of cytokine storm observed during sepsis, multi-organ failure and, recently, in some cases of COVID-19 infection. Cytokines such as interferon and hematopoietic growth factor have been used as therapy. Alternatively, the inhibition of cytokine functions has been largely developed using anti-interleukin or anti-TNF monoclonal antibodies in the treatment of sepsis or chronic inflammation.
Collapse
Affiliation(s)
- Jean-Luc Wautier
- Faculté de Médecine, Université Denis Diderot Paris Cité, 75013 Paris, France
| | - Marie-Paule Wautier
- Faculté de Médecine, Université Denis Diderot Paris Cité, 75013 Paris, France
| |
Collapse
|
14
|
Mok CC. Targeted Small Molecules for Systemic Lupus Erythematosus: Drugs in the Pipeline. Drugs 2023; 83:479-496. [PMID: 36972009 PMCID: PMC10042116 DOI: 10.1007/s40265-023-01856-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Despite the uncertainty of the pathogenesis of systemic lupus erythematosus, novel small molecules targeting specific intracellular mechanisms of immune cells are being developed to reverse the pathophysiological processes. These targeted molecules have the advantages of convenient administration, lower production costs, and the lack of immunogenicity. The Janus kinases, Bruton's tyrosine kinases, and spleen tyrosine kinases are important enzymes for activating downstream signals from various receptors on immune cells that include cytokines, growth factor, hormones, Fc, CD40, and B-cell receptors. Suppression of these kinases impairs cellular activation, differentiation, and survival, leading to diminished cytokine actions and autoantibody secretion. Intracellular protein degradation by immunoproteasomes, levered by the cereblon E3 ubiquitin ligase complex, is an essential process for the regulation of cellular functions and survival. Modulation of the immunoproteasomes and cereblon leads to depletion of long-lived plasma cells, reduced plasmablast differentiation, and production of autoantibodies and interferon-α. The sphingosine 1-phosphate/sphingosine 1-phosphate receptor-1 pathway is responsible for lymphocyte trafficking, regulatory T-cell/Th17 cell homeostasis, and vascular permeability. Sphingosine 1-phosphate receptor-1 modulators limit the trafficking of autoreactive lymphocytes across the blood-brain barrier, increase regulatory T-cell function, and decrease production of autoantibodies and type I interferons. This article summarizes the development of these targeted small molecules in the treatment of systemic lupus erythematosus, and the future prospect for precision medicine.
Collapse
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Tsing Chung Koon Road, New Territories, Hong Kong SAR, China.
| |
Collapse
|
15
|
Fields ND, VanKim NA, Whitcomb BW, Bertone-Johnson ER, Martínez AD, Chae DH. Racism-Related Experiences and Adiposity: Findings From the Black Women's Experiences Living With Lupus (BeWELL) Study. Womens Health Issues 2023; 33:153-159. [PMID: 36319516 PMCID: PMC10010936 DOI: 10.1016/j.whi.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Studies suggest that higher rates of excess adiposity in Black women may in part be driven by experiences of racism. Racial microaggressions, which include unintentional and subtle slights and insults, and responses to racism such as racism-related vigilance, may contribute to adiposity in this population. This study examined these understudied racism-related facets as well as interpersonal racial discrimination in relation to adiposity in a cohort of Black women with systemic lupus erythematosus. METHODS Data are from the Black Women's Experiences Living with Lupus (BeWELL) Study (2015-2017; n = 432). Linear regression was used to examine adiposity measures (body mass index [BMI], percent body fat, and waist-to-hip ratio), measured during a physical examination, in relation to self-reported measures of racial microaggressions, racism-related vigilance, and interpersonal racial discrimination. RESULTS Compared with infrequent microaggressions, very frequent experiences of microaggressions were associated with 2.9 kg/m2 higher BMI (95% confidence [CI], 0.63-5.21) and 2.6% higher body fat (95% CI, 0.32-4.80) after adjusting for covariates. Racism-related vigilance, measured continuously, was positively associated with BMI (b = 0.84; 95% CI-0.08, 1.61) and percent body fat (b = 0.89; 95% CI, 0.14-1.64). Very frequent experiences of everyday discrimination were associated with a higher BMI (b = 2.70; 95% CI, 0.58-4.83) and waist-to-hip ratio (b = 0.32; 95% CI, 0.09-0.55) compared with less frequent everyday discrimination. CONCLUSIONS Our results suggest that various dimensions of racism are associated with excess adiposity. Efforts to address obesity among Black women with systemic lupus erythematosus should consider these multiple aspects to decrease racial inequities in adiposity.
Collapse
Affiliation(s)
- Nicole D Fields
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts.
| | - Nicole A VanKim
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Brian W Whitcomb
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Elizabeth R Bertone-Johnson
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts; Department of Health Promotion and Policy, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Airín D Martínez
- Department of Health Promotion and Policy, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - David H Chae
- Department of Social, Behavioral, and Population Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
16
|
Wagner J, Štibi S, Selak N, Alvir I, Mamić I, Marcelić L, Šušnjar L, Puljiz M, Heffer M, Danolić D. Interleukin 10 rs1800896 and interleukin 1B rs16944 polymorphisms and the risk of cervical cancer. Wien Med Wochenschr 2023; 173:57-61. [PMID: 35041104 DOI: 10.1007/s10354-021-00907-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The purpose of this study was to evaluate the relationships between interleukin 10 (IL10) (rs1800896) and interleukin 1B (IL1B) (rs16944) genetic polymorphisms and the risk for cervical cancer in a cohort of women from Croatia. METHODS A case-control study of 81 patients with cervical cancer and 80 age-matched healthy controls was performed. We collected peripheral blood samples, extracted deoxiribonucleic acid (DNA), and analyzed two single-nucleotide polymorphisms (SNPs) rs1800896 and rs16944 using TaqMan assays (Fa. Thermo Fisher Scientific, Waltham, MA, USA) and real-time polymerase chain reaction (PCR). We investigated a possible association between two cytokine genetic polymorphisms and the occurrence of cervical cancer. RESULTS Our results showed no significant difference in the frequency of IL10 (rs1800896) and IL1B (rs16944) genotypes between the patients and the controls (χ2 test, P < 0.05). CONCLUSION In this study, no association was found between IL10 rs1800896 and IL1B rs16944 polymorphisms and cervical cancer development.
Collapse
Affiliation(s)
- Jasenka Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Sanela Štibi
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Nikica Selak
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Ilija Alvir
- Department of Gynecologic Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Center, Ilica 197, 10000, Zagreb, Croatia
| | - Ivica Mamić
- Department of Gynecologic Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Center, Ilica 197, 10000, Zagreb, Croatia
| | - Luka Marcelić
- Department of Gynecologic Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Center, Ilica 197, 10000, Zagreb, Croatia
| | - Lucija Šušnjar
- Department of Gynecologic Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Center, Ilica 197, 10000, Zagreb, Croatia.
| | - Mario Puljiz
- Department of Gynecologic Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Center, Ilica 197, 10000, Zagreb, Croatia
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Damir Danolić
- Department of Gynecologic Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Center, Ilica 197, 10000, Zagreb, Croatia
| |
Collapse
|
17
|
Ameer MA, Chaudhry H, Mushtaq J, Khan OS, Babar M, Hashim T, Zeb S, Tariq MA, Patlolla SR, Ali J, Hashim SN, Hashim S. An Overview of Systemic Lupus Erythematosus (SLE) Pathogenesis, Classification, and Management. Cureus 2022; 14:e30330. [DOI: 10.7759/cureus.30330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2022] [Indexed: 11/11/2022] Open
|
18
|
Zhang M, Johnson-Stephenson TK, Wang W, Wang Y, Li J, Li L, Zen K, Chen X, Zhu D. Mesenchymal stem cell-derived exosome-educated macrophages alleviate systemic lupus erythematosus by promoting efferocytosis and recruitment of IL-17+ regulatory T cell. STEM CELL RESEARCH & THERAPY 2022; 13:484. [PMID: 36153633 PMCID: PMC9509559 DOI: 10.1186/s13287-022-03174-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/11/2022] [Indexed: 11/21/2022]
Abstract
Background Anti-inflammatory polarized macrophages are reported to alleviate systemic lupus erythematosus (SLE). Our previous studies have demonstrated that exosomes from adipose-derived stem cells promote the anti-inflammatory polarization of macrophages. However, the possible therapeutic effect of exosomes from stem cells on SLE remains unexplored.
Methods Exosomes were isolated from the conditioned medium of bone marrow-derived mesenchymal stem cells using ultrafiltration and size-exclusion chromatography and were identified by nanoparticle tracking analysis and immunoblotting of exosomal-specific markers. Macrophages were collected from the MRL/lpr mouse kidney. The phenotype of macrophages was identified by immunoblotting for intracellular markers-inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1), and flow cytometry for macrophage markers F4/80, CD86, CD206, B7H4, and CD138. Pristane-induced murine lupus nephritis models were employed for in vivo study. Results When macrophages from the kidney of the MRL/lpr mice were treated with exosomes from bone marrow-derived mesenchymal stem cells (BM-MSCs), the upregulation of CD206, B7H4, CD138, Arg-1, CCL20, and anti-inflammatory cytokines was observed, which suggested that the macrophages were polarized to a specific anti-inflammatory phenotype. These anti-inflammatory macrophages produced low levels of reactive oxygen species (ROS) but had a high efferocytosis activity and promoted regulatory T (Treg) cell recruitment. Moreover, exosome injection stimulated the anti-inflammatory polarization of macrophages and increased the production of IL-17+ Treg cells in a pristane-induced murine lupus nephritis model. We observed that exosomes from BMMSCs depleted of microRNA-16 (miR-16) and microRNA-21 (miR-21) failed to downregulate PDCD4 and PTEN in macrophages, respectively, and attenuated exosome-induced anti-inflammatory polarization. Conclusion Our findings provide evidence that exosomes from BMMSCs promote the anti-inflammatory polarization of macrophages. These macrophages alleviate SLE nephritis in lupus mice by consuming apoptotic debris and inducing the recruitment of Treg cells. We identify that exosomal delivery of miR-16 and miR-21 is a significant contributor to the polarization of macrophages. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03174-7.
Collapse
|
19
|
Ma L, Han Z, Yin H, Tian J, Zhang J, Li N, Ding C, Zhang L. Characterization of Cathepsin B in Mediating Silica Nanoparticle-Induced Macrophage Pyroptosis via an NLRP3-Dependent Manner. J Inflamm Res 2022; 15:4537-4545. [PMID: 35966002 PMCID: PMC9374095 DOI: 10.2147/jir.s371536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/30/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Silica nanoparticles (SiNPs) are one of the most widely used inorganic nanomaterials, and exposure to SiNP has been demonstrated to induce pulmonary inflammation, primarily promoted by the NLRP3-mediated macrophage pyroptosis. However, mechanisms underlying the activation of NLRP3 signaling are complex, and whether cathepsin B (CTSB), an enzyme released by the ruptured lysosome, could trigger NLRP3 assembly is controversial. Methods To further characterize the role of CTSB in silica-induced pyroptosis, we conducted this study by establishing SiNP exposure models in vitro. The morphological features of SiNPs were exhibited by the SEM and TEM, and the effects of SiNPs’ internalization on macrophages were examined by the TEM and immunofluorescent staining. Moreover, Western blot was performed to detect the expression of proteins related to pyroptosis and CTSB after blocking the expression of NLRP3 and CTSB. Results We found that SiNPs internalization caused the rupture of macrophage membrane and promoted the aging of cells with increased intracellular vacuoles. Also, the expression of NLRP3, ASC, Caspase-1, GSDMD, Pro-IL-1β, IL-1β, and CTSB increased under the stimulation of SiNP, which could be suppressed by additional treatment with MCC950, an NLRP3-specific inhibitor. Besides, we found SiNP joint treatment with leupeptin, a CTSB inhibitor, could inhibit the expression of CTSB, but it had no effect on the expression of NLRP3, ASC, and Caspase-1, and the process of macrophage pyroptosis was also not affected. Conclusion SiNP exposure induces rupture of macrophages and the release of lysosomal CTSB, but CTSB fails to specifically act on the NLRP3 inflammasome to induce pyroptosis which is causally linked to lung inflammation and fibrosis.
Collapse
Affiliation(s)
- Lan Ma
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China.,Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, 250001, People's Republic of China
| | - Zhengpu Han
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China.,Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, 250001, People's Republic of China
| | - Haoyu Yin
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China.,Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, 250001, People's Republic of China
| | - Jiaqi Tian
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China.,Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, 250001, People's Republic of China
| | - Jing Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Ning Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Chunjie Ding
- School of Public Health, Xinxiang Medical University, Xinxiang, 453000, People's Republic of China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, 250001, People's Republic of China
| |
Collapse
|
20
|
Ouma PA, Mwaeni VK, Amwayi PW, Isaac AO, Nyariki JN. Calcium carbide-induced derangement of hematopoiesis and organ toxicity ameliorated by cyanocobalamin in a mouse model. Lab Anim Res 2022; 38:26. [PMID: 35962424 PMCID: PMC9373447 DOI: 10.1186/s42826-022-00136-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background Calcium carbide (CaC2) is a chemical primarily used in the production of acetylene gas. The misuse of CaC2 to induce fruit ripening is a global challenge with a potential adverse effects to human health. Additionally, CaC2 is known to contain some reasonable amount of arsenic and phosphorous compounds that are toxic and pose a danger to human health when ingested. The current study sought to characterize CaC2 toxicity and elucidate any protective effects by cyanocobalamin (vitamin B12), a well-established antioxidant and anti-inflammatory bio-molecule. Female Swiss white mice were randomly assigned into three groups; the first group was the control, while the second group was administered with CaC2. The third group received CaC2 followed by administration of vitamin B12. The mice were sacrificed at 60 days post treatment, hematological, biochemical, glutathione assay, cytokine ELISA and standard histopathology was performed. Results CaC2 administration did not significantly alter the mice body weight. CaC2 administration resulted in a significant decrease in packed cell volume (PCV), hemoglobin (Hb), red blood cells (RBCs) and RBC indices; indicative of CaC2-driven normochromic microcytic anaemia. Further analysis showed CaC2-driven leukopenia. Evidently, vitamin B12 blocked CaC2-driven suppression of PCV, Hb, RBCs and WBCs. Monocytes and neutrophils were significantly up-regulated by CaC2. CaC2-induced elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and bilirubin signaled significant liver damage. Notably, vitamin B12 stabilized AST, ALT and bilirubin in the presence of CaC2, an indication of a protective effect. Histopathological analysis depicted that vitamin B12 ameliorated CaC2-driven liver and kidney injury. CaC2 resulted in the depletion of glutathione (GSH) levels in the liver; while in the brain, kidney and lungs, the GSH levels were elevated. CaC2 administration resulted in elevation of pro-inflammatory cytokines TNF-α and IFN-γ. Vitamin B12 assuaged the CaC2-induced elevation of these pro-inflammatory cytokines. Conclusions These findings demonstrate for the first time that oral supplementation with vitamin B12 can protect mice against CaC2-mediated toxicity, inflammation and oxidative stress. The findings provide vital tools for forensic and diagnostic indicators for harmful CaC2 exposure; while providing useful insights into how vitamin B12 can be explored further as an adjunct therapy for CaC2 toxicity.
Collapse
Affiliation(s)
- Pherah A Ouma
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200, Nairobi, Kenya
| | - Victoria K Mwaeni
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200, Nairobi, Kenya
| | - Peris W Amwayi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200, Nairobi, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, School of Health Sciences and Technology, Technical University of Kenya, P. O. Box 52428, 00200, Nairobi, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200, Nairobi, Kenya.
| |
Collapse
|
21
|
Kim H, Won BH, Choi JI, Lee I, Lee JH, Park JH, Choi YS, Kim JH, Cho S, Lim JB, Lee BS. BRAK and APRIL as novel biomarkers for ovarian tumors. Biomark Med 2022; 16:717-729. [PMID: 35588310 DOI: 10.2217/bmm-2021-1014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: To evaluate BRAK and APRIL in serum samples from healthy patients and an ovarian tumor group and analyze their effective value as biomarkers. Materials & methods: BRAK and APRIL were measured in 197 serum samples including 34 healthy controls, 48 patients with benign ovarian cysts and 115 patients with ovarian cancer, and the best statistical cutoff values were calculated. Then, the sensitivity, specificity, accuracy, positive predictive value and negative predictive value for selected cutoff points were assessed. Results: The healthy control group had statistically significant higher BRAK and lower APRIL than the ovarian tumor group. BRAK was excellent for differentiating healthy patients from patients with ovarian tumors, showing area under the receiver operating characteristic curve 0.983, 98.16% sensitivity and 100% specificity. When BRAK was combined with APRIL and CA-125, it also played a role in distinguishing benign cysts from malignancies with area under the curve 0.864, 81.74% sensitivity and 79.17% specificity. Conclusions: BRAK and APRIL are good candidates for ovarian tumor biomarkers.
Collapse
Affiliation(s)
- Heeyon Kim
- Department of Obstetrics & Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Bo Hee Won
- Department of Obstetrics & Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea
| | - Jae Il Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Inha Lee
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.,Department of Obstetrics & Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jae Hoon Lee
- Department of Obstetrics & Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Joo Hyun Park
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.,Department of Obstetrics & Gynecology, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, 16995, South Korea
| | - Young Sik Choi
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.,Department of Obstetrics & Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jae-Hoon Kim
- Department of Obstetrics & Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - SiHyun Cho
- Department of Obstetrics & Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea.,Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jong-Baeck Lim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | | |
Collapse
|
22
|
Pattanaik SS, Panda AK, Pati A, Padhi S, Tripathy R, Tripathy SR, Parida MK, Das BK. Role of interleukin-6 and interferon-α in systemic lupus erythematosus: A case-control study and meta-analysis. Lupus 2022; 31:1094-1103. [PMID: 35581679 DOI: 10.1177/09612033221102575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disorder affecting various organ systems with unknown etiology. Interleukin-6 (IL-6) and interferon-alpha (IFN-α) have been shown to have a major role in disease pathogenesis, and they correlate with SLE disease activity, but reports in the literature are conflicting. The present study aims to investigate the significance of IL-6 and IFN-α levels in SLE pathogenesis in an eastern Indian cohort. MATERIAL AND METHODS 70 SLE patients fulfilled SLICC 2012 criteria, and 40 age- and gender-matched healthy controls (HC) were enrolled. Baseline characteristics along with disease activity were recorded for all patients. Levels of IL-6 and IFN-α were measured by using ELISA. For the meta-analysis, published articles were searched through different databases. Two independent researchers extracted data, and the meta-analysis was performed with CMA v3.1. RESULTS The plasma levels of IL-6 and IFN-α in SLE patients were significantly elevated compared to HC (IL-6: p < .0001, IFN-α: p = 0.01). SLEDAI score correlated positively with plasma IL-6 (p < .0001, r = 0.46) and IFN-α levels (p < .0001; r = 0.47). Meta-analysis of previous reports, including our case-control data, revealed higher IL-6 (p < .0001) and IFN-α (p = .005) in SLE patients compared to HC. Furthermore, IL-6 (p < .0001, r = 0.526) and IFN-α (p < .0001; r = 0.371) levels positively correlated with the disease activity. CONCLUSION IL-6 and IFN-α levels are elevated in SLE and they correlate with disease activity. Further studies with a larger sample size in different populations are required to validate our findings.
Collapse
Affiliation(s)
- Sarit Sekhar Pattanaik
- Department of Clinical Immunology and Rheumatology, SCB Medical College and Hospital, Cuttack, India
| | - Aditya K Panda
- Department of Bioscience and Bioinformatics, 74974Berhampur University, Berhampur, India
| | - Abhijit Pati
- Department of Bioscience and Bioinformatics, 74974Berhampur University, Berhampur, India
| | - Sunali Padhi
- Department of Bioscience and Bioinformatics, 74974Berhampur University, Berhampur, India
| | - Rina Tripathy
- Department of Biochemistry, SCB Medical College and Hospital, Cuttack, India
| | - Saumya Ranjan Tripathy
- Department of Clinical Immunology and Rheumatology, SCB Medical College and Hospital, Cuttack, India
| | - Manoj Kumar Parida
- Department of Clinical Immunology and Rheumatology, SCB Medical College and Hospital, Cuttack, India
| | - Bidyut Kumar Das
- Department of Clinical Immunology and Rheumatology, SCB Medical College and Hospital, Cuttack, India
| |
Collapse
|
23
|
Lin J, Zhang Y, Wang M, Zhang Y, Li P, Cao Y, Yang X. Therapeutic Effects of Tofacitinib on Pristane-Induced Murine Lupus. Arch Rheumatol 2022; 37:195-204. [PMID: 36017210 PMCID: PMC9377175 DOI: 10.46497/archrheumatol.2022.8252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/28/2020] [Indexed: 11/10/2022] Open
Abstract
Objectives
This study aims to investigate the effectiveness of tofacitinib, a Janus kinase (JAK) 1/JAK3 inhibitor, in treating murine lupus, and also explore 12 related genes downstream of JAK-signal transducer and activator of transcription (STAT) signaling pathways to find the underlying mechanism. Materials and methods
This study was conducted between July 2017 and January 2020. Fifty-seven female BALB/c mice (aging 8 to 10 weeks old; weighing 18 to 20 g) were assigned to a saline control (SC) group and a pristane-induced lupus group. The latter included four groups, namely, pristane control (PC), tofacitinib (T), methylprednisolone (MP), and tofacitinib plus methylprednisolone (T+MP). Animal models of lupus were induced with pristane, whereas SC mice were treated with normal saline. From the 22nd week after induction, each group was given the aforementioned corresponding intervention for 11 weeks. The following variables were tested: serum concentrations of anti-double-stranded deoxyribonucleic acid (anti-dsDNA), interleukin 6 (IL-6), and interferon gamma (IFN-γ); number of regulatory T (Treg) cells; messenger ribonucleic acid levels of forkhead box P3 and 12 related genes downstream of JAK-STAT pathway; and renal impairment. Results
Red swollen joints and proteinuria were first observed in PC after the 12th week. After treatment, T, MP, and T+MP showed relieved red swollen joints and splenomegaly, as well as decreased urine protein, anti-dsDNA, IL-6, IFN-γ, Treg cells, pathological scores, and hyperplasia of mesangial matrix in glomeruli compared with PC. The IFN regulatory factor 7 level was higher in T+MP (p0.05) and MP (p>0.05) than in PC after treatment. The expression of suppressor of cytokine signaling (SOCS) 1 was lower in T (p>0.05), T+MP (p0.05) than in PC. The SOCS3 level was higher in T (p>0.05) and T+MP (p0.05) than in PC. Conclusion
Tofacitinib can ameliorate glomerulonephritis and arthritis in a pristane-induced murine model of lupus. SOCS3 gene may be involved in the therapeutic mechanism of tofacitinib.
Collapse
Affiliation(s)
- Jiayi Lin
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yaqin Zhang
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Meihua Wang
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yang Zhang
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Pin Li
- Department of Rheumatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yingping Cao
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xuwei Yang
- Department of Rheumatology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
24
|
Ghorbaninezhad F, Leone P, Alemohammad H, Najafzadeh B, Nourbakhsh NS, Prete M, Malerba E, Saeedi H, Tabrizi NJ, Racanelli V, Baradaran B. Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review). Int J Mol Med 2022; 49:43. [PMID: 35137914 DOI: 10.3892/ijmm.2022.5098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/05/2022] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor‑α (TNF‑α) is a pleiotropic pro‑inflammatory cytokine that contributes to the pathophysiology of several autoimmune diseases, such as multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, psoriatic arthritis and systemic lupus erythematosus (SLE). The specific role of TNF‑α in autoimmunity is not yet fully understood however, partially, in a complex disease such as SLE. Through the engagement of the TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), both the two variants, soluble and transmembrane TNF‑α, can exert multiple biological effects according to different settings. They can either function as immune regulators, impacting B‑, T‑ and dendritic cell activity, modulating the autoimmune response, or as pro‑inflammatory mediators, regulating the induction and maintenance of inflammatory processes in SLE. The present study reviews the dual role of TNF‑α, focusing on the different effects that TNF‑α may have on the pathogenesis of SLE. In addition, the efficacy and safety of anti‑TNF‑α therapies in preclinical and clinical trials SLE are discussed.
Collapse
Affiliation(s)
- Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan 5166616471, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan 5166616471, Iran
| | - Niloufar Sadat Nourbakhsh
- Department of Genetics, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Fars 7319846451, Iran
| | - Marcella Prete
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| |
Collapse
|
25
|
Guo X, Yang X, Li Q, Shen X, Zhong H, Yang Y. The Microbiota in Systemic Lupus Erythematosus: An Update on the Potential Function of Probiotics. Front Pharmacol 2021; 12:759095. [PMID: 34887760 PMCID: PMC8650621 DOI: 10.3389/fphar.2021.759095] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a kind of chronic diffuse connective tissue illness characterized by multisystem and multiorgan involvement, repeated recurrence and remission, and the presence of a large pool of autoantibodies in the body. Although the exact cause of SLE is not thoroughly revealed, accumulating evidence has manifested that intake of probiotics alters the composition of the gut microbiome, regulating the immunomodulatory and inflammatory response, which may be linked to the disease pathogenesis. Particularly, documented experiments demonstrated that SLE patients have remarkable changes in gut microbiota compared to healthy controls, indicating that the alteration of microbiota may be implicated in different phases of SLE. In this review, the alteration of microbiota in the development of SLE is summarized, and the mechanism of intestinal microbiota on the progression of immune and inflammatory responses in SLE is also discussed. Due to limited reports on the effects of probiotics supplementation in SLE patients, we emphasize advancements made in the last few years on the function and mechanisms of probiotics in the development of SLE animal models. Besides, we follow through literature to survey whether probiotics supplements can be an adjuvant therapy for comprehensive treatment of SLE. Research has indicated that intake of probiotics alters the composition of the gut microbiome, contributing to prevent the progression of SLE. Adjustment of the gut microbiome through probiotics supplementation seems to alleviate SLE symptoms and their cardiovascular and renal complications in animal models, marking this treatment as a potentially novel approach.
Collapse
Affiliation(s)
- Xirui Guo
- Department of Pharmacy, Chengdu Second People's Hospital, Chengdu, China
| | - Xuerong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huiyun Zhong
- Department of Pharmacy, Sichuan Vocational College of Health and Rehabilitation, Zigong, China.,Department of Pharmacy, The First People's Hospital of Zigong, Zigong, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
26
|
Khazdair MR, Ghafari S, Sadeghi M. Possible therapeutic effects of Nigella sativa and its thymoquinone on COVID-19. PHARMACEUTICAL BIOLOGY 2021; 59:696-703. [PMID: 34110959 PMCID: PMC8204995 DOI: 10.1080/13880209.2021.1931353] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 05/11/2021] [Indexed: 05/12/2023]
Abstract
CONTEXT COVID-19 is a novel coronavirus that causes a severe infection in the respiratory system. Nigella sativa L. (Ranunculaceae) is an annual flowering plant used traditionally as a natural food supplement and multipurpose medicinal agent. OBJECTIVE The possible beneficial effects of N. sativa, and its constituent, thymoquinone (TQ) on COVID-19 were reviewed. METHODS The key words including, COVID-19, N. sativa, thymoquinone, antiviral effects, anti-inflammatory and immunomodulatory effects in different databases such as Web of Science (ISI), PubMed, Scopus, and Google Scholar were searched from 1990 up to February 2021. RESULTS The current literature review showed that N. sativa and TQ reduced the level of pro-inflammatory mediators including, IL-2, IL-4, IL-6, and IL-12, while enhancing IFN-γ. Nigella sativa and TQ increased the serum levels of IgG1 and IgG2a, and improved pulmonary function tests in restrictive respiratory disorders. DISCUSSION AND CONCLUSIONS These preliminary data of molecular docking, animal, and clinical studies propose N. sativa and TQ might have beneficial effects on the treatment or control of COVID-19 due to antiviral, anti-inflammatory and immunomodulatory properties as well as bronchodilatory effects. The efficacy of N. sativa and TQ on infected patients with COVID-19 in randomize clinical trials will be suggested.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Pharmaceutical Science and Clinical Physiology, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shoukouh Ghafari
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmood Sadeghi
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
27
|
Costache AD, Costache II, Miftode RȘ, Stafie CS, Leon-Constantin MM, Roca M, Drugescu A, Popa DM, Mitu O, Mitu I, Miftode LI, Iliescu D, Honceriu C, Mitu F. Beyond the Finish Line: The Impact and Dynamics of Biomarkers in Physical Exercise-A Narrative Review. J Clin Med 2021; 10:jcm10214978. [PMID: 34768497 PMCID: PMC8584497 DOI: 10.3390/jcm10214978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
The research of biomarkers continues to emerge as a developing academic field which is attracting substantial interest. The study of biomarkers proves to be useful in developing and implementing new screening methods for a wide variety of diseases including in the sports area, whether for leisure activities or professional sports. Novel research has brought into question the immune system and the limitations it may impose on sports practicing. As the well-being of athletes is a priority, the state of their immune function offers valuable information regarding their health status and their ability to continue training. The assessment of various biomarkers may contribute to a more accurate risk stratification and subsequent prevention of some invalidating or even fatal pathologies such as the sudden cardiac death. Therefore, we have reviewed several studies that included sports-related pathology or specific morphofunctional alterations for which some immune biomarkers may represent an expression of the underlying mechanism. These include the defensins, immunoglobulin A (IgA), interleukin-6 (IL-6), the tumoral necrosis factor α (TNF-α), and the white blood cells (WBC) count. Similarly, also of significant interest are various endocrine biomarkers, such as cortisol and testosterone, as well as anabolic or catabolic markers, respectively. Literature data highlight that these values are greatly influenced not only by the duration, but also by the intensity of the physical exercise; moderate training sessions actually enhance the immune function of the body, while a significant increase in both duration and intensity of sports activity acts as a deleterious factor. Therefore, in this paper we aim to highlight the importance of biomarkers’ evaluation in connection with sports activities and a subsequent more adequate approach towards personalized training regimens.
Collapse
Affiliation(s)
- Alexandru-Dan Costache
- Department of Cardiovascular Rehabilitation, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (M.-M.L.-C.); (M.R.); (A.D.); (F.M.)
| | - Irina-Iuliana Costache
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-I.C.); (D.-M.P.); (O.M.); (D.I.)
| | - Radu-Ștefan Miftode
- Department of Cardiovascular Rehabilitation, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (M.-M.L.-C.); (M.R.); (A.D.); (F.M.)
- Correspondence:
| | - Celina-Silvia Stafie
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania;
| | - Maria-Magdalena Leon-Constantin
- Department of Cardiovascular Rehabilitation, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (M.-M.L.-C.); (M.R.); (A.D.); (F.M.)
| | - Mihai Roca
- Department of Cardiovascular Rehabilitation, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (M.-M.L.-C.); (M.R.); (A.D.); (F.M.)
| | - Andrei Drugescu
- Department of Cardiovascular Rehabilitation, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (M.-M.L.-C.); (M.R.); (A.D.); (F.M.)
| | - Delia-Melania Popa
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-I.C.); (D.-M.P.); (O.M.); (D.I.)
| | - Ovidiu Mitu
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-I.C.); (D.-M.P.); (O.M.); (D.I.)
| | - Ivona Mitu
- Department of Morpho-Functional Sciences II, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania;
| | - Larisa-Ionela Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania;
| | - Dan Iliescu
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (I.-I.C.); (D.-M.P.); (O.M.); (D.I.)
| | - Cezar Honceriu
- Faculty of Physical Education and Sports, “Alexandru Ioan Cuza” University, 700115 Iasi, Romania;
| | - Florin Mitu
- Department of Cardiovascular Rehabilitation, Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania; (A.-D.C.); (M.-M.L.-C.); (M.R.); (A.D.); (F.M.)
| |
Collapse
|
28
|
Wu YR, Hsing CH, Chiu CJ, Huang HY, Hsu YH. Roles of IL-1 and IL-10 family cytokines in the progression of systemic lupus erythematosus: Friends or foes? IUBMB Life 2021; 74:143-156. [PMID: 34668305 DOI: 10.1002/iub.2568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of unknown etiology that can affect nearly every organ system in the body. Besides genetic and environmental factors, unbalanced pro-inflammatory and anti-inflammatory cytokines contribute to immune dysregulation, trigger an inflammatory response, and induce tissue and organ damage. Inflammatory responses in SLE can be promoted and/or maintained by the availability of cytokines that are overproduced systemically and/or in local tissues. Several key cytokines have been considered potential targets for the reduction of chronic inflammation in SLE. Recent studies indicated that dysregulated production of several cytokines, including those of the IL-1 family and IL-10 family, orchestrate immune activation and self-tolerance, play critical roles in the pathogenesis of SLE. Among IL-1 family cytokines, IL-1, IL-18, IL-33, IL-36, IL-37, and IL-38 had been the most thoroughly investigated in SLE. Additionally, IL-10 family cytokines, IL-10, IL-20, IL-22, IL-26, IL-28, and IL-29 are dysregulated in SLE. Therefore, a better understanding of the initiation and progression of SLE may provide suitable novel targets for therapeutic intervention. In this review, we discuss the involvement of inflammation in the pathogenesis of SLE, with a focus on IL-1 family and IL-10 family cytokines, and highlight pathophysiological approaches and therapeutic potential for treating SLE.
Collapse
Affiliation(s)
- Yi-Rou Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chiao-Juno Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
29
|
Wen L, Jiang Y, Zhou X, Bi H, Yang B. Structure identification of soybean peptides and their immunomodulatory activity. Food Chem 2021; 359:129970. [PMID: 34015561 DOI: 10.1016/j.foodchem.2021.129970] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
Soybean peptides are functional food with good health benefits. The health benefits presented are highly dependent on the peptide structure. In this work, soybean peptides were prepared by alkaline protease hydrolysis of soybean proteins. The peptide structure was identified by UPLC-MS/MS. The full peptide composition was revealed. The sequences of 51 peptides were identified and 46 peptides were assigned as immunomodulatory peptides. By evaluating the immumonodulatory activity and mechanism, soybean peptides could facilitate the proliferation of macrophages. The pinocytotic activity and NO level were increased. Induction of iNOS mRNA expression by soybean peptides was responsible for the increased NO production. The release of cytokines IL-6 and TNF-α was elevated and their levels were equal to positive control. The mRNA expression levels of IL-6 and TNF-α were also improved by soybean peptides, but much lower than positive control. The results were helpful for application of soybean peptides in functional foods.
Collapse
Affiliation(s)
- Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuesong Zhou
- Guangzhou Honsea Industry Co., Ltd., Guangzhou 510530, China
| | - Huimin Bi
- Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
30
|
Gebeyew K, Yang C, He Z, Tan Z. Low-protein diets supplemented with methionine and lysine alter the gut microbiota composition and improve the immune status of growing lambs. Appl Microbiol Biotechnol 2021; 105:8393-8410. [PMID: 34617138 DOI: 10.1007/s00253-021-11620-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Feeding low-protein (LP) diets with essential amino acids could be an effective strategy for ruminants from economic, health and environmental perspectives. This study was conducted to investigate the effects of rumen-protected methionine and lysine (RML) in the LP diet on growth performance, innate immunity, and gut health of growing lambs. After 15 days of adaption, sixty-three male Hulunbuir lambs aged approximately 4 months were allotted to three dietary groups and each group had three pens with seven lambs for 60 days. The dietary treatments were as follows: a normal protein diet (14.5% CP, positive control; NP), LP diet (12.5% CP, negative control; LP), and LP diet with RML (12.5% CP, LP + RML). Lambs fed with LP + RML diet showed improved villus architecture and gut barrier function than those fed with the other two diets. The mRNA expressions of interleukin-1β, tumor necrosis factor-α, interferon-γ, toll-like receptor-4, and myeloid differentiation primary response 88 were downregulated in most regions of the intestinal segments by feeding the LP + RML diet. Compared with the NP diet, feeding lambs with the LP diet increased the abundance of Candidatus_Saccharimonas in all regions of the intestinal tract and reversed by feeding the LP + RML diet. Lambs in the LP + RML diet group had lower abundance of Erysipelotrichaceae_UCG-009 and Clostridium_sensu_stricto_1 than those in the LP diet group. The results showed that supplementing RML in the LP diet exhibited beneficial effects on host immune function, intestinal mucosal integrity, and microbiota composition. KEY POINTS: • Adding methionine and lysine in a low-protein diet improve the intestinal mucosal growth and integrity. • Feeding a low-protein diet with methionine and lysine enhance the innate immune status. • Adding methionine and lysine in a low-protein diet alter the intestinal microbiota composition.
Collapse
Affiliation(s)
- Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
- University of Chinese Academy of Science, Beijing, 100049, China.
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Hunan, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Hunan, China
| |
Collapse
|
31
|
Martz CD, Hunter EA, Kramer MR, Wang Y, Chung K, Brown M, Drenkard C, Lim SS, Chae DH. Pathways linking census tract typologies with subjective neighborhood disorder and depressive symptoms in the Black Women's Experiences Living with Lupus (BeWELL) Study. Health Place 2021; 70:102587. [PMID: 34116496 PMCID: PMC8328917 DOI: 10.1016/j.healthplace.2021.102587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/04/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022]
Abstract
Depression is a common comorbidity among Black women with systemic lupus erythematosus (SLE), an understudied autoimmune disease characterized by major racial and gender inequities. Research is needed that examines how area-level factors influence risk of depression in this population. Latent profile analysis revealed four neighborhood typologies among metropolitan Atlanta, Georgia census tracts that participants (n=438) in the Black Women's Experiences Living with Lupus (BeWELL) Study were living in: Integrated/High-SES, Moderately Segregated/Mid-SES, Highly Segregated/Mid-SES, and Highly Segregated/Low-SES. Structural equation models indicated that highly segregated census tracts were associated with the greatest levels of depression via increased subjective assessments of neighborhood disorder. Policies that invest in segregated areas and address physical and social aspects of the environment that contribute to neighborhood disorder may promote mental health among Black women with SLE.
Collapse
Affiliation(s)
- Connor D Martz
- Department of Human Development and Family Science, Auburn University, 203 Spidle Hall, Auburn, AL, 36849, USA.
| | - Evelyn A Hunter
- Department of Special Education, Rehabilitation, and Counseling, Auburn University, 2084 Haley Center, Auburn, AL, 36849, USA
| | - Michael R Kramer
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Rd. NE, Atlanta, GA, 30322, USA
| | - Yijie Wang
- Department of Human Development and Family Studies, Michigan State University, 552 W. Circle Dr, East Lansing, MI, 48824, USA
| | - Kara Chung
- Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, 1440 Canal St, New Orleans, LA, 70112, USA
| | - Michael Brown
- School of Kinesiology, Auburn University, 301 Wire Rd., Auburn, AL, 36849, USA
| | - Cristina Drenkard
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Rd. NE, Atlanta, GA, 30322, USA; Department of Medicine, Division of Rheumatology, Emory University School of Medicine, 1658 Clifton Rd. A, Atlanta, GA, 30322, USA
| | - S Sam Lim
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Rd. NE, Atlanta, GA, 30322, USA; Department of Medicine, Division of Rheumatology, Emory University School of Medicine, 1658 Clifton Rd. A, Atlanta, GA, 30322, USA
| | - David H Chae
- Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, 1440 Canal St, New Orleans, LA, 70112, USA
| |
Collapse
|
32
|
Nomura S, Abe M, Yamaoka M, Ito T. Effect of Cytokine Gene Polymorphisms on Eltrombopag Reactivity in Japanese Patients with Immune Thrombocytopenia. J Blood Med 2021; 12:421-429. [PMID: 34113203 PMCID: PMC8187034 DOI: 10.2147/jbm.s309680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Immune thrombocytopenic purpura (ITP) is an autoimmune disease characterized by low platelet counts resulting from antiplatelet autoantibodies. Analysis of polymorphisms in cytokine-encoding genes is important for understanding the pathophysiology of ITP and selecting appropriate treatments. We investigated associations between polymorphisms in cytokine-encoding genes and responses to therapy in Japanese patients with ITP. METHODS The participants in this study comprised 153 patients with ITP and 70 healthy controls. We extracted data on sex, age, platelet counts, bleeding symptoms, and therapeutic responses, including those to prednisolone (PSL) and eltrombopag. Genomic DNA was isolated from peripheral blood and polymorphisms in TNF-α, IL-10, TGF-β1, and IFN-γ genes were analyzed using the PCR-SSP method. RESULTS Our results showed that the TGF-β1 +869 C/C genotype might be related to ITP in Japanese patients. The IL-10 -592 C/C and A/A, -819 C/C and T/T, and -1082, -819, -592 ATA/ATA genotypes might be associated with reactivity to PSL. Furthermore, the IL-10 -592 C/A -819 C/T genotypes, IL-10 ACC/ATA genotype, and TGF-β1 +869 T/T and T/C genotypes might be linked to the response to eltrombopag. CONCLUSION Our results indicate that analysis of polymorphisms in cytokine-encoding genes could aid in understanding PSL and eltrombopag responsiveness in Japanese patients with ITP.
Collapse
Affiliation(s)
- Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Misao Abe
- Division of Blood Transfusion, Kansai Medical University, Hirakata, Osaka, Japan
| | - Manabu Yamaoka
- Division of Blood Transfusion, Kansai Medical University, Hirakata, Osaka, Japan
| | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
33
|
Khazdair MR, Gholamnezhad Z, Rezaee R, Boskabady MH. A qualitative and quantitative comparison of Crocus sativus and Nigella sativa immunomodulatory effects. Biomed Pharmacother 2021; 140:111774. [PMID: 34062409 DOI: 10.1016/j.biopha.2021.111774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
The present article reviews and compares the immunomodulatory activities of Crocus sativus (C. sativus) and Nigella sativa (N. sativa) and their main bioactive compounds. Immunomodulatory effects of these plants, especially with respect to Th1 and Th2 cytokines, are discussed based on relevant articles, books, and conference papers published in English until the end of April 2020, that were retrieved from Web of Science, PubMed, Scopus and Google Scholar databases. C. sativus and its constituents increase immunoglobulin (Ig-)G, interleukin 2 (IL)-2, interferon gamma (IFN-γ), and IFN-γ/IL-4 ratio, but decreased IgM, IL-10 and IL-4 secretion. N. sativa extract and thymoquinone reduce the levels of IL-2, -4, -10, and -12, while enhance IFN-γ and serum IgG1 and 2a. The reviewed articles indicate that C. sativus and N. sativa and their constituents could be potentially considered promising treatments for disorders associated with immune-dysregulation such as asthma and cancer.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Gholamnezhad
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Bai J, Li Y, Li M, Tan S, Wu D. IL-37 As a Potential Biotherapeutics of Inflammatory Diseases. Curr Drug Targets 2021; 21:855-863. [PMID: 32348214 DOI: 10.2174/1389450121666200429114926] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022]
Abstract
Interleukin-37 (IL-37) was discovered as a new member of pro-inflammatory IL-1 superfamily. However, further studies suggested that IL-37 plays a critical anti-inflammatory role in innate and adaptive immunity. IL-37 may suppress the inflammatory process via intracellular SMAD family member 3 (SMAD3) and extracellular IL-18 Receptor alpha (IL-18Rα) signaling pathway, respectively. Meanwhile, the abnormal expression of IL-37 was observed in immune-mediated inflammatory diseases, such as inflammatory bowel disease, rheumatoid arthritis, atherosclerosis, systemic lupus erythematosus, asthma, and multiple sclerosis, which suggest IL-37 is a potential therapeutic target for these diseases. In this review, we summarize the anti-inflammatory mechanism of IL-37 and discuss the critical roles of IL-37 in the pathogenesis of these diseases. Further studies are required to confirm the effectiveness of IL-37 as a novel target for these inflammatory diseases.
Collapse
Affiliation(s)
- Junhui Bai
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Yukun Li
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Meixiang Li
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| | - Daichao Wu
- Department of Histology and Embryology, University of South China, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang, 421001, Hunan, China
| |
Collapse
|
35
|
Patel DK, Dutta SD, Ganguly K, Cho SJ, Lim KT. Mushroom-Derived Bioactive Molecules as Immunotherapeutic Agents: A Review. Molecules 2021; 26:molecules26051359. [PMID: 33806285 PMCID: PMC7961999 DOI: 10.3390/molecules26051359] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mushrooms with enhanced medicinal properties focus on finding such compounds that could modulate the human body's immune systems. Mushrooms have antimicrobial, antidiabetic, antiviral, hepatoprotective, antitumor, and immunomodulatory properties due to the presence of various bioactive components. β-glucans are the major constituent of the mushroom cell wall and play a significant role in their biological activity. This review described the techniques used in the extraction of the active ingredients from the mushroom. We highlighted the structure of the bioactive polysaccharides present in the mushrooms. Therapeutic applications of different mushrooms were also described. It is interesting to note that mushrooms have the potential sources of many bioactive products that can regulate immunity. Thus, the development of functional medicinal food based on the mushroom is vital for human welfare.
Collapse
Affiliation(s)
- Dinesh K. Patel
- Department of Biosystems Engineering, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.); (K.G.)
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.); (K.G.)
| | - Keya Ganguly
- Department of Biosystems Engineering, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.); (K.G.)
| | - Seong-Jun Cho
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea;
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.); (K.G.)
- Correspondence: ; Tel.: +82-033-250-6491
| |
Collapse
|
36
|
Chen W, Zhang F, Ju Y, Hong J, Ding Y. Gold Nanomaterial Engineering for Macrophage-Mediated Inflammation and Tumor Treatment. Adv Healthc Mater 2021; 10:e2000818. [PMID: 33128505 DOI: 10.1002/adhm.202000818] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/24/2020] [Indexed: 12/23/2022]
Abstract
Macrophages play an important role in the body's immune defense process. Phenotype imbalance between M1 and M2 macrophages induced by inflammation-related disorders and tumor can also be reversibly converted to treat these diseases. As exogenous substances, a large part of gold-based nanomaterials interact with macrophages once they enter the body, which provides gold nanomaterials a huge advantage to act as imaging contrasts, active substance carriers, and therapeutic agents for macrophage modulation. By cutting off macrophage recruitment, inhibiting macrophage activities, and modulating M1/M2 polarization, gold nanomaterial engineering exerts therapeutic effects on inflammation-related diseases at target sites. In this review, biological functions of macrophages in inflammation-related diseases are introduced, the effect of physicochemical factors of gold nanomaterials including size, shape, and surface chemistry is focused on the interaction between macrophages and gold nanomaterials, and the applications of gold nanomaterials are elaborated for tracking and treating these diseases by macrophages. The rational and smart engineering of gold nanomaterials allows a promising platform for macrophage-mediated inflammation and tumor imaging and treatment.
Collapse
Affiliation(s)
- Wanting Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education China Pharmaceutical University Nanjing 210009 China
| | - Fenfen Zhang
- Research Center for Analysis and Measurement Donghua University Shanghai 201620 China
| | - Yanmin Ju
- Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 21009 China
| | - Jin Hong
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education China Pharmaceutical University Nanjing 210009 China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
37
|
Somade OT, Ajayi BO, Adeyi OE, Adeshina AA, Adekoya MO, Abdulhameed RO. Oxidative stress-mediated induction of pulmonary oncogenes, inflammatory, and apoptotic markers following time-course exposure to ethylene glycol monomethyl ether in rats. Metabol Open 2021; 9:100075. [PMID: 33409483 PMCID: PMC7773962 DOI: 10.1016/j.metop.2020.100075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022] Open
Abstract
Ethylene glycol monomethyl ether (EGME) has been used in many products usually handled by humans including inks, paints, polishes, brake fluids and so on. This present study therefore, investigated its effect on lung, in a time-course study in male Wistar rats. Animals were orally administered 50 mg/kg body weight of EGME for a period of 7, 14, and 21 days. Following 7 days of oral exposure to EGME, activities of GPx and SOD were significantly increased, as well as levels of K-Ras, c-Myc, p53, caspase-3, TNF-α and, IL-6, while NO level and GST activity were significantly reduced compared with control. At the end of 14 days exposure, GSH level was significantly decreased, while levels of K-Ras, c-Myc, p53, caspase-3, TNF-α, IL-6, NO and the activities of SOD and GPx were significantly elevated with respect to control. After 21 days of EGME administration, levels of Bcl-2, IL-10, GSH and NO as well as GST activity were significantly decreased, while levels of K-Ras, c-Myc, p53, Bax, caspase-3, IL-6, IL-1β, TNF-α, as well as GPx, CAT, and SOD activities were significantly elevated compared with control. Lung histopathology revealed chronic disseminated alveolar inflammation, bronchiolitis, severe alveolar and bronchi hyperplasia, severe disseminated inflammation, thrombosis, and thickened vessels as a result of EGME exposures. Exposures to EGME could trigger lung damage via the disorganization of the antioxidant system, eliciting the up-regulation of inflammatory, apoptotic, and oncogenic markers in rats.
Collapse
Key Words
- Apoptosis
- Bax, Bcl-2 associated X
- Bcl-2, B-cell lymphoma 2
- CAT, catalase
- Ethylene glycol monomethyl ether
- GPx, glutathione peroxidase
- GSH, reduced glutathione
- GST, glutathione S-transferase
- Histopathology
- IL-1β, interleukin-1 beta
- IL-6, interleukin-6
- Inflammation
- K-Ras, Kirsten rat sarcoma viral oncogene
- Lung
- MDA, malondialdehyde
- NO, nitric oxide
- Oncogenes
- Oxidative stress
- SOD, superoxide dismutase
- TNF-α, tumor necrosis factor alpha
- c-myc, myelocytomatosis
- p53, tumor suppressor protein
Collapse
Affiliation(s)
- Oluwatobi T. Somade
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Babajide O. Ajayi
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Olubisi E. Adeyi
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Mary O. Adekoya
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ridwan O. Abdulhameed
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
38
|
Monitoring and Modulating Inflammation-Associated Alterations in Synaptic Plasticity: Role of Brain Stimulation and the Blood-Brain Interface. Biomolecules 2021; 11:biom11030359. [PMID: 33652912 PMCID: PMC7996828 DOI: 10.3390/biom11030359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammation of the central nervous system can be triggered by endogenous and exogenous stimuli such as local or systemic infection, trauma, and stroke. In addition to neurodegeneration and cell death, alterations in physiological brain functions are often associated with neuroinflammation. Robust experimental evidence has demonstrated that inflammatory cytokines affect the ability of neurons to express plasticity. It has been well-established that inflammation-associated alterations in synaptic plasticity contribute to the development of neuropsychiatric symptoms. Nevertheless, diagnostic approaches and interventional strategies to restore inflammatory deficits in synaptic plasticity are limited. Here, we review recent findings on inflammation-associated alterations in synaptic plasticity and the potential role of the blood–brain interface, i.e., the blood–brain barrier, in modulating synaptic plasticity. Based on recent findings indicating that brain stimulation promotes plasticity and modulates vascular function, we argue that clinically employed non-invasive brain stimulation techniques, such as transcranial magnetic stimulation, could be used for monitoring and modulating inflammation-induced alterations in synaptic plasticity.
Collapse
|
39
|
Pereira MM, Torrado J, Sosa C, Zócalo Y, Bia D. Shedding light on the pathophysiology of preeclampsia-syndrome in the era of Cardio-Obstetrics: Role of inflammation and endothelial dysfunction. Curr Hypertens Rev 2021; 18:17-33. [DOI: 10.2174/1573402117666210218105951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/02/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
:
Preeclampsia (PE) is a worldwide pregnancy complication with serious maternal and neonatal consequences. Our understanding of PE pathophysiology has significantly evolved over the last decades by recognizing that endothelial dysfunction and systemic inflammation, with an associated angiogenic imbalance, are key pieces of this still incomplete puzzle. In the present era, where no single treatment to cure or treat this obstetric condition has been developed so far, PE prevention and early prediction poses the most useful clinical approach to reduce the PE burden. Although most PE episodes occur in healthy nulliparous women, the identification of specific clinical conditions that increase dramatically the risk of PE provides a critical opportunity to improve outcomes by acting on potential reversible factors, and also contribute to better understand this pathophysiologic enigma. In this review, we highlight major clinical contributors of PE and shed light about their potential link with endothelial dysfunction and inflammation.
Collapse
Affiliation(s)
- María M. Pereira
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Juan Torrado
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Claudio Sosa
- Department of Obstetrics and Gynecology “C”, Pereira-Rossell Hospital, School of Medicine, Republic University, Montevideo, Uruguay
| | - Yanina Zócalo
- Centro Universitario de Investigación, Innovación y Diagnóstico Arterial, Department of Physiology, School of Medicine, Republic University, Montevideo, Uruguay
| | - Daniel Bia
- Centro Universitario de Investigación, Innovación y Diagnóstico Arterial, Department of Physiology, School of Medicine, Republic University, Montevideo, Uruguay
| |
Collapse
|
40
|
Tsujimoto S, Ozaki Y, Ito T, Nomura S. Usefulness of Cytokine Gene Polymorphisms for the Therapeutic Choice in Japanese Patients with Rheumatoid Arthritis. Int J Gen Med 2021; 14:131-139. [PMID: 33469350 PMCID: PMC7813643 DOI: 10.2147/ijgm.s287505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is characterized by systemic synovitis with bone erosion and joint cartilage degradation. Although the analysis of polymorphisms in cytokine-encoding genes is important or understanding the pathophysiology of RA and selecting appropriate treatment for it, few studies have examined such single-nucleotide polymorphisms (SNPs) specifically in Japanese patients. This study was established to investigate the associations between polymorphisms in cytokine-encoding genes, autoantibodies and therapeutic responses in Japanese RA patients. Methods The subjects in this study consisted of 100 RA patients and 50 healthy controls. We extracted data on sex, age, disease duration, rheumatoid factor (RF), anti-cyclic citrullinated peptide (anti-CCP) antibody, and therapeutic responses, including to methotrexate (MTX) and biological disease-modifying antirheumatic drugs (DMARDs). Genomic DNA was isolated from peripheral blood, which was genotyped for IL-10, TNF-α, TGF-β1, and IFN-γ polymorphisms. Results Regarding IL-10 (−592 C/A and −819 C/T), significant decreases in the frequencies of the IL-10 (−592) CC genotype and (−819) CC genotype were found in RA patients compared with the levels in controls. For IFN-γ (+874 T/A), a significant decrease in the frequency of the TT genotype was found in RA patients compared with that in controls. Regarding TGF-β1 (+869 T/C), patients with positivity for anti-CCP antibody had a significantly lower frequency of the CC genotype than those with negativity for it. Furthermore, the IL-10 (−592) CC genotype and (−819) CC genotype might be related to the biological DMARD-response. Conclusion Our results suggest that the analysis of polymorphisms in cytokine-encoding genes may be useful when selecting treatment for Japanese RA patients.
Collapse
Affiliation(s)
- Saki Tsujimoto
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yoshio Ozaki
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
41
|
Shaban NZ, Abd El-Kader SE, Mogahed FAK, El-Kersh MAL, Habashy NH. Synergistic protective effect of Beta vulgaris with meso-2,3-dimercaptosuccinic acid against lead-induced neurotoxicity in male rats. Sci Rep 2021; 11:252. [PMID: 33420282 PMCID: PMC7794226 DOI: 10.1038/s41598-020-80669-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Lead (Pb) toxicity is one of the most prevalent causes of human neurotoxicity. The available chelator drugs used now have many adverse effects. So, in this study, the protective role of Beta vulgaris juice (BVJ) on rat neurotoxicity induced by Pb was evaluated and the results were compared with the results of dimercaptosuccinic acid (DMSA, as used drug). Additionally, the synergistic effect of BVJ and DMSA against Pb-induced neurotoxicity was assessed. The study focused on the determination of the antioxidant, anti-inflammatory, and neurological potential of BVJ (alone, and with DMSA) towards lead-induced neurotoxicity. Also, the characterization of BVJ was studied. The results showed that BVJ contains considerable quantities of polyphenols, triterpenoids, and betalains which play an important role as antioxidants and anti-inflammatory. BVJ exhibited a protective effect against neurotoxicity via the reduction of Pb levels in blood and brain. Moreover, BVJ decreased the oxidative stress, inflammation, and cell death induced by Pb. Also, BVJ regulated the activities of acetylcholine esterase and monoamine oxidase-A which changed by Pb toxicity. BVJ and DMSA combination displayed a synergistic antineurotoxic effect (combination index ˂ 1). These results were in harmony with brain histopathology. Conclusion: BVJ has a powerful efficacy in the protection from brain toxicity via diminishing Pb in the brain and blood circulation, resulting in the prevention of the oxidative and inflammatory stress. Treatment with BVJ in combination with DMSA revealed a synergistic effect in the reduction of neurotoxicity induced by Pb. Also, the antioxidant and anti-inflammatory effects of the BVJ lead to the improvement of DMSA therapy.
Collapse
Affiliation(s)
- Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Sara E Abd El-Kader
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Fayed A K Mogahed
- Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt
| | - Mohamed A L El-Kersh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| |
Collapse
|
42
|
Menon M, Hussell T, Ali Shuwa H. Regulatory B cells in respiratory health and diseases. Immunol Rev 2021; 299:61-73. [PMID: 33410165 PMCID: PMC7986090 DOI: 10.1111/imr.12941] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
B cells are critical mediators of humoral immune responses in the airways through antibody production, antigen presentation, and cytokine secretion. In addition, a subset of B cells, known as regulatory B cells (Bregs), exhibit immunosuppressive functions via diverse regulatory mechanisms. Bregs modulate immune responses via the secretion of IL‐10, IL‐35, and tumor growth factor‐β (TGF‐β), and by direct cell contact. The balance between effector and regulatory B cell functions is critical in the maintenance of immune homeostasis. The importance of Bregs in airway immune responses is emphasized by the different respiratory disorders associated with abnormalities in Breg numbers and function. In this review, we summarize the role of immunosuppressive Bregs in airway inflammatory diseases and highlight the importance of this subset in the maintenance of respiratory health. We propose that improved understanding of signals in the lung microenvironment that drive Breg differentiation can provide novel therapeutic avenues for improved management of respiratory diseases.
Collapse
Affiliation(s)
- Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Halima Ali Shuwa
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
43
|
Zhu L, Chen P, Sun X, Zhang S. Associations between Polymorphisms in the IL-1 Gene and the Risk of Rheumatoid Arthritis and Systemic Lupus Erythematosus: Evidence from a Meta-Analysis. Int Arch Allergy Immunol 2020; 182:234-242. [PMID: 33285551 DOI: 10.1159/000510641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/31/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Previous studies on polymorphisms in interleukin-1 (IL-1) and the risk of rheumatoid arthritis (RA)/systemic lupus erythematosus (SLE) yielded inconsistent results. OBJECTIVES The authors performed this meta-analysis to more robustly evaluate associations between polymorphisms in the IL-1 gene and the risk of RA/SLE. METHODS MEDLINE, Embase, Web of Science, Wanfang, VIP, and CNKI were systematically searched for eligible studies, and 34 relevant studies were finally selected to be eligible for inclusion. RESULTS We found that IL-1A +4845G/T polymorphism was significantly associated with the risk of RA in the overall population (dominant comparison: p = 0.02; overdominant comparison: p = 0.05; allele comparison: p = 0.04), whereas IL-1B +3954C/T polymorphism was significantly associated with the risk of RA in the overall population (overdominant comparison: p = 0.03; allele comparison: p = 0.01) and Asians (recessive comparison: p = 0.007; allele comparison: p = 0.002). In addition, we found that IL-1A -889C/T polymorphism was significantly associated with the risk of SLE in Caucasians (allele comparison: p = 0.04), IL-1B -31T/C polymorphism was significantly associated with the risk of SLE in the overall population (recessive comparison: p = 0.04), and IL-1B -511C/T polymorphism was significantly associated with the risk of SLE in Asians (recessive comparison: p = 0.01; allele comparison: p = 0.03). CONCLUSIONS This meta-analysis suggests that IL-1A +4845G/T and IL-1B +3954C/T polymorphisms may influence the risk of RA, whereas IL-1A -889C/T, IL-1B -31T/C, and IL-1B -511C/T polymorphisms may influence the risk of SLE.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Rheumatology, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, China,
| | - Peng Chen
- Department of Rheumatology, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, China
| | - Xuanjing Sun
- Department of Rheumatology, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, China
| | - Shuo Zhang
- Department of Rheumatology, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, China
| |
Collapse
|
44
|
Abstract
It is recognized that a balance of different cytokines (synergistic versus antagonistic cytokines) determines the outcome in regulation of different actions such as inflammation, polarization, and secretion of macrophages, induction and secretion of T helper cells, and angiogenesis. It is also known that cytokine secretion is highly variable between individuals. These facts red flag the practice of only comparing absolute values of 1 or 2 cytokines in various studies. It is recognized that ratios of opposing functions yield better quantification of the equilibrium than just observing single values. It is the purpose of this article to (1) emphasize the need to measure a combination of cytokines selected in a manner so that ratios of these may be derived to yield more information about the homeostasis in body and (2) to offer a list of synergistic and antagonistic cytokines from which future investigators may select for more meaningful results.
Collapse
Affiliation(s)
- Prince Johnson Samuel
- Department of Physiology, Chettinad Academy of Research and Education, Chennai, India
| |
Collapse
|
45
|
Taherkhani S, Suzuki K, Castell L. A Short Overview of Changes in Inflammatory Cytokines and Oxidative Stress in Response to Physical Activity and Antioxidant Supplementation. Antioxidants (Basel) 2020; 9:E886. [PMID: 32962110 PMCID: PMC7555806 DOI: 10.3390/antiox9090886] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Excessive release of inflammatory cytokines and oxidative stress (OS) are triggering factors in the onset of chronic diseases. One of the factors that can ensure health in humans is regular physical activity. This type of activity can enhance immune function and dramatically prevent the spread of the cytokine response and OS. However, if physical activity is done intensely at irregular intervals, it is not only unhealthy but can also lead to muscle damage, OS, and inflammation. In this review, the response of cytokines and OS to exercise is described. In addition, it is focused predominantly on the role of reactive oxygen and nitrogen species (RONS) generated from muscle metabolism and damage during exercise and on the modulatory effects of antioxidant supplements. Furthermore, the influence of factors such as age, sex, and type of exercise protocol (volume, duration, and intensity of training) is analyzed. The effect of antioxidant supplements on improving OS and inflammatory cytokines is somewhat ambiguous. More research is needed to understand this issue, considering in greater detail factors such as level of training, health status, age, sex, disease, and type of exercise protocol.
Collapse
Affiliation(s)
- Shima Taherkhani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht 4199843653, Iran;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Lindy Castell
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK
| |
Collapse
|
46
|
Shabani NRM, Mokhtar M, Leow CH, Lean QY, Chuah C, Singh KKB, Leow CY. Differential expression of cytokine genes in THP-1-derived macrophages infected with mild and virulence strains of Shigella flexneri 2a. INFECTION GENETICS AND EVOLUTION 2020; 85:104532. [PMID: 32911076 DOI: 10.1016/j.meegid.2020.104532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 11/19/2022]
Abstract
Shigella is an intracellular bacterial pathogen that causes bacterial dysentery called shigellosis. The assessment of pro- and anti-inflammatory mediators produced by immune cells against this bacteria are vital in identifying the effectiveness of the immune reaction in protecting the host. In Malaysia, Shigella is ranked as the third most common bacteria causing diarrheal disease among children below 5 years old. In the present study, we aim to examine the differential cytokine gene expressions of macrophages in response to two types of clinical strains of Shigella flexneri 2a (S. flexneri 2a) isolated from patients admitted in Hospital Universiti Sains Malaysia, Kelantan, Malaysia. THP-1-derived macrophages, as the model of human macrophages, were infected separately with S. flexneri 2a mild (SH062) and virulence (SH057) strains for 6, 12, and 24 h, respectively. The gene expression level of inflammatory mediators was identified using real-time quantitative polymerase chain reaction (RT-qPCR). The production of nitric oxide (NO) by the macrophages was measured by using a commercialized NO assay kit. The ability of macrophages to kill the intracellular bacteria was assessed by intracellular killing assay. Induction of tumor necrosis factor-alpha (TNFα), interleukin (IL)-1β, IL-6, IL-12, inducible NO synthase (iNOS), and NO, confirmed the pro-inflammatory reaction of the THP-1-derived macrophages in response to S. flexneri 2a, especially against the SH507 strain. The SH057 also induced a marked increase in the expression levels of the anti-inflammatory cytokine mRNAs at 12 h and 24 h post-infection. In the intracellular killing assay, both strains showed less viable, indicating the generation of pro-inflammatory cytokines in the presence of iNOS and NO was crucial in the stimulation of macrophages for the host defense against shigellosis. Transcription analysis of THP-1-derived macrophages in this study identifies differentially expressed cytokine genes that correlated with the virulence factor of S. flexneri 2a.
Collapse
Affiliation(s)
- Nor Raihan Mohammad Shabani
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Munirah Mokhtar
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Qi Ying Lean
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Candy Chuah
- School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, 43200 Kajang, Selangor, Malaysia
| | - Kirnpal Kaur Banga Singh
- School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
47
|
Ahangar P, Mills SJ, Smith LE, Strudwick XL, Ting AE, Vaes B, Cowin AJ. Human multipotent adult progenitor cell-conditioned medium improves wound healing through modulating inflammation and angiogenesis in mice. Stem Cell Res Ther 2020; 11:299. [PMID: 32680566 PMCID: PMC7368692 DOI: 10.1186/s13287-020-01819-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Stem cell therapies have been widely investigated for their healing effects. However, the translation of these therapies has been hampered by the requirement to deliver live allogeneic or autologous cells directly to the wound in a clinical setting. Multipotent adult progenitor cells (MAPC® cells) are a subpopulation of bone marrow-derived adherent stem cells that secrete a wide range of factors known to accelerate the wound healing process. The aim of this study was to determine the impact of MAPC cells secretome on healing outcomes without the presence of MAPC cells. METHODS The effect of MAPC-conditioned medium (MAPC-CM) on the capacity of keratinocytes, fibroblasts and endothelial cells to migrate and proliferate was determined in vitro using scratch wound closure and WST1 assay, respectively. The effect of MAPC-CM on collagen deposition and angiogenesis was also assessed using in vitro methods. Additionally, two excisional wounds were created on the dorsal surface of mice (n = 8/group) and 100 μL of 20× MAPC-CM were intradermally injected to the wound margins. Wound tissues were collected at 3, 7 and 14 days post-wounding and stained with H&E for microscopic analysis. Immunohistochemistry was performed to investigate inflammation, angiogenesis and collagen deposition in the wounds. RESULTS Skin fibroblasts, keratinocytes and endothelial cells treated with MAPC-CM all showed improved rates of scratch closure and increased cellular proliferation. Moreover, fibroblasts treated with MAPC-CM deposited more collagens I and III and endothelial cells treated with MAPC-CM showed increased capillary tube formation. Murine excisional wounds intradermally injected with MAPC-CM showed a significant reduction in the wound area and an increase in the rate of reepithelialisation. The results also showed that inflammatory cell infiltration was decreased while an increase in angiogenesis, as well as collagens I and III expressions, was observed. CONCLUSION These findings suggest that factors produced by MAPC cells can have an important effect on cutaneous wound healing by affecting skin cell proliferation and migration, balancing inflammation and improving the formation of extracellular matrix and angiogenesis. Development of stem cell-free therapy for the treatment of wounds may be a more clinically translatable approach for improving healing outcomes.
Collapse
Affiliation(s)
- Parinaz Ahangar
- Future Industries Institute, University of South Australia, Adelaide, SA, 5000, Australia.,Cell Therapy Manufacturing Cooperative Research Centre, Adelaide, SA, 5000, Australia
| | - Stuart J Mills
- Future Industries Institute, University of South Australia, Adelaide, SA, 5000, Australia.,Cell Therapy Manufacturing Cooperative Research Centre, Adelaide, SA, 5000, Australia
| | - Louise E Smith
- Future Industries Institute, University of South Australia, Adelaide, SA, 5000, Australia.,Cell Therapy Manufacturing Cooperative Research Centre, Adelaide, SA, 5000, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, University of South Australia, Adelaide, SA, 5000, Australia
| | | | - Bart Vaes
- ReGenesys BVBA, Bio-Incubator Leuven, Gaston Geenslaan 1, 3001, Heverlee, Belgium
| | - Allison J Cowin
- Future Industries Institute, University of South Australia, Adelaide, SA, 5000, Australia. .,Cell Therapy Manufacturing Cooperative Research Centre, Adelaide, SA, 5000, Australia.
| |
Collapse
|
48
|
Somade OT, Ajayi BO, Olushola MO, Omoseebi EO. Methyl cellosolve-induced renal oxidative stress and time-dependent up-regulation of pro-inflammatory cytokines, apoptotic, and oncogenic markers in rats. Toxicol Rep 2020; 7:779-787. [PMID: 32642444 PMCID: PMC7332505 DOI: 10.1016/j.toxrep.2020.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 01/10/2023] Open
Abstract
MC significantly increased and decrease the kidney levels of MDA and NO respectively after 14 and 21 days. MC administration resulted in the disorganization of the renal redox system. MC significantly increased the kidney levels of TNF-α and IL-6 after 7, 14 and 21 days, and IL-1β after 14 and 21 days. MC significantly increased kidney p53, Bax, and caspase-3 after 14 and 21 days, and decreased Bcl-2 after 14 and 21 days. MC significantly increased the kidney levels of c-Myc and K-Ras after 7, 14 and 21 days.
Methyl cellosolve (MC) is used in production of textile, paints, stains, inks, surface coatings, and anti-icing additive in hydraulic fluids and jet fuel. Consequently, the present study investigated its effect on renal cells, in a time-course study in male Wistar rats. Animals were orally administered 50 mg/kg body weight of MC for a period of 7, 14, and 21 days. Following 7 days of administration of MC, there was a significant increase in the levels of K-Ras, c-Myc, TNF-α, IL-6 and NO, while GSH level and SOD activity were significantly reduced compared with control. At the end of 14 days exposure, RKW, GSH, NO, and Bcl-2 levels were significantly decreased, while levels of K-Ras, c-Myc, p53, Bax, caspase-3, TNF-α, IL-1β, IL-6, MDA and GPx activity were significantly increased compared with control. After 21 days of MC administration, RKW, GSH, NO, IL-10 and Bcl-2 levels were significantly decreased, while levels of K-Ras, c-Myc, p53, Bax, caspase-3, TNF-α, IL-1β, IL-6, MDA and GST activity were significantly increased compared with control. Exposures to MC in any way should be strictly avoided as it could trigger renal damage through the disorganization of the antioxidant system, up-regulation of inflammatory, apoptotic, and oncogenic markers in rats.
Collapse
Key Words
- Apoptosis
- Bax, Bcl-2 associated X
- Bcl-2, B-cell lymphoma 2
- CAT, catalase
- GPx, glutathione peroxidase
- GSH, reduced glutathione
- GST, glutathione S-transferase
- Histopathology
- IL-1β, interleukin-1 beta
- IL-6, interleukin-6
- Inflammation
- K-Ras, Kirsten rat sarcoma viral oncogene
- Kidney
- MDA, malondialdehyde
- Methyl cellosolve
- NO, nitric oxide
- Oncogenes
- Oxidative stress
- RKW, relative kidney weight
- SOD, superoxide dismutase
- TNF-α, tumor necrosis factor alpha
- c-Myc, myelocytomatosis
- p53, tumor suppressor protein
Collapse
Affiliation(s)
- Oluwatobi T Somade
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Babajide O Ajayi
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Mariana O Olushola
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Esther O Omoseebi
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
49
|
Koriyama H, Ikeda Y, Nakagami H, Shimamura M, Yoshida S, Rakugi H, Morishita R. Development of an IL-17A DNA Vaccine to Treat Systemic Lupus Erythematosus in Mice. Vaccines (Basel) 2020; 8:vaccines8010083. [PMID: 32059488 PMCID: PMC7157613 DOI: 10.3390/vaccines8010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
The interleukin-17 (IL-17) family, especially IL-17A, plays an important role in the pathogenesis of systemic lupus erythematosus (SLE). This study developed an IL-17A epitope vaccine to treat SLE in NZBWF1 and MRL/lpr mouse models. A plasmid vector encoding a hepatitis B core (HBc)-IL-17A epitope fusion protein was injected using electroporation into the skeletal muscle of NZBWF1(New Zealand Black mice x New Zealand White mice F1 hybrid strain) or MRL/lpr mice three times at 2-week intervals. As a result, anti-IL-17A antibodies were successfully produced in the HBc-IL-17A group. Accordingly, serum tumor necrosis factor alpha (TNF-α) concentrations were significantly reduced in the HBc-IL-17A group. According to pathological analysis, the IL-17A DNA vaccine significantly suppressed renal tissue damage and macrophage infiltration. Consequently, the survival rate was significantly improved in the HBc-IL-17A group. In addition, we evaluated the antigen reactivity of splenocytes from IL-17A-immunized mice using an enzyme-linked immune absorbent spot (ELISPot) assay for safety evaluation. Splenocytes from IL-17A-immunized mice were significantly stimulated by the HBc epitope peptide, but not by the IL-17A epitope or recombinant IL-17A. These results indicate that the IL-17A vaccine did not induce autoreactive T cells against endogenous IL-17A. This study demonstrates for the first time that an IL-17A DNA vaccine significantly reduced organ damage and extended survival time in lupus-prone mice.
Collapse
Affiliation(s)
- Hiroshi Koriyama
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuka Ikeda
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Correspondence: (H.N.); (R.M.)
| | - Munehisa Shimamura
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shota Yoshida
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Correspondence: (H.N.); (R.M.)
| |
Collapse
|
50
|
Cao HY, Li D, Wang YP, Lu HX, Sun J, Li HB. Clinical significance of reduced expression of lncRNA TUG1 in the peripheral blood of systemic lupus erythematosus patients. Int J Rheum Dis 2020; 23:428-434. [PMID: 31944629 DOI: 10.1111/1756-185x.13786] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/17/2019] [Accepted: 12/17/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the expression and clinical significance of long non-coding RNA taurine up-regulated gene 1 (lncRNA TUG1) in the peripheral blood of systemic lupus erythematosus (SLE) patients. METHODS With the peripheral blood mononuclear cells (PBMCs: T-cells, B-cells and monocytes) collected from SLE patients and healthy controls, TUG1 expression was determined to identify the correlation with the clinicopathological features of SLE patients. Thereby, the diagnostic value of TUG1 expression in diagnosis of SLE was evaluated by receiver operating characteristic (ROC) curve analysis. RESULTS As compared to healthy controls, SLE patients manifested a lower expression of TUG1 in PBMCs, which was further decreased in SLE patients with lupus nephritis (P < .05). The lowest level of TUG1 was found in monocytes, rather than T-cells or B-cells (P < .05). Negative correlations were identified between TUG1 levels and SLE Disease Activity Index score (r = -.904, P < .001), erythrocyte sedimentation rate (r = -.779, P < .001), disease duration (r = -.503, P < .001) and 24-hour urinary protein (r = -.807, P < .001). Complement C3 levels were positively associated with TUG1 expression (r = .817, P < .001). In addition, the area under the ROC curve of diagnostic efficiency for SLE based on TUG1 was 0.982, and 0.930 for SLE with lupus nephritis. CONCLUSIONS The levels of lncRNA TUG1 was markedly lower in the SLE patients, which was more obvious in SLE patients with lupus nephritis, and thus, it could be a promising clinical diagnostic tool for SLE patients or SLE patients with lupus nephritis.
Collapse
Affiliation(s)
- Hai-Yu Cao
- Department of Dermatology, The First Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Dong Li
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Peng Wang
- Department of General Medicine, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui-Xiu Lu
- Department of Dermatology, The First Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Jing Sun
- Department of Dermatology, The First Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Hai-Bin Li
- Department of General Medicine, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|