1
|
Gibbs RJ, Chambers AC, Hill DJ. The emerging role of Fusobacteria in carcinogenesis. Eur J Clin Invest 2024; 54 Suppl 2:e14353. [PMID: 39674881 DOI: 10.1111/eci.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
The Fusobacterium genus comprises Gram-negative, obligate anaerobic bacteria that typically reside in the periodontium of the oral cavity, gastrointestinal tract, and female genital tract. The association of Fusobacterial spp. with colorectal tumours is widely accepted, with further evidence that this pathogen may also be implicated in the development of other malignancies. Fusobacterial spp. influence malignant cell behaviours and the tumour microenvironment in various ways, which can be related to the multiple surface adhesins expressed. These adhesins include Fap2 (fibroblast-activated protein 2), CpbF (CEACAM binding protein of Fusobacteria), FadA (Fusobacterium adhesin A) and FomA (Fusobacterial outer membrane protein A). This review outlines the influence of Fusobacteria in promoting cancer initiation and progression, impacts of therapeutic outcomes and discusses potential therapeutic interventions where appropriate.
Collapse
|
2
|
da Silva Bortoleti BT, Camargo PG, Gonçalves MD, Tomiotto-Pellissier F, Silva TF, Concato VM, Detoni MB, Bidóia DL, da Silva Lima CH, Rodrigues CR, Bispo MDLF, de Macedo FC, Conchon-Costa I, Miranda-Sapla MM, Wowk PF, Pavanelli WR. Effect of a thiohydantoin salt derived from l-Arginine on Leishmania amazonensis and infected cells: Insights from biological effects to molecular docking interactions. Chem Biol Interact 2024; 403:111216. [PMID: 39218371 DOI: 10.1016/j.cbi.2024.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Leishmaniasis is a neglected tropical disease caused by parasites of the genus Leishmania and is responsible for more than 1 million new cases and 70,000 deaths annually worldwide. Treatment has high costs, toxicity, complex and long administration time, several adverse effects, and drug-resistant strains, therefore new therapies are urgently needed. Synthetic compounds have been highlighted in the medicinal chemistry field as a strong option for drug development against different diseases. Organic salts (OS) have multiple biological activities, including activity against protozoa such as Leishmania spp. This study aimed to investigate the in vitro leishmanicidal activity and death mechanisms of a thiohydantoin salt derived from l-arginine (ThS) against Leishmania amazonensis. We observed that ThS treatment inhibited promastigote proliferation, increased ROS production, phosphatidylserine exposure and plasma membrane permeabilization, loss of mitochondrial membrane potential, lipid body accumulation, autophagic vacuole formation, cell cycle alteration, and morphological and ultrastructural changes, showing parasites death. Additionally, ThS presents low cytotoxicity in murine macrophages (J774A.1), human monocytes (THP-1), and sheep erythrocytes. ThS in vitro cell treatment reduced the percentage of infected macrophages and the number of amastigotes per macrophage by increasing ROS production and reducing TNF-α levels. These results highlight the potential of ThS among thiohydantoins, mainly related to the arginine portion, as a leishmanicidal drug for future drug strategies for leishmaniasis treatment. Notably, in silico investigation of key targets from L. amazonensis, revealed that a ThS compound from the l-arginine amino acid strongly interacts with arginase (ARG) and TNF-α converting enzyme (TACE), suggesting its potential as a Leishmania inhibitor.
Collapse
Affiliation(s)
- Bruna Taciane da Silva Bortoleti
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute, (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil; State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Priscila Goes Camargo
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Rio de Janeiro, Rio de Janeiro, Brazil; State University of Londrina (UEL/PR), Chemistry Department, Londrina, Paraná, Brazil
| | - Manoela Daiele Gonçalves
- State University of Londrina (UEL/PR), Laboratory of Biotransformation and Phytochemistry, Londrina, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute, (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil; State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Taylon Felipe Silva
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Virginia Marcia Concato
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Mariana Barbosa Detoni
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | - Danielle Larazin Bidóia
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | | | - Carlos Rangel Rodrigues
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Ivete Conchon-Costa
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil
| | | | - Pryscilla Fanini Wowk
- Carlos Chagas Institute (ICC/Fiocruz/PR), Molecular Immunology and Cellular Group, Curitiba, Paraná, Brazil.
| | - Wander Rogério Pavanelli
- State University of Londrina (UEL/PR), Laboratory of Immunoparasitology, Londrina, Paraná, Brazil.
| |
Collapse
|
3
|
Oliveira FRMB, Sousa Soares E, Pillmann Ramos H, Lättig-Tünnemann G, Harms C, Cimarosti H, Sordi R. Renal protection after hemorrhagic shock in rats: Possible involvement of SUMOylation. Biochem Pharmacol 2024; 227:116425. [PMID: 39004233 DOI: 10.1016/j.bcp.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Hemorrhagic shock (HS), a leading cause of preventable death, is characterized by severe blood loss and inadequate tissue perfusion. Reoxygenation of ischemic tissues exacerbates organ damage through ischemia-reperfusion injury. SUMOylation has been shown to protect neurons after stroke and is upregulated in response to cellular stress. However, the role of SUMOylation in organ protection after HS is unknown. This study aimed to investigate SUMOylation-mediated organ protection following HS. Male Wistar rats were subjected to HS (blood pressure of 40 ± 2 mmHg, for 90 min) followed by reperfusion. Blood, kidney, and liver samples were collected at various time points after reperfusion to assess organ damage and investigate the profile of SUMO1 and SUMO2/3 conjugation. In addition, human kidney cells (HK-2), treated with the SUMOylation inhibitor TAK-981 or overexpressing SUMO proteins, were subjected to oxygen and glucose deprivation to investigate the role of SUMOylation in hypoxia/reoxygenation injury. The animals presented progressive multiorgan dysfunction, except for the renal system, which showed improvement over time. Compared to the liver, the kidneys displayed distinct patterns in terms of oxidative stress, apoptosis activation, and tissue damage. The global level of SUMO2/3 in renal tissue was also distinct, suggesting a differential role. Pharmacological inhibition of SUMOylation reduced cell viability after hypoxia-reoxygenation damage, while overexpression of SUMO1 or SUMO2 protected the cells. These findings suggest that SUMOylation might play a critical role in cellular protection during ischemia-reperfusion injury in the kidneys, a role not observed in the liver. This difference potentially explains the renal resilience observed in HS animals when compared to other systems.
Collapse
Affiliation(s)
- Filipe Rodolfo Moreira Borges Oliveira
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil
| | - Ericks Sousa Soares
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil
| | - Hanna Pillmann Ramos
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil
| | - Gisela Lättig-Tünnemann
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Christoph Harms
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Centre for Stroke Research, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), partner site Berlin, Germany; Einstein Centre for Neuroscience, Berlin, Germany
| | - Helena Cimarosti
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil; Graduate Program in Neuroscience, UFSC, SC, Brazil
| | - Regina Sordi
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina (UFSC), SC, Brazil; Graduate Program in Pharmacology, UFSC, SC, Brazil.
| |
Collapse
|
4
|
Njenga LW, Mbugua SN, Odhiambo RA, Onani MO. Correction: Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms. Dalton Trans 2024; 53:12391-12394. [PMID: 38989691 DOI: 10.1039/d3dt90193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Correction for 'Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms' by Lydia W. Njenga et al., Dalton Trans., 2023, 52, 5823-5847, https://doi.org/10.1039/D3DT00366C.
Collapse
Affiliation(s)
- Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Simon N Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Martin O Onani
- Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Belville, 7535, South Africa
| |
Collapse
|
5
|
Majhi S, Awasthi BP, Sharma RK, Mitra K. Buparvaquone Induces Ultrastructural and Physiological Alterations Leading to Mitochondrial Dysfunction and Caspase-Independent Apoptotic Cell Death in Leishmania donovani. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:521-538. [PMID: 38709559 DOI: 10.1093/mam/ozae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/09/2024] [Accepted: 03/31/2024] [Indexed: 05/08/2024]
Abstract
Leishmaniasis is a neglected tropical disease (endemic in 99 countries) caused by parasitic protozoa of the genus Leishmania. As treatment options are limited, there is an unmet need for new drugs. The hydroxynaphthoquinone class of compounds demonstrates broad-spectrum activity against protozoan parasites. Buparvaquone (BPQ), a member of this class, is the only drug licensed for the treatment of theileriosis. BPQ has shown promising antileishmanial activity but its mode of action is largely unknown. The aim of this study was to evaluate the ultrastructural and physiological effects of BPQ for elucidating the mechanisms underlying the in vitro antiproliferative activity in Leishmania donovani. Transmission and scanning electron microscopy analyses of BPQ-treated parasites revealed ultrastructural effects characteristic of apoptosis-like cell death, which include alterations in the nucleus, mitochondrion, kinetoplast, flagella, and the flagellar pocket. Using flow cytometry, laser scanning confocal microscopy, and fluorometry, we found that BPQ induced caspase-independent apoptosis-like cell death by losing plasma membrane phospholipid asymmetry and cell cycle arrest at sub-G0/G1 phase. Depolarization of the mitochondrial membrane leads to the generation of oxidative stress and impaired ATP synthesis followed by disruption of intracellular calcium homeostasis. Collectively, these findings provide valuable mechanistic insights and demonstrate BPQ's potential for development as an antileishmanial agent.
Collapse
Affiliation(s)
- Swetapadma Majhi
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Bhanu Priya Awasthi
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Rakesh Kumar Sharma
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Kalyan Mitra
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
6
|
Kaveh Zenjanab M, Hashemzadeh N, Alimohammadvand S, Sharifi-Azad M, Dalir Abdolahinia E, Jahanban-Esfahlan R. Notch Signaling Suppression by Golden Phytochemicals: Potential for Cancer Therapy. Adv Pharm Bull 2024; 14:302-313. [PMID: 39206407 PMCID: PMC11347744 DOI: 10.34172/apb.2024.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/09/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is one of the main causes of mortality worldwide. Cancer cells are characterized by unregulated cellular processes, including proliferation, progression, and angiogenesis. The occurrence of these processes is due to the dysregulation of various signaling pathways such as NF-κB (nuclear factor-κB), Wnt/beta-catenin, Notch signaling and MAPK (mitogen-activated protein kinases). Notch signaling pathways cause the progression of various types of malignant tumors. Among the phytochemicals for cancer therapy, several have attracted great interest, including curcumin, genistein, quercetin, silibinin, resveratrol, cucurbitacin and glycyrrhizin. Given the great cellular and molecular heterogeneity within tumors and the high toxicity and side effects of synthetic chemotherapeutics, natural products with pleiotropic effects that simultaneously target numerous signaling pathways appear to be ideal substitutes for cancer therapy. With this in mind, we take a look at the current status, impact and potential of known compounds as golden phytochemicals on key signaling pathways in tumors, focusing on the Notch pathway. This review may be useful for discovering new molecular targets for safe and efficient cancer therapy with natural chemotherapeutics.
Collapse
Affiliation(s)
| | - Nastaran Hashemzadeh
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Alimohammadvand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, US
| | - Rana Jahanban-Esfahlan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Radhakrishnan A, Gangopadhyay R, Sharma C, Kapardar RK, Sharma NK, Srivastav R. Unwinding Helicase MCM Functionality for Diagnosis and Therapeutics of Replication Abnormalities Associated with Cancer: A Review. Mol Diagn Ther 2024; 28:249-264. [PMID: 38530633 DOI: 10.1007/s40291-024-00701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
The minichromosome maintenance (MCM) protein is a component of an active helicase that is essential for the initiation of DNA replication. Dysregulation of MCM functions contribute to abnormal cell proliferation and genomic instability. The interactions of MCM with cellular factors, including Cdc45 and GINS, determine the formation of active helicase and functioning of helicase. The functioning of MCM determines the fate of DNA replication and, thus, genomic integrity. This complex is upregulated in precancerous cells and can act as an important tool for diagnostic applications. The MCM protein complex can be an important broad-spectrum therapeutic target in various cancers. Investigations have supported the potential and applications of MCM in cancer diagnosis and its therapeutics. In this article, we discuss the physiological roles of MCM and its associated factors in DNA replication and cancer pathogenesis.
Collapse
Affiliation(s)
| | - Ritwik Gangopadhyay
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | | | | | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. DY Patil Biotechnology and Bioinformatics Institute, Dr. DY Patil Vidyapeeth, Pune, Maharashtra, India
| | - Rajpal Srivastav
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
- Department of Science and Technology, Ministry of Science and Technology, New Delhi, India.
| |
Collapse
|
8
|
Muñoz-Juan A, Benseny-Cases N, Guha S, Barba I, Caldwell KA, Caldwell GA, Agulló L, Yuste VJ, Laromaine A, Dalfó E. Caenorhabditis elegans RAC1/ced-10 mutants as a new animal model to study very early stages of Parkinson's disease. Prog Neurobiol 2024; 234:102572. [PMID: 38253120 DOI: 10.1016/j.pneurobio.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Patients with Parkinson's disease (PD) display non-motor symptoms arising prior to the appearance of motor signs and before a clear diagnosis. Motor and non-motor symptoms correlate with progressive deposition of the protein alpha-synuclein (Asyn) both within and outside of the central nervous system, and its accumulation parallels neurodegeneration. The genome of Caenorhabditis elegans does not encode a homolog of Asyn, thus rendering this nematode an invaluable system with which to investigate PD-related mechanisms in the absence of interference from endogenous Asyn aggregation. CED-10 is the nematode homolog of human RAC1, a small GTPase needed to maintain the function and survival of dopaminergic neurons against human Asyn-induced toxicity in C. elegans. Here, we introduce C. elegans RAC1/ced-10 mutants as a predictive tool to investigate early PD symptoms before neurodegeneration occurs. Deep phenotyping of these animals reveals that, early in development, they displayed altered defecation cycles, GABAergic abnormalities and an increased oxidation index. Moreover, they exhibited altered lipid metabolism evidenced by the accumulation of lipid droplets. Lipidomic fingerprinting indicates that phosphatidylcholine and sphingomyelin, but not phosphatidylethanolamine or phosphatidylserine, were elevated in RAC1/ced-10 mutant nematodes. These collective characteristics reflect the non-motor dysfunction, GABAergic neurotransmission defects, upregulation of stress response mechanisms, and metabolic changes associated with early-onset PD. Thus, we put forward an easy-to-manipulate preclinical animal model to deepen our understanding of early-stage PD and accelerate the translational path for therapeutic target discovery.
Collapse
Affiliation(s)
- A Muñoz-Juan
- Group of Nanoparticles and Nanocomposites, Institut Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - N Benseny-Cases
- Biophysics Unit. Department of Biochemistry and Molecular Biology. Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - S Guha
- Nautilus Biotechnology, 835 Industrial Rd, San Carlos, CA 94070, USA
| | - I Barba
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Can Baumann, 08500 Vic, Spain
| | - K A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA; Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - G A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA; Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - L Agulló
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Can Baumann, 08500 Vic, Spain
| | - V J Yuste
- Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain
| | - A Laromaine
- Group of Nanoparticles and Nanocomposites, Institut Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - E Dalfó
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Can Baumann, 08500 Vic, Spain; Department of Biochemistry and Molecular Biology, Institut de Neurociències, Faculty of Medicine, M2, Universitat Autònoma de Barcelona (UAB), Bellaterra Campus, Cerdanyola del Vallés, Barcelona, Spain; Institute of Neurosciences, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
9
|
Renu K, Mukherjee AG, Gopalakrishnan AV, Wanjari UR, Kannampuzha S, Murali R, Veeraraghavan VP, Vinayagam S, Paz-Montelongo S, George A, Vellingiri B, Madhyastha H. Protective effects of macromolecular polyphenols, metals (zinc, selenium, and copper) - Polyphenol complexes, and different organs with an emphasis on arsenic poisoning: A review. Int J Biol Macromol 2023; 253:126715. [PMID: 37673136 DOI: 10.1016/j.ijbiomac.2023.126715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
For the potential health benefits and nutritional value, polyphenols are one of the secondary metabolites of plants that have received extensive research. It has anti-inflammatory and cytotoxicity-reducing properties in addition to a high antioxidant content. Macromolecular polyphenols and polysaccharides are biologically active natural polymers with antioxidant and anti-inflammatory potential. Arsenic is an ecologically toxic metalloid. Arsenic in drinking water is the most common way people come into contact with this metalloid. While arsenic is known to cause cancer, it is also used to treat acute promyelocytic leukemia (APL). The treatment's effectiveness is hampered by the adverse effects it can cause on the body. Oxidative stress, inflammation, and the inability to regulate cell death cause the most adverse effects. Polyphenols and other macromolecules like polysaccharides act as neuroprotectants by mitigating free radical damage, inhibiting nitric oxide (NO) production, lowering A42 fibril formation, boosting antioxidant levels, and controlling apoptosis and inflammation. To prevent the harmful effects of toxins, polyphenols and pectin lower oxidative stress, boost antioxidant levels, improve mitochondrial function, control apoptosis, and suppress inflammation. Therefore, it prevents damage to the heart, liver, kidneys, and reproductive system. This review aims to identify the effects of the polyphenols in conjugation with polysaccharides as an ameliorative strategy for arsenic-induced toxicity in various organs.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri 635205, Tamil Nadu, India.
| | - Soraya Paz-Montelongo
- Area de Toxicologia, Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain; Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India.
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India.
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889 1692, Japan.
| |
Collapse
|
10
|
Kim JA, Kim MJ, Park YS, Kang CK, Kim JH, Choi CY. Effects of microfiber and bead microplastic exposure in the goldfish Carassius auratus: Bioaccumulation, antioxidant responses, and cell damage. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106684. [PMID: 37677861 DOI: 10.1016/j.aquatox.2023.106684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
We confirmed antioxidant-related gene expression, bioaccumulation, and cell damage following exposure to various microplastics in vivo and in vitro in the goldfish Carassius auratus. Exposure of C. auratus to a 500 µm fiber-type microplastic environment (MF; 10 and 100 fibers/L) and two sizes (0.2 and 1.0 µm) of beads (MB; 10 and 100 beads/L) for 120 h increased superoxide dismutase (SOD) mRNA expression in the liver until 24 h followed by a decrease. Whereas, catalase (CAT) mRNA expression increased from 12 h to the end of the in vivo experiment. In vitro experiments were conducted with diluted microfibers (1 and 5 fibers/L) and microbeads (1 and 5 beads/L) using cultured liver cells. The results of SOD and CAT mRNA expression analysis conducted in vitro showed a tendency similar to those of experiments conducted in vivo. The H2O2 level increased in the high-concentration experimental groups compared with that in the low-concentration groups of 0.2-µm beads. In addition, the H2O2 level increased in both MF and MB groups from 12 h of exposure. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in plasma were used as indicators of liver damage in fish. The ALT and AST levels increased up to 120 h after exposure. Caspase-3 (casp-3) mRNA expression was higher in the MB group than in the MF group. We visually confirmed liver casp-3 mRNA signals using in situ hybridization. The degree of DNA damage in the MF and MB high-concentration groups increased with the exposure time. The tail length and percent of DNA in the tail of the MB group were significantly higher than those of the MF group, confirming that DNA damage was greater in the MB group. Both fiber- and bead-type microplastics induced oxidative stress in C. auratus, but the bead-type induced greater stress than the fiber-type.
Collapse
Affiliation(s)
- Jin A Kim
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Min Ju Kim
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Young-Su Park
- Department of Nursing, Catholic University of Pusan, Busan 46252, Korea
| | - Chang-Keun Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jun-Hwan Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Cheol Young Choi
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Korea; Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, Korea.
| |
Collapse
|
11
|
Brivio P, Audano M, Gallo MT, Miceli E, Gruca P, Lason M, Litwa E, Fumagalli F, Papp M, Mitro N, Calabrese F. Venlafaxine's effect on resilience to stress is associated with a shift in the balance between glucose and fatty acid utilization. Neuropsychopharmacology 2023; 48:1475-1483. [PMID: 37380799 PMCID: PMC10425382 DOI: 10.1038/s41386-023-01633-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
Brain metabolism is a fundamental process involved in the proper development of the central nervous system and in the maintenance of the main higher functions in humans. As consequence, energy metabolism imbalance has been commonly associated to several mental disorders, including depression. Here, by employing a metabolomic approach, we aimed to establish if differences in energy metabolite concentration may underlie the vulnerability and resilience in an animal model of mood disorder named chronic mild stress (CMS) paradigm. In addition, we have investigated the possibility that modulation of metabolite concentration may represent a pharmacological target for depression by testing whether repeated treatment with the antidepressant venlafaxine may normalize the pathological phenotype by acting at metabolic level. The analyses were conducted in the ventral hippocampus (vHip) for its key role in the modulation of anhedonia, a core symptom of patients affected by depression. Interestingly, we showed that a shift from glycolysis to beta oxidation seems to be responsible for the vulnerability to chronic stress and that vHip metabolism contributes to the ability of the antidepressant venlafaxine to normalize the pathological phenotype, as shown by the reversal of the changes observed in specific metabolites. These findings may provide novel perspectives on metabolic changes that could serve as diagnostic markers and preventive strategies for the early detection and treatment of depression as well as for the identification of potential drug targets.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Eleonora Miceli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
12
|
Bjedov D, Velki M, Toth L, Marijić VF, Mikuška T, Jurinović L, Ečimović S, Turić N, Lončarić Z, Šariri S, Al Marsoomi Y, Mikuška A. Heavy metal(loid) effect on multi-biomarker responses in apex predator: Novel assays in the monitoring of white stork nestlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121398. [PMID: 36878276 DOI: 10.1016/j.envpol.2023.121398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The goal of the present study was to investigate differences in biomarker responses related to metal(loid)s in white stork (Ciconia ciconia) nestling's blood from continental Croatia. To achieve this, a battery of biomarkers that can be affected by environmental pollutants, including metal(loid)s, was assessed (esterase activity, fluorescence-based oxidative stress biomarkers, metallothionein levels, glutathione-dependent enzyme activity). The research was conducted during the white stork breeding season in diverse areas (a landfill, industrial and agricultural sites, and an unpolluted area). White storks' nestlings near the landfill exhibited reduced carboxylesterase (CES) activity, elevated glutathione (GSH) concentration, as well as high Pb content in the blood. Increased As and Hg concentrations in blood were attributable to environmental contamination in agricultural area and an assumed unpolluted area, respectively. Furthermore, agricultural practices appeared to affect CES activity, as well as elevate Se levels. In addition to the successful implementation of biomarkers, present research showed that agricultural areas and a landfill are areas with increased metal(loid) levels possibly causing adverse effects on the white storks. This first-time heavy metal and metalloid analyses in the white stork nestlings from Croatia point to the necessary monitoring and future assessments of pollution impact to prevent irreversible adverse effects.
Collapse
Affiliation(s)
- Dora Bjedov
- Croatian Institute for Biodiversity, BIOTA Ltd., Maksimirska cesta 129/5, 10000, Zagreb, Croatia
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Leontina Toth
- Teaching Institute of Public Health Osijek-baranja County, Franje Krežme 1, 31000, Osijek, Croatia
| | - Vlatka Filipović Marijić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Tibor Mikuška
- Croatian Society for Birds and Nature Protection, Ivana Gundulića 19/A, 31000, Osijek, Croatia
| | - Luka Jurinović
- Poultry Centre, Croatian Veterinary Institute, Heinzelova 55, 10000, Zagreb, Croatia
| | - Sandra Ečimović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Nataša Turić
- Teaching Institute of Public Health Osijek-baranja County, Franje Krežme 1, 31000, Osijek, Croatia
| | - Zdenko Lončarić
- Department of Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000, Osijek, Croatia
| | - Sara Šariri
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Yasir Al Marsoomi
- HOGENT University of Applied Sciences and Arts, Geraard de Duivelstraat 5, 9000, Gent, Belgium
| | - Alma Mikuška
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000, Osijek, Croatia.
| |
Collapse
|
13
|
Kondo N, Kanai T, Okada M. Rheumatoid Arthritis and Reactive Oxygen Species: A Review. Curr Issues Mol Biol 2023; 45:3000-3015. [PMID: 37185721 PMCID: PMC10137217 DOI: 10.3390/cimb45040197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disease that causes progressive joint damage and can lead to lifelong disability. Numerous studies support the hypothesis that reactive oxygen species (ROS) are associated with RA pathogenesis. Recent advances have clarified the anti-inflammatory effect of antioxidants and their roles in RA alleviation. In addition, several important signaling pathway components, such as nuclear factor kappa B, activator-protein-1, nuclear factor (erythroid-derived 2)-like 2/kelch-like associated protein, signal transducer and activator of transcription 3, and mitogen-activated protein kinases, including c-Jun N-terminal kinase, have been identified to be associated with RA. In this paper, we outline the ROS generation process and relevant oxidative markers, thereby providing evidence of the association between oxidative stress and RA pathogenesis. Furthermore, we describe various therapeutic targets in several prominent signaling pathways for improving RA disease activity and its hyper oxidative state. Finally, we reviewed natural foods, phytochemicals, chemical compounds with antioxidant properties and the association of microbiota with RA pathogenesis.
Collapse
Affiliation(s)
- Naoki Kondo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tomotake Kanai
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
14
|
Scicchitano S, Vecchio E, Battaglia AM, Oliverio M, Nardi M, Procopio A, Costanzo F, Biamonte F, Faniello MC. The Double-Edged Sword of Oleuropein in Ovarian Cancer Cells: From Antioxidant Functions to Cytotoxic Effects. Int J Mol Sci 2023; 24:ijms24010842. [PMID: 36614279 PMCID: PMC9821453 DOI: 10.3390/ijms24010842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Oleuropein plays a key role as a pro-oxidant as well as an antioxidant in cancer. In this study, the activity of oleuropein, in an in vitro model of ovarian (OCCs) and breast cancer cells (BCCs) was investigated. Cell viability and cell death were analyzed. Oxidative stress was measured by CM-H2DCFDA flow cytometry assay. Mitochondrial dysfunction was evaluated based on mitochondrial reactive oxygen species (ROS) and GPX4 protein levels. Further, the effects on iron metabolism were analyzed by measuring the intracellular labile iron pool (LIP). We confirmed that high doses of oleuropein show anti-proliferative and pro-apoptotic activity on HEY and MCF-7 cells. Moreover, our results indicate that low doses of oleuropein impair cell viability without affecting the mortality of cells, and also decrease the LIP and ROS levels, keeping them unchanged in MCF-7 cells. For the first time, our data show that low doses of oleuropein reduce erastin-mediated cell death. Interestingly, oleuropein decreases the levels of intracellular ROS and LIP in OCCs treated with erastin. Noteworthily, we observed an increased amount of ROS scavenging enzyme GPX4 together with a consistent reduction in mitochondrial ROS, confirming a reduction in oxidative stress in this model.
Collapse
Affiliation(s)
- Stefania Scicchitano
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Eleonora Vecchio
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Centre of Services, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Martina Battaglia
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Manuela Oliverio
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Monica Nardi
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Procopio
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| | - Francesco Costanzo
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Centre of Services, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flavia Biamonte
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Centre of Services, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Concetta Faniello
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
15
|
Rao MRP, Ghadge I, Kulkarni S, R. Madgulkar A. Importance of Plant Secondary Metabolites in Modern Therapy. REFERENCE SERIES IN PHYTOCHEMISTRY 2023:1-31. [DOI: 10.1007/978-3-031-30037-0_5-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2025]
|
16
|
Wani AK, Akhtar N, Sharma A, El-Zahaby SA. Fighting Carcinogenesis with Plant Metabolites by Weakening Proliferative Signaling and Disabling Replicative Immortality Networks of Rapidly Dividing and Invading Cancerous Cells. Curr Drug Deliv 2023; 20:371-386. [PMID: 35422214 DOI: 10.2174/1567201819666220414085606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cancer, an uncontrolled multistage disease causing swift division of cells, is a leading disease with the highest mortality rate. Cellular heterogeneity, evading growth suppressors, resisting cell death, and replicative immortality drive the tumor progression by resisting the therapeutic action of existing anticancer drugs through a series of intrinsic and extrinsic cellular interactions. The innate cellular mechanisms also regulate the replication process as a fence against proliferative signaling, enabling replicative immortality through telomere dysfunction. AREA COVERED The conventional genotoxic drugs have several off-target and collateral side effects associated with them. Thus, the need for the therapies targeting cyclin-dependent kinases or P13K signaling pathway to expose cancer cells to immune destruction, deactivation of invasion and metastasis, and maintaining cellular energetics is imperative. Compounds with anticancer attributes isolated from plants and rich in alkaloids, terpenes, and polyphenols have proven to be less toxic and highly targetspecific, making them biologically significant. This has opened a gateway for the exploration of more novel plant molecules by signifying their role as anticancer agents in synergy and alone, making them more effective than the existing cytotoxic regimens. EXPERT OPINION In this context, the current review presented recent data on cancer cases around the globe, along with discussing the fundamentals of proliferative signaling and replicative immortality of cancer cells. Recent findings were also highlighted, including antiproliferative and antireplicative action of plant-derived compounds, besides explaining the need for improving drug delivery systems.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab (144411), India
| | - Nahid Akhtar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab (144411), India
| | - Arun Sharma
- Department of Pharmacy, School of Pharmaceutical Sciences, Lovely Professional University, Punjab (144411), India
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
17
|
Abd-Elghany AA, Ahmed SM, Masoud MA, Atia T, Waggiallah HA, El-Sakhawy MA, Mohamad EA. Annona squamosa L. Extract-Loaded Niosome and Its Anti-Ehrlich Ascites’ Carcinoma Activity. ACS OMEGA 2022; 7:38436-38447. [DOI: 10.1021/acsomega.2c03649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/11/2022] [Indexed: 12/26/2022]
Affiliation(s)
- Amr A. Abd-Elghany
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj11942, Saudi Arabia
- Biophysics Department, Faculty of Science, Cairo University, Giza12613, Egypt
| | - Samya Mahmoud Ahmed
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority (EDA), Giza12654, Egypt
| | - Marwa A. Masoud
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority (EDA), Giza12654, Egypt
| | - Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdul-Aziz University, Al-Kharj11942, Saudi Arabia
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdul-Aziz University, Al-Kharj11942, Saudi Arabia
| | - Mohamed A. El-Sakhawy
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdul-Aziz University, Al-Kharj11942, Saudi Arabia
- Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo11753, Egypt
| | - Ebtesam A. Mohamad
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj11942, Saudi Arabia
| |
Collapse
|
18
|
Bose S, Nguyen HD, Ngo AH, Do LH. Fluorescent half-sandwich iridium picolinamidate complexes for in-cell visualization. J Inorg Biochem 2022; 234:111877. [PMID: 35671630 PMCID: PMC9832325 DOI: 10.1016/j.jinorgbio.2022.111877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 01/13/2023]
Abstract
In this work, we report on the development of fluorescent half-sandwich iridium complexes using a fluorophore attachment strategy. These constructs consist of pentamethylcyclopentadienyl (Cp*) iridium units ligated by picolinamidate donors conjugated to green-emitting boron-dipyrromethene (bodipy) dyes. Reaction studies in H2O/THF mixtures showed that the fluorescent Ir complexes were active as catalysts for transfer hydrogenation, with activities similar to that of their non-fluorescent counterparts. The iridium complexes were taken up by NIH-3T3 mouse fibroblast cells, with 50% inhibition concentrations ranging from ~20-70 μM after exposure for 3 h. Visualization of the bodipy-functionalized Ir complexes in cells using fluorescence microscopy revealed that they were localized in the mitochondria and lysosome but not the nucleus. These results indicate that our fluorescent iridium complexes could be useful for future biological studies requiring intracellular catalyst tracking.
Collapse
Affiliation(s)
- Sohini Bose
- Department of Chemistry, University of Houston, Houston, TX 77004, United States
| | - Hieu D Nguyen
- Department of Chemistry, University of Houston, Houston, TX 77004, United States
| | - Anh H Ngo
- Department of Chemistry, University of Houston, Houston, TX 77004, United States
| | - Loi H Do
- Department of Chemistry, University of Houston, Houston, TX 77004, United States.
| |
Collapse
|
19
|
Quantitative Proteome Analysis Reveals Melissa officinalis Extract Targets Mitochondrial Respiration in Colon Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144533. [PMID: 35889404 PMCID: PMC9316399 DOI: 10.3390/molecules27144533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022]
Abstract
Melissa officinalis (MO), known as lemon balm, is a popular ingredient blended in herbal tea. In recent decades, the bioactivities of MO have been studied in sub-health and pathological status, highlighting MO possesses multiple pharmacological effects. We previously showed that hot water MO extract exhibited anticancer activity in colorectal cancer (CRC). However, the detailed mechanisms underlying MO-induced cell death remain elusive. To elucidate the anticancer regulation of MO extract in colon cancer, a data-driven analysis by proteomics approaches and bioinformatics analysis was applied. An isobaric tandem mass tags-based quantitative proteome analysis using liquid chromatography–coupled tandem mass spectrometry was performed to acquire proteome-wide expression data. The over-representation analysis and functional class scoring method were implemented to interpret the MO-induced biological regulations. In total, 3465 quantifiable proteoforms were identified from 24,348 peptides, with 67 upregulated and 54 downregulated proteins in the MO-treated group. Mechanistically, MO impeded mitochondrial respiratory electron transport by triggering a reactive oxygen species (ROS)-mediated oxidative stress response. MO hindered the mitochondrial membrane potential by reducing the protein expression in the electron transport chain, specifically the complex I and II, which could be restored by ROS scavenger. The findings comprehensively elucidate how MO hot water extract activates antitumor effects in colorectal cancer (CRC) cells.
Collapse
|
20
|
Involvement of Phytochemical-Encapsulated Nanoparticles' Interaction with Cellular Signalling in the Amelioration of Benign and Malignant Brain Tumours. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113561. [PMID: 35684498 PMCID: PMC9182026 DOI: 10.3390/molecules27113561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/05/2022]
Abstract
Brain tumours have unresolved challenges that include delay prognosis and lower patient survival rate. The increased understanding of the molecular pathways underlying cancer progression has aided in developing various anticancer medications. Brain cancer is the most malignant and invasive type of cancer, with several subtypes. According to the WHO, they are classified as ependymal tumours, chordomas, gangliocytomas, medulloblastomas, oligodendroglial tumours, diffuse astrocytomas, and other astrocytic tumours on the basis of their heterogeneity and molecular mechanisms. The present study is based on the most recent research trends, emphasising glioblastoma cells classified as astrocytoma. Brain cancer treatment is hindered by the failure of drugs to cross the blood–brain barrier (BBB), which is highly impregnableto foreign molecule entry. Moreover, currently available medications frequently fail to cross the BBB, whereas chemotherapy and radiotherapy are too expensive to be afforded by an average incomeperson and have many associated side effects. When compared to our current understanding of molecularly targeted chemotherapeutic agents, it appears that investigating the efficacy of specific phytochemicals in cancer treatment may be beneficial. Plants and their derivatives are game changers because they are efficacious, affordable, environmentally friendly, faster, and less toxic for the treatment of benign and malignant tumours. Over the past few years, nanotechnology has made a steady progress in diagnosing and treating cancers, particularly brain tumours. This article discusses the effects of phytochemicals encapsulated in nanoparticles on molecular targets in brain tumours, along with their limitations and potential challenges.
Collapse
|
21
|
Bjedov D, Velki M, Lackmann C, Begović L, Mikuška T, Jurinović L, Mikuška A. Blood biomarkers in white stork (Ciconia ciconia) nestlings show different responses in several areas of Croatia. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:547-558. [PMID: 35201670 DOI: 10.1002/jez.2588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
White stork nestlings can provide quantitative data on the quality of the environment, as they are dependent on their parents that provide locally foraged food. Blood was sampled from the brachial vein (n = 109) and the sampling was performed in parallel with ringing during breeding season 2020 from five areas in eastern Croatia: Lonjsko polje, Jelas polje, Slavonski Brod-east, Podunavlje, and Donje Podravlje. In the present study, for the first time in Croatia, the following enzymatic biomarkers were assessed in white stork nestlings: activities of acetylcholinesterase (AChE), carboxylesterase (CES), glutathione S-transferase (GST), and glutathione reductase (GR), as well as nonenzymatic biomarkers: levels of glutathione (GSH) and reactive oxygen species (ROS). All endpoints were measured in two blood fractions: plasma and a postmitochondrial fraction (S9). Nestlings from Podunavlje and Donje Podravlje, areas known for intensive agriculture, showed lower AChE and CES activity when compared to the other investigated areas, indicating the presence of inhibitory xenobiotics. Higher oxidative stress was observed in Slavonski Brod-east, an area surrounded by metal and engineering industry, and Podunavlje compared to the other sampling areas. Hence, this study shows the impact of pollutants from the surrounding metal, petroleum, and agricultural industry might have on the biomarkers in white stork nestlings, which are often seen as early-warning signals.
Collapse
Affiliation(s)
- Dora Bjedov
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Carina Lackmann
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lidija Begović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Tibor Mikuška
- Croatian Society for Birds and Nature Protection, Osijek, Croatia
| | - Luka Jurinović
- Poultry Centre, Croatian Veterinary Institute, Zagreb, Croatia
| | - Alma Mikuška
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
22
|
Santana LF, Sasso S, Aquino DFS, de Cássia Freitas K, de Cássia Avellaneda Guimarães R, Pott A, do Nascimento VA, Bogo D, de Oliveira Figueiredo P, Hiane PA. Nutraceutic Potential of Bioactive Compounds of Eugenia dysenterica DC in Metabolic Alterations. Molecules 2022; 27:molecules27082477. [PMID: 35458674 PMCID: PMC9024852 DOI: 10.3390/molecules27082477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
The fruit and leaves of Eugenia dysenterica DC., locally known as cagaita, are rich in antioxidant glycosylated quercetin derivatives and phenolic compounds that have beneficial effects on diabetes mellitus, hypertension and general inflammation. We conducted a literature search to investigate the nutraceutical potentials of these phenolic compounds for treating obesity, diabetes mellitus and intestinal inflammatory disease. The phenolic compounds in E. dysenterica have demonstrated effects on carbohydrate metabolism, which can prevent the development of these chronic diseases and reduce LDL (low-density lipoprotein) cholesterol and hypertension. E. dysenterica also improves intestinal motility and microbiota and protects gastric mucosa, thereby preventing inflammation. However, studies are necessary to identify the mechanism by which E. dysenterica nutraceutical compounds act on such pathological processes to support future research.
Collapse
Affiliation(s)
- Lidiani Figueiredo Santana
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| | - Sandramara Sasso
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| | - Diana Figueiredo Santana Aquino
- Higher Level Technician, Personnel Development Division, State University of Mato Grosso do Sul—UEMS, Dourados 79804-970, Brazil;
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
- Correspondence: ; Tel.: +55-67-3345-7410
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| | - Arnildo Pott
- Institute of Biosciences, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79079-900, Brazil;
| | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| | - Patrícia de Oliveira Figueiredo
- Laboratory Pronabio (Bioactive Natural Products)-Chemistry Institute, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79074-460, Brazil;
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul—UFMS, Campo Grande 79070-900, Brazil; (L.F.S.); (S.S.); (R.d.C.A.G.); (V.A.d.N.); (D.B.); (P.A.H.)
| |
Collapse
|
23
|
Qi Q, Wang Q, Wang Z, Gao W, Gong X, Wang L. Visnagin inhibits cervical cancer cells proliferation through the induction of apoptosis and modulation of PI3K/AKT/mTOR and MAPK signaling pathway. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
24
|
Alam M, Alam S, Shamsi A, Adnan M, Elasbali AM, Al-Soud WA, Alreshidi M, Hawsawi YM, Tippana A, Pasupuleti VR, Hassan MI. Bax/Bcl-2 Cascade Is Regulated by the EGFR Pathway: Therapeutic Targeting of Non-Small Cell Lung Cancer. Front Oncol 2022; 12:869672. [PMID: 35402265 PMCID: PMC8990771 DOI: 10.3389/fonc.2022.869672] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) comprises 80%-85% of lung cancer cases. EGFR is involved in several cancer developments, including NSCLC. The EGFR pathway regulates the Bax/Bcl-2 cascade in NSCLC. Increasing understanding of the molecular mechanisms of fundamental tumor progression has guided the development of numerous antitumor drugs. The development and improvement of rationally planned inhibitors and agents targeting particular cellular and biological pathways in cancer have been signified as a most important paradigm shift in the strategy to treat and manage lung cancer. Newer approaches and novel chemotherapeutic agents are required to accompany present cancer therapies for improving efficiency. Using natural products as a drug with an effective delivery system may benefit therapeutics. Naturally originated compounds such as phytochemicals provide crucial sources for novel agents/drugs and resources for tumor therapy. Applying the small-molecule inhibitors (SMIs)/phytochemicals has led to potent preclinical discoveries in various human tumor preclinical models, including lung cancer. In this review, we summarize recent information on the molecular mechanisms of the Bax/Bcl-2 cascade and EGFR pathway in NSCLC and target them for therapeutic implications. We further described the therapeutic potential of Bax/Bcl-2/EGFR SMIs, mainly those with more potent and selectivity, including gefitinib, EGCG, ABT-737, thymoquinone, quercetin, and venetoclax. In addition, we explained the targeting EGFR pathway and ongoing in vitro and in vivo and clinical investigations in NSCLC. Exploration of such inhibitors facilitates the future treatment and management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | | | - Anitha Tippana
- Regional Agricultural Research Station, Acharya N. G. Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Bangalore, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| |
Collapse
|
25
|
Jha NK, Arfin S, Jha SK, Kar R, Dey A, Gundamaraju R, Ashraf GM, Gupta PK, Dhanasekaran S, Abomughaid MM, Das SS, Singh SK, Dua K, Roychoudhury S, Kumar D, Ruokolainen J, Ojha S, Kesari KK. Re-establishing the comprehension of phytomedicine and nanomedicine in inflammation-mediated cancer signaling. Semin Cancer Biol 2022; 86:1086-1104. [PMID: 35218902 DOI: 10.1016/j.semcancer.2022.02.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/20/2022] [Accepted: 02/20/2022] [Indexed: 12/12/2022]
Abstract
Recent mounting evidence has revealed extensive genetic heterogeneity within tumors that drive phenotypic variation affecting key cancer pathways, making cancer treatment extremely challenging. Diverse cancer types display resistance to treatment and show patterns of relapse following therapy. Therefore, efforts are required to address tumor heterogeneity by developing a broad-spectrum therapeutic approach that combines targeted therapies. Inflammation has been progressively documented as a vital factor in tumor advancement and has consequences in epigenetic variations that support tumor instigation, encouraging all the tumorigenesis phases. Increased DNA damage, disrupted DNA repair mechanisms, cellular proliferation, apoptosis, angiogenesis, and its incursion are a few pro-cancerous outcomes of chronic inflammation. A clear understanding of the cellular and molecular signaling mechanisms of tumor-endorsing inflammation is necessary for further expansion of anti-cancer therapeutics targeting the crosstalk between tumor development and inflammatory processes. Multiple inflammatory signaling pathways, such as the NF-κB signaling pathway, JAK-STAT signaling pathway, MAPK signaling, PI3K/AKT/mTOR signaling, Wnt signaling cascade, and TGF-β/Smad signaling, have been found to regulate inflammation, which can be modulated using various factors such as small molecule inhibitors, phytochemicals, recombinant cytokines, and nanoparticles in conjugation to phytochemicals to treat cancer. Researchers have identified multiple targets to specifically alter inflammation in cancer therapy to restrict malignant progression and improve the efficacy of cancer therapy. siRNA-and shRNA-loaded nanoparticles have been observed to downregulate STAT3 signaling pathways and have been employed in studies to target tumor malignancies. This review highlights the pathways involved in the interaction between tumor advancement and inflammatory progression, along with the novel approaches of nanotechnology-based drug delivery systems currently used to target inflammatory signaling pathways to combat cancer.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India.
| | - Saniya Arfin
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec 125, Noida 201303, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, College Street, Kolkata 700073, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Plot 32-34, Knowledge Park III, Greater Noida 201310, India
| | - Sugapriya Dhanasekaran
- Medical Laboratory Sciences Department, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia
| | - Mosleh Mohammad Abomughaid
- Medical Laboratory Sciences Department, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia
| | - Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, 835215 Ranchi, Jharkhand, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144001, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | | | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec 125, Noida 201303, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland.
| |
Collapse
|
26
|
Jordan AC, Perry CGR, Cheng AJ. Promoting a pro-oxidant state in skeletal muscle: Potential dietary, environmental, and exercise interventions for enhancing endurance-training adaptations. Free Radic Biol Med 2021; 176:189-202. [PMID: 34560246 DOI: 10.1016/j.freeradbiomed.2021.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
Accumulating evidence now shows that supplemental antioxidants including vitamin C, vitamin E and N-Acetylcysteine consumption can suppress adaptations to endurance-type exercise by attenuating reactive oxygen and nitrogen species (RONS) formation within skeletal muscle. This emerging evidence points to the importance of pro-oxidation as an important stimulus for endurance-training adaptations, including mitochondrial biogenesis, endogenous antioxidant production, insulin signalling, angiogenesis and growth factor signaling. Although sustained oxidative distress is associated with many chronic diseases, athletes have, on average, elevated levels of certain endogenous antioxidants to maintain redox homeostasis. As a result, trained athletes may have a better capacity to buffer oxidants during and after exercise, resulting in a reduced oxidative eustress stimulus for adaptations. Thus, higher levels of RONS input and exercise-induced oxidative stress may benefit athletes in the pursuit of continuous endurance training redox adaptations. This review addresses why athletes should be looking to enhance exercise-induced oxidative stress and how it can be accomplished. Methods covered include high-intensity interval training, hyperthermia and heat stress, dietary antioxidant restriction and modified antioxidant timing, dietary antioxidants and polyphenols as adjuncts to exercise, and vitamin C as a pro-oxidant.
Collapse
Affiliation(s)
- Adam C Jordan
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada
| | - Christopher G R Perry
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada
| | - Arthur J Cheng
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, M3J 1P3, Toronto, Canada.
| |
Collapse
|
27
|
Mukherjee S, Ghosh S, Choudhury S, Gupta P, Adhikary A, Chattopadhyay S. Pomegranate Polyphenols Attenuate Inflammation and Hepatic Damage in Tumor-Bearing Mice: Crucial Role of NF-κB and the Nrf2/GSH Axis. J Nutr Biochem 2021; 97:108812. [PMID: 34224820 DOI: 10.1016/j.jnutbio.2021.108812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/12/2021] [Accepted: 06/13/2021] [Indexed: 12/27/2022]
Abstract
It has been widely reported that cancer, along with its treatment regimens, cause severe toxicity in the host. A suitable agent having chemopreventive properties as well as capabilities of ameliorating tumor- and drug-induced toxicities is of imminent need. Pomegranate has been projected as an excellent anti-tumor, anti-inflammatory and anti-oxidant agent. In this study, for the first time, we delineated the exact signaling cascade by which dietary supplementation of pomegranate fruit extract (PFE) protects tumor-bearing mice from tumor-induced hepatotoxicity. Increased activities of serum Alanine transaminase, Aspartate transaminase, Lactate dehydrogenase and Alkaline phosphatase, as well as histological studies confirmed the establishment of a state of hepatic dysfunction in tumor-bearers. Further investigations revealed that increased hepatic reactive oxygen species content and glutathione depletion-initiated apoptosis in these hepatocytes as we observed an alteration in the apoptotic proteins. PFE supplementation in tumor-bearing mice, on the other hand, differentially modulated redox-sensitive transcription factors Nrf2 and NF-κB, ultimately decreasing tumor-induced hepatic oxidative damage and cell death. siRNA-mediated inhibition of Nrf2 and NF-κB completely abolished the hepato-protective activities of PFE while pre-treatment of tumor-conditioned hepatocytes with N-acetyl cysteine augmented the cyto-protective properties of PFE. The present study clearly identified Nrf2/NF-κB/glutathione axis as the key factor behind the hepatoprotective potential of PFE. These findings would add to the existing knowledge about cancer chemoprevention by dietary polyphenols and might lead to the application of pomegranate polyphenols as supplement to escalate the effectiveness of cancer therapy by protecting normal cells from cancer related toxicities.
Collapse
Affiliation(s)
| | - Sayan Ghosh
- Department of Physiology, University of Calcutta; Kolkata, India
| | | | - Payal Gupta
- Department of Physiology, University of Calcutta; Kolkata, India
| | - Arghya Adhikary
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta; Kolkata, India; Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India.
| |
Collapse
|
28
|
Abd Rashid N, Abd Halim SAS, Teoh SL, Budin SB, Hussan F, Adib Ridzuan NR, Abdul Jalil NA. The role of natural antioxidants in cisplatin-induced hepatotoxicity. Biomed Pharmacother 2021; 144:112328. [PMID: 34653753 DOI: 10.1016/j.biopha.2021.112328] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is a potent platinum-based anticancer drug approved by the Food Drug Administration (FDA) in 1978. Despite its advantages against solid tumors, cisplatin confers toxicity to various tissues that limit its clinical uses. In cisplatin-induced hepatotoxicity, few mechanisms have been identified, which started as excess generation of reactive oxygen species that leads to oxidative stress, inflammation, DNA damage and apoptosis in the liver. Various natural products, plant extracts and oil rich in flavonoids, terpenoids, polyphenols, and phenolic acids were able to minimize oxidative stress by restoring the level of antioxidant enzymes and acting as an anti-inflammatory agent. Likewise, treatment with honey and royal jelly was demonstrated to decrease serum transaminases and scavenge free radicals in the liver after cisplatin administration. Medicinal properties of these natural products have a promising potential as a complementary therapy to counteract cisplatin-induced hepatotoxicity. This review concentrated on the protective role of several natural products, which has been proven in the laboratory findings to combat cisplatin-induced hepatotoxicity.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Selangor, Malaysia.
| | | | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Farida Hussan
- Human Biology Department, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
29
|
Costa PSD, Ramos PS, Ferreira C, Silva JL, El-Bacha T, Fialho E. Pro-Oxidant Effect of Resveratrol on Human Breast Cancer MCF-7 Cells is Associated with CK2 Inhibition. Nutr Cancer 2021; 74:2142-2151. [PMID: 34519606 DOI: 10.1080/01635581.2021.1977834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Casein kinase 2 (CK2) plays a critical role in the proliferation and apoptosis of cancer cells. Resveratrol is a bioactive compound with anticancer and anti-inflammatory effects. This study investigated the pro-oxidant cytotoxic effects of resveratrol in association with the inhibition of CK2 activity on human breast carcinoma cells MCF-7. We showed that resveratrol and TBB, an inhibitor of CK2, decreased cell viability in a concentration dependent manner with an IC50 value of 238 µM and 106 µM after 24 h, of treatment, respectively. Resveratrol and TBB decreased CK2 activity by 1.6 and 1.4-fold, respectively, and both significantly decreased mitochondrial membrane potential. However, only resveratrol increased reactive oxygen species (ROS) levels by 1.7-fold as opposed to TBB, which did not affect ROS levels. Indeed, incubating MCF-7 cells with the antioxidant polyethylene glycol-catalase (PEG-CAT) preserved cell viability from the cytotoxic effects of resveratrol, but not from TBB toxicity. This effect seemed to be related to PEG-CAT ability to prevent CK2 inhibition induced by resveratrol incubation. In conclusion, this study demonstrated that the cytotoxic effect of resveratrol on MCF-7 cells might be associated with its pro-oxidant action, which inhibited CK2 activity, affecting cell viability and mitochondrial function.
Collapse
Affiliation(s)
| | | | - Christian Ferreira
- Laboratório de Alimentos Funcionais, INJC, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Jerson Lima Silva
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregório Weber, IBqM, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Tatiana El-Bacha
- Núcleo de estudos com Bioativos, Mitocôndria e Metabolismo da Placenta, INJC, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Eliane Fialho
- Laboratório de Alimentos Funcionais, INJC, UFRJ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
30
|
Bjedov D, Mikuška A, Lackmann C, Begović L, Mikuška T, Velki M. Application of Non-Destructive Methods: Biomarker Assays in Blood of White Stork ( Ciconia ciconia) Nestlings. Animals (Basel) 2021; 11:2341. [PMID: 34438798 PMCID: PMC8388685 DOI: 10.3390/ani11082341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 01/31/2023] Open
Abstract
White stork (Ciconia ciconia) nestlings can provide quantitative information on the quality of the surrounding environment by indicating the presence of pollutants, as they depend on locally foraged food. This study represents the first comparison of biomarkers in two fractions of white stork nestling blood: plasma and S9 (the post-mitochondrial fraction). The aim of this study was to evaluate acetylcholinesterase (AChE), carboxylesterase (CES), glutathione S-transferase (GST), and glutathione reductase (GR), as well as to establish a novel fluorescence-based method for glutathione (GSH) and reactive oxygen species (ROS) detection in plasma and S9. Considering the enzymatic biomarkers, lower variability in plasma was detected only for AChE, as CES, GST, and GR had lower variability in S9. Enzyme activity was higher in plasma for AChE, CES, and GST, while GR had higher activity in S9. Regarding the fluorescence-based method, lower variability was detected in plasma for GSH and ROS, although higher GSH detection was reported in S9, and higher ROS was detected in plasma. The present study indicated valuable differences by successfully establishing protocols for biomarker measurement in plasma and S9 based on variability, enzyme activity, and fluorescence. For a better understanding of the environmental effects on nestlings' physiological condition, biomarkers can be measured in plasma and S9.
Collapse
Affiliation(s)
- Dora Bjedov
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (D.B.); (A.M.); (L.B.)
| | - Alma Mikuška
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (D.B.); (A.M.); (L.B.)
| | - Carina Lackmann
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Lidija Begović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (D.B.); (A.M.); (L.B.)
| | - Tibor Mikuška
- Croatian Society for Birds and Nature Protection, 31000 Osijek, Croatia;
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (D.B.); (A.M.); (L.B.)
| |
Collapse
|
31
|
Matou M, Bercion S, Marianne-Pepin T, Haddad P, Merciris P. Phenolic profiles and biological properties of traditional Phyllanthus amarus aqueous extracts used for diabetes. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Guzzetti L, Panzeri D, Ulaszewska M, Sacco G, Forcella M, Fusi P, Tommasi N, Fiorini A, Campone L, Labra M. Assessment of Dietary Bioactive Phenolic Compounds and Agricultural Sustainability of an African Leafy Vegetable Corchorus olitorius L. Front Nutr 2021; 8:667812. [PMID: 34277680 PMCID: PMC8280468 DOI: 10.3389/fnut.2021.667812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022] Open
Abstract
Corchorus olitorius L. is an African leafy vegetable of high nutritional interest. To assess its agricultural suitability to sustainable cultivation conditions and its potential benefits for human nutrition, its phytochemical content in response to conservation agriculture practices [i.e., no-tillage (NT) and cover crop maintenance] and low water regime were evaluated and compared with response under conventional agriculture management. Hydric stress and NT did not affect the content of antioxidant metabolites, compared to conventional agricultural practices. In both conditions, leaves were found to be a great source of phenolic compounds. The effect of these phenolic fractions was assessed on two colon cell phenotypes to evaluate putative nutraceutical properties. Polyphenol-enriched extracts (PEEs) displayed selective cytotoxic activities against tumor Caco-2 cells but not on the healthy CCD841 line. PEEs were able to trigger oxidative stress and to inhibit the activity of glutathione-independent antioxidant enzymes on Caco-2 cells. C. olitorius showed to be a promising crop for improving both agricultural sustainability and health benefits due to the great amount of antioxidant compounds in leaves, whose occurrence is not altered by stressful farming conditions. Given its high adaptability, the cultivation of this crop is therefore recommendable also in the Mediterranean Basin.
Collapse
Affiliation(s)
- Lorenzo Guzzetti
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | - Davide Panzeri
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | - Marynka Ulaszewska
- Department of Food Quality and Nutrition, Research and Innovation Center, Edmund Mach Foundation, Trento, Italy
| | - Grazia Sacco
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | - Matilde Forcella
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | - Paola Fusi
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | - Nicola Tommasi
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luca Campone
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | - Massimo Labra
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| |
Collapse
|
33
|
Arango-Varela SS, Luzardo-Ocampo I, Reyes-Dieck C, Yahia EM, Maldonado-Celis ME. Antiproliferative potential of Andean Berry (Vaccinium meridionale Swartz) juice in combination with Aspirin in human SW480 colon adenocarcinoma cells. J Food Biochem 2021; 45:e13760. [PMID: 33974285 DOI: 10.1111/jfbc.13760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022]
Abstract
Andean Berry (Vaccinium meridionale Sw.) is a South American fruit rich in phytochemicals with promising anti-cancer properties as co-adjuvants to nonsteroidal anti-inflammatory drugs such as Aspirin. This study aimed to evaluate the antiproliferative potential of Andean Berry Juice (ABJ) in combination with Aspirin in human SW480 colon adenocarcinoma cells. ABJ primarily contained 3,4-dihydroxybenzoic and chlorogenic acids. The combined treatment of ABJ (IC50 : 30.0 ± 0.11%) and Aspirin (IC50 : 20.0 ± 0.57) exhibited a higher (p < .01) antiproliferative effect than each counterpart. Moreover the same mixture displayed a lower reduced glutathione/oxidized glutathione ratio (GSH/GSSG) than the untreated cells. ABJ-Aspirin combination induced late apoptosis stage without stimulating mitochondrial depolarization and prompted phosphatidylserine relocalization. These results emphasize the antiproliferative potential of bioactive compounds from ABJ and Aspirin combinations. PRACTICAL APPLICATIONS: Natural products such as Andean Berry (V. meridionale Sw.) juice (ABJ) contains antioxidant polyphenols that could reduce the need to use non-steroidal anti-inflammatory drugs, currently employed in cancer treatment, to prevent its side effects. The high abundance of polyphenols from this underutilized berry could stimulate the standardization of its production and industrial exploitation to be transformed into suitable food products delivering natural bioactive compounds with potential anti-cancer effects in vitro.
Collapse
Affiliation(s)
- Sandra S Arango-Varela
- Biomedical Research and Innovation Group (GI2B), Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| | - Ivan Luzardo-Ocampo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico.,Research and Graduate Program in Food Science, Universidad Autónoma de Querétaro, Queretaro, Mexico
| | - Camilo Reyes-Dieck
- Escuela de Nutrición y Dietética, Universidad de Antiquia, Medellín, Colombia
| | - Elhadi M Yahia
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Queretaro, Mexico
| | | |
Collapse
|
34
|
Nguyen THP, Kumar VB, Ponnusamy VK, Mai TTT, Nhat PT, Brindhadevi K, Pugazhendhi A. Phytochemicals intended for anticancer effects at preclinical levels to clinical practice: Assessment of formulations at nanoscale for non-small cell lung cancer (NSCLC) therapy. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Huang H, Kong L, Luan S, Qi C, Wu F. Ligustrazine Suppresses Platelet-Derived Growth Factor-BB-Induced Pulmonary Artery Smooth Muscle Cell Proliferation and Inflammation by Regulating the PI3K/AKT Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:437-459. [PMID: 33622214 DOI: 10.1142/s0192415x21500208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a serious pulmonary vascular disease. Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) plays an important role in the course of this disease. Ligustrazine is an alkaloid monomer extracted from the rhizome of the herb Ligusticum chuanxiong. It is often used to treat cardiovascular diseases, but its effect on PAH has rarely been reported. This study aims to explore the protective effect and mechanism of ligustrazine on PAH. In the in vivo experiment, monocrotaline (MCT) was used to induce PAH in rats, and then ligustrazine (40, 80, 160 mg/kg/day) or sildenafil (25 mg/kg/day) was administered. Four weeks later, hemodynamic changes, right ventricular hypertrophy index, lung morphological characteristics, inflammatory factors, phosphoinositide 3-kinase (PI3K), and AKT expression were evaluated. In addition, primary rat PASMCs were extracted by the tissue adhesion method, a proliferation model was established with platelet-derived growth factor-BB (PDGF-BB), and the cells were treated with ligustrazine to investigate its effects on cell proliferation, inflammation, and cell cycle distribution. The results indicate that ligustrazine can markedly alleviate right ventricular systolic pressure, right ventricular hypertrophy, pulmonary vascular remodeling, and inflammation caused by MCT, and that it decreased PI3K and AKT phosphorylation expression. Moreover, ligustrazine can inhibit the proliferation and inflammation of PASMCs and arrest the progression of G0/G1 to S phase through the PI3K/AKT signaling pathway. Therefore, we conclude that ligustrazine may inhibit the proliferation and inflammation of PASMCs by regulating the activation of the PI3K/AKT signaling pathway, thereby attenuating MCT-induced PAH in rats. Collectively, these findings suggest that ligustrazine may be a promising therapeutic for PAH.
Collapse
Affiliation(s)
- Huiping Huang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Lingjin Kong
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Shaohua Luan
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Chuanzong Qi
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Fanrong Wu
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| |
Collapse
|
36
|
Pandey P, Khan F. Jab1 Inhibition by Methanolic Extract of Moringa Oleifera Leaves in Cervical Cancer Cells: A Potent Targeted Therapeutic Approach. Nutr Cancer 2020; 73:2411-2419. [PMID: 32996344 DOI: 10.1080/01635581.2020.1826989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Modern research propounded that alteration in signaling pathways have shown strong connection with the progression of cervical cancer and modulation of these pathways by natural compounds could be a better treatment approach for the management of cervical cancer. Additionally, inhibitory role of methanolic extract of Moringa oleifera leaves against Jab1 has not been elucidated yet. Therefore, we have elucidated the inhibitory potential of MMLE against Jab1 in cervical cancer by analyzing several In Vitro assays. The MMLE treatment in cervical cancer cells showed decreased cell growth in a dose and time dependent manner. Furthermore, MMLE treated cervical cells have also depicted enhanced nuclear condensation (apoptotic induction potential) confirmed by Hoechst analysis. RT-PCR results clearly illustrated the inhibitory potential of MMLE against Jab1 via down regulating its expression. Conversely, a significant increase in p27 expression was also reported which could explain the cells growth arrest at G0/G1 phase. Additionally, enhanced ROS production and caspase-3 activation explains one of the possible mechanisms behind the inhibitory potential of MMLE against Jab1 in cervical cancer cells (HeLa). Thus our experimental findings may pave a potent phyto compound for targeting a crucial signalosome (Jab1) in cervical cancer.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| |
Collapse
|
37
|
Colavita JPM, Todaro JS, de Sousa M, May M, Gómez N, Yaneff A, Di Siervi N, Aguirre MV, Guijas C, Ferrini L, Davio C, Rodríguez JP. Multidrug resistance protein 4 (MRP4/ABCC4) is overexpressed in clear cell renal cell carcinoma (ccRCC) and is essential to regulate cell proliferation. Int J Biol Macromol 2020; 161:836-847. [PMID: 32553977 DOI: 10.1016/j.ijbiomac.2020.06.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Kidney cancer accounts for 2.5% of all cancers, with an annual global incidence of almost 300,000 cases leading to 111,000 deaths. Approximately 85% of kidney tumors are renal cell carcinoma (RCC) and their major histologic subtype is clear cell renal cell carcinoma (ccRCC). Although new therapeutic treatments are being designed and applied based on the combination of tyrosine kinase inhibitors and immunotherapy, no major impact on the mortality has been reported so far. MRP4 is a pump efflux that transporters multiple endogenous and exogenous substances. Recently it has been associated with tumoral persistence and cell proliferation in several types of cancer including pancreas, lung, ovary, colon, ostesarcoma, etc. Herein, we demonstrate for the first time, that MRP4 is overexpressed in ccRCC tumors, compared to control renal tissues. In addition, using cell culture models, we observed that MRP4 pharmacological inhibition produces an imbalance in cAMP metabolism, induces cell arrest, changes in lipid composition, increase in cytoplasmic lipid droplets and finally apoptosis. These data provide solid evidence for the future evaluation of MRP4 as a possible new therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Juan Pablo Melana Colavita
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Medicina, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina
| | - Juan Santiago Todaro
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Medicina, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina
| | - Maximiliano de Sousa
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1000 Buenos Aires, Argentina
| | - María May
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1000 Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1000 Buenos Aires, Argentina
| | - Agustin Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1000 Buenos Aires, Argentina
| | - Nicolas Di Siervi
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1000 Buenos Aires, Argentina
| | - María Victoria Aguirre
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Medicina, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina
| | - Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| | - Leandro Ferrini
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1000 Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1000 Buenos Aires, Argentina
| | - Juan Pablo Rodríguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Medicina, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina.
| |
Collapse
|
38
|
Liu B, Jia Z, Li C, Chen J, Fang T. Hypolipidemic and anti-atherogenic activities of crude polysaccharides from abalone viscera. Food Sci Nutr 2020; 8:2524-2534. [PMID: 32405408 PMCID: PMC7215218 DOI: 10.1002/fsn3.1548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/01/2023] Open
Abstract
This study was performed to evaluate the hypolipidemic and anti-atherogenic activities of the crude polysaccharides extracted from abalone viscera (AVCP). The major functional groups of purified polysaccharides were analyzed by infrared spectroscopy (IR). Male Kunming mice (SPF) were divided into six groups and were treated with normal diet or high-fat diet with AVCP or Xuezhikang (hypotensive drug) for 5 weeks. Physicochemnical analysis of AVCP showed the presence of 60.4% polysaccharides, 17.9% protein, 6.0% fat and 10.9% moisture. The IR analysis of AVP showed the presence of functional groups of sugar moiety and sulfate groups. The results demonstrated that AVCP not only led to significant reduction of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and increase of high-density lipoprotein cholesterol (HDL-C) in plasma, but also to significant increments of malondialdehyde (MDA) and superoxide dismutase (SOD) activities. However, AVCP played no role in mice weight. Furthermore, the results of the photomicrograph of liver tissue showed that AVCP reduced lipid droplets and prevented the disordered structure of the liver. The results suggested that AVCP exhibited significantly hypolipidemic and anti-atherogenic activities.
Collapse
Affiliation(s)
- Binxiong Liu
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhen Jia
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Changcheng Li
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
- Engineering Research Center of Ministry of Education: Fujian‐Taiwan Featured Marine Food Processing and Nutritional HealthFuzhouChina
| | - Jinquan Chen
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ting Fang
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
- Engineering Research Center of Ministry of Education: Fujian‐Taiwan Featured Marine Food Processing and Nutritional HealthFuzhouChina
| |
Collapse
|
39
|
Abstract
Polyphenols are naturally occurring compounds in plants and they are the most abundant antioxidants in the human diet. Due to their considerable structural diversity, this largely influences their bioavailability. Since a large proportion of polyphenols remains unabsorbed along the gastrointestinal tract, they may accumulate in the large intestine, where most of them are extensively metabolized by the intestinal microbiota. The formation of bioactive polyphenol-derived metabolites may also benefit the health status of the subjects, although the mechanisms have not been delineated. This review aims to highlight the impact of polyphenols on gut health and the modes of action could be through modulation of intestinal barrier function, innate and adaptive immune response, signaling pathways, as well as the ability to modify gut microbiota composition. The review will conclude by presenting future perspective and challenges of polyphenols application in food products to be used for preventing or treating diseases.
Collapse
Affiliation(s)
- Murphy L Y Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Vanessa Anna Co
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
40
|
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front Pharmacol 2020; 10:1614. [PMID: 32116665 PMCID: PMC7025531 DOI: 10.3389/fphar.2019.01614] [Citation(s) in RCA: 464] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is a severe health problem that continues to be a leading cause of death worldwide. Increasing knowledge of the molecular mechanisms underlying cancer progression has led to the development of a vast number of anticancer drugs. However, the use of chemically synthesized drugs has not significantly improved the overall survival rate over the past few decades. As a result, new strategies and novel chemoprevention agents are needed to complement current cancer therapies to improve efficiency. Naturally occurring compounds from plants known as phytochemicals, serve as vital resources for novel drugs and are also sources for cancer therapy. Some typical examples include taxol analogs, vinca alkaloids such as vincristine, vinblastine, and podophyllotoxin analogs. These phytochemicals often act via regulating molecular pathways which are implicated in growth and progression of cancer. The specific mechanisms include increasing antioxidant status, carcinogen inactivation, inhibiting proliferation, induction of cell cycle arrest and apoptosis; and regulation of the immune system. The primary objective of this review is to describe what we know to date of the active compounds in the natural products, along with their pharmacologic action and molecular or specific targets. Recent trends and gaps in phytochemical based anticancer drug discovery are also explored. The authors wish to expand the phytochemical research area not only for their scientific soundness but also for their potential druggability. Hence, the emphasis is given to information about anticancer phytochemicals which are evaluated at preclinical and clinical level.
Collapse
Affiliation(s)
- Amit S Choudhari
- Combi-Chem Bio-Resource Center, Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
| | - Pallavi C Mandave
- Interactive Research School of Health Affairs, Bharati Vidyapeeth Deemed University, Pune, India
| | - Manasi Deshpande
- Department of Dravyaguna Vigan, Ayurved Pharmacology, College of Ayurved, Bharati Vidyapeeth Deemed University, Pune, India
| | | | - Om Prakash
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
41
|
Wang X, Li H, Liu Y, Wu H, Wang H, Jin S, Lu Y, Chang S, Liu R, Peng Y, Guo Z, Wang X. Velvet antler methanol extracts (MEs) protects against oxidative stress in Caenorhabditis elegans by SKN-1. Biomed Pharmacother 2019; 121:109668. [PMID: 31766103 DOI: 10.1016/j.biopha.2019.109668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
Velvet antler is one of the most important animal medicines or functional foods widely used in East Asia for many centuries, which has several biological activities including anti-ageing and health promotion. To date, the mechanism underlying these effects of velvet antler is widely studied by its protein or polypeptide components. Few studies have been reported for the function of the other components in velvet antler. Herein, C. elegans is used as the model animal to dissect how none protein components of velvet antler affect in vivo oxidative stress. Methanol extracts (MEs) from velvet antler which has few protein components extends the maximum lifespan of C. elegans compared to the control under oxidative stress, while water extracts (WEs) which is protein-rich component has no apparent function. The activity of MEs is mediated by clk-1 signaling pathway, but not via daf-2, eat-2 or glp-1 pathway. Further investigations show MEs decrease endogenous ROS by promoting SKN-1 nuclei translocation, subsequently up-regulating the expression of its target genes gst-4, gst-7 and gst-10 in C. elegans. In all, MEs, the none protein components of velvet antler, protects against oxidative stress in C. elegans, which indicates it might be a product with potential of being a curative medicine.
Collapse
Affiliation(s)
- Xue Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Ying Liu
- Key Laboratory of Special Animal Molecular Biology of Jilin Province, Specialty Research Institute of Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Hua Wu
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Sha Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shuzhuo Chang
- Key Laboratory of Special Animal Molecular Biology of Jilin Province, Specialty Research Institute of Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Renjie Liu
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China
| | - Yinghua Peng
- Key Laboratory of Special Animal Molecular Biology of Jilin Province, Specialty Research Institute of Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China.
| | - Zhijun Guo
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China; College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Xiaohui Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
42
|
Kumar JP, Mandal BB. Silk sericin induced pro-oxidative stress leads to apoptosis in human cancer cells. Food Chem Toxicol 2019; 123:275-287. [DOI: 10.1016/j.fct.2018.10.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
|
43
|
Hoes MF, Grote Beverborg N, Kijlstra JD, Kuipers J, Swinkels DW, Giepmans BNG, Rodenburg RJ, van Veldhuisen DJ, de Boer RA, van der Meer P. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur J Heart Fail 2018; 20:910-919. [PMID: 29484788 PMCID: PMC5993224 DOI: 10.1002/ejhf.1154] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/29/2017] [Accepted: 01/15/2017] [Indexed: 12/28/2022] Open
Abstract
AIMS Iron deficiency is common in patients with heart failure and associated with a poor cardiac function and higher mortality. How iron deficiency impairs cardiac function on a cellular level in the human setting is unknown. This study aims to determine the direct effects of iron deficiency and iron repletion on human cardiomyocytes. METHODS AND RESULTS Human embryonic stem cell-derived cardiomyocytes were depleted of iron by incubation with the iron chelator deferoxamine (DFO). Mitochondrial respiration was determined by Seahorse Mito Stress test, and contractility was directly quantified using video analyses according to the BASiC method. The activity of the mitochondrial respiratory chain complexes was examined using spectrophotometric enzyme assays. Four days of iron depletion resulted in an 84% decrease in ferritin (P < 0.0001) and significantly increased gene expression of transferrin receptor 1 and divalent metal transporter 1 (both P < 0.001). Mitochondrial function was reduced in iron-deficient cardiomyocytes, in particular ATP-linked respiration and respiratory reserve were impaired (both P < 0.0001). Iron depletion affected mitochondrial function through reduced activity of the iron-sulfur cluster containing complexes I, II and III, but not complexes IV and V. Iron deficiency reduced cellular ATP levels by 74% (P < 0.0001) and reduced contractile force by 43% (P < 0.05). The maximum velocities during both systole and diastole were reduced by 64% and 85%, respectively (both P < 0.001). Supplementation of transferrin-bound iron recovered functional and morphological abnormalities within 3 days. CONCLUSION Iron deficiency directly affects human cardiomyocyte function, impairing mitochondrial respiration, and reducing contractility and relaxation. Restoration of intracellular iron levels can reverse these effects.
Collapse
Affiliation(s)
- Martijn F Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niels Grote Beverborg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J David Kijlstra
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeroen Kuipers
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dorine W Swinkels
- Department of Laboratory Medicine, 830 Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Richard J Rodenburg
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, 774 Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
44
|
Phull AR, Nasir B, Haq IU, Kim SJ. Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem Biol Interact 2017; 281:121-136. [PMID: 29258867 DOI: 10.1016/j.cbi.2017.12.024] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022]
Abstract
There are numerous extra- and intra-cellular processes involved in the production of reactive oxygen species (ROS). Augmented ROS generation can cause the damage of biomolecules such as proteins, nucleic acid and lipids. ROS act as an intracellular signaling component and is associated with various inflammatory responses, chronic arthropathies, including rheumatoid arthritis (RA). It is well documented that ROS can activate different signaling pathways having a vital importance in the patho-physiology of RA. Hence, understanding of the molecular pathways and their interaction might be advantageous in the development of novel therapeutic approaches for RA.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongju Daehak-Ro, Gongju-Si, Chungnam, 32588, Republic of Korea
| | - Bakht Nasir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongju Daehak-Ro, Gongju-Si, Chungnam, 32588, Republic of Korea.
| |
Collapse
|
45
|
Antioxidant Potential of Selected Korean Edible Plant Extracts. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7695605. [PMID: 29234683 PMCID: PMC5695029 DOI: 10.1155/2017/7695605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/20/2017] [Accepted: 09/24/2017] [Indexed: 01/09/2023]
Abstract
This study aimed to evaluate the antioxidant activity of various plant extracts. A total of 94 kinds of edible plant extracts obtained from the Korea Plant Extract Bank were screened for cytotoxicity, following which the total phenolic content of 24 shortlisted extracts was determined. Of these, extracts from three plants, namely, Castanea crenata (CC) leaf, Camellia japonica (CJ) fruit, and Viburnum dilatatum (VD) leaf, were examined for antioxidant capabilities by measuring radical scavenging activity, ferric reducing/antioxidant power, and lipid peroxidation inhibitory activity. In addition, cellular antioxidant activities of the three extracts were assessed by a cell-based dichlorofluorescein assay and antioxidant response element (ARE) reporter activity assay. The results demonstrated that all three extracts concentration-dependently scavenged free radicals, inhibited lipid peroxidation, reduced the cellular level of reactive oxygen species, and increased ARE-luciferase activity, indicating antioxidant enzyme-inducing potential. In particular, CJ extract showed significantly greater antioxidative activity and antimigratory effect in a breast cancer cell line compared to CC and VD extracts. Hence, CJ extract deserves further study for its in vivo functionality or biologically active constituents.
Collapse
|
46
|
Xu W, Yang M, Gao J, Zhang Y, Tao L. Oxidative stress and DNA damage induced by spinosad exposure in Spodoptera frugiperda Sf9 cells. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1364708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Wenping Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Mingjun Yang
- State Key Labs of Family Planning Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, People’s Republic of China
| | - Jufang Gao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, People’s Republic of China
| | - Yang Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Liming Tao
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| |
Collapse
|
47
|
Kolesnikova LI, Semenova NV, Solodova EI, Madaeva IM. Oxidative stress in women with insomnia in different stages of menopause. TERAPEVT ARKH 2017; 89:50-56. [DOI: 10.17116/terarkh201789850-56] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aim. To investigate of a lipid peroxidation (LPO) process and the antioxidant defense system (ADS) in peri- and postmenopausal women with insomnia. Subjects and methods. 47 perimenopausal women and 71 postmenopausal ones were examined. Each group was divided into 2 subgroups: 1) individuals with insomnia and 2) controls. LPO-ADS spectrophotometric studies were used in the investigation. Results. There was an increase in the serum levels of ketodienes and conjugated trienes and a decrease in those of α-tocopherol and retinol in postmenopause versus in perimenopause. In insomnia, there was a rise in the level of ketodienes and conjugated trienes in perimenopause; LPO substrates with conjugated double bonds, diene conjugates, and thiobarbituric acid-active products in postmenopause. The indicators of ADS do not differ from those in the controls. The integral indicator of oxidative stress assessment suggests that there is a LPO-ADS imbalance in the menopausal women with insomnia, which is most pronounced in postmenopause. Conclusion. The findings suggest that the patients with insomnia develop oxidative stress that is more marked in postmenopause.
Collapse
|
48
|
Miranda N, Volpato H, da Silva Rodrigues JH, Caetano W, Ueda-Nakamura T, de Oliveira Silva S, Nakamura CV. The photodynamic action of pheophorbide a induces cell death through oxidative stress in Leishmania amazonensis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:342-354. [PMID: 28821011 DOI: 10.1016/j.jphotobiol.2017.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023]
Abstract
Leishmaniasis is a disease caused by hemoflagellate protozoa, affecting millions of people worldwide. The difficulties of treating patients with this parasitosis include the limited efficacy and many side effects of the currently available drugs. Therefore, the search for new compounds with leishmanicidal action is necessary. Photodynamic therapy has been studied in the medical field because of its selectivity, utilizing a combination of visible light, a photosensitizer compound, and singlet oxygen to reach the area of treatment. The continued search for selective alternative treatments and effective targets that impact the parasite and not the host are fundamentally important for the development of new drugs. Pheophorbide a is a photosensitizer that may be promising for the treatment of leishmaniasis. The present study evaluated the in vitro biological effects of pheophorbide a and its possible mechanisms of action in causing cell death in L. amazonensis. Pheophorbide a was active against promastigote and amastigote forms of the parasite. After treatment, we observed ultrastructural alterations in this protozoan. We also observed changes in promastigote macromolecules and organelles, such as loss of mitochondrial membrane potential [∆Ψm], lipid peroxidation, an increase in lipid droplets, DNA fragmentation, phosphatidylserine exposure, an increase in caspase-like activity, oxidative imbalance, and a decrease in antioxidant defense systems. These findings suggest that cell death occurred through apoptosis. The mechanism of cell death in intracellular amastigotes appeared to involve autophagy, in which we clearly observed an increase in reactive oxygen species, a compromised ∆Ψm, and an increase in the number of autophagic vacuoles. The present study contributes to the development of new photosensitizers against L. amazonensis. We also elucidated the mechanism of action of pheophorbide a, mainly in intracellular amastigotes, which is the most clinically relevant form of this parasite.
Collapse
Affiliation(s)
- Nathielle Miranda
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| | - Hélito Volpato
- Post-Graduate Program in Biological Sciences, Cellular and Molecular Biological Concentration Area, State University of Maringá, Maringá, Paraná, Brazil.
| | - Jean Henrique da Silva Rodrigues
- Post-Graduate Program in Biological Sciences, Cellular and Molecular Biological Concentration Area, State University of Maringá, Maringá, Paraná, Brazil.
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, Paraná, Brazil.
| | - Tânia Ueda-Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| | - Sueli de Oliveira Silva
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| | - Celso Vataru Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil; Post-Graduate Program in Biological Sciences, Cellular and Molecular Biological Concentration Area, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
49
|
Selby-Pham SNB, Cottrell JJ, Dunshea FR, Ng K, Bennett LE, Howell KS. Dietary Phytochemicals Promote Health by Enhancing Antioxidant Defence in a Pig Model. Nutrients 2017; 9:E758. [PMID: 28708113 PMCID: PMC5537872 DOI: 10.3390/nu9070758] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022] Open
Abstract
Phytochemical-rich diets are protective against chronic diseases and mediate their protective effect by regulation of oxidative stress (OS). However, it is proposed that under some circumstances, phytochemicals can promote production of reactive oxygen species (ROS) in vitro, which might drive OS-mediated signalling. Here, we investigated the effects of administering single doses of extracts of red cabbage and grape skin to pigs. Blood samples taken at baseline and 30 min intervals for 4 hours following intake were analyzed by measures of antioxidant status in plasma, including Trolox equivalent antioxidant capacity (TEAC) and glutathione peroxidase (GPx) activity. In addition, dose-dependent production of hydrogen peroxide (H₂O₂) by the same extracts was measured in untreated commercial pig plasma in vitro. Plasma from treated pigs showed extract dose-dependent increases in non-enzymatic (plasma TEAC) and enzymatic (GPx) antioxidant capacities. Similarly, extract dose-dependent increases in H₂O₂ were observed in commercial pig plasma in vitro. The antioxidant responses to extracts by treated pigs were highly correlated with their respective yields of H₂O₂ production in vitro. These results support that dietary phytochemicals regulate OS via direct and indirect antioxidant mechanisms. The latter may be attributed to the ability to produce H₂O₂ and to thereby stimulate cellular antioxidant defence systems.
Collapse
Affiliation(s)
- Sophie N B Selby-Pham
- Faculty of Veterinary and Agricultural, The University of Melbourne, Parkville, VIC 3010, Australia.
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, VIC 3010, Australia.
| | - Jeremy J Cottrell
- Faculty of Veterinary and Agricultural, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Frank R Dunshea
- Faculty of Veterinary and Agricultural, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Ken Ng
- Faculty of Veterinary and Agricultural, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Louise E Bennett
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, VIC 3010, Australia.
| | - Kate S Howell
- Faculty of Veterinary and Agricultural, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
50
|
Chen YF, Liu H, Luo XJ, Zhao Z, Zou ZY, Li J, Lin XJ, Liang Y. The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells. Crit Rev Oncol Hematol 2017; 112:21-30. [PMID: 28325262 DOI: 10.1016/j.critrevonc.2017.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 11/27/2016] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
As a clonal disease of hematopoietic stem cells (HSCs), the etiology and pathogenesis of leukemia is not fully understood. Recent studies suggest that cellular homeostasis plays an essential role in maintaining the function of HSCs because dysregulation of cellular homeostasis is one of the major factors underlying the malignant transformation of HSCs. Reactive oxygen species (ROS) and autophagy, key factors regulating cellular homeostasis, are commonly observed in the human body. Autophagy can be induced by ROS through a variety of signaling pathways, and conversely inhibits ROS-induced damage to cells and tissues. ROS and autophagy coordinate to maintain cellular homeostasis. Previous studies have demonstrated that both of ROS and autophagy play important roles in the development of leukemia and are closely involved in drug resistance in leukemia. Interference with cellular homeostasis by promoting programmed leukemia cell death via ROS and autophagy has been verified to be an efficient technique in the treatment of leukemia. However, the critical roles of ROS and autophagy in the development of leukemia are largely unknown. In this review, we summarize the roles of ROS and autophagy in the pathogenesis of leukemia, which may allow the identification of novel targets and drugs for the treatment of leukemia based on the regulation of HSCs homeostasis through ROS and autophagy.
Collapse
Affiliation(s)
- Yong-Feng Chen
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Hao Liu
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Xin-Jing Luo
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhiqiang Zhao
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhen-You Zou
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China; Biochemistry Department of Purdue University, West Lafayette, IN 47906, USA
| | - Jing Li
- Department of Histology and Embryology, North SiChuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiao-Jing Lin
- Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China
| | - Yong Liang
- Institute of Tumor, School of Medicine of Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|