1
|
Gohal G, Moni SS, Bakkari MA, Elmobark ME. A Review on Asthma and Allergy: Current Understanding on Molecular Perspectives. J Clin Med 2024; 13:5775. [PMID: 39407835 PMCID: PMC11476424 DOI: 10.3390/jcm13195775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Asthma, a complex disease characterized by persistent airway inflammation, remains an urgent global health concern. We explored the critical role of allergic biomarkers and dysregulated immune system in asthma through an extensive literature review in databases such as Web of Science, PubMed, EMBASE, Scopus, and Google Scholar. This review summarizes the growing data on the pivotal role of allergic biomarkers and dysregulated immune system in the development and evolution of asthma. Recent studies have uncovered several biomarkers that elucidate intrinsic allergic mechanisms in individuals with asthma. This article highlights these biomarkers' potential in predicting asthma onset, assessing its intensity, guiding therapeutic interventions, and tracking disease progression. We also explore the innovative therapeutic prospects arising from the convergence of allergy and dysregulated immune system in asthma and emphasize the potential for precision medicine approaches. Understanding allergic biomarkers intertwined with a dysregulated immune system heralds a new era in asthma treatment and points to improved and individualized treatment modalities.
Collapse
Affiliation(s)
- Gassem Gohal
- Department of Pediatrics, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sivakumar S. Moni
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Mohammed Ali Bakkari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | |
Collapse
|
2
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2695-x. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
3
|
Sarfi S, Azaryan E, Naseri M. Immune System of Dental Pulp in Inflamed and Normal Tissue. DNA Cell Biol 2024; 43:369-386. [PMID: 38959180 DOI: 10.1089/dna.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Teeth are vulnerable to structural compromise, primarily attributed to carious lesions, in which microorganisms originating from the oral cavity deteriorate the mineralized structures of enamel and dentin, subsequently infiltrating the underlying soft connective tissue, known as the dental pulp. Nonetheless, dental pulp possesses the necessary capabilities to detect and defend against bacteria and their by-products, using a variety of intricate defense mechanisms. The pulp houses specialized cells known as odontoblasts, which encounter harmful substances produced by oral bacteria. These cells identify pathogens at an early stage and commence the immune system response. As bacteria approach the pulp, various cell types within the pulp, such as different immune cells, stem cells, fibroblasts, as well as neuronal and vascular networks, contribute a range of defense mechanisms. Therefore, the immune system is present in the healthy pulp to restrain the initial spread of pathogens, and then in the inflamed pulp, it prepares the conditions for necrosis or regeneration, so inflammatory response mechanisms play a critical role in maintaining tissue homeostasis. This review aims to consolidate the existing literature on the immune system in dental pulp, encompassing current knowledge on this topic that explains the diverse mechanisms of recognition and defense against pathogens exhibited by dental pulp cells, elucidates the mechanisms of innate and adaptive immunity in inflamed pulp, and highlights the difference between inflamed and normal pulp tissue.
Collapse
Affiliation(s)
- Sepideh Sarfi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsaneh Azaryan
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular, and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
4
|
Li Y, Wang W, Liu Y, Li S, Wang J, Hou L. Diminished Immune Response and Elevated Abundance in Gut Microbe Dubosiella in Mouse Models of Chronic Colitis with GBP5 Deficiency. Biomolecules 2024; 14:873. [PMID: 39062588 PMCID: PMC11274912 DOI: 10.3390/biom14070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Guanylate binding protein 5 (GBP5) is an emerging immune component that has been increasingly recognized for its involvement in autoimmune diseases, particularly inflammatory bowel disease (IBD). IBD is a complex disease involving inflammation of the gastrointestinal tract. Here, we explored the functional significance of GBP5 using Gbp5 knockout mice and wildtype mice exposed to dextran sulfate sodium (DSS) to generate chronic colitis model. We found that Gbp5 deficiency protected mice from DSS-induced chronic colitis. Transcriptome analysis of colon tissues showed reduced immune responses in Gbp5 knockout mice compared to those in corresponding wildtype mice. We further observed that after repeated DSS exposure, the gut microbiota was altered, both in wildtype mice and Gbp5 knockout mice; however, the gut microbiome health index was higher in the Gbp5 knockout mice. Notably, a probiotic murine commensal bacterium, Dubosiella, was predominantly enriched in these knockout mice. Our findings suggest that GBP5 plays an important role in promoting inflammation and dysbiosis in the intestine, the prevention of which might therefore be worth exploring in regards to IBD treatment.
Collapse
Affiliation(s)
- Yichen Li
- Medical College, Jiaying University, Meizhou 514031, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, Department of General Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Wenxia Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, Department of General Surgery, The Six Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yuxuan Liu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (S.L.); (J.W.)
| | - Senru Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (S.L.); (J.W.)
| | - Jingyu Wang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (S.L.); (J.W.)
| | - Linlin Hou
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (S.L.); (J.W.)
| |
Collapse
|
5
|
Xing Y, Shi H, Wang C, Yang Y. Clinical features and risk factors for Sjogren's syndrome patients suffering from oral candidiasis in Shanxi, China. BMC Oral Health 2024; 24:812. [PMID: 39020326 PMCID: PMC11256585 DOI: 10.1186/s12903-024-04595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
OBJECTIVES To investigate the clinical features and risk factors of Sjogren's Syndrome (SS) patients suffering from oral candidiasis and to provide a foundation for the prevention and treatment of oral candidiasis in SS patients. METHODS The medical records of 479 SS patients admitted to the Second Hospital of Shanxi Medical University from 2018 to 2020 were analysed to determine the clinical characteristics and risk factors that influence the occurrence of oral candidiasis infection in SS patients. RESULTS Patients with oral candidiasis were older than those without oral candidiasis (P < 0.05). Male SS patients had greater oral candidiasis rates (P < 0.05). Unstimulated whole saliva (UWS) and stimulated whole saliva (SWS) were both shown to be adversely associated with oral Candida infections (P < 0.001). Logistic regression revealed that a low UWS was an independent risk factor for oral Candida infections in SS patients (OR: 0.004, P = 0.023). Greater WBC counts (OR: 1.22, P < 0.001), lower haemoglobin levels (OR: 0.97, P = 0.007), lower serum albumin levels (OR: 0.88, P < 0.001), lower IgG levels (OR: 0.91, P = 0.011), lower IgA levels (OR: 0.75, P = 0.011), and lower IgM levels (OR: 0.91, P = 0.015) were found in patients with oral Candida infections. Patients on immunosuppressive medications (OR: 0.32, P = 0.011), particularly rapamycin (P < 0.001), had a decreased rate of oral Candida infections. CONCLUSIONS Patients with oral candidiasis were older than those without oral candidiasis. Male SS patients are more likely to have oral candidiasis. Individuals with lower UWS and SWS are more susceptible to oral Candida infection. Oral Candida infections in SS patients depend on their immunological status. Rapamycin may increase the abundance of Treg cells to reduce oral Candida infection in SS patients.
Collapse
Affiliation(s)
- Yexing Xing
- The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Honghong Shi
- The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Caihong Wang
- The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ying Yang
- The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China.
| |
Collapse
|
6
|
Rungelrath V, Ahmed M, Hicks L, Miller SM, Ryter KT, Montgomery K, Ettenger G, Riffey A, Abdelwahab WM, Khader SA, Evans JT. Vaccination with Mincle agonist UM-1098 and mycobacterial antigens induces protective Th1 and Th17 responses. NPJ Vaccines 2024; 9:100. [PMID: 38844494 PMCID: PMC11156909 DOI: 10.1038/s41541-024-00897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the top infectious killers in the world. The only licensed vaccine against TB, Bacille Calmette-Guérin (BCG), provides variable protection against pulmonary TB, especially in adults. Hence, novel TB vaccine approaches are urgently needed. Both Th1 and Th17 responses are necessary for protection against TB, yet effective adjuvants and vaccine delivery systems for inducing robust Th1 and Th17 immunity are lacking. Herein we describe a synthetic Mincle agonist, UM-1098, and a silica nanoparticle delivery system that drives Th1/Th17 responses to Mtb antigens. Stimulation of human peripheral blood mononuclear cells (hPBMCs) with UM-1098 induced high levels of Th17 polarizing cytokines IL-6, IL-1β, IL-23 as well as IL-12p70, IL-4 and TNF-α in vitro. PBMCs from both C57BL/6 and BALB/c mice responded with a similar cytokine pattern in vitro and in vivo. Importantly, intramuscular (I.M.) vaccination with UM-1098-adjuvanted TB antigen M72 resulted in significantly higher antigen-specific IFN-γ and IL-17A levels in C57BL/6 wt mice than Mincle KO mice. Vaccination of C57BL/6 wt mice with immunodominant Mtb antigens ESAT6/Ag85B or M72 resulted in predominantly Th1 and Th17 responses and induced antigen-specific serum antibodies. Notably, in a virulent Mtb challenge model, vaccination with UM-1098 adjuvanted ESAT6/Ag85B or M72 significantly reduced lung bacterial burden when compared with unvaccinated mice and protection occurred in the absence of pulmonary inflammation. These data demonstrate that the synthetic Mincle agonist UM-1098 induces strong Th1 and Th17 immunity after vaccination with Mtb antigens and provides protection against Mtb infection in mice.
Collapse
Affiliation(s)
- Viktoria Rungelrath
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Mushtaq Ahmed
- Department of Microbiology, University of Chicago, 920 E. 58th St., Chicago, IL, 60637, USA
| | - Linda Hicks
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Shannon M Miller
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Kendal T Ryter
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Kyle Montgomery
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - George Ettenger
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Alexander Riffey
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Walid M Abdelwahab
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Shabaana Abdul Khader
- Department of Microbiology, University of Chicago, 920 E. 58th St., Chicago, IL, 60637, USA
| | - Jay T Evans
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA.
- Department of Biomedical & Pharmaceutical Sciences, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
7
|
Aliyu M, Zohora FT, Ceylan A, Hossain F, Yazdani R, Azizi G. Immunopathogenesis of multiple sclerosis: molecular and cellular mechanisms and new immunotherapeutic approaches. Immunopharmacol Immunotoxicol 2024; 46:355-377. [PMID: 38634438 DOI: 10.1080/08923973.2024.2330642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a central nervous system (CNS) demyelinating autoimmune disease with increasing global prevalence. It predominantly affects females, especially those of European descent. The interplay between environmental factors and genetic predisposition plays a crucial role in MS etiopathogenesis. METHODS We searched recent relevant literature on reputable databases, which include, PubMed, Embase, Web of Science, Scopus, and ScienceDirect using the following keywords: multiple sclerosis, pathogenesis, autoimmunity, demyelination, therapy, and immunotherapy. RESULTS Various animal models have been employed to investigate the MS etiopathogenesis and therapeutics. Autoreactive T cells within the CNS recruit myeloid cells through chemokine expression, leading to the secretion of inflammatory cytokines driving the MS pathogenesis, resulting in demyelination, gliosis, and axonal loss. Key players include T cell lymphocytes (CD4+ and CD8+), B cells, and neutrophils. Signaling dysregulation in inflammatory pathways and the immunogenetic basis of MS are essential considerations for any successful therapy to MS. Data indicates that B cells and neutrophils also have significant roles in MS, despite the common belief that T cells are essential. High neutrophil-to-lymphocyte ratios correlate with MS severity, indicating their contribution to disease progression. Dysregulated signaling pathways further exacerbate MS progression. CONCLUSION MS remains incurable, but disease-modifying therapies, monoclonal antibodies, and immunomodulatory drugs offer hope for patients. Research on the immunogenetics and immunoregulatory functions of gut microbiota is continuing to provide light on possible treatment avenues. Understanding the complex interplay between genetic predisposition, environmental factors, and immune dysregulation is critical for developing effective treatments for MS.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ayca Ceylan
- Medical Faculty, Department of Pediatrics, Division of Immunology and Allergy, Selcuk University, Konya, Turkey
| | - Fariha Hossain
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Reza Yazdani
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
8
|
Liu Y, Liu H, Shao Q, Shi H, Cheng F, Wang X. Majie Cataplasm Alleviates Asthma by Regulating Th1/Th2/Treg/Th17 Balance. Int Arch Allergy Immunol 2024; 185:900-909. [PMID: 38749400 DOI: 10.1159/000538597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/26/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION T cells play a critical role in inflammatory diseases. The aim of the present study was to investigate the effects of Majie cataplasm (MJC) on asthma and to propose a possible mechanism involved in this process. METHODS Airway inflammation, infiltration of inflammatory cells, levels of interleukin (IL)-4, IL-10, IL-17, and interferon (IFN)-γ, levels of Th2, Treg, Th17, and Th1 cells, and the expressions of IL-4, IL-10, IL-17, IFN-γ, GATA binding protein 3 (GATA-3), Foxp3, RAR-related orphan receptor gamma (RORγt), and T-bet were detected. RESULT MJC treatment reduced lung airway resistance and inflammatory infiltration in lung tissues. MJC treatment also reduced the numbers of eosinophils and neutrophils in the blood and bronchoalveolar lavage fluid (BALF). The levels of IL-4 and IL-17 in the blood, BALF, and lungs were suppressed by MJC, and IFN-γ and IL-10 were increased. Furthermore, MJC suppressed the percentage of Th2 and Th17 and increased the percentage of Th1 and Treg in spleen cells. In addition, MJC can inhibit asthma by increasing expressions of IFN-γ, IL-10, T-bet, and Foxp3, as well as decreasing expressions of IL-4, IL-17, GATA-3, and RORγt. CONCLUSION MJC may improve airway hyperresponsiveness and inflammation by regulating Th1/Th2/Treg/Th17 balance in ovalbumin-induced rats. And MJC may be a new source of anti-asthma drugs.
Collapse
Affiliation(s)
- Yuanjun Liu
- Beijing Key Laboratory, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Haixia Liu
- Disease-Syndrome Research Center, China Academy of Chinese Medical Sciences Institute of Basic Theory for Chinese Medicine, Beijing, China,
| | - Qi Shao
- Beijing Key Laboratory, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Hanfen Shi
- Beijing Key Laboratory, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- Beijing Key Laboratory, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- Beijing Key Laboratory, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Neamțu M, Bild V, Vasincu A, Arcan OD, Bulea D, Ababei DC, Rusu RN, Macadan I, Sciucă AM, Neamțu A. Inflammasome Molecular Insights in Autoimmune Diseases. Curr Issues Mol Biol 2024; 46:3502-3532. [PMID: 38666950 PMCID: PMC11048795 DOI: 10.3390/cimb46040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Autoimmune diseases (AIDs) emerge due to an irregular immune response towards self- and non-self-antigens. Inflammation commonly accompanies these conditions, with inflammatory factors and inflammasomes playing pivotal roles in their progression. Key concepts in molecular biology, inflammation, and molecular mimicry are crucial to understanding AID development. Exposure to foreign antigens can cause inflammation, potentially leading to AIDs through molecular mimicry triggered by cross-reactive epitopes. Molecular mimicry emerges as a key mechanism by which infectious or chemical agents trigger autoimmunity. In certain susceptible individuals, autoreactive T or B cells may be activated by a foreign antigen due to resemblances between foreign and self-peptides. Chronic inflammation, typically driven by abnormal immune responses, is strongly associated with AID pathogenesis. Inflammasomes, which are vital cytosolic multiprotein complexes assembled in response to infections and stress, are crucial to activating inflammatory processes in macrophages. Chronic inflammation, characterized by prolonged tissue injury and repair cycles, can significantly damage tissues, thereby increasing the risk of AIDs. Inhibiting inflammasomes, particularly in autoinflammatory disorders, has garnered significant interest, with pharmaceutical advancements targeting cytokines and inflammasomes showing promise in AID management.
Collapse
Affiliation(s)
- Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
- Center of Biomedical Research of the Romanian Academy, 8 Carol I Avenue, 700506 Iasi, Romania
| | - Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Delia Bulea
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.N.); (V.B.); (O.D.A.); (D.B.); (D.-C.A.); (R.-N.R.); (I.M.)
| | - Ana Maria Sciucă
- Department of Oral Medicine, Oral Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Neamțu
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
10
|
Lauten TH, Natour T, Case AJ. Innate and adaptive immune system consequences of post-traumatic stress disorder. Auton Neurosci 2024; 252:103159. [PMID: 38428324 PMCID: PMC11494466 DOI: 10.1016/j.autneu.2024.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
In the field of psychiatry, biological markers are rarely, if ever, used in the diagnosis of mental health disorders. Clinicians rely primarily on patient histories and behavioral symptoms to identify specific psychopathologies, which makes diagnosis highly subjective. Moreover, therapies for mental health disorders are aimed specifically at attenuating behavioral manifestations, which overlooks the pathophysiological indices of the disease. This is highly evident in posttraumatic stress disorder (PTSD) where inflammation and immune system perturbations are becoming increasingly described. Further, patients with PTSD possess significantly elevated risks of developing comorbid inflammatory diseases such as autoimmune and cardiovascular diseases, which are likely linked (though not fully proven) to the apparent dysregulation of the immune system after psychological trauma. To date, there is little to no evidence that demonstrates current PTSD therapies are able to reverse the increased risk for psychological trauma-induced inflammatory diseases, which suggests the behavioral and somatic consequences of PTSD may not be tightly coupled. This observation provides an opportunity to explore unique mechanisms outside of the brain that contribute to the long-term pathology of PTSD. Herein, we provide an overview of neuroimmune mechanisms, describe what is known regarding innate and adaptive immunity in PTSD, and suggest new directions that are needed to advance the understanding, diagnosis, and treatment of PTSD moving forward.
Collapse
Affiliation(s)
- Tatlock H Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Tamara Natour
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States.
| |
Collapse
|
11
|
Li K, Ouyang Y, Yang H. Myasthenia gravis and five autoimmune diseases: a bidirectional Mendelian randomization study. Neurol Sci 2024; 45:1699-1706. [PMID: 37910321 DOI: 10.1007/s10072-023-07163-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND The association between myasthenia gravis (MG) and other autoimmune diseases is well established. In this study, we aimed to investigate the causal effects between MG and five other autoimmune diseases, including autoimmune thyroid disease (AITD), multiple sclerosis (MS), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and type 1 diabetes (T1DM). METHODS We conducted a bidirectional Mendelian randomization (MR) study by using seven published genome-wide association studies (GWAS), including MG (1873 patients versus 36,370 controls), AITD (autoimmune hypothyroidism) (22,997 patients versus 175,475 controls), AITD (autoimmune hyperthyroidism) (962 patients versus 172,976 controls), MS (47,429 patients versus 68,374 controls), RA (14,361 patients versus 43,923 controls), SLE (4222 patients versus 8431 controls), and T1DM (9266 patients versus 15,574 controls). We used the inverse-variance-weighted (IVW) method, weighted-median (WM) estimator, MR-Egger regression, and MR PRESSO in our analyses. We also carried out detailed sensitivity analyses for each direction using the aforementioned methods. RESULTS When MG was treated as the exposure, MR evidence suggested a causal relationship between MG and T1DM, SLE, AITD (both hypothyroidism and hyperthyroidism), and MS (excluding RA). Using the IVW method, we found that MG was associated with increased risk of T1DM (OR = 1.94; 95% CI, 1.16-3.26; p = 0.012), SLE (OR = 1.47; 95% CI, 1.02-2.13; p = 0.04), AITD (hypothyroidism) (OR = 1.31; 95% CI, 1.02-1.68; p = 0.039), AITD (hyperthyroidism) (OR = 1.55; 95% CI, 1.15-2.09; p = 0.004), and MS (OR = 1.46; 95% CI, 1.01-2.09; p = 0.041). When MG was treated as the outcome, MR evidence suggested that RA, T1DM, and SLE were causal factors in MG. Using the IVW method, we found that the risk of MG increased with exposure to RA (OR = 1.21; 95% CI, 1.08-1.37; p = 0.002), T1DM (OR = 1.09; 95% CI, 1.02-1.16; p = 0.006), and SLE (OR = 1.12; 95% CI, 1.02-1.23; p = 0.018). CONCLUSIONS This study demonstrated a causal relationship between MG and several other autoimmune diseases. Our results supported a bidirectional causal association between MG and SLE/T1DM. Our findings also provided reliable evidence that MG is associated with increased risk of AITD. Meanwhile, we also showed that RA is a possible causal driver of MG risk.
Collapse
Affiliation(s)
- Kailin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yuzhen Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
12
|
Yang Y, Deng Y, Zhang G, Xu X, Xiong X, Yu S, Peng F, Tian X, Ye W, Chen H, Yu B, Liu Z, He X, Huang Z. α-mangostin derivatives ameliorated mouse DSS-induced chronic colitis via regulating Th17/Treg balance. Mol Immunol 2024; 166:110-118. [PMID: 38280829 DOI: 10.1016/j.molimm.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 01/29/2024]
Abstract
Th17 cell, an important subpopulation of helper T cell, plays an important role in the development of inflammatory bowel disease (IBD) and is thought to be a potential target for the treatment of IBD. In our previous study, we demonstrated that α-mangostin could relieve lupus nephritis via inhibiting Th17 cell function. In our preliminary study, we obtained four derivatives by adding chemical modification of α-mangostin which could also inhibit Th17 cell differentiation in vitro. In this study, we constructed a chronic IBD mouse model and demonstrated the therapeutic effects of α-mangostin and its derivatives as therapeutic agents for IBD. In compounds treating groups, intestinal inflammation showed significant improvement in symptoms which included weight loss, high disease activity index, colon length shorten and the change of intestinal flora. We also found that compounds could effectively either suppress the number of Th17 cell or increase the number of Treg cell detected by flow cytometry, thus reducing the Th17/Treg ratio and suppressing the level of intestinal inflammation. Notably, IL17-F levels, rather than IL17-A, were reduced in the colon of mice of compounds treating groups. Thus, α-mangostin and its derivatives ameliorate DSS-induced chronic colitis in mice by regulating Th17/Treg balance to alleviate intestinal inflammation and can modulate the intestinal microbial community. These results suggest that α-mangostin and its derivatives may be the new therapeutic option for chronic colitis.
Collapse
Affiliation(s)
- Yuying Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Yuqing Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Guoqiang Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiaoting Xu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xiaoxiao Xiong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Si Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Fanrong Peng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xuyan Tian
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Weiying Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Huanpeng Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhonghua Liu
- Animal Experiment Center, South China Agricultural University, Guangzhou, China.
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
13
|
Janyga S, Kajdaniuk D, Czuba Z, Ogrodowczyk-Bobik M, Urbanek A, Kos-Kudła B, Marek B. Interleukin (IL)-23, IL-31, and IL-33 Play a Role in the Course of Autoimmune Endocrine Diseases. Endocr Metab Immune Disord Drug Targets 2024; 24:585-595. [PMID: 37694787 DOI: 10.2174/1871530323666230908143521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Interleukins (IL)-23, 31, and 33 are involved in the regulation of T helper 17 (Th17)/regulatory T (Treg) cells balance. The role of IL-23, 31 and 33 in non-endocrine autoimmune diseases has been confirmed. Data on the involvement of these cytokines in endocrine autoimmune diseases are limited. OBJECTIVE This study aimed to determine the involvement of cytokines regulating the T helper 17 (Th17)/regulatory T (Treg) cells axis in the course of autoimmune endocrine diseases. METHODS A total number of 80 participants were divided into 4 groups: the autoimmune polyendocrine syndrome (APS) group consisting of APS type 2 (APS-2) and type 3 (APS-3) subgroups, the Hashimoto's thyroiditis (HT) group, the Graves' disease (GD) group and the control (C) group. Fifteen cytokines related to Th17 and Treg lymphocytes were determined in the serum of all participants. RESULTS Higher levels of IL-23 and IL-31 were found in the APS, GD, and HT groups compared to the C group. Higher levels of IL-23 and IL-31 were also observed in the APS-2 group, in contrast to the APS-3 group. Correlation analysis of variables in the groups showed a statistically significant correlation between the cytokines IL-23, IL-31, and IL-33 in the APS and APS-2 groups, but no correlation in the APS-3 and C groups. CONCLUSION IL-23 and IL-31 are independent factors in the course of HT, GD, and APS-2, in contrast to APS-3. The positive correlation between IL-23 and IL-31, IL-23 and IL-33, and between IL-31 and IL-33 in the APS, APS-2 groups, but the lack of correlation in the APS-3 and C groups may further suggest the involvement of these cytokines in the course of Addison's disease.
Collapse
Affiliation(s)
- Szymon Janyga
- Department of Endocrinology and Metabolic Diseases, Regional Specialist Hospital No 3, Rybnik, Poland
| | - Dariusz Kajdaniuk
- Department of Endocrinology and Metabolic Diseases, Regional Specialist Hospital No 3, Rybnik, Poland
- Department of Pathophysiology, Chair of Pathophysiology and Endocrinology, Medical University of Silesia, Katowice, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Medical University of Silesia, Katowice, Poland
| | - Monika Ogrodowczyk-Bobik
- Department of Endocrinology and Metabolic Diseases, Regional Specialist Hospital No 3, Rybnik, Poland
| | - Agata Urbanek
- Department of Endocrinology and Metabolic Diseases, Regional Specialist Hospital No 3, Rybnik, Poland
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Chair of Pathophysiology and Endocrinology, Medical University of Silesia, Katowice, Poland
| | - Bogdan Marek
- Department of Endocrinology and Metabolic Diseases, Regional Specialist Hospital No 3, Rybnik, Poland
- Department of Pathophysiology, Chair of Pathophysiology and Endocrinology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
14
|
Zhang Y, Jiang X, Wang Q, Wu J, Zhou J. Dexamethasone alleviates pulmonary sarcoidosis by regulating the TGF-β/Smad3 signaling to promote Th17/Treg cell rebalance. Cell Immunol 2024; 395-396:104781. [PMID: 38159414 DOI: 10.1016/j.cellimm.2023.104781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/03/2023] [Accepted: 10/29/2023] [Indexed: 01/03/2024]
Abstract
Pulmonary sarcoidosis is an immune-mediated disorder closely related to Th17/Treg cell imbalance. Dexamethasone has been shown to regulate inflammation and immune responses in sarcoidosis patients. However, the underlying mechanisms of dexamethasone regulating Th17/Treg balance in sarcoidosis remain elusive. Herein, we elucidated the function role of TGF-β/Smad3 signaling in pulmonary sarcoidosis development and explored the underlying mechanism of dexamethasone in treating pulmonary sarcoidosis. We found that the TGF-β/Smad3 pathway was inactivated in pulmonary sarcoidosis patients. Propionibacterium acnes (PA) induced mouse model was generated to investigate the function of TGF-β/Smad3 signaling in vivo. Data indicated that IL17A inhibition with neutralizing antibody and activation of TGF-β/Smad3 signaling with SRI-011381 alleviated granuloma formation in the sarcoidosis mouse model. Moreover, we revealed that the Th17/Treg cell ratio was increased with PA treatment in mouse bronchoalveolar lavage fluid (BALF) and peripheral blood. The concentration of cytokines produced by Th17 cells (IL-17A, IL-23) was up-regulated in the BALF of PA-treated mice, while those produced by Tregs (IL-10, TGF-β1) presented significant reduction. The treatment of IL-17A neutralizing antibody or SRI-011381 was demonstrated to rescue the PA-induced changes in the concentration of IL-17A, IL-23, IL-10, and TGF-β1. Additionally, we demonstrated that dexamethasone treatment activated the TGF-β/Smad3 signaling in the lung tissues of pulmonary sarcoidosis mice. Dexamethasone was also revealed to promote the rebalancing of the Th17/Treg ratio and attenuated the granuloma formation in pulmonary sarcoidosis. In conclusion, dexamethasone activates the TGF-β/Smad3 signaling and induces Th17/Treg rebalance, alleviating pulmonary sarcoidosis, which suggests the potential of dexamethasone in treating pulmonary sarcoidosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China; Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Xuan Jiang
- Department of Respiratory Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu 214000, China
| | - Qing Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Jiayi Wu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Juan Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, Jiangsu 226000, China.
| |
Collapse
|
15
|
Leccese G, Chiara M, Dusetti I, Noviello D, Billard E, Bibi A, Conte G, Consolandi C, Vecchi M, Conte MP, Barnich N, Caprioli F, Facciotti F, Paroni M. AIEC-dependent pathogenic Th17 cell transdifferentiation in Crohn's disease is suppressed by rfaP and ybaT deletion. Gut Microbes 2024; 16:2380064. [PMID: 39069911 PMCID: PMC11290758 DOI: 10.1080/19490976.2024.2380064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
Mucosal enrichment of the Adherent-Invasive E. coli (AIEC) pathotype and the expansion of pathogenic IFNγ-producing Th17 (pTh17) cells have been linked to Crohn's Disease (CD) pathogenesis. However, the molecular pathways underlying the AIEC-dependent pTh17 cell transdifferentiation in CD patients remain elusive. To this aim, we created and functionally screened a transposon AIEC mutant library of 10.058 mutants to identify the virulence determinants directly implicated in triggering IL-23 production and pTh17 cell generation. pTh17 cell transdifferentiation was assessed in functional assays by co-culturing AIEC-infected human dendritic cells (DCs) with autologous conventional Th17 (cTh17) cells isolated from blood of Healthy Donors (HD) or CD patients. AIEC triggered IL-23 hypersecretion and transdifferentiation of cTh17 into pTh17 cells selectively through the interaction with CD-derived DCs. Moreover, the chronic release of IL-23 by AIEC-colonized DCs required a continuous IL-23 neutralization to significantly reduce the AIEC-dependent pTh17 cell differentiation. The multi-step screenings of the AIEC mutant's library revealed that deletion of ybaT or rfaP efficiently hinder the IL-23 hypersecretion and hampered the AIEC-dependent skewing of protective cTh17 into pathogenic IFNγ-producing pTh17 cells. Overall, our findings indicate that ybaT (inner membrane transport protein) and rfaP (LPS-core heptose kinase) represent novel and attractive candidate targets to prevent chronic intestinal inflammation in CD.
Collapse
Affiliation(s)
- G. Leccese
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - M. Chiara
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - I. Dusetti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - D. Noviello
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - E. Billard
- M2iSH, UMR 1071 Inserm, INRAe USC 1382, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| | - A. Bibi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - G. Conte
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - C. Consolandi
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - M. Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - MP Conte
- Department of Public Health and Infectious Diseases, ‘Sapienza’ University of Rome, Rome, Italy
| | - N. Barnich
- M2iSH, UMR 1071 Inserm, INRAe USC 1382, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| | - F. Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - F. Facciotti
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - M. Paroni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
16
|
Elsaghir A, El-Sabaa EMW, Zahran AM, Mandour SA, Salama EH, Aboulfotuh S, El-Morshedy RM, Tocci S, Mandour AM, Ali WE, Abdel-Wahid L, Sayed IM, El-Mokhtar MA. Elevated CD39+T-Regulatory Cells and Reduced Levels of Adenosine Indicate a Role for Tolerogenic Signals in the Progression from Moderate to Severe COVID-19. Int J Mol Sci 2023; 24:17614. [PMID: 38139439 PMCID: PMC10744088 DOI: 10.3390/ijms242417614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Viral infections trigger inflammation by controlling ATP release. CD39 ectoenzymes hydrolyze ATP/ADP to AMP, which is converted by CD73 into anti-inflammatory adenosine (ADO). ADO is an anti-inflammatory and immunosuppressant molecule which can enhance viral persistence and severity. The CD39-CD73-adenosine axis contributes to the immunosuppressive T-reg microenvironment and may affect COVID-19 disease progression. Here, we investigated the link between CD39 expression, mostly on T-regs, and levels of CD73, adenosine, and adenosine receptors with COVID-19 severity and progression. Our study included 73 hospitalized COVID-19 patients, of which 33 were moderately affected and 40 suffered from severe infection. A flow cytometric analysis was used to analyze the frequency of T-regulatory cells (T-regs), CD39+ T-regs, and CD39+CD4+ T-cells. Plasma concentrations of adenosine, IL-10, and TGF-β were quantified via an ELISA. An RT-qPCR was used to analyze the gene expression of CD73 and adenosine receptors (A1, A2A, A2B, and A3). T-reg cells were higher in COVID-19 patients compared to healthy controls (7.4 ± 0.79 vs. 2.4 ± 0.28; p < 0.0001). Patients also had a higher frequency of the CD39+ T-reg subset. In addition, patients who suffered from a severe form of the disease had higher CD39+ T-regs compared with moderately infected patients. CD39+CD4+ T cells were increased in patients compared to the control group. An analysis of serum adenosine levels showed a marked decrease in their levels in patients, particularly those suffering from severe illness. However, this was paralleled with a marked decline in the expression levels of CD73. IL-10 and TGF-β levels were higher in COVID-19; in addition, their values were also higher in the severe group. In conclusion, there are distinct immunological alterations in CD39+ lymphocyte subsets and a dysregulation in the adenosine signaling pathway in COVID-19 patients which may contribute to immune dysfunction and disease progression. Understanding these immunological alterations in the different immune cell subsets and adenosine signaling provides valuable insights into the pathogenesis of the disease and may contribute to the development of novel therapeutic approaches targeting specific immune mechanisms.
Collapse
Affiliation(s)
- Alaa Elsaghir
- Department of Microbiology & Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Ehsan M. W. El-Sabaa
- Department of Microbiology & Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Asmaa M. Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut 71515, Egypt
| | - Sahar A. Mandour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 11566, Egypt
| | - Eman H. Salama
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Sahar Aboulfotuh
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Reham M. El-Morshedy
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Stefania Tocci
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Ahmed Mohamed Mandour
- Department of Anesthesia and ICU, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Wael Esmat Ali
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Lobna Abdel-Wahid
- Gastroenterology and Hepatology Unit, Internal Medicine Department, Assiut University, Assiut 71515, Egypt
| | - Ibrahim M. Sayed
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Mohamed A. El-Mokhtar
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
17
|
Liu X, Liu M, Zhao M, Li P, Gao C, Fan X, Cai G, Lu Q, Chen X. Fecal microbiota transplantation for the management of autoimmune diseases: Potential mechanisms and challenges. J Autoimmun 2023; 141:103109. [PMID: 37690971 DOI: 10.1016/j.jaut.2023.103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Autoimmune diseases (AIDs) are a series of immune-mediated lethal diseases featured by over-activated immune cells attacking healthy self-tissues and organs due to the loss of immune tolerance, which always causes severe irreversible systematical organ damage and threatens human health heavily. To date, there are still no definitive cures for the treatment of AIDs due to their pathogenesis has not been clearly understood. Besides, the current clinical treatments of AIDs majorly rely on glucocorticoids and immune suppressors, which can lead to serious side effects. In the past years, there are increasing studies demonstrating that an imbalance of gut microbiota is intimately related to the pathogenesis of various AIDs, shedding light on the development of therapeutics by targeting the gut microbiota for the management of AIDs. Among all the approaches targeting the gut microbiota, fecal microbiota transplantation (FMT) has attracted increasing interest, and it has been proposed as a possible strategy to intervene in the homeostasis of gut microbiota for the treatment of various diseases. However, despite the reported good curative effects and clinical studies conducted on FMT, the detailed mechanisms of FMT for the effective treatment of those diseases have not been figured out. To fully understand the mechanisms of the therapeutic effects of FMT on AIDs and improve the therapeutic efficacy of FMT treatment, a systematic review of this topic is necessary. Hence, in this review paper, the potential mechanisms of FMT for the treatment of various AIDs were summarized, including promotion, shaping, activation, or inhibition of the host immune system via the interactions between the microorganisms and the gut immune system, gut-brain, gut-liver, gut-kidney axis, and so on. Then, applications of FMT for the treatment of various AIDs were detailed presented. Finally, the current challenges and potential solutions for the development of FMT formulations and FMT therapeutics were comprehensively discussed.
Collapse
Affiliation(s)
- Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China
| | - Mei Liu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Ming Zhao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 421142, PR China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China
| | - Changxing Gao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Xinyu Fan
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China.
| | - Qianjin Lu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 421142, PR China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China.
| |
Collapse
|
18
|
Li C, Rui Q, Dong X, Ning S, Zhou J, Wu H, Jiang C, Cui Y, Liu J, Jiang J, Qin L. Human amnion-derived mesenchymal stem cells improve subclinical hypothyroidism by immunocompetence mediating apoptosis inhibition on thyroid cells in aged mice. Cell Tissue Res 2023; 394:309-323. [PMID: 37572164 PMCID: PMC10638193 DOI: 10.1007/s00441-023-03822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
Subclinical hypothyroidism (SCH) affects 10% of the global population, which is most prevalent in women and the elderly. However, it remains debatable whether the elderly with subclinical hypothyroidism needs thyroxine supplement. Human amnion-derived mesenchymal stem cells (hAMSCs) could play important roles in autoimmune diseases, suggesting that hAMSC be a candidate to regulate the thyroid function of female age-related subclinical hypothyroidism. Herein, we established the model of SCH in the aged female mice. This study was designed to investigate whether human amnion-derived mesenchymal stem cells (hAMSC) could effect on immune regulation, apoptosis inhibition of thyroid cells, thyroid function, blood lipid levels, and heart function. In addition, qualified hAMSCs were intravenously injected into aged female SCH mice via the tail vein on day 0 and day 10. The levels of thyroid hormone and blood lipids as well as cardiac function, serum immunological indexes, and apoptosis of thyroid cells were then analyzed on day 5, 10, 15, and 20; meanwhile, the quantity of Th1, Th2, Th17, and Treg immune cells in peripheral blood was evaluated before and on day 20 post-injection. Our study demonstrated that after hAMSC transplantation, the thyroid functions, blood lipid levels, and heart function indexes of age-related SCH (AR-SCH) mice were significantly improved. Consistent with this, Th1 and Treg cells increased significantly, while Th2 and Th17 cells decreased in peripheral blood. Apoptosis was also suppressed in the thyroid cells. In summary, hAMSC delivery can potentially be a safe and effective therapy for treating SCH in the elderly, improving related complications by immunomodulatory and apoptosis inhibition.
Collapse
Affiliation(s)
- Chuyu Li
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Qiang Rui
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Xiaohan Dong
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Song Ning
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Jing Zhou
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Huimin Wu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Chunyan Jiang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Jun Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| |
Collapse
|
19
|
Park E, Barclay WE, Barrera A, Liao TC, Salzler HR, Reddy TE, Shinohara ML, Ciofani M. Integrin α3 promotes T H17 cell polarization and extravasation during autoimmune neuroinflammation. Sci Immunol 2023; 8:eadg7597. [PMID: 37831759 PMCID: PMC10821720 DOI: 10.1126/sciimmunol.adg7597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) caused by CNS-infiltrating leukocytes, including TH17 cells that are critical mediators of disease pathogenesis. Although targeting leukocyte trafficking is effective in treating autoimmunity, there are currently no therapeutic interventions that specifically block encephalitogenic TH17 cell migration. Here, we report integrin α3 as a TH17 cell-selective determinant of pathogenicity in experimental autoimmune encephalomyelitis. CNS-infiltrating TH17 cells express high integrin α3, and its deletion in CD4+ T cells or Il17a fate-mapped cells attenuated disease severity. Mechanistically, integrin α3 enhanced the immunological synapse formation to promote the polarization and proliferation of TH17 cells. Moreover, the transmigration of TH17 cells into the CNS was dependent on integrin α3, and integrin α3 deficiency enhanced the retention of CD4+ T cells in the perivascular space of the blood-brain barrier. Integrin α3-dependent interactions continuously maintain TH17 cell identity and effector function. The requirement of integrin α3 in TH17 cell pathogenicity suggests integrin α3 as a therapeutic target for MS treatment.
Collapse
Affiliation(s)
- Eunchong Park
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - William E. Barclay
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, NC, USA
| | - Tzu-Chieh Liao
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Harmony R. Salzler
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
| | - Timothy E. Reddy
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical School, Durham, NC, USA
| | - Mari L. Shinohara
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Maria Ciofani
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
20
|
Xie L, Lv J, Saimaier K, Han S, Han M, Wang C, Liu G, Zhuang W, Jiang X, Du C. The novel small molecule TPN10518 alleviates EAE pathogenesis by inhibiting AP1 to depress Th1/Th17 cell differentiation. Int Immunopharmacol 2023; 123:110787. [PMID: 37591119 DOI: 10.1016/j.intimp.2023.110787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Multiple sclerosis (MS) is one of the most common autoimmune diseases of central nervous system (CNS) demyelination. Experimental autoimmune encephalomyelitis (EAE) is the most classic animal model for simulating the onset of clinical symptoms in MS. Previous research has reported the anti-inflammatory effects of artemisinin on autoimmune diseases. In our study, we identified a novel small molecule, TPN10518, an artemisinin derivative, which plays a protective role on the EAE model. We found that TPN10518 reduced CNS inflammatory cell infiltration and alleviated clinical symptoms of EAE. In addition, TPN10518 downregulated the production of Th1 and Th17 cells in vivo and in vitro, and decrease the levels of related chemokines. RNA-seq assay combined with the experimental results demonstrated that TPN10518 lowered the mRNA and protein levels of the AP1 subunits c-Fos and c-Jun in EAE mice. It was further confirmed that TPN10518 was dependent on AP1 to inhibit the differentiation of Th1 and Th17 cells. The results suggest that TPN10518 reduces the production of Th1 and Th17 cells through inhibition of AP1 to alleviate the severity of EAE disease. It is expected to be a potential drug for the treatment of MS.
Collapse
Affiliation(s)
- Ling Xie
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jie Lv
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kaidireya Saimaier
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Sanxing Han
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mengyao Han
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chun Wang
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guangyu Liu
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wei Zhuang
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiangrui Jiang
- University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China
| | - Changsheng Du
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
21
|
Sato M, Matsuo K, Susami Y, Yamashita A, Hayasaka H, Hara Y, Nishiwaki K, Oiso N, Kawada A, Otsuka A, Nakayama T. A CCR4 antagonist attenuates atopic dermatitis-like skin inflammation by inhibiting the recruitment and expansion of Th2 cells and Th17 cells. Int Immunol 2023; 35:437-446. [PMID: 37279584 DOI: 10.1093/intimm/dxad019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 06/03/2023] [Indexed: 06/08/2023] Open
Abstract
CCR4 is a major trafficking receptor for T-helper (Th) 2 cells and Th17 cells and is considered as a potential therapeutic target for atopic dermatitis (AD). The CCR4 ligands CCL17 and CCL22 have been reported to be upregulated in the skin lesions of AD patients. Of note, thymic stromal lymphopoietin (TSLP), a master regulator of the Th2 immune response, promotes the expression of CCL17 and CCL22 in AD skin lesions. Here, we investigated the role of CCR4 in an AD mouse model induced by MC903, a TSLP inducer. Topical application of MC903 to ear skin increased the expression of not only TSLP but also CCL17, CCL22, the Th2 cytokine IL-4, and the Th17 cytokine IL-17A. Consistently, MC903 induced AD-like skin lesions as shown by increased epidermal thickness; increased infiltration of eosinophils, mast cells, type 2 innate lymphoid cells, Th2 cells, and Th17 cells; and elevated serum levels of total IgE. We also found increased expansion of Th2 cells and Th17 cells in the regional lymph nodes (LNs) of AD mice. Compound 22, a CCR4 inhibitor, ameliorated AD-like skin lesions with reduction of Th2 cells and Th17 cells in the skin lesions and regional LNs. We further confirmed that compound 22 diminished the expansion of Th2 cells and Th17 cells in the coculture of CD11c+ dendritic cells (DCs) and CD4+ T cells derived from the regional LNs of AD mice. Collectively, CCR4 antagonists may exhibit anti-allergic effects by inhibiting both the recruitment and expansion of Th2 cells and Th17 cells in AD.
Collapse
Affiliation(s)
- Masako Sato
- Department of Dermatology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Kazuhiko Matsuo
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Kowakae 3-4-1, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoko Susami
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Kowakae 3-4-1, Higashi-Osaka, Osaka 577-8502, Japan
| | - Ayaka Yamashita
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Kowakae 3-4-1, Higashi-Osaka, Osaka 577-8502, Japan
| | - Haruko Hayasaka
- Faculty of Science and Engineering, Department of Science, Graduate School of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yuta Hara
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Kowakae 3-4-1, Higashi-Osaka, Osaka 577-8502, Japan
| | - Keiji Nishiwaki
- Division of Computational Drug Design and Discovery, Kindai University Faculty of Pharmacy, Kowakae 3-4-1, Higashi-Osaka, Osaka 577-8502, Japan
| | - Naoki Oiso
- Department of Dermatology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osaka-sayama, Osaka 589-8511, Japan
- Department of Dermatology, Kindai University Nara Hospital, 1248-1 Otoda, Ikoma, Nara 630-0293, Japan
| | - Akira Kawada
- Department of Dermatology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Kowakae 3-4-1, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
22
|
Irie K, Azuma T, Tomofuji T, Yamamoto T. Exploring the Role of IL-17A in Oral Dysbiosis-Associated Periodontitis and Its Correlation with Systemic Inflammatory Disease. Dent J (Basel) 2023; 11:194. [PMID: 37623290 PMCID: PMC10453731 DOI: 10.3390/dj11080194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Oral microbiota play a pivotal role in maintaining homeostasis, safeguarding the oral cavity, and preventing the onset of disease. Oral dysbiosis has the potential to trigger pro-inflammatory effects and immune dysregulation, which can have a negative impact on systemic health. It is regarded as a key etiological factor for periodontitis. The emergence and persistence of oral dysbiosis have been demonstrated to mediate inflammatory pathology locally and at distant sites. The heightened inflammation observed in oral dysbiosis is dependent upon the secretion of interleukin-17A (IL-17A) by various innate and adaptive immune cells. IL-17A has been found to play a significant role in host defense mechanisms by inducing antibacterial peptides, recruiting neutrophils, and promoting local inflammation via cytokines and chemokines. This review seeks to present the current knowledge on oral dysbiosis and its prevention, as well as the underlying role of IL-17A in periodontitis induced by oral dysbiosis and its impact on systemic inflammatory disease.
Collapse
Affiliation(s)
- Koichiro Irie
- Department of Preventive Dentistry and Dental Public Health, Kanagawa Dental University, Yokosuka 238-8580, Japan;
| | - Tetsuji Azuma
- Department of Community Oral Health, School of Dentistry, Asahi University, Mizuho 501-0296, Japan; (T.A.); (T.T.)
| | - Takaaki Tomofuji
- Department of Community Oral Health, School of Dentistry, Asahi University, Mizuho 501-0296, Japan; (T.A.); (T.T.)
| | - Tatsuo Yamamoto
- Department of Preventive Dentistry and Dental Public Health, Kanagawa Dental University, Yokosuka 238-8580, Japan;
| |
Collapse
|
23
|
Cozzi G, Scagnellato L, Lorenzin M, Savarino E, Zingone F, Ometto F, Favero M, Doria A, Vavricka SR, Ramonda R. Spondyloarthritis with inflammatory bowel disease: the latest on biologic and targeted therapies. Nat Rev Rheumatol 2023:10.1038/s41584-023-00984-8. [PMID: 37386288 DOI: 10.1038/s41584-023-00984-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Spondyloarthritis (SpA) encompasses a heterogeneous group of chronic inflammatory diseases that can affect both axial and peripheral joints, tendons and entheses. Among the extra-articular manifestations, inflammatory bowel disease (IBD) is associated with considerable morbidity and effects on quality of life. In everyday clinical practice, treatment of these conditions requires a close collaboration between gastroenterologists and rheumatologists to enable early detection of joint and intestinal manifestations during follow-up and to choose the most effective therapeutic regimen, implementing precision medicine for each patient's subtype of SpA and IBD. The biggest issue in this field is the dearth of drugs that are approved for both diseases, as only TNF inhibitors are currently approved for the treatment of full-spectrum SpA-IBD. Janus tyrosine kinase inhibitors are among the most promising drugs for the treatment of peripheral and axial SpA, as well as for intestinal manifestations. Other therapies such as inhibitors of IL-23 and IL-17, phosphodiesterase 4 inhibitor, α4β7 integrin blockers and faecal microbiota transplantation seem to only be able to control some disease domains, or require further studies. Given the growing interest in the development of novel drugs to treat both conditions, it is important to understand the current state of the art and the unmet needs in the management of SpA-IBD.
Collapse
Affiliation(s)
- Giacomo Cozzi
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Laura Scagnellato
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Mariagrazia Lorenzin
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Edoardo Savarino
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Fabiana Zingone
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Francesca Ometto
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zürich and Center for Gastroenterology and Hepatology, Zürich, Switzerland
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, Padova, Italy.
| |
Collapse
|
24
|
Masjedi K, Bruze M, Ahlborg N. T-Helper 22 Cell Type Responses to Nickel in Contact Allergic Subjects Are Associated with T-Helper 1, T-Helper 2, and T-Helper 17 Cell Cytokine Profile Responses and Patch Test Reactivity. Int Arch Allergy Immunol 2023; 184:832-840. [PMID: 37105142 PMCID: PMC10413796 DOI: 10.1159/000530105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/07/2023] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION Contact allergy to nickel (Ni) is a delayed-type hypersensitivity reaction mediated by Ni-reactive T cells producing the hallmark cytokines of several T-helper cell (Th) populations including IFN-γ (Th1), IL-4, IL-5 and IL-13 (Th2), and IL-17A (Th17). IL-22-expressing CD4+ cells, which could be either Th17 co-expressing IL-22 or Th22, expressing IL-22 in the absence of IL-17A, have also been found in Ni-provoked skin of allergic subjects. It has been unclear if Ni-reactive T cells consist of distinct Th cell type populations or if they secrete a mix of Th cell hallmark cytokines. The aim herein was to assess if cellular cytokine responses to Ni, in ex vivo-stimulated peripheral blood mononuclear cells (PBMCs) from Ni-allergic subjects, include not only Th1, Th2, and Th17 but also Th22 hallmark cytokines and to define if the cytokines are produced by distinct cell populations representing different Th profiles. METHODS PBMC from Ni-allergic subjects (n = 15) with different degrees of patch test reactivity and non-allergic controls (n = 5) were in vitro stimulated with Ni. Cytokine levels in PBMC supernatants were analyzed by enzyme-linked immunosorbent assay (ELISA) (IFN-γ, IL-2, IL-3, IL-5, IL-6, IL-13, IL-17A, IL-22, and IL-31). FluoroSpot was used to assess if individual Ni-reactive cells produced single, or combinations of, cytokines representing different Th profiles. Cytokine combinations analyzed were IL-17A/IL-22/IFN-γ, IL-5/IL-17A/IFN-γ, IL-13/IL-22/IFN-γ, and IL-5/IL-13. RESULTS IL-22 as well as all other cytokines measured by ELISA were induced by Ni at higher levels in PBMC from allergic versus non-allergic subjects, with higher levels being associated with stronger patch test reactivity. The levels of most Ni-induced cytokines were positively correlated with each other; IL-2 displayed the highest correlation with other cytokines and IL-6 the lowest. FluoroSpot analysis showed that Th signature cytokines, IFN-γ (Th1), IL-5 and IL-13 (Th2), IL-17A (Th17), and IL-22 (Th22), were almost exclusively produced by distinct cell populations. CONCLUSION Distinct Th cell populations, including Ni-reactive cells displaying Th1, Th2, Th17, and Th22 cytokine profiles, are all increased in PBMC from Ni-allergic subjects and positively associated with patch test reactivity. The relevance of these different Th profile populations for the up- or down-regulation of inflammatory reactions in the skin of Ni-allergic subjects remains to be clarified.
Collapse
Affiliation(s)
| | - Magnus Bruze
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Niklas Ahlborg
- Mabtech AB, Nacka Strand, Sweden
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
25
|
Shafiei M, Mozhgani SH. Th17/IL-17 Axis in HTLV-1-Associated Myelopathy Tropical Spastic Paraparesis and Multiple Sclerosis: Novel Insights into the Immunity During HAMTSP. Mol Neurobiol 2023; 60:3839-3854. [PMID: 36947318 DOI: 10.1007/s12035-023-03303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Human T lymphotropic virus-associated myelopathy/tropical spastic paraparesis (HTLV/TSP), also known as HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and multiple sclerosis (MS) are chronic debilitating diseases of the central nervous system; although the etiology of which is different, similarities have been observed between these two demyelinating diseases, especially in clinical manifestation and immunopathogenesis. Exorbitant response of the immune system to the virus and neurons in CNS is the causative agent of HAM/TSP and MS, respectively. Helper T lymphocyte-17 cells (Th17s), a component of the immune system, which have a proven role in immunity and autoimmunity, mediate protection against bacterial/fungal infections. The role of these cells has been reviewed in several CNS diseases. A pivotal role for Th17s is presented in demyelination, even more axial than Th1s, during MS. The effect of Th17s is not well determined in HTLV-1-associated infections; however, the evidence that we have supplied in this review illustrates the attendance, also the role of Th17 cells during HAM/TSP. Furthermore, for better conception concerning the trace of these cells in HAM/TSP, a comparative characterization with MS, the resembling disease, has been applied here.
Collapse
Affiliation(s)
- Mohammadreza Shafiei
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
26
|
Pan N, Liu Y, Zhang H, Xu Y, Bao X, Sheng S, Liang Y, Liu B, Lyu Y, Li H, Ma F, Pan H, Wang X. Oral Vaccination with Engineered Probiotic Limosilactobacillus reuteri Has Protective Effects against Localized and Systemic Staphylococcus aureus Infection. Microbiol Spectr 2023; 11:e0367322. [PMID: 36723073 PMCID: PMC10100842 DOI: 10.1128/spectrum.03673-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/14/2023] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium responsible for most hospital-acquired (nosocomial) and community-acquired infections worldwide. The only therapeutic strategy against S. aureus-induced infections, to date, is antibiotic treatment. A protective vaccine is urgently needed in view of the emergence of antibiotic-resistant strains associated with high-mortality cases; however, no such vaccine is currently available. In our previous work, the feasibility of implementing a Lactobacillus delivery system for development of S. aureus oral vaccine was first discussed. Here, we describe systematic screening and evaluation of protective effects of engineered Lactobacillus against S. aureus infection in terms of different delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Limosilactobacillus reuteri WXD171 was selected as the delivery vehicle strain based on its tolerance of the gastrointestinal environment, adhesion ability, and antimicrobial activities in vitro and in vivo. We designed, constructed, and evaluated engineered L. reuteri strains expressing various S. aureus antigens. Among these, engineered L. reuteri WXD171-IsdB displayed effective protection against S. aureus-induced localized infection (pneumonia and skin infection) and, furthermore, a substantial survival benefit in systemic infection (sepsis). WXD171-IsdB induced mucosal responses in gut-associated lymphoid tissues, as evidenced by increased production of secretory IgA and interleukin 17A (IL-17A) and proliferation of lymphocytes derived from Peyer's patches. The probiotic L. reuteri-based oral vaccine appears to have strong potential as a prophylactic agent against S. aureus infections. Our findings regarding utilization of Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development. IMPORTANCE We systematically screened and evaluated protective effects of engineered Lactobacillus against S. aureus infection in terms of differing delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Engineered L. reuteri was developed and showed strong protective effects against both types of S. aureus-induced infection. Our findings regarding the utilization of a Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development.
Collapse
Affiliation(s)
- Na Pan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ying Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xuemei Bao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shouxin Sheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Bohui Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yueqing Lyu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haotian Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fangfei Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haiting Pan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
27
|
Honzawa T, Matsuo K, Hosokawa S, Kamimura M, Kaibori Y, Hara Y, Nagakubo D, Oiso N, Kawada A, Otsuka A, Yoshie O, Nakayama T. CCR4 plays a pivotal role in Th17 cell recruitment and expansion in a mouse model of rheumatoid arthritis. Int Immunol 2022; 34:635-642. [PMID: 35997787 DOI: 10.1093/intimm/dxac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/20/2022] [Indexed: 02/01/2023] Open
Abstract
T helper 17 (Th17) cells express CC chemokine receptor 4 (CCR4) and secrete cytokines such as interleukin-17A (IL-17A) and granulocyte macrophage colony-stimulating factor (GM-CSF), while dendritic cells (DCs) produce CC chemokine ligand 22 (CCL22), a CCR4 ligand, upon stimulation with GM-CSF. Th17 cells are known to play a critical role in the pathogenesis of rheumatoid arthritis (RA). CCL22 has also been shown to be up-regulated in the synovial tissues of RA patients. Here, we investigated the role of CCR4 in collagen-induced arthritis (CIA), a mouse model of RA. DBA/1J mice efficiently developed CIA as shown by erythema, paw swelling, joint rigidity, and joint destruction. Th17 cells were increased in the arthritic joints and regional lymph nodes (LNs) of CIA mice. A fraction of Th17 cells were also shown to produce GM-CSF. On the other hand, we observed no significant increases of Th2 cells or Treg cells, the T cell subsets also known to express CCR4, in these tissues. We further observed clusters of CCR4-expressing memory Th17 cells and CCL22-producing DCs in the regional LNs of CIA mice, supporting the role of the CCR4-CCL22 axis in the expansion of Th17 cells in the regional LNs. Compound 22, a CCR4 inhibitor, ameliorated the disease severity with reduction of Th17 cells in the arthritic joints and regional LNs and Th17-DC clusters in the regional LNs. We further confirmed that CCR4-deficient mice in the C57BL/6J background were highly resistant to CIA induction compared with wild-type mice. Collectively, CCR4 contributes to the pathogenesis of CIA and may thus represent a new therapeutic target for RA.
Collapse
Affiliation(s)
- Tatsuma Honzawa
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Kazuhiko Matsuo
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Shunya Hosokawa
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Mayu Kamimura
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Yuichiro Kaibori
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji, Hyogo 670-8524, Japan
| | - Yuta Hara
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Daisuke Nagakubo
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji, Hyogo 670-8524, Japan
| | - Naoki Oiso
- Department of Dermatology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Akira Kawada
- Department of Dermatology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Osamu Yoshie
- Health and Kampo Institute, 1-11-10 Murasakiyama, Sendai, Miyagi 981-3205, Japan.,Aoinosono Sendai Izumi Long-Term Health Care Facility, Izumi, Sendai 981-3126, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| |
Collapse
|
28
|
Reyes VE. Helicobacter pylori Immune Response in Children Versus Adults. MEDICAL RESEARCH ARCHIVES 2022; 10:3370. [PMID: 37936946 PMCID: PMC10629867 DOI: 10.18103/mra.v10i12.3370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
H. pylori is perhaps the most prevalent human pathogen worldwide and infects almost half of the world's population. Despite the decreasing prevalence of infection overall, it is significant in developing countries. Most infections are acquired in childhood and persist for a lifetime unless treated. Children are often asymptomatic and often develop a tolerogenic immune response that includes T regulatory cells and their products, immunosuppressive cytokines, such as interleukin (IL)-10, and transforming growth factor-β (TGF-β). This contrasts to the gastric immune response seen in H. pylori-infected adults, where the response is mainly inflammatory, with predominant Th1 and Th17 cells, as well as, inflammatory cytokines, such as TNF-α, IFN-γ, IL-1, IL-6, IL-8, and IL-17. Therefore, compared to adults, infected children generally have limited gastric inflammation and peptic ulcer disease. H. pylori surreptitiously subverts immune defenses to persist in the human gastric mucosa for decades. The chronic infection might result in clinically significant diseases in adults, such as peptic ulcer disease, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. This review compares the infection in children and adults and highlights the H. pylori virulence mechanisms responsible for the pathogenesis and immune evasion.
Collapse
Affiliation(s)
- Victor E. Reyes
- Department of Pediatrics, Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd. Galveston, TX 77555-0372 USA
| |
Collapse
|
29
|
Isildar B, Ozkan S, Ercin M, Gezginci-Oktayoglu S, Oncul M, Koyuturk M. 2D and 3D cultured human umbilical cord-derived mesenchymal stem cell-conditioned medium has a dual effect in type 1 diabetes model in rats: immunomodulation and beta-cell regeneration. Inflamm Regen 2022; 42:55. [PMID: 36451229 PMCID: PMC9710085 DOI: 10.1186/s41232-022-00241-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a T-cell-mediated autoimmune disease characterized by the irreversible destruction of insulin-producing β-cells in pancreatic islets. Helper and cytotoxic T-cells and cytokine production, which is impaired by this process, take a synergetic role in β-cell destruction, and hyperglycemia develops due to insulin deficiency in the body. Mesenchymal stem cells (MSCs) appear like an excellent therapeutic tool for autoimmune diseases with pluripotent, regenerative, and immunosuppressive properties. Paracrine factors released from MSCs play a role in immunomodulation by increasing angiogenesis and proliferation and suppressing apoptosis. In this context, the study aims to investigate the therapeutic effects of MSC's secretomes by conditioned medium (CM) obtained from human umbilical cord-derived MSCs cultured in 2-dimensional (2D) and 3-dimensional (3D) environments in the T1D model. METHODS First, MSCs were isolated from the human umbilical cord, and the cells were characterized. Then, two different CMs were prepared by culturing MSCs in 2D and 3D environments. The CM contents were analyzed in terms of total protein, IL-4, IL-10, IL-17, and IFN-λ. In vivo studies were performed in Sprague-Dawley-type rats with an autoimmune T1D model, and twelve doses of CM were administered intraperitoneally for 4 weeks within the framework of a particular treatment model. In order to evaluate immunomodulation, the Treg population was determined in lymphocytes isolated from the spleen after sacrification, and IL-4, IL-10, IL-17, and IFN-λ cytokines were analyzed in serum. Finally, β-cell regeneration was evaluated immunohistochemically by labeling Pdx1, Nkx6.1, and insulin markers, which are critical for the formation of β-cells. RESULTS Total protein and IL-4 levels were higher in 3D-CM compared to 2D-CM. In vivo results showed that CMs induce the Treg population and regulate cytokine release. When the immunohistochemical results were evaluated together, it was determined that CM application significantly increased the rate of β-cells in the islets. This increase was at the highest level in the 3D-CM applied group. CONCLUSION The dual therapeutic effect of MSC-CM on immunomodulation and homeostasis/regeneration of β-cells in the T1D model has been demonstrated. Furthermore, this effect could be improved by using 3D scaffolds for culturing MSCs while preparing CM.
Collapse
Affiliation(s)
- Basak Isildar
- grid.506076.20000 0004 1797 5496Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Serbay Ozkan
- grid.506076.20000 0004 1797 5496Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merve Ercin
- grid.9601.e0000 0001 2166 6619Department of Biology, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Selda Gezginci-Oktayoglu
- grid.9601.e0000 0001 2166 6619Department of Biology, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Mahmut Oncul
- grid.506076.20000 0004 1797 5496Department of Gynecology and Obstetrics, Cerrahpasa Faculty of Medicine, Istanbul University- Cerrahpasa, Istanbul, Turkey
| | - Meral Koyuturk
- grid.506076.20000 0004 1797 5496Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
30
|
Elkhatib SK, Moshfegh CM, Watson GF, Case AJ. T-lymphocyte tyrosine hydroxylase regulates T H17 T-lymphocytes during repeated social defeat stress. Brain Behav Immun 2022; 104:18-28. [PMID: 35580792 PMCID: PMC9659669 DOI: 10.1016/j.bbi.2022.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating psychiatric disorder which results in deleterious changes to psychological and physical health. Patients with PTSD are especially susceptible to life-threatening co-morbid inflammation-driven pathologies, such as autoimmunity, while also demonstrating increased T-helper 17 (TH17) lymphocyte-driven inflammation. While the exact mechanism of this increased inflammation is unknown, overactivity of the sympathetic nervous system is a hallmark of PTSD. Neurotransmitters of the sympathetic nervous system (i.e., catecholamines) can alter T-lymphocyte function, which we have previously demonstrated to be partially mitochondrial redox-mediated. Furthermore, we have previously elucidated that T-lymphocytes generate their own catecholamines, and strong associations exist between tyrosine hydroxylase (TH; the rate-limiting enzyme in the synthesis of catecholamines) and pro-inflammatory interleukin 17A (IL-17A) expression within purified T-lymphocytes in a rodent model of psychological trauma. Therefore, we hypothesized that T-lymphocyte-generated catecholamines drive TH17 T-lymphocyte polarization through a mitochondrial superoxide-dependent mechanism during psychological trauma. To test this, T-lymphocyte-specific TH knockout mice (THT-KO) were subjected to psychological trauma utilizing repeated social defeat stress (RSDS). RSDS characteristically increased tumor necrosis factor-α (TNFα), IL-6, IL-17A, and IL-22, however, IL-17A and IL-22 (TH17 produced cytokines) were selectively attenuated in circulation and in T-lymphocytes of THT-KO animals. When activated ex vivo, secretion of IL-17A and IL-22 by THT-KO T-lymphocytes was also found to be reduced, but could be partially rescued with supplementation of norepinephrine specifically. Interestingly, THT-KO T-lymphocytes were still able to polarize to TH17 under exogenous polarizing conditions. Last, contrary to our hypothesis, we found RSDS-exposed THT-KO T-lymphocytes still displayed elevated mitochondrial superoxide, suggesting increased mitochondrial superoxide is upstream of T-lymphocyte TH induction, activity, and TH17 regulation. Overall, these data demonstrate TH in T-lymphocytes plays a critical role in RSDS-induced TH17 T-lymphocytes and offer a previously undescribed regulator of inflammation in RSDS.
Collapse
Affiliation(s)
- Safwan K Elkhatib
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Cassandra M Moshfegh
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Gabrielle F Watson
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M Health Science Center, College Station, TX, United States; Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX, United States.
| |
Collapse
|
31
|
Crohn’s Disease, Host–Microbiota Interactions, and Immunonutrition: Dietary Strategies Targeting Gut Microbiome as Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23158361. [PMID: 35955491 PMCID: PMC9369148 DOI: 10.3390/ijms23158361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Crohn’s disease (CD) is a complex, disabling, idiopathic, progressive, and destructive disorder with an unknown etiology. The pathogenesis of CD is multifactorial and involves the interplay between host genetics, and environmental factors, resulting in an aberrant immune response leading to intestinal inflammation. Due to the high morbidity and long-term management of CD, the development of non-pharmacological approaches to mitigate the severity of CD has recently attracted great attention. The gut microbiota has been recognized as an important player in the development of CD, and general alterations in the gut microbiome have been established in these patients. Thus, the gut microbiome has emerged as a pre-eminent target for potential new treatments in CD. Epidemiological and interventional studies have demonstrated that diet could impact the gut microbiome in terms of composition and functionality. However, how specific dietary strategies could modulate the gut microbiota composition and how this would impact host–microbe interactions in CD are still unclear. In this review, we discuss the most recent knowledge on host–microbe interactions and their involvement in CD pathogenesis and severity, and we highlight the most up-to-date information on gut microbiota modulation through nutritional strategies, focusing on the role of the microbiota in gut inflammation and immunity.
Collapse
|
32
|
Oswalt CJ, Al-Rohil RN, Theivanthiran B, Haykal T, Salama AK, DeVito NC, Holtzhausen A, Ko DC, Hanks BA. Identification of a Germline Pyrin Variant in a Metastatic Melanoma Patient With Multiple Spontaneous Regressions and Immune-related Adverse Events. J Immunother 2022; 45:284-290. [PMID: 35621992 PMCID: PMC9172893 DOI: 10.1097/cji.0000000000000425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/02/2022] [Indexed: 12/17/2022]
Abstract
The mechanisms underlying tumor immunosurveillance and their association with the immune-related adverse events (irAEs) associated with checkpoint inhibitor immunotherapies remain poorly understood. We describe a metastatic melanoma patient exhibiting multiple episodes of spontaneous disease regression followed by the development of several irAEs during the course of anti-programmed cell death protein 1 antibody immunotherapy. Whole-exome next-generation sequencing studies revealed this patient to harbor a pyrin inflammasome variant previously described to be associated with an atypical presentation of familial Mediterranean fever. This work highlights a potential role for inflammasomes in the regulation of tumor immunosurveillance and the pathogenesis of irAEs.
Collapse
Affiliation(s)
| | - Rami N. Al-Rohil
- Department of Pathology and Dermatology, Duke Cancer Institute, Duke University
| | | | - Tarek Haykal
- Division of Medical Oncology, Department of Medicine
| | | | | | | | - Dennis C. Ko
- Departments of Molecular Genetics and Microbiology
| | - Brent A. Hanks
- Division of Medical Oncology, Department of Medicine
- Pharmacology and Cancer Biology, Duke University, Durham
| |
Collapse
|
33
|
Computation-Based Discovery of Potential Targets for Rheumatoid Arthritis and Related Molecular Screening and Mechanism Analysis of Traditional Chinese Medicine. DISEASE MARKERS 2022; 2022:1905077. [PMID: 35707715 PMCID: PMC9190478 DOI: 10.1155/2022/1905077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/14/2022] [Indexed: 11/29/2022]
Abstract
This study is aimed at screening potential therapeutic ingredients in traditional Chinese medicine (TCM) and identifying the key rheumatoid arthritis (RA) targets using computational simulations. Data for TCM-active ingredients with clear pharmacological effects were collected. Absorption, distribution, metabolism, excretion, and toxicity were evaluated. Potential RA targets were identified using the Gene Expression Omnibus (GEO) database, protein–protein interaction network, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and potential TCM ingredients using AutoDock Vina. To examine the mechanisms underlying small molecules, target prediction, Gene Ontology, KEGG, and network modeling analyses were conducted; the effects were verified in rat synovial cells using cell proliferation assay. The activities of tumor necrosis factor TNF-α and IL-1β and alterations in cellular target protein levels were detected by ELISA and Western blotting, respectively. In total, data for 432 TCM active ingredients with clear pharmacological effects were obtained. Five critical RA-related genes were identified; CCL5 and CXCL10 were selected for molecular docking. Target prediction and network-based proximity analysis showed that dioscin could modulate 22 known RA clinical targets. Dioscin, asiaticoside, and ginsenoside Re could effectively inhibit in vitro cell proliferation and secretion of TNF-α and IL-1β in RA rat synovial cells. Using bioinformatics and computer-aided drug design, the potential small anti-RA molecules and their mechanisms of action were comprehensively identified. Dioscin could significantly inhibit proliferation and induce apoptosis in RA rat synovial cells by reducing TNF-α and IL-1β secretion and inhibiting abnormal CCL5, CXCL10, CXCR2, and IL2 expression.
Collapse
|
34
|
Zhu H, Li G, Yin J, Zhang H, Da Y, Li L. Anlotinib attenuates experimental autoimmune encephalomyelitis mice model of multiple sclerosis via modulating the differentiation of Th17 and Treg cells. Immunopharmacol Immunotoxicol 2022; 44:594-602. [PMID: 35638564 DOI: 10.1080/08923973.2022.2071722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND In multiple sclerosis (MS), the imbalance between T helper (Th)-17 cells and regulatory T (Treg) cells are critical in autoimmune central nervous system (CNS) inflammation and demyelination. Experimental autoimmune encephalomyelitis (EAE) is an established mouse MS model and simulates MS at diverse levels. OBJECTIVES This study aims at investigating the impact of anlotinib on the clinical severity of EAE and CD4+ T cell differentiation. MATERIALS AND METHODS EAE-induced mice were treated with water (control) or 6 mg/kg anlotinib by gavage daily. At the peak of EAE, histopathological examination and flow cytometry analysis of CNS-infiltrating CD4+ T cells were performed. In vitro differentiation of CD4+ T cells under different conditions was detected by flow cytometry and quantitative real-time PCR. Finally, the impacts of anlotinib on the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the transcription levels of key genes involved in Th17 and Treg differentiation were tested. RESULTS Anlotinib attenuated the clinical severity of EAE and changed the frequencies of CNS-infiltrating CD4+ T cell subsets. Anlotinib inhibited the differentiation of Th17 cells in vitro, decreased the phosphorylation of STAT3, and reduced the expression of Rorc. Anlotinib promoted the differentiation of Treg cells and upregulated the expression levels of CD39 and CD73. DISCUSSION AND CONCLUSIONS Anlotinib alleviated the symptoms of EAE via inhibiting the Th17 cell differentiation and promoting Treg cell differentiation. Our study provides new opportunities for the exploitation of anlotinib as a therapeutic agent for the treatment of MS.
Collapse
Affiliation(s)
- Haoran Zhu
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Guangliang Li
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Jie Yin
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Hong Zhang
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Yurong Da
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | - Long Li
- Department of Immunology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China.,Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
35
|
Open label safety and efficacy pilot to study mitigation of equine recurrent uveitis through topical suppressor of cytokine signaling-1 mimetic peptide. Sci Rep 2022; 12:7177. [PMID: 35505065 PMCID: PMC9065145 DOI: 10.1038/s41598-022-11338-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Equine recurrent uveitis (ERU) is a painful and debilitating autoimmune disease and represents the only spontaneous model of human recurrent uveitis (RU). Despite the efficacy of existing treatments, RU remains a leading cause of visual handicap in horses and humans. Cytokines, which utilize Janus kinase 2 (Jak2) for signaling, drive the inflammatory processes in ERU that promote blindness. Notably, suppressor of cytokine signaling 1 (SOCS1), which naturally limits the activation of Jak2 through binding interactions, is often deficient in autoimmune disease patients. Significantly, we previously showed that topical administration of a SOCS1 peptide mimic (SOCS1-KIR) mitigated induced rodent uveitis. In this pilot study, we test the potential to translate the therapeutic efficacy observed in experimental rodent uveitis to equine patient disease. Through bioinformatics and peptide binding assays we demonstrate putative binding of the SOCS1-KIR peptide to equine Jak2. We also show that topical, or intravitreal injection of SOCS1-KIR was well tolerated within the equine eye through physical and ophthalmic examinations. Finally, we show that topical SOCS1-KIR administration was associated with significant clinical ERU improvement. Together, these results provide a scientific rationale, and supporting experimental evidence for the therapeutic use of a SOCS1 mimetic peptide in RU.
Collapse
|
36
|
Luo M, Mou Q, Liu L, Tian J, Liu L. Treg/Th17 Ratio Regulation May Play an Important Role in Epigallocatechin-3-Gallate-Mediated Attenuation of Increased Afterload-Induced Cardiac Hypertrophy. J Cardiovasc Pharmacol 2022; 79:711-718. [PMID: 35058409 PMCID: PMC9067088 DOI: 10.1097/fjc.0000000000001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/23/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The aim of this study was to investigate whether Treg/Th17 ratio regulation plays an important role in epigallocatechin-3-gallate (EGCG) in attenuating increased afterload-induced cardiac hypertrophy. Three-month-old male C57BL/6 mice were divided into sham + vehicle, abdominal aortic constriction (AAC) + vehicle, and AAC + EGCG groups. Intraperitoneal EGCG (50 mg/kg/d) administration was conducted. Cardiac structure and function were examined by ultrasonography. Pathology was examined by hematoxylin and eosin staining, wheat germ agglutinin staining, and Masson's trichome staining. T-lymphocyte subtypes were analyzed using immunofluorescence and flow cytometry assays. Ultrasonography showed that the ventricular wall in the AAC + vehicle group was thicker than that in the sham + vehicle group (P < 0.05). Hematoxylin and eosin staining revealed cardiomyocyte hypertrophy accompanied by a small amount of inflammatory cell infiltration in the AAC + vehicle group. The results of wheat germ agglutinin staining demonstrated the presence of hypertrophic cardiomyocytes in the AAC + vehicle group (P < 0.01). Masson's trichome staining showed cardiac fibrosis in the AAC + vehicle group, and the immunofluorescence assay revealed infiltration of CD4+ cells in both AAC + vehicle and AAC + EGCG groups. Splenic flow cytometry showed a significant increase in the proportion of Treg cells in the AAC + EGCG group (P < 0.05). The proportion of Th17 cells in the AAC + vehicle group was significantly higher than that in the sham + vehicle group (P < 0.05). In conclusion, changes in the Treg/Th17 ratio are associated with the occurrence of myocardial hypertrophy caused by increased afterload. Moreover, regulation of the Treg/Th17 ratio by EGCG may play an important role in the attenuation of myocardial hypertrophy.
Collapse
Affiliation(s)
- Min Luo
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; and
| | - Qiuhong Mou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; and
| | - Lingjuan Liu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; and
| | - Jie Tian
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; and
| | - Lifei Liu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China; and
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
37
|
Li M, Guo W, Dong Y, Wang W, Tian C, Zhang Z, Yu T, Zhou H, Gui Y, Xue K, Li J, Jiang F, Sarapultsev A, Wang H, Zhang G, Luo S, Fan H, Hu D. Beneficial Effects of Celastrol on Immune Balance by Modulating Gut Microbiota in Experimental Ulcerative Colitis Mice. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:288-303. [PMID: 35609771 PMCID: PMC9684163 DOI: 10.1016/j.gpb.2022.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 01/05/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease caused by many factors including colonic inflammation and microbiota dysbiosis. Previous studies have indicated that celastrol (CSR) has strong anti-inflammatory and immune-inhibitory effects. Here, we investigated the effects of CSR on colonic inflammation and mucosal immunity in an experimental colitis model, and addressed the mechanism by which CSR exerts the protective effects. We characterized the therapeutic effects and the potential mechanism of CSR on treating UC using histological staining, intestinal permeability assay, cytokine assay, flow cytometry, fecal microbiota transplantation (FMT), 16S rRNA sequencing, untargeted metabolomics, and cell differentiation. CSR administration significantly ameliorated the dextran sodium sulfate (DSS)-induced colitis in mice, which was evidenced by the recovered body weight and colon length as well as the decreased disease activity index (DAI) score and intestinal permeability. Meanwhile, CSR down-regulated the production of pro-inflammatory cytokines and up-regulated the amount of anti-inflammatory mediators at both mRNA and protein levels, and improved the balances of Treg/Th1 and Treg/Th17 to maintain the colonic immune homeostasis. Notably, all the therapeutic effects were exerted in a gut microbiota-dependent manner. Furthermore, CSR treatment increased the gut microbiota diversity and changed the compositions of the gut microbiota and metabolites, which is probably associated with the gut microbiota-mediated protective effects. In conclusion, this study provides the strong evidence that CSR may be a promising therapeutic drug for UC.
Collapse
Affiliation(s)
- Mingyue Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Weina Guo
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenzhu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunxia Tian
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zili Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Gui
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Jiang
- Institute of International Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ge Zhang
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region 999077, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China,Corresponding author.
| |
Collapse
|
38
|
Hamoudi C, Zhao C, Abderrazak A, Salem M, Fortin PR, Sévigny J, Aoudjit F. The Purinergic Receptor P2X4 Promotes Th17 Activation and the Development of Arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1115-1127. [PMID: 35165166 DOI: 10.4049/jimmunol.2100550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/28/2021] [Indexed: 01/24/2023]
Abstract
Purinergic signaling plays a major role in T cell activation leading to IL-2 production and proliferation. However, it is unclear whether purinergic signaling contributes to the differentiation and activation of effector T cells. In this study, we found that the purinergic receptor P2X4 was associated with human Th17 cells but not with Th1 cells. Inhibition of P2X4 receptor with the specific antagonist 5-BDBD and small interfering RNA inhibited the development of Th17 cells and the production of IL-17 by effector Th17 cells stimulated via the CD3/CD28 pathway. Our results showed that P2X4 was required for the expression of retinoic acid-related orphan receptor C, which is the master regulator of Th17 cells. In contrast, inhibition of P2X4 receptor had no effect on Th1 cells and on the production of IFN-γ and it did not affect the expression of the transcription factor T-bet (T-box transcription factor). Furthermore, inhibition of P2X4 receptor reduced the production of IL-17 but not of IFN-γ by effector/memory CD4+ T cells isolated from patients with rheumatoid arthritis. In contrast to P2X4, inhibition of P2X7 and P2Y11 receptors had no effects on Th17 and Th1 cell activation. Finally, treatment with the P2X4 receptor antagonist 5-BDBD reduced the severity of collagen-induced arthritis in mice by inhibiting Th17 cell expansion and activation. Our findings provide novel insights into the role of purinergic signaling in T cell activation and identify a critical role for the purinergic receptor P2X4 in Th17 activation and in autoimmune arthritis.
Collapse
Affiliation(s)
- Chakib Hamoudi
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada
| | - Chenqi Zhao
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada
| | - Amna Abderrazak
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Mabrouka Salem
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada
| | - Paul R Fortin
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - Jean Sévigny
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada.,ARThrite Center, Laval University, Quebec City, Quebec, Canada.,Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Fawzi Aoudjit
- Division of Immune and Infectious Diseases, CHU de Québec Research Center, Quebec City, Quebec, Canada; .,ARThrite Center, Laval University, Quebec City, Quebec, Canada.,Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
39
|
Zayas JP, Mamede JI. HIV Infection and Spread between Th17 Cells. Viruses 2022; 14:v14020404. [PMID: 35215997 PMCID: PMC8874668 DOI: 10.3390/v14020404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
HIV mainly targets CD4+ T cells, from which Th17 cells represent a major cell type, permissive, and are capable of supporting intracellular replication at mucosal sites. Th17 cells possess well-described dual roles, while being central to maintaining gut integrity, these may induce inflammation and contribute to autoimmune disorders; however, Th17 cells’ antiviral function in HIV infection is not completely understood. Th17 cells are star players to HIV-1 pathogenesis and a potential target to prevent or decrease HIV transmission. HIV-1 can be spread among permissive cells via direct cell-to-cell and/or cell-free infection. The debate on which mode of transmission is more efficient is still ongoing without a concrete conclusion yet. Most assessments of virus transmission analyzing either cell-to-cell or cell-free modes use in vitro systems; however, the actual interactions and conditions in vivo are not fully understood. The fact that infected breast milk, semen, and vaginal secretions contain a mix of both cell-free viral particles and infected cells presents an argument for the probability of HIV taking advantage of both modes of transmission to spread. Here, we review important insights and recent findings about the role of Th17 cells during HIV pathogenesis in mucosal surfaces, and the mechanisms of HIV-1 infection spread among T cells in tissues.
Collapse
|
40
|
Framme JL, Lundqvist C, Lundell AC, van Schouwenburg PA, Lemarquis AL, Thörn K, Lindgren S, Gudmundsdottir J, Lundberg V, Degerman S, Zetterström RH, Borte S, Hammarström L, Telemo E, Hultdin M, van der Burg M, Fasth A, Oskarsdóttir S, Ekwall O. Long-Term Follow-Up of Newborns with 22q11 Deletion Syndrome and Low TRECs. J Clin Immunol 2022; 42:618-633. [PMID: 35080750 PMCID: PMC9016018 DOI: 10.1007/s10875-021-01201-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/12/2021] [Indexed: 01/03/2023]
Abstract
Background Population-based neonatal screening using T-cell receptor excision circles (TRECs) identifies infants with profound T lymphopenia, as seen in cases of severe combined immunodeficiency, and in a subgroup of infants with 22q11 deletion syndrome (22q11DS). Purpose To investigate the long-term prognostic value of low levels of TRECs in newborns with 22q11DS. Methods Subjects with 22q11DS and low TRECs at birth (22q11Low, N=10), matched subjects with 22q11DS and normal TRECs (22q11Normal, N=10), and matched healthy controls (HC, N=10) were identified. At follow-up (median age 16 years), clinical and immunological characterizations, covering lymphocyte subsets, immunoglobulins, TRECs, T-cell receptor repertoires, and relative telomere length (RTL) measurements were performed. Results At follow-up, the 22q11Low group had lower numbers of naïve T-helper cells, naïve T-regulatory cells, naïve cytotoxic T cells, and persistently lower TRECs compared to healthy controls. Receptor repertoires showed skewed V-gene usage for naïve T-helper cells, whereas for naïve cytotoxic T cells, shorter RTL and a trend towards higher clonality were found. Multivariate discriminant analysis revealed a clear distinction between the three groups and a skewing towards Th17 differentiation of T-helper cells, particularly in the 22q11Low individuals. Perturbations of B-cell subsets were found in both the 22q11Low and 22q11Normal group compared to the HC group, with larger proportions of naïve B cells and lower levels of memory B cells, including switched memory B cells. Conclusions This long-term follow-up study shows that 22q11Low individuals have persistent immunologic aberrations and increased risk for immune dysregulation, indicating the necessity of lifelong monitoring. Clinical Implications This study elucidates the natural history of childhood immune function in newborns with 22q11DS and low TRECs, which may facilitate the development of programs for long-term monitoring and therapeutic choices. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-01201-5.
Collapse
Affiliation(s)
- Jenny Lingman Framme
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Pediatrics, Halland Hospital Halmstad, Halmstad, Region Halland, Sweden.
| | - Christina Lundqvist
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pauline A van Schouwenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Andri L Lemarquis
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karolina Thörn
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Susanne Lindgren
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Judith Gudmundsdottir
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Children's Medical Center, National University Hospital of Iceland, Reykjavík, Iceland
| | - Vanja Lundberg
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Rolf H Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Stephan Borte
- ImmunoDeficiencyCenter Leipzig (IDCL), Municipal Hospital St. Georg Leipzig, Leipzig, Germany
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Neo, Karolinska Institute, Stockholm, Sweden
| | - Esbjörn Telemo
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Magnus Hultdin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Anders Fasth
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sólveig Oskarsdóttir
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Olov Ekwall
- Department of Pediatrics, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
41
|
Chen CL, Chang FC, Hung YM, Chou MC, Yip HT, Chang R, Wei JCC. Candida Infection as an Early Sign of Subsequent Sjögren's Syndrome: A Population-Based Matched Cohort Study. Front Med (Lausanne) 2022; 8:796324. [PMID: 35127751 PMCID: PMC8814339 DOI: 10.3389/fmed.2021.796324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/12/2021] [Indexed: 01/12/2023] Open
Abstract
BackgroundCandida infection is prevalent in patients with Sjögren's syndrome (SjS), which usually takes years to reach diagnosis. Is the link a two-way street? The role of Candida infection before SjS has not been examined clearly. This study was conducted to provide epidemiological evidence regarding the relationship between the first acquisition of Candida infection and subsequent SjS.MethodsTotally, 23,494 individuals newly diagnosed with Candida infection were enrolled from 2000, to 2012. Controls (N = 93,976) were selected at a 1:4 ratio through propensity score matched (PSM) using the greedy algorithm. Exposure was defined according to the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes.Main Outcomes and MeasuresSjS was recorded in the Registry for Catastrophic Illness Patients Database (RCIPD). Cox proportional hazard model was used to analyze the association and sensitivity analyses for cross-validation.ResultsOf 117,470 individuals (106,077 [89%] women), 23,494 individuals (20.0%) had Candida infection and 104 individuals (0.1%) developed SjS. The incidence of SjS was higher in the exposed group compared with the controls (1.92 vs. 0. 98 per 10,000 person-years) with adjusted hazard ratio (aHR) 1.90 (95% CI, 1.25–2.87). The aHRs in subgroups of aged 18–30 years, oral candidiasis and depression were 4.30 (95% CI, 1.60–11.55), 4.70 (4.70–13.93) and 6.34 (2.16–18.66). Sensitivity analyses yield consistent results.ConclusionsResidents in Taiwan with Candida infection have higher risk of SjS. For early diagnosis of SjS, clinicians are advised to take Candida infection into account in some situation.
Collapse
Affiliation(s)
- Chia-Lun Chen
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Fang-Cherng Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yao-Min Hung
- Department of Internal Medicine, Kaohsiung Municipal United Hospital, Kaohsiung, Taiwan
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Mei-Chia Chou
- Department of Recreation and Sports Management, Tajen University, Pingtung, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Pingtung Branch, Pingtung, Taiwan
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Mei-Chia Chou
| | - Hei-Tung Yip
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- *Correspondence: Renin Chang
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- James Cheng-Chung Wei
| |
Collapse
|
42
|
Jing D, Xiao H, Shen M, Chen X, Han X, Kuang Y, Zhu W, Xiao Y. Association of Psoriasis With Anxiety and Depression: A Case-Control Study in Chinese Patients. Front Med (Lausanne) 2022; 8:771645. [PMID: 35004741 PMCID: PMC8738085 DOI: 10.3389/fmed.2021.771645] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Patients with psoriasis are prone to suffer from anxiety and depression during their lifetime. This study aimed to investigate the association of psoriasis with anxiety and depression in Chinese patients. Methods: A case-control study in Chinese patients with psoriasis vulgaris and healthy controls was conducted. Clinical information based on patient-reported, clinical information, and reliable structured questionnaires were collected. Multivariable logistic regression was used to investigate the associations, in terms of adjusted odds ratios (AORs). Results: We continuously selected 1,571 patients who were firstly diagnosed with psoriasis vulgaris, and 1,571 healthy controls, matched by age and sex. The risk of depression in the psoriasis vulgaris group was higher than that in the healthy controls (AOR = 1.30, P = 0.047), while no differences were found in the risk of anxiety between the two groups (AOR = 1.18, P = 0.381). Subgroup analysis by disease onsets showed that late-onset psoriasis (LOP) was significantly associated with a higher risk of anxiety (AOR = 1.47, P = 0.033) and depression symptoms (AOR = 1.85, P = 0.012) but not with early-onset psoriasis (EOP). Subgroup analysis by disease severity indicated that no difference was observed in the associations of mild psoriasis vulgaris, moderate-to-severe psoriasis vulgaris with anxiety and depression. Conclusion: Patients with psoriasis vulgaris were more likely to develop depression compared with the general population. LOP patients were positively associated with anxiety and depression. We believe the screening of emotional disorders should be included in the daily management of psoriasis patients.
Collapse
Affiliation(s)
- Danrong Jing
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis (Xiangya Hospital), Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Hui Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis (Xiangya Hospital), Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis (Xiangya Hospital), Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China.,Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis (Xiangya Hospital), Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Xi Han
- ULink College Guangzhou, Guangzhou, China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis (Xiangya Hospital), Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis (Xiangya Hospital), Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Yi Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis (Xiangya Hospital), Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| |
Collapse
|
43
|
Loda E, Arellano G, Perez-Giraldo G, Miller SD, Balabanov R. Can Immune Tolerance Be Re-established in Neuromyelitis Optica? Front Neurol 2022; 12:783304. [PMID: 34987468 PMCID: PMC8721118 DOI: 10.3389/fneur.2021.783304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromyelitis optica (NMO) is a chronic inflammatory disease of the central nervous system that primarily affects the optic nerves and spinal cord of patients, and in some instances their brainstem, diencephalon or cerebrum as spectrum disorders (NMOSD). Clinical and basic science knowledge of NMO has dramatically increased over the last two decades and it has changed the perception of the disease as being inevitably disabling or fatal. Nonetheless, there is still no cure for NMO and all the disease-modifying therapies (DMTs) are only partially effective. Furthermore, DMTs are not disease- or antigen-specific and alter all immune responses including those protective against infections and cancer and are often associated with significant adverse reactions. In this review, we discuss the pathogenic mechanisms of NMO as they pertain to its DMTs and immune tolerance. We also examine novel research therapeutic strategies focused on induction of antigen-specific immune tolerance by administrating tolerogenic immune-modifying nanoparticles (TIMP). Development and implementation of immune tolerance-based therapies in NMO is likely to be an important step toward improving the treatment outcomes of the disease. The antigen-specificity of these therapies will likely ameliorate the disease safely and effectively, and will also eliminate the clinical challenges associated with chronic immunosuppressive therapies.
Collapse
Affiliation(s)
- Eileah Loda
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Neurology, Northwestern University, Chicago, IL, United States
| | - Gabriel Arellano
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gina Perez-Giraldo
- Department of Neurology, Northwestern University, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Roumen Balabanov
- Department of Neurology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
44
|
Wu L, Li D, Qin L, Wang Q, Saito Y, Sara R, Fan J. Growth hormone secretagogue receptor deficiency promotes lung cancer growth by affecting the Th17/Treg balance. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1696. [PMID: 34988205 PMCID: PMC8667136 DOI: 10.21037/atm-21-5727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 11/19/2021] [Indexed: 11/29/2022]
Abstract
Background Cluster of differentiation 4 (CD4+) T cells plays a prominent role in eliminating cancer cells. The balance between T helper (Th)17 and regulatory T (Treg) cells is crucial for optimal immune response and protection against cancer. Growth hormone secretagogue receptor 1a (GHSR1a), a member of the G protein-coupled protein receptor superfamily, plays a critical role in immune cell function. The aim of our study is to investigate the role of GHSR1a in CD4+ T cell differentiation and lung cancer progression. Methods A subcutaneous lung cancer model was used to examine the role of GHSR1a in controlling tumor growth. Lewis lung carcinoma (LLC) cells were subcutaneously implanted into Ghsr1a−/− mice and wild-type (WT) mice. The ratio of Th17 and Treg in the draining lymph node of Ghsr1a−/− mice and WT tumor-bearing mice was detected by fluorescence-activated cell sorting (FACS). The effect of GHSR1a deficiency on Th17 and Treg cell differentiation was examined using an in vitro differentiation assay. The phosphorylation of mammalian target of rapamycin (mTOR), signal transducer, and activator of transcription (STAT)3 and STAT5 signaling was detected with Western blot. Results We found that the ablation of GHSR1a resulted in impaired anti-tumor immunity to control lung cancer growth in vivo. We also demonstrated that the deficiency of GHSR1a promoted a shift in the Th17/Treg balance toward enhanced Treg differentiation and inhibited Th17 differentiation both in vivo and in vitro, which suggests that GHSR1a regulates T cell lineage choices between Th17 and Treg cell commitment in the tumor microenvironment. Mechanistically, the deficiency of GHSR1a resulted in reduced phosphorylation in mTOR and STAT3, and increased phosphorylation in STAT5. Conclusions Our findings showed the important role of GHSR1a in CD4+ T cell differentiation in the context of the lung cancer microenvironment. This research provides a novel molecular target and insights into interventions for the prevention and treatment of lung cancer.
Collapse
Affiliation(s)
- Liang Wu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongliang Li
- Department of Thoracic Surgery, Shanxi Provincial Tumor Hospital, Taiyuan, China
| | - Linlin Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qingliang Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuichi Saito
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Ricciardi Sara
- Division of Thoracic Surgery, IRCCS University Hospital of Bologna, Bologna, Italy
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Kryvalap Y, Czyzyk J. The Role of Proteases and Serpin Protease Inhibitors in β-Cell Biology and Diabetes. Biomolecules 2022; 12:biom12010067. [PMID: 35053215 PMCID: PMC8774208 DOI: 10.3390/biom12010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Regulation of the equilibrium between proteases and their inhibitors is fundamental to health maintenance. Consequently, developing a means of targeting protease activity to promote tissue regeneration and inhibit inflammation may offer a new strategy in therapy development for diabetes and other diseases. Specifically, recent efforts have focused on serine protease inhibitors, known as serpins, as potential therapeutic targets. The serpin protein family comprises a broad range of protease inhibitors, which are categorized into 16 clades that are all extracellular, with the exception of Clade B, which controls mostly intracellular proteases, including both serine- and papain-like cysteine proteases. This review discusses the most salient, and sometimes opposing, views that either inhibition or augmentation of protease activity can bring about positive outcomes in pancreatic islet biology and inflammation. These potential discrepancies can be reconciled at the molecular level as specific proteases and serpins regulate distinct signaling pathways, thereby playing equally distinct roles in health and disease development.
Collapse
Affiliation(s)
| | - Jan Czyzyk
- Correspondence: ; Tel.: +1-(612)-273-3495; Fax: +1-(612)-273-1142
| |
Collapse
|
46
|
Schnell A, Huang L, Singer M, Singaraju A, Barilla RM, Regan BML, Bollhagen A, Thakore PI, Dionne D, Delorey TM, Pawlak M, Meyer Zu Horste G, Rozenblatt-Rosen O, Irizarry RA, Regev A, Kuchroo VK. Stem-like intestinal Th17 cells give rise to pathogenic effector T cells during autoimmunity. Cell 2021; 184:6281-6298.e23. [PMID: 34875227 PMCID: PMC8900676 DOI: 10.1016/j.cell.2021.11.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/13/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022]
Abstract
While intestinal Th17 cells are critical for maintaining tissue homeostasis, recent studies have implicated their roles in the development of extra-intestinal autoimmune diseases including multiple sclerosis. However, the mechanisms by which tissue Th17 cells mediate these dichotomous functions remain unknown. Here, we characterized the heterogeneity, plasticity, and migratory phenotypes of tissue Th17 cells in vivo by combined fate mapping with profiling of the transcriptomes and TCR clonotypes of over 84,000 Th17 cells at homeostasis and during CNS autoimmune inflammation. Inter- and intra-organ single-cell analyses revealed a homeostatic, stem-like TCF1+ IL-17+ SLAMF6+ population that traffics to the intestine where it is maintained by the microbiota, providing a ready reservoir for the IL-23-driven generation of encephalitogenic GM-CSF+ IFN-γ+ CXCR6+ T cells. Our study defines a direct in vivo relationship between IL-17+ non-pathogenic and GM-CSF+ and IFN-γ+ pathogenic Th17 populations and provides a mechanism by which homeostatic intestinal Th17 cells direct extra-intestinal autoimmune disease.
Collapse
Affiliation(s)
- Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Linglin Huang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Meromit Singer
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anvita Singaraju
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rocky M Barilla
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Brianna M L Regan
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alina Bollhagen
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; German Cancer Research Center, DKFZ, Heidelberg 69120, Germany
| | - Pratiksha I Thakore
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Toni M Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gerd Meyer Zu Horste
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rafael A Irizarry
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
47
|
Multifaceted Roles of Chemokines and Chemokine Receptors in Tumor Immunity. Cancers (Basel) 2021; 13:cancers13236132. [PMID: 34885241 PMCID: PMC8656932 DOI: 10.3390/cancers13236132] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Various immune cells are involved in host immune responses to cancer. T-helper (Th) 1 cells, cytotoxic CD8+ T cells, and natural killer cells are the major effector cells in anti-tumor immunity, whereas cells such as regulatory T cells and myeloid-derived suppressor cells are negatively involved in anti-tumor immunity. Th2 cells and Th17 cells have been shown to have both pro-tumor and anti-tumor activities. The migratory properties of various immune cells are essential for their function and critically regulated by the chemokine superfamily. In this review, we summarize the roles of various immune cells in tumor immunity and their migratory regulation by the chemokine superfamily. We also assess the therapeutic possibilities of targeting chemokines and chemokine receptors in cancer immunotherapy. Abstract Various immune cells are involved in host tumor immune responses. In particular, there are many T cell subsets with different roles in tumor immunity. T-helper (Th) 1 cells are involved in cellular immunity and thus play the major role in host anti-tumor immunity by inducing and activating cytotoxic T lymphocytes (CTLs). On the other hand, Th2 cells are involved in humoral immunity and suppressive to Th1 responses. Regulatory T (Treg) cells negatively regulate immune responses and contribute to immune evasion of tumor cells. Th17 cells are involved in inflammatory responses and may play a role in tumor progression. However, recent studies have also shown that Th17 cells are capable of directly inducting CTLs and thus may promote anti-tumor immunity. Besides these T cell subsets, there are many other innate immune cells such as dendritic cells (DCs), natural killer (NK) cells, and myeloid-derived suppressor cells (MDSCs) that are involved in host immune responses to cancer. The migratory properties of various immune cells are critical for their functions and largely regulated by the chemokine superfamily. Thus, chemokines and chemokine receptors play vital roles in the orchestration of host immune responses to cancer. In this review, we overview the various immune cells involved in host responses to cancer and their migratory properties regulated by the chemokine superfamily. Understanding the roles of chemokines and chemokine receptors in host immune responses to cancer may provide new therapeutic opportunities for cancer immunotherapy.
Collapse
|
48
|
Yoshie O. CCR4 as a Therapeutic Target for Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13215542. [PMID: 34771703 PMCID: PMC8583476 DOI: 10.3390/cancers13215542] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary CCR4 is a chemokine receptor selectively expressed on normal T cell subsets such as type 2 helper T cells, skin-homing T cells and regulatory T cells, and on skin-associated T cell malignancies such as adult T cell leukemia/lymphoma (ATLL), which is etiologically associated with human T lymphocyte virus type 1 (HTLV-1), and cutaneous T cell lymphomas (CTCLs). Mogamulizumab is a fully humanized and glyco-engineered monoclonal anti-CCR4 antibody used for the treatment of refractory/relapsed ATLL and CTCLs, often resulting in complete remission. The clinical applications of Mogamulizumab are now being extended to solid tumors, exploring the therapeutic effect of regulatory T cell depletion. This review overviews the expression of CCR4 in various T cell subsets, HTLV-1-infected T cells, ATLL and CTCLs, and the clinical applications of Mogamulizumab. Abstract CCR4 is a chemokine receptor mainly expressed by T cells. It is the receptor for two CC chemokine ligands, CCL17 and CCL22. Originally, the expression of CCR4 was described as highly selective for helper T type 2 (Th2) cells. Later, its expression was extended to other T cell subsets such as regulatory T (Treg) cells and Th17 cells. CCR4 has long been regarded as a potential therapeutic target for allergic diseases such as atopic dermatitis and bronchial asthma. Furthermore, the findings showing that CCR4 is strongly expressed by T cell malignancies such as adult T cell leukemia/lymphoma (ATLL) and cutaneous T cell lymphomas (CTCLs) have led to the development and clinical application of the fully humanized and glyco-engineered monoclonal anti-CCR4 Mogamulizumab in refractory/relapsed ATLL and CTCLs with remarkable successes. However, Mogamulizumab often induces severe adverse events in the skin possibly because of its efficient depletion of Treg cells. In particular, treatment with Mogamulizumab prior to allogenic hematopoietic stem cell transplantation (allo-HSCT), the only curative option of these T cell malignancies, often leads to severe glucocorticoid-refractory graft-versus-host diseases. The efficient depletion of Treg cells by Mogamulizumab has also led to its clinical trials in advanced solid tumors singly or in combination with immune checkpoint inhibitors. The main focus of this review is CCR4; its expression on normal and malignant T cells and its significance as a therapeutic target in cancer immunotherapy.
Collapse
Affiliation(s)
- Osamu Yoshie
- Health and Kampo Institute, Sendai 981-3205, Japan;
- Kindai University, Osaka 577-8502, Japan
- Aoinosono-Sendai Izumi Long-Term Health Care Facility, Sendai 981-3126, Japan
| |
Collapse
|
49
|
Chen CC, Hung YM, Chiu LT, Chou MC, Chang R, Wei JCC. Association Between Severity of Leptospirosis and Subsequent Major Autoimmune Diseases: A Nationwide Observational Cohort Study. Front Immunol 2021; 12:721752. [PMID: 34566978 PMCID: PMC8461302 DOI: 10.3389/fimmu.2021.721752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction Infections play a role in autoimmune diseases (AD). Leptospirosis has been linked to the trigger of systemic lupus erythematosus. Objective To investigate subsequent risk of major AD in hospitalized Taiwanese for Leptospirosis. Methods Retrospective observational cohort study was employed. The enrolled period was from 2000 to 2012. In the main model, we extracted 4026 inpatients with leptospirosis from the Taiwan National Health Insurance Research Database (NHIRD) and 16,104 participants without leptospirosis at a 1:4 ratio propensity-score matched (PSM) by age, gender, index year, and comorbidities. The follow-up period was defined as the time from the initial diagnosis of leptospirosis to major AD occurrence or 2013. This study was re-analyzed by frequency-matching as a sensitivity analysis for cross-validation. Univariable and multivariable Cox proportional hazards regression models were applied to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Results The adjusted HR (95% CI) of major ADs for the leptospirosis group was 4.45 (3.25–6.79) (p < 0.001) compared to the controls after full adjustment. The risk of major ADs was 5.52-fold (95% CI, 3.82–7.99) higher in leptospirosis patients hospitalized for seven days and above than the controls, while 2.80-fold (95% CI, 1.68–5.61) in those hospitalized less than seven days. The sensitivity analysis yields consistent findings. Stratified analysis revealed that the association between leptospirosis and major ADs was generalized in both genders, and all age groups. Conclusions Symptomatic leptospirosis is associated with increased rate of subsequent major ADs, and the risk seems to be higher in severe cases.
Collapse
Affiliation(s)
- Chih-Chung Chen
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yao-Min Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,College of Health and Nursing, Meiho University, Pingtung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal United Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Lu-Ting Chiu
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Chia Chou
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan.,Department of Recreation and Sports Management, Tajen University, Pingtung County, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Pingtung Branch, Pingtung County, Taiwan
| | - Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Recreation and Sports Management, Tajen University, Pingtung County, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
50
|
Herrera-Acosta E, Garriga-Martina GG, Suárez-Pérez JA, Martínez-García EA, Herrera-Ceballos E. Ixekizumab for Patients with Plaque Psoriasis Affected by Multiple Sclerosis: Case report. Sultan Qaboos Univ Med J 2021; 21:488-490. [PMID: 34522419 PMCID: PMC8407899 DOI: 10.18295/squmj.4.2021.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system that shares similar immunopathogenic mechanisms with chronic plaque psoriasis, such as the overexpression of the Th17 pathway. We report a 50-year-old male patient with MS and severe chronic plaque psoriasis who presented to Hospital Virgen de la Victoria, Málaga, Spain, in 2019. He was successfully treated with ixekizumab (anti-interleukin [IL]-17A and IL-17A/F monoclonal antibody). The treatment achieved complete skin clearance (i.e. a Psoriasis Area Severity Index 100 response) with no adverse event and no evidence of progression of the neurological disease either.
Collapse
Affiliation(s)
| | | | - Jorge A Suárez-Pérez
- Department of Dermatology, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | | | | |
Collapse
|