1
|
Puhari SSM, Yuvaraj S, Vasudevan V, Ramprasath T, Arunkumar K, Amutha C, Selvam GS. Fucoidan from Sargassum wightii reduces oxidative stress through upregulating Nrf2/HO-1 signaling pathway in alloxan-induced diabetic cardiomyopathy rats. Mol Biol Rep 2023; 50:8855-8866. [PMID: 37665545 DOI: 10.1007/s11033-023-08780-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a form of cardiac dysfunction caused by diabetes, increasing heart failure and death. Studies shown that hyperglycemia-induced oxidative stress significantly affects heart structure and functional changes during diabetic cardiomyopathy. Fucoidans are sulfated polysaccharide derived from naturally available seaweeds and reported for various biological functions such as antioxidant, anti-diabetic, and anti-inflammatory. However, the therapeutic potential of Indian seaweeds against DCM remains largely unexplored. Therefore, the current study aimed to work on the cardioprotective effect of extracted fucoidan from Sargassum wightii (SwF) in alloxan-induced DCM. METHODS AND RESULTS Diabetes (DM) was induced with alloxan monohydrate (150 mg/kg-1) dissolved in Nacl (0.9%) overnight-fasted rats. Group III, IV rats were DM induced, followed by treated with SwF (150 mg/kg-1) and (300 mg/kg-1). Group V and VI were non-diabetic rats and received SwF (150 mg/kg-1) and (300 mg/kg-1). SwF reduced classical progressive DM complications such as hyperglycemia, polydipsia, polyphagia, and polyurea in alloxan-induced diabetic rats. Biochemical analysis showed that SwF decreased blood glucose, cardiac markers enzymes, and lipid peroxidation levels compared to diabetic rats. SwF administration significantly increased Nrf2, HO-1, SOD, Catalase, and NQO1 gene expression. In addition, SwF-treated rats showed reduced heart tissue damage with increased Nrf2 and HO-1 protein expression. CONCLUSION The current research concludes that targeting oxidative stress with SwF provided an effective role in the prevention of DCM. Thus, fucoidan could be used to develop functional food ingredients for DCM.
Collapse
Affiliation(s)
- Shanavas Syed Mohamed Puhari
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Subramani Yuvaraj
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Varadaraj Vasudevan
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Kulanthaiyesu Arunkumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, Kasaragod, Kerala, 671320, India
| | - Chinnaiah Amutha
- Department of Animal behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Govindan Sadasivam Selvam
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
2
|
Lin Z, Wang F, Yan Y, Jin J, Quan Z, Tong H, Du J. Fucoidan derived from Sargassum pallidum alleviates metabolism disorders associated with improvement of cardiac injury and oxidative stress in diabetic mice. Phytother Res 2023; 37:4210-4223. [PMID: 37253360 DOI: 10.1002/ptr.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and its complications have become a serious global health epidemic. Cardiovascular complications have considered as a major cause of high mortality in diabetic patients. Fucoidans from brown algae have diverse medicinal activities, however, few studies reported pharmacological activity of Sargassum. pallidum fucoidan (Sp-Fuc). Therefore, the aim of this study was to investigate the effects of Sp-Fuc on diabetic symptoms and cardiac injury in spontaneous diabetic db/db mice. SP-Fuc at 200 mg/(kg/d) was administered intragastrically to db/db mice for 8 weeks, the effects on hyperlipidemia, hyperglycemia, insulin resistance, and cardiac damage, as well as oxidative stress, inflammation, Nrf2/ARE, and NF-κB signaling pathways, were investigated. Our data demonstrated that Sp-Fuc significantly (p < 0.05) decreased body weights, hyperlipidemia, and hyperglycemia in db/db mice, along with improved insulin sensitivity. Additionally, Sp-Fuc significantly (p < 0.05) alleviated cardiac dysfunction and pathological morphology of cardiac tissue. Sp-Fuc also significantly (p < 0.05) decreased lipid peroxidation, increased antioxidant function, as well as reduced cardiac inflammation, possibly through Nrf2/ARE and NF-κB signaling. Sp-Fuc can ameliorate the metabolism disorders of glucose and lipid in diabetic mice by activating Nrf2/ARE antioxidant signaling, simultaneously reducing cardiac redox imbalance and inflammatory damage. The present findings provide a perspective on the therapy strategy for T2DM and its complications.
Collapse
Affiliation(s)
- Zhiyong Lin
- Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengwei Wang
- Pharmaceutical Department, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yawei Yan
- Department of Biopharmaceuticals, College of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Jiabao Jin
- Department of Biopharmaceuticals, College of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Zijiao Quan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Department of Biopharmaceuticals, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Department of Biopharmaceuticals, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jie Du
- Department of Cardiovascular and Thoracic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Surgery, The Second People's Hospital of Pingyang County, Wenzhou, China
| |
Collapse
|
3
|
Puhari SSM, Yuvaraj S, Vasudevan V, Ramprasath T, Rajkumar P, Arunkumar K, Amutha C, Selvam GS. Isolation and characterization of fucoidan from four brown algae and study of the cardioprotective effect of fucoidan from Sargassum wightii against high glucose-induced oxidative stress in H9c2 cardiomyoblast cells. J Food Biochem 2022; 46:e14412. [PMID: 36121745 DOI: 10.1111/jfbc.14412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 01/13/2023]
Abstract
Oxidative stress plays a vital role in the initiation and progression of diabetic cardiomyopathy (DCM). Increased cardiac dysfunction and apoptosis in DCM are independent factors associated with hypertension or coronary artery disease. Fucoidan, a class of sulfated polysaccharides, is widely used as food supplements and reported to have various pharmacological properties. However, the pharmacological property of Indian seaweeds remains unexplored. The present study is focused on isolating and characterizing the fucoidan from four brown seaweeds such as Sargassum wightii (SwF), Sargassum swartzii (SsF), Sargassum polycystum (SpF), Turbinaria ornata (ToF), and aimed to investigate cardioprotective effect of fucoidan against High Glucose (HG) induced oxidative stress in H9c2 cells. The mild acid hydrolysis method was used to isolate crude fucoidan from four brown seaweeds purified by the FPLC system. The biochemical composition analysis showed that SwF had a high content of fucoidan and sulfate, followed by SsF, SpF, and ToF. Further, FTIR, XRD, NMR, and SEM analysis confirmed the isolated fucoidan structures. SwF showed higher DPPH activity compared to another isolated fucoidan. In vitro studies with SwF revealed significantly decreased cytotoxicity, prevented the loss of MMP, reduced lipid peroxidation, and increased cellular enzymatic and non-enzymatic activity. qRT-PCR results showed SwF significantly upregulated the Nrf2, HO-1, NQO1, and Bcl2 and down-regulated the Bax and Caspase-3 mRNA expression compared to HG-treated cells. In conclusion, SwF could be used to develop functional foods for diabetic-mediated CVD complications compared to another isolated fucoidan. PRACTICAL APPLICATIONS: Bioactive carbohydrates have gained significant interest among researchers to improve human health. The biomedical field showed great interest in seaweed research in managing various diseases. In particular, seaweeds contain many bioactive compounds because of their chemical and biological diversity. Despite the various beneficial effects of fucoidan in CVD, the therapeutic potential of Indian seaweeds remains largely unexplored. Hence, this study isolated fucoidan from four brown seaweeds and studied their bioactive properties. Results revealed that SwF showed higher free radical scavenging activity compared to another isolated fucoidan. Therefore, SwF was selected for the in vitro study. SwF increased the cytoprotection through increasing antioxidant levels against oxidative stress in H9c2 cells. Staining analysis showed SwF increased cellular protection via inhibiting ROS protection and increasing MMP. Overall, fucoidan from SwF could be developed as a functional food for CVD.
Collapse
Affiliation(s)
- Shanavas Syed Mohamed Puhari
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Subramani Yuvaraj
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Varadaraj Vasudevan
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Prabhakaran Rajkumar
- Department of Animal Sciences, Manonmanium Sundaranar University, Tirunelveli, India
| | - Kulanthaiyesu Arunkumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
| | - Chinnaiah Amutha
- Department of Animal Behaviour & Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Govindan Sadasivam Selvam
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
4
|
Kaushik A, Sangtani R, Parmar HS, Bala K. Algal metabolites: Paving the way towards new generation antidiabetic therapeutics. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Piñeiro-Ramil M, Flórez-Fernández N, Ramil-Gómez O, Torres MD, Dominguez H, Blanco FJ, Meijide-Faílde R, Vaamonde-García C. Antifibrotic effect of brown algae-derived fucoidans on osteoarthritic fibroblast-like synoviocytes. Carbohydr Polym 2022; 282:119134. [PMID: 35123730 DOI: 10.1016/j.carbpol.2022.119134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
Abstract
Synovial fibrosis is a pathological process which contributes to joint pain and stiffness in several musculoskeletal disorders. Fucoidans, sulfated polysaccharides found in brown algae, have recently emerged as promising therapeutic agents. Despite the increasing amount of evidence suggesting the protective role of fucoidans in different experimental approaches of human fibrotic disorders, the effect of these sulfated polysaccharides on synovial fibrosis has not been investigated yet. By an in vitro experimental approach in fibroblast-like synoviocytes, we detected that fucoidans inhibit their differentiation into myofibroblasts with tumor cell-like characteristics and restore apoptosis. Composition and structure of fucoidan appear to be critical for the detected activity. Furthermore, protective effects of these sulfated polysaccharides are mediated by upregulation of nitric oxide production and modulation of TGF-β/smad pathway. Altogether, our results support the use of fucoidans as therapeutic compounds in the treatment of the fibrotic processes involved in rheumatic pathologies.
Collapse
Affiliation(s)
- María Piñeiro-Ramil
- Universidade da Coruña, Tissue Engineering and Cellular Therapy Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Centro de Investigaciones Científicas Avanzadas (CICA), 15006 A Coruña, Spain.
| | - Noelia Flórez-Fernández
- CINBIO, Universidade de Vigo, Biomass and Sustanaible Development Group (EQ2), Departament of Chemical Engineering, 32004 Ourense, Spain.
| | - Olalla Ramil-Gómez
- Aging and Inflammation Research Laboratory, Instituto de Investigaciones Biomédicas de A Coruña (INIBIC), 15006 A Coruña, Spain; Universidade de Coruña, Endocrine, Nutritional and Metabolic Diseases Group, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, 15006 A Coruña, Spain.
| | - María Dolores Torres
- CINBIO, Universidade de Vigo, Biomass and Sustanaible Development Group (EQ2), Departament of Chemical Engineering, 32004 Ourense, Spain.
| | - Herminia Dominguez
- CINBIO, Universidade de Vigo, Biomass and Sustanaible Development Group (EQ2), Departament of Chemical Engineering, 32004 Ourense, Spain.
| | - Francisco J Blanco
- Universidade da Coruña, Grupo de Investigacion en Reumatología y Salud, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, 15006 A Coruña, Spain; Hospital Universitario A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), Grupo de Investigacion en Reumatología, 15006 A Coruña, Spain.
| | - Rosa Meijide-Faílde
- Universidade da Coruña, Tissue Engineering and Cellular Therapy Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Centro de Investigaciones Científicas Avanzadas (CICA), 15006 A Coruña, Spain; Universidade da Coruña, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, 15006 A Coruña, Spain.
| | - Carlos Vaamonde-García
- Universidade da Coruña, Grupo de Investigacion en Reumatología y Salud, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, 15071 A Coruña, Spain.
| |
Collapse
|
6
|
Papadopoulou A, Pettinau L, Seppänen E, Sikanen A, Anttila K. The interactive effects of exercise training and functional feeds on the cardiovascular performance of rainbow trout (Oncorhynchus mykiss) at high temperatures. Curr Res Physiol 2022; 5:142-150. [PMID: 35252881 PMCID: PMC8889263 DOI: 10.1016/j.crphys.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022] Open
Abstract
The cardiovascular performance of salmonids in aquaculture can be impaired by acute climate warming, posing risks for fish survival. Exercise training and functional feeds have been shown to be cardioprotective in mammals but their action on the fish heart and its upper thermal performance has not been studied. To investigate this, rainbow trout were trained at a moderate water velocity of 1 body length per second (bl s−1) for 6 h per day, either alone or in combination with one of two functional feed-supplements, allicin and fucoidan. After 6 weeks of exercise training and feeding, maximum heart rate and the temperature coefficient of heart rate were significantly higher in the trained fish as compared to untrained ones. There was a slight increase in hematocrit in trained control fish reared on a normal diet (TC group) compared to untrained fish fed with the same diet (CC). This implies that exercise training enhanced oxygen delivery to trout tissues via an increase of cardiac blood flow in warm water. However, cardiac thermal tolerance was not affected by exercise training or feeding, except from the temperature of peak heart rate which was higher in the trained group fed with fucoidan supplement (TF) as compared to the untrained group fed with same diet (CF). Allicin supplement caused a significant reduction in the maximum heart rate and the temperature coefficient of heart rate, especially in trained fish, while fucoidan supplement did not cause any effect on heart rate. No differences were observed in growth performance among groups. However, fish fed with fucoidan-supplemented diet had a slight reduction in feed conversion efficiency. We suggest further investigations to understand the antagonistic effect of allicin supplemental feeding and exercise training on cardiovascular performance. More studies are also required to investigate if other exercise training intensities could increase cardiac thermal tolerance. Exercise training at 1 bl s−1 increased the hematocrit values of rainbow trout. Exercise training at 1 bl s−1 increased the maximum heart rate and temperature coefficient of rainbow trout. Exercise training at 1bl s−1 did not enhance the cardiac thermal tolerance of rainbow trout. Functional feeds, allicin and fucoidan, did not improve the cardiovascular system of rainbow trout at high temperatures.
Collapse
|
7
|
Cotas J, Pacheco D, Araujo GS, Valado A, Critchley AT, Pereira L. On the Health Benefits vs. Risks of Seaweeds and Their Constituents: The Curious Case of the Polymer Paradigm. Mar Drugs 2021; 19:164. [PMID: 33808736 PMCID: PMC8003528 DOI: 10.3390/md19030164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
To exploit the nutraceutical and biomedical potential of selected seaweed-derived polymers in an economically viable way, it is necessary to analyze and understand their quality and yield fluctuations throughout the seasons. In this study, the seasonal polysaccharide yield and respective quality were evaluated in three selected seaweeds, namely the agarophyte Gracilaria gracilis, the carrageenophyte Calliblepharis jubata (both red seaweeds) and the alginophyte Sargassum muticum (brown seaweed). It was found that the agar synthesis of G. gracilis did not significantly differ with the seasons (27.04% seaweed dry weight (DW)). In contrast, the carrageenan content in C. jubata varied seasonally, being synthesized in higher concentrations during the summer (18.73% DW). Meanwhile, the alginate synthesis of S. muticum exhibited a higher concentration (36.88% DW) during the winter. Therefore, there is a need to assess the threshold at which seaweed-derived polymers may have positive effects or negative impacts on human nutrition. Furthermore, this study highlights the three polymers, along with their known thresholds, at which they can have positive and/or negative health impacts. Such knowledge is key to recognizing the paradigm governing their successful deployment and related beneficial applications in humans.
Collapse
Affiliation(s)
- João Cotas
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (D.P.); (L.P.)
- Marine and Environmental Sciences Centre (MARE), Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal;
| | - Diana Pacheco
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (D.P.); (L.P.)
- Marine and Environmental Sciences Centre (MARE), Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal;
| | - Glacio Souza Araujo
- Federal Institute of Education, Science and Technology of Ceará—IFCE, Campus Aracati, CE 040, km 137,1, Aracati 62800-000, Ceara, Brazil;
| | - Ana Valado
- Marine and Environmental Sciences Centre (MARE), Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal;
- Department of Biomedical Laboratory Sciences, Polytechnic Institute of Coimbra, ESTeSC-Coimbra Health School, Rua 5 de Outubro, S. Martinho do Bispo, Apartamento 7006, 3046-854 Coimbra, Portugal
| | - Alan T. Critchley
- Verschuren Centre for Sustainability in Energy and the Environment, Sydney, NS B1P 6L2, Canada
| | - Leonel Pereira
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (D.P.); (L.P.)
- Marine and Environmental Sciences Centre (MARE), Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal;
| |
Collapse
|
8
|
Kizilay G, Ersoy O, Cerkezkayabekir A, Topcu-Tarladacalisir Y. Sitagliptin and fucoidan prevent apoptosis and reducing ER stress in diabetic rat testes. Andrologia 2021; 53:e13858. [PMID: 33474733 DOI: 10.1111/and.13858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/29/2020] [Indexed: 12/31/2022] Open
Abstract
Sitagliptin increases the levels of incretin hormones and stimulates a decrease in blood glucose levels, by blocking the DPP4 enzyme. We have very limited information about impact of sitagliptin on male genital system and relationship between sitagliptin/diabetes/ER. Fucoidan can be effective in blood glucose homeostasis. We goal to explain of the effect of sitagliptin and introduce an approach of fucoidan treatment in experimental diabetes in male rats. Fifty-eight Wistar albino rats were divided into C-control group and D-diabetes group: 60 mg/kg streptozotocin intraperitoneal (i.p.); DS group: STZ + 10 mg/kg sitagliptin intragastric (i.g.); DF group: STZ + 100 mg/kg fucoidan i.p.; and DSF group: STZ + 10 mg/kg sitagliptin + 100 mg/kg fucoidan. A significant decrease was detected when DS, DF and DSF groups compared to group D in blood glucose levels, basement membrane thickness and also apoptotic cell/tubule index, pJNK, caspase 3, caspase 12, GRP78, CHOP and DPP4. Sitagliptin and fucoidan have been found to be effective in blood glucose homeostasis and reducing the expression of certain proteins that lead to apoptosis and especially the proteins in the ER stress pathway. Therefore, we think that both sitagliptin and fucoidan can be effective in preventing or eliminating histopathological damages in diabetic testicular tissues, and their treatment effects can be used more.
Collapse
Affiliation(s)
- Gulnur Kizilay
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | - Onur Ersoy
- Department of Pathology Laboratory Techniques, Vocational School of Health Services, Trakya University, Edirne, Turkey
| | | | | |
Collapse
|
9
|
Wang Y, Sun Y, Shao F, Zhang B, Wang Z, Li X. Low Molecular Weight Fucoidan Can Inhibit the Fibrosis of Diabetic Kidneys by Regulating the Kidney Lipid Metabolism. J Diabetes Res 2021; 2021:7618166. [PMID: 34869779 PMCID: PMC8635909 DOI: 10.1155/2021/7618166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/03/2022] Open
Abstract
In this study, a diabetic kidney disease model was established by placing the test rats on a high-sugar/high-fat diet combined with streptozotocin induction. Histopathological examination (H&E, Masson, and PASM stain) showed pathological changes in the diabetic rat kidneys, in addition to fibrotic symptoms and collagen deposition. Immunohistochemistry and western blot analyses indicated that the diabetic condition significantly increased the expressions of fibrotic markers including collagen, α-SMA, and fibronectin. The levels of cholesterol, triglyceride, and low-density lipoprotein were also increased in diabetic kidney disease (DKD) rat blood, while the level of high-density lipoprotein was decreased. The results of Oil red O staining experiments indicated that the kidneys of diabetic rats exhibited appreciable fat deposition, with high contents of triglyceride and cholesterol. To inhibit fibrosis and reduce fat deposition, low molecular weight fucoidan (LMWF) may be used. Based on PCR and western blot analyses, LMWF can regulate the expression levels of important lipid metabolism regulators, thereby impeding the development of kidney fibrosis. Through the vitro model, it also be indicated that LMWF could inhibit fibrosis process through regulating lipid metabolism which induced by palmitic acid.
Collapse
Affiliation(s)
- Yan Wang
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Yanlei Sun
- Linyi Tumor Hospital, Linyi, Shandong, China
| | - Fengli Shao
- College of Life Sciences, Linyi University, Linyi, Shandong, China
| | - Bo Zhang
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Zhen Wang
- College of Pharmacy, Linyi University, Linyi, Shandong, China
- Chinese Academy of Traditional Chinese Medicine, China
| | - Xinpeng Li
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| |
Collapse
|
10
|
Xu J, Wang Y, Wang Z, Guo L, Li X. Fucoidan mitigated diabetic nephropathy through the downregulation of PKC and modulation of NF-κB signaling pathway: in vitro and in vivo investigations. Phytother Res 2020; 35:2133-2144. [PMID: 33264813 DOI: 10.1002/ptr.6966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 12/15/2022]
Abstract
The persistence of hyperglycemia and oxidative stress in diabetic patients ultimately leads to diabetic nephropathy (DN). In this study, we investigated the effect of sulfated polysaccharides (SPS) extracted from Laminaria japonica in relieving DN symptoms. To induce the diabetic model, normal rats were kept on a high-sugar, high-fat diet, then they were injected with streptozocin. Groups of these rats were later treated with SPS and/or protein kinase C (PKC) inhibitor. The analyses performed herein demonstrate that although diabetes significantly decreases the body weights of rats, SPS and inhibitor treatments increase these weights, as well as the ratios of renal to total body weight. Serum biochemical analyses indicate that blood urea nitrogen and serum creatinine levels gradually decrease in the SPS group. In addition, DN symptoms are substantially relieved by SPS and/or inhibitor treatments, as evidenced by histopathological analyses. Changes in the expressions of PKC-α, PKC-β, P-selectin, nuclear factor kappa B (NF-κB), and p65, detected by immunohistochemistry and western blot assessments, show that SPS regulates diabetic nephropathy via the PKC/NF-κB pathway.
Collapse
Affiliation(s)
- Jingge Xu
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Yan Wang
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Zhen Wang
- College of Pharmacy, Linyi University, Linyi, Shandong, China.,National Resources Center of Chinese Material Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanping Guo
- National Resources Center of Chinese Material Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinpeng Li
- College of Pharmacy, Linyi University, Linyi, Shandong, China
| |
Collapse
|
11
|
Wang H, Xu Y, Xu A, Wang X, Cheng L, Lee S, Tse G, Li G, Liu T, Fu H. PKCβ/NF-κB pathway in diabetic atrial remodeling. J Physiol Biochem 2020; 76:637-653. [PMID: 33085045 DOI: 10.1007/s13105-020-00769-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Atrial remodeling in diabetes is partially attributed to NF-κB/TGF-β signal transduction pathway activation. We examined whether the hyperglycemia-induced increased expression of NF-κB/TGF-β was dependent upon protein kinase C-β (PKCβ) and tested the hypothesis that selective inhibition of PKCβ using ruboxistaurin (RBX) can reduce NF-κB/TGF-β expression and inhibit abnormal atrial remodeling in streptozotocin (STZ)-induced diabetic rats. The effects of PKCβ inhibition on NF-κB/TGF-β signal transduction pathway-mediated atrial remodeling were investigated in STZ-induced diabetic rats. Mouse atrial cardiomyocytes (HL-1 cells) were cultured in low- or high-glucose or mannitol conditions in the presence or absence of small interference RNA that targeted PKCβ. PKCβ inhibition using ruboxistaurin (RBX, 1 mg/kg/day) decreased the expression of NF-κBp65, p-IκB, P38MARK, TNF-α, TGF-β, Cav1.2, and NCX proteins and inducibility of atrial fibrillation (AF) in STZ-induced diabetic rats. Exposure of cardiomyocytes to high-glucose condition activated PKCβ and increased NF-κB/TGF-β expression. Suppression of PKCβ expression by small interference RNA decreased high-glucose-induced NF-κB and extracellular signal-related kinase activation in HL-1 cells. Pharmacological inhibition of PKCβ is an effective method to reduce AF incidence in diabetic rat models by preventing NF-κB/TGF-β-mediated atrial remodeling.
Collapse
Affiliation(s)
- Haili Wang
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.,Beijing Capital International Airport Hospital, Beijing, People's Republic of China
| | - Yuanyuan Xu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Aiqing Xu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Xinghua Wang
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Lijun Cheng
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Sharen Lee
- Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Gary Tse
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Guangping Li
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Tong Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.
| | - Huaying Fu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
12
|
Dimitrova-Shumkovska J, Krstanoski L, Veenman L. Potential Beneficial Actions of Fucoidan in Brain and Liver Injury, Disease, and Intoxication-Potential Implication of Sirtuins. Mar Drugs 2020; 18:E242. [PMID: 32380741 PMCID: PMC7281157 DOI: 10.3390/md18050242] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
Increased interest in natural antioxidants has brought to light the fucoidans (sulfated polysaccharides present in brown marine algae) as highly valued nutrients as well as effective and safe therapeutics against several diseases. Based on their satisfactory in vitro antioxidant potency, researchers have identified this molecule as an efficient remedy for neuropathological as well as metabolic disorders. Some of this therapeutic activity is accomplished by upregulation of cytoprotective molecular pathways capable of restoring the enzymatic antioxidant activity and normal mitochondrial functions. Sirtuin-3 has been discovered as a key player for achieving the neuroprotective role of fucoidan by managing these pathways, whose ultimate goal is retrieving the entirety of the antioxidant response and preventing apoptosis of neurons, thereby averting neurodegeneration and brain injuries. Another pathway whereby fucoidan exerts neuroprotective capabilities is by interactions with P-selectin on endothelial cells, thereby preventing macrophages from entering the brain proper. Furthermore, beneficial influences of fucoidan have been established in hepatocytes after xenobiotic induced liver injury by decreasing transaminase leakage and autophagy as well as obtaining optimal levels of intracellular fiber, which ultimately prevents fibrosis. The hepatoprotective role of this marine polysaccharide also includes a sirtuin, namely sirtuin-1 overexpression, which alleviates obesity and insulin resistance through suppression of hyperglycemia, reducing inflammation and stimulation of enzymatic antioxidant response. While fucoidan is very effective in animal models for brain injury and neuronal degeneration, in general, it is accepted that fucoidan shows somewhat limited potency in liver. Thus far, it has been used in large doses for treatment of acute liver injuries. Thus, it appears that further optimization of fucoidan derivatives may establish enhanced versatility for treatments of various disorders, in addition to brain injury and disease.
Collapse
Affiliation(s)
- Jasmina Dimitrova-Shumkovska
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova 6, P.O. Box 162, 1000 Skopje, Macedonia;
| | - Ljupcho Krstanoski
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova 6, P.O. Box 162, 1000 Skopje, Macedonia;
| | - Leo Veenman
- Israel Institute of Technology, Faculty of Medicine, Rappaport Institute of Medical Research, 1 Efron Street, P.O. Box 9697, Haifa 31096, Israel
| |
Collapse
|
13
|
Abdel-Daim MM, Abushouk AI, Bahbah EI, Bungău SG, Alyousif MS, Aleya L, Alkahtani S. Fucoidan protects against subacute diazinon-induced oxidative damage in cardiac, hepatic, and renal tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11554-11564. [PMID: 31965500 DOI: 10.1007/s11356-020-07711-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/09/2020] [Indexed: 05/07/2023]
Abstract
Fucoidans (FUC) are organic sulfated polysaccharides from natural seaweeds with multiple biological actions. The current study was performed to assess the chemoprotective, antioxidant, and anti-inflammatory effects of FUC from Laminaria japonicum against diazinon (DZN)-induced injuries to rat cardiac, hepatic, and renal tissues. Forty male Wistar rats were assigned into five groups, receiving saline, oral FUC 200 mg/kg/day, subcutaneous DZN 20 mg/kg/day, DZN plus FUC 100 mg/kg/day, or DZN plus FUC 200 mg/kg/day (each treatment was given daily for 4 weeks). Data analysis showed that DZN-intoxicated rats exhibited significantly higher (p < 0.05) serum levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, urea, creatine, creatine kinase, creatine kinase-MB, lactate dehydrogenase, cholesterol, interleukin-6, and tumor necrosis factor-α, as well as lower levels of acetylcholinesterase, compared to control rats. In addition, DZN intoxication was associated with significantly higher (p < 0.05) cardiac, hepatic, and renal tissue concentrations of malondialdehyde and nitric oxide, as well as lower glutathione concentrations, and activities of glutathione peroxidase, superoxide dismutase, and catalase enzymes in comparison to control rats. Treatment with FUC (at 100 or 200 mg/kg/day) ameliorated all the aforementioned alterations in a dose-dependent manner. In conclusion, FUC from Laminaria japonicum ameliorated DZN-induced oxidative stress, pro-inflammatory effects, and injuries to the cardiac, hepatic, and renal tissues. These effects may be related to the antioxidant and anti-inflammatory effects of FUC.
Collapse
Affiliation(s)
- Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | | | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Simona G Bungău
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Mohamed S Alyousif
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, Bourgogne Franche-Comté University, UMR CNRS 6249, 25030, Besançon Cedex, France
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
14
|
Kumar MS, Sharma SA. Toxicological effects of marine seaweeds: a cautious insight for human consumption. Crit Rev Food Sci Nutr 2020; 61:500-521. [PMID: 32188262 DOI: 10.1080/10408398.2020.1738334] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Marine environment is a rich and diverse source for many biologically active substances including functional foods and nutraceuticals. It is well exploited for useful compounds, natural products and aquaculture industry; and seaweeds is one of the major contributors in terms of both food security and healthy nutrition. They are well-known due to their enormous benefits and is consumed globally in many countries. However, there is lack of attention toward their toxicity reports which might be due toxic chemical compounds from seaweed, epiphytic bacteria or harmful algal bloom and absorbed heavy metals from seawater. The excess of these components might lead to harmful interactions with drugs and hormone levels in the human body. Due to their global consumption and to meet increasing demands, it is necessary to address their hazardous and toxic aspects. In this review, we have done extensive literature for healthy seaweeds, their nutritional composition while summarizing the toxic effects of selected seaweeds from red, brown and green group which includes- Gracilaria, Acanthophora, Caulerpa, Cladosiphon, and Laminaria sp. Spirulina, a microalgae (cyanobacteria) biomass is also included in toxicity discussion as it an important food supplement and many times shows adverse reactions and drug interactions. The identified compounds from seaweeds were concluded to be toxic to humans, though they exhibited certain beneficial effects too. They have an easy access in food chain and thus invade the higher trophic level organisms. This review will create an awareness among scientific and nonscientific community, as well as government organization to regulate edible seaweed consumption and keep them under surveillance for their beneficial and safe consumption.
Collapse
Affiliation(s)
- Maushmi S Kumar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Simran A Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
15
|
Fucoidan Ameliorates Oxidative Stress, Inflammation, DNA Damage, and Hepatorenal Injuries in Diabetic Rats Intoxicated with Aflatoxin B 1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9316751. [PMID: 32104544 PMCID: PMC7035576 DOI: 10.1155/2020/9316751] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/18/2020] [Indexed: 02/08/2023]
Abstract
The current study was carried out to evaluate the ameliorative effect of fucoidan against aflatoxicosis-induced hepatorenal toxicity in streptozotocin-induced diabetic rats. Sixty-four Wister albino male rats were randomly assigned into eight groups (8 rats each) that received normal saline, fucoidan (FUC) at 100 mg/kg/day orally for 4 weeks, streptozotocin (STZ) at 50 mg/kg/i.p. single dose, STZ plus FUC, aflatoxin B1 (AFB1) at 50 μg/kg/i.p. after one month of the beginning of the experiment for 2 weeks, AFB1 plus FUC, STZ plus AFB1, or STZ plus AFB1 and FUC. Injection of rats with STZ induced hyperglycemia. Rats with STZ-induced diabetes, with or without AFB1 intoxication, had significantly elevated activities of serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase, and levels of serum urea, creatinine, cholesterol, 8-oxo-2′-deoxyguanosine, interleukin-1β, interleukin-6, and tumor necrosis factor-α. In addition, these rats exhibited increased lipid peroxidation and reduced glutathione concentration and activities of superoxide dismutase, catalase, and glutathione peroxidase enzymes in the hepatic and renal tissues. In contrast, administration of FUC to diabetic rats, with or without AFB1 intoxication, ameliorated the altered serum parameters, reduced oxidative stress, DNA damage, and inflammatory biomarkers, and enhanced the antioxidant defense system in the hepatic and renal tissues. These results indicated that FUC ameliorated diabetes and AFB1-induced hepatorenal injuries through alleviating oxidative stress, DNA damage, and inflammation.
Collapse
|
16
|
V S L, Rauf AA, Kurup GM. Sulfated polysaccharides from the edible marine algae Padina tetrastromatica attenuates isoproterenol-induced oxidative damage via activation of PI3K/Akt/Nrf2 signaling pathway - An in vitro and in vivo approach. Chem Biol Interact 2019; 308:258-268. [PMID: 31150630 DOI: 10.1016/j.cbi.2019.05.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 11/27/2022]
Abstract
The reactive oxygen species (ROS) induced oxidative stress is an inevitable factor for the pathogenesis of cardiovascular diseases. The edible marine algae-derived sulfated polysaccharides gained special attention as novel bioactive compounds having potential pharmacological activities. The present study evaluated in vitro and in vivo cardioprotective properties of sulfated polysaccharides from the edible brown marine algae Padina tetrastromatica (PSPS) against isoproterenol (ISO) induced cardiac damage. The cardioprotective properties of PSPS were first evaluated in H9c2 cardiac myoblasts and the results were confirmed by in vivo studies conducted in male Sprague-Dawley rats. The biochemical parameters, histopathological analysis, mRNA expressions, and ELISA studies indicated that PSPS significantly decreased (p < 0.05) the cardiac damage induced by ISO by reducing lipid peroxidation and improving antioxidant status, both in vitro and in vivo, via modulating PI3k/Akt/Nrf2 signaling pathway. The histopathological evidence further reinforced our findings and highlighted the promising cardioprotective activities offered by PSPS.
Collapse
Affiliation(s)
- Lekshmi V S
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Arun A Rauf
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - G Muraleedhara Kurup
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
17
|
Nordic Seaweed and Diabetes Prevention: Exploratory Studies in KK-Ay Mice. Nutrients 2019; 11:nu11061435. [PMID: 31242682 PMCID: PMC6627585 DOI: 10.3390/nu11061435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Background: The global epidemic of type 2 diabetes (T2D) is a challenging health problem. Lifestyle changes, including nutrition therapy, areimportant for the prevention and management of T2D. Seaweeds contain several bioactive substances with potential health properties and may be a low-cost alternative functional food in the prevention of T2D. Objective: The aim of this study was to explore the preventive effects of dried Nordic seaweed species on diabetes in an animal model of T2D. Method: Fiftymale KK-Ay mice were randomly assigned to one of four diets: control diet (chow) or diets supplemented with Alaria esculenta (AE), Saccharina latissima (SL), or Palmaria palmata (PP). The effect of the interventions on the progression of T2D was monitored over 10 weeks and evaluated by circulating glucose, glycated hemoglobin (HbA1c), insulin, glucagon, and lipid levels. Results: The SL group had significantly lower bodyweight, lower HbA1c and insulin levels, as well as higher high density lipoprotein (HDL) cholesterol levels after the 10-week intervention than the control group. At the end of the study, the control group had significantly higher HbA1c (p < 0.001) than all of the seaweed groups. Conclusion: All seaweed groups improved HbA1C compared to control and Saccharinalatissima seaweed had concomitantly beneficial effects on glycemic control and lipid levels in KK-Ay diabetic mice.
Collapse
|
18
|
Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin. Int J Biol Macromol 2019; 126:141-150. [DOI: 10.1016/j.ijbiomac.2018.12.182] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/07/2018] [Accepted: 12/20/2018] [Indexed: 11/20/2022]
|
19
|
Kim YI, Oh WS, Song PH, Yun S, Kwon YS, Lee YJ, Ku SK, Song CH, Oh TH. Anti-Photoaging Effects of Low Molecular-Weight Fucoidan on Ultraviolet B-Irradiated Mice. Mar Drugs 2018; 16:md16080286. [PMID: 30126169 PMCID: PMC6117676 DOI: 10.3390/md16080286] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet (UV) B exposure induces DNA damage and production of reactive oxygen species (ROS), which causes skin photoaging through signaling pathways of inflammation and modulation of extracellular matrix remodeling proteins, collagens, and matrix metalloproteinase (MMP). As low molecular-weight fucoidan (LMF) has potential antioxidant and anti-inflammatory properties, we examined the protective effects of LMF against UVB-induced photoaging. A UVB-irradiated mouse model was topically treated with myricetin or LMF at 2.0, 1.0 and 0.2 mg/cm2 (LMF2.0, LMF1.0 and LMF0.2, respectively) once a day for 15 weeks. Wrinkle formation, inflammation, oxidative stress, MMP expression, and apoptosis in the treated regions were compared with those in a distilled water-treated photoaging model (UVB control). LMF treatments, particularly LMF2.0 and LMF1.0, significantly inhibited the wrinkle formation, skin edema, and neutrophil recruitment into the photo-damaged lesions, compared with those in the UVB control. While LMF decreased interleukin (IL)-1β release, it increased IL-10. The LMF treatment inhibited the oxidative stresses (malondialdehyde and superoxide anion) and enhanced endogenous antioxidants (glutathione). Additionally, LMF reduced the mRNA expression of MMP-1, 9, and 13. The histopathological analyses revealed the anti-photoaging effects of LMF exerted via its antioxidant, anti-apoptotic, and MMP-9-inhibiting effects. These suggest that LMF can be used as a skin-protective remedy for photoaging.
Collapse
Affiliation(s)
- Young-In Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea.
- KPC Corporation, Gwangju 12773, Korea.
| | - Won-Seok Oh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea.
| | - Phil Hyun Song
- Department of Urology, College of Medicine, Yeungnam University, Daegu 42415, Korea.
| | - Sungho Yun
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea.
| | - Young-Sam Kwon
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea.
| | - Young Joon Lee
- Department of Preventive Medicine, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Chang-Hyun Song
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea.
| | - Tae-Ho Oh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
20
|
Kuznetsova TA, Persiyanova EV, Ermakova SP, Khotimchenko MY, Besednova NN. The Sulfated Polysaccharides of Brown Algae and Products of Their Enzymatic Transformation as Potential Vaccine Adjuvants. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The review is devoted to critical analysis of literature data, deal with effects and mechanisms of action of sulfated polysaccharides (PSs) – fucoidans from brown algae and products of their enzymatic transformation as potential adjuvants for enhancement of anti-infective and antitumor immune response. Numerous experimental data indicate that sulfated PSs demonstrate properties of vaccine adjuvants. Application perspectiveness of fucoidans as vaccine adjuvants is defined by their high biocompatibility, low-toxicity, safety and good tolerance by macroorganism, and also mechanisms of their immunomodulatory action. In particular, fucoidans are agonists of receptors of innate immunity and strong inducers of cellular and humoral immune response. At presenting the data of structural - functional interrelations, attention focused to the defining role of degree of sulfation, uronic acids and polyphenols contents, and also molecular mass in actions of fucoidans to innate and adaptive immunity cells. Insufficiency of literary data on studying of correlation of structure – physicochemical characteristics with adjuvanticities of the sulfated PSs, and also the problem of standardization of their active fractions are noted. Special attention is paid to the analysis of immunomodulatory and adjuvant activity of fucoidan oligosaccharides. Presented here results of experimental trial indicate that, despite the difficulties due to preparation of highly purified structurally characterized fractions and complex structure of fucoidans, these substances can be used as safe and effective adjuvants in vaccines against various pathogens including viruses, and also in antitumor vaccines.
Collapse
Affiliation(s)
- Tatyana A. Kuznetsova
- Federal State Budgetary Scientific Institution «Research Somov Institute of Epidemiology and Microbiology», Sel'skaya street, 1, 690087, Vladivostok, Russian Federation
- Far Eastern Federal University, School of Biomedicine, bldg. M25 FEFU Campus, Ajax Bay, Russky Isl., 690922 Vladivostok, Russian Federation
| | - Elena V. Persiyanova
- Federal State Budgetary Scientific Institution «Research Somov Institute of Epidemiology and Microbiology», Sel'skaya street, 1, 690087, Vladivostok, Russian Federation
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Maxim Yu. Khotimchenko
- Far Eastern Federal University, School of Biomedicine, bldg. M25 FEFU Campus, Ajax Bay, Russky Isl., 690922 Vladivostok, Russian Federation
| | - Natalya N. Besednova
- Federal State Budgetary Scientific Institution «Research Somov Institute of Epidemiology and Microbiology», Sel'skaya street, 1, 690087, Vladivostok, Russian Federation
| |
Collapse
|
21
|
Zheng Y, Liu T, Wang Z, Xu Y, Zhang Q, Luo D. Low molecular weight fucoidan attenuates liver injury via SIRT1/AMPK/PGC1α axis in db/db mice. Int J Biol Macromol 2018; 112:929-936. [DOI: 10.1016/j.ijbiomac.2018.02.072] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/31/2018] [Accepted: 02/11/2018] [Indexed: 02/06/2023]
|
22
|
Voltage dependence of the Ca 2+ transient in endocardial and epicardial myocytes from the left ventricle of Goto-Kakizaki type 2 diabetic rats. Mol Cell Biochem 2018; 446:25-33. [PMID: 29318456 DOI: 10.1007/s11010-018-3269-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/04/2018] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus is a major global health disorder and, currently, over 450 million people have diabetes with 90% suffering from type 2 diabetes. Left untreated, diabetes may lead to cardiovascular diseases which are a leading cause of death in diabetic patients. Calcium is the trigger and regulator of cardiac muscle contraction and derangement in cellular Ca2+ homeostasis, which can result in heart failure and sudden cardiac death. It is of paramount importance to investigate the regional involvement of Ca2+ in diabetes-induced cardiomyopathy. Therefore, the aim of this study was to investigate the voltage dependence of the Ca2+ transients in endocardial (ENDO) and epicardial (EPI) myocytes from the left ventricle of the Goto-Kakizaki (GK) rats, an experimental model of type 2 diabetes mellitus. Simultaneous measurement of L-type Ca2+ currents and Ca2+ transients was performed by whole-cell patch clamp techniques. GK rats displayed significantly increased heart weight, heart weight/body weight ratio, and non-fasting and fasting blood glucose compared to controls (CON). Although the voltage dependence of L-type Ca2+ current was unaltered, the voltage dependence of the Ca2+ transients was reduced to similar extents in EPI-GK and ENDO-GK compared to EPI-CON and ENDO-CON myocytes. TPK L-type Ca2+ current and Ca2+ transient were unaltered. THALF decay of L-type Ca2+ current was unaltered; however, THALF decay of the Ca2+ transient was shortened in ENDO and EPI myocytes from GK compared to CON rat hearts. In conclusion, the amplitude of L-type Ca2+ current was unaltered; however, the voltage dependence of the Ca2+ transient was reduced to similar extents in EPI and ENDO myocytes from GK rats compared to their respective controls, suggesting the possibility of dysfunctional sarcoplasmic reticulum Ca2+ transport in the GK diabetic rat hearts.
Collapse
|
23
|
Al Kury L, Smail M, Qureshi MA, Sydorenko V, Shmygol A, Oz M, Singh J, Howarth FC. Calcium Signaling in the Ventricular Myocardium of the Goto-Kakizaki Type 2 Diabetic Rat. J Diabetes Res 2018; 2018:2974304. [PMID: 29850600 PMCID: PMC5914098 DOI: 10.1155/2018/2974304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/16/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022] Open
Abstract
The association between diabetes mellitus (DM) and high mortality linked to cardiovascular disease (CVD) is a major concern worldwide. Clinical and preclinical studies have demonstrated a variety of diastolic and systolic dysfunctions in patients with type 2 diabetes mellitus (T2DM) with the severity of abnormalities depending on the patients' age and duration of diabetes. The cellular basis of hemodynamic dysfunction in a type 2 diabetic heart is still not well understood. The aim of this review is to evaluate our current understanding of contractile dysfunction and disturbances of Ca2+ transport in the Goto-Kakizaki (GK) diabetic rat heart. The GK rat is a widely used nonobese, nonhypertensive genetic model of T2DM which is characterized by insulin resistance, elevated blood glucose, alterations in blood lipid profile, and cardiac dysfunction.
Collapse
Affiliation(s)
- L. Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, UAE
| | - M. Smail
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - M. A. Qureshi
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - V. Sydorenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - A. Shmygol
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - M. Oz
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
| | - J. Singh
- School of Forensic & Applied Sciences, University of Central Lancashire, Preston, UK
| | - F. C. Howarth
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| |
Collapse
|
24
|
Yu Y, Zheng G. Troxerutin protects against diabetic cardiomyopathy through NF‑κB/AKT/IRS1 in a rat model of type 2 diabetes. Mol Med Rep 2017; 15:3473-3478. [PMID: 28440404 PMCID: PMC5436284 DOI: 10.3892/mmr.2017.6456] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 12/09/2016] [Indexed: 12/13/2022] Open
Abstract
Troxerutin is a bioflavonoid, which can be used to treat venous disorders, thrombosis and cerebrovascular diseases. Recent studies have demonstrated that it may also be used to prevent edemas. However, it is not known whether troxerutin protects against the cardiomyopathic complications of diabetes. In the present study, a rat model of type 2 diabetes was used to investigate the potential for troxerutin to protect against diabetic cardiomyopathy, through changes to nuclear factor‑κB (NF‑κB) expression. Troxerutin administration significantly reduced heart rate, blood pressure, blood glucose and plasma triglyceride levels across all measured time points. Furthermore, troxerutin significantly reduced reactive oxygen species levels, NF‑κB protein expression, and suppressed the phosphorylated forms of AKT, insulin receptor substrate 1 (IRS1) and c‑Jun N‑terminal kinase (JNK). These results suggested that troxerutin protects against cardiomyopathy via alterations in NF‑κB, AKT and IRS1 signaling, in a rat model of type 2 diabetes.
Collapse
Affiliation(s)
- Yongzhi Yu
- Department of Cardiology, Linzi District People's Hospital, Zibo, Shandong 255400, P.R. China
| | - Guanzhong Zheng
- Department of Cardiology, Linzi District People's Hospital, Zibo, Shandong 255400, P.R. China
| |
Collapse
|
25
|
Wang T, Zhu M, He ZZ. Low-Molecular-Weight Fucoidan Attenuates Mitochondrial Dysfunction and Improves Neurological Outcome After Traumatic Brain Injury in Aged Mice: Involvement of Sirt3. Cell Mol Neurobiol 2016; 36:1257-1268. [PMID: 26743530 DOI: 10.1007/s10571-015-0323-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and long-term disability. Fucoidan, a sulfated polysaccharide extracted from brown algae, possesses potent anti-oxidative and anti-inflammatory effects. Considering TBI happens frequently in adults, especially in aged individuals, we herein sought to define the protective effects of low-molecular-weight fucoidan (LMWF) in the aged mice. 16- to 18-month-old mice administered with LMWF (1-50 mg/kg) or vehicle were subjected to TBI using a controlled cortical impact (CCI) model. LMWF at the doses of 10 and 50 mg/kg significantly reduced both cortical and hippocampal lesion volume. This protection was associated with reduced neuronal apoptosis, as evidenced by TUNEL staining. Importantly, LMWF was effective even when administered up to 4 h after TBI. Treatment with LMWF improved long-term neurobehavioral outcomes, including sensorimotor function, and hippocampus-associated spatial learning and memory. In addition, LMWF significantly suppressed protein carbonyl, lipid peroxidation, reactive oxygen species (ROS) generation, as well as mitochondrial dysfunction, which was evidenced by mitochondrial cytochrome c release and collapse of mitochondrial membrane potential (MMP). To evaluate the underlying molecular mechanisms, the expression of sirtuin 3 (Sirt3) was detected by RT-PCR and Western blot. The results showed that TBI significantly increased the expression of Sirt3, which was further elevated by LMWF treatment. Knockdown of Sirt3 using intracerebroventricular injection of small interfering RNA (siRNA) partially prevented the therapeutic effects of LMWF. Collectively, these findings demonstrated that LMWF exerts neuroprotection against TBI in the aged brain, which may be associated with the attenuation of mitochondrial dysfunction through Sirt3 activation.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an, 710032, Shaanxi, China.
| | - Mang Zhu
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an, 710032, Shaanxi, China
| | - Zhong-Zheng He
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an, 710032, Shaanxi, China
| |
Collapse
|
26
|
Xu Y, Zhang Q, Luo D, Wang J, Duan D. Low molecular weight fucoidan modulates P-selectin and alleviates diabetic nephropathy. Int J Biol Macromol 2016; 91:233-40. [PMID: 27234491 DOI: 10.1016/j.ijbiomac.2016.05.081] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/09/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication that can lead to chronic and end-stage renal failure. It is understood that inflammation is associated with the onset and process of DN. Low molecular weight fucoidan (LMWF) isolated from Saccharina japonica has anti-inflammatory properties. Therefore, this study aimed to explore the mechanism of LMWF in DN model induced by streptozotocin. The biochemical indices levels showed LMWF reduced the DN diagnostic indices to protect renal function. The HE stained sections exhibited LMWF protected normal morphological structures and reduced inflammatory cell infiltration in the kidneys of DN rats. Furthermore, the levels of P-selectin and selectin-dependent inflammatory cytokines resulting from LMWF were obviously decreased at both the transcriptional and protein levels. Thus, our results found that LMWF protected the renal function in DN rats and alleviated inflammation through the modulation of P-selectin and inflammatory cytokines. LMWF may have therapeutic potential against DN.
Collapse
Affiliation(s)
- Yingjie Xu
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology. Qingdao 266071, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Quanbin Zhang
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology. Qingdao 266071, China; State Key Lab of Seaweed Bioactive Substances, Qingdao 266000, China.
| | - Dali Luo
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing Wang
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology. Qingdao 266071, China
| | - Delin Duan
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Lab for Marine Science and Technology. Qingdao 266071, China; State Key Lab of Seaweed Bioactive Substances, Qingdao 266000, China.
| |
Collapse
|
27
|
Jia Y, Sun Y, Weng L, Li Y, Zhang Q, Zhou H, Yang B. Low molecular weight fucoidan protects renal tubular cells from injury induced by albumin overload. Sci Rep 2016; 6:31759. [PMID: 27545472 PMCID: PMC4992848 DOI: 10.1038/srep31759] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/27/2016] [Indexed: 12/02/2022] Open
Abstract
Albuminuria is a causative and aggravating factor for progressive renal damage in chronic kidney disease (CKD). The aim of this study was to determine if low molecular weight fucoidan (LMWF) could protect renal function and tubular cells from albumin overload caused injury. Treatment with 10 mg/g bovine serum albumin caused renal dysfunction, morphological changes, and overexpression of inflammation and fibrosis associated proteins in 129S2/Sv mice. LMWF (100 mg/kg) protected against kidney injury and renal dysfunction with decreased blood creatinine by 34% and urea nitrogen by 25%, increased creatinine clearance by 48%, and decreased significantly urinary albumin concentration. In vitro proximal tubule epithelial cell (NRK-52E) model showed that LMWF dose-dependently inhibited overexpression of proinflammatory and profibrotic factors, oxidative stress and apoptosis caused by albumin overload. These experimental results indicate that LMWF protects against albumin overload caused renal injury by inhibiting inflammation, fibrosis, oxidative stress and apoptosis, which suggests that LMWF could be a promising candidate drug for preventing CKD.
Collapse
Affiliation(s)
- Yingli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, 100191, P.R. China
| | - Yi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, 100191, P.R. China
| | - Lin Weng
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, 100191, P.R. China
| | - Yingjie Li
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, 100191, P.R. China
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P.R. China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, 100191, P.R. China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, 100191, P.R. China
| |
Collapse
|
28
|
Wang PC, Zhao S, Yang BY, Wang QH, Kuang HX. Anti-diabetic polysaccharides from natural sources: A review. Carbohydr Polym 2016; 148:86-97. [PMID: 27185119 DOI: 10.1016/j.carbpol.2016.02.060] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/13/2016] [Accepted: 02/20/2016] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease attracted worldwide concerns, which severely impairs peoples' quality of life and is attributed to several life-threatening complications, including atherosclerosis, nephropathy and retinopathy. The current therapies for DM include mainly oral anti-diabetic drugs and insulin. However, continuous use of these causes insulin resistance and side-effects, and the demand of effective, nontoxic and affordable drugs for DM patients is eager. Several previous studies have shown that non-toxic biological macromolecules, mainly polysaccharides, possess prominent efficacies on DM. Based on these encouraging observations, a great deal of efforts have been focused on discovering anti-diabetic polysaccharides for the development of effective therapeutics for DM. This review focuses on the advancements in the anti-diabetic efficacy of various natural polysaccharides and polysaccharide complexes from 2010 to 2015.
Collapse
Affiliation(s)
- Peng-Cheng Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Shan Zhao
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Qiu-Hong Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China.
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China.
| |
Collapse
|
29
|
Burchell SR, Iniaghe LO, Zhang JH, Tang J. Fucoidan from Fucus vesiculosus Fails to Improve Outcomes Following Intracerebral Hemorrhage in Mice. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:191-8. [PMID: 26463947 DOI: 10.1007/978-3-319-18497-5_34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intracerebral hemorrhage (ICH) is the most fatal stroke subtype, with no effective therapies. Hematoma expansion and inflammation play major roles in the pathophysiology of ICH, contributing to primary and secondary brain injury, respectively. Fucoidan, a polysaccharide from the brown seaweed Fucus vesiculosus, has been reported to activate a platelet receptor that may function in limiting bleeding, and to exhibit anti-inflammatory effects. As such, the aim of the present study was to examine the effects of fucoidan on hemorrhaging and neurological outcomes after ICH. Male CD-1 mice were subjected to experimental ICH by infusion of bacterial collagenase. Animals were randomly divided into the following groups: sham, ICH + vehicle, ICH + 25 mg/kg fucoidan, ICH + 75 mg/kg fucoidan, and ICH + 100 mg/kg fucoidan. Brain water content, neurobehavioral outcomes, and hemoglobin content were evaluated at 24 h post ICH. Our findings show that fucoidan failed to attenuate the ICH-induced increase in BWC. The neurological deficits that result from ICH also did not differ in the treatment groups at all three doses. Finally, we found that fucoidan had no effect on the hemoglobin content after ICH. We postulate that fucoidan treatment did not improve the measured outcomes after ICH because we used crude fucoidan, which has a high molecular weight, in our study. High-molecular-weight fucoidans are reported to have less therapeutic potential than low molecular weight fucoidans. They have been shown to exhibit anti-coagulant and pro-apoptotic properties, which seem to outweigh their anti-inflammatory and potential procoagulant abilities. We propose that using a low-molecular-weight fucoidan, or fractionating the crude polysaccharide, may be effective in treating ICH. Future studies are needed to confirm this.
Collapse
Affiliation(s)
- Sherrefa R Burchell
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Loretta O Iniaghe
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Pharmacology and Toxicology, University of Benin, Benin City, Nigeria
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
30
|
Xiao T, Luo J, Wu Z, Li F, Zeng O, Yang J. Effects of hydrogen sulfide on myocardial fibrosis and PI3K/AKT1-regulated autophagy in diabetic rats. Mol Med Rep 2015; 13:1765-73. [PMID: 26676365 DOI: 10.3892/mmr.2015.4689] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 11/06/2015] [Indexed: 11/05/2022] Open
Abstract
Myocardial fibrosis is the predominant pathological characteristic of diabetic myocardial damage. Previous studies have indicated that hydrogen sulfide (H2S) has beneficial effects in the treatment of various cardiovascular diseases. However, there is little research investigating the effect of H2S on myocardial fibrosis in diabetes. The present study aimed to investigate the effects of H2S on the progression of myocardial fibrosis induced by diabetes. Diabetes was induced in rats by intraperitoneal injection of streptozotocin. Sodium hydrosulfide (NaHS) was used as an exogenous donor of H2S. After 8 weeks, expression levels of cystathionine-γ-lyase were determined by western blot analysis and morphological changes in the myocardium were assessed by hematoxylin and eosin staining and Masson staining. The hydroxyproline content and fibrosis markers were determined by a basic hydrolysis method and western blot analysis, respectively. Autophagosomes were observed under transmission electron microscopy. Expression levels of autophagy-associated proteins and their upstream signaling molecules were also evaluated by western blotting. The results of the current study indicated that diabetes induced marked myocardial fibrosis, enhanced myocardial autophagy and suppressed the phosphatidylinositol-4,5-bisphosphate 3-kinase/RAC-α serine/threonine-protein kinase (PI3K/AKT1) signaling pathway. By contrast, following treatment with NaHS, myocardial fibrosis was ameliorated, myocardial autophagy was decreased and the PI3K/AKT1 pathway suppression was reversed. The results of the present study demonstrated that the protective effect of H2S against diabetes-induced myocardial fibrosis may be associated with the attenuation of autophagy via the upregulation of the PI3K/AKT1 signaling pathway.
Collapse
Affiliation(s)
- Ting Xiao
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Luo
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhixiong Wu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Fang Li
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ou Zeng
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|