1
|
Yaqubi S, Karimian M. Stem cell therapy as a promising approach for ischemic stroke treatment. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100183. [PMID: 38831867 PMCID: PMC11144755 DOI: 10.1016/j.crphar.2024.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Ischemia as the most common type of stroke is the main cause of death and disability in the world. However, there are few therapeutic approaches to treat ischemic stroke. The common approach to the treatment of ischemia includes surgery-cum-chemical drugs. Surgery and chemical drugs are used to remove blood clots to prevent the deterioration of the nervous system. Given the surgical hazards and the challenges associated with chemical drugs, these cannot be considered safe approaches to the treatment of brain ischemia. Besides surgery-cum-chemical drugs, different types of stem cells including mesenchymal stem cells and neurological stem cells have been considered to treat ischemic stroke. Therapeutic approaches utilizing stem cells to treat strokes are promising because of their neuroprotective and regenerative benefits. However, the mechanisms by which the transplanted stem cells perform their precisely actions are unknown. The purpose of this study is to critically review stem cell-based therapeutic approaches for ischemia along with related challenges.
Collapse
Affiliation(s)
- Sahar Yaqubi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
2
|
Wang X, Li A, Fan H, Li Y, Yang N, Tang Y. Astrocyte-Derived Extracellular Vesicles for Ischemic Stroke: Therapeutic Potential and Prospective. Aging Dis 2024; 15:1227-1254. [PMID: 37728588 PMCID: PMC11081164 DOI: 10.14336/ad.2023.0823-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Stroke is a leading cause of death and disability in the world. Astrocytes are special glial cells within the central nervous system and play important roles in mediating neuroprotection and repair processes during stroke. Extracellular vesicles (EVs) are lipid bilayer particles released from cells that facilitate intercellular communication in stroke by delivering proteins, lipids, and RNA to target cells. Recently, accumulating evidence suggested that astrocyte-derived EVs (ADEVs) are actively involved in mediating numerous biological processes including neuroprotection and neurorepair in stroke and they are realized as an excellent therapeutic approach for treating stroke. In this review we systematically summarize the up-to-date research on ADEVs in stroke, and prospects for its potential as a novel therapeutic target for stroke. We also provide an overview of the effects and functions of ADEVs on stroke recovery, which may lead to developing clinically relevant therapies for stroke.
Collapse
Affiliation(s)
- Xianghui Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China.
- School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Aihua Li
- Department of rehabilitation medicine, Jinan Hospital, Jinan, China
| | - Huaju Fan
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China.
| | - Yanyan Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China.
| | - Nana Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China.
- School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Yaohui Tang
- School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Liu C, Chen H, Tao X, Li C, Li A, Wu W. ALKBH5 protects against stroke by reducing endoplasmic reticulum stress-dependent inflammation injury via the STAT5/PERK/EIF2α/CHOP signaling pathway in an m 6A-YTHDF1-dependent manner. Exp Neurol 2024; 372:114629. [PMID: 38056583 DOI: 10.1016/j.expneurol.2023.114629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress causes neuroinflammation and neuronal apoptosis during ischemic stroke progression. This study has investigated the role of ALKBH5 in ER stress during ischemic stroke progression. METHODS In vivo and in vitro models of ischemic stroke were established by middle cerebral artery occlusion (MCAO) and OGD/R treatment, respectively. Cerebral infarct size was detected using triphenyltetrazolium chloride staining (TTC), and pathological changes were examined using histological staining. The levels of inflammatory factors were analyzed using Enzyme-linked immunosorbent assay. Cell counting kit-8 assay and flow cytometry were used to measure cell viability and apoptosis, respectively. The global m6A level was detected using the commercial kit, and STAT5 mRNA m6A level was determined using methylated RNA binding protein immunoprecipitation (Me-RIP). ALKBH5, YTHDF1, and STAT5 interactions were analyzed using RIP and RNA pull-down assays. RESULTS ALKBH5 was upregulated in MCAO animals and OGD/R cell models. ALKBH5 knockdown exacerbated ER stress, neuroinflammation, and neuronal apoptosis in brain tissues and neuronal cells. ALKBH5 inhibited STAT5 mRNA stability and expression in an m6A-YTHDF1-dependent manner. STAT5 promoted ER stress by activating the PERK/eIF2/CHOP signaling pathway. Furthermore, STAT5 knockdown reversed the effects of ALKBH5 knockdown on OGD/R-induced ER stress and neuroinflammation in HT22 cells. CONCLUSION ALKBH5 knockdown exacerbated ischemic stroke by increasing ER stress-dependent neuroinflammation and neuronal apoptosis via the STAT5/PERK/EIF2α/CHOP signaling pathway in an m6A-YTHDF1-dependent manner.
Collapse
Affiliation(s)
- Chujuan Liu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, PR China; Department of Rehabilitation, Hunan Provincial People's Hospital, The First Affifiliated Hospital of Hunan Normal University, Changsha 410006, Hunan Province, PR China
| | - Hui Chen
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, PR China
| | - Xi Tao
- Department of Rehabilitation, Hunan Provincial People's Hospital, The First Affifiliated Hospital of Hunan Normal University, Changsha 410006, Hunan Province, PR China
| | - Chen Li
- Department of Rehabilitation, Hunan Provincial People's Hospital, The First Affifiliated Hospital of Hunan Normal University, Changsha 410006, Hunan Province, PR China
| | - Aiping Li
- Department of Neurological Neurology, Hunan Provincial People's Hospital, The First Affifiliated Hospital of Hunan Normal University, Changsha 410006, Hunan Province, PR China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, PR China.
| |
Collapse
|
4
|
Ni X, Yu X, Ye Q, Su X, Shen S. Desflurane improves electrical activity of neurons and alleviates oxygen-glucose deprivation-induced neuronal injury by activating the Kcna1-dependent Kv1.1 channel. Exp Brain Res 2024; 242:477-490. [PMID: 38184806 DOI: 10.1007/s00221-023-06764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
Several volatile anesthetics have presented neuroprotective functions in ischemic injury. This study investigates the effect of desflurane (Des) on neurons following oxygen-glucose deprivation (OGD) challenge and explores the underpinning mechanism. Mouse neurons HT22 were subjected to OGD, which significantly reduced cell viability, increased lactate dehydrogenase release, and promoted cell apoptosis. In addition, the OGD condition increased oxidative stress in HT22 cells, as manifested by increased ROS and MDA contents, decreased SOD activity and GSH/GSSG ratio, and reduced nuclear protein level of Nrf2. Notably, the oxidative stress and neuronal apoptosis were substantially blocked by Des treatment. Bioinformatics suggested potassium voltage-gated channel subfamily A member 1 (Kcna1) as a target of Des. Indeed, the Kcna1 expression in HT22 cells was decreased by OGD but restored by Des treatment. Artificial knockdown of Kcna1 negated the neuroprotective effects of Des. By upregulating Kcna1, Des activated the Kv1.1 channel, therefore enhancing K+ currents and inducing neuronal repolarization. Pharmacological inhibition of the Kv1.1 channel reversed the protective effects of Des against OGD-induced injury. Collectively, this study demonstrates that Des improves electrical activity of neurons and alleviates OGD-induced neuronal injury by activating the Kcna1-dependent Kv1.1 channel.
Collapse
Affiliation(s)
- Xiaolei Ni
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, No. 120, Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, People's Republic of China
| | - Xiaoyan Yu
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, No. 120, Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, People's Republic of China
| | - Qingqing Ye
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, No. 120, Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, People's Republic of China
| | - Xiaohu Su
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, No. 120, Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, People's Republic of China
| | - Shuai Shen
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, No. 120, Suzhi Road, Sucheng District, Suqian, 223800, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Yang T, Jiang N, Han H, Shui J, Hou M, Kumar G, Tian H, Song L, Ma C, Li X, Ding Z. Bibliometric Analysis of Stem Cells in Ischemic Stroke (2001-2022): Trends, Hotspots and Prospects. Int J Med Sci 2024; 21:151-168. [PMID: 38164351 PMCID: PMC10750336 DOI: 10.7150/ijms.86591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/11/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Ischemic stroke is a common cerebrovascular accident with a high risk of neurological deficits. Stem cell therapy has progressively attracted the interest of scientists and clinicians due to the benefits of promoting neural regeneration and regulating the microenvironment surrounding the lesion after ischemic stroke. Our study aimed to evaluate the development trends and research hotspots in the field of stem cells and ischemic stroke. Materials and methods: Publications related to stem cells and ischemic stroke were retrieved from the Web of Science from 2001 to 2022. Data analysis and mapping were performed using VOSviewer, Citespace and ImageGP. Results: In total, 1932 papers were included in the analysis. Publications have steadily increased over the past 22 years. China has contributed the maximum number of publications, whereas the USA ranked first in the total number of citations and was considered the center of the international collaboration network. University of South Florida, Henry Ford Hospital, and Oakland University were the most influential institutions. Stroke, Brain Research, and Neural Regeneration Research were the most productive journals. The research in this field was primarily focused on the effects of stem cells on neurogenesis, inflammation, and angiogenesis following ischemic stroke, as well as their therapeutic potential for the disease. In addition, neural stem cells and mesenchymal stem cells are the most commonly utilized stem cells. The topics related to miRNA, extracellular vesicles, exosomes, mesenchymal stem cells, neuroinflammation, and autophagy are current research hotspots. Conclusion: Our bibliometric study provides a novel perspective on the research trends in the field of stem cells and ischemic stroke. The outcome of this study may benefit scientists to identify research hotspots and development directions, thereby advancing the application of stem cell-based therapy for ischemic stroke.
Collapse
Affiliation(s)
- Ting Yang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030000, China
| | - Nan Jiang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030000, China
| | - Hongxia Han
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030000, China
| | - Jing Shui
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030000, China
| | - Miaomiao Hou
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030000, China
- Key Laboratory of Cellular Physiology, of Ministry of Education, Shanxi Medical University, Taiyuan, 030000, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Hao Tian
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Centre of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030600, China
| | - Lijuan Song
- Key Laboratory of Cellular Physiology, of Ministry of Education, Shanxi Medical University, Taiyuan, 030000, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Centre of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030600, China
| | - Cungen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Centre of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030600, China
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037000, China
| | - Xinyi Li
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030000, China
- Key Laboratory of Cellular Physiology, of Ministry of Education, Shanxi Medical University, Taiyuan, 030000, China
| | - Zhibin Ding
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030000, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Centre of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030600, China
| |
Collapse
|
6
|
Pappolla MA, Wu P, Fang X, Poeggeler B, Sambamurti K, Wisniewski T, Perry G. Stem Cell Interventions in Neurology: From Bench to Bedside. J Alzheimers Dis 2024; 101:S395-S416. [PMID: 39422938 DOI: 10.3233/jad-230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Stem cell therapies are progressively redefining the treatment landscape for a spectrum of neurological and age-related disorders. This review discusses the molecular and functional attributes of stem cells, emphasizing the roles of neural stem cells and mesenchymal stem cells in the context of neurological diseases such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, traumatic brain injury, Parkinson's disease, and Alzheimer's disease. The review also explores the potential of stem cells in addressing the aging process. The paper analyzes stem cells' intrinsic properties of self-renewal, differentiation, and paracrine effects, alongside the importance of laboratory-modified stem cells like induced pluripotent stem cells and transgenic stem cells. Insights into disease-specific stem cell treatments are offered, reviewing both successes and challenges in the field. This includes the translational difficulties from rodent studies to human trials. The review concludes by acknowledging the uncharted territories that warrant further investigation, emphasizing the potential roles of stem cell-derived exosomes and indole-related molecules, and aiming at providing a basic understanding of stem cell therapies.
Collapse
Affiliation(s)
- Miguel A Pappolla
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Wu
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Faculty of Biology and Psychology, Georg August University Göttingen, Gütersloh, Germany
| | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology, and Psychiatry, New York University Alzheimer's Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
7
|
Wang Z, Zhang S, Du J, Lachance BB, Chen S, Polster BM, Jia X. Neuroprotection of NSC Therapy is Superior to Glibenclamide in Cardiac Arrest-Induced Brain Injury via Neuroinflammation Regulation. Transl Stroke Res 2023; 14:723-739. [PMID: 35921049 PMCID: PMC9895128 DOI: 10.1007/s12975-022-01047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/05/2022] [Indexed: 02/05/2023]
Abstract
Cardiac arrest (CA) is common and devastating, and neuroprotective therapies for brain injury after CA remain limited. Neuroinflammation has been a target for two promising but underdeveloped post-CA therapies: neural stem cell (NSC) engrafting and glibenclamide (GBC). It is critical to understand whether one therapy has superior efficacy over the other and to further understand their immunomodulatory mechanisms. In this study, we aimed to evaluate and compare the therapeutic effects of NSC and GBC therapies post-CA. In in vitro studies, BV2 cells underwent oxygen-glucose deprivation (OGD) for three hours and were then treated with GBC or co-cultured with human NSCs (hNSCs). Microglial polarization phenotype and TLR4/NLRP3 inflammatory pathway proteins were detected by immunofluorescence staining. Twenty-four Wistar rats were randomly assigned to three groups (control, GBC, and hNSCs, N = 8/group). After 8 min of asphyxial CA, GBC was injected intraperitoneally or hNSCs were administered intranasally in the treatment groups. Neurological-deficit scores (NDSs) were assessed at 24, 48, and 72 h after return of spontaneous circulation (ROSC). Immunofluorescence was used to track hNSCs and quantitatively evaluate microglial activation subtype and polarization. The expression of TLR4/NLRP3 pathway-related proteins was quantified via Western blot. The in vitro studies showed the highest proportion of activated BV2 cells with an increased expression of TLR4/NLRP3 signaling proteins were found in the OGD group compared to OGD + GBC and OGD + hNSCs groups. NDS showed significant improvement after CA in hNSC and GBC groups compared to controls, and hNSC treatment was superior to GBC treatment. The hNSC group had more inactive morphology and anti-inflammatory phenotype of microglia. The quantified expression of TLR4/NLRP3 pathway-related proteins was significantly suppressed by both treatments, and the suppression was more significant in the hNSC group compared to the GBC group. hNSC and GBC therapy regulate microglial activation and the neuroinflammatory response in the brain after CA through TLR4/NLRP3 signaling and exert multiple neuroprotective effects, including improved neurological function and shortened time of severe neurological deficit. In addition, hNSCs displayed superior inflammatory regulation over GBC.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Songyu Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brian M Polster
- Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Arakawa M, Sakamoto Y, Miyagawa Y, Nito C, Takahashi S, Nitahara-Kasahara Y, Suda S, Yamazaki Y, Sakai M, Kimura K, Okada T. iPSC-derived mesenchymal stem cells attenuate cerebral ischemia-reperfusion injury by inhibiting inflammatory signaling and oxidative stress. Mol Ther Methods Clin Dev 2023; 30:333-349. [PMID: 37637385 PMCID: PMC10448333 DOI: 10.1016/j.omtm.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/11/2023] [Indexed: 08/29/2023]
Abstract
Induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) hold great promise as a cell source for transplantation into injured tissues to alleviate inflammation. However, the therapeutic efficacy of iMSC transplantation for ischemic stroke remains unknown. In this study, we evaluated the therapeutic effects of iMSC transplantation on brain injury after ischemia-reperfusion using a rat transient middle cerebral artery occlusion model and compared its therapeutic efficacy with that of bone marrow mesenchymal stem cells (BMMSCs). We showed that iMSCs and BMMSCs reduced infarct volumes after reperfusion and significantly improved motor function on days 3, 7, 14, 28, and 56 and cognitive function on days 28 and 56 after reperfusion compared with the vehicle group. Furthermore, immunological analyses revealed that transplantation of iMSCs and BMMSCs inhibited microglial activation and expression of proinflammatory cytokines and suppressed oxidative stress and neuronal cell death in the cerebral cortex at the ischemic border zone. No difference in therapeutic effect was observed between the iMSC and BMMSC groups. Taken together, our results demonstrate that iMSC therapy can be a practical alternative as a cell source for attenuation of brain injury and improvement of neurological function because of the unlimited supply of uniform therapeutic cells.
Collapse
Affiliation(s)
- Masafumi Arakawa
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuki Sakamoto
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Chikako Nito
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Laboratory for Clinical Research, Collaborative Research Center, Nippon Medical School, Tokyo, Japan
| | - Shiro Takahashi
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Suda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshiyuki Yamazaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mashito Sakai
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Yang X, Zhang X, Cao J, Wu M, Chen S, Chen L. Routes and methods of neural stem cells injection in cerebral ischemia. IBRAIN 2023; 9:326-339. [PMID: 37786754 PMCID: PMC10527797 DOI: 10.1002/ibra.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 10/04/2023]
Abstract
Cerebral ischemia is a serious cerebrovascular disease with the characteristics of high morbidity, disability, and mortality. Currently, stem cell therapy has been extensively applied to a wide range of diseases, including neurological disorders, autoimmune deficits, and other diseases. Transplantation therapy with neural stem cells (NSCs) is a very promising treatment method, which not only has anti-inflammatory, antiapoptotic, promoting angiogenesis, and neurogenesis effects, but also can improve some side effects related to thrombolytic therapy. NSCs treatment could exert protective effects in alleviating cerebral ischemia-induced brain damage and neurological dysfunctions. However, the different injection routes and doses of NSCs determine diverse therapeutic efficacy. This review mainly summarizes the various injection methods and injection effects of NSCs in cerebral ischemia, as well as proposes the existing problems and prospects of NSCs transplantation.
Collapse
Affiliation(s)
- Xing‐Yu Yang
- School of Clinic MedicineChengdu Medical CollegeChengduSichuanChina
| | - Xiao Zhang
- School of Basic MedicineChengdu Medical CollegeChengduSichuanChina
| | - Jun‐Feng Cao
- School of Clinic MedicineChengdu Medical CollegeChengduSichuanChina
| | - Mei Wu
- School of Clinic MedicineChengdu Medical CollegeChengduSichuanChina
| | - Sheng‐Yan Chen
- School of Clinic MedicineChengdu Medical CollegeChengduSichuanChina
| | - Li Chen
- Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
10
|
Jashire Nezhad N, Safari A, Namavar MR, Nami M, Karimi-Haghighi S, Pandamooz S, Dianatpour M, Azarpira N, Khodabandeh Z, Zare S, Hooshmandi E, Bayat M, Owjfard M, Zafarmand SS, Fadakar N, Jaberi AR, Salehi MS, Borhani-Haghighi A. Short-term beneficial effects of human dental pulp stem cells and their secretome in a rat model of mild ischemic stroke. J Stroke Cerebrovasc Dis 2023; 32:107202. [PMID: 37354874 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/01/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023] Open
Abstract
Although cell therapy has been applied in regenerative medicine for decades, recent years have seen greatly increased attention being given to the use of stem cell-based derivatives such as cell-free secretome. Dental pulp stem cells (DPSCs) are widely available, easily accessible, and have high neuroprotective and angiogenic properties. In addition, DPSC-derived secretome contains a rich mixture of trophic factors. The current investigation evaluated the short-term therapeutic effects of human DPSCs and their secretome in a rat model of mild ischemic stroke. Mild ischemic stroke was induced by 30 min middle cerebral artery occlusion, and hDPSCs or their secretome was administered intra-arterially and intranasally. Neurological function, infarct size, spatial working memory, and relative expression of seven target genes in two categories of neurotrophic and angiogenic factors were assessed three days after stroke. In the short-term, all treatments reduced the severity of neurological and histological deficits caused by ischemic stroke. Moreover, transient middle cerebral artery occlusion led to the striatal and cortical over-expression of BDNF, NT-3, and angiogenin, while NGF and VEGF expression was reduced. Almost all interventions were able to modulate the expression of target genes after stroke. The obtained data revealed that single intra-arterial administration of hDPSCs or their secretome, single intranasal transplantation of hDPSCs, or repeated intranasal administration of hDPSC-derived secretome was able to ameliorate the devastating effects of a mild stroke, at least in the short-term.
Collapse
Affiliation(s)
- Nahid Jashire Nezhad
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry & Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nima Fadakar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
11
|
Damle EB, Morrison VE, Cioma J, Volic M, Bix GJ. Co-administration of extracellular matrix-based biomaterials with neural stem cell transplantation for treatment of central nervous system injury. Front Neurosci 2023; 17:1177040. [PMID: 37255752 PMCID: PMC10225608 DOI: 10.3389/fnins.2023.1177040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Injuries and disorders of the central nervous system (CNS) present a particularly difficult challenge for modern medicine to address, given the complex nature of the tissues, obstacles in researching and implementing therapies, and barriers to translating efficacious treatments into human patients. Recent advancements in neural stem cell (NSC) transplantation, endogenous neurogenesis, and in vivo reprogramming of non-neural cells into the neuronal lineage represent multiple approaches to resolving CNS injury. However, we propose that one practice that must be incorporated universally in neuroregeneration studies is the use of extracellular matrix (ECM)-mimicking biomaterials to supply the architectural support and cellular microenvironment necessary for partial or complete restoration of function. Through consideration of developmental processes including neurogenesis, cellular migration, and establishment of functional connectivity, as well as evaluation of process-specific interactions between cells and ECM components, insights can be gained to harness and modulate native and induced neurobiological processes to promote CNS tissue repair. Further, evaluation of the current landscape of regenerative medicine and tissue engineering techniques external to the neurosciences provides key perspectives into the role of the ECM in the use of stem cell-based therapies, and the potential directions future neuroregenerative approaches may take. If the most successful of these approaches achieve wide-spread adoption, innovative paired NSC-ECM strategies for neuroregeneration may become prominent in the near future, and with the rapid advances these techniques are poised to herald, a new era of treatment for CNS injury may dawn.
Collapse
Affiliation(s)
- Eshan B. Damle
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Vivianne E. Morrison
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jozef Cioma
- Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Milla Volic
- Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Gregory J. Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
12
|
Liu K, Peng X, Luo L. miR-322 promotes the differentiation of embryonic stem cells into cardiomyocytes. Funct Integr Genomics 2023; 23:87. [PMID: 36932296 DOI: 10.1007/s10142-023-01008-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023]
Abstract
Previous studies have shown that miR-322 regulates the functions of various stem cells. However, the role and mechanism of embryonic stem cell (ESCs) differentiation into cardiomyocytes remains unknown. Celf1 plays a vital role in stem cell differentiation and may be a potential target of miR-322 in ESCs' differentiation. We studied the function of miR-322An using mESCs transfected with lentivirus-mediated miR-322. RT-PCR results indicated that miR-322 increased NKX-2.5, MLC2V, and α-MHC mRNA expression, signifying that miR-322 might promote the differentiation of ESCs toward cardiomyocytes in vitro. The western blotting and immunofluorescence results confirmed this conclusion. In addition, the knockdown of miR-322 expression inhibited ESCs' differentiation toward cardiomyocytes in cultured ESCs in vitro. Western blotting results showed that miR-322 suppressed celf1 protein expression. Furthermore, Western blotting, RT-PCR, and immunofluorescence results showed that celf1 may inhibit ESCs' differentiation toward cardiomyocytes in vitro. Overall, the results indicate that miR-322 might promote ESCs' differentiation toward cardiomyocytes by regulating celf1 expression.
Collapse
Affiliation(s)
- Kai Liu
- Department of Cardiovascular, Ganzhou People's Hospital, Jiangxi, China.
- , Ganzhou, 341000, Jiangxi, China.
| | - Xiaoping Peng
- Department of Cardiovascular, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Luo
- Department of Cardiovascular, Ganzhou People's Hospital, Jiangxi, China
| |
Collapse
|
13
|
Hao L, Yang Y, Xu X, Guo X, Zhan Q. Modulatory effects of mesenchymal stem cells on microglia in ischemic stroke. Front Neurol 2023; 13:1073958. [PMID: 36742051 PMCID: PMC9889551 DOI: 10.3389/fneur.2022.1073958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Ischemic stroke accounts for 70-80% of all stroke cases. Immunity plays an important role in the pathophysiology of ischemic stroke. Microglia are the first line of defense in the central nervous system. Microglial functions are largely dependent on their pro-inflammatory (M1-like) or anti-inflammatory (M2-like) phenotype. Modulating neuroinflammation via targeting microglia polarization toward anti-inflammatory phenotype might be a novel treatment for ischemic stroke. Mesenchymal stem cells (MSC) and MSC-derived extracellular vesicles (MSC-EVs) have been demonstrated to modulate microglia activation and phenotype polarization. In this review, we summarize the physiological characteristics and functions of microglia in the healthy brain, the activation and polarization of microglia in stroke brain, the effects of MSC/MSC-EVs on the activation of MSC in vitro and in vivo, and possible underlying mechanisms, providing evidence for a possible novel therapeutics for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lei Hao
- Department of Neurology, The First Branch of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Yongtao Yang
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Xiaoli Xu
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Xiuming Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Xiuming Guo ✉
| | - Qunling Zhan
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China,Qunling Zhan ✉
| |
Collapse
|
14
|
Exosomes as biomarkers and therapeutic measures for ischemic stroke. Eur J Pharmacol 2023; 939:175477. [PMID: 36543286 DOI: 10.1016/j.ejphar.2022.175477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Ischemic stroke (IS) is the leading cause of long-term disability in the world and characterized by high morbidity, recurrence, complications, and mortality. Due to the lack of early diagnostic indicators, limited therapeutic measures and inadequate prognostic indicators, the diagnosis and treatment of IS remains a particular challenge at present. It has recently been reported that exosomes (EXOs) play a significant role in the pathogenesis and treatment of IS. The purpose of this paper is to probe the role of EXOs in diagnostic biomarkers and therapeutic measures for IS and to provide innovative ideas for improving the prognosis of IS.
Collapse
|
15
|
Fan Y, Lv X, Chen Z, Peng Y, Zhang M. m6A methylation: Critical roles in aging and neurological diseases. Front Mol Neurosci 2023; 16:1102147. [PMID: 36896007 PMCID: PMC9990872 DOI: 10.3389/fnmol.2023.1102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic cells, which participates in the functional regulation of various biological processes. It regulates the expression of targeted genes by affecting RNA translocation, alternative splicing, maturation, stability, and degradation. As recent evidence shows, of all organs, brain has the highest abundance of m6A methylation of RNAs, which indicates its regulating role in central nervous system (CNS) development and the remodeling of the cerebrovascular system. Recent studies have shown that altered m6A levels are crucial in the aging process and the onset and progression of age-related diseases. Considering that the incidence of cerebrovascular and degenerative neurologic diseases increase with aging, the importance of m6A in neurological manifestations cannot be ignored. In this manuscript, we focus on the role of m6A methylation in aging and neurological manifestations, hoping to provide a new direction for the molecular mechanism and novel therapeutic targets.
Collapse
Affiliation(s)
- Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyi Lv
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyi Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Mohd Satar A, Othman FA, Tan SC. Biomaterial application strategies to enhance stem cell-based therapy for ischemic stroke. World J Stem Cells 2022; 14:851-867. [PMID: 36619694 PMCID: PMC9813837 DOI: 10.4252/wjsc.v14.i12.851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Ischemic stroke is a condition in which an occluded blood vessel interrupts blood flow to the brain and causes irreversible neuronal cell death. Transplantation of regenerative stem cells has been proposed as a novel therapy to restore damaged neural circuitry after ischemic stroke attack. However, limitations such as low cell survival rates after transplantation remain significant challenges to stem cell-based therapy for ischemic stroke in the clinical setting. In order to enhance the therapeutic efficacy of transplanted stem cells, several biomaterials have been developed to provide a supportable cellular microenvironment or functional modification on the stem cells to optimize their reparative roles in injured tissues or organs.
AIM To discuss state-of-the-art functional biomaterials that could enhance the therapeutic potential of stem cell-based treatment for ischemic stroke and provide detailed insights into the mechanisms underlying these biomaterial approaches.
METHODS The PubMed, Science Direct and Scopus literature databases were searched using the keywords of “biomaterial” and “ischemic stroke”. All topically-relevant articles were then screened to identify those with focused relevance to in vivo, in vitro and clinical studies related to “stem cells” OR “progenitor cells” OR “undifferentiated cells” published in English during the years of 2011 to 2022. The systematic search was conducted up to September 30, 2022.
RESULTS A total of 19 articles matched all the inclusion criteria. The data contained within this collection of papers comprehensively represented 19 types of biomaterials applied on seven different types of stem/progenitor cells, namely mesenchymal stem cells, neural stem cells, induced pluripotent stem cells, neural progenitor cells, endothelial progenitor cells, neuroepithelial progenitor cells, and neuroblasts. The potential major benefits gained from the application of biomaterials in stem cell-based therapy were noted as induction of structural and functional modifications, increased stem cell retention rate in the hostile ischemic microenvironment, and promoting the secretion of important cytokines for reparative mechanisms.
CONCLUSION Biomaterials have a relatively high potential for enhancing stem cell therapy. Nonetheless, there is a scarcity of evidence from human clinical studies for the efficacy of this bioengineered cell therapy, highlighting that it is still too early to draw a definitive conclusion on efficacy and safety for patient usage. Future in-depth clinical investigations are necessary to realize translation of this therapy into a more conscientious and judicious evidence-based therapy for clinical application.
Collapse
Affiliation(s)
- Asmaa’ Mohd Satar
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Farah Amna Othman
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Suat Cheng Tan
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
17
|
Satani N, Parsha K, Davis C, Gee A, Olson SD, Aronowski J, Savitz SI. Peripheral blood monocytes as a therapeutic target for marrow stromal cells in stroke patients. Front Neurol 2022; 13:958579. [PMID: 36277912 PMCID: PMC9580494 DOI: 10.3389/fneur.2022.958579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Background Systemic administration of marrow stromal cells (MSCs) leads to the release of a broad range of factors mediating recovery in rodent stroke models. The release of these factors could depend on the various cell types within the peripheral blood as they contact systemically administered MSCs. In this study, we assessed the immunomodulatory interactions of MSCs with peripheral blood derived monocytes (Mϕ) collected from acute stroke patients. Methods Peripheral blood from stroke patients was collected at 5–7 days (N = 5) after symptom onset and from age-matched healthy controls (N = 5) using mononuclear cell preparation (CPT) tubes. After processing, plasma and other cellular fractions were removed, and Mϕ were isolated from the mononuclear fraction using CD14 microbeads. Mϕ were then either cultured alone or co-cultured with MSCs in a trans-well cell-culture system. Secretomes were analyzed after 24 h of co-cultures using a MAGPIX reader. Results Our results show that there is a higher release of IFN-γ and IL-10 from monocytes isolated from peripheral blood at day 5–7 after stroke compared with monocytes from healthy controls. In trans-well co-cultures of MSCs and monocytes isolated from stroke patients, we found statistically significant increased levels of IL-4 and MCP-1, and decreased levels of IL-6, IL-1β, and TNF-α. Addition of MSCs to monocytes increased the secretions of Fractalkine, IL-6, and MCP-1, while the secretions of TNF-α decreased, as compared to the secretions from monocytes alone. When MSCs were added to monocytes from stroke patients, they decreased the levels of IL-1β, and increased the levels of IL-10 significantly more as compared to when they were added to monocytes from control patients. Conclusion The systemic circulation of stroke patients may differentially interact with MSCs to release soluble factors integral to their paracrine mechanisms of benefit. Our study finds that the effect of MSCs on Mϕ is different on those derived from stroke patients blood as compared to healthy controls. These findings suggest immunomodulation of peripheral immune cells as a therapeutic target for MSCs in patients with acute stroke.
Collapse
Affiliation(s)
- Nikunj Satani
- Department of Neurology, McGovern Medical School, Institute for Stroke and Cerebrovascular Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
- *Correspondence: Nikunj Satani
| | - Kaushik Parsha
- Department of Neurology, McGovern Medical School, Institute for Stroke and Cerebrovascular Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Courtney Davis
- Department of Neurology, McGovern Medical School, Institute for Stroke and Cerebrovascular Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Adrian Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School at UTHealth, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jaroslaw Aronowski
- Department of Neurology, McGovern Medical School, Institute for Stroke and Cerebrovascular Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sean I. Savitz
- Department of Neurology, McGovern Medical School, Institute for Stroke and Cerebrovascular Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
18
|
Geranmayeh MH, Rahbarghazi R, Saeedi N, Farhoudi M. Metformin-dependent variation of microglia phenotype dictates pericytes maturation under oxygen-glucose deprivation. Tissue Barriers 2022; 10:2018928. [PMID: 34983297 PMCID: PMC9620990 DOI: 10.1080/21688370.2021.2018928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Blood-brain barrier resident cells are in the frontline of vascular diseases. To maintain brain tissue homeostasis, a series of cells are integrated regularly to form the neurovascular unit. It is thought that microglia can switch between M1/M2 phenotypes after the initiation of different pathologies. The existence of transition between maturity and stemness features in pericytes could maintain blood-brain barrier functionality against different pathologies. In the current study, the effect of metformin on the balance of the M1/M2 microglial phenotype under oxygen-glucose deprivation conditions and the impact of microglial phenotype changes on pericyte maturation have been explored. Both microglia and pericytes were isolated from the rat brain. Data showed that microglia treatment with metformin under glucose- and oxygen-free conditions suppressed microglia shifting into the M2 phenotype (CD206+ cells) compared to the control (p < .01) and metformin-treated groups (p < .05). Incubation of pericytes with microglia-conditioned media pretreated with metformin under glucose- and oxygen-free conditions or normal conditions increased pericyte maturity. These changes coincided with the reduction of the Sox2/NG2 ratio compared to the control pericytes (p < .05). Data revealed the close microglial-pericytic interplay under the ischemic and hypoxic conditions and the importance of microglial phenotype acquisition on pericyte maturation.
Collapse
Affiliation(s)
- Mohammad Hossein Geranmayeh
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran,Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran,CONTACT Mohammad Hossein Geranmayeh ; Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Daneshgah St., Tabriz5166614756, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Bone marrow-derived mesenchymal stem cells overexpressed with miR-182-5p protects against brain injury in a mouse model of cerebral ischemia. J Stroke Cerebrovasc Dis 2022; 31:106748. [PMID: 36087376 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) plays a critical role in ischemic brain injury by mediating the inflammatory response. The microRNA miR-185-5p suppresses inflammatory signaling by targeting TLR4. This study investigates whether overexpressing miR-182-5p in bone marrow-derived mesenchymal stem cells (BM-MSCs) could potentiate the neuroprotective effects of BM-MSCs in a mouse model of ischemic brain injury. METHODS We isolated BM-MSCs from mice, transfected the cells with miR-182-5p mimic, determined their MSC lineage through flow cytometry analysis of surface markers, examined miR-182-5p and TLR4 expression levels, and injected them into mice undergone middle cerebral artery occlusion (MCAO). MSC transplanted mice were subjected to behavior assays to determine cognitive and motor functions and biochemical analysis to determine neuroinflammation and TLR4/NF-κB in the ischemic hemisphere. RESULTS We found that BM-MSCs overexpressing miR-182-5p showed reduced TLR4 expression without affecting their MSC lineage. Mice transplanted with miR-182-5p overexpressing BM-MSCs after MCAO showed significantly improved cognitive and motor functions and reduced neuroinflammation, including suppressed microglial M1 polarization, reduced inflammatory cytokines, and inhibited TLR4/ NF-κB signaling. CONCLUSION Our findings suggest that overexpressing miR-182-5p in BM-MSCs can enhance the neuroprotective effects of BM-MSCs against ischemic brain injury by suppressing TLR4-mediated inflammatory response.
Collapse
|
20
|
Kawauchi S, Yasuhara T, Kin K, Yabuno S, Sugahara C, Nagase T, Hosomoto K, Okazaki Y, Tomita Y, Umakoshi M, Sasaki T, Kameda M, Borlongan CV, Date I. Transplantation of modified human bone marrow-derived stromal cells affords therapeutic effects on cerebral ischemia in rats. CNS Neurosci Ther 2022; 28:1974-1985. [PMID: 36000240 PMCID: PMC9627357 DOI: 10.1111/cns.13947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS SB623 cells are human bone marrow stromal cells transfected with Notch1 intracellular domain. In this study, we examined potential regenerative mechanisms underlying stereotaxic transplantation of SB623 cells in rats with experimental acute ischemic stroke. METHODS We prepared control group, empty capsule (EC) group, SB623 cell group (SB623), and encapsulated SB623 cell (eSB623) group. Transient middle cerebral artery occlusion (MCAO) was performed on day 0, and 24 h after MCAO, stroke rats received transplantation into the envisioned ischemic penumbra. Modified neurological severity score (mNSS) was evaluated, and histological evaluations were performed. RESULTS In the mNSS, SB623 and eSB623 groups showed significant improvement compared to the other groups. Histological analysis revealed that the infarction area in SB623 and eSB623 groups was reduced. In the eSB623 group, robust cell viability and neurogenesis were detected in the subventricular zone that increased significantly compared to all other groups. CONCLUSION SB623 cells with or without encapsulation showed therapeutic effects on ischemic stroke. Encapsulated SB623 cells showed enhanced neurogenesis and increased viability inside the capsules. This study reveals the mechanism of secretory function of transplanted SB623 cells, but not cell-cell interaction as primarily mediating the cells' functional benefits in ischemic stroke.
Collapse
Affiliation(s)
- Satoshi Kawauchi
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takao Yasuhara
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kyohei Kin
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan,Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Satoru Yabuno
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Chiaki Sugahara
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takayuki Nagase
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kakeru Hosomoto
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yosuke Okazaki
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yousuke Tomita
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Michiari Umakoshi
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Tatsuya Sasaki
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South FloridaTampaFloridaUSA
| | - Isao Date
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
21
|
Toghiani R, Abolmaali SS, Najafi H, Tamaddon AM. Bioengineering exosomes for treatment of organ ischemia-reperfusion injury. Life Sci 2022; 302:120654. [PMID: 35597547 DOI: 10.1016/j.lfs.2022.120654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
Ischemia-reperfusion (I/R) injury is a leading cause of death worldwide. It arises from blood reflowing after tissue hypoxia induced by ischemia that causes severe damages due to the accumulation of reactive oxygen species and the activation of inflammatory responses. Exosomes are the smallest members of the extracellular vesicles' family, which originate from nearly all eukaryotic cells. Exosomes have a great potential in the treatment of I/R injury either in native or modified forms. Native exosomes are secreted by different cell types, such as stem cells, and contain components such as specific miRNA molecules with tissue protective properties. On the other hand, exosome bioengineering has recently received increased attention in context of current advances in the purification, manipulation, biological characterization, and pharmacological applications. There are various pre-isolation and post-isolation manipulation approaches that can be utilized to increase the circulation half-life of exosomes or the availability of their bioactive cargos in the target site. In this review, the various therapeutic actions of native exosomes in different I/R injury will be discussed first. Exosome bioengineering approaches will then be explained, including pre- and post-isolation manipulation methods, applicability for delivery of bioactive agents to injured tissue, clinical translation issues, and future perspectives.
Collapse
Affiliation(s)
- Reyhaneh Toghiani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Haniyeh Najafi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
22
|
Ghozy S, Reda A, Varney J, Elhawary AS, Shah J, Murry K, Sobeeh MG, Nayak SS, Azzam AY, Brinjikji W, Kadirvel R, Kallmes DF. Neuroprotection in Acute Ischemic Stroke: A Battle Against the Biology of Nature. Front Neurol 2022; 13:870141. [PMID: 35711268 PMCID: PMC9195142 DOI: 10.3389/fneur.2022.870141] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022] Open
Abstract
Stroke is the second most common cause of global death following coronary artery disease. Time is crucial in managing stroke to reduce the rapidly progressing insult of the ischemic penumbra and the serious neurologic deficits that might follow it. Strokes are mainly either hemorrhagic or ischemic, with ischemic being the most common of all types of strokes. Thrombolytic therapy with recombinant tissue plasminogen activator and endovascular thrombectomy are the main types of management of acute ischemic stroke (AIS). In addition, there is a vital need for neuroprotection in the setting of AIS. Neuroprotective agents are important to investigate as they may reduce mortality, lessen disability, and improve quality of life after AIS. In our review, we will discuss the main types of management and the different modalities of neuroprotection, their mechanisms of action, and evidence of their effectiveness after ischemic stroke.
Collapse
Affiliation(s)
- Sherief Ghozy
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States.,Nuffield Department of Primary Care Health Sciences and Department for Continuing Education (EBHC Program), Oxford University, Oxford, United Kingdom
| | - Abdullah Reda
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Joseph Varney
- School of Medicine, American University of the Caribbean, Philipsburg, Sint Maarten
| | | | - Jaffer Shah
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | | | - Mohamed Gomaa Sobeeh
- Faculty of Physical Therapy, Sinai University, Cairo, Egypt.,Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Sandeep S Nayak
- Department of Internal Medicine, NYC Health + Hospitals/Metropolitan, New York, NY, United States
| | - Ahmed Y Azzam
- Faculty of Medicine, October 6 University, Giza, Egypt
| | - Waleed Brinjikji
- Department of Neurosurgery, Mayo Clinic Rochester, Rochester, MN, United States
| | | | - David F Kallmes
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
23
|
Yang Y, Yin N, Gu Z, Zhao Y, Liu C, Zhou T, Zhang K, Zhang Z, Liu J, Shi J. Engineered biomimetic drug-delivery systems for ischemic stroke therapy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
24
|
Ryu JH, Kim Y, Kim MJ, Park J, Kim JW, Park HS, Kim YS, Shin HK, Shin YI. Membrane-Free Stem Cell Extract Enhances Blood–Brain Barrier Integrity by Suppressing NF-κB-Mediated Activation of NLRP3 Inflammasome in Mice with Ischemic Stroke. Life (Basel) 2022; 12:life12040503. [PMID: 35454994 PMCID: PMC9032759 DOI: 10.3390/life12040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Membrane-free stem cell extract (MFSCE) of human adipose tissues possesses various biological activities. However, the effects of MFSCE on blood–brain barrier dysfunction and brain damage are unknown. In this study, we determined the role of MFSCE in an ischemic stroke mouse model. Mice were treated with MFSCE once daily for 4 days and 1 h before ischemic damage. Experimental ischemia was induced by photothrombosis. Pretreatment with MFSCE reduced infarct volume and edema and improved neurological, as well as motor functions. Evans blue leakage and water content in the brain tissue were reduced by MFSCE pretreatment relative to those in the vehicle group. MFSCE increased the expression of the tight junction proteins zonula occludens 1 and claudin-5, as well as vascular endothelial-cadherin, but decreased that of matrix metalloproteinase 9. Notably, MFSCE treatment decreased cell death and the level of NOD-like receptor protein 3 inflammasome, consistent with the downregulated expression of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 in the ischemic brain. These effects might have occurred via the suppression of the expression of Toll-like receptor 4 and activation of nuclear factor-κB. The results highlighted the potential of MFSCE treatment as a novel and preventive strategy for patients at a high risk of ischemic stroke.
Collapse
Affiliation(s)
- Ji Hyeon Ryu
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Gyeongnam, Korea; (J.H.R.); (Y.K.); (J.P.); (J.W.K.)
| | - Yeonye Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Gyeongnam, Korea; (J.H.R.); (Y.K.); (J.P.); (J.W.K.)
| | - Min Jae Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Korea; (M.J.K.); (H.K.S.)
| | - Jisu Park
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Gyeongnam, Korea; (J.H.R.); (Y.K.); (J.P.); (J.W.K.)
| | - Ji Won Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Gyeongnam, Korea; (J.H.R.); (Y.K.); (J.P.); (J.W.K.)
| | - Hye Sook Park
- T-Stem Co., Ltd., Changwon 51573, Gyeongnam, Korea; (H.S.P.); (Y.S.K.)
| | - Young Sil Kim
- T-Stem Co., Ltd., Changwon 51573, Gyeongnam, Korea; (H.S.P.); (Y.S.K.)
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Korea; (M.J.K.); (H.K.S.)
| | - Yong-Il Shin
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Gyeongnam, Korea; (J.H.R.); (Y.K.); (J.P.); (J.W.K.)
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Korea
- Correspondence:
| |
Collapse
|
25
|
Nito C, Suda S, Nitahara-Kasahara Y, Okada T, Kimura K. Dental-Pulp Stem Cells as a Therapeutic Strategy for Ischemic Stroke. Biomedicines 2022; 10:biomedicines10040737. [PMID: 35453487 PMCID: PMC9032844 DOI: 10.3390/biomedicines10040737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Regenerative medicine aims to restore human functions by regenerating organs and tissues using stem cells or living tissues for the treatment of organ and tissue defects or dysfunction. Clinical trials investigating the treatment of cerebral infarction using mesenchymal stem cells, a type of somatic stem cell therapy, are underway. The development and production of regenerative medicines using somatic stem cells is expected to contribute to the treatment of cerebral infarction, a central nervous system disease for which there is no effective treatment. Numerous experimental studies have shown that cellular therapy, including the use of human dental pulp stem cells, is an attractive strategy for patients with ischemic brain injury. This review describes the basic research, therapeutic mechanism, clinical trials, and future prospects for dental pulp stem cell therapy, which is being investigated in Japan in first-in-human clinical trials for the treatment of patients with acute cerebral ischemia.
Collapse
Affiliation(s)
- Chikako Nito
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (S.S.); (K.K.)
- Collaborative Research Center, Laboratory for Clinical Research, Nippon Medical School, Tokyo 113-8603, Japan
- Correspondence: ; Tel.: +81-3-3822-2131; Fax: +81-3-5814-6176
| | - Satoshi Suda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (S.S.); (K.K.)
| | - Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.N.-K.); (T.O.)
| | - Takashi Okada
- Division of Molecular and Medical Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.N.-K.); (T.O.)
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (S.S.); (K.K.)
| |
Collapse
|
26
|
Combination of stem cell therapy and acupuncture to treat ischemic stroke: a prospective review. Stem Cell Res Ther 2022; 13:87. [PMID: 35241146 PMCID: PMC8896103 DOI: 10.1186/s13287-022-02761-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/17/2022] [Indexed: 12/03/2022] Open
Abstract
Stroke is the second leading cause globally that leads to severe disability and death. Stem cell therapy has been developed over the recent years to treat stroke and diminish the mortality and disability rate of brain injuries. Acupuncture, which can activate endogenous recovery via physical stimuli, has been applied to enhance the recovery and rehabilitation of stroke patients. Attempts have been made to combine stem cell therapy and acupuncture to treat stroke patients and have shown the promising results. This prospective review will look into the possible mechanisms of stem cell therapy and acupuncture and intend to undercover the potential benefit of the combined therapy. It intends to bridge the modern emerging stem cell therapy and traditional acupuncture at cellular and molecular levels and to demonstrate the potential benefit to improve clinical outcomes.
Collapse
|
27
|
Jankovic M, Petrovic B, Novakovic I, Brankovic S, Radosavljevic N, Nikolic D. The Genetic Basis of Strokes in Pediatric Populations and Insight into New Therapeutic Options. Int J Mol Sci 2022; 23:ijms23031601. [PMID: 35163523 PMCID: PMC8835808 DOI: 10.3390/ijms23031601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Strokes within pediatric populations are considered to be the 10th leading cause of death in the United States of America, with over half of such events occurring in children younger than one year of life. The multifactorial etiopathology that has an influence on stroke development and occurrence signify the importance of the timely recognition of both modifiable and non-modifiable factors for adequate diagnostic and treatment approaches. The early recognition of a stroke and stroke risk in children has the potential to advance the application of neuroprotective, thrombolytic, and antithrombotic interventions and rehabilitation strategies to the earliest possible timepoints after the onset of a stroke, improving the outcomes and quality of life for affected children and their families. The recent development of molecular genetic methods has greatly facilitated the analysis and diagnosis of single-gene disorders. In this review, the most significant single gene disorders associated with pediatric stroke are presented, along with specific therapeutic options whenever they exist. Besides monogenic disorders that may present with stroke as a first symptom, genetic polymorphisms may contribute to the risk of pediatric and perinatal stroke. The most frequently studied genetic risk factors are several common polymorphisms in genes associated with thrombophilia; these genes code for proteins that are part of the coagulation cascade, fibrolysis, homocystein metabolism, lipid metabolism, or platelets. Single polymorphism frequencies may not be sufficient to completely explain the stroke causality and an analysis of several genotype combinations is a more promising approach. The recent steps forward in our understanding of the disorders underlying strokes has given us a next generation of therapeutics and therapeutic targets by which to improve stroke survival, protect or rebuild neuronal connections in the brain, and enhance neural function. Advances in DNA sequencing and the development of new tools to correct human gene mutations have brought genetic analysis and gene therapy into the focus of investigations for new therapeutic options for stroke patients.
Collapse
Affiliation(s)
- Milena Jankovic
- Neurology Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Bojana Petrovic
- Clinic of Gynecology and Obstetrics, Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Slavko Brankovic
- Faculty of Sciences and Mathematics, University of Priština in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
| | - Natasa Radosavljevic
- Department of Physical Medicine and Rehabilitation, King Abdulaziz Specialist Hospital, Taif 26521, Saudi Arabia;
| | - Dejan Nikolic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Physical Medicine and Rehabilitation Department, University Children’s Hospital, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
28
|
Rahman MM, Islam MR, Islam MT, Harun-Or-Rashid M, Islam M, Abdullah S, Uddin MB, Das S, Rahaman MS, Ahmed M, Alhumaydhi FA, Emran TB, Mohamed AAR, Faruque MRI, Khandaker MU, Mostafa-Hedeab G. Stem Cell Transplantation Therapy and Neurological Disorders: Current Status and Future Perspectives. BIOLOGY 2022; 11:147. [PMID: 35053145 PMCID: PMC8772847 DOI: 10.3390/biology11010147] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are a global health issue with inadequate therapeutic options and an inability to restore the damaged nervous system. With advances in technology, health scientists continue to identify new approaches to the treatment of neurodegenerative diseases. Lost or injured neurons and glial cells can lead to the development of several neurological diseases, including Parkinson's disease, stroke, and multiple sclerosis. In recent years, neurons and glial cells have successfully been generated from stem cells in the laboratory utilizing cell culture technologies, fueling efforts to develop stem cell-based transplantation therapies for human patients. When a stem cell divides, each new cell has the potential to either remain a stem cell or differentiate into a germ cell with specialized characteristics, such as muscle cells, red blood cells, or brain cells. Although several obstacles remain before stem cells can be used for clinical applications, including some potential disadvantages that must be overcome, this cellular development represents a potential pathway through which patients may eventually achieve the ability to live more normal lives. In this review, we summarize the stem cell-based therapies that have been explored for various neurological disorders, discuss the potential advantages and drawbacks of these therapies, and examine future directions for this field.
Collapse
Affiliation(s)
- Mohammad Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mahfuzul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sabirin Abdullah
- Space Science Center, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Mohammad Borhan Uddin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sumit Das
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | | | | | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Sciences Research Unit, Medical College, Jouf University, Sakaka 72446, Saudi Arabia;
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
29
|
Mitrečić D, Hribljan V, Jagečić D, Isaković J, Lamberto F, Horánszky A, Zana M, Foldes G, Zavan B, Pivoriūnas A, Martinez S, Mazzini L, Radenovic L, Milasin J, Chachques JC, Buzanska L, Song MS, Dinnyés A. Regenerative Neurology and Regenerative Cardiology: Shared Hurdles and Achievements. Int J Mol Sci 2022; 23:855. [PMID: 35055039 PMCID: PMC8776151 DOI: 10.3390/ijms23020855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/24/2021] [Accepted: 01/09/2022] [Indexed: 02/05/2023] Open
Abstract
From the first success in cultivation of cells in vitro, it became clear that developing cell and/or tissue specific cultures would open a myriad of new opportunities for medical research. Expertise in various in vitro models has been developing over decades, so nowadays we benefit from highly specific in vitro systems imitating every organ of the human body. Moreover, obtaining sufficient number of standardized cells allows for cell transplantation approach with the goal of improving the regeneration of injured/disease affected tissue. However, different cell types bring different needs and place various types of hurdles on the path of regenerative neurology and regenerative cardiology. In this review, written by European experts gathered in Cost European action dedicated to neurology and cardiology-Bioneca, we present the experience acquired by working on two rather different organs: the brain and the heart. When taken into account that diseases of these two organs, mostly ischemic in their nature (stroke and heart infarction), bring by far the largest burden of the medical systems around Europe, it is not surprising that in vitro models of nervous and heart muscle tissue were in the focus of biomedical research in the last decades. In this review we describe and discuss hurdles which still impair further progress of regenerative neurology and cardiology and we detect those ones which are common to both fields and some, which are field-specific. With the goal to elucidate strategies which might be shared between regenerative neurology and cardiology we discuss methodological solutions which can help each of the fields to accelerate their development.
Collapse
Affiliation(s)
- Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Valentina Hribljan
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | | | - Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
| | - Alex Horánszky
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
| | - Gabor Foldes
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Salvador Martinez
- Instituto de Neurociencias UMH-CSIC, 03550 San Juan de Alicante, Spain
| | - Letizia Mazzini
- ALS Center, Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy
| | - Lidija Radenovic
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Milasin
- Laboratory for Stem Cell Research, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan Carlos Chachques
- Laboratory of Biosurgical Research, Pompidou Hospital, University of Paris, 75006 Paris, France
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Min Suk Song
- Omnion Research International Ltd., 10000 Zagreb, Croatia
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
- HCEMM-USZ Stem Cell Research Group, Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
30
|
Sharma S, Jeyaraman M, Muthu S. Role of stem cell therapy in neurosciences. ESSENTIALS OF EVIDENCE-BASED PRACTICE OF NEUROANESTHESIA AND NEUROCRITICAL CARE 2022:163-179. [DOI: 10.1016/b978-0-12-821776-4.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
31
|
Dou R, Liu X, Kan X, Shen X, Mao J, Shen H, Wu J, Chen H, Xu W, Li S, Wu T, Hong Y. Dendrobium officinale polysaccharide-induced neuron-like cells from bone marrow mesenchymal stem cells improve neuronal function a rat stroke model. Tissue Cell 2021; 73:101649. [PMID: 34583247 DOI: 10.1016/j.tice.2021.101649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/25/2021] [Accepted: 09/13/2021] [Indexed: 01/15/2023]
Abstract
Various methods have been used to induce the neuronal differentiation of marrow mesenchymal stem cells (MSCs). However, the limited induction efficiency of cells in vitro has restricted their use. Therefore, identifying a simple and efficient treatment method is necessary. Dendrobium officinale is an important traditional Chinese medicine, and its main component, polysaccharides, has many pharmacological activities. However, the effects of D. officinale polysaccharide (DOP) on the neuronal differentiation of bone marrow mesenchymal stem cells (BMSCs) and treatment of ischaemic stroke remain unknown. We found that DOP promoted the neuronal differentiation of BMSCs by increasing the expression levels of neural markers, and the optimal concentration of DOP was 25 μg/mL. Additionally, the Notch signalling pathway was inhibited during the neuronal differentiation of BMSCs induced by DOP, and this effect was strengthened using an inhibitor of this pathway. The Wnt signalling pathway was activated during the differentiation of BMSCs, and inhibition of the Wnt signalling pathway downregulated the expression of neuronal genes. Furthermore, the transplantation of neuron-like cells induced by DOP improved neuronal recovery, as the brain infarct volume, neurologic severity scores and levels of inflammatory factors were all significantly reduced in vivo. In conclusion, DOP is an effective inducer of the neuronal differentiation of BMSCs and treatment option for ischaemic stroke.
Collapse
Affiliation(s)
- Rengang Dou
- Department of Rehabilitation Medicine, the Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui, 230061, China.
| | - Xue Liu
- Department of Rehabilitation Medicine, the Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui, 230061, China.
| | - Xiuli Kan
- Department of Rehabilitation Medicine, the Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui, 230061, China.
| | - Xianshan Shen
- Department of Rehabilitation Medicine, the Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui, 230061, China.
| | - Jing Mao
- Department of Rehabilitation Medicine, the Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui, 230061, China.
| | - Hongtao Shen
- Department of Rehabilitation Medicine, the Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui, 230061, China.
| | - Jianxian Wu
- Department of Rehabilitation Medicine, the Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui, 230061, China.
| | - Hanlin Chen
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, No. 69 Meishan Road, Shushan District, Hefei, Anhui, 230001, China.
| | - Wanting Xu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, No. 69 Meishan Road, Shushan District, Hefei, Anhui, 230001, China.
| | - Shasha Li
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, No. 69 Meishan Road, Shushan District, Hefei, Anhui, 230001, China.
| | - Tingting Wu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, No. 69 Meishan Road, Shushan District, Hefei, Anhui, 230001, China.
| | - Yongfeng Hong
- Department of Rehabilitation Medicine, the Second Hospital of Anhui Medical University, No. 678 Furong Road, Economic and Technological Development Zone, Hefei, Anhui, 230061, China.
| |
Collapse
|
32
|
Barzegar M, Stokes KY, Chernyshev O, Kelley RE, Alexander JS. The Role of the ACE2/MasR Axis in Ischemic Stroke: New Insights for Therapy. Biomedicines 2021; 9:1667. [PMID: 34829896 PMCID: PMC8615891 DOI: 10.3390/biomedicines9111667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke remains the leading cause of neurologically based morbidity and mortality. Current stroke treatment is limited to two classes of FDA-approved drugs: thrombolytic agents (tissue plasminogen activator (tPA)) and antithrombotic agents (aspirin and heparin), which have a narrow time-window (<4.5 h) for administration after onset of stroke symptoms. While thrombolytic agents restore perfusion, they carry serious risks for hemorrhage, and do not influence damage responses during reperfusion. Consequently, stroke therapies that can suppress deleterious effects of ischemic injury are desperately needed. Angiotensin converting enzyme-2 (ACE2) has been recently suggested to beneficially influence experimental stroke outcomes by converting the vasoconstrictor Ang II into the vasodilator Ang 1-7. In this review, we extensively discuss the protective functions of ACE2-Ang (1-7)-MasR axis of renin angiotensin system (RAS) in ischemic stroke.
Collapse
Affiliation(s)
- Mansoureh Barzegar
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, LA 71130-3932, USA; (M.B.); (K.Y.S.)
| | - Karen Y. Stokes
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, LA 71130-3932, USA; (M.B.); (K.Y.S.)
| | - Oleg Chernyshev
- Neurology, Ochsner-LSU Health Sciences Center, Shreveport, LA 71130-3932, USA; (O.C.); (R.E.K.)
| | - Roger E. Kelley
- Neurology, Ochsner-LSU Health Sciences Center, Shreveport, LA 71130-3932, USA; (O.C.); (R.E.K.)
| | - Jonathan S. Alexander
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, LA 71130-3932, USA; (M.B.); (K.Y.S.)
- Neurology, Ochsner-LSU Health Sciences Center, Shreveport, LA 71130-3932, USA; (O.C.); (R.E.K.)
- Medicine, LSU Health Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Oral and Maxillofacial Surgery, Ochsner-LSU Health Sciences Center, Shreveport, LA 71130-3932, USA
| |
Collapse
|
33
|
Potential for Stem Cell-Based Therapy in the Road of Treatment for Neurological Disorders Secondary to COVID-19. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021; 8:355-369. [PMID: 34746370 PMCID: PMC8555723 DOI: 10.1007/s40883-021-00234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022]
Abstract
Abstract
The severe acute respiratory syndrome coronavirus 2 has led to the worldwide pandemic named coronavirus disease 2019 (COVID-19). It has caused a significant increase in the number of cases and mortalities since its first diagnosis in December 2019. Although COVID-19 primarily affects the respiratory system, neurological involvement of the central and peripheral nervous system has been also reported. Herein, the higher risk of neurodegenerative diseases in COVID-19 patients in future is also imaginable. Neurological complications of COVID-19 infection are more commonly seen in severely ill individuals; but, earlier diagnosis and treatment can lead to better long-lasting results. In this respect, stem cell biotechnologies with considerable self-renewal and differentiation capacities have experienced great progress in the field of neurological disorders whether in finding out their underlying processes or proving them promising therapeutic approaches. Herein, many neurological disorders have been found to benefit from stem cell medicine strategies. Accordingly, in the present review, the authors are trying to discuss stem cell-based biotechnologies as promising therapeutic options for neurological disorders secondary to COVID-19 infection through reviewing neurological manifestations of COVID-19 and current stem cell-based biotechnologies for neurological disorders. Lay Summary Due to the substantial burden of neurological disorders in the health, economic, and social system of society, the emergence of neurological manifestations following COVID-19 (as a life-threatening pandemic) creates the need to use efficient and modern methods of treatment. Since stem cell-based methods have been efficient for a large number of neurological diseases, it seems that the use of mentioned methods is also effective in the process of improving neurological disorders caused by COVID-19. Hereupon, the current review aims to address stem cell-based approaches as treatments showing promise to neurological disorders related to COVID-19.
Collapse
|
34
|
Wei W, Xin W, Tang Y, Chen Z, Heng Y, Pu M, Yang B, Zuo J, Duan J. Disorder Genes Regulate the Progression of Ischemic Stroke through the NF- κB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2464269. [PMID: 34746300 PMCID: PMC8570099 DOI: 10.1155/2021/2464269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022]
Abstract
Stroke is an acute cerebrovascular disease, including ischemic and hemorrhagic stroke. Stroke is the second leading cause of death after ischemic heart disease, which accounts for 9% of the global death toll. To explore the molecular mechanisms of the effects of the dysregulated factors, in the GEO database, we obtained transcriptome data from 24 h/72 h of mice with ischemic stroke and 24 h/72 h of normal mice. We then performed differential gene analysis, coexpression analysis, enrichment analysis, and regulator prediction bioinformatics analysis to identify the potential genes. We made a comparison between the ischemic stroke 72 h and the ischemic stroke for 24 h, and 5103 differential genes were obtained (p < 0.05). Four functional barrier modules were obtained by weighted gene coexpression network analysis. The critical genes of each module were ASTL, Zfp472, Fmr1 gene, and Nap1l1. The results of the enrichment analysis showed ncRNA metabolism, microRNAs in cancer, and biosynthesis of amino acids. These three functions and pathways have the most considerable count value. The regulators of the regulatory dysfunction module were predicted by pivotal analysis of TF and noncoding RNA, and critical regulators including NFKB1 (NF-κB1), NFKBIA, CTNNB1, and SP1 were obtained. Finally, the pivotal target gene found that CTNNB1, NFKB1, NFKBia, and Sp1 are involved in 18, 32, 2, and 60 target genes, respectively. Therefore, we believe that NFKB1 and Sp1 have a potential role in the progression of ischemic stroke. The NFKB signaling pathway promotes inflammatory cytokines and regulates the progression of ischemic stroke.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurology, Mianyang Central Hospital, Mianyang 621000, China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yufeng Tang
- Department of Neurology, Mianyang Central Hospital, Mianyang 621000, China
| | - Zhonglun Chen
- Department of Neurology, Mianyang Central Hospital, Mianyang 621000, China
| | - Yue Heng
- Department of Neurology, Mianyang Central Hospital, Mianyang 621000, China
| | - Mingjun Pu
- Department of Neurology, Mianyang Central Hospital, Mianyang 621000, China
| | - Bufan Yang
- Department of Neurology, Mianyang Central Hospital, Mianyang 621000, China
| | - Jiacai Zuo
- Department of Neurology, Mianyang Central Hospital, Mianyang 621000, China
| | - Jingfeng Duan
- Department of Neurology, Mianyang Central Hospital, Mianyang 621000, China
| |
Collapse
|
35
|
Wang Y, Liu X, Hu T, Li X, Chen Y, Xiao G, Huang J, Chang Y, Zhu Y, Zhang H, Wang Y. Astragalus saponins improves stroke by promoting the proliferation of neural stem cells through phosphorylation of Akt. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114224. [PMID: 34044075 DOI: 10.1016/j.jep.2021.114224] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/01/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As one of major components of Buyang Huanwu decoction, Astragali Radix is broadly used for stroke treatment. Astragalus saponins (AST), the main active compound from Astragali Radix has the potentials for neuroprotection and improving spatial memory without clear pharmacological mechanism. AIM OF THE STUDY The aim of this study was to investigate that pretreatment of AST is beneficial to protect against focal ischemic stroke in mouse model and its related underlying mechanism. MATERIALS AND METHODS The neurological and motor function of MCAO mice were assessed by TTC staining and CatWalk gait analysis. The effect of AST on proliferation of NSCs was showed by the expression of Ki67 of MCAO mice and the number and size of primary neurospheres cultured from adult SVZ. The intersection of stroke-related targets, neurogenesis targets and drug-related targets were identified by the online website (https://www.omicstudio.cn/index). Then GO functional annotation and KEGG pathway enrichment analysis were performed. Candidate target Akt was confirmed to increase proliferation of cultured NSCs from adult SVZ by CCK8 assay and Western blot. RESULTS We found that with the prolongation of administration time, AST improved neurological and motor function of MCAO mice, by promoting the proliferation of NSCs both in vivo and in vitro. Then, the primary network among drug, genes and biological pathway was established by using compound-target-disease & function-pathway analysis of astragalus membranaceus. PI3K/Akt which plays a key role in cell proliferation was among the top 10 most significant GO terms from above three aspects. Further analysis using cultured NSCs from adult SVZ confirmed that AST, astragaloside I (A1) and astragaloside III (A3) increased the proliferation of NSCs through targeting Akt. CONCLUSION The present study elucidated that Astragalus saponins pretreatment could provide a protective effect on experimental stroke mainly by enhancing proliferation of NSCs through targeting Akt. The findings provided a basis for the development of novel strategies for the treatment of stroke.
Collapse
Affiliation(s)
- Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Tingdong Hu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Xin Li
- Zhongxin Pharma, Tianjin No.6 Traditional Chinese Medicine Factory, Tianjin, 300401, China
| | - Yuru Chen
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Guangxu Xiao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Juyang Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, People's Republic of China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Ying Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
36
|
GATA3 improves the protective effects of bone marrow-derived mesenchymal stem cells against ischemic stroke induced injury by regulating autophagy through CREG. Brain Res Bull 2021; 176:151-160. [PMID: 34500038 DOI: 10.1016/j.brainresbull.2021.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/14/2021] [Accepted: 09/02/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (BMSCs) transplantation has been demonstrated to benefit functional recovery after ischemic stroke, however, the low survival rate of BMSCs in ischemic microenvironment largely limits its use. METHODS Rat BMSCs (rBMSCs) were isolated from SD rats and treated with oxygen glucose deprivation/reoxygenation (OGD) to mimic ischemic microenvironment in vitro. Expression of mRNAs and proteins were assessed by qRT-PCR and western blot, respectively. Cell viability was detected using MTT. ROS level was evaluated by DCFH-DA Assay Kit. TUNEL and flow cytometry analysis were adopted to detect cell apoptosis. Immunofluorescence analysis was used to examine LC3 expression. Dual-luciferase reporter and ChIP assays were employed to determine the interaction between CREG and GATA3. Middle cerebral artery occlusion (MCAO) model was established to mimic ischemic stroke in vivo. TTC staining was used to measure the infarcts area in the brain of MCAO rats. Nissl staining was used to examine the quantity of neurons, and mNSS test was applied to compare behavioral functions of animals. RESULTS The rBMSCs were successfully isolated from SD rats. OGD exposure decreased the expression of GATA3 in rBMSCs, GATA3 overexpression alleviated OGD-induced cell injury and enhanced autophagy. Treatment with autophagy inhibitor (3-MA) abolished the protective effects of GATA3 against OGD-induced cell injury. GATA3 targeted the promoter of CREG and positively regulated its expression. The protective effect of GATA3 overexpression on autophagy during OGD exposure was reversed by CREG knockdown. Moreover, GATA3 overexpression improved the therapeutic effects of BMSCs transplantation on ischemic stroke in vivo. CONCLUSION Our results indicated that GATA3 overexpression improved the therapeutic effects of rBMSCs transplantation against ischemic stroke induced injury by regulating autophagy through CREG.
Collapse
|
37
|
Zhao F, Xing Y, Jiang P, Hu L, Deng S. LncRNA MEG3 inhibits the proliferation of neural stem cells after ischemic stroke via the miR-493-5P/MIF axis. Biochem Biophys Res Commun 2021; 568:186-192. [PMID: 34273844 DOI: 10.1016/j.bbrc.2021.06.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The proliferation of neural stem cells (NSCs1), or lack thereof, can have profound effects on brain tissue remodeling for ischemic stroke (IS2). In this study, we aimed to reveal the influence of the lncRNA MEG3/miR-493-5p/MIF axis on NSC proliferation after IS. METHODS We established an oxygen glucose-deprivation/reoxygenation (OGD/R3) in vitro model of IS in NSCs. We evaluated NSC isolation efficiency and proliferation by NESTIN, SOX2, and PCNA immunofluorescence staining. MEG3 and miR-493-5P levels were assessed by quantitative real-time polymerase chain reaction (qRT-PCR4). Changes in MIF protein expression levels were analyzed using Western blotting. We then evaluated the role of MEG3 and miR-493-5p by transfection of si-MEG3, a miR-493-5p mimic, or miR-493-5p inhibitor. NSC proliferation was quantified using Cell Counting Kit-8 analysis. RESULTS NESTIN and SOX2 were co-expressed in endogenous NSCs. Following OGD/R, MEG3 and miR-493-5P were significantly upregulated in NSCs, while MIF levels decreased and proliferation was inhibited. Knockdown of MEG3 inhibited miR-493-5p and rescued expression of MIF and PCNA, restoring cellular proliferation levels. In NSCs transfected with a miR-493-5p mimic or inhibitor, MIF levels were down- or upregulated, respectively. Consistently, transfection of a miR-493-5p mimic reduced NSC proliferation, while transfection with a miR-493-5p inhibitor or si-MEG3 rescued the inhibitory effect of OGD/R on NSC proliferation. After co-transfection of si-MEG3 and a miR-493-5p mimic of OGD/R-induced NSCs, levels of PCNA, an indicator of cellular proliferation, were significantly reduced. Conclusion MEG3 inhibits NSC proliferation of after IS via positive regulation of miR-493-5p and potential subsequent downregulation of MIF.
Collapse
Affiliation(s)
- Fan Zhao
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Yu Xing
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Pu Jiang
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Lai Hu
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China
| | - Shixiong Deng
- Department of Forensic Medicine, Chongqing Medical University, #1 Yixueyuan Road, Chongqing, 400016, China.
| |
Collapse
|
38
|
Ejma M, Madetko N, Brzecka A, Alster P, Budrewicz S, Koszewicz M, Misiuk-Hojło M, Tomilova IK, Somasundaram SG, Kirkland CE, Aliev G. The Role of Stem Cells in the Therapy of Stroke. Curr Neuropharmacol 2021; 20:630-647. [PMID: 34365923 PMCID: PMC9608230 DOI: 10.2174/1570159x19666210806163352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Stroke is a major challenge in neurology due to its multifactorial genesis and irreversible consequences. Processes of endogenous post-stroke neurogenesis, although insufficient, may indicate possible direction of future therapy. Multiple research considers stem-cell-based approaches in order to maximize neuroregeneration and minimize post-stroke deficits. Objective: Aim of this study is to review current literature considering post-stroke stem-cell-based therapy and possibilities of inducing neuroregeneration after brain vascular damage. Methods: Papers included in this article were obtained from PubMed and MEDLINE databases. The following medical subject headings (MeSH) were used: “stem cell therapy”, “post-stroke neurogenesis”, “stem-cells stroke”, “stroke neurogenesis”, “stroke stem cells”, “stroke”, “cell therapy”, “neuroregeneration”, “neurogenesis”, “stem-cell human”, “cell therapy in human”. Ultimate inclusion was made after manual review of the obtained reference list. Results: Attempts of stimulating neuroregeneration after stroke found in current literature include supporting endogenous neurogenesis, different routes of exogenous stem cells supplying and extracellular vesicles used as a method of particle transport. Conclusion: Although further research in this field is required, post stroke brain recovery supported by exogenous stem cells seems to be promising future therapy revolutionizing modern neurology.
Collapse
Affiliation(s)
- Maria Ejma
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Natalia Madetko
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa. Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszynska 105, 53-439 Wroclaw. Poland
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Kondratowicza 8, 03-242 Warszawa. Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Magdalena Koszewicz
- Department of Neurology, Wroclaw Medical University, 50-556 Wrocław, Borowska 213. Poland
| | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Borowska 213. Poland
| | - Irina K Tomilova
- Department of Biochemistry, Ivanovo State Medical Academy, Avenue Sheremetyevsky 8, Ivanovo, 153012. Russian Federation
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426. United States
| | - Gjumrakch Aliev
- Wroclaw Medical University, Department of Pulmonology and Lung Oncology, Wroclaw. Poland
| |
Collapse
|
39
|
Alqarni AJ, Rambely AS, Alharbi SA, Hashim I. Dynamic behavior and stabilization of brain cell reconstitution after stroke under the proliferation and differentiation processes for stem cells. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:6288-6304. [PMID: 34517534 DOI: 10.3934/mbe.2021314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stem cells play a critical role in regulatory operations, overseeing tissue regeneration and tissue homeostasis. In this paper, a mathematical model is proposed and analyzed to study the impact of stem cell transplantation on the dynamical behavior of stroke therapy, which is assumed to be based on transplanting dead brain cells following a stroke. We transform the method of using hierarchical cell systems into a method of using different compartment variables by using ordinary differential equations, each of which elucidates a well-defined differentiation stage along with the effect of mature cells in improving the brain function after a stroke. Stem cells, progenitor cells, and the impacts of the stem cells transplanted on brain cells are among the variables considered. The model is studied analytically and solved numerically using the fourth-order Runge-Kutta method. We analyze the structure of equilibria, the ability of neural stem cells to proliferate and differentiate, and the stability properties of equilibria for stem cell transplantation. The model is considered to be stable after transplantation if the stem cells and progenitor cells differentiate into mature nerve cells in the brain. The results of the model analysis and simulation facilitate the identification of various biologically probable parameter sets that can explain the optimal time for stem cell replacement of damaged brain cells. Associating the classified parameter sets with recent experimental and clinical findings contributes to a better understanding of therapeutic mechanisms that promote the reconstitution of brain cells after an ischemic stroke.
Collapse
Affiliation(s)
- Awatif Jahman Alqarni
- Department of Mathematics, College of Sciences and Arts in Balqarn, University of Bisha, Bisha 61922, Saudi Arabia
| | - Azmin Sham Rambely
- Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi Selangor 43600, Malaysia
| | - Sana Abdulkream Alharbi
- Department of Mathematics & Statistics, College of Science, Taibah University, Yanbu 41911, Almadinah Almunawarah, Saudi Arabia
| | - Ishak Hashim
- Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi Selangor 43600, Malaysia
| |
Collapse
|
40
|
Huang H, Du X, He Z, Yan Z, Han W. Nanoparticles for Stem Cell Tracking and the Potential Treatment of Cardiovascular Diseases. Front Cell Dev Biol 2021; 9:662406. [PMID: 34277609 PMCID: PMC8283769 DOI: 10.3389/fcell.2021.662406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023] Open
Abstract
Stem cell-based therapies have been shown potential in regenerative medicine. In these cells, mesenchymal stem cells (MSCs) have the ability of self-renewal and being differentiated into different types of cells, such as cardiovascular cells. Moreover, MSCs have low immunogenicity and immunomodulatory properties, and can protect the myocardium, which are ideal qualities for cardiovascular repair. Transplanting mesenchymal stem cells has demonstrated improved outcomes for treating cardiovascular diseases in preclinical trials. However, there still are some challenges, such as their low rate of migration to the ischemic myocardium, low tissue retention, and low survival rate after the transplantation. To solve these problems, an ideal method should be developed to precisely and quantitatively monitor the viability of the transplanted cells in vivo for providing the guidance of clinical translation. Cell imaging is an ideal method, but requires a suitable contrast agent to label and track the cells. This article reviews the uses of nanoparticles as contrast agents for tracking MSCs and the challenges of clinical use of MSCs in the potential treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Huihua Huang
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Health Science Center, Shenzhen, China
| | - Xuejun Du
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Zhiguo He
- Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zifeng Yan
- Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Wei Han
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
41
|
Ogay V, Kumasheva V, Li Y, Mukhlis S, Sekenova A, Olzhayev F, Tsoy A, Umbayev B, Askarova S, Shpekov A, Kaliyev A, Zhetpisbayev B, Makhambetov Y, Akshulakov S, Saparov A, Ramankulov Y. Improvement of Neurological Function in Rats with Ischemic Stroke by Adipose-derived Pericytes. Cell Transplant 2021; 29:963689720956956. [PMID: 32885682 PMCID: PMC7784564 DOI: 10.1177/0963689720956956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pericytes possess high multipotent features and cell plasticity, and produce angiogenic and neurotrophic factors that indicate their high regenerative potential. The aim of this study was to investigate whether transplantation of adipose-derived pericytes can improve functional recovery and neurovascular plasticity after ischemic stroke in rats. Rat adipose-derived pericytes were isolated from subcutaneous adipose tissue by fluorescence-activated cell sorting. Adult male Wistar rats were subjected to 90 min of middle cerebral artery occlusion followed by intravenous injection of rat adipose-derived pericytes 24 h later. Functional recovery evaluations were performed at 1, 7, 14, and 28 days after injection of rat adipose-derived pericytes. Angiogenesis and neurogenesis were examined in rat brains using immunohistochemistry. It was observed that intravenous injection of adipose-derived pericytes significantly improved recovery of neurological function in rats with stroke compared to phosphate-buffered saline-treated controls. Immunohistochemical analysis revealed that the number of blood capillaries was significantly increased along the ischemic boundary zone of the cortex and striatum in stroke rats treated with adipose-derived pericytes. In addition, treatment with adipose-derived pericytes increased the number of doublecortin positive neuroblasts. Our data suggest that transplantation of adipose-derived pericytes can significantly improve the neurologic status and contribute to neurovascular remodeling in rats after ischemic stroke. These data provide a new insight for future cell therapies that aim to treat ischemic stroke patients.
Collapse
Affiliation(s)
- Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Venera Kumasheva
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Yelena Li
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Sholpan Mukhlis
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Aliya Sekenova
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Farkhad Olzhayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Andrey Tsoy
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Baurzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sholpan Askarova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Azat Shpekov
- Department of Neurosurgery, Medical Centre Hospital of the President's Affairs Administration of the Republic of Kazakhstan, Nur-Sultan, Kazakhstan
| | - Assylbek Kaliyev
- Vascular and Functional Neurosurgery Department, National Center for Neurosurgery, Nur-Sultan, Kazakhstan
| | - Berik Zhetpisbayev
- Vascular and Functional Neurosurgery Department, National Center for Neurosurgery, Nur-Sultan, Kazakhstan
| | - Yerbol Makhambetov
- Vascular and Functional Neurosurgery Department, National Center for Neurosurgery, Nur-Sultan, Kazakhstan
| | - Serik Akshulakov
- Vascular and Functional Neurosurgery Department, National Center for Neurosurgery, Nur-Sultan, Kazakhstan
| | - Arman Saparov
- School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Yerlan Ramankulov
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan, Kazakhstan.,School of Science and Technology, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
42
|
Rascón-Ramírez FJ, Esteban-García N, Barcia JA, Trondin A, Nombela C, Sánchez-Sánchez-Rojas L. Are We Ready for Cell Therapy to Treat Stroke? Front Cell Dev Biol 2021; 9:621645. [PMID: 34249901 PMCID: PMC8260969 DOI: 10.3389/fcell.2021.621645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Clinical trials of cell therapies that target stroke started at the beginning of this century and they have experienced a significant boost in recent years as a result of promising data from basic research studies. The increase in the information available has paved the way to carry out more innovative and varied human studies. Efforts have focused on the search for a safe and effective treatment to stimulate neuro-regeneration in the brain and to reduce the sequelae of stroke in patients. Therefore, this review aims to evaluate the clinical trials using cell therapy to treat stroke published to date and assess their limitations. From 2000 to date, most of the published clinical trials have focused on phases I or II, and the vast majority of them demonstrate that stem cells are essentially safe to use when administered by different routes, with transient and mild adverse events that do not generally have severe consequences for health. In general, there is considerable variation in the trials in terms of statistical design, sample size, the cells used, the routes of administration, and the functional assessments (both at baseline and follow-up), making it difficult to compare the studies. From this general description, possibly the experimental protocol is the main element to improve in future studies. Establishing an adequate experimental and statistical design will be essential to obtain favorable and reliable results when conducting phase III clinical trials. Thus, it is necessary to standardize the criteria used in these clinical trials in order to aid comparison. Shortly, cell therapy will be a key approach in the treatment of stroke if adequate and comprehensive levels of recovery are to be achieved.
Collapse
Affiliation(s)
| | - Noelia Esteban-García
- Regenerative Medicine and Advanced Therapies Laboratory, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Cl nico San Carlos, Madrid, Spain
| | - Juan Antonio Barcia
- Department of Neurosurgery, Hospital Cl nico San Carlos, Madrid, Spain.,Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| | - Albert Trondin
- Department of Neurosurgery, Hospital Cl nico San Carlos, Madrid, Spain
| | - Cristina Nombela
- Department of Biological and Health Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|
43
|
Chen M, Wang F, Wang H. Silencing of lncRNA XLOC_035088 Protects Middle Cerebral Artery Occlusion-Induced Ischemic Stroke by Notch1 Signaling. J Neuropathol Exp Neurol 2021; 80:60-70. [PMID: 33236068 PMCID: PMC7749712 DOI: 10.1093/jnen/nlaa129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ischemic stroke represents one of the leading causes of mortality worldwide and especially in developing countries. It is crucial for finding effective therapeutic targets that protect the brain against ischemic injury. Long noncoding RNAs (lncRNAs) have emerged as major regulators of neurological diseases, and clarifying their roles in cerebral ischemic injury may provide novel targets for the treatment of ischemic stroke. We aimed to investigate the role of lncRNA-XLOC_035088 in middle cerebral artery occlusion (MCAO)-induced rat brain injury and oxygen-glucose deprivation (OGD)-reperfusion treated hippocampal neurons. In our findings, we found that XLOC_035088 expression was significantly upregulated in OGD-reperfusion treated hippocampal neurons and in different brain regions of MCAO-treated rats. XLOC_035088 silencing protected against MCAO-induced ischemic brain injury in vivo and OGD-induced hippocampal neuronal apoptosis in vitro. Intrahippocampal silencing of XLOC_035088 significantly decreased brain XLOC_035088 expression, reduced brain infarct size, and improved neurological function through inhibiting NOTCH1 following derepression of presenilin 2 (PSEN2). Taken together, this study provides evidence that the lncRNA XLOC_035088/PSEN2/Notch1 axis is involved in the pathogenesis of ischemic brain injury, and presents a promising therapeutic route for ischemic stroke.
Collapse
Affiliation(s)
- Miao Chen
- From the Department of Neurology, Shidong Hospital, Affiliated to University of Shanghai for Science and Technology
| | - Feng Wang
- Department of Neurology, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine (FW), Shanghai, PR China
| | - Hairong Wang
- From the Department of Neurology, Shidong Hospital, Affiliated to University of Shanghai for Science and Technology
| |
Collapse
|
44
|
Yoshida Y, Takagi T, Kuramoto Y, Tatebayashi K, Shirakawa M, Yamahara K, Doe N, Yoshimura S. Intravenous Administration of Human Amniotic Mesenchymal Stem Cells in the Subacute Phase of Cerebral Infarction in a Mouse Model Ameliorates Neurological Disturbance by Suppressing Blood Brain Barrier Disruption and Apoptosis via Immunomodulation. Cell Transplant 2021; 30:9636897211024183. [PMID: 34144647 PMCID: PMC8216398 DOI: 10.1177/09636897211024183] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuro-inflammation plays a key role in the pathophysiology of brain infarction. Cell therapy offers a novel therapeutic option due to its effect on immunomodulatory effects. Amniotic stem cells, in particular, show promise owing to their low immunogenicity, tumorigenicity, and easy availability from amniotic membranes discarded following birth. We have successfully isolated and expanded human amniotic mesenchymal stem cells (hAMSCs). Herein, we evaluated the therapeutic effect of hAMSCs on neurological deficits after brain infarction as well as their immunomodulatory effects in a mouse model in order to understand their mechanisms of action. One day after permanent occlusion of the middle cerebral artery (MCAO), hAMSCs were intravenously administered. RT-qPCR for TNFα, iNOS, MMP2, and MMP9, immunofluorescence staining for iNOS and CD11b/c, and a TUNEL assay were performed 8 days following MCAO. An Evans Blue assay and behavioral tests were performed 2 days and several months following MCAO, respectively. The results suggest that the neurological deficits caused by cerebral infarction are improved in dose-dependent manner by the administration of hAMSCs. The mechanism appears to be through a reduction in disruption of the blood brain barrier and apoptosis in the peri-infarct region through the suppression of pro-inflammatory cytokines and the M2-to-M1 phenotype shift.
Collapse
Affiliation(s)
- Yasunori Yoshida
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Toshinori Takagi
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Yoji Kuramoto
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Kotaro Tatebayashi
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Manabu Shirakawa
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| | - Kenichi Yamahara
- Laboratory of Medical Innovation, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Nobutaka Doe
- Laboratory of Neurogenesis and CNS Repair, 12818, Nishinomiya, Hyogo, Japan.,Laboratory of Psychology, General Education Center, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Shinichi Yoshimura
- Department of Neurosurgery, 12818Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, Japan
| |
Collapse
|
45
|
Barzegar M, Vital S, Stokes KY, Wang Y, Yun JW, White LA, Chernyshev O, Kelley RE, Alexander JS. Human placenta mesenchymal stem cell protection in ischemic stroke is angiotensin converting enzyme-2 and masR receptor-dependent. STEM CELLS (DAYTON, OHIO) 2021; 39:1335-1348. [PMID: 34124808 PMCID: PMC8881785 DOI: 10.1002/stem.3426] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Thromboembolic stroke remains a major cause of neurological disability and death. Current stroke treatments (aspirin, tissue plasminogen activator) are significantly limited by timing and risks for hemorrhage which have driven researchers to explore other approaches. Stem cell‐based therapy appears to be an effective option for ischemic stroke. Besides trans‐differentiation into neural cells, stem cells also provide acute protection via paracrine signaling pathways through which releasing neuroprotective factors. We previously reported that intraperitoneal administration of human placenta mesenchymal stem cell (hPMSC) therapy upon reperfusion significantly protected the brain against middle cerebral artery occlusion (MCAO)‐induced injury. In the present study, we specifically investigated the role of hPMSC‐derived angiotensin converting enzyme‐2 (ACE‐2) in protection of MCAO‐induced brain injury by measurement of brain tissue viability, cerebral blood flow, and neurological score. Here, we report for the first time that hPMSC expressing substantial amount of ACE‐2, which mediates hPMSC protection in the MCAO model. Strikingly, we found that the protective effects of hPMSC in MCAO‐induced brain injury could be attenuated by pretreatment of hPMSCs with MLN‐4760, a specific inhibitor of ACE‐2 activity, or by transfection of hPMSCs with ACE‐2‐shRNA‐lentivirus. The hPMSC‐derived ACE‐2 specific protective mechanism was further demonstrated by administration of PD123319, an Angiotensin type‐2 receptor antagonist, or A779, a MasR antagonist. Importantly, our study demonstrated that the protective effects of hPMSC in experimental stroke are ACE‐2/MasR dependent and this signaling pathway represents an innovative and highly promising approach for targeted stroke therapy.
Collapse
Affiliation(s)
- Mansoureh Barzegar
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Shantel Vital
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Karen Y Stokes
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Yuping Wang
- Obstetrics and Gynecology and Medicine, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Jungmi Winny Yun
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Luke A White
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Oleg Chernyshev
- Neurology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Roger E Kelley
- Neurology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| | - Jonathan S Alexander
- Molecular and Cellular Physiology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA.,Neurology, Ochsner-LSU Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
46
|
Zhu Y, Zhou H, Chen D, Zhou D, Zhao N, Xiong L, Deng I, Zhou X, Zhu Z. New progress of isoflurane, sevoflurane and propofol in hypoxic-ischemic brain injury and related molecular mechanisms based on p75 neurotrophic factor receptor. IBRAIN 2021; 7:132-140. [PMID: 37786902 PMCID: PMC10528789 DOI: 10.1002/j.2769-2795.2021.tb00075.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 10/04/2023]
Abstract
Hypoxic ischemic brain injury (HIBI) is one of the most common clinical disorders, especially in neonates. The complex pathophysiology of HIBI is an important cause of disability and even death of patients, however, being without effective clinical treatments. Common anesthetics (such as isoflurane, propofol and sevoflurane) have an adverse impact on neuronal cells for HIBI via the regulation of p75 neurotrophic factor receptor (P75NTR). In order to protect the injured brains and study the effect of underlying treatments, it is particularly significant to understand and master the developmental mechanism of anesthetics for the occurrence of HIBI related molecular mechanisms. Therefore, this paper will mainly review the corresponding pathogenic and protective mechanisms about HIBI binding to the research progress of the role of P75NTR. In conclusion, the effects of neuroprotection and injured nerves are involved in the expression and activation of P75NTR, mainly increased P75NTR mRNA, protein levels and calpain-dependent for propofol, and inducing neuronal apoptosis for isoflurane and sevoflurane, and we look forward to that connection with P75NTR, common anaesthetic and HIBI may be a new direction of research and gain perfect outcomes in the future.
Collapse
Affiliation(s)
- Yi Zhu
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Hong‐Su Zhou
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Dong‐Qin Chen
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Di Zhou
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Nan Zhao
- Department of AnesthesiaHospital of Stomatology, Zunyi Medical UniversityZunyiGuizhouChina
| | - Liu‐Lin Xiong
- Clinical and Health Sciences, University of South AustraliaAdelaide5000South AustraliaAustralia
| | - Issac Deng
- Clinical and Health Sciences, University of South AustraliaAdelaide5000South AustraliaAustralia
| | - Xin‐Fu Zhou
- Clinical and Health Sciences, University of South AustraliaAdelaide5000South AustraliaAustralia
| | - Zhao‐Qiong Zhu
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
47
|
Hypoxia Engineered Bone Marrow Mesenchymal Stem Cells Targeting System with Tumor Microenvironment Regulation for Enhanced Chemotherapy of Breast Cancer. Biomedicines 2021; 9:biomedicines9050575. [PMID: 34069607 PMCID: PMC8160638 DOI: 10.3390/biomedicines9050575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/02/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022] Open
Abstract
Improving the tumor targeting of docetaxel (DTX) would not only be favored for the chemotherapeutic efficacy, but also reduce its side effects. However, the regulation of the tumor microenvironment could further inhibit the growth of tumors. In this study, we introduced a system consisting of hypoxia-engineered bone marrow mesenchymal stem cells (H-bMSCs) and DTX micelles (DTX-M) for breast cancer treatment. First, the stem cell chemotherapy complex system (DTX@H-bMSCs) with tumor-targeting ability was constructed according to the uptake of DTX-M by hypoxia-induced bMSCs (H-bMSCs). DTX micellization improved the uptake efficiency of DTX by H-bMSCs, which equipped DTX@H-bMSCs with satisfactory drug loading and stability. Furthermore, the migration of DTX@H-bMSCs revealed that it could effectively target the tumor site and facilitate the drug transport between cells. Moreover, in vitro and in vivo pharmacodynamics of DTX@H-bMSCs exhibited a superior antitumor effect, which could promote the apoptosis of 4T1 cells and upregulate the expression of inflammatory factors at the tumor site. In brief, DTX@H-bMSCs enhanced the chemotherapeutic effect in breast cancer treatment.
Collapse
|
48
|
Zhang XL, Zhang XG, Huang YR, Zheng YY, Ying PJ, Zhang XJ, Lu X, Wang YJ, Zheng GQ. Stem Cell-Based Therapy for Experimental Ischemic Stroke: A Preclinical Systematic Review. Front Cell Neurosci 2021; 15:628908. [PMID: 33935650 PMCID: PMC8079818 DOI: 10.3389/fncel.2021.628908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Stem cell transplantation offers promise in the treatment of ischemic stroke. Here we utilized systematic review, meta-analysis, and meta-regression to study the biological effect of stem cell treatments in animal models of ischemic stroke. A total of 98 eligible publications were included by searching PubMed, EMBASE, and Web of Science from inception to August 1, 2020. There are about 141 comparisons, involving 5,200 animals, that examined the effect of stem cell transplantation on neurological function and infarct volume as primary outcome measures in animal models for stroke. Stem cell-based therapy can improve both neurological function (effect size, −3.37; 95% confidence interval, −3.83 to −2.90) and infarct volume (effect size, −11.37; 95% confidence interval, −12.89 to −9.85) compared with controls. These results suggest that stem cell therapy could improve neurological function deficits and infarct volume, exerting potential neuroprotective effect for experimental ischemic stroke, but further clinical studies are still needed.
Collapse
Affiliation(s)
- Xi-Le Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Guang Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Ran Huang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Yan Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Jie Ying
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Lu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Jing Wang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
49
|
Viringipurampeer IA, Yanai A, Nizamudheen VS, Gregory-Evans CY, Gregory-Evans K. Photoreceptor precursor cell integration into rodent retina after treatment with novel glycopeptide PKX-001. J Tissue Eng Regen Med 2021; 15:556-566. [PMID: 33779072 DOI: 10.1002/term.3193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/01/2021] [Indexed: 12/28/2022]
Abstract
Cell replacement therapy is emerging as an important approach in novel treatments for neurodegenerative diseases. Many problems remain, in particular improvements are needed in the survival of transplanted cells and increasing functional integration into host tissue. These problems arise because of immune rejection, suboptimal precursor cell type, trauma during cell transplantation, and toxic compounds released by dying tissues and nutritional deficiencies. We recently developed an ex vivo system to facilitate identification of factors contributing to the death of transplanted neuronal (photoreceptor) and showed 2.8-fold improvement in transplant cell survival after pretreatment with a novel glycopeptide (PKX-001). In this study, we extended these studies to look at cell survival, maturation, and functional integration in an in vivo rat model of rhodopsin-mutant retinitis pigmentosa causing blindness. We found that only when human photoreceptor precursor cells were preincubated with PKX-001 prior to transplantation, did the cells integrate and mature into cone photoreceptors expressing S-opsin or L/M opsin. In addition, ribbon synapses were observed in the transplanted cells suggesting they were making synaptic connections with the host tissue. Furthermore, optokinetic tracking and electroretinography responses in vivo were significantly improved compared to cell transplants without PKX-001 pre-treatment. These data demonstrate that PKX-001 promotes significant long-term stem cell survival in vivo, providing a platform for further investigation towards the clinical application to repair damaged or diseased retina.
Collapse
Affiliation(s)
- Ishaq A Viringipurampeer
- Department of Ophthalmology and Visual Sciences, Eye, Care Centre, University of British Columbia, Vancouver, Canada
| | - Anat Yanai
- Department of Ophthalmology and Visual Sciences, Eye, Care Centre, University of British Columbia, Vancouver, Canada
| | - Vahitha S Nizamudheen
- Department of Ophthalmology and Visual Sciences, Eye, Care Centre, University of British Columbia, Vancouver, Canada
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, Eye, Care Centre, University of British Columbia, Vancouver, Canada
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, Eye, Care Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
50
|
Mattei V, Martellucci S, Pulcini F, Santilli F, Sorice M, Delle Monache S. Regenerative Potential of DPSCs and Revascularization: Direct, Paracrine or Autocrine Effect? Stem Cell Rev Rep 2021; 17:1635-1646. [PMID: 33829353 PMCID: PMC8553678 DOI: 10.1007/s12015-021-10162-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
A new source of mesenchymal stem cells has recently been discovered, the so-called dental pulp derived stem cells (DPSCs) which therefore could represent potentially tools for regenerative medicine. DPSC originate from the neural crest and are physiologically involved in dentin homeostasis; moreover, they contribute to bone remodeling and differentiation into several tissues including cartilage, bone, adipose and nervous tissues. DPSCs have also been shown to influence the angiogenesis process, for example through the release of secretory factors or by differentiating into vascular and/or perivascular cells. Angiogenesis, that has a pivotal role in tissue regeneration and repair, is defined as the formation of new vessels from preexisting vessels and is mediated by mutual and reciprocal interactions between endothelial cells and perivascular cells. It is also known that co-cultures of perivascular and endothelial cells (ECs) can form a vascular network in vitro and also in vivo. Since DPSCs seem to have characteristics similar to pericytes, understanding the possible mechanism of interaction between DPSCs and ECs during neo-angiogenesis is dramatically important for the development of advanced clinical application in the field of regeneration.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
- StemTeCh Group, Chieti, Italy.
| |
Collapse
|