1
|
Guo Q, Wang Q, Chen J, Zhao M, Lu T, Guo Z, Wang C, Wong YK, He X, Chen L, Zhang W, Dai C, Shen S, Pang H, Xia F, Qiu C, Xie D, Wang J. Dihydroartemisinin Regulated the MMP-Mediated Cellular Microenvironment to Alleviate Rheumatoid Arthritis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0459. [PMID: 39257420 PMCID: PMC11385568 DOI: 10.34133/research.0459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with features of synovial inflammation, cartilage erosion, bone destruction, and pain and is currently lacking a satisfactory treatment strategy. Dihydroartemisinin (DHA), the active metabolite of artemisinin, has exhibited outstanding suppressive effects on RA without obvious side effects. However, the underlying mechanisms remain unclear, which limits its further clinical application. The purpose of this study is to reveal the pharmacodynamic mechanism of DHA against RA by means of a combination of single-cell RNA sequencing (RNA-seq), proteomics, as well as transcriptomics both in vivo and in vitro. In our results, DHA effectively reduced the degree of redness, swelling, and pain in RA rats and dramatically changed the synovial tissue microenvironment under the pathological state. Within this microenvironment, fibroblasts, macrophages, B cells, and endothelial cells were the major affected cell types, primarily through DHA targeting the extracellular matrix (ECM) structural constituent signaling pathway. In addition, we confirmed that DHA regulated the ECM by modulating matrix metalloproteinase 2 (MMP2) and MMP3 in the synovial tissue of RA rats. Moreover, DHA induced apoptosis in MH7A cells, further validating the bioinformatics data. In conclusion, DHA effectively reduced the inflammatory response and improved the immune microenvironment in synovial tissue by inhibiting MMP2 and MMP3. Our findings provide a basis for the application of DHA in the treatment of RA.
Collapse
Affiliation(s)
- Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qixin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Minghong Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tianming Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zuchang Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xueling He
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lin Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | | | - Chuanhao Dai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Daoyuan Xie
- Laboratory of Translational Medicine Research, Deyang People's Hospital of Chengdu University of Traditional Chinese Medicine, Deyang 618000, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
2
|
Mor A, Tankiewicz-Kwedlo A, Ciwun M, Lewkowicz J, Pawlak D. Kynurenines as a Novel Target for the Treatment of Inflammatory Disorders. Cells 2024; 13:1259. [PMID: 39120289 PMCID: PMC11311768 DOI: 10.3390/cells13151259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
This review discusses the potential of targeting the kynurenine pathway (KP) in the treatment of inflammatory diseases. The KP, responsible for the catabolism of the amino acid tryptophan (TRP), produces metabolites that regulate various physiological processes, including inflammation, cell cycle, and neurotransmission. These metabolites, although necessary to maintain immune balance, may accumulate excessively during inflammation, leading to systemic disorders. Key KP enzymes such as indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), tryptophan 2,3-dioxygenase (TDO), and kynurenine 3-monooxygenase (KMO) have been considered promising therapeutic targets. It was highlighted that both inhibition and activation of these enzymes may be beneficial, depending on the specific inflammatory disorder. Several inflammatory conditions, including autoimmune diseases, for which modulation of KP activity holds therapeutic promise, have been described in detail. Preclinical studies suggest that this modulation may be an effective treatment strategy for diseases for which treatment options are currently limited. Taken together, this review highlights the importance of further research on the clinical application of KP enzyme modulation in the development of new therapeutic strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Adrian Mor
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Anna Tankiewicz-Kwedlo
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Marianna Ciwun
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Janina Lewkowicz
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| |
Collapse
|
3
|
Wang J, Xue Y, Zhou L. New Classification of Rheumatoid Arthritis Based on Immune Cells and Clinical Characteristics. J Inflamm Res 2024; 17:3293-3305. [PMID: 38800595 PMCID: PMC11128232 DOI: 10.2147/jir.s395566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic systemic immune disease characterized by joint synovitis, but there are differences in clinical manifestations and serum test results among different patients. Methods This is a bioinformatics study. We first obtained the gene expression profile of RA and normal synovium from the database, and screened the differentially expressed immune related genes for enrichment analysis. Subsequently, we classified RA into three subtypes by unsupervised clustering of serum gene expression profiles based on immune enrichment scores. Then, the enrichment and clinical characteristics of different subtypes were analyzed. Finally, according to the infiltration of different subtypes of immune cells, diagnostic markers were screened and verified by qRT-PCR. Results C1 subtype is related to the increase of neutrophils, C-reactive protein and erythrocyte sedimentation rate, and joint pain is more significant in patients. C2 subtype is related to the expression of CD8+T cells and Tregs, and patients have mild joint pain symptoms. The RF value of C3 subtype is higher, and the expression of various immune cells is increased. CD4 T cells, NK cells activated, macrophages M1 and neutrophils are immune cells significantly infiltrated in synovium and serum of RA patients. IFNGR1, TRAC, IFITM1 can be used as diagnostic markers of different subtypes. Conclusion In this study, RA patients were divided into different immune molecular subtypes based on gene expression profile, and immune diagnostic markers were screened, which provided a new idea for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Jiaqian Wang
- Department of Orthopaedic, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Yuan Xue
- Department of Orthopaedic, Wuxi Ninth People’s Hospital of Soochow University, Wuxi, 214000, People’s Republic of China
| | - Liang Zhou
- Department of Orthopaedic, Lianshui County People’s Hospital, Huai‘an, People’s Republic of China
| |
Collapse
|
4
|
De Stefano L, Bugatti S, Mazzucchelli I, Rossi S, Xoxi B, Bozzalla Cassione E, Luvaro T, Montecucco C, Manzo A. Synovial and serum B cell signature of autoantibody-negative rheumatoid arthritis vs autoantibody-positive rheumatoid arthritis and psoriatic arthritis. Rheumatology (Oxford) 2024; 63:1322-1331. [PMID: 37481716 DOI: 10.1093/rheumatology/kead378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 07/24/2023] Open
Abstract
OBJECTIVES Autoantibody-negative RA differs from autoantibody-positive RA in several clinical aspects, possibly underpinned by pathogenetic differences. At present, the role of adaptive immune responses in autoantibody-negative RA remains unclear. Here, we investigated the synovial and serum immunophenotype indicative of B lymphocyte involvement across the spectrum of autoantibody-positive and -negative chronic arthritides. METHODS Ultrasound-guided synovial biopsies were retrieved from 131 patients: 43 autoantibody-positive RA, 35 autoantibody-negative RA, 25 polyarticular PsA and 28 oligoarticular PsA. Samples were analysed for the degree of histological inflammation, B lymphocyte infiltration and the distribution of different pathotypes (lympho-myeloid, myeloid, pauci-immune). Serum levels of the B cell chemoattractant CXCL13 were compared among groups. RESULTS Synovitis scores and CD68+ sublining macrophage infiltration were comparable irrespective of clinical diagnosis and disease subtype. In contrast, the degree of B lymphocyte infiltration and the frequency of lympho-myeloid synovitis in autoantibody-negative RA were lower than those of autoantibody-positive RA (mean [s.d.] 1.8 [1] vs 2.4 [0.6], P = 0.03, and 38.2% vs 62.9%, P = 0.07, respectively), and similar to polyarticular PsA. Oligoarticular PsA had the lowest B cell scores. Serum CXCL13 was associated with lympho-myeloid synovitis and followed a similar gradient, with the highest levels in autoantibody-positive RA, intermediate and comparable levels in autoantibody-negative RA and polyarticular PsA, and low levels in oligoarticular PsA. CONCLUSIONS The synovial and serum immunophenotype indicative of B lymphocyte involvement in autoantibody-negative RA differs from that of autoantibody-positive RA and more closely resembles that observed in polyarticular PsA. The pathobiological stratification of chronic inflammatory arthritides beyond clinical diagnosis may fuel personalized treatment strategies.
Collapse
Affiliation(s)
- Ludovico De Stefano
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Department of Internal Medicine and Therapeutics, Università di Pavia, Pavia, Italy
- Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Serena Bugatti
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Department of Internal Medicine and Therapeutics, Università di Pavia, Pavia, Italy
- Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Iolanda Mazzucchelli
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Department of Internal Medicine and Therapeutics, Università di Pavia, Pavia, Italy
| | - Silvia Rossi
- Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Blerina Xoxi
- Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Emanuele Bozzalla Cassione
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Department of Internal Medicine and Therapeutics, Università di Pavia, Pavia, Italy
- Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Terenzj Luvaro
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Department of Internal Medicine and Therapeutics, Università di Pavia, Pavia, Italy
| | - Carlomaurizio Montecucco
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Department of Internal Medicine and Therapeutics, Università di Pavia, Pavia, Italy
- Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Manzo
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Department of Internal Medicine and Therapeutics, Università di Pavia, Pavia, Italy
- Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
5
|
Zimmerman DH, Szekanecz Z, Markovics A, Rosenthal KS, Carambula RE, Mikecz K. Current status of immunological therapies for rheumatoid arthritis with a focus on antigen-specific therapeutic vaccines. Front Immunol 2024; 15:1334281. [PMID: 38510240 PMCID: PMC10951376 DOI: 10.3389/fimmu.2024.1334281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/08/2024] [Indexed: 03/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is recognized as an autoimmune joint disease driven by T cell responses to self (or modified self or microbial mimic) antigens that trigger and aggravate the inflammatory condition. Newer treatments of RA employ monoclonal antibodies or recombinant receptors against cytokines or immune cell receptors as well as small-molecule Janus kinase (JAK) inhibitors to systemically ablate the cytokine or cellular responses that fuel inflammation. Unlike these treatments, a therapeutic vaccine, such as CEL-4000, helps balance adaptive immune homeostasis by promoting antigen-specific regulatory rather than inflammatory responses, and hence modulates the immunopathological course of RA. In this review, we discuss the current and proposed therapeutic products for RA, with an emphasis on antigen-specific therapeutic vaccine approaches to the treatment of the disease. As an example, we describe published results of the beneficial effects of CEL-4000 vaccine on animal models of RA. We also make a recommendation for the design of appropriate clinical studies for these newest therapeutic approaches, using the CEL-4000 vaccine as an example. Unlike vaccines that create or boost a new immune response, the clinical success of an immunomodulatory therapeutic vaccine for RA lies in its ability to redirect autoreactive pro-inflammatory memory T cells towards rebalancing the "runaway" immune/inflammatory responses that characterize the disease. Human trials of such a therapy will require alternative approaches in clinical trial design and implementation for determining safety, toxicity, and efficacy. These approaches include adaptive design (such as the Bayesian optimal design (BOIN), currently employed in oncological clinical studies), and the use of disease-related biomarkers as indicators of treatment success.
Collapse
Affiliation(s)
| | - Zoltan Szekanecz
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adrienn Markovics
- Department of Orthopedic Surgery and Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, United States
| | - Kenneth S. Rosenthal
- Department of Basic Sciences, Augusta University/University of Georgia Medical Partnership, Athens, GA, United States
| | | | - Katalin Mikecz
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
6
|
Oveisee M, Gholipour A, Malakootian M. Comparison of inflammatory molecular mechanisms between osteoarthritis and rheumatoid arthritis via gene microarrays. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:211-222. [PMID: 39315289 PMCID: PMC11416848 DOI: 10.22099/mbrc.2024.49924.1963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) treatment requires exact arthritis type diagnosis. We compared inflammatory molecular mechanisms between OA and RA to introduce reliable molecular biomarkers. The GSE55235 and GSE100786 microarray datasets were acquired from the GEO. Data preprocessing and differential expression analysis were conducted in OA and RA groups and their control groups applying GEO2R. Differentially expressed genes (DEGs) with a |LogFC|>1 and adj. p<0.05 were determined. Gene ontology (GO) and signaling pathway analysis were done utilizing PANTHER and Enrichr. The suitability of gene expression alterations as biomarkers was tested using the receiver operating characteristic (ROC) curve analysis. We found 2129 DEGs between the OA and control groups and 2494 DEGs between the RA and control groups. GO on the DEGs showed enrichment in binding, cellular processes, and cellular anatomical entities in molecular functions, biological processes, and cellular components, respectively. Enrichr found the cell differentiation pathways of Th1 and Th2 only in RA. The ROC curve analysis indicated HLA-DQA1 downregulation and MAPK8IP3 upregulation as reliable biomarkers to discriminate RA from OA in peripheral blood and bone marrow samples, respectively. We found more DEGs in patients with OA than those with RA and determined inflammatory pathways and genes unique to RA as reliable biomarkers to discriminate RA from OA. Gene expression alterations associated with Th1 and Th2 cell differentiation pathways, including HLA-DQA1 downregulation and MAPK8IP3 upregulation, could be novel molecular biomarkers to diagnose RA.
Collapse
Affiliation(s)
- Maziar Oveisee
- Orthopedic Department, Bam University of Medical Sciences, Bam, Iran
| | - Akram Gholipour
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- These authors have equally contributed to this work
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- These authors have equally contributed to this work
| |
Collapse
|
7
|
Ma C, Wu J, Lei H, Huang H, Li Y. Significance of m6A in subtype identification, immunological evolution, and therapeutic sensitivity of RA. Immunobiology 2024; 229:152781. [PMID: 38154164 DOI: 10.1016/j.imbio.2023.152781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
N6-methyladenosine (m6A) is one kind of important epigenetic modification pattern which is extensively involved in immune regulation. The development and progression of autoimmune diseases are closely related to immune dysregulation. Considering that rheumatoid arthritis (RA) is a typical autoimmune disease, the m6A process might be one of the important regulatory mechanisms in the pathogenesis of RA. In this study, we identified five differentially expressed m6A regulators in normal and RA samples from the GEO database. With these five regulators, we constructed the nomogram, and it could accurately identify the risk of RA morbidity. Next, we identified 121 differentially expressed genes (DEGs) between normal and RA samples, of which 36 DEGs were co-expressed with these five m6A regulators. We noted that these DEGs were highly enriched in multiple immunoregulatory signaling pathways, such as cytokine-mediated immune cell chemotaxis, adhesion, and activation. To further characterize the heterogeneity of immunological features, we clustered the RA samples into two subtypes. The C2 subtype has higher infiltration levels of pro-inflammatory cells and activity of pro-inflammatory signaling pathways. Thus, the inflammatory response might be more vigorous in the C2 subtype. Next, we constructed the m6Asig system with the SVM machine learning algorithms and least absolute shrinkage and selection operator (LASSO) regression. The m6Asig could accurately distinguish the C1 and C2 subtypes, which indicated that the m6Asig could be a potential biomarker for the inflammatory activity of RA. Finally, by comparing the information from the CellMiner, TTD, and DrugBank databases, we determined 25 drugs. The targets of these drugs were positively correlated with m6Asig. To be clarified, the above findings were derived from bioinformatics and statistical analyses, and further experimental validation still requires. In summary, this study further revealed the m6A and immunoregulation mechanisms in RA pathogenesis. Also, the m6Asig could be a novel biomarker with potential applicability in the clinical management of RA.
Collapse
Affiliation(s)
- Chenxi Ma
- Department of Rheumatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiasheng Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Hongwei Lei
- Department of Rheumatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - He Huang
- Department of Rheumatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yingnan Li
- Department of Rheumatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
8
|
Morales-Núñez JJ, Muñoz-Valle JF, García-Chagollán M, Cerpa-Cruz S, Martínez-Bonilla GE, Medina-Rosales VM, Díaz-Pérez SA, Nicoletti F, Hernández-Bello J. Aberrant B-cell activation and B-cell subpopulations in rheumatoid arthritis: analysis by clinical activity, autoantibody seropositivity, and treatment. Clin Exp Immunol 2023; 214:314-327. [PMID: 37464892 PMCID: PMC10719220 DOI: 10.1093/cei/uxad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
Few studies analyze the role of B-cell subpopulations in rheumatoid arthritis (RA) pathophysiology. Therefore, this study aimed to analyze the differences in B-cell subpopulations and B-cell activation according to disease activity, RA subtype, and absence of disease-modifying antirheumatic drugs (DMARDs) therapy. These subgroups were compared with control subjects (CS). One hundred and thirty-nine subjects were included, of which 114 were RA patients, and 25 were controls. Patients were divided into 99 with seropositive RA, 6 with seronegative RA, and 9 without DMARDs. The patients with seropositive RA were subclassified based on the DAS28 index. A seven-color multicolor flow cytometry panel was used to identify B-cell immunophenotypes and cell activation markers. There were no changes in total B-cell frequencies between RA patients and controls. However, a lower frequency of memory B cells and pre-plasmablasts was observed in seropositive RA compared to controls (P < 0.0001; P = 0.0043, respectively). In contrast, a higher frequency of mature B cells was observed in RA than in controls (P = 0.0002). Among patients with RA, those with moderate activity had a higher percentage of B cells (P = 0.0021). The CD69+ marker was increased (P < 0.0001) in RA compared to controls, while the CD40+ frequency was decreased in patients (P < 0.0001). Transitional, naïve, and double-negative B-cell subpopulations were higher in seronegative RA than in seropositive (P < 0.01). In conclusion, in seropositive and seronegative RA patients, there are alterations in B-cell activation and B-cell subpopulations, independently of clinical activity and DMARDs therapy.
Collapse
Affiliation(s)
- José Javier Morales-Núñez
- Centro Universitario de Ciencias de la Salud, Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco, Mexico
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - Mariel García-Chagollán
- Centro Universitario de Ciencias de la Salud, Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco, Mexico
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - Sergio Cerpa-Cruz
- Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Servicio de Reumatología, Jalisco, Mexico
| | | | - Vianey Monserrat Medina-Rosales
- Centro Universitario de Ciencias de la Salud, Licenciatura en Médico, Cirujano y Partero, Universidad de Guadalajara, Jalisco, Mexico
| | - Saúl Alberto Díaz-Pérez
- Centro Universitario de Ciencias de la Salud, Doctorado en Ciencias Biomédicas, Universidad de Guadalajara, Jalisco, Mexico
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Jorge Hernández-Bello
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Jalisco, Mexico
| |
Collapse
|
9
|
Kim JEJ, Tung LT, Jiang RR, Yousefi M, Liang Y, Malo D, Vidal SM, Nijnik A. Dysregulation of B lymphocyte development in the SKG mouse model of rheumatoid arthritis. Immunology 2023; 170:553-566. [PMID: 37688495 DOI: 10.1111/imm.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023] Open
Abstract
Rheumatoid arthritis is a chronic and systemic inflammatory disease that affects approximately 1% of the world's population and is characterised by joint inflammation, the destruction of articular cartilage and bone, and many potentially life-threatening extraarticular manifestations. B lymphocytes play a central role in the pathology of rheumatoid arthritis as the precursors of autoantibody secreting plasma cells, as highly potent antigen-presenting cells, and as a source of various inflammatory cytokines, however, the effects of rheumatoid arthritis on B lymphocyte development remain poorly understood. Here, we analyse B lymphocyte development in murine models of rheumatoid arthritis, quantifying all the subsets of B cell precursors in the bone marrow and splenic B cells using flow cytometry. We demonstrate a severe reduction in pre-B cells and immature B cells in the bone marrow of mice with active disease, despite no major effects on the mature naïve B cell numbers. The loss of B cell precursors in the bone marrow of the affected mice was associated with a highly significant reduction in the proportion of Ki67+ cells, indicating impaired cell proliferation, while the viability of the B cell precursors was not significantly affected. We also observed some mobilisation of the B cell precursor cells into the mouse spleen, demonstrated with flow cytometry and pre-B colony forming units assays. In summary, the current work demonstrates a severe dysregulation in B lymphocyte development in murine rheumatoid arthritis, with possible implications for B cell repertoire formation, tolerance induction, and disease mechanisms.
Collapse
Affiliation(s)
- Joo Eun June Kim
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Lin Tze Tung
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Roselyn R Jiang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Mitra Yousefi
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Yue Liang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| | - Danielle Malo
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Silvia M Vidal
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Nag S, Mitra O, Tripathi G, Samanta S, Bhattacharya B, Chandane P, Mohanto S, Sundararajan V, Malik S, Rustagi S, Adhikari S, Mohanty A, León‐Figueroa DA, Rodriguez‐Morales AJ, Barboza JJ, Sah R. Exploring the theranostic potentials of miRNA and epigenetic networks in autoimmune diseases: A comprehensive review. Immun Inflamm Dis 2023; 11:e1121. [PMID: 38156400 PMCID: PMC10755504 DOI: 10.1002/iid3.1121] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Autoimmune diseases (AD) are severe pathophysiological ailments that are stimulated by an exaggerated immunogenic response towards self-antigens, which can cause systemic or site-specific organ damage. An array of complex genetic and epigenetic facets majorly contributes to the progression of AD, thus providing significant insight into the regulatory mechanism of microRNA (miRNA). miRNAs are short, non-coding RNAs that have been identified as essential contributors to the post-transcriptional regulation of host genome expression and as crucial regulators of a myriad of biological processes such as immune homeostasis, T helper cell differentiation, central and peripheral tolerance, and immune cell development. AIMS This article tends to deliberate and conceptualize the brief pathogenesis and pertinent epigenetic regulatory mechanism as well as miRNA networks majorly affecting five different ADs namely rheumatoid arthritis (RA), type 1 diabetes, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and inflammatory bowel disorder (IBD) thereby providing novel miRNA-based theranostic interventions. RESULTS & DISCUSSION Pertaining to the differential expression of miRNA attributed in target tissues and cellular bodies of innate and adaptive immunity, a paradigm of scientific expeditions suggests an optimistic correlation between immunogenic dysfunction and miRNA alterations. CONCLUSION Therefore, it is not astonishing that dysregulations in miRNA expression patterns are now recognized in a wide spectrum of disorders, establishing themselves as potential biomarkers and therapeutic targets. Owing to its theranostic potencies, miRNA targets have been widely utilized in the development of biosensors and other therapeutic molecules originating from the same.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Oishi Mitra
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Garima Tripathi
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Souvik Samanta
- Department of Bio‐SciencesSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Bikramjit Bhattacharya
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
- Department of Applied MicrobiologyVellore Institute of Technology (VIT)Tamil NaduIndia
| | - Priti Chandane
- Department of BiochemistrySchool of Life SciencesUniversity of HyderabadHyderabadTelanganaIndia
| | - Sourav Mohanto
- Department of PharmaceuticsYenepoya Pharmacy College & Research CentreYenepoya (Deemed to be University)MangaluruKarnatakaIndia
| | - Vino Sundararajan
- Integrative Multiomics LabSchool of Bio‐Sciences & Technology, Vellore Institute of TechnologyVelloreTamil NaduIndia
| | - Sumira Malik
- Amity Institute of BiotechnologyAmity University JharkhandRanchiJharkhandIndia
- University Centre for Research and DevelopmentUniversity of Biotechnology, Chandigarh University, GharuanMohaliPunjab
| | - Sarvesh Rustagi
- School of Applied and Life SciencesUttaranchal UniversityDehradunUttarakhandIndia
| | | | - Aroop Mohanty
- Department of Clinical MicrobiologyAll India Institute of Medical SciencesGorakhpurUttar PradeshIndia
| | | | - Alfonso J. Rodriguez‐Morales
- Clinical Epidemiology and Biostatistics, School of MedicineUniversidad Científica del SurLimaPeru
- Gilbert and Rose‐Marie Chagoury School of MedicineLebanese American UniversityBeirutLebanon
| | | | - Ranjit Sah
- Department of Clinical MicrobiologyInstitute of Medicine, Tribhuvan University Teaching HospitalKathmanduNepal
- Department of Clinical MicrobiologyDr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil VidyapeethPuneIndia
- Department of Public Health DentistryDr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
11
|
Sattar S, Shabbir A, Shahzad M, Akhtar T, Anjum SM, Bourhia M, Nafidi HA, Bin Jardan YA, Dauelbait M, Mobashar A. Evaluation of anti-inflammatory and immunomodulatory potential of Lawsone (2-hydroxy-1,4-naphthoquinone) using pre-clinical rodent model of rheumatoid arthritis. Front Pharmacol 2023; 14:1279215. [PMID: 37900171 PMCID: PMC10603269 DOI: 10.3389/fphar.2023.1279215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Background: Lawsone (2-hydroxy-1,4-naphthoquinone) is naturally present in Lawsonia Inermis and flowers of Eicchornia crassipes. This study assessed the anti-arthritic potential of Lawsone, using FCA-induced Sprague-Dawley rats. Methods: Arthritic progress was analyzed through a macroscopic scoring scale, measurement of paw edema, and histopathological changes. Effects of Lawsone on mRNA expression levels of inflammatory markers were examined using the reverse transcription PCR technique. ELISA technique was used to evaluate the PGE2 levels. Moreover, levels of biochemical and hematological parameters were also analyzed. Results: The research elucidated that Lawsone showed an inhibitory potential towards arthritic progress and ameliorated the paw edema. The histopathological analysis also validated the inhibition in arthritic development. Treatment with Lawosne reduced the expression levels of inflammatory markers in rats i.e., VEGF, TNF-α, MMP-2, MMP-3, NF-κB, IL-1β, and IL-6. PGE2 levels (all p < 0.001) were also found reduced in treatment groups. Lab investigations showed improved results of hematological and hepatic parameters in the treated groups as compared to the positive control. This study found no hepatotoxic or nephrotoxic effects of Lawsone in the test doses. Conclusion: Lawsone possesses an anti-arthritic property which could be ascribed to its immunomodulatory and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sara Sattar
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore Campus, Lahore, Pakistan
| | - Arham Shabbir
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore Campus, Lahore, Pakistan
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Tasleem Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Syed Muneeb Anjum
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec, QC, Canada
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaab Dauelbait
- Department of Scientific Translation, Faculty of Translation, University of Bahri, Khartoum, Sudan
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
12
|
Page A, Delles M, Nègre D, Costa C, Fusil F, Cosset FL. Engineering B cells with customized therapeutic responses using a synthetic circuit. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:1-14. [PMID: 37359346 PMCID: PMC10285500 DOI: 10.1016/j.omtn.2023.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The expansion of genetic engineering has brought a new dimension for synthetic immunology. Immune cells are perfect candidates because of their ability to patrol the body, interact with many cell types, proliferate upon activation, and differentiate in memory cells. This study aimed at implementing a new synthetic circuit in B cells, allowing the expression of therapeutic molecules in a temporally and spatially restricted manner that is induced by the presence of specific antigens. This should enhance endogenous B cell functions in terms of recognition and effector properties. We developed a synthetic circuit encoding a sensor (a membrane-anchored B cell receptor targeting a model antigen), a transducer (a minimal promoter induced by the activated sensor), and effector molecules. We isolated a 734-bp-long fragment of the NR4A1 promoter, specifically activated by the sensor signaling cascade in a fully reversible manner. We demonstrate full antigen-specific circuit activation as its recognition by the sensor induced the activation of the NR4A1 promoter and the expression of the effector. Overall, such novel synthetic circuits offer huge possibilities for the treatment of many pathologies, as they are completely programmable; thus, the signal-specific sensors and effector molecules can be adapted to each disease.
Collapse
Affiliation(s)
- Audrey Page
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| | - Marie Delles
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| | - Didier Nègre
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| | - Caroline Costa
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| | - Floriane Fusil
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| | - François-Loïc Cosset
- CIRI - Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| |
Collapse
|
13
|
Lee ES, Ko H, Kim CH, Kim HC, Choi SK, Jeong SW, Lee SG, Lee SJ, Na HK, Park JH, Shin JM. Disease-microenvironment modulation by bare- or engineered-exosome for rheumatoid arthritis treatment. Biomater Res 2023; 27:81. [PMID: 37635253 PMCID: PMC10464174 DOI: 10.1186/s40824-023-00418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Exosomes are extracellular vesicles secreted by eukaryotic cells and have been extensively studied for their surface markers and internal cargo with unique functions. A deeper understanding of exosomes has allowed their application in various research areas, particularly in diagnostics and therapy. MAIN BODY Exosomes have great potential as biomarkers and delivery vehicles for encapsulating therapeutic cargo. However, the limitations of bare exosomes, such as rapid phagocytic clearance and non-specific biodistribution after injection, pose significant challenges to their application as drug delivery systems. This review focuses on exosome-based drug delivery for treating rheumatoid arthritis, emphasizing pre/post-engineering approaches to overcome these challenges. CONCLUSION This review will serve as an essential resource for future studies to develop novel exosome-based therapeutic approaches for rheumatoid arthritis. Overall, the review highlights the potential of exosomes as a promising therapeutic approach for rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- Eun Sook Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Hyewon Ko
- Bionanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun-Chul Kim
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea
| | - Seong-Kyoon Choi
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea
| | - Sang Won Jeong
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea
| | - Se-Guen Lee
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea
| | - Sung-Jun Lee
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea
| | - Hee-Kyung Na
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung Min Shin
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu, 42988, Republic of Korea.
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
14
|
Wiles AK, Mehta S, Millier M, Woolley AG, Li K, Parker K, Kazantseva M, Wilson M, Young K, Bowie S, Ray S, Slatter TL, Stamp LK, Hessian PA, Braithwaite AW. Activated CD90/Thy-1 fibroblasts co-express the Δ133p53β isoform and are associated with highly inflamed rheumatoid arthritis. Arthritis Res Ther 2023; 25:62. [PMID: 37060003 PMCID: PMC10105423 DOI: 10.1186/s13075-023-03040-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND The p53 isoform Δ133p53β is known to be associated with cancers driven by inflammation. Many of the features associated with the development of inflammation in rheumatoid arthritis (RA) parallel those evident in cancer progression. However, the role of this isoform in RA has not yet been explored. The aim of this study was to determine whether Δ133p53β is driving aggressive disease in RA. METHODS Using RA patient synovia, we carried out RT-qPCR and RNAScope-ISH to determine both protein and mRNA levels of Δ133p53 and p53. We also used IHC to determine the location and type of cells with elevated levels of Δ133p53β. Plasma cytokines were also measured using a BioPlex cytokine panel and data analysed by the Milliplex Analyst software. RESULTS Elevated levels of pro-inflammatory plasma cytokines were associated with synovia from RA patients displaying extensive tissue inflammation, increased immune cell infiltration and the highest levels of Δ133TP53 and TP53β mRNA. Located in perivascular regions of synovial sub-lining and surrounding ectopic lymphoid structures (ELS) were a subset of cells with high levels of CD90, a marker of 'activated fibroblasts' together with elevated levels of Δ133p53β. CONCLUSIONS Induction of Δ133p53β in CD90+ synovial fibroblasts leads to an increase in cytokine and chemokine expression and the recruitment of proinflammatory cells into the synovial joint, creating a persistently inflamed environment. Our results show that dysregulated expression of Δ133p53β could represent one of the early triggers in the immunopathogenesis of RA and actively perpetuates chronic synovial inflammation. Therefore, Δ133p53β could be used as a biomarker to identify RA patients more likely to develop aggressive disease who might benefit from targeted therapy to cytokines such as IL-6.
Collapse
Affiliation(s)
- Anna K Wiles
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Sunali Mehta
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Melanie Millier
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Adele G Woolley
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Kunyu Li
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Kim Parker
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Marina Kazantseva
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Michelle Wilson
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Katie Young
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Sarah Bowie
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Sankalita Ray
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Paul A Hessian
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Antony W Braithwaite
- Department of Pathology, University of Otago, Hercus Building, 58 Hanover Street, Dunedin, New Zealand.
- Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand.
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, New Zealand.
| |
Collapse
|
15
|
Rheumatoid arthritis and non-coding RNAs; how to trigger inflammation. Life Sci 2023; 315:121367. [PMID: 36639050 DOI: 10.1016/j.lfs.2023.121367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic and chronic inflammatory disease categorized by continuous synovitis in the joints and systemic inflammatory responses that can cause lifelong disability. The major cause of RA is the dysregulation of the immune response. The development of RA disease includes multiplex association of several interleukins and cells, which leads to synovial cell growth, cartilage and bone damage. The primary stage of RA disease is related to the modification of both the innate and adaptive immune systems, which leads to the formation of autoantibodies. This process results in many damaged molecules and epitope spreading. Both the innate (e.g., dendritic cells, macrophages, and neutrophils) and acquired immune cells (e.g., T and B lymphocytes) will increase and continue the chronic inflammatory condition in the next stages of the RA disease. In recent years, non-coding RNAs have been proved as significant controllers of biological functions, especially immune cell expansion and reactions. Non-coding RNAs were primarily containing microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). Various studies confirmed non-coding RNAs as hopeful markers for diagnosing and curing RA. This review will describe and cover existing knowledge about RA pathogenesis, which might be favorable for discovering possible ncRNA markers for RA.
Collapse
|
16
|
Wu Y, Li D, Wu M, Yang Y, Shen M, Chen K. Peripheral absolute eosinophil count identifies the risk of serious immune-related adverse events in non-small cell lung cancer. Front Oncol 2022; 12:1004663. [PMID: 36313675 PMCID: PMC9608122 DOI: 10.3389/fonc.2022.1004663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
Background Immune-related adverse events (irAEs) have drawn a lot of attention lately as a result of the predominance of immunotherapy in advanced non-small cell lung cancer (NSCLC). However, the clinical evidence for irAEs in real life is limited. In this paper, the occurrence of irAEs in Chinese NSCLC patients was examined, and possible risk factors for the emergence of severe irAEs were discovered. Methods Our retrospective investigation assessed the occurrence of adverse events (AEs) and prognosis of 213 patients who received immunotherapy for NSCLC. Using univariate and multivariate logistic regression models, the association between clinicopathological traits and the incidence of severe irAEs was investigated. To assess the prognostic impact of irAEs, survival data was analyzed. Results Among the 213 NSCLC patients, 122 (57.3%) had irAEs of any grade, and 38 (17.8%) had high-grade (grade 3-5) AEs. Baseline peripheral absolute eosinophil count (AEC) (HR 6.58, 95% CI: 1.5-28.8, P=0.012) was found to be an independent predictor of high-grade irAEs by multivariate analysis. The survival analysis revealed that patients with severe irAEs had worse OS (15.7 vs. 20.8 months, 95% CI: 11.6-19.8 vs. 16.0-25.5, P=0.026). Conclusion According to our findings, the peripheral absolute eosinophil count (AEC) is a reliable indicator of severe irAEs in NSCLC. Serious irAEs that occur in patients often reflect poor prognoses. In the future, high-grade irAEs should receive more attention.
Collapse
Affiliation(s)
| | | | | | | | - Meng Shen
- *Correspondence: Kai Chen, ; Meng Shen,
| | - Kai Chen
- *Correspondence: Kai Chen, ; Meng Shen,
| |
Collapse
|
17
|
Marsman C, Verstegen NJM, Streutker M, Jorritsma T, Boon L, ten Brinke A, van Ham SM. Termination of CD40L co-stimulation promotes human B cell differentiation into antibody-secreting cells. Eur J Immunol 2022; 52:1662-1675. [PMID: 36073009 PMCID: PMC9825913 DOI: 10.1002/eji.202249972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Human naïve B cells are notoriously difficult to differentiate into antibody-secreting cells (ASCs) in vitro while maintaining sufficient cell numbers to evaluate the differentiation process. B cells require T follicular helper (TFH ) cell-derived signals like CD40L and IL-21 during germinal center (GC) responses to undergo differentiation into ASCs. Cognate interactions between B and TFH cells are transient; after TFH contact, B cells cycle between GC light and dark zones where TFH contact is present and absent, respectively. Here, we elucidated that the efficacy of naïve B cells in ACS differentiation is dramatically enhanced by the release of CD40L stimulation. Multiparameter phospho-flow and transcription factor (TF)-flow cytometry revealed that termination of CD40L stimulation downmodulates NF-κB and STAT3 signaling. Furthermore, the termination of CD40 signaling downmodulates C-MYC, while promoting ASC TFs BLIMP1 and XBP-1s. Reduced levels of C-MYC in the differentiating B cells are later associated with crucial downmodulation of the B cell signature TF PAX5 specifically upon the termination of CD40 signaling, resulting in the differentiation of BLIMP1 high expressing cells into ASCs. The data presented here are the first steps to provide further insights how the transient nature of CD40 signaling is in fact needed for efficient human naïve B cell differentiation to ASCs.
Collapse
Affiliation(s)
- Casper Marsman
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Niels JM Verstegen
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marij Streutker
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tineke Jorritsma
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Anja ten Brinke
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Marieke van Ham
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
18
|
Khanfar E, Olasz K, Gajdócsi E, Jia X, Berki T, Balogh P, Boldizsár F. Splenectomy modulates the immune response but does not prevent joint inflammation in a mouse model of RA. Clin Exp Immunol 2022; 209:201-214. [PMID: 35576510 PMCID: PMC9390846 DOI: 10.1093/cei/uxac052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
The spleen is the largest secondary lymphoid organ which is involved in the development of B cells and also in systemic (auto)immune responses. Using the recombinant human G1 domain-induced arthritis (GIA) model in splenectomized and control BALB/c mice, we investigated the role of the spleen in the induction and pathogenesis of autoimmune arthritis. Splenectomized mice developed GIA with a similar clinical picture to the control group. However, we observed significant alterations in the humoral and cellular immune responses in splenectomized mice. In the sera of the splenectomized mice, we found lower pro-inflammatory cytokine and anti-rhG1 IgM levels, but higher IL-4, anti-rhG1 IgG1 and anti-CCP and RF antibodies. The arthritis induction in the splenectomized group was associated with a significant expansion of activated helper T cells and an increase in the proportion of the circulating B1 and marginal zone B cell subsets. Importantly, immunization of the splenectomized mice with rhG1 induced the formation of germinal centers in the inguinal- and mesenteric lymph nodes (i/mLNs) which showed an active immune response to rhG1. Finally, both B and T cells from the mLNs of the splenectomized mice showed decreased intracellular Ca2+ signaling than those of the control group. Collectively, these findings indicate that the presence of the spleen is not critical for the induction of GIA, and in its absence the autoimmune arthritis is most likely promoted through the compensatory activity of the i/mLNs. However, our data implies the immunological role of the spleen in arthritis which could be further assessed in human RA.
Collapse
Affiliation(s)
- Esam Khanfar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
| | - Katalin Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
| | - Erzsébet Gajdócsi
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
| | - Xinkai Jia
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
- Lymphoid Organogenesis Research Group, Szentagothai Research Center, University of Pécs, Hungary
| | - Timea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
- Lymphoid Organogenesis Research Group, Szentagothai Research Center, University of Pécs, Hungary
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
| |
Collapse
|
19
|
Modulation of B cell activation by extracellular vesicles and potential alteration of this pathway in patients with rheumatoid arthritis. Arthritis Res Ther 2022; 24:169. [PMID: 35842663 PMCID: PMC9287863 DOI: 10.1186/s13075-022-02837-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/10/2022] [Indexed: 01/17/2023] Open
Abstract
Background Extracellular vesicles are involved in the intercellular communication of the immune system. In rheumatoid arthritis (RA), these structures are considered a source of autoantigens that drive proinflammatory responses of innate immune cells. A high concentration of circulating medium/large size extracellular vesicles (m/lEVs) and m/lEVs forming immune complexes (m/lEV-ICs) have been associated with disease activity and systemic inflammation in patients with RA. B cells are central components of RA immunopathology because of their involvement in the production of autoantibodies, antigen presentation, and cytokine production. However, the effect of m/lEVs on B cell function in the context of RA and other autoimmune diseases remains unknown. Methods We evaluated the effect of m/lEVs obtained from healthy donors (HD) and patients with RA on B cell responses in vitro. In addition, we evaluated the effect of pre-exposition of monocyte-derived macrophages (MDM) to m/lEVs on activation of autologous B cells from HD and patients. Results The presence of m/lEVs reduced the frequency of CD69+ and CD86+ B cells from HD activated by an agonist of antigen receptor. This regulation of the B cell activation markers by m/lEVs was partially dependent on phosphatidylserine binging. These m/lEVs also reduced the proliferation, calcium mobilization, and global phosphorylation of tyrosine. Similar responses were observed in B cells from patients with RA. However, the presence of m/lEVs promoted high antibody levels in B cells cultured with T cell-dependent stimuli by 7 days. In addition, despite the direct inhibitory effect of m/lEVs on early B cell responses, when B cells were cocultured with autologous MDM previously exposed to m/lEVs or m/lEV-ICs, an increased frequency of CD69+ B cells from patients with RA was observed, albeit not with cells from HD. Conclusions These data together suggest that m/lEVs have a direct modulatory effect in early responses of B cells through B cell receptor that can potentially fail in patients with RA because of the impact of these vesicles over cells of the innate immune system. This phenomenon can potentially contribute to the loss of tolerance and disease activity in patients with RA. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02837-3.
Collapse
|
20
|
Wang J, Xue Y, Zhou L. Comparison of immune cells and diagnostic markers between spondyloarthritis and rheumatoid arthritis by bioinformatics analysis. J Transl Med 2022; 20:196. [PMID: 35509008 PMCID: PMC9066892 DOI: 10.1186/s12967-022-03390-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/09/2022] [Indexed: 12/19/2022] Open
Abstract
Background Spondyloarthritis (SpA) and rheumatoid arthritis (RA) are chronic autoimmune diseases, but they are usually difficult to distinguish in the early stage of the diseases. The purpose of this study is to explore the differences of immune mechanism and diagnostic markers through bioinformatics analysis. Methods First, microarray datasets from patients with SpA, RA and normal controls were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between groups were identified in R software. Functional and pathway enrichment of DEGs were analyzed by David database. Then, we screened the hub genes using Cytoscape plugin, and constructed the protein–protein interaction (PPI) network and heatmap of hub genes. After that, CIBERSORT was used to evaluate the differences and connections of immune cells in SpA and RA, and screened out diagnostic markers. Correlation analysis was used to analyze the relationship between immune cells and diagnostic markers. Finally, quantitative real-time polymerase chain reaction (qRT‐PCR) was used to verify the effectiveness of immunodiagnostic markers. Results We obtained three datasets, from which we can see that the functional enrichment of DEGs is mainly in cell chemotaxis, lymphocyte activation, primary immunodeficiency and other immune responses. The difference of immune cells between SpA, RA and normal control was concentrated in B, T lymphocytes cells, macrophages and dendritic cells. C19orf12 + S1PR3 is most associated with these immune cells and S1PR3 can be used as a diagnostic marker of this kind of immune diseases. In addition, MZB1 + XIST is closely related to T cells, NK cells and dendritic cells, and is expected to be used as a marker to distinguish the two diseases. Conclusion Although the clinical manifestations of SpA and RA are similar, the pathogenesis is different. The screening of immune cells and diagnostic markers provides a more accurate target for the treatment of this kind of diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03390-y.
Collapse
Affiliation(s)
- Jiaqian Wang
- Department of Orthopaedic, Wuxi No.5 People's Hospital, Wuxi, 214000, China.
| | - Yuan Xue
- Department of Orthopaedic, Wuxi Ninth People's Hospital of Soochow University, Wuxi, 214000, China
| | - Liang Zhou
- Department of Orthopaedic, Lianshui County Hospital, Huai'an, 223001, China.
| |
Collapse
|
21
|
Hassanpour K, H. ElSheikh R, Arabi A, R. Frank C, M. Elhusseiny A, K. Eleiwa T, Arami S, R. Djalilian A, Kheirkhah A. Peripheral Ulcerative Keratitis: A Review. J Ophthalmic Vis Res 2022; 17:252-275. [PMID: 35765625 PMCID: PMC9185208 DOI: 10.18502/jovr.v17i2.10797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
Peripheral ulcerative keratitis (PUK) is a rare but serious ocular condition that is an important clinical entity due to its ophthalmological and systemic implications. It is characterized by progressive peripheral corneal stromal thinning with an associated epithelial defect and can be associated with an underlying local or systemic pro-inflammatory condition, or present in an idiopathic form (Mooren ulcer). Associated conditions include autoimmune diseases, systemic and ocular infections, dermatologic diseases, and ocular surgery. Cell-mediated and auto-antibody-mediated immune responses have been implicated in the pathogenesis of PUK, destroying peripheral corneal tissue via matrix metalloproteinases. Clinically, patients with PUK present with painful vision loss, a peripheral corneal ulcer, and often adjacent scleritis, episcleritis, iritis, or conjunctivitis. Diagnostic evaluation should be focused on identifying the underlying etiology and ruling out conditions that may mimic PUK, including marginal keratitis and Terrien marginal degeneration. Treatment should be focused on reducing local disease burden with topical lubrication, while simultaneously addressing the underlying cause with antimicrobials or anti-inflammatory when appropriate. Existing and emerging biologic immunomodulatory therapies have proven useful in PUK due to autoimmune conditions. Surgical treatment is generally reserved for cases of severe thinning or corneal perforation.
Collapse
Affiliation(s)
- Kiana Hassanpour
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reem H. ElSheikh
- Department of Ophthalmology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amir Arabi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Charles R. Frank
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Abdelrahman M. Elhusseiny
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Taher K. Eleiwa
- Department of Ophthalmology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Shiva Arami
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ahmad Kheirkhah
- Department of Ophthalmology, Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| |
Collapse
|
22
|
Heat Shock Proteins Alterations in Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms23052806. [PMID: 35269948 PMCID: PMC8911505 DOI: 10.3390/ijms23052806] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory and autoimmune disease characterized by the attack of the immune system on the body's healthy joint lining and degeneration of articular structures. This disease involves an increased release of inflammatory mediators in the affected joint that sensitize sensory neurons and create a positive feedback loop to further enhance their release. Among these mediators, the cytokines and neuropeptides are responsible for the crippling pain and the persistent neurogenic inflammation associated with RA. More importantly, specific proteins released either centrally or peripherally have been shown to play opposing roles in the pathogenesis of this disease: an inflammatory role that mediates and increases the severity of inflammatory response and/or an anti-inflammatory and protective role that modulates the process of inflammation. In this review, we will shed light on the neuroimmune function of different members of the heat shock protein (HSPs) family and the complex manifold actions that they exert during the course of RA. Specifically, we will focus our discussion on the duality in the mechanism of action of Hsp27, Hsp60, Hsp70, and Hsp90.
Collapse
|
23
|
Jang S, Kwon EJ, Lee JJ. Rheumatoid Arthritis: Pathogenic Roles of Diverse Immune Cells. Int J Mol Sci 2022; 23:ijms23020905. [PMID: 35055087 PMCID: PMC8780115 DOI: 10.3390/ijms23020905] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease associated with synovial tissue proliferation, pannus formation, cartilage destruction, and systemic complications. Currently, advanced understandings of the pathologic mechanisms of autoreactive CD4+ T cells, B cells, macrophages, inflammatory cytokines, chemokines, and autoantibodies that cause RA have been achieved, despite the fact that much remains to be elucidated. This review provides an updated pathogenesis of RA which will unveil novel therapeutic targets.
Collapse
Affiliation(s)
- Sunhee Jang
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (S.J.); (E.-J.K.)
- Yonsei Hangang Hospital, 25 Mapodaero, Mapogu, Seoul 04167, Korea
| | - Eui-Jong Kwon
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (S.J.); (E.-J.K.)
- Chemical, Biological, Radiological, and Nuclear (CBRN) Defense Research Institute, Armed Forces CBRN Defense Command, Seoul 06591, Korea
| | - Jennifer Jooha Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (S.J.); (E.-J.K.)
- Correspondence: ; Tel.: +82-2-2258-6010; Fax: +82-2-2258-2022
| |
Collapse
|
24
|
You H, Cheng M, Ma C, Zheng W, Jiang Y, Chen D, Tang Y. Association among B lymphocyte subset and rheumatoid arthritis in a Chinese population. J Orthop Surg Res 2021; 16:732. [PMID: 34930367 PMCID: PMC8686378 DOI: 10.1186/s13018-021-02883-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Background and aim Autoantibody production are the main risk factors for inflammation of rheumatoid arthritis (RA). This study aimed to investigate differences in B lymphocyte subsets (native B, memory B, and plasmablasts) and several cytokines in RA patients and their correlation with the clinical parameters. Methods In total, 81 RA patients (active RA and inactive RA) and 40 healthy subjects were recruited between September 2018 and October 2020. The distribution of B lymphocyte subsets in peripheral blood samples was measured via flow cytometry and the plasma cytokines were detected by enzyme linked immunosorbent assay. The receiver operating characteristic curve (ROC) was used to evaluate the value of each index for RA diagnosis and activity prediction. Results The percentages of native B and memory B cells in RA patients did not differ significantly from the percentages of those in healthy controls. However, the percentage of plasmablasts in active RA patients was significantly higher compared with healthy subjects and inactive RA patients. The percentage of plasmablasts was significantly related to C reaction protein. ROC curve analysis showed that when the best cutoff value of plasmablasts/B cell was 1.08%, the area under the curve (AUC) for diagnosing RA was 0.831 (95% CI 0.748 ~ 0.915), the specificity was 91.4%, and the sensitivity was 67.5%. The AUC predicted by the combination of plasmablast and anti-CCP for active RA patients was 0.760, which was higher than that of plasmablast and anti-CCP. Conclusion In conclusion, the percentage of plasmablast varies among RA patients in different stages. The percentage of plasmablasts can be used as an early diagnosis marker for RA.
Collapse
Affiliation(s)
- Haiyan You
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mengwei Cheng
- Department of Rheumatology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Cui Ma
- Department of Rheumatology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenjuan Zheng
- Department of Rheumatology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Jiang
- Department of Rheumatology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Di Chen
- Department of Rheumatology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Tang
- Department of Rheumatology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
25
|
Rothbauer M, Byrne RA, Schobesberger S, Olmos Calvo I, Fischer A, Reihs EI, Spitz S, Bachmann B, Sevelda F, Holinka J, Holnthoner W, Redl H, Toegel S, Windhager R, Kiener HP, Ertl P. Establishment of a human three-dimensional chip-based chondro-synovial coculture joint model for reciprocal cross talk studies in arthritis research. LAB ON A CHIP 2021; 21:4128-4143. [PMID: 34505620 DOI: 10.1039/d1lc00130b] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rheumatoid arthritis is characterised by a progressive, intermittent inflammation at the synovial membrane, which ultimately leads to the destruction of the synovial joint. The synovial membrane as the joint capsule's inner layer is lined with fibroblast-like synoviocytes that are the key player supporting persistent arthritis leading to bone erosion and cartilage destruction. While microfluidic models that model molecular aspects of bone erosion between bone-derived cells and synoviocytes have been established, RA's synovial-chondral axis has not yet been realised using a microfluidic 3D model based on human patient in vitro cultures. Consequently, we established a chip-based three-dimensional tissue coculture model that simulates the reciprocal cross talk between individual synovial and chondral organoids. When co-cultivated with synovial organoids, we could demonstrate that chondral organoids induce a higher degree of cartilage physiology and architecture and show differential cytokine response compared to their respective monocultures highlighting the importance of reciprocal tissue-level cross talk in the modelling of arthritic diseases.
Collapse
Affiliation(s)
- Mario Rothbauer
- Karl Chiari Lab for Orthopaedic Biology (KCLOB), Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Ruth A Byrne
- Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria.
- Division of Rheumatology, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Silvia Schobesberger
- Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Isabel Olmos Calvo
- Division of Rheumatology, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Anita Fischer
- Karl Chiari Lab for Orthopaedic Biology (KCLOB), Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Rheumatology, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Ludwig Boltzmann Institute of Arthritis and Rehabilitation, Vienna, Austria
| | - Eva I Reihs
- Karl Chiari Lab for Orthopaedic Biology (KCLOB), Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Sarah Spitz
- Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Barbara Bachmann
- Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria.
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Florian Sevelda
- Division of Orthopedics, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Johannes Holinka
- Division of Orthopedics, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Wolfgang Holnthoner
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Heinz Redl
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology (KCLOB), Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute of Arthritis and Rehabilitation, Vienna, Austria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic Biology (KCLOB), Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Division of Orthopedics, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Hans P Kiener
- Division of Rheumatology, Department of Medicine III, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria.
| |
Collapse
|
26
|
Navrátilová A, Andrés Cerezo L, Hulejová H, Bečvář V, Tomčík M, Komarc M, Veigl D, Tegzová D, Závada J, Olejárová M, Pavelka K, Vencovský J, Šenolt L. IL-40: A New B Cell-Associated Cytokine Up-Regulated in Rheumatoid Arthritis Decreases Following the Rituximab Therapy and Correlates With Disease Activity, Autoantibodies, and NETosis. Front Immunol 2021; 12:745523. [PMID: 34745117 PMCID: PMC8566875 DOI: 10.3389/fimmu.2021.745523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/24/2021] [Indexed: 01/10/2023] Open
Abstract
Background Interleukin 40 (IL-40) is a newly identified B cell-associated cytokine implicated in humoral immune responses and B cell homeostasis. As B cells play a pivotal role in autoimmunity, we investigated the function of IL-40 in rheumatoid arthritis (RA). Methods IL-40 expression was determined in the synovial tissue from RA and osteoarthritis (OA) patients. IL-40 was analysed in the serum/synovial fluid of patients with RA (n=50), systemic lupus erythematosus (SLE, n=69), OA (n=44), and healthy controls (HC, n=50). We assessed the changes of IL-40 levels in RA patients following the B cell depletion by rituximab (n=29) or after the TNF inhibition by adalimumab (n=25). We examined the relationship between IL-40, disease activity, autoantibodies, cytokines, and NETosis markers. Effect of IL-40 on synovial fibroblasts was determined. Results IL-40 was overexpressed in RA synovial tissue, particularly by synovial lining and infiltrating immune cells. The levels of IL-40 were up-regulated in the synovial fluid of RA versus OA patients (p<0.0001). Similarly, IL-40 was increased in the serum of RA patients compared to HC, OA, or SLE (p<0.0001 for all) and decreased after 16 and 24 weeks (p<0.01 and p<0.01) following rituximab treatment. No significant effect of adalimumab on IL-40 was observed. IL-40 levels in RA patients correlated with rheumatoid factor-IgM and anti-cyclic citrullinated peptides (anti-CCP) in the serum (p<0.0001 and p<0.01), as well as in the synovial fluid (p<0.0001 and p<0.001). Synovial fluid IL-40 was also associated with disease activity score DAS28 (p<0.05), synovial fluid leukocyte count (p<0.01), neutrophil attractants IL-8 (p<0.01), MIP-1α (p<0.01), and markers of neutrophil extracellular traps externalization (NETosis) such as proteinase 3 (p<0.0001) and neutrophil elastase (p<0.0001). Synovial fibroblasts exposed to IL-40 increased the secretion of IL-8 (p<0.01), MCP-1 (p<0.05), and MMP-13 (p<0.01) compared to the unstimulated cells. Conclusions We show the up-regulation of IL-40 in RA and its decrease following B cell depleting therapy. The association of IL-40 with autoantibodies, chemokines, and markers of NETosis may imply its potential involvement in RA development. Moreover, IL-40 up-regulates the secretion of chemokines and MMP-13 in synovial fibroblasts, indicating its role in the regulation of inflammation and tissue destruction in RA.
Collapse
Affiliation(s)
- Adela Navrátilová
- Department of Experimental Rheumatology, Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Lucie Andrés Cerezo
- Department of Experimental Rheumatology, Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Hana Hulejová
- Department of Experimental Rheumatology, Institute of Rheumatology, Prague, Czechia
| | - Viktor Bečvář
- Department of Experimental Rheumatology, Institute of Rheumatology, Prague, Czechia
| | - Michal Tomčík
- Department of Experimental Rheumatology, Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Komarc
- Department of Methodology, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - David Veigl
- First Orthopaedic Clinic, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Dana Tegzová
- Department of Experimental Rheumatology, Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Jakub Závada
- Department of Experimental Rheumatology, Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Marta Olejárová
- Department of Experimental Rheumatology, Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Karel Pavelka
- Department of Experimental Rheumatology, Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Jiří Vencovský
- Department of Experimental Rheumatology, Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Ladislav Šenolt
- Department of Experimental Rheumatology, Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
27
|
Yu R, Zhang J, Zhuo Y, Hong X, Ye J, Tang S, Zhang Y. Identification of Diagnostic Signatures and Immune Cell Infiltration Characteristics in Rheumatoid Arthritis by Integrating Bioinformatic Analysis and Machine-Learning Strategies. Front Immunol 2021; 12:724934. [PMID: 34691030 PMCID: PMC8526926 DOI: 10.3389/fimmu.2021.724934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023] Open
Abstract
Background Rheumatoid arthritis (RA) refers to an autoimmune rheumatic disease that imposes a huge burden on patients and society. Early RA diagnosis is critical to preventing disease progression and selecting optimal therapeutic strategies more effectively. In the present study, the aim was at examining RA's diagnostic signatures and the effect of immune cell infiltration in this pathology. Methods Gene Expression Omnibus (GEO) database provided three datasets of gene expressions. Firstly, this study adopted R software for identifying differentially expressed genes (DEGs) and conducting functional correlation analyses. Subsequently, we integrated bioinformatic analysis and machine-learning strategies for screening and determining RA's diagnostic signatures and further verify by qRT-PCR. The diagnostic values were assessed through receiver operating characteristic (ROC) curves. Moreover, this study employed cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) website for assessing the inflammatory state of RA, and an investigation was conducted on the relationship of diagnostic signatures and infiltrating immune cells. Results On the whole, 54 robust DEGs received the recognition. Lymphocyte-specific protein 1 (LSP1), Granulysin (GNLY), and Mesenchymal homobox 2 (MEOX2) (AUC = 0.955) were regarded as RA's diagnostic markers and showed their statistically significant difference by qRT-PCR. As indicated from the immune cell infiltration analysis, resting NK cells, neutrophils, activated NK cells, T cells CD8, memory B cells, and M0 macrophages may be involved in the development of RA. Additionally, all diagnostic signatures might be different degrees of correlation with immune cells. Conclusions In conclusion, LSP1, GNLY, and MEOX2 are likely to be available in terms of diagnosing and treating RA, and the infiltration of immune cells mentioned above may critically impact RA development and occurrence.
Collapse
Affiliation(s)
- Rongguo Yu
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Jiayu Zhang
- School of Clinical Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Youguang Zhuo
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Xu Hong
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Jie Ye
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Susu Tang
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Yiyuan Zhang
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Xiamen University, Xiamen, China
| |
Collapse
|
28
|
Byun JY, Koh YT, Jang SY, Witcher JW, Chan JR, Pustilnik A, Daniels MJ, Kim YH, Suh KH, Linnik MD, Lee YM. Target modulation and pharmacokinetics/pharmacodynamics translation of the BTK inhibitor poseltinib for model-informed phase II dose selection. Sci Rep 2021; 11:18671. [PMID: 34548595 PMCID: PMC8455565 DOI: 10.1038/s41598-021-98255-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/01/2021] [Indexed: 01/14/2023] Open
Abstract
The selective Bruton tyrosine kinase (BTK) inhibitor poseltinib has been shown to inhibit the BCR signal transduction pathway and cytokine production in B cells (Park et al.Arthritis Res. Ther.18, 91, 10.1186/s13075-016-0988-z, 2016). This study describes the translation of nonclinical research studies to a phase I clinical trial in healthy volunteers in which pharmacokinetics (PKs) and pharmacodynamics (PDs) were evaluated for dose determination. The BTK protein kinase inhibitory effects of poseltinib in human peripheral blood mononuclear cells (PBMCs) and in rats with collagen-induced arthritis (CIA) were evaluated. High-dimensional phosphorylation analysis was conducted on human immune cells such as B cells, CD8 + memory cells, CD4 + memory cells, NK cells, neutrophils, and monocytes, to map the impact of poseltinib on BTK/PLC and AKT signaling pathways. PK and PD profiles were evaluated in a first-in-human study in healthy donors, and a PK/PD model was established based on BTK occupancy. Poseltinib bound to the BTK protein and modulated BTK phosphorylation in human PBMCs. High-dimensional phosphorylation analysis of 94 nodes showed that poseltinib had the highest impact on anti-IgM + CD40L stimulated B cells, however, lower impacts on anti-CD3/CD-28 stimulated T cells, IL-2 stimulated CD4 + T cells and NK cells, M-CSF stimulated monocytes, or LPS-induced granulocytes. In anti-IgM + CD40L stimulated B cells, poseltinib inhibited the phosphorylation of BTK, AKT, and PLCγ2. Moreover, poseltinib dose dependently improved arthritis disease severity in CIA rat model. In a clinical phase I trial for healthy volunteers, poseltinib exhibited dose-dependent and persistent BTK occupancy in PBMCs of all poseltinib-administrated patients in the study. More than 80% of BTK occupancy at 40 mg dosing was maintained for up to 48 h after the first dose. A first-in-human healthy volunteer study of poseltinib established target engagement with circulating BTK protein. Desirable PK and PD properties were observed, and a modeling approach was used for rational dose selection for subsequent trials. Poseltinib was confirmed as a potential BTK inhibitor for the treatment of autoimmune diseases. Trial registration: This article includes the results of a clinical intervention on human participants [NCT01765478].
Collapse
Affiliation(s)
- Joo-Yun Byun
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 14 Wiryeseong-daero, Songpa-gu, Seoul, 05545, Korea
| | - Yi T Koh
- Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, 92121, USA
| | - Sun Young Jang
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 14 Wiryeseong-daero, Songpa-gu, Seoul, 05545, Korea
| | - Jennifer W Witcher
- Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, 92121, USA
| | - Jason R Chan
- Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, 92121, USA
| | - Anna Pustilnik
- Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, 92121, USA
| | - Mark J Daniels
- Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, 92121, USA
| | - Young Hoon Kim
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 14 Wiryeseong-daero, Songpa-gu, Seoul, 05545, Korea
| | - Kwee Hyun Suh
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 14 Wiryeseong-daero, Songpa-gu, Seoul, 05545, Korea
| | - Matthew D Linnik
- Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, 92121, USA.
| | - Young-Mi Lee
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 14 Wiryeseong-daero, Songpa-gu, Seoul, 05545, Korea.
| |
Collapse
|
29
|
Zhang X, Mei D, Wang H, Yu Q, Hong Z, Xu L, Ge J, Han L, Shu J, Liang F, Cai X, Zhu Y, Zhang F, Wang Q, Tai Y, Wang H, Zhang L, Wei W. hIgDFc-Ig inhibits B cell function by regulating the BCR-Syk-Btk-NF-κB signalling pathway in mice with collagen-induced arthritis. Pharmacol Res 2021; 173:105873. [PMID: 34500060 DOI: 10.1016/j.phrs.2021.105873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease targeting the synovium. Previous studies have found that IgD may be a potential target for the treatment of RA. We designed a new type of fusion protein, hIgDFc-Ig (DG), to block the binding of IgD to IgD receptor (IgDR). In this study, we found that DG has a significant therapeutic effect in mice with collagen-induced arthritis (CIA). DG improved the claw of irritation symptoms in these mice, inhibited the pathological changes in spleen and joint tissues, and had a moderating effect on B cell subsets at different inflammatory stages. Moreover, DG could also decrease the levels of IgA, IgD, IgM and IgG subtypes of immunoglobulin in the serum of mice with CIA. In vitro, B cell antigen receptor (BCR) knockout Ramos cells were established using the CRISPR/Cas9 technology to further study the activation of BCR signalling by IgD and the effect of DG. We found that the therapeutic effect of DG in mice with CIA may be achieved by inhibiting the activation of BCR signalling by IgD, which may be related to the activation of Igβ. In summary, DG may be a potential biological agent for the treatment of RA and it has broad application prospects in the future.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Animals
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Cell Line
- Gene Knockdown Techniques
- Humans
- Immunoglobulins/genetics
- Immunoglobulins/pharmacology
- Immunoglobulins/therapeutic use
- Mice
- Mice, Inbred DBA
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Fc/antagonists & inhibitors
- Recombinant Fusion Proteins/pharmacology
- Recombinant Fusion Proteins/therapeutic use
- Signal Transduction/drug effects
- Spleen/drug effects
- Spleen/immunology
- Spleen/pathology
- Syk Kinase/metabolism
- Thymus Gland/drug effects
- Transcription Factor RelA/metabolism
Collapse
Affiliation(s)
- Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China; Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dan Mei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Qianqian Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Zhongyang Hong
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Li Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Jinru Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Le Han
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Jinling Shu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Faqin Liang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Xiaoyu Cai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yue Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Feng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China.
| |
Collapse
|
30
|
Han L, Tu S, Shen P, Yan J, Huang Y, Ba X, Li T, Lin W, Li H, Yu K, Guo J, Huang Y, Qin K, Wang Y, Chen Z. A comprehensive transcriptomic analysis of alternate interferon signaling pathways in peripheral blood mononuclear cells in rheumatoid arthritis. Aging (Albany NY) 2021; 13:20511-20533. [PMID: 34432649 PMCID: PMC8436925 DOI: 10.18632/aging.203432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 01/13/2023]
Abstract
Interferon (IFN) signaling pathways play crucial roles in the pathogenesis of rheumatoid arthritis (RA). Prior studies have mainly studied mixed alterations in the IFN signaling pathway in RA, but these studies have not been sufficient to elucidate how imbalanced IFN signaling subtly influences immune cells. Single-cell RNA (scRNA) sequencing makes it possible to better understand the alternations in the interferon signaling pathways in RA. In the present study, we found that IFN signaling pathways were activated in natural killer (NK) cells, monocytes, T cells, B cells, and most immune cell subclasses in RA. We then explored and analyzed the connections between abnormal IFN signaling pathways and cellular functional changes in RA. Single-Cell rEgulatory Network Inference and Clustering (SCENIC) analysis and gene regulatory network (GRN) construction were also performed to identify key transcription factors in RA. Finally, we also investigated altered IFN signaling pathways in multiple RA peripheral blood samples, which indicated that abnormal IFN signaling pathways were universally observed in RA. Our study contributes to a better understanding of the delicate and precise regulation of IFN signaling in the immune system in RA. Furthermore, common alternations in IFN signaling pathway-related transcription factors could help to identify novel therapeutic targets for RA treatment.
Collapse
Affiliation(s)
- Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pan Shen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huihui Li
- Department of Cardiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Yu
- Department of Cardiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Guo
- Wuhan Institute of Biotechnology, Wuhan Biobank, Wuhan 430000, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
31
|
Hopkins BT, Bame E, Bell N, Bohnert T, Bowden-Verhoek JK, Bui M, Cancilla MT, Conlon P, Cullen P, Erlanson DA, Fan J, Fuchs-Knotts T, Hansen S, Heumann S, Jenkins TJ, Gua C, Liu Y, Liu Y, Lulla M, Marcotte D, Marx I, McDowell B, Mertsching E, Negrou E, Romanowski MJ, Scott D, Silvian L, Yang W, Zhong M. Utilizing structure based drug design and metabolic soft spot identification to optimize the in vitro potency and in vivo pharmacokinetic properties leading to the discovery of novel reversible Bruton's tyrosine kinase inhibitors. Bioorg Med Chem 2021; 44:116275. [PMID: 34314938 DOI: 10.1016/j.bmc.2021.116275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022]
Abstract
Bruton's tyrosine kinase (BTK) is an essential node on the BCR signaling in B cells, which are clinically validated to play a critical role in B-cell lymphomas and various auto-immune diseases such as Multiple Sclerosis (MS), Pemphigus, and rheumatoid arthritis (RA). Although non-selective irreversible BTK inhibitors have been approved for oncology, due to the emergence of drug resistance in B-cell lymphoma associated with covalent inhibitor, there an unmet medical need to identify reversible, selective, potent BTK inhibitor as viable therapeutics for patients. Herein, we describe the identification of Hits and subsequence optimization to improve the physicochemical properties, potency and kinome selectivity leading to the discovery of a novel class of BTK inhibitors. Utilizing Met ID and structure base design inhibitors were synthesized with increased in vivo metabolic stability and oral exposure in rodents suitable for advancing to lead optimization.
Collapse
Affiliation(s)
| | - Eris Bame
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Noah Bell
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Tonika Bohnert
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | | | - Minna Bui
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Mark T Cancilla
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Patrick Conlon
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Patrick Cullen
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Daniel A Erlanson
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Junfa Fan
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Tarra Fuchs-Knotts
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Stig Hansen
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Stacey Heumann
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | | | - Chuck Gua
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Ying Liu
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - YuTing Liu
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Mukush Lulla
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | | | - Isaac Marx
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Bob McDowell
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | | | - Ella Negrou
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Michael J Romanowski
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Daniel Scott
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Laura Silvian
- Biogen Inc., 225 Binney Street, Cambridge, MA 02142, USA
| | - Wenjin Yang
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| | - Min Zhong
- Sunesis Pharmaceuticals, Inc. 395 Oyster Point Boulevard, South San Francisco, CA 94080, USA
| |
Collapse
|
32
|
Marker Genes Change of Synovial Fibroblasts in Rheumatoid Arthritis Patients. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5544264. [PMID: 34195267 PMCID: PMC8203351 DOI: 10.1155/2021/5544264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023]
Abstract
Background Rheumatoid arthritis (RA) is a chronic condition that manifests as inflammation of synovial joints, leading to joint destruction and deformity. Methods We identified single-cell RNA-seq data of synovial fibroblasts from RA and osteoarthritis (OA) patients in GSE109449 dataset. RA- and OA-specific cellular subpopulations were identified, and enrichment analysis was performed. Further, key genes for RA and OA were obtained by combined analysis with differentially expressed genes (DEGs) between RA and OA in GSE56409 dataset. The diagnostic role of key genes for RA was predicted using receiver operating characteristic (ROC) curve. Finally, we identified differences in immune cell infiltration between RA and OA patients, and utilized flow cytometry, qRT-PCR, and Western blot were used to examine the immune cell and key genes in RA patients. Results The cluster 0 matched OA and cluster 3 matched RA and significantly enriched for neutrophil-mediated immunity and ECM receptor interaction, respectively. We identified 478 DEGs. In the top 20 degrees of connection in the PPI network, the key genes for RA were obtained by comparing with the gene markers of cluster 0 and cluster 3, respectively. ROC curve showed that CCL2 and MMP13 might be diagnostic markers for RA. We found aberrant levels of CD8+T, neutrophil, and B cells in RA fibroblasts, which were validated in clinical samples. Importantly, we also validated the differential expression of key genes between RA and OA. Conclusion High expression of CCL2 and MMP13 in RA may be a diagnostic and therapeutic target.
Collapse
|
33
|
Hanberg JS, Hsieh E, Akgün KM, Weinstein E, Fraenkel L, Justice AC. Incident Rheumatoid Arthritis in Human Immunodeficiency Virus Infection: Epidemiology and Treatment. Arthritis Rheumatol 2021; 73:2189-2199. [PMID: 34042306 DOI: 10.1002/art.41802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/04/2021] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To assess the incidence, presentation, and management of RA in persons with HIV (PWH), including use of disease-modifying anti-rheumatic drugs (DMARDs) in this immunosuppressed population. METHODS Patients were included from the Veterans Aging Cohort Study, a longitudinal cohort of Veterans with HIV and matched uninfected Veterans. We identified patients with ≥1 rheumatologist-generated International Classification of Diseases (ICD) code for RA and a measurement of rheumatoid factor (RF) or anti-CCP antibodies. Charts were reviewed using the 2010 RA Classification Criteria to identify incident RA. We recorded use and adverse effects of DMARDs during the first contiguous (no interruption greater than 6 months) course. RESULTS We included 56,250 PWH and 116,944 uninfected persons over 2,384,541 person-years. Of 2,748 patients with an RA ICD code, incident RA was identified in 215 patients, including 21 PWH. The incidence rate ratio of RA in PWH vs. uninfected was 0.29 (95% CI 0.19-0.48). Most patients (88%) with RA were seropositive. However, high autoantibody titers were less common in PWH: 5% (1/21) of PWH had both high titer anti-CCP and RF, compared to 41% (82/194) of uninfected. DMARDs were prescribed for 71% (15/21) of PWH with RA, compared to 94% (183/194) of uninfected. Among 10 PWH prescribed DMARDs, we found no signal for worse infectious safety profile compared to 158 HIV-negative controls. CONCLUSION Incident RA was less common in PWH than in matched controls. PWH with incident RA had less positive autoantibody profiles than controls and were prescribed DMARDs less frequently.
Collapse
Affiliation(s)
- Jennifer S Hanberg
- Department of Medicine, Yale University School of Medicine, New Haven, CT, and VA Connecticut Healthcare System, West Haven, CT, USA
| | - Evelyn Hsieh
- Department of Medicine, Yale University School of Medicine, New Haven, CT, and VA Connecticut Healthcare System, West Haven, CT, USA.,Section of Rheumatology, Yale University School of Medicine, New Haven, CT, USA
| | - Kathleen M Akgün
- Department of Medicine, Yale University School of Medicine, New Haven, CT, and VA Connecticut Healthcare System, West Haven, CT, USA
| | - Erica Weinstein
- Division of Infectious Diseases and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liana Fraenkel
- Department of Medicine, Yale University School of Medicine, New Haven, CT, and VA Connecticut Healthcare System, West Haven, CT, USA.,Section of Rheumatology, Yale University School of Medicine, New Haven, CT, USA
| | - Amy C Justice
- Department of Medicine, Yale University School of Medicine, New Haven, CT, and VA Connecticut Healthcare System, West Haven, CT, USA.,Yale University School of Public Health, New Haven, CT, USA
| | | |
Collapse
|
34
|
Alghamdi MA, Redwan EM. Interplay of Microbiota and Citrullination in the Immunopathogenesis of Rheumatoid Arthritis. Probiotics Antimicrob Proteins 2021; 14:99-113. [PMID: 34036479 DOI: 10.1007/s12602-021-09802-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 12/18/2022]
Abstract
Microbiota is a balanced ecosystem that has important functions to the host health including development, defense, digestion, and absorption of dietary fibers and minerals, vitamin synthesizes, protection, and training the host immune system. On the other hand, its dysbiosis is linked to many human diseases such as rheumatoid arthritis (RA). The RA is an inflammatory autoimmune disorder caused by genetic and environmental factors; microbiota may be considered as a risk environmental factor for it. Citrullination is a post-translation modification (PMT) that converts the amino acid arginine to amino acid citrulline in certain proteins. These citrullinated proteins are recognized as a foreign antigen by the immune system resulting in the upregulation of inflammatory action such as in RA. The current work highlights the effect of both gut and oral microbiota dysbiosis on the development of RA, as well as discusses how the alteration in microbiota composition leads to the overgrowth of some bacterial species that entangled in RA pathogenicity. The evidence suggested that some oral and gut microbial species such as Porphyromonas gingivalis and Prevotella copri, respectively, contribute to RA pathogenesis. During dysbiosis, these bacteria can mediate the citrullination of either human or bacteria proteins to trigger an immune response that leads to the generation of autoantibodies.
Collapse
Affiliation(s)
- Mohammed A Alghamdi
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.,Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. .,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, 21934, Egypt.
| |
Collapse
|
35
|
Fang Q, Li T, Chen P, Wu Y, Wang T, Mo L, Ou J, Nandakumar KS. Comparative Analysis on Abnormal Methylome of Differentially Expressed Genes and Disease Pathways in the Immune Cells of RA and SLE. Front Immunol 2021; 12:668007. [PMID: 34079550 PMCID: PMC8165287 DOI: 10.3389/fimmu.2021.668007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
We identified abnormally methylated, differentially expressed genes (DEGs) and pathogenic mechanisms in different immune cells of RA and SLE by comprehensive bioinformatics analysis. Six microarray data sets of each immune cell (CD19+ B cells, CD4+ T cells and CD14+ monocytes) were integrated to screen DEGs and differentially methylated genes by using R package “limma.” Gene ontology annotations and KEGG analysis of aberrant methylome of DEGs were done using DAVID online database. Protein-protein interaction (PPI) network was generated to detect the hub genes and their methylation levels were compared using DiseaseMeth 2.0 database. Aberrantly methylated DEGs in CD19+ B cells (173 and 180), CD4+ T cells (184 and 417) and CD14+ monocytes (193 and 392) of RA and SLE patients were identified. We detected 30 hub genes in different immune cells of RA and SLE and confirmed their expression using FACS sorted immune cells by qPCR. Among them, 12 genes (BPTF, PHC2, JUN, KRAS, PTEN, FGFR2, ALB, SERB-1, SKP2, TUBA1A, IMP3, and SMAD4) of RA and 12 genes (OAS1, RSAD2, OASL, IFIT3, OAS2, IFIH1, CENPE, TOP2A, PBK, KIF11, IFIT1, and ISG15) of SLE are proposed as potential biomarker genes based on receiver operating curve analysis. Our study suggests that MAPK signaling pathway could potentially differentiate the mechanisms affecting T- and B- cells in RA, whereas PI3K pathway may be used for exploring common disease pathways between RA and SLE. Compared to individual data analyses, more dependable and precise filtering of results can be achieved by integrating several relevant data sets.
Collapse
Affiliation(s)
- Qinghua Fang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Tingyue Li
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Peiya Chen
- Department of Science and Education, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuzhe Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lixia Mo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiaxin Ou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
36
|
Ford ES, Sholukh AM, Boytz R, Carmack SS, Klock A, Phasouk K, Shao D, Rossenkhan R, Edlefsen PT, Peng T, Johnston C, Wald A, Zhu J, Corey L. B cells, antibody-secreting cells, and virus-specific antibodies respond to herpes simplex virus 2 reactivation in skin. J Clin Invest 2021; 131:142088. [PMID: 33784252 PMCID: PMC8087200 DOI: 10.1172/jci142088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
Tissue-based T cells are important effectors in the prevention and control of mucosal viral infections; less is known about tissue-based B cells. We demonstrate that B cells and antibody-secreting cells (ASCs) are present in inflammatory infiltrates in skin biopsy specimens from study participants during symptomatic herpes simplex virus 2 (HSV-2) reactivation and early healing. Both CD20+ B cells, most of which are antigen inexperienced based on their coexpression of IgD, and ASCs - characterized by dense IgG RNA expression in combination with CD138, IRF4, and Blimp-1 RNA - were found to colocalize with T cells. ASCs clustered with CD4+ T cells, suggesting the potential for crosstalk. HSV-2-specific antibodies to virus surface antigens were also present in tissue and increased in concentration during HSV-2 reactivation and healing, unlike in serum, where concentrations remained static over time. B cells, ASCs, and HSV-specific antibody were rarely detected in biopsies of unaffected skin. Evaluation of samples from serial biopsies demonstrated that B cells and ASCs followed a more migratory than resident pattern of infiltration in HSV-affected genital skin, in contrast to T cells. Together, these observations suggest the presence of distinct phenotypes of B cells in HSV-affected tissue; dissecting their role in reactivation may reveal new therapeutic avenues to control these infections.
Collapse
Affiliation(s)
- Emily S. Ford
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine
| | - Anton M. Sholukh
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - RuthMabel Boytz
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Alexis Klock
- Department of Laboratory Medicine and Pathology, and
| | - Khamsone Phasouk
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Danica Shao
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Raabya Rossenkhan
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Paul T. Edlefsen
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Tao Peng
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, and
| | - Christine Johnston
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine
| | - Anna Wald
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine
- Department of Laboratory Medicine and Pathology, and
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Jia Zhu
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, and
| | - Lawrence Corey
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine
- Department of Laboratory Medicine and Pathology, and
| |
Collapse
|
37
|
Zou J, Thornton C, Chambers ES, Rosser EC, Ciurtin C. Exploring the Evidence for an Immunomodulatory Role of Vitamin D in Juvenile and Adult Rheumatic Disease. Front Immunol 2021; 11:616483. [PMID: 33679704 PMCID: PMC7930375 DOI: 10.3389/fimmu.2020.616483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Vitamin D is synthesized in the skin following exposure to UVB radiation or is directly absorbed from the diet. Following hydroxylation in the liver and kidneys, vitamin D becomes its bioactive form, 1,25(OH)2D, which has been described to have potent immunomodulatory capacity. This review will focus on the effect of vitamin D in modulating the dysregulated immune system of autoimmune rheumatic diseases (ARD) patients across age, in particular in arthritis (rheumatoid arthritis and juvenile idiopathic arthritis), and systemic lupus erythematosus (with adult and juvenile onset). As well as delineating the impact of vitamin D on the innate and adaptive immune functions associated with each disease pathology, this review will also summarize and evaluate studies that link vitamin D status with disease prevalence, and supplementation studies that examine the potential benefits of vitamin D on disease outcomes. Exploring this evidence reveals that better designed randomized controlled studies are required to clarify the impact of vitamin D supplementation on ARD outcomes and general health. Considering the accessibility and affordability of vitamin D as a therapeutic option, there is a major unmet need for evidence-based treatment recommendations for the use of vitamin D in this patient population.
Collapse
Affiliation(s)
- Jiaqi Zou
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Clare Thornton
- Department of Rheumatology (Metabolic Bone Diseases), University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Emma S Chambers
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Elizabeth C Rosser
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London and Great Ormond Street Hospitals, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London and Great Ormond Street Hospitals, London, United Kingdom
| |
Collapse
|
38
|
Menon M, Hussell T, Ali Shuwa H. Regulatory B cells in respiratory health and diseases. Immunol Rev 2021; 299:61-73. [PMID: 33410165 PMCID: PMC7986090 DOI: 10.1111/imr.12941] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
B cells are critical mediators of humoral immune responses in the airways through antibody production, antigen presentation, and cytokine secretion. In addition, a subset of B cells, known as regulatory B cells (Bregs), exhibit immunosuppressive functions via diverse regulatory mechanisms. Bregs modulate immune responses via the secretion of IL‐10, IL‐35, and tumor growth factor‐β (TGF‐β), and by direct cell contact. The balance between effector and regulatory B cell functions is critical in the maintenance of immune homeostasis. The importance of Bregs in airway immune responses is emphasized by the different respiratory disorders associated with abnormalities in Breg numbers and function. In this review, we summarize the role of immunosuppressive Bregs in airway inflammatory diseases and highlight the importance of this subset in the maintenance of respiratory health. We propose that improved understanding of signals in the lung microenvironment that drive Breg differentiation can provide novel therapeutic avenues for improved management of respiratory diseases.
Collapse
Affiliation(s)
- Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Halima Ali Shuwa
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
39
|
Flow Cytometric Methods for the Detection of Intracellular Signaling Proteins and Transcription Factors Reveal Heterogeneity in Differentiating Human B Cell Subsets. Cells 2020; 9:cells9122633. [PMID: 33302385 PMCID: PMC7762542 DOI: 10.3390/cells9122633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/28/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
The flow cytometric detection of intracellular (IC) signaling proteins and transcription factors (TFs) will help to elucidate the regulation of B cell survival, proliferation and differentiation. However, the simultaneous detection of signaling proteins or TFs with membrane markers (MMs) can be challenging, as the required fixation and permeabilization procedures can affect the functionality of conjugated antibodies. Here, a phosphoflow method is presented for the detection of activated NF-κB p65 and phosphorylated STAT1, STAT3, STAT5 and STAT6, together with the B cell differentiation MMs CD19, CD27 and CD38. Additionally, a TF-flow method is presented that allows the detection of the B cell TFs PAX5, c-MYC, BCL6 and AID and antibody-secreting cell (ASC) TFs BLIMP1 and XBP-1s, together with MMs. Applying these methods on in vitro-induced human B cell differentiation cultures showed significantly different steady-state levels, and responses to stimulation, of phosphorylated signaling proteins in CD27-expressing B cell and ASC populations. The TF-flow protocol and Uniform Manifold Approximation and Projection (UMAP) analysis revealed heterogeneity in TF expression within stimulated CD27- or CD38-expressing B cell subsets. The methods presented here allow for the sensitive analysis of STAT, NF-κB p65 signaling and TFs, together with B cell differentiation MMs, at single-cell resolution. This will aid the further investigation of B cell responses in both health and disease.
Collapse
|
40
|
Martinez GP, Zabaleta ME, Di Giulio C, Charris JE, Mijares MR. The Role of Chloroquine and Hydroxychloroquine in Immune Regulation and Diseases. Curr Pharm Des 2020; 26:4467-4485. [DOI: 10.2174/1381612826666200707132920] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are derivatives of the heterocyclic aromatic compound
quinoline. These economical compounds have been used as antimalarial agents for many years. Currently,
they are used as monotherapy or in conjunction with other therapies for the treatment of autoimmune diseases
such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren's syndrome (SS) and antiphospholipid
antibody syndrome (APS). Based on its effects on the modulation of the autophagy process, various
clinical studies suggest that CQ and HCQ could be used in combination with other chemotherapeutics for the
treatment of various types of cancer. Furthermore, the antiviral effects showed against Zika, Chikungunya, and
HIV are due to the annulation of endosomal/lysosomal acidification. Recently, CQ and HCQ were approved for
the U.S. Food and Drug Administration (FDA) for the treatment of infected patients with the coronavirus SARSCoV-
2, causing the disease originated in December 2019, namely COVID-2019. Several mechanisms have been
proposed to explain the pharmacological effects of these drugs: 1) disruption of lysosomal and endosomal pH, 2)
inhibition of protein secretion/expression, 3) inhibition of antigen presentation, 4) decrease of proinflammatory
cytokines, 5) inhibition of autophagy, 6) induction of apoptosis and 7) inhibition of ion channels activation. Thus,
evidence has shown that these structures are leading molecules that can be modified or combined with other
therapeutic agents. In this review, we will discuss the most recent findings in the mechanisms of action of CQ and
HCQ in the immune system, and the use of these antimalarial drugs on diseases.
Collapse
Affiliation(s)
- Gricelis P. Martinez
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| | - Mercedes E. Zabaleta
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| | - Camilo Di Giulio
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| | - Jaime E. Charris
- Organic Synthesis Laboratory, Faculty of Pharmacy, Central University of Venezuela, 47206, Los Chaguaramos 1041-A, Caracas, Venezuela
| | - Michael R. Mijares
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| |
Collapse
|
41
|
Src Family Protein Kinase Controls the Fate of B Cells in Autoimmune Diseases. Inflammation 2020; 44:423-433. [PMID: 33037966 DOI: 10.1007/s10753-020-01355-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/07/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
There are more than 80 kinds of autoimmune diseases known at present, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), inflammatory bowel disease (IBD), as well as other disorders. Autoimmune diseases have a characteristic of immune responses directly attacking own tissues, leading to systematic inflammation and subsequent tissue damage. B cells play a vital role in the development of autoimmune diseases and differentiate into plasma cells or memory B cells to secrete high-affinity antibody or provide long-lasting function. Drugs targeting B cells show good therapeutic effects for the treatment of autoimmune diseases, such as rituximab (anti-CD20 antibody). Src family protein kinases (SFKs) are believed to play important roles in a variety of cellular functions such as growth, proliferation, and differentiation of B cell via B cell antigen receptor (BCR). Lck/Yes-related novel protein tyrosine kinase (LYN), BLK (B lymphocyte kinase), and Fyn are three different kinds of SFKs mainly expressed in B cells. LYN has a dual role in the BCR signal. On the one hand, positive signals are beneficial to the development and maturation of B cells. On the other hand, LYN can also inhibit excessively activated B cells. BLK is involved in the proliferation, differentiation, and immune tolerance of B lymphocytes, and further affects the function of B cells, which may lead to autoreactive or regulatory cellular responses, increasing the risk of autoimmune diseases. Fyn may affect the development of autoimmune disorders via the differentiation of B cells in the early stage of B cell development. This article reviews the recent advances of SFKs in B lymphocytes in autoimmune diseases.
Collapse
|
42
|
Association of VPREB1 Gene Copy Number Variation and Rheumatoid Arthritis Susceptibility. DISEASE MARKERS 2020; 2020:7189626. [PMID: 33101545 PMCID: PMC7568136 DOI: 10.1155/2020/7189626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/06/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Objective Copy number variation (CNV) is a structural variation in the human genome that has been associated with multiple clinical phenotypes. B cells are important components of rheumatoid arthritis- (RA-) mediated immune response; hence, CNV in the regulators of B cells (such as VPREB1) can influence RA susceptibility. In this study, we aimed to explore the association of CNV in the VPREB1 gene with RA susceptibility in the Pakistani population. Methods A total of 1,106 subjects (616 RA cases, 490 healthy controls) were selected from three rheumatology centers in Pakistan. VPREB1 CNV was determined using the TaqMan® CN assay (Hs02879734_cn, Applied Biosystems, Foster City, CA, USA), and CNV was estimated by using CopyCaller® (version 2.1; Applied Biosystems, USA) software. Odds ratio (OR) was calculated by logistic regression with sex and age as covariates in R. Results A significant association between >2 VPREB1 CNV and RA risk was observed with an OR of 3.92 (95% CI: 1.27 - 12.12; p = 0.01746) in the total sample. Whereas <2 CNV showed a significantly protective effect against RA risk in women with an OR of 0.48 (95% CI: 0.29-0.79; p = 0.00381). Conclusion CNV > 2 of VPREB1 is a risk factor for RA in the total Pakistani population, while CNV < 2 is protective in women.
Collapse
|
43
|
Decker DA, Higgins P, Hayes K, Bollinger C, Becker P, Wright D. Repository corticotropin injection attenuates collagen-induced arthritic joint structural damage and has enhanced effects in combination with etanercept. BMC Musculoskelet Disord 2020; 21:586. [PMID: 32867752 PMCID: PMC7460755 DOI: 10.1186/s12891-020-03609-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 08/24/2020] [Indexed: 12/29/2022] Open
Abstract
Background Melanocortin receptor (MCR) agonists have anti-inflammatory and immunomodulatory properties mediated by receptors expressed on cells relevant to arthritis. Repository corticotropin injection (RCI; Acthar® Gel), an MCR agonist preparation, is approved as adjunctive therapy for rheumatoid arthritis (RA), but its mechanism of action in RA is unclear. This study explored the efficacy of RCI as monotherapy or adjunctive therapy with etanercept (ETN) in an established animal model of collagen-induced arthritis (CIA). Methods After induction of CIA, rats (n = 10 per group) were randomized to receive subcutaneous RCI (40, 160, or 400 U/kg twice daily) alone or in combination with ETN (10 mg/kg 3 times daily), ETN alone, or vehicle (on days 13 through 19). Inflammation was assessed via changes in paw edema. Bone damage was determined by microfocal computed tomography histopathology, and immunohistochemistry. Statistical analyses were performed using a 2-way analysis of variance (ANOVA) followed by the Newman-Keuls, Dunn’s, or Dunnett’s multiple comparisons test or a 1-way ANOVA followed by the Dunnett’s or Holm-Sidak multiple comparisons test. Results RCI administration resulted in dose-dependent decreases in ankle edema and histopathologic measures of inflammation, pannus formation, cartilage damage, bone resorption, and periosteal bone formation. RCI and ETN showed combined benefits on all parameters measured. Radiographic evidence of bone damage was significantly reduced in rats that received RCI alone or in combination with ETN. This reduction in bone density loss correlated with decreases in the number of CD68-positive macrophages and cathepsin K–positive osteoclasts within the lesions. Conclusions As monotherapy or adjunctive therapy with ETN, RCI attenuated CIA-induced joint structural damage in rats. These data support the clinical efficacy of RCI as adjunctive therapy for patients with RA.
Collapse
Affiliation(s)
- Dima A Decker
- Former employee of Mallinckrodt Pharmaceuticals, Bedminster, NJ, USA
| | - Paul Higgins
- Former employee of Mallinckrodt Pharmaceuticals, Bedminster, NJ, USA
| | - Kyle Hayes
- Mallinckrodt Pharmaceuticals, 675 McDonnell Blvd, Bedminster, NJ, 63042, USA
| | - Chris Bollinger
- Mallinckrodt Pharmaceuticals, 675 McDonnell Blvd, Bedminster, NJ, 63042, USA
| | - Patrice Becker
- Former employee of Mallinckrodt Pharmaceuticals, Bedminster, NJ, USA
| | - Dale Wright
- Mallinckrodt Pharmaceuticals, 675 McDonnell Blvd, Bedminster, NJ, 63042, USA.
| |
Collapse
|
44
|
Cognitive impairment in elderly patients with rheumatic disease and the effect of disease-modifying anti-rheumatic drugs. Clin Rheumatol 2020; 40:1221-1231. [PMID: 32862311 DOI: 10.1007/s10067-020-05372-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Recent development of biologic disease-modifying anti-rheumatic drugs (DMARDs) has led to better control of disease activity among patients with chronic rheumatological diseases. Many patients with rheumatic disease are living longer, adding to the growing elderly population. Rheumatic diseases, most notably rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), are known to increase the risk of cognitive impairment. Systemic inflammation associated with chronic rheumatological diseases has been postulated to be key driver of cognitive decline. Recent development of classic and biologic DMARDs have led to better control of disease activity among patients with rheumatic conditions. It is proposed that strict control of systemic inflammation will significantly lower the risk of cognitive impairment among patients with rheumatic disease. The impact of classic DMARDs on cognitive function appears to be variable. On the other hand, biologic DMARDs, specifically antitumor necrosis factor (TNF) drugs (i.e., etanercept), have been shown to significantly lower the risk of dementia. Experimental studies on IL-1, IL-6, and B and T cell blockade are promising. However, clinical data is limited. Preclinical studies on targeted therapies, specifically JAK/STAT inhibitors, also show promising results. Additional studies are necessary to better understand the impact of these newer biologic agents on cognitive function in elderly patients with rheumatic disease. Key points • Patients with chronic rheumatic conditions are beginning to live longer, adding to the elderly population. • Patients with chronic rheumatologic disease are at increased risk of cognitive impairment compared to the general population. • Recent development of biologic (i.e., TNF, IL-1, IL-6) and targeted drugs (i.e., Janus kinase inhibitors) have led to better control of disease activity. • Current evidence suggests that TNF inhibitors may have beneficial effects on cognitive function. However, evidence on newer biologic and targeted therapies is limited.
Collapse
|
45
|
Cano-Gamez E, Trynka G. From GWAS to Function: Using Functional Genomics to Identify the Mechanisms Underlying Complex Diseases. Front Genet 2020; 11:424. [PMID: 32477401 PMCID: PMC7237642 DOI: 10.3389/fgene.2020.00424] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Genome-wide association studies (GWAS) have successfully mapped thousands of loci associated with complex traits. These associations could reveal the molecular mechanisms altered in common complex diseases and result in the identification of novel drug targets. However, GWAS have also left a number of outstanding questions. In particular, the majority of disease-associated loci lie in non-coding regions of the genome and, even though they are thought to play a role in gene expression regulation, it is unclear which genes they regulate and in which cell types or physiological contexts this regulation occurs. This has hindered the translation of GWAS findings into clinical interventions. In this review we summarize how these challenges have been addressed over the last decade, with a particular focus on the integration of GWAS results with functional genomics datasets. Firstly, we investigate how the tissues and cell types involved in diseases can be identified using methods that test for enrichment of GWAS variants in genomic annotations. Secondly, we explore how to find the genes regulated by GWAS loci using methods that test for colocalization of GWAS signals with molecular phenotypes such as quantitative trait loci (QTLs). Finally, we highlight potential future research avenues such as integrating GWAS results with single-cell sequencing read-outs, designing functionally informed polygenic risk scores (PRS), and validating disease associated genes using genetic engineering. These tools will be crucial to identify new drug targets for common complex diseases.
Collapse
Affiliation(s)
- Eddie Cano-Gamez
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gosia Trynka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Open Targets, Wellcome Genome Campus, Cambridge, United Kingdom
| |
Collapse
|
46
|
Shim SC, Božić-Majstorović L, Berrocal Kasay A, El-Khouri EC, Irazoque-Palazuelos F, Cons Molina FF, Medina-Rodriguez FG, Miranda P, Shesternya P, Chavez-Corrales J, Wiland P, Jeka S, Garmish O, Hrycaj P, Fomina N, Park W, Suh CH, Lee SJ, Lee SY, Bae YJ, Yoo DH. Efficacy and safety of switching from rituximab to biosimilar CT-P10 in rheumatoid arthritis: 72-week data from a randomized Phase 3 trial. Rheumatology (Oxford) 2020; 58:2193-2202. [PMID: 31184752 PMCID: PMC6880852 DOI: 10.1093/rheumatology/kez152] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/09/2019] [Indexed: 01/11/2023] Open
Abstract
Objective To evaluate the efficacy and safety of CT-P10, a rituximab biosimilar after a single switch, during a multinational, randomized, double-blind Phase 3 trial involving patients with RA. Methods Patients received 48 weeks’ treatment with CT-P10 or United States- or European Union-sourced reference rituximab (US-RTX and EU-RTX, respectively). Patients entering the extension period (weeks 48–72) remained on CT-P10 (CT-P10/CT-P10; n = 122) or US-RTX (US-RTX/US-RTX; n = 64), or switched to CT-P10 from US-RTX (US-RTX/CT-P10; n = 62) or EU-RTX (EU-RTX/CT-P10; n = 47) for an additional course. Efficacy endpoints included Disease Activity Score using 28 joints (DAS28), American College of Rheumatology (ACR) response rates, and quality of life-related parameters. Pharmacodynamics, immunogenicity and safety were also assessed. Results At week 72, similar improvements were observed by disease activity parameters including DAS28 and ACR response rate in the four extension period treatment groups. Quality of life improvements at week 72 vs baseline were similarly shown during the extension period in all groups. Newly developed anti-drug antibodies were detected in two patients following study drug infusion in the extension period. Similar pharmacodynamic and safety profiles were observed across groups. Conclusion Long-term use of CT-P10 up to 72 weeks was effective and well tolerated. Furthermore, switching from reference rituximab to CT-P10 in RA was well tolerated and did not result in any clinically meaningful differences in terms of efficacy, pharmacodynamics, immunogenicity and safety. Trail registration ClinicalTrials.gov, http://clinicaltrials.gov, NCT02149121.
Collapse
Affiliation(s)
- Seung Cheol Shim
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ljubinka Božić-Majstorović
- Department of Rheumatology and Clinical Immunology, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | | | | | - Fedra Irazoque-Palazuelos
- Department of Rheumatology, Centro de Investigación y Tratamiento Reumatológico S.C., Mexico City, Mexico
| | | | | | | | - Pavel Shesternya
- Department of Internal Disease, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | | | - Piotr Wiland
- Department of Rheumatology and Internal Medicine, Medical University of Wroclaw, Wroclaw, Poland
| | - Slawomir Jeka
- Department of Rheumatology and Connective Tissue Diseases, University Hospital No. 2, Collegium Medicum UMK, Bydgoszcz, Poland
| | - Olena Garmish
- National Scientific Center M.D. Strazhesko, Institute of Cardiology, Kyiv, Ukraine
| | - Pawel Hrycaj
- Department of Rheumatology, Koscian Municipal Hospital, Koscian, Poland
| | - Natalia Fomina
- Department of Cardiology, Kemerovo Regional Clinical Hospital, Kemerovo, Russian Federation
| | - Won Park
- Department of Medicine/Rheumatology, IN-HA University, School of Medicine, Incheon, Republic of Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | | | - Yun Ju Bae
- CELLTRION, Inc., Incheon, Republic of Korea
| | - Dae Hyun Yoo
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| |
Collapse
|
47
|
Regulatory T cells in patients with early untreated rheumatoid arthritis: Phenotypic changes in the course of methotrexate treatment. Biochimie 2020; 174:9-17. [PMID: 32275944 DOI: 10.1016/j.biochi.2020.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/25/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022]
Abstract
Rheumatoid arthritis (RA) is frequent systemic autoimmune disease characterized by excessive activation of collagen-specific T helper cells, and elevated level of autoantibodies in the serum. Development of RA is associated with defect in compartment of regulatory CD4+Foxp3+ T cells (Treg), but data concerning suppressive potential of Treg population in RA patients are contradictory and depend on the stage of disease. In this study we aimed to characterize abundance and phenotypic markers of CD4+Foxp3+ Treg in peripheral blood of healthy donors compared to untreated early RA patients to find potential correlations with the disease activity, antibody level, and absolute numbers and proportion of different subpopulations of T cells. Moreover, we assessed the influence of methotrexate (MT) treatment on percentage and absolute numbers of CD4+Foxp3+ Treg from the peripheral blood of untreated early RA patients. We demonstrate that increase and phenotypic changes in Treg population correlate well with response to MT. Analysis of the cohorts of matched RA patients (n = 45) and healthy controls (n = 20) revealed that patients with untreated early RA demonstrate substantial decrease in blood Treg percentage and absolute number, as well as low level of activated Treg surface markers in comparison to healthy control. The defect in Treg compartment negatively correlates with both RA activity and antibody level. MT treatment of patients with early untreated RA increases both proportion and absolute number of Treg with high level of activation markers, suggesting an increase of their functional capacity. Here we speculate the role of Tregs as specific cellular marker of successful RA treatment.
Collapse
|
48
|
Morand S, Staats H, Creeden JF, Iqbal A, Kahaleh B, Stanbery L, Dworkin L, Nemunaitis J. Molecular mechanisms underlying rheumatoid arthritis and cancer development and treatment. Future Oncol 2020; 16:483-495. [PMID: 32100561 DOI: 10.2217/fon-2019-0722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Given recent advances in cancer immune therapy, specifically use of checkpoint inhibitors, understanding the link between autoimmunity and cancer is essential. Rheumatoid arthritis (RA) affects about 1% of the population, and early diagnosis is key to prevent joint damage. Management consists of disease-modifying antirheumatic drugs that alter normal immunologic pathways, which could affect malignancy growth and survival. Prolonged immune dysregulation and the resulting inflammatory response associated with development of RA may also lead to increased cancer development risk. RA has long been associated with increased risk of non-Hodgkin's lymphoma [1] and further evidence supports relationship to lung cancer [2]. This review will address the mechanisms behind cancer development and progression in RA patients, biomarkers and assess cancer risk and early detection.
Collapse
Affiliation(s)
- Susan Morand
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Hannah Staats
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Justin Fortune Creeden
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Azwar Iqbal
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Bashar Kahaleh
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Laura Stanbery
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Lance Dworkin
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - John Nemunaitis
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA.,ProMedica Health System, Toledo, OH 43606, USA
| |
Collapse
|
49
|
The impact of Clonorchis sinensis infection on immune response in mice with type II collagen-induced arthritis. BMC Immunol 2020; 21:7. [PMID: 32066378 PMCID: PMC7027077 DOI: 10.1186/s12865-020-0336-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/12/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Clonorchis sinensis infection could trigger strong immune responses in mice and humans. However, whether the C.sinensis infection has an impact on arthritis is unknown. Here we investigated the effect of C.sinensis infection on type II collagen-induced arthritis in BALB/c mice. RESULTS The mice were firstly infected with 45 C.sinensis metacercariae by oral gavage. Four weeks later, arthritis in mice was induced by type II collagen. Joint inflammation with severe redness and swelling in hind paws was observed in type II collagen-induced arthritis (CIA) mice. Besides, the physical activity was significantly reduced, but the respiratory exchange ratio was increased in CIA mice. Compared with CIA mice, C.sinensis infection could increase the severity of arthritis in CIA mice, based on the results of disease score and pathological changes. Compared to CIA mice, increased neutrophils and Ly6Chi monocytes, decreased B cells and CD4+T cells, were found in C.sinensis infected CIA mice. Besides these, C.sinensis infected mice also displayed significantly higher levels of serum IL-4 and IL-17 than those in CIA mice. CONCLUSIONS Taken together, our data suggest that C.sinensis infection have a bad effect on arthritis, and could induce the abnormality of the immune response in mice with CIA.
Collapse
|
50
|
Zahran AM, Abdallah AM, Saad K, Osman NS, Youssef MAM, Abdel-Raheem YF, Elsayh KI, Abo Elgheet AM, Darwish SF, Alblihed MA, Elhoufey A. Peripheral Blood B and T Cell Profiles in Children with Active Juvenile Idiopathic Arthritis. Arch Immunol Ther Exp (Warsz) 2019; 67:427-432. [PMID: 31535168 DOI: 10.1007/s00005-019-00560-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Juvenile idiopathic arthritis (JIA) is one of the most common autoimmune diseases in children. Our study aimed to evaluate the peripheral blood B and T lymphocyte subpopulations in children with JIA. This case-control study included 20 children with JIA as well as 20 healthy children with matching age and sex as a control group. All patients included in the study were in activity as determined by visual analog scale. In addition to complete clinical evaluation, basic investigations, peripheral blood B and T lymphocyte subpopulations were done to all participants by flow cytometry. JIA patients displayed a significant decrease in IgM memory B lymphocytes, switched memory B lymphocytes, and total memory B lymphocytes when compared to the healthy controls. The percentages of naïve B lymphocytes were significantly increased in JIA patients than in controls. Total T lymphocytes, CD8+CD28null cells, and CD4+CD28null cells were significantly increased in JIA patients as compared to controls. In conclusion; JIA patients have an alteration in both B and T lymphocytes with the predisposition of memory cells which may have a role in sustaining the JIA disease activity.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Alameldin M Abdallah
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Khaled Saad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt.
| | - Naglaa S Osman
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Mervat A M Youssef
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | | | - Khalid I Elsayh
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Amir M Abo Elgheet
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Sanaa F Darwish
- Department of Microbiology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamd A Alblihed
- Department of Medical Biochemistry, School of Medicine Taif University, Taif, Kingdom of Saudi Arabia
| | - Amira Elhoufey
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Sabia University College, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|