1
|
da Silva JCT, Nogueira MRA, da Silva YM, Nogueira FCS, Canedo NHS, Carneiro K, de Abreu Pereira D. Label-free proteomic analysis of Duchenne and Becker muscular dystrophy showed decreased sarcomere proteins and increased ubiquitination-related proteins. Sci Rep 2025; 15:3293. [PMID: 39865125 PMCID: PMC11770181 DOI: 10.1038/s41598-025-87995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/23/2025] [Indexed: 01/28/2025] Open
Abstract
Muscular dystrophies (MD) are a group of hereditary diseases marked by progressive muscle loss, leading to weakness and degeneration of skeletal muscles. These conditions often result from structural defects in the Dystrophin-Glycoprotein Complex (DGC), as seen in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Since MDs currently have no cure, research has focused on identifying potential therapeutic targets to improve patients' quality of life. In this study, skeletal muscle tissue samples from DMD and BMD patients, as well as non-dystrophic controls, were analyzed using label-free mass spectrometry (MS/MS) to characterize the proteomic profile of these conditions and identify biomarkers for differential diagnosis. In-silico analysis revealed that dystrophic muscle tissues are linked to biological processes related to cellular energy metabolism, including oxidation of organic compounds, energy production, and cellular respiration. Enrichment of functions associated with cell structure and RNA binding was also observed, including cytoskeletal protein binding and RNA binding. The human phenotypes most related to the proteomic signature were abnormal circulating metabolites, muscle physiology, and weakness. Quantitative analysis identified significant changes in proteins associated with sarcomere organization and protein ubiquitination, such as myomesin, myozenin, and E3 ubiquitin-protein ligase rififylin, suggesting these as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Yara Martins da Silva
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Rio de Janeiro, Brazil
- Proteomics Laboratory (LabProt), LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio César Sousa Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Rio de Janeiro, Brazil
- Proteomics Laboratory (LabProt), LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Katia Carneiro
- Graduate Course in Medicine (Pathological Anatomy), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Cellular Proliferation and Differentiation, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise de Abreu Pereira
- Graduate Course in Medicine (Pathological Anatomy), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Cellular and Molecular Oncobiology Program, Research and Innovation Coordination, National Cancer Institute- INCA/RJ, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Chang TL, Borelli AN, Cutler AA, Olwin BB, Anseth KS. Myofibers cultured in viscoelastic hydrogels reveal the effects of integrin-binding and mechanosensing on muscle satellite cells. Acta Biomater 2025; 192:48-60. [PMID: 39615561 DOI: 10.1016/j.actbio.2024.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Quiescent skeletal muscle satellite cells (SCs) located on myofibers activate in response to muscle injury to regenerate muscle; however, identifying the role of specific matrix signals on SC behavior in vivo is difficult. Therefore, we developed a viscoelastic hydrogel with tunable properties to encapsulate myofibers while maintaining stem cell niche polarity and SC-myofiber interactions to investigate how matrix signals, including viscoelasticity and the integrin-binding ligand arginyl-glycyl-aspartic acid (RGD), influence SC behavior during muscle regeneration. Viscoelastic hydrogels support myofiber culture while preserving SC stemness for up to 72 hours post-encapsulation, minimizing myofiber hypercontraction and SC hyperproliferation compared to Matrigel. Pax7 is continuously expressed in SCs on myofibers embedded in hydrogels with higher stress relaxation while SCs differentiate when embedded in elastic hydrogels. Increasing RGD concentrations activates SCs and translocates YAP/TAZ to the nucleus as revealed by photo-expansion microscopy. Deleting YAP/TAZ abrogates RGD-mediated activation of SCs, and thus, YAP/TAZ mediates RGD ligand-induced SC activation and subsequent proliferation. STATEMENT OF SIGNIFICANCE: Satellite cells (SCs) are responsible for muscle maintenance and regeneration, but how the extracellular matrix regulates SC function is less understood and would benefit from new biomaterial models that can recapitulate the complexity of SC niche in vitro. Upon isolation of myofibers, SCs exit quiescence, becoming activated. To circumvent this issue, we developed a viscoelastic hydrogel for encapsulating myofibers, which maintains SC quiescence and limits differentiation, allowing the study of RGD effects. We showed that increasing RGD concentration promotes activation and suppresses differentiation. Finally, to allow high resolution imaging for resolving the subcellular localization of YAP/TAZ transcriptional co-activators, we applied photo-expansion microscopy and gel-to-gel transfer techniques to quantify YAP/TAZ nuclear-cytoplasmic ratio, revealing that RGD-mediated activation relies on YAP/TAZ nuclear translocation.
Collapse
Affiliation(s)
- Tze-Ling Chang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO, 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alexandra N Borelli
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO, 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alicia A Cutler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Bradley B Olwin
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO, 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
3
|
Milan M, Maiullari F, Chirivì M, Ceraolo MG, Zigiotto R, Soluri A, Maiullari S, Landoni E, Silvestre DD, Brambilla F, Mauri P, De Paolis V, Fratini N, Crosti MC, Cordiglieri C, Parisi C, Calogero A, Seliktar D, Torrente Y, Lanzuolo C, Dotti G, Toccafondi M, Bombaci M, De Falco E, Bearzi C, Rizzi R. Macrophages producing chondroitin sulfate proteoglycan-4 induce neuro-cardiac junction impairment in Duchenne muscular dystrophy. J Pathol 2025; 265:1-13. [PMID: 39523812 PMCID: PMC11638662 DOI: 10.1002/path.6362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/12/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Duchenne muscular dystrophy (DMD) is caused by the absence of the full form of the dystrophin protein, which is essential for maintaining the structural integrity of muscle cells, including those in the heart and respiratory system. Despite progress in understanding the molecular mechanisms associated with DMD, myocardial insufficiency persists as the primary cause of mortality, and existing therapeutic strategies remain limited. This study investigates the hypothesis that a dysregulation of the biological communication between infiltrating macrophages (MPs) and neurocardiac junctions exists in dystrophic cardiac tissue. In a mouse model of DMD (mdx), this phenomenon is influenced by the over-release of chondroitin sulfate proteoglycan-4 (CSPG4), a key inhibitor of nerve sprouting and a modulator of the neural function, by MPs infiltrating the cardiac tissue and associated with dilated cardiomyopathy, a hallmark of DMD. Givinostat, the histone deacetylase inhibitor under current development as a clinical treatment for DMD, is effective at both restoring a physiological microenvironment at the neuro-cardiac junction and cardiac function in mdx mice in addition to a reduction in cardiac fibrosis, MP-mediated inflammation, and tissue CSPG4 content. This study provides novel insight into the pathophysiology of DMD in the heart, identifying potential new biological targets. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Marika Milan
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Fabio Maiullari
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
- PhD Program in Cellular and Molecular Biology, Department of BiologyUniversity of Rome ‘Tor Vergata’RomeItaly
| | - Maila Chirivì
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Maria Grazia Ceraolo
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Rebecca Zigiotto
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Andrea Soluri
- Unit of Molecular NeurosciencesUniversity Campus Bio‐Medico, RomeRomeItaly
- Institute of Biochemistry and Cell BiologyNational Research CouncilRomeItaly
| | - Silvia Maiullari
- Institute of Biochemistry and Cell BiologyNational Research CouncilRomeItaly
| | - Elisa Landoni
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | | | | | - Pierluigi Mauri
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| | - Veronica De Paolis
- Institute of Biochemistry and Cell BiologyNational Research CouncilRomeItaly
| | - Nicole Fratini
- Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Maria Cristina Crosti
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Chiara Cordiglieri
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Chiara Parisi
- Institute of Biochemistry and Cell BiologyNational Research CouncilRomeItaly
| | - Antonella Calogero
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Dror Seliktar
- Department of Biomedical EngineeringTechnion InstituteHaifaIsrael
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Chiara Lanzuolo
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Mirco Toccafondi
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Mauro Bombaci
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
| | - Elena De Falco
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Claudia Bearzi
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| | - Roberto Rizzi
- Fondazione Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi’MilanItaly
- Department of Medical‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| |
Collapse
|
4
|
Baikova IP, Ilchuk LA, Safonova PD, Varlamova EA, Okulova YD, Kubekina MV, Tvorogova AV, Dolmatova DM, Bakaeva ZV, Kislukhina EN, Lizunova NV, Bruter AV, Silaeva YY. Two Novel Mouse Models of Duchenne Muscular Dystrophy with Similar Dmd Exon 51 Frameshift Mutations and Varied Phenotype Severity. Int J Mol Sci 2024; 26:158. [PMID: 39796016 PMCID: PMC11719507 DOI: 10.3390/ijms26010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients. Here, we report the generation of two genetically modified mouse lines, named "insT" and "insG", with distinct mutations at the same position in exon 51 that lead to a frameshift, presumably causing protein truncation. Hemizygous males of both lines exhibit classical signs of muscular dystrophy in all muscle tissues except for the cardiac tissue. However, pathological changes are more pronounced in one of the lines. Membrane localization of the protein is reduced to the point of absence in one of the lines. Moreover, an increase in full-length isoform mRNA was detected in diaphragms of insG line mice. Although further work is needed to qualify these mutations as sole origins of dissimilarity, both genetically modified mouse lines are suitable models of DMD and can be used to test gene therapy based on alternative splicing.
Collapse
Affiliation(s)
- Iuliia P. Baikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
| | - Leonid A. Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Polina D. Safonova
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Ekaterina A. Varlamova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia D. Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Marina V. Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Anna V. Tvorogova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
| | - Daria M. Dolmatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Zanda V. Bakaeva
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (Z.V.B.); (E.N.K.)
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Evgenia N. Kislukhina
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (Z.V.B.); (E.N.K.)
| | - Natalia V. Lizunova
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (Z.V.B.); (E.N.K.)
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia Yu. Silaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (I.P.B.); (L.A.I.); (E.A.V.); (Y.D.O.); (A.V.T.); (D.M.D.); (A.V.B.)
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
5
|
Rosen HG, Berger NJ, Hodge SN, Fujishiro A, Lourie J, Kapadia V, Linden MA, Jee E, Kim J, Kim Y, Zou K. Inhibition of Mitochondrial Fission Protein Drp1 Ameliorates Myopathy in the D2-mdx Model of Duchenne Muscular Dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.26.628172. [PMID: 39763900 PMCID: PMC11703253 DOI: 10.1101/2024.12.26.628172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Although current treatments for Duchenne Muscular Dystrophy (DMD) have proven to be effective in delaying myopathy, there remains a strong need to identify novel targets to develop additional therapies. Mitochondrial dysfunction is an early pathological feature of DMD. A fine balance of mitochondrial dynamics (fission and fusion) is crucial to maintain mitochondrial function and skeletal muscle health. Excessive activation of Dynamin-Related Protein 1 (Drp1)-mediated mitochondrial fission was reported in animal models of DMD. However, whether Drp1-mediated mitochondrial fission is a viable target for treating myopathy in DMD remains unknown. Here, we treated a D2-mdx model of DMD (9-10 weeks old) with Mdivi-1, a selective Drp1 inhibitor, every other day (i.p. injection) for 5 weeks. We demonstrated that Mdivi-1 effectively improved skeletal muscle strength and reduced serum creatine kinase concentration. Mdivi-1 treatment also effectively inhibited mitochondrial fission regulatory protein markers, Drp1(Ser616) phosphorylation and Fis1 in skeletal muscles from D2-mdx mice, which resulted in reduced content of damaged and fragmented mitochondria. Furthermore, Mdivi-1 treatment attenuated lipid peroxidation product, 4-HNE, in skeletal muscle from D2-mdx mice, which was inversely correlated with muscle grip strength. Finally, we revealed that Mdivi-1 treatment downregulated Alpha 1 Type I Collagen (Col1a1) protein expression, a marker of fibrosis, and Interleukin-6 (IL-6) mRNA expression, a marker of inflammation. In summary, these results demonstrate that inhibition of Drp1-mediated mitochondrial fission by Mdivi-1 is effective in improving muscle strength and alleviating muscle damage in D2-mdx mice. These improvements are associated with improved skeletal muscle mitochondrial integrity, leading to attenuated lipid peroxidation.
Collapse
Affiliation(s)
- H. Grace Rosen
- Department of Biology, University of Massachusetts Boston, Boston, MA
| | - Nicolas J. Berger
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA
| | - Shantel N. Hodge
- Department of Biology, University of Massachusetts Boston, Boston, MA
| | - Atsutaro Fujishiro
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA
| | - Jared Lourie
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA
| | - Vrusti Kapadia
- Department of Biology, University of Massachusetts Boston, Boston, MA
| | - Melissa A. Linden
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA
| | - Eunbin Jee
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA
| | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA
| | - Yuho Kim
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA
| | - Kai Zou
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA
| |
Collapse
|
6
|
Yoon JA, Lee H, Lee IS, Song YS, Lee BJ, Kim SY, Shin YB. Muscle Pathology Associated With Cardiac Function in Duchenne Muscular Dystrophy. Ann Rehabil Med 2024; 48:405-412. [PMID: 39676600 DOI: 10.5535/arm.240006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
OBJECTIVE To compare the progression of muscle fibrosis of various site and its relation between cardiac deterioration in Duchenne muscular dystrophy (DMD). In this study aimed to examine the associations between echocardiogram-based cardiac function indices and fibrosis of the abdominal and lower extremity muscles in patients with DMD to facilitate early detection of cardiac dysfunction and identify its predictors. METHODS Twenty-one patients with DMD patients were enrolled in the study. The association between cardiac dysfunction and fibrosis of the abdominal and lower extremity muscles was determined by analyzing the echocardiography and elastography. Non-parametric Spearman rank correlation coefficients were used to examine the pairwise relationships between cardiac function and muscle elasticity. RESULTS All patients were male and non-ambulant. Their mean age was 18.45±4.28 years. The strain ratios of the abdominal muscle and quadriceps muscles were significantly higher than those of the medial gastrocnemius. The strain ratio of the rectus abdominis muscle has a significant negative correlation with left ventricular ejection fraction. Cardiac function and valvular insufficiency were not significantly correlated with muscle strain ratio. According to the result of our study, the only skeletal muscle which showed significant correlation with cardiac dysfunction was degree abdominal muscle fibrosis. CONCLUSION The degree of fibrosis of respiratory muscles was also significantly associated with cardiac dysfunction; therefore, it can be used as a predictor of cardiac dysfunction in patients with DMD in clinical practice.
Collapse
Affiliation(s)
- Jin A Yoon
- Department of Rehabilitation Medicine, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| | - Heirim Lee
- Department of Pediatrics, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| | - In Sook Lee
- Department of Radiology, Pusan National University Hospital, Biomedical Research Institute, Busan, Korea
| | - You Seon Song
- Department of Radiology, Pusan National University Hospital, Biomedical Research Institute, Busan, Korea
| | - Byeong-Ju Lee
- Department of Rehabilitation Medicine, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| | - Soo-Yeon Kim
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Reserch Institute of Convergence for Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Yong Beom Shin
- Department of Rehabilitation Medicine, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Korea
| |
Collapse
|
7
|
Shi A, He C, Otten K, Wu G, Forouzanfar T, Wüst RCI, Jaspers RT. Reduced myotube diameter induced by combined inhibition of transforming growth factor-β type I receptors Acvr1b and Tgfbr1 is associated with enhanced β1-syntrophin expression. J Cell Physiol 2024; 239:e31418. [PMID: 39164996 PMCID: PMC11649968 DOI: 10.1002/jcp.31418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Simultaneous inhibition of transforming growth factor-β (TGF-β) type I receptors Acvr1b and Tgfbr1 signalling has been associated with excessive skeletal muscle hypertrophy in vivo. However, it remains unclear whether the increased muscle mass in vivo is a direct result of inhibition of intracellular TGF-β signalling or whether this is an indirect effect of an altered extracellular anabolic environment. Here, we tested whether individual or simultaneous knockdown of TGF-β type I receptors in C2C12 myotubes was sufficient to induce muscle hypertrophy. The expression levels of TGF-β type I receptors Acvr1b and Tgfbr1 in myotubes were knocked down individually or in combination in the absence or presence of TGF-β1 and myostatin. Knocking down either Acvr1b or Tgfbr1 did not significantly change cell phenotype. Unexpectedly, simultaneous knockdown of both receptors reduced C2C12 myotube diameter, mRNA expression levels of Hgf, Ccn2 and Mymx with or without TGF-β1 and myostatin administration. In spite of decreased phosphorylation of Smad2/3, phosphorylation of P70S6K was reduced. In addition, the gene expression level of β1-syntrophin (Sntb1), which encodes a protein associated with the dystrophin-glycoprotein complex, was increased. Parallel experiments where Sntb1 gene expression was reduced showed an increase in myotube diameter and fusion of C2C12 myoblasts. Together, these results indicate that the knockdown of both TGF-β type I receptors reduced myotube diameter. This atrophic effect was attributed to reduced protein synthesis signalling and an increased expression of β1-syntrophin. These results have implications for our fundamental understanding of how TGF-β signalling regulates skeletal muscle size.
Collapse
Affiliation(s)
- Andi Shi
- Laboratory for Myology, Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of ProsthodonticsAffiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and ReconstructionGuangzhouChina
| | - Chuqi He
- Laboratory for Myology, Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Kirsten Otten
- Laboratory for Myology, Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Gang Wu
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU)AmsterdamThe Netherlands
| | - Tymour Forouzanfar
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU)AmsterdamThe Netherlands
- Department of Oral and Maxillofacial SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Rob C. I. Wüst
- Laboratory for Myology, Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Richard T. Jaspers
- Laboratory for Myology, Department of Human Movement SciencesFaculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of ProsthodonticsAffiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and ReconstructionGuangzhouChina
| |
Collapse
|
8
|
Alam S, Sargeant MS, Patel R, Jayaram P. Exploring Metabolic Mechanisms in Calcific Tendinopathy and Shoulder Arthrofibrosis: Insights and Therapeutic Implications. J Clin Med 2024; 13:6641. [PMID: 39597785 PMCID: PMC11595303 DOI: 10.3390/jcm13226641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Rotator cuff calcific tendinopathy and arthrofibrosis of the shoulder (adhesive capsulitis) are debilitating musculoskeletal disorders that significantly impact joint function and impair quality of life. Despite its high prevalence and common clinical presentation, the metabolic mechanisms underlying these conditions characterized by pain, and reduced mobility, remain poorly understood. This review aims to elucidate the role of metabolic processes implicated in the pathogenesis of calcific tendinopathy and shoulder arthrofibrosis. We will be focusing on the mechanistic role of how these processes contribute to disease progression and can direct potential therapeutic targets. Calcific tendinopathy is marked by aberrant calcium deposition within tendons, influenced by disrupted calcium and phosphate homeostasis, and altered cellular responses. Key molecular pathways, including bone morphogenetic proteins (BMPs), Wnt signaling, and transforming growth factor-beta (TGF-β), play crucial roles in the pathophysiology of calcification, calcium imbalance, and muscle fibrosis. In contrast, shoulder arthrofibrosis involves excessive collagen deposition and fibrosis within the shoulder joint capsule, driven by metabolic dysregulation and inflammation. The TGF-β signaling pathway and inflammatory cytokines, such as interleukin-6 (IL-6), are central to the fibrotic response. A comparative analysis reveals both shared and distinct metabolic pathways between these conditions, highlighting the interplay between inflammation, cellular metabolism, extracellular matrix remodeling, calcific deposition, and calcium migration to the glenohumeral joints, resulting in adhesive capsulitis, thereby providing insights into their pathophysiology. This review discusses current therapeutic approaches and their limitations, advocating for the development of targeted therapies that address specific metabolic dysregulations. Future therapeutic strategies focus on developing targeted interventions that address the underlying metabolic dysregulation, aiming to improve patient outcomes and advance clinical management. This review offers a comprehensive overview of the metabolic mechanisms involved in calcific tendinopathy and shoulder arthrofibrosis, providing a foundation for future research and therapeutic development.
Collapse
Affiliation(s)
| | | | | | - Prathap Jayaram
- Department of Orthopedics, Musculoskeletal Institute, School of Medicine, Emory University, Atlanta, GA 30329, USA (M.S.S.); (R.P.)
| |
Collapse
|
9
|
Qaisar R. The emerging roles of necroptosis in skeletal muscle health and disease. Pflugers Arch 2024; 476:1645-1651. [PMID: 39037477 DOI: 10.1007/s00424-024-02994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Necroptosis is a regulated form of cell death with implications in various physiological and pathological processes in multiple tissues. However, the relevant findings from post-mitotic tissues, such as skeletal muscle, are scarce. This review summarizes the potential contributions of necroptosis to skeletal muscle health and diseases. It first discusses the physiological roles of necroptosis in muscle regeneration and development. It then summarizes the contributions of necroptosis to the pathogenesis of multiple muscle diseases, including muscular dystrophies, inflammatory myopathies, cachexia, and neuromuscular disorders. Lastly, it unravels the gaps in our understanding and therapeutic challenges of inhibiting necroptosis as a potential intervention for muscle diseases. Specifically, the findings from the transgenic animal models and the use of pharmacological inhibitors of necroptosis are discussed with relevance to improving the structure and/or function of skeletal muscle in various diseases. Recent developments from experimental animal models and clinical data are presented to discuss the roles of necroptosis in skeletal muscle health and diseases.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Space Medicine Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
10
|
Budzynska K, Bozyk KT, Jarosinska K, Ziemiecka A, Siemionow K, Siemionow M. Developing Advanced Chimeric Cell Therapy for Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:10947. [PMID: 39456730 PMCID: PMC11507628 DOI: 10.3390/ijms252010947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a lethal, X-linked disorder leading to muscle degeneration and premature death due to cardiopulmonary complications. Currently, there is no cure for DMD. We previously confirmed the efficacy of human Dystrophin-Expressing Chimeric (DEC) cells created via the fusion of myoblasts from normal and DMD-affected donors. The current study aimed to optimize the development of DEC therapy via the polyethylene glycol (PEG)-mediated fusion protocol of human myoblasts derived from normal, unrelated donors. The optimization of cell fusion assessed different factors influencing fusion efficacy, including myoblast passage number, the efficacy of PKH myoblast staining, the ratio of the single-stained myoblasts in the MIX, and PEG administration time. Additionally, the effect of PEG fusion procedure on cell viability was assessed. A correlation was found between the number of cells used for PKH staining and staining efficacy. Furthermore, the ratio of single-stained myoblasts in the MIX and PEG administration time correlated with fusion efficacy. There was no correlation found between the myoblast passage number and fusion efficacy. This study successfully optimized the myoblast fusion protocol for creation of human DEC cells, introducing DEC as a new Advanced Therapy Medicinal Product (ATMP) for DMD patients.
Collapse
Affiliation(s)
- Katarzyna Budzynska
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland; (K.B.); (K.T.B.); (K.J.); (A.Z.); (K.S.)
| | - Katarzyna T. Bozyk
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland; (K.B.); (K.T.B.); (K.J.); (A.Z.); (K.S.)
| | - Klaudia Jarosinska
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland; (K.B.); (K.T.B.); (K.J.); (A.Z.); (K.S.)
| | - Anna Ziemiecka
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland; (K.B.); (K.T.B.); (K.J.); (A.Z.); (K.S.)
| | - Krzysztof Siemionow
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland; (K.B.); (K.T.B.); (K.J.); (A.Z.); (K.S.)
| | - Maria Siemionow
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland; (K.B.); (K.T.B.); (K.J.); (A.Z.); (K.S.)
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA
- Chair and Department of Traumatology, Orthopaedics, and Surgery of the Hand, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| |
Collapse
|
11
|
Chey YCJ, Corbett MA, Arudkumar J, Piltz SG, Thomas PQ, Adikusuma F. CRISPR-mediated megabase-scale transgene de-duplication to generate a functional single-copy full-length humanized DMD mouse model. BMC Biol 2024; 22:214. [PMID: 39334101 PMCID: PMC11438084 DOI: 10.1186/s12915-024-02008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The development of sequence-specific precision treatments like CRISPR gene editing therapies for Duchenne muscular dystrophy (DMD) requires sequence humanized animal models to enable the direct clinical translation of tested strategies. The current available integrated transgenic mouse model containing the full-length human DMD gene, Tg(DMD)72Thoen/J (hDMDTg), has been found to have two copies of the transgene per locus in a tail-to-tail orientation, which does not accurately simulate the true (single) copy number of the DMD gene. This duplication also complicates analysis when testing CRISPR therapy editing outcomes, as large genetic alterations and rearrangements can occur between the cut sites on the two transgenes. RESULTS To address this, we performed long read nanopore sequencing on hDMDTg mice to better understand the structure of the duplicated transgenes. Following that, we performed a megabase-scale deletion of one of the transgenes by CRISPR zygotic microinjection to generate a single-copy, full-length, humanized DMD transgenic mouse model (hDMDTgSc). Functional, molecular, and histological characterisation shows that the single remaining human transgene retains its function and rescues the dystrophic phenotype caused by endogenous murine Dmd knockout. CONCLUSIONS Our unique hDMDTgSc mouse model simulates the true copy number of the DMD gene, and can potentially be used for the further generation of DMD disease models that would be better suited for the pre-clinical assessment and development of sequence specific CRISPR therapies.
Collapse
Affiliation(s)
- Yu C J Chey
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jayshen Arudkumar
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Sandra G Piltz
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- South Australian Genome Editing (SAGE) Facility, SAHMRI, Adelaide, SA, Australia
| | - Paul Q Thomas
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
- Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
- South Australian Genome Editing (SAGE) Facility, SAHMRI, Adelaide, SA, Australia.
| | - Fatwa Adikusuma
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
- Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
| |
Collapse
|
12
|
Servais L, Lair LL, Connolly AM, Byrne BJ, Chen KS, Coric V, Qureshi I, Durham S, Campbell DJ, Maclaine G, Marin J, Bechtold C. Taldefgrobep Alfa and the Phase 3 RESILIENT Trial in Spinal Muscular Atrophy. Int J Mol Sci 2024; 25:10273. [PMID: 39408601 PMCID: PMC11477173 DOI: 10.3390/ijms251910273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a rare, genetic neurodegenerative disorder caused by insufficient production of survival motor neuron (SMN) protein. Diminished SMN protein levels lead to motor neuron loss, causing muscle atrophy and weakness that impairs daily functioning and reduces quality of life. SMN upregulators offer clinical improvements and increased survival in SMA patients, although significant unmet needs remain. Myostatin, a TGF-β superfamily signaling molecule that binds to the activin II receptor, negatively regulates muscle growth; myostatin inhibition is a promising therapeutic strategy for enhancing muscle. Combining myostatin inhibition with SMN upregulation, a comprehensive therapeutic strategy targeting the whole motor unit, offers promise in SMA. Taldefgrobep alfa is a novel, fully human recombinant protein that selectively binds to myostatin and competitively inhibits other ligands that signal through the activin II receptor. Given a robust scientific and clinical rationale and the favorable safety profile of taldefgrobep in patients with neuromuscular disease, the RESILIENT phase 3, randomized, placebo-controlled trial is investigating taldefgrobep as an adjunct to SMN upregulators in SMA (NCT05337553). This manuscript reviews the role of myostatin in muscle, explores the preclinical and clinical development of taldefgrobep and introduces the phase 3 RESILIENT trial of taldefgrobep in SMA.
Collapse
Affiliation(s)
- Laurent Servais
- Department of Pediatrics, University of Oxford, Oxford OX3 9DU, UK
- Division of Child Neurology, Department of Paediatrics, Centre de Référence des Maladies Neuromusculaires, University Hospital of Liège, University of Liège, Boulevard Du 12e De Ligne, 4000 Liege, Belgium
| | | | | | - Barry J. Byrne
- Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Karen S. Chen
- Spinal Muscular Atrophy Foundation, 970 W Broadway STE E, PMB 140, Jackson, WY 83001, USA
| | - Vlad Coric
- Biohaven Pharmaceuticals Inc., New Haven, CT 06510, USA
| | - Irfan Qureshi
- Biohaven Pharmaceuticals Inc., New Haven, CT 06510, USA
| | - Susan Durham
- Biohaven Pharmaceuticals Inc., New Haven, CT 06510, USA
| | | | | | - Jackie Marin
- Biohaven Pharmaceuticals Inc., New Haven, CT 06510, USA
| | | |
Collapse
|
13
|
Delaney R, O'Halloran KD. Respiratory performance in Duchenne muscular dystrophy: Clinical manifestations and lessons from animal models. Exp Physiol 2024; 109:1426-1445. [PMID: 39023735 PMCID: PMC11363095 DOI: 10.1113/ep091967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic neuromuscular disease. Lack of dystrophin in skeletal muscles leads to intrinsic weakness, injury, subsequent degeneration and fibrosis, decreasing contractile function. Dystropathology eventually presents in all inspiratory and expiratory muscles of breathing, severely curtailing their critical function. In people with DMD, premature death is caused by respiratory or cardiac failure. There is an urgent need to develop therapies that improve quality of life and extend life expectancy in DMD. Surprisingly, there is a dearth of information on respiratory control in animal models of DMD, and respiratory outcome measures are often limited or absent in clinical trials. Characterization of respiratory performance in murine and canine models has revealed extensive remodelling of the diaphragm, the major muscle of inspiration. However, significant compensation by extradiaphragmatic muscles of breathing is evident in early disease, contributing to preservation of peak respiratory system performance. Loss of compensation afforded by accessory muscles in advanced disease is ultimately associated with compromised respiratory performance. A new and potentially more translatable murine model of DMD, the D2.mdx mouse, has recently been developed. Respiratory performance in D2.mdx mice is yet to be characterized fully. However, based on histopathological features, D2.mdx mice might serve as useful preclinical models, facilitating the testing of new therapeutics that rescue respiratory function. This review summarizes the pathophysiological mechanisms associated with DMD both in humans and in animal models, with a focus on breathing. We consider the translational value of each model to human DMD and highlight the urgent need for comprehensive characterization of breathing in representative preclinical models to better inform human trials.
Collapse
|
14
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
15
|
Guedira G, Petermann O, Scapozza L, Ismail HM. Diapocynin treatment induces functional and structural improvements in an advanced disease state in the mdx 5Cv mice. Biomed Pharmacother 2024; 177:116957. [PMID: 38908198 DOI: 10.1016/j.biopha.2024.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/30/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common muscular disorder affecting children. It affects nearly 1 male birth over 5000. Oxidative stress is a pervasive feature in the pathogenesis of DMD. Recent work shows that the main generators of ROS are NADPH oxidases (NOX), suggesting that they are an early and promising target in DMD. In addition, skeletal muscles of mdx mice, a murine model of DMD, overexpress NOXes. We investigated the impact of diapocynin, a dimer of the NOX inhibitor apocynin, on the chronic disease phase of mdx5Cv mice. Treatment of these mice with diapocynin from 7 to 10 months of age resulted in decreased hypertrophy of several muscles, prevented force loss induced by tetanic and eccentric contractions, improved muscle and respiratory functions, decreased fibrosis of the diaphragm and positively regulated the expression of disease modifiers. These encouraging results ensure the potential role of diapocynin in future treatment strategies.
Collapse
Affiliation(s)
- Ghali Guedira
- Pharmaceutical Biochemistry/Chemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Olivier Petermann
- Pharmaceutical Biochemistry/Chemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry/Chemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
| | - Hesham M Ismail
- Pharmaceutical Biochemistry/Chemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Coles CA, Woodman KG, Gibbs EM, Crosbie RH, White JD, Lamandé SR. Benfotiamine improves dystrophic pathology and exercise capacity in mdx mice by reducing inflammation and fibrosis. Hum Mol Genet 2024; 33:1339-1355. [PMID: 38710523 PMCID: PMC11262745 DOI: 10.1093/hmg/ddae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a progressive and fatal neuromuscular disease. Cycles of myofibre degeneration and regeneration are hallmarks of the disease where immune cells infiltrate to repair damaged skeletal muscle. Benfotiamine is a lipid soluble precursor to thiamine, shown clinically to reduce inflammation in diabetic related complications. We assessed whether benfotiamine administration could reduce inflammation related dystrophic pathology. Benfotiamine (10 mg/kg/day) was fed to male mdx mice (n = 7) for 15 weeks from 4 weeks of age. Treated mice had an increased growth weight (5-7 weeks) and myofibre size at treatment completion. Markers of dystrophic pathology (area of damaged necrotic tissue, central nuclei) were reduced in benfotiamine mdx quadriceps. Grip strength was increased and improved exercise capacity was found in mdx treated with benfotiamine for 12 weeks, before being placed into individual cages and allowed access to an exercise wheel for 3 weeks. Global gene expression profiling (RNAseq) in the gastrocnemius revealed benfotiamine regulated signalling pathways relevant to dystrophic pathology (Inflammatory Response, Myogenesis) and fibrotic gene markers (Col1a1, Col1a2, Col4a5, Col5a2, Col6a2, Col6a2, Col6a3, Lum) towards wildtype levels. In addition, we observed a reduction in gene expression of inflammatory gene markers in the quadriceps (Emr1, Cd163, Cd4, Cd8, Ifng). Overall, these data suggest that benfotiamine reduces dystrophic pathology by acting on inflammatory and fibrotic gene markers and signalling pathways. Given benfotiamine's excellent safety profile and current clinical use, it could be used in combination with glucocorticoids to treat DMD patients.
Collapse
MESH Headings
- Animals
- Mice
- Mice, Inbred mdx
- Fibrosis/drug therapy
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/metabolism
- Inflammation/drug therapy
- Inflammation/genetics
- Inflammation/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Male
- Thiamine/analogs & derivatives
- Thiamine/pharmacology
- Physical Conditioning, Animal
- Disease Models, Animal
Collapse
Affiliation(s)
- Chantal A Coles
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| | - Keryn G Woodman
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
- Department of Genetics, Yale Medical School, Yale University, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Elizabeth M Gibbs
- Department of Integrative Biology and Physiology, University of California, 612 Charles E Young Dr S, Los Angeles 90095, California, USA
- Center for Duchenne Muscular Dystrophy, University of California, 615 Charles E Young Dr S, Los Angeles 90095, California, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, 612 Charles E Young Dr S, Los Angeles 90095, California, USA
- Center for Duchenne Muscular Dystrophy, University of California, 615 Charles E Young Dr S, Los Angeles 90095, California, USA
- Department of Neurology, David Geffen School of Medicine, University of California, 610 Charles E Young Dr S, Los Angeles, California 90095, USA
| | - Jason D White
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
- Charles Sturt University, Office of the Deputy Vice Chancellor Research, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - Shireen R Lamandé
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
17
|
De Masi A, Zanou N, Strotjohann K, Lee D, Lima TI, Li X, Jeon J, Place N, Jung H, Auwerx J. Cyclo His-Pro Attenuates Muscle Degeneration in Murine Myopathy Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305927. [PMID: 38728626 PMCID: PMC11267275 DOI: 10.1002/advs.202305927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/11/2024] [Indexed: 05/12/2024]
Abstract
Among the inherited myopathies, a group of muscular disorders characterized by structural and metabolic impairments in skeletal muscle, Duchenne muscular dystrophy (DMD) stands out for its devastating progression. DMD pathogenesis is driven by the progressive degeneration of muscle fibers, resulting in inflammation and fibrosis that ultimately affect the overall muscle biomechanics. At the opposite end of the spectrum of muscle diseases, age-related sarcopenia is a common condition that affects an increasing proportion of the elderly. Although characterized by different pathological mechanisms, DMD and sarcopenia share the development of progressive muscle weakness and tissue inflammation. Here, the therapeutic effects of Cyclo Histidine-Proline (CHP) against DMD and sarcopenia are evaluated. In the mdx mouse model of DMD, it is shown that CHP restored muscle contractility and force production, accompanied by the reduction of fibrosis and inflammation in skeletal muscle. CHP furthermore prevented the development of cardiomyopathy and fibrosis in the diaphragm, the two leading causes of death for DMD patients. CHP also attenuated muscle atrophy and functional deterioration in a mouse model of age-related sarcopenia. These findings from two different models of muscle dysfunction hence warrant further investigation into the effects of CHP on muscle pathologies in animal models and eventually in patients.
Collapse
Affiliation(s)
- Alessia De Masi
- Laboratory of Integrative Systems PhysiologyInstitute of BioengineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences and Department of Biomedical SciencesFaculty of Biology‐MedicineUniversity of LausanneLausanne1015Switzerland
| | - Keno Strotjohann
- Laboratory of Integrative Systems PhysiologyInstitute of BioengineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Dohyun Lee
- R&D CenterNovMetaPharma Co., LtdPohang37668South Korea
| | - Tanes I. Lima
- Laboratory of Integrative Systems PhysiologyInstitute of BioengineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems PhysiologyInstitute of BioengineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Jongsu Jeon
- R&D CenterNovMetaPharma Co., LtdPohang37668South Korea
| | - Nicolas Place
- Institute of Sport Sciences and Department of Biomedical SciencesFaculty of Biology‐MedicineUniversity of LausanneLausanne1015Switzerland
| | - Hoe‐Yune Jung
- R&D CenterNovMetaPharma Co., LtdPohang37668South Korea
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and Technology (POSTECH)Pohang37673South Korea
| | - Johan Auwerx
- Laboratory of Integrative Systems PhysiologyInstitute of BioengineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| |
Collapse
|
18
|
Gandhi S, Sweeney G, Perry CGR. Recent Advances in Pre-Clinical Development of Adiponectin Receptor Agonist Therapies for Duchenne Muscular Dystrophy. Biomedicines 2024; 12:1407. [PMID: 39061981 PMCID: PMC11274162 DOI: 10.3390/biomedicines12071407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by genetic mutations in the cytoskeletal-sarcolemmal anchor protein dystrophin. Repeated cycles of sarcolemmal tearing and repair lead to a variety of secondary cellular and physiological stressors that are thought to contribute to weakness, atrophy, and fibrosis. Collectively, these stressors can contribute to a pro-inflammatory milieu in locomotor, cardiac, and respiratory muscles. Given the many unwanted side effects that accompany current anti-inflammatory steroid-based approaches for treating DMD (e.g., glucocorticoids), there is a need to develop new therapies that address inflammation and other cellular dysfunctions. Adiponectin receptor (AdipoR) agonists, which stimulate AdipoR1 and R2 isoforms on various cell types, have emerged as therapeutic candidates for DMD due to their anti-inflammatory, anti-fibrotic, and pro-myogenic properties in pre-clinical human and rodent DMD models. Although these molecules represent a new direction for therapeutic intervention, the mechanisms through which they elicit their beneficial effects are not yet fully understood, and DMD-specific data is limited. The overarching goal of this review is to investigate how adiponectin signaling may ameliorate pathology associated with dystrophin deficiency through inflammatory-dependent and -independent mechanisms and to determine if current data supports their future progression to clinical trials.
Collapse
Affiliation(s)
- Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| | - Gary Sweeney
- Department of Biology and Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| | - Christopher G. R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada;
| |
Collapse
|
19
|
Terrill JR, Bautista APR, Tsioutsias I, Grounds MD, Arthur PG. Oxidised Albumin Levels in Plasma and Skeletal Muscle as Biomarkers of Disease Progression and Treatment Efficacy in Dystrophic mdx Mice. Antioxidants (Basel) 2024; 13:720. [PMID: 38929159 PMCID: PMC11201235 DOI: 10.3390/antiox13060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Redox modifications to the plasma protein albumin have the potential to be used as biomarkers of disease progression and treatment efficacy in pathologies associated with inflammation and oxidative stress. One such pathology is Duchenne muscular dystrophy (DMD), a fatal childhood disease characterised by severe muscle wasting. We have previously shown in the mdx mouse model of DMD that plasma albumin thiol oxidation is increased; therefore, the first aim of this paper was to establish that albumin thiol oxidation in plasma reflects levels within mdx muscle tissue. We therefore developed a method to measure tissue albumin thiol oxidation. We show that albumin thiol oxidation was increased in both mdx muscle and plasma, with levels correlated with measures of dystropathology. In dystrophic muscle, albumin content was associated with areas of myonecrosis. The second aim was to test the ability of plasma thiol oxidation to track acute changes in dystropathology: we therefore subjected mdx mice to a single treadmill exercise session (known to increase myonecrosis) and took serial blood samples. This acute exercise caused a transient increase in total plasma albumin oxidation and measures of dystropathology. Together, these data support the use of plasma albumin thiol oxidation as a biomarker to track active myonecrosis in DMD.
Collapse
Affiliation(s)
- Jessica R. Terrill
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.R.T.); (A.P.R.B.); (I.T.)
| | - Angelo Patrick R. Bautista
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.R.T.); (A.P.R.B.); (I.T.)
| | - Irene Tsioutsias
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.R.T.); (A.P.R.B.); (I.T.)
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Miranda D. Grounds
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Peter G. Arthur
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.R.T.); (A.P.R.B.); (I.T.)
| |
Collapse
|
20
|
Norris AM, Fierman KE, Campbell J, Pitale R, Shahraj M, Kopinke D. Studying intramuscular fat deposition and muscle regeneration: insights from a comparative analysis of mouse strains, injury models, and sex differences. Skelet Muscle 2024; 14:12. [PMID: 38812056 PMCID: PMC11134715 DOI: 10.1186/s13395-024-00344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
Intramuscular fat (IMAT) infiltration, pathological adipose tissue that accumulates between muscle fibers, is a shared hallmark in a diverse set of diseases including muscular dystrophies and diabetes, spinal cord and rotator cuff injuries, as well as sarcopenia. While the mouse has been an invaluable preclinical model to study skeletal muscle diseases, they are also resistant to IMAT formation. To better understand this pathological feature, an adequate pre-clinical model that recapitulates human disease is necessary. To address this gap, we conducted a comprehensive in-depth comparison between three widely used mouse strains: C57BL/6J, 129S1/SvlmJ and CD1. We evaluated the impact of strain, sex and injury type on IMAT formation, myofiber regeneration and fibrosis. We confirm and extend previous findings that a Glycerol (GLY) injury causes significantly more IMAT and fibrosis compared to Cardiotoxin (CTX). Additionally, females form more IMAT than males after a GLY injury, independent of strain. Of all strains, C57BL/6J mice, both females and males, are the most resistant to IMAT formation. In regard to injury-induced fibrosis, we found that the 129S strain formed the least amount of scar tissue. Surprisingly, C57BL/6J of both sexes demonstrated complete myofiber regeneration, while both CD1 and 129S1/SvlmJ strains still displayed smaller myofibers 21 days post injury. In addition, our data indicate that myofiber regeneration is negatively correlated with IMAT and fibrosis. Combined, our results demonstrate that careful consideration and exploration are needed to determine which injury type, mouse model/strain and sex to utilize as preclinical model especially for modeling IMAT formation.
Collapse
Affiliation(s)
- Alessandra M Norris
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Kiara E Fierman
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Jillian Campbell
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Rhea Pitale
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Muhammad Shahraj
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
Bhattacharyya O, Campoamor NB, Armstrong N, Freed M, Schrader R, Crossnohere NL, Bridges JFP. Assessing the Benefits and Harms Associated with Early Diagnosis from the Perspective of Parents with Multiple Children Diagnosed with Duchenne Muscular Dystrophy. Int J Neonatal Screen 2024; 10:32. [PMID: 38651397 PMCID: PMC11036293 DOI: 10.3390/ijns10020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare neuromuscular disorder diagnosed in childhood. Limited newborn screening in the US often delays diagnosis. With multiple FDA-approved therapies, early diagnosis is crucial for timely treatment but may entail other benefits and harms. Using a community-based survey, we explored how parents of siblings with DMD perceived early diagnosis of one child due to a prior child's diagnosis. We assessed parents' viewpoints across domains including diagnostic journey, treatment initiatives, service access, preparedness, parenting, emotional impact, and caregiving experience. We analyzed closed-ended responses on a -1.0 to +1.0 scale to measure the degree of harm or benefit parents perceived and analyzed open-ended responses thematically. A total of 45 parents completed the survey, with an average age of 43.5 years and 20.0% identifying as non-white. Younger siblings were diagnosed 2 years earlier on average (p < 0.001). Overall, parents viewed early diagnosis positively (mean: 0.39), particularly regarding school preparedness (+0.79), support services (+0.78), treatment evaluation (+0.68), and avoiding diagnostic odyssey (+0.67). Increased worry was a common downside (-0.40). Open-ended responses highlighted improved outlook and health management alongside heightened emotional distress and treatment burdens. These findings address gaps in the evidence by documenting the effectiveness of early screening and diagnosis of DMD using sibling data.
Collapse
Affiliation(s)
- Oindrila Bhattacharyya
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (O.B.); (N.B.C.); (J.F.P.B.)
| | - Nicola B. Campoamor
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (O.B.); (N.B.C.); (J.F.P.B.)
| | - Niki Armstrong
- Foundation for Angelman Syndrome Therapeutics, Austin, TX 78704, USA;
| | - Megan Freed
- Parent Project Muscular Dystrophy, Washington, DC 20005, USA; (M.F.); (R.S.)
| | - Rachel Schrader
- Parent Project Muscular Dystrophy, Washington, DC 20005, USA; (M.F.); (R.S.)
| | - Norah L. Crossnohere
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43202, USA
| | - John F. P. Bridges
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (O.B.); (N.B.C.); (J.F.P.B.)
| |
Collapse
|
22
|
Gharibi S, Vaillend C, Lindsay A. The unconditioned fear response in vertebrates deficient in dystrophin. Prog Neurobiol 2024; 235:102590. [PMID: 38484964 DOI: 10.1016/j.pneurobio.2024.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.
Collapse
Affiliation(s)
- Saba Gharibi
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay 91400, France.
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Department of Medicine, University of Otago, Christchurch 8014, New Zealand.
| |
Collapse
|
23
|
Nguyen J, Gilbert PM. Decoding the forces that shape muscle stem cell function. Curr Top Dev Biol 2024; 158:279-306. [PMID: 38670710 DOI: 10.1016/bs.ctdb.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is a force-producing organ composed of muscle tissues, connective tissues, blood vessels, and nerves, all working in synergy to enable movement and provide support to the body. While robust biomechanical descriptions of skeletal muscle force production at the body or tissue level exist, little is known about force application on microstructures within the muscles, such as cells. Among various cell types, skeletal muscle stem cells reside in the muscle tissue environment and play a crucial role in driving the self-repair process when muscle damage occurs. Early evidence indicates that the fate and function of skeletal muscle stem cells are controlled by both biophysical and biochemical factors in their microenvironments, but much remains to accomplish in quantitatively describing the biophysical muscle stem cell microenvironment. This book chapter aims to review current knowledge on the influence of biophysical stresses and landscape properties on muscle stem cells in heath, aging, and diseases.
Collapse
Affiliation(s)
- Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Damour A, Delalande P, Cordelières F, Lafon ME, Faure M, Segovia-Kueny S, Stalens C, Mathis S, Spinazzi M, Violleau MH, Wodrich H, Solé G. Anti-SARS-CoV-2 (COVID-19) vaccination efficacy in patients with severe neuromuscular diseases. Rev Neurol (Paris) 2023; 179:983-992. [PMID: 37633734 DOI: 10.1016/j.neurol.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 08/28/2023]
Abstract
INTRODUCTION Patients with severe neuromuscular disease (sNMD) are considered at high risk of severe COVID-19. Muscle tissue is often replaced by fibroadipose tissue in these diseases whereas the new mRNA-based vaccines are injected intramuscularly. We aimed at evaluating the efficacy of two injections associated with a booster injection of mRNA vaccine in these patients. METHODS We performed an observational, prospective, single-centre study to investigate the level of anti-S antibodies (Abs) and their neutralization activity at weeks 6 (W6) and 24 (W24) after two injections of mRNA-1273 vaccine and at weeks 12 (BW12) and 29 (BW29) after a booster injection of BNT162b2 vaccine in patients with sNMD. RESULTS Thirty-three patients with sNMD were included. At W6, 30 patients (90.1%) showed a protective serum level of specific anti-S Abs with a strong neutralization capacity. We observed a decline over time: only 12 patients (36.3%) retained anti-S Abs levels considered as protective at W24. The neutralization activity remained above the cut off in 23 (69.7%). The booster vaccination restored robust neutralization activity for all analysed 22 patients (100%) at BW12, which was maintained without any significant drop at BW29 (16). No severe adverse event was reported in this cohort and none of the 33 patients developed symptomatic COVID-19 over one year. CONCLUSIONS This study provides evidence that most sNMD patients receiving two injections of COVID-19 mRNA-based vaccines develop a strong humoral response after vaccination. A decline over time was observed but a single booster injection restores a long-term immunity. Moreover, no safety issues were observed.
Collapse
Affiliation(s)
- A Damour
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University Bordeaux, Bordeaux, France
| | - P Delalande
- MAS Yolaine-de-Kepper, Saint-Georges-sur-Loire, France
| | - F Cordelières
- Bordeaux Imaging Center, BIC, UMS 3420, US 4, University Bordeaux, CNRS, Inserm, Bordeaux, France
| | - M E Lafon
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University Bordeaux, Bordeaux, France; Virology Laboratory, Pellegrin Hospital, Bordeaux University Hospitals, Bordeaux, France
| | - M Faure
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University Bordeaux, Bordeaux, France
| | | | | | - S Mathis
- Neuromuscular Reference Center AOC, Neurology and Neuromuscular Diseases Department, Pellegrin Hospital, Bordeaux University Hospitals, Bordeaux, France
| | - M Spinazzi
- Neuromuscular Reference Center AOC, Neurology Department, Angers University Hospital Center, Angers, France
| | - M H Violleau
- Neuromuscular Reference Center AOC, Neurology and Neuromuscular Diseases Department, Pellegrin Hospital, Bordeaux University Hospitals, Bordeaux, France
| | - H Wodrich
- CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University Bordeaux, Bordeaux, France
| | - G Solé
- Neuromuscular Reference Center AOC, Neurology and Neuromuscular Diseases Department, Pellegrin Hospital, Bordeaux University Hospitals, Bordeaux, France.
| |
Collapse
|
25
|
Mogharehabed F, Czubryt MP. The role of fibrosis in the pathophysiology of muscular dystrophy. Am J Physiol Cell Physiol 2023; 325:C1326-C1335. [PMID: 37781738 DOI: 10.1152/ajpcell.00196.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Muscular dystrophy exerts significant and dramatic impacts on affected patients, including progressive muscle wasting leading to lung and heart failure, and results in severely curtailed lifespan. Although the focus for many years has been on the dysfunction induced by the loss of function of dystrophin or related components of the striated muscle costamere, recent studies have demonstrated that accompanying pathologies, particularly muscle fibrosis, also contribute adversely to patient outcomes. A significant body of research has now shown that therapeutically targeting these accompanying pathologies via their underlying molecular mechanisms may provide novel approaches to patient management that can complement the current standard of care. In this review, we discuss the interplay between muscle fibrosis and muscular dystrophy pathology. A better understanding of these processes will contribute to improved patient care options, restoration of muscle function, and reduced patient morbidity and mortality.
Collapse
Affiliation(s)
- Farnaz Mogharehabed
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
26
|
Pace M, Cannella R, Di Stefano V, Lupica A, Alonge P, Morici G, Brighina F, Brancato F, Midiri F, Galia M. Usefulness and Clinical Impact of Whole-Body MRI in Detecting Autoimmune Neuromuscular Disorders. Brain Sci 2023; 13:1500. [PMID: 37891867 PMCID: PMC10605918 DOI: 10.3390/brainsci13101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Autoimmune neuromuscular diseases are a group of heterogenous pathologies secondary to the activation of the immune system that damage the structures of the peripheric nerve, the neuromuscular junction, or the skeleton muscle. The diagnosis of autoimmune neuromuscular disorders comprises a combination of data from clinical, laboratory, electromyography, imaging exam, and biopsy. Particularly, the whole-body MRI examination in the last two decades has been of great use in the assessment of neuromuscular disorders. MRI provides information about the structures involved and the status of activity of the disease. It can also be used as a biomarker, detect the pattern of specific muscle involvement, and is a useful tool for targeting the optimal muscle site for biopsy. In this work, we summarized the most used technical protocol of whole-body MRI and the role of this imaging technique in autoimmune neuromuscular disorders.
Collapse
Affiliation(s)
- Mario Pace
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University Hospital “Paolo Giaccone”, Via del Vespro 129, 90127 Palermo, Italy; (M.P.); (R.C.); (G.M.)
| | - Roberto Cannella
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University Hospital “Paolo Giaccone”, Via del Vespro 129, 90127 Palermo, Italy; (M.P.); (R.C.); (G.M.)
| | - Vincenzo Di Stefano
- Section of Neurology, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, 90127 Palermo, Italy; (V.D.S.); (A.L.); (P.A.); (F.B.)
| | - Antonino Lupica
- Section of Neurology, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, 90127 Palermo, Italy; (V.D.S.); (A.L.); (P.A.); (F.B.)
| | - Paolo Alonge
- Section of Neurology, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, 90127 Palermo, Italy; (V.D.S.); (A.L.); (P.A.); (F.B.)
| | - Giulio Morici
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University Hospital “Paolo Giaccone”, Via del Vespro 129, 90127 Palermo, Italy; (M.P.); (R.C.); (G.M.)
| | - Filippo Brighina
- Section of Neurology, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, 90127 Palermo, Italy; (V.D.S.); (A.L.); (P.A.); (F.B.)
| | - Federica Brancato
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), University of Palermo, 90133 Palermo, Italy;
| | - Federico Midiri
- IRCCS Ospedale Galeazzi-Sant’Ambrogio, Via Cristina Belgioioso 173, 20161 Milano, Italy;
| | - Massimo Galia
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University Hospital “Paolo Giaccone”, Via del Vespro 129, 90127 Palermo, Italy; (M.P.); (R.C.); (G.M.)
| |
Collapse
|
27
|
Cardone N, Taglietti V, Baratto S, Kefi K, Periou B, Gitiaux C, Barnerias C, Lafuste P, Pharm FL, Pharm JN, Panicucci C, Desguerre I, Bruno C, Authier FJ, Fiorillo C, Relaix F, Malfatti E. Myopathologic trajectory in Duchenne muscular dystrophy (DMD) reveals lack of regeneration due to senescence in satellite cells. Acta Neuropathol Commun 2023; 11:167. [PMID: 37858263 PMCID: PMC10585739 DOI: 10.1186/s40478-023-01657-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating X-linked muscular disease, caused by mutations in the DMD gene encoding Dystrophin and affecting 1:5000 boys worldwide. Lack of Dystrophin leads to progressive muscle wasting and degeneration resulting in cardiorespiratory failure. Despite the absence of a definitive cure, innovative therapeutic avenues are emerging. Myopathologic studies are important to further understand the biological mechanisms of the disease and to identify histopathologic benchmarks for clinical evaluations. We conducted a myopathologic analysis on twenty-four muscle biopsies from DMD patients, with particular emphasis on regeneration, fibro-adipogenic progenitors and muscle stem cells behavior. We describe an increase in content of fibro-adipogenic progenitors, central orchestrators of fibrotic progression and lipid deposition, concurrently with a decline in muscle regenerative capacity. This regenerative impairment strongly correlates with compromised activation and expansion of muscle stem cells. Furthermore, our study uncovers an early acquisition of a senescence phenotype by DMD-afflicted muscle stem cells. Here we describe the myopathologic trajectory intrinsic to DMD and establish muscle stem cell senescence as a pivotal readout for future therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Serena Baratto
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Kaouthar Kefi
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
| | - Baptiste Periou
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
- APHP, Filnemus, EuroNMD, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Paris, France
| | - Ciryl Gitiaux
- Neurophysiologie clinique pédiatrique, Centre de référence des maladies neuromusculaires Hôpital universitaire Necker-Enfants Malades-Paris, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Université Paris Est, U955 INSERM, IMRB, APHP, Creteil, France
- Reference Center for Neuromuscular Disorders, Filnemus, EuroNMD, Assistance Publique-Hôpitaux de Paris (APHP) Necker Enfants Malades Hospital, Paris, France
| | - Christine Barnerias
- Reference Center for Neuromuscular Disorders, Filnemus, EuroNMD, Assistance Publique-Hôpitaux de Paris (APHP) Necker Enfants Malades Hospital, Paris, France
| | - Peggy Lafuste
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
| | - France Leturcq Pharm
- Service de Médecine Génomique, Maladies de Système et d'Organe - Fédération de Génétique et de Médecine Génomique, DMU BioPhyGen, APHP Centre-Université Paris Cité - Hôpital Cochin, Paris, France
| | - Juliette Nectoux Pharm
- Service de Médecine Génomique, Maladies de Système et d'Organe - Fédération de Génétique et de Médecine Génomique, DMU BioPhyGen, APHP Centre-Université Paris Cité - Hôpital Cochin, Paris, France
| | - Chiara Panicucci
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Isabelle Desguerre
- Reference Center for Neuromuscular Disorders, Filnemus, EuroNMD, Assistance Publique-Hôpitaux de Paris (APHP) Necker Enfants Malades Hospital, Paris, France
| | - Claudio Bruno
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health-DINOGMI, University of Genova, Genoa, Italy
| | - François-Jerome Authier
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France
- APHP, Filnemus, EuroNMD, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Paris, France
| | - Chiara Fiorillo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health-DINOGMI, University of Genova, Genoa, Italy
- Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Frederic Relaix
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France.
| | - Edoardo Malfatti
- Univ Paris Est Creteil, INSERM, IMRB, 94010, Creteil, France.
- APHP, Filnemus, EuroNMD, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Henri Mondor Hospital, Paris, France.
| |
Collapse
|
28
|
Brown A, Morris B, Kamau JK, Alshudukhi AA, Jama A, Ren H. Automated Image Analysis Pipeline Development to Monitor Disease Progression in Muscular Dystrophy Using Cell Profiler. ARCHIVES OF MICROBIOLOGY & IMMUNOLOGY 2023; 7:178-187. [PMID: 37799294 PMCID: PMC10552673 DOI: 10.26502/ami.936500115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Muscular dystrophies are inherited disorders that are characterized by progressive muscle degeneration. These disorders are caused by mutations in the genes encoding structural elements within the muscle, which leads to increased vulnerability to mechanical stress and sarcolemma damage. Although myofibers have the capacity to regenerate, the newly formed myofibers still harbor genetic mutation, which induces continuous cycles of muscle fiber death and regeneration. This repeated cycling is accompanied by an inflammatory response which eventually provokes excessive fibrotic deposition. The histopathological changes in skeletal muscle tissue are central to the disease pathogenesis. Analysis of muscle histopathology is the gold standard for monitoring muscle health and disease progression. However, manual, or semi-manual quantification methods, are not only immensely tedious but can be subjective. Here, we present four image analysis pipelines built in CellProfiler which enable users without a background in computer vision or programming to quantitatively analyze biological images. These image analysis pipelines are designed to quantify skeletal muscle histopathological staining for membrane damage, the abundance and size distribution of regenerating muscle fibers, inflammation via quantification of CD68+ M1 macrophages, and collagen deposition. Additionally, we discuss methods to address common errors associated with the quantification of microscopy images. These automated tools can not only improve workflow efficiency but can provide a better understanding of the histopathological progression of muscular dystrophy.
Collapse
Affiliation(s)
- Alexandra Brown
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Brooklyn Morris
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - John Karanja Kamau
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Abdullah A Alshudukhi
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdulrahman Jama
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Hongmei Ren
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
29
|
Heezen LGM, Abdelaal T, van Putten M, Aartsma-Rus A, Mahfouz A, Spitali P. Spatial transcriptomics reveal markers of histopathological changes in Duchenne muscular dystrophy mouse models. Nat Commun 2023; 14:4909. [PMID: 37582915 PMCID: PMC10427630 DOI: 10.1038/s41467-023-40555-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
Duchenne muscular dystrophy is caused by mutations in the DMD gene, leading to lack of dystrophin. Chronic muscle damage eventually leads to histological alterations in skeletal muscles. The identification of genes and cell types driving tissue remodeling is a key step to developing effective therapies. Here we use spatial transcriptomics in two Duchenne muscular dystrophy mouse models differing in disease severity to identify gene expression signatures underlying skeletal muscle pathology and to directly link gene expression to muscle histology. We perform deconvolution analysis to identify cell types contributing to histological alterations. We show increased expression of specific genes in areas of muscle regeneration (Myl4, Sparc, Hspg2), fibrosis (Vim, Fn1, Thbs4) and calcification (Bgn, Ctsk, Spp1). These findings are confirmed by smFISH. Finally, we use differentiation dynamic analysis in the D2-mdx muscle to identify muscle fibers in the present state that are predicted to become affected in the future state.
Collapse
Affiliation(s)
- L G M Heezen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - T Abdelaal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Systems and Biomedical Engineering Department, Faculty of Engineering Cairo University, Giza, Egypt
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - M van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - A Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - A Mahfouz
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - P Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
30
|
Martins L, Amorim WW, Gregnani MF, de Carvalho Araújo R, Qadri F, Bader M, Pesquero JB. Kinin receptors regulate skeletal muscle regeneration: differential effects for B1 and B2 receptors. Inflamm Res 2023; 72:1583-1601. [PMID: 37464053 PMCID: PMC10499706 DOI: 10.1007/s00011-023-01766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE AND DESIGN After traumatic skeletal muscle injury, muscle healing is often incomplete and produces extensive fibrosis. Bradykinin (BK) reduces fibrosis in renal and cardiac damage models through the B2 receptor. The B1 receptor expression is induced by damage, and blocking of the kallikrein-kinin system seems to affect the progression of muscular dystrophy. We hypothesized that both kinin B1 and B2 receptors could play a differential role after traumatic muscle injury, and the lack of the B1 receptor could produce more cellular and molecular substrates for myogenesis and fewer substrates for fibrosis, leading to better muscle healing. MATERIAL AND METHODS To test this hypothesis, tibialis anterior muscles of kinin receptor knockout animals were subjected to traumatic injury. Myogenesis, angiogenesis, fibrosis, and muscle functioning were evaluated. RESULTS Injured B1KO mice showed a faster healing progression of the injured area with a larger amount of central nucleated fiber post-injury when compared to control mice. In addition, they exhibited higher neovasculogenic capacity, maintaining optimal tissue perfusion for the post-injury phase; had higher amounts of myogenic markers with less inflammatory infiltrate and tissue destruction. This was followed by higher amounts of SMAD7 and lower amounts of p-SMAD2/3, which resulted in less fibrosis. In contrast, B2KO and B1B2KO mice showed more severe tissue destruction and excessive fibrosis. B1KO animals had better results in post-injury functional tests compared to control animals. CONCLUSIONS We demonstrate that injured skeletal muscle tissues have a better repair capacity with less fibrosis in the presence of B2 receptor and absence of B1 receptor, including better performances in functional tests.
Collapse
Affiliation(s)
- Leonardo Martins
- Division of Medical Sciences, Laboratory of Transcriptional Regulation, Institute of Medical Biology of Polish Academy of Sciences (IMB-PAN), 3a Tylna St., 90-364, Łódź, Poland.
- Center for Research and Molecular Diagnosis of Genetic Diseases, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th Floor, São Paulo, 04039032, Brazil.
- Department of Biochemistry and Molecular Biology, Federal University of São Paulo, Rua Três de Maio 100, 4th Floor, São Paulo, 04044-020, Brazil.
| | - Weslley Wallace Amorim
- Center for Research and Molecular Diagnosis of Genetic Diseases, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th Floor, São Paulo, 04039032, Brazil
| | - Marcos Fernandes Gregnani
- Laboratory of Exercise Genetics and Metabolism, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th Floor, São Paulo, 04039032, Brazil
| | - Ronaldo de Carvalho Araújo
- Laboratory of Exercise Genetics and Metabolism, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th Floor, São Paulo, 04039032, Brazil
| | - Fatimunnisa Qadri
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Potsdamer Str. 58, 10785, Berlin, Germany
| | - João Bosco Pesquero
- Center for Research and Molecular Diagnosis of Genetic Diseases, Federal University of São Paulo, Rua Pedro de Toledo 669, 9th Floor, São Paulo, 04039032, Brazil.
- Department of Biophysics, Federal University of São Paulo, Rua Botucatu 862, 6th Floor, São Paulo, 04023-062, Brazil.
| |
Collapse
|
31
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Extracellular Matrix Proteomics: The mdx-4cv Mouse Diaphragm as a Surrogate for Studying Myofibrosis in Dystrophinopathy. Biomolecules 2023; 13:1108. [PMID: 37509144 PMCID: PMC10377647 DOI: 10.3390/biom13071108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The progressive degeneration of the skeletal musculature in Duchenne muscular dystrophy is accompanied by reactive myofibrosis, fat substitution, and chronic inflammation. Fibrotic changes and reduced tissue elasticity correlate with the loss in motor function in this X-chromosomal disorder. Thus, although dystrophinopathies are due to primary abnormalities in the DMD gene causing the almost-complete absence of the cytoskeletal Dp427-M isoform of dystrophin in voluntary muscles, the excessive accumulation of extracellular matrix proteins presents a key histopathological hallmark of muscular dystrophy. Animal model research has been instrumental in the characterization of dystrophic muscles and has contributed to a better understanding of the complex pathogenesis of dystrophinopathies, the discovery of new disease biomarkers, and the testing of novel therapeutic strategies. In this article, we review how mass-spectrometry-based proteomics can be used to study changes in key components of the endomysium, perimysium, and epimysium, such as collagens, proteoglycans, matricellular proteins, and adhesion receptors. The mdx-4cv mouse diaphragm displays severe myofibrosis, making it an ideal model system for large-scale surveys of systematic alterations in the matrisome of dystrophic fibers. Novel biomarkers of myofibrosis can now be tested for their appropriateness in the preclinical and clinical setting as diagnostic, pharmacodynamic, prognostic, and/or therapeutic monitoring indicators.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
32
|
Mázala DAG, Hindupur R, Moon YJ, Shaikh F, Gamu IH, Alladi D, Panci G, Weiss-Gayet M, Chazaud B, Partridge TA, Novak JS, Jaiswal JK. Altered muscle niche contributes to myogenic deficit in the D2-mdx model of severe DMD. Cell Death Discov 2023; 9:224. [PMID: 37402716 PMCID: PMC10319851 DOI: 10.1038/s41420-023-01503-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Lack of dystrophin expression is the underlying genetic basis for Duchenne muscular dystrophy (DMD). However, disease severity varies between patients, based on specific genetic modifiers. D2-mdx is a model for severe DMD that exhibits exacerbated muscle degeneration and failure to regenerate even in the juvenile stage of the disease. We show that poor regeneration of juvenile D2-mdx muscles is associated with an enhanced inflammatory response to muscle damage that fails to resolve efficiently and supports the excessive accumulation of fibroadipogenic progenitors (FAPs), leading to increased fibrosis. Unexpectedly, the extent of damage and degeneration in juvenile D2-mdx muscle is significantly reduced in adults, and is associated with the restoration of the inflammatory and FAP responses to muscle injury. These improvements enhance regenerative myogenesis in the adult D2-mdx muscle, reaching levels comparable to the milder B10-mdx model of DMD. Ex vivo co-culture of healthy satellite cells (SCs) with juvenile D2-mdx FAPs reduces their fusion efficacy. Wild-type juvenile D2 mice also manifest regenerative myogenic deficit and glucocorticoid treatment improves their muscle regeneration. Our findings indicate that aberrant stromal cell responses contribute to poor regenerative myogenesis and greater muscle degeneration in juvenile D2-mdx muscles and reversal of this reduces pathology in adult D2-mdx muscle, identifying these responses as a potential therapeutic target for the treatment of DMD.
Collapse
Affiliation(s)
- Davi A G Mázala
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
- Department of Kinesiology, College of Health Professions, Towson University, Towson, MD, 21252, USA
| | - Ravi Hindupur
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
| | - Young Jae Moon
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
- Department of Biochemistry and Orthopaedic Surgery, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea
| | - Fatima Shaikh
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
| | - Iteoluwakishi H Gamu
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
| | - Dhruv Alladi
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
| | - Georgiana Panci
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Michèle Weiss-Gayet
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Terence A Partridge
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - James S Novak
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA.
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20012, USA.
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| |
Collapse
|
33
|
Dubreil L, Damane N, Fleurisson R, Charrier M, Pichon J, Leroux I, Schleder C, Ledevin M, Larcher T, Jamme F, Puentes J, Rouger K. Specific and label-free endogenous signature of dystrophic muscle by Synchrotron deep ultraviolet radiation. Sci Rep 2023; 13:10808. [PMID: 37402811 PMCID: PMC10319894 DOI: 10.1038/s41598-023-37762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
Dystrophic muscle is characterized by necrosis/regeneration cycles, inflammation, and fibro-adipogenic development. Conventional histological stainings provide essential topographical data of this remodeling but may be limited to discriminate closely related pathophysiological contexts. They fail to mention microarchitecture changes linked to the nature and spatial distribution of tissue compartment components. We investigated whether label-free tissue autofluorescence revealed by Synchrotron deep ultraviolet (DUV) radiation could serve as an additional tool for monitoring dystrophic muscle remodeling. Using widefield microscopy with specific emission fluorescence filters and microspectroscopy defined by high spectral resolution, we analyzed samples from healthy dogs and two groups of dystrophic dogs: naïve (severely affected) and MuStem cell-transplanted (clinically stabilized) animals. Multivariate statistical analysis and machine learning approaches demonstrated that autofluorescence emitted at 420-480 nm by the Biceps femoris muscle effectively discriminates between healthy, dystrophic, and transplanted dog samples. Microspectroscopy showed that dystrophic dog muscle displays higher and lower autofluorescence due to collagen cross-linking and NADH respectively than that of healthy and transplanted dogs, defining biomarkers to evaluate the impact of cell transplantation. Our findings demonstrate that DUV radiation is a sensitive, label-free method to assess the histopathological status of dystrophic muscle using small amounts of tissue, with potential applications in regenerative medicine.
Collapse
Affiliation(s)
| | - Noreddine Damane
- Oniris, INRAE, PAnTher, 44300, Nantes, France
- IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238, Brest, France
| | | | | | | | | | | | | | | | - Frédéric Jamme
- Synchrotron SOLEIL, BP48, L'Orme Des Merisiers, 91120, Gif-Sur-Yvette, France
| | - John Puentes
- IMT Atlantique, Lab-STICC, UMR CNRS 6285, 29238, Brest, France
| | - Karl Rouger
- Oniris, INRAE, PAnTher, 44300, Nantes, France.
| |
Collapse
|
34
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
35
|
Kodippili K, Rudnicki MA. Satellite cell contribution to disease pathology in Duchenne muscular dystrophy. Front Physiol 2023; 14:1180980. [PMID: 37324396 PMCID: PMC10266354 DOI: 10.3389/fphys.2023.1180980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Progressive muscle weakness and degeneration characterize Duchenne muscular dystrophy (DMD), a lethal, x-linked neuromuscular disorder that affects 1 in 5,000 boys. Loss of dystrophin protein leads to recurrent muscle degeneration, progressive fibrosis, chronic inflammation, and dysfunction of skeletal muscle resident stem cells, called satellite cells. Unfortunately, there is currently no cure for DMD. In this mini review, we discuss how satellite cells in dystrophic muscle are functionally impaired, and how this contributes to the DMD pathology, and the tremendous potential of restoring endogenous satellite cell function as a viable treatment strategy to treat this debilitating and fatal disease.
Collapse
Affiliation(s)
- Kasun Kodippili
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A. Rudnicki
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
36
|
Mázala DAG, Hindupur R, Moon YJ, Shaikh F, Gamu IH, Alladi D, Panci G, Weiss-Gayet M, Chazaud B, Partridge TA, Novak JS, Jaiswal JK. Altered muscle niche contributes to myogenic deficit in the D2- mdx model of severe DMD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534413. [PMID: 37034785 PMCID: PMC10081277 DOI: 10.1101/2023.03.27.534413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lack of dystrophin is the genetic basis for the Duchenne muscular dystrophy (DMD). However, disease severity varies between patients, based on specific genetic modifiers. D2- mdx is a model for severe DMD that exhibits exacerbated muscle degeneration and failure to regenerate even in the juvenile stage of the disease. We show that poor regeneration of juvenile D2- mdx muscles is associated with enhanced inflammatory response to muscle damage that fails to resolve efficiently and supports excessive accumulation of fibroadipogenic progenitors (FAPs). Unexpectedly, the extent of damage and degeneration of juvenile D2- mdx muscle is reduced in adults and is associated with the restoration of the inflammatory and FAP responses to muscle injury. These improvements enhance myogenesis in the adult D2- mdx muscle, reaching levels comparable to the milder (B10- mdx ) mouse model of DMD. Ex vivo co-culture of healthy satellite cells (SCs) with the juvenile D2- mdx FAPs reduced their fusion efficacy and in vivo glucocorticoid treatment of juvenile D2 mouse improved muscle regeneration. Our findings indicate that aberrant stromal cell response contributes to poor myogenesis and greater muscle degeneration in dystrophic juvenile D2- mdx muscles and reversal of this reduces pathology in adult D2- mdx mouse muscle, identifying these as therapeutic targets to treat dystrophic DMD muscles.
Collapse
Affiliation(s)
- Davi A. G. Mázala
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Department of Kinesiology, College of Health Professions, Towson University, Towson, MD, 21252, USA
| | - Ravi Hindupur
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
| | - Young Jae Moon
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Department of Biochemistry and Orthopaedic Surgery, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea
| | - Fatima Shaikh
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
| | - Iteoluwakishi H. Gamu
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
| | - Dhruv Alladi
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
| | - Georgiana Panci
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Michèle Weiss-Gayet
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, INSERM U1513, CNRS UMR 5261, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - Terence A. Partridge
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C., 20052, USA
| | - James S. Novak
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C., 20052, USA
| | - Jyoti K. Jaiswal
- Center for Genetic Medicine Research, Children’s National Research Institute, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, D.C., 20012, USA
- Departments of Pediatrics and Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C., 20052, USA
| |
Collapse
|
37
|
Sahinyan K, Lazure F, Blackburn DM, Soleimani VD. Decline of regenerative potential of old muscle stem cells: contribution to muscle aging. FEBS J 2023; 290:1267-1289. [PMID: 35029021 DOI: 10.1111/febs.16352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 01/01/2023]
Abstract
Muscle stem cells (MuSCs) are required for life-long muscle regeneration. In general, aging has been linked to a decline in the numbers and the regenerative potential of MuSCs. Muscle regeneration depends on the proper functioning of MuSCs, which is itself dependent on intricate interactions with its niche components. Aging is associated with both cell-intrinsic and niche-mediated changes, which can be the result of transcriptional, posttranscriptional, or posttranslational alterations in MuSCs or in the components of their niche. The interplay between cell intrinsic alterations in MuSCs and changes in the stem cell niche environment during aging and its impact on the number and the function of MuSCs is an important emerging area of research. In this review, we discuss whether the decline in the regenerative potential of MuSCs with age is the cause or the consequence of aging skeletal muscle. Understanding the effect of aging on MuSCs and the individual components of their niche is critical to develop effective therapeutic approaches to diminish or reverse the age-related defects in muscle regeneration.
Collapse
Affiliation(s)
- Korin Sahinyan
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Darren M Blackburn
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| |
Collapse
|
38
|
Terrill JR, Huchet C, Le Guiner C, Lafoux A, Caudal D, Tulangekar A, Bryson-Richardson RJ, Sztal TE, Grounds MD, Arthur PG. Muscle Pathology in Dystrophic Rats and Zebrafish Is Unresponsive to Taurine Treatment, Compared to the mdx Mouse Model for Duchenne Muscular Dystrophy. Metabolites 2023; 13:metabo13020232. [PMID: 36837851 PMCID: PMC9963000 DOI: 10.3390/metabo13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Inflammation and oxidative stress are strongly implicated in the pathology of Duchenne muscular dystrophy (DMD), and the sulphur-containing amino acid taurine ameliorates both and decreases dystropathology in the mdx mouse model for DMD. We therefore further tested taurine as a therapy using dystrophic DMDmdx rats and dmd zebrafish models for DMD that have a more severe dystropathology. However, taurine treatment had little effect on the indices of dystropathology in both these models. While we and others have previously observed a deficiency in taurine in mdx mice, in the current study we show that the rat and zebrafish models had increased taurine content compared with wild-type, and taurine treatment did not increase muscle taurine levels. We therefore hypothesised that endogenous levels of taurine are a key determinate in potential taurine treatment efficacy. Because of this, we felt it important to measure taurine levels in DMD patient plasma samples and showed that in non-ambulant patients (but not in younger patients) there was a deficiency of taurine. These data suggest that taurine homeostasis varies greatly between species and may be influenced by age and disease progression. The potential for taurine to be an effective therapy may depend on such variables.
Collapse
Affiliation(s)
- Jessica R. Terrill
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
- Correspondence:
| | - Corinne Huchet
- TaRGeT Lab, Translational Research for Gene Therapy, INSERM, UMR 1089, Nantes Université, CHU Nantes, 440200 Nantes, France
| | - Caroline Le Guiner
- TaRGeT Lab, Translational Research for Gene Therapy, INSERM, UMR 1089, Nantes Université, CHU Nantes, 440200 Nantes, France
| | - Aude Lafoux
- Therassay Platform, CAPACITES, Nantes Université, 44007 Nantes, France
| | - Dorian Caudal
- Therassay Platform, CAPACITES, Nantes Université, 44007 Nantes, France
| | - Ankita Tulangekar
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | | | - Tamar E. Sztal
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Miranda D. Grounds
- School of Human Sciences, the University of Western Australia, Perth 6009, Australia
| | - Peter G. Arthur
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| |
Collapse
|
39
|
Dubinin MV, Starinets VS, Chelyadnikova YA, Belosludtseva NV, Mikheeva IB, Penkina DK, Igoshkina AD, Talanov EY, Kireev II, Zorov DB, Belosludtsev KN. Effect of Large-Conductance Calcium-Dependent K+ Channel Activator NS1619 on Function of Mitochondria in the Heart of Dystrophin-Deficient Mice. BIOCHEMISTRY (MOSCOW) 2023; 88:189-201. [PMID: 37072326 DOI: 10.1134/s0006297923020037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Dystrophin-deficient muscular dystrophy (Duchenne dystrophy) is characterized by impaired ion homeostasis, in which mitochondria play an important role. In the present work, using a model of dystrophin-deficient mdx mice, we revealed decrease in the efficiency of potassium ion transport and total content of this ion in the heart mitochondria. We evaluated the effect of chronic administration of the benzimidazole derivative NS1619, which is an activator of the large-conductance Ca2+-dependent K+ channel (mitoBKCa), on the structure and function of organelles and the state of the heart muscle. It was shown that NS1619 improves K+ transport and increases content of the ion in the heart mitochondria of mdx mice, but this is not associated with the changes in the level of mitoBKCa protein and expression of the gene encoding this protein. The effect of NS1619 was accompanied by the decrease in the intensity of oxidative stress, assessed by the level of lipid peroxidation products (MDA products), and normalization of the mitochondrial ultrastructure in the heart of mdx mice. In addition, we found positive changes in the tissue manifested by the decrease in the level of fibrosis in the heart of dystrophin-deficient animals treated with NS1619. It was noted that NS1619 had no significant effect on the structure and function of heart mitochondria in the wild-type animals. The paper discusses mechanisms of influence of NS1619 on the function of mouse heart mitochondria in Duchenne muscular dystrophy and prospects for applying this approach to correct pathology.
Collapse
Affiliation(s)
| | - Vlada S Starinets
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | - Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Irina B Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | | - Eugeny Yu Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Igor I Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Konstantin N Belosludtsev
- Mari State University, Yoshkar-Ola, 424001, Mari El, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
40
|
Dubuisson N, Versele R, Planchon C, Selvais CM, Noel L, Abou-Samra M, Davis-López de Carrizosa MA. Histological Methods to Assess Skeletal Muscle Degeneration and Regeneration in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:16080. [PMID: 36555721 PMCID: PMC9786356 DOI: 10.3390/ijms232416080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive disease caused by the loss of function of the protein dystrophin. This protein contributes to the stabilisation of striated cells during contraction, as it anchors the cytoskeleton with components of the extracellular matrix through the dystrophin-associated protein complex (DAPC). Moreover, absence of the functional protein affects the expression and function of proteins within the DAPC, leading to molecular events responsible for myofibre damage, muscle weakening, disability and, eventually, premature death. Presently, there is no cure for DMD, but different treatments help manage some of the symptoms. Advances in genetic and exon-skipping therapies are the most promising intervention, the safety and efficiency of which are tested in animal models. In addition to in vivo functional tests, ex vivo molecular evaluation aids assess to what extent the therapy has contributed to the regenerative process. In this regard, the later advances in microscopy and image acquisition systems and the current expansion of antibodies for immunohistological evaluation together with the development of different spectrum fluorescent dyes have made histology a crucial tool. Nevertheless, the complexity of the molecular events that take place in dystrophic muscles, together with the rise of a multitude of markers for each of the phases of the process, makes the histological assessment a challenging task. Therefore, here, we summarise and explain the rationale behind different histological techniques used in the literature to assess degeneration and regeneration in the field of dystrophinopathies, focusing especially on those related to DMD.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
- Neuromuscular Reference Center, Cliniques Universitaires Saint-Luc (CUSL), Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Chloé Planchon
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Camille M. Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Laurence Noel
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - María A. Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
41
|
Guo Z, Geng M, Huang Y, Han G, Jing R, Lin C, Zhang X, Zhang M, Fan G, Wang F, Yin H. Upregulation of Wilms' Tumor 1 in epicardial cells increases cardiac fibrosis in dystrophic mice. Cell Death Differ 2022; 29:1928-1940. [PMID: 35306537 PMCID: PMC9525265 DOI: 10.1038/s41418-022-00979-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
Cardiomyopathy is a primary cause of mortality in Duchenne muscular dystrophy (DMD) patients. Mechanistic understanding of cardiac fibrosis holds the key to effective DMD cardiomyopathy treatments. Here we demonstrate that upregulation of Wilms' tumor 1 (Wt1) gene in epicardial cells increased cardiac fibrosis and impaired cardiac function in 8-month old mdx mice lacking the RNA component of telomerase (mdx/mTR-/-). Levels of phosphorylated IƙBα and p65 significantly rose in mdx/mTR-/- dystrophic hearts and Wt1 expression declined in the epicardium of mdx/mTR-/- mice when nuclear factor κB (NF-κB) and inflammation were inhibited by metformin. This demonstrates that Wt1 expression in epicardial cells is dependent on inflammation-triggered NF-κB activation. Metformin effectively prevented cardiac fibrosis and improved cardiac function in mdx/mTR-/- mice. Our study demonstrates that upregulation of Wt1 in epicardial cells contributes to fibrosis in dystrophic hearts and metformin-mediated inhibition of NF-κB can ameliorate the pathology, and thus showing clinical potential for dystrophic cardiomyopathy. Translational Perspective: Cardiomyopathy is a major cause of mortality in Duchenne muscular dystrophy (DMD) patients. Promising exon-skipping treatments are moving to the clinic, but getting sufficient dystrophin expression in the heart has proven challenging. The present study shows that Wilms' Tumor 1 (Wt1) upregulation in epicardial cells is primarily responsible for cardiac fibrosis and dysfunction of dystrophic mice and likely of DMD patients. Metformin effectively prevents cardiac fibrosis and improves cardiac function in dystrophic mice, thus representing a treatment option for DMD patients on top of existing therapies.
Collapse
Affiliation(s)
- Zhenglong Guo
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
- Medical Genetic Institute of Henan Province, Henan Provincial Key laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Mengyuan Geng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Yuting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Changling Road, Xiqing District, Tianjin, 300193, China
| | - Gang Han
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Renwei Jing
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Caorui Lin
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China
| | - Xiaoning Zhang
- Department of Genetics, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Miaomiao Zhang
- Department of Genetics, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Changling Road, Xiqing District, Tianjin, 300193, China
| | - Feng Wang
- Department of Genetics, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - HaiFang Yin
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases & School of Medical Technology & Department of Cell Biology, Tianjin Medical University, Guangdong Road, Tianjin, 300203, China.
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
42
|
The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun Biol 2022; 5:1022. [PMID: 36168044 PMCID: PMC9515174 DOI: 10.1038/s42003-022-03980-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Dystrophin is the central protein of the dystrophin-glycoprotein complex (DGC) in skeletal and heart muscle cells. Dystrophin connects the actin cytoskeleton to the extracellular matrix (ECM). Severing the link between the ECM and the intracellular cytoskeleton has a devastating impact on the homeostasis of skeletal muscle cells, leading to a range of muscular dystrophies. In addition, the loss of a functional DGC leads to progressive dilated cardiomyopathy and premature death. Dystrophin functions as a molecular spring and the DGC plays a critical role in maintaining the integrity of the sarcolemma. Additionally, evidence is accumulating, linking the DGC to mechanosignalling, albeit this role is still less understood. This review article aims at providing an up-to-date perspective on the DGC and its role in mechanotransduction. We first discuss the intricate relationship between muscle cell mechanics and function, before examining the recent research for a role of the dystrophin glycoprotein complex in mechanotransduction and maintaining the biomechanical integrity of muscle cells. Finally, we review the current literature to map out how DGC signalling intersects with mechanical signalling pathways to highlight potential future points of intervention, especially with a focus on cardiomyopathies. A review of the function of the Dystrophic Glycoprotein Complex (DGC) in mechanosignaling provides an overview of the various components of DGC and potential mechanopathogenic mechanisms, particularly as they relate to muscular dystrophy.
Collapse
|
43
|
Hildyard JC, Riddell DO, Harron RC, Rawson F, Foster EM, Massey C, Taylor-Brown F, Wells DJ, Piercy RJ. The skeletal muscle phenotype of the DE50-MD dog model of Duchenne muscular dystrophy. Wellcome Open Res 2022; 7:238. [PMID: 36865375 PMCID: PMC9971692 DOI: 10.12688/wellcomeopenres.18251.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Animal models of Duchenne muscular dystrophy (DMD) are essential to study disease progression and assess efficacy of therapeutic intervention, however dystrophic mice fail to display a clinically relevant phenotype, limiting translational utility. Dystrophin-deficient dogs exhibit disease similar to humans, making them increasingly important for late-stage preclinical evaluation of candidate therapeutics. The DE50-MD canine model of DMD carries a mutation within a human 'hotspot' region of the dystrophin gene, amenable to exon-skipping and gene editing strategies. As part of a large natural history study of disease progression, we have characterised the DE50-MD skeletal muscle phenotype to identify parameters that could serve as efficacy biomarkers in future preclinical trials. Methods: Vastus lateralis muscles were biopsied from a large cohort of DE50-MD dogs and healthy male littermates at 3-monthly intervals (3-18 months) for longitudinal analysis, with multiple muscles collected post-mortem to evaluate body-wide changes. Pathology was characterised quantitatively using histology and measurement of gene expression to determine statistical power and sample sizes appropriate for future work. Results: DE50-MD skeletal muscle exhibits widespread degeneration/regeneration, fibrosis, atrophy and inflammation. Degenerative/inflammatory changes peak during the first year of life, while fibrotic remodelling appears more gradual. Pathology is similar in most skeletal muscles, but in the diaphragm, fibrosis is more prominent, associated with fibre splitting and pathological hypertrophy. Picrosirius red and acid phosphatase staining represent useful quantitative histological biomarkers for fibrosis and inflammation respectively, while qPCR can be used to measure regeneration ( MYH3, MYH8), fibrosis ( COL1A1), inflammation ( SPP1), and stability of DE50-MD dp427 transcripts. Conclusion: The DE50-MD dog is a valuable model of DMD, with pathological features similar to young, ambulant human patients. Sample size and power calculations show that our panel of muscle biomarkers are of strong pre-clinical value, able to detect therapeutic improvements of even 25%, using trials with only six animals per group.
Collapse
Affiliation(s)
- John C.W. Hildyard
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Dominique O. Riddell
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Rachel C.M. Harron
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Faye Rawson
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
- Langford Veterinary Services, University of Bristol, Langford, UK
| | - Emma M.A. Foster
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Claire Massey
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| | - Frances Taylor-Brown
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
- Cave Veterinary Specialists, George's Farm, West Buckland, UK
| | - Dominic J. Wells
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, London, UK
| | - Richard J. Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, London, UK
| |
Collapse
|
44
|
Ritter P, Nübler S, Buttgereit A, Smith LR, Mühlberg A, Bauer J, Michael M, Kreiß L, Haug M, Barton E, Friedrich O. Myofibrillar Lattice Remodeling Is a Structural Cytoskeletal Predictor of Diaphragm Muscle Weakness in a Fibrotic mdx ( mdx Cmah-/-) Model. Int J Mol Sci 2022; 23:ijms231810841. [PMID: 36142754 PMCID: PMC9500669 DOI: 10.3390/ijms231810841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a degenerative genetic myopathy characterized by complete absence of dystrophin. Although the mdx mouse lacks dystrophin, its phenotype is milder compared to DMD patients. The incorporation of a null mutation in the Cmah gene led to a more DMD-like phenotype (i.e., more fibrosis). Although fibrosis is thought to be the major determinant of ‘structural weakness’, intracellular remodeling of myofibrillar geometry was shown to be a major cellular determinant thereof. To dissect the respective contribution to muscle weakness, we assessed biomechanics and extra- and intracellular architecture of whole muscle and single fibers from extensor digitorum longus (EDL) and diaphragm. Despite increased collagen contents in both muscles, passive stiffness in mdx Cmah−/− diaphragm was similar to wt mice (EDL muscles were twice as stiff). Isometric twitch and tetanic stresses were 50% reduced in mdx Cmah−/− diaphragm (15% in EDL). Myofibrillar architecture was severely compromised in mdx Cmah−/− single fibers of both muscle types, but more pronounced in diaphragm. Our results show that the mdx Cmah−/− genotype reproduces DMD-like fibrosis but is not associated with changes in passive visco-elastic muscle stiffness. Furthermore, detriments in active isometric force are compatible with the pronounced myofibrillar disarray of the dystrophic background.
Collapse
Affiliation(s)
- Paul Ritter
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- Correspondence:
| | - Stefanie Nübler
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Andreas Buttgereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Lucas R. Smith
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95618, USA
| | - Alexander Mühlberg
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Julian Bauer
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Mena Michael
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Lucas Kreiß
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Michael Haug
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Elisabeth Barton
- College of Health & Human Performance, University of Florida, Gainesville, FL 32611, USA
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany
- School of Medical Sciences, University of New South Wales, Wallace Wurth Building, 18 High Str., Sydney, NSW 2052, Australia
| |
Collapse
|
45
|
Dubinin MV, Starinets VS, Belosludtseva NV, Mikheeva IB, Chelyadnikova YA, Penkina DK, Vedernikov AA, Belosludtsev KN. The Effect of Uridine on the State of Skeletal Muscles and the Functioning of Mitochondria in Duchenne Dystrophy. Int J Mol Sci 2022; 23:ijms231810660. [PMID: 36142572 PMCID: PMC9500747 DOI: 10.3390/ijms231810660] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 12/16/2022] Open
Abstract
Duchenne muscular dystrophy is caused by the loss of functional dystrophin that secondarily causes systemic metabolic impairment in skeletal muscles and cardiomyocytes. The nutraceutical approach is considered as a possible complementary therapy for this pathology. In this work, we have studied the effect of pyrimidine nucleoside uridine (30 mg/kg/day for 28 days, i.p.), which plays an important role in cellular metabolism, on the development of DMD in the skeletal muscles of dystrophin deficient mdx mice, as well as its effect on the mitochondrial dysfunction that accompanies this pathology. We found that chronic uridine administration reduced fibrosis in the skeletal muscles of mdx mice, but it had no effect on the intensity of degeneration/regeneration cycles and inflammation, pseudohypetrophy, and muscle strength of the animals. Analysis of TEM micrographs showed that uridine also had no effect on the impaired mitochondrial ultrastructure of mdx mouse skeletal muscle. The administration of uridine was found to lead to an increase in the expression of the Drp1 and Parkin genes, which may indicate an increase in the intensity of organelle fission and the normalization of mitophagy. Uridine had little effect on OXPHOS dysfunction in mdx mouse mitochondria, and moreover, it was suppressed in the mitochondria of wild type animals. At the same time, uridine restored the transport of potassium ions and reduced the production of reactive oxygen species; however, this had no effect on the impaired calcium retention capacity of mdx mouse mitochondria. The obtained results demonstrate that the used dose of uridine only partially prevents mitochondrial dysfunction in skeletal muscles during Duchenne dystrophy, though it mitigates the development of destructive processes in skeletal muscles.
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
- Correspondence: ; Tel.: +7-987-701-0437
| | - Vlada S. Starinets
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Irina B. Mikheeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Yuliya A. Chelyadnikova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Daria K. Penkina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Alexander A. Vedernikov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| |
Collapse
|
46
|
A New Method of Myostatin Inhibition in Mice via Oral Administration of Lactobacillus casei Expressing Modified Myostatin Protein, BLS-M22. Int J Mol Sci 2022; 23:ijms23169059. [PMID: 36012334 PMCID: PMC9409196 DOI: 10.3390/ijms23169059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Myostatin is a member of the transforming growth factor-beta superfamily and is an endogenous negative regulator of muscle growth. This study aimed to determine whether an oral administration of Lactobacillus casei expressing modified human myostatin (BLS-M22) could elicit sufficient levels of myostatin-specific antibody and improve the dystrophic features of an animal model of Duchenne muscular dystrophy (DMD; mdx mouse). BLS-M22 is a recombinant L. casei engineered to harbor the pKV vector and poly-gamma-glutamic acid gene linked to a modified human myostatin gene. Serological analysis showed that anti-myostatin IgG titers were significantly increased, and serum creatine kinase was significantly reduced in the BLS-M22-treated mdx mice compared to the control mice. In addition, treatment of BLS-M22 resulted in a significant increase in body weight and motor function (Rotarod behavior test). Histological analysis showed an improvement in the dystrophic features (fibrosis and muscle hypertrophy) of the mdx mice with the administration of BLS-M22. The circulating antibodies generated after BLS-M22 oral administration successfully lowered serum myostatin concentration. Myostatin blockade resulted in serological, histological, and functional improvements in mdx mice. Overall, the findings suggest the potential of BLS-M22 to treat DMD; however, further clinical trials are essential to ascertain its efficacy and safety in humans.
Collapse
|
47
|
Characterisation of Progressive Skeletal Muscle Fibrosis in the Mdx Mouse Model of Duchenne Muscular Dystrophy: An In Vivo and In Vitro Study. Int J Mol Sci 2022; 23:ijms23158735. [PMID: 35955872 PMCID: PMC9369129 DOI: 10.3390/ijms23158735] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare genetic disease leading to progressive muscle wasting, respiratory failure, and cardiomyopathy. Although muscle fibrosis represents a DMD hallmark, the organisation of the extracellular matrix and the molecular changes in its turnover are still not fully understood. To define the architectural changes over time in muscle fibrosis, we used an mdx mouse model of DMD and analysed collagen and glycosaminoglycans/proteoglycans content in skeletal muscle sections at different time points during disease progression and in comparison with age-matched controls. Collagen significantly increased particularly in the diaphragm, quadriceps, and gastrocnemius in adult mdx, with fibrosis significantly correlating with muscle degeneration. We also analysed collagen turnover pathways underlying fibrosis development in cultured primary quadriceps-derived fibroblasts. Collagen secretion and matrix metalloproteinases (MMPs) remained unaffected in both young and adult mdx compared to wt fibroblasts, whereas collagen cross-linking and tissue inhibitors of MMP (TIMP) expression significantly increased. We conclude that, in the DMD model we used, fibrosis mostly affects diaphragm and quadriceps with a higher collagen cross-linking and inhibition of MMPs that contribute differently to progressive collagen accumulation during fibrotic remodelling. This study offers a comprehensive histological and molecular characterisation of DMD-associated muscle fibrosis; it may thus provide new targets for tailored therapeutic interventions.
Collapse
|
48
|
Oliveira-Santos A, Dagda M, Burkin DJ. Sunitinib inhibits STAT3 phosphorylation in cardiac muscle and prevents cardiomyopathy in the mdx mouse model of Duchenne muscular dystrophy. Hum Mol Genet 2022; 31:2358-2369. [PMID: 35157045 PMCID: PMC9307308 DOI: 10.1093/hmg/ddac042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked genetic disorder affecting approximately 1 in 5000 male births worldwide. DMD is caused by mutations in the dystrophin gene. Dystrophin is essential for maintaining muscle cell membrane integrity and stability by linking the cytoskeleton to the extracellular matrix, which protects myofibers from contraction-induced damage. Loss of dystrophin leads to mechanically induced skeletal and cardiac muscle damage. Although the disease is not evident in DMD patients at birth, muscular dystrophy rapidly progresses and results in respiratory and cardiac muscle failure as early as the teenage years. Premature death in DMD patients is due to cardiac arrhythmias and left ventricular dysfunction. Currently, there is no effective treatment for DMD-related cardiac failure. Recently, we have shown that a Food and Drug Administration-approved small molecule, sunitinib, a multi-targeted tyrosine kinase inhibitor can mitigate skeletal muscle disease through an increase in myogenic capacity, cell membrane integrity, and improvement of skeletal muscle function via regulation of STAT3-related signaling pathway. Chronic activation of STAT3 has been shown to promote cardiac hypertrophy and failure. In this study, we examined the effects of long-term sunitinib treatment on cardiac pathology and function. Our results showed sunitinib treatment reduced STAT3 phosphorylation in the heart muscle of mdx mice, improved cardiac electrical function, increased cardiac output and stroke volume, decreased ventricular hypertrophy, reduced cardiomyocytes membrane damage, fibrotic tissue deposition and slightly decreased cardiac inflammation. Together, our studies support the idea that sunitinib could serve as a novel treatment to slow cardiomyopathy progression in DMD. One Sentence Summary In this study, we determined if sunitinib, a Food and Drug Administration-approved drug, could reduce the pathology and improve cardiac function in an animal model for DMD.
Collapse
Affiliation(s)
- Ariany Oliveira-Santos
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno NV 89557, USA
| | - Marisela Dagda
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno NV 89557, USA
| | - Dean J Burkin
- Department of Pharmacology, University of Nevada Reno, School of Medicine, Center for Molecular Medicine, Reno NV 89557, USA
| |
Collapse
|
49
|
Mahdy MAA, Akl MA, Madkour FA. Effect of chitosan and curcumin nanoparticles against skeletal muscle fibrosis at early regenerative stage of glycerol-injured rat muscles. BMC Musculoskelet Disord 2022; 23:670. [PMID: 35836166 PMCID: PMC9281067 DOI: 10.1186/s12891-022-05633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Chitosan and curcumin are natural products that have a wide range of beneficial effects including wound healing. However, their high molecular weight and poor water solubility limit their applications. Aims Therefore, the current study aims to evaluate the effects of chitosan (Cs) and curcumin (Cn) nanoparticles (NPs) on fibrosis and regeneration of glycerol-injured muscle. Methods Muscle injury was induced by intramuscular injection of glycerol into the tibialis anterior muscle of rats. Cs-NPs and Cn-NPs were administered at different doses intraperitoneally after injury. Injured muscles were collected at day 7 after injury, and muscle fibrosis and regeneration were assessed. Results The present results revealed that Cs-NPs and Cn-NPs treatment significantly decreased fibrosis index and increased the average myotube diameter with shifting of the distribution of myotube diameters towards larger diameters in a dose-dependent manner. Immunohistochemical analysis revealed that Cs-NPs and Cn-NPs treatment significantly decreased the number of CD-68+ cells and Col-1+ area. Results showed that Cn-NPs had a higher protective effect, in the form of attenuating muscle fibrosis and inflammation, and enhancing muscle regeneration, than that of Cs-NPs. Conclusions To our knowledge, this is the first study to document the effects of Cs-NPs in injured muscles. The results of study might be a novel approach to attenuate muscle fibrosis in humans using curcumin and chitosan nanoparticles.
Collapse
Affiliation(s)
- Mohamed A A Mahdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | - Mohamed A Akl
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fatma A Madkour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
50
|
Bellissimo CA, Garibotti MC, Perry CGR. Mitochondrial Stress Responses in Duchenne muscular dystrophy: Metabolic Dysfunction or Adaptive Reprogramming? Am J Physiol Cell Physiol 2022; 323:C718-C730. [PMID: 35816642 DOI: 10.1152/ajpcell.00249.2022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial stress may be a secondary contributor to muscle weakness in inherited muscular dystrophies. Duchenne muscular dystrophy has received the majority of attention whereby most discoveries suggest mitochondrial ATP synthesis may be reduced. However, not all studies support this finding. Furthermore, some studies have reported increased mitochondrial reactive oxygen species and propensity for permeability transition pore formation as an inducer of apoptosis, although divergent findings have also been described. A closer examination of the literature suggests the degree and direction of mitochondrial stress responses may depend on the progression of the disease, the muscle type examined, the mouse model employed with regards to pre-clinical research, the precise metabolic pathways in consideration, and in some cases the in vitro technique used to assess a given mitochondrial bioenergetic function. One intent of this review is to provide careful considerations for future experimental designs to resolve the heterogeneous nature of mitochondrial stress during the progression of Duchenne muscular dystrophy. Such considerations have implications for other muscular dystrophies as well which are addressed briefly herein. A renewed perspective of the term 'mitochondrial dysfunction' is presented whereby stress responses might be re-explored in future investigations as direct contributors to myopathy vs an adaptive 'reprogramming' intended to maintain homeostasis in the face of disease stressors themselves. In so doing, the prospective development of mitochondrial enhancement therapies can be driven by advances in perspectives as much as experimental approaches when resolving the precise relationships between mitochondrial remodelling and muscle weakness in Duchenne and, indeed, other muscular dystrophies.
Collapse
Affiliation(s)
- Catherine A Bellissimo
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Madison C Garibotti
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|