1
|
Ghosh P, Fontanella RA, Scisciola L, Taktaz F, Pesapane A, Basilicata MG, Tortorella G, Matacchione G, Capuano A, Vietri MT, Selvaggi F, Paolisso G, Barbieri M. Obesity-induced neuronal senescence: Unraveling the pathophysiological links. Ageing Res Rev 2024; 101:102533. [PMID: 39368666 DOI: 10.1016/j.arr.2024.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Obesity is one of the most prevalent and increasing metabolic disorders and is considered one of the twelve risk factors for dementia. Numerous studies have demonstrated that obesity induces pathophysiological changes leading to cognitive decline; however, the underlying molecular mechanisms are yet to be fully elucidated. Various biochemical processes, including chronic inflammation, oxidative stress, insulin resistance, dysregulation of lipid metabolism, disruption of the blood-brain barrier, and the release of adipokines have been reported to contribute to the accumulation of senescent neurons during obesity. These senescent cells dysregulate neuronal health and function by exhibiting a senescence-associated secretory phenotype, inducing neuronal inflammation, deregulating cellular homeostasis, causing mitochondrial dysfunction, and promoting microglial infiltration. These factors act as major risks for the occurrence of neurodegenerative diseases and cognitive decline. This review aims to focus on how obesity upregulates neuronal senescence and explores both pharmacological and non-pharmacological interventions for preventing cognitive impairments, thus offering new insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Annalisa Capuano
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, Naples 80138, Italy; UOC Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naple 80138, Italy
| | - Francesco Selvaggi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
2
|
Dean E, Xu J, Jones AYM, Vongsirinavarat M, Lomi C, Kumar P, Ngeh E, Storz MA. An unbiased, sustainable, evidence-informed Universal Food Guide: a timely template for national food guides. Nutr J 2024; 23:126. [PMID: 39425106 PMCID: PMC11487974 DOI: 10.1186/s12937-024-01018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Although national food guides are designed, ostensibly, to translate scientific evidence with respect to food, dietary patterns, and health, their development has increasingly become a corporate/political process as well as scientific one; often with corporate/political influences overriding science. Our aim was to construct an unbiased, sustainable, evidence-informed Universal Food Guide to serve as a template for countries to develop their unique guides, thereby, provide a valid resource for health professionals, health authorities, and the public. METHODS To address our aim, we conducted an integrative review of multiple evidence-informed sources (e.g., established databases, evidence syntheses, scholarly treatises, and policy documents) related to four areas: 1. Food guides' utility and conflicts of interest; 2. The evidence-based healthiest diet; 3. Constituents of the Universal Food Guide template; and 4. Implications for population health; regulation/governance; environment/climate/planetary health; and ethics. RESULTS The eating pattern that is healthiest for humans (i.e., most natural, and associated with maximal health across the life cycle; reduced non-communicable disease (NCD) risk; and minimal end-of-life illness) is whole food, low fat, plant-based, especially vegan, with the absence of ultra-processed food. Disparities in national food guide recommendations can be explained by factors other than science, specifically, corporate/political interests reflected in heavily government-subsidized, animal-sourced products; and trends toward dominance of daily consumption of processed/ultra-processed foods. Both trends have well-documented adverse consequences, i.e., NCDs and endangered environmental/planetary health. Commitment to an evidence-informed plant-based eating pattern, particularly vegan, will reduce risks/manifestations of NCDs; inform healthy food and nutrition policy regulation/governance; support sustainable environment/climate and planetary health; and is ethical with respect to 'best' evidence-based practice, and human and animal welfare. CONCLUSION The Universal Food Guide that serves as a template for national food guides is both urgent and timely given the well-documented health-harming influences that corporate stakeholders/politicians and advisory committees with conflicts of interest, exert on national food guides. Such influence contributes to the largely-preventable NCDs and environmental issues. Policy makers, health professionals, and the public need unbiased, scientific evidence as informed by the Universal Food Guide, to inform their recommendations and choices.
Collapse
Affiliation(s)
- Elizabeth Dean
- Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada.
| | - Jia Xu
- Healing Without Medicine, Shenzhen, China
- Physicians Committee for Responsible Medicine, Washington, USA
| | - Alice Yee-Men Jones
- School of Health & Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | | | | | - Pintu Kumar
- All India Institute of Medical Sciences, New Delhi, India
| | - Etienne Ngeh
- Louis University Institute, Douala, Cameroon
- Research Organisation for Health Education and Rehabilitation, and Guideline International Network African Regional Community, Yaoundé, Cameroon
| | - Maximilian A Storz
- Department of Internal Medicine II, Centre for Complementary Medicine, Medical Center, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Hill DJ, Hill TG. Maternal diet during pregnancy and adaptive changes in the maternal and fetal pancreas have implications for future metabolic health. Front Endocrinol (Lausanne) 2024; 15:1456629. [PMID: 39377073 PMCID: PMC11456468 DOI: 10.3389/fendo.2024.1456629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Fetal and neonatal development is a critical period for the establishment of the future metabolic health and disease risk of an individual. Both maternal undernutrition and overnutrition can result in abnormal fetal organ development resulting in inappropriate birth size, child and adult obesity, and increased risk of Type 2 diabetes and cardiovascular diseases. Inappropriate adaptive changes to the maternal pancreas, placental function, and the development of the fetal pancreas in response to nutritional stress during pregnancy are major contributors to a risk trajectory in the offspring. This interconnected maternal-placental-fetal metabolic axis is driven by endocrine signals in response to the availability of nutritional metabolites and can result in cellular stress and premature aging in fetal tissues and the inappropriate expression of key genes involved in metabolic control as a result of long-lasting epigenetic changes. Such changes result is insufficient pancreatic beta-cell mass and function, reduced insulin sensitivity in target tissues such as liver and white adipose and altered development of hypothalamic satiety centres and in basal glucocorticoid levels. Whilst interventions in the obese mother such as dieting and increased exercise, or treatment with insulin or metformin in mothers who develop gestational diabetes, can improve metabolic control and reduce the risk of a large-for-gestational age infant, their effectiveness in changing the adverse metabolic trajectory in the child is as yet unclear.
Collapse
Affiliation(s)
- David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON, Canada
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON, Canada
| | - Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Ramlagan P, Rondeau P, Bourdon E, Bahorun T, Neergheen VS. Insulin Sensitivity of Adipocytes is Improved by Pomegranate Mesocarp Through Reduced Oxidative Stress and Inflammation. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:592-603. [PMID: 38775816 DOI: 10.1080/27697061.2024.2353295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 05/04/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVE Inflammatory phenomena and increase in oxidative stress in cell physiopathology progression render therapeutic strategies based on nutritional antioxidants necessary. It was thus aimed at assessing the effectiveness of the pomegranate mesocarp extract (PME) on differentiation of preadipocytes to adipocytes in the presence/absence of hydrogen peroxide (H2O2), a model mimicking insulin resistance. METHOD The effect of PME on lipid accumulation, protein expression of antioxidant, inflammatory and adipogenic biomarkers, reactive oxygen species production, activity of antioxidant enzymes and secretion of IL-6 has been evaluated during the differentiation of preadipocytes to adipocytes, in the presence or absence of H2O2. RESULTS H2O2 reduced the expression of the regulator of insulin sensitivity PPARγ and suppressed adipocyte differentiation. PME counteracted the effect of H2O2. The latter induced a higher level of fat accumulation by promoting the expressions of the adipogenic markers PPARγ, C/EBPα, FABP4 and CD36 as compared to the control and the H2O2-treated differentiating cells. During the progression of adipogenesis, highest increase (p < 0.05) in IL-6 secretion, by 3.16 and 3.85 folds, was observed on day 2 of differentiation in control and H2O2-treated cells, respectively, compared to day 0. PME significantly decreased (p < 0.01) the secretion of the cytokine in addition to suppressing the expression of NFκB. PME also prevented the reduction of superoxide dismutase, catalase and glutathione peroxidase activities that occurred during adipogenesis, by at most 33%, 119% and 42%, respectively. CONCLUSION These findings indicate that PME efficiently improves insulin sensitivity and can significantly counteract oxidative stress and inflammation.
Collapse
Affiliation(s)
- Piteesha Ramlagan
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit, Republic of Mauritius
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Republic of Mauritius
| | - Philippe Rondeau
- UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM, Saint-Denis de La Réunion, France
| | - Emmanuel Bourdon
- UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM, Saint-Denis de La Réunion, France
| | - Theeshan Bahorun
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit, Republic of Mauritius
- Mauritius Research and Innovation Council, Ebène, Republic of Mauritius
| | - Vidushi S Neergheen
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit, Republic of Mauritius
| |
Collapse
|
5
|
Abdul MA, Ayele AG, Teka F, Gemchu W, Shibeshi W. Evaluations of the in vitro and in vivo antidiabetic activity of 70 % ethanolic fruit extracts of Rosa abyssinica. Metabol Open 2024; 23:100317. [PMID: 39310665 PMCID: PMC11414676 DOI: 10.1016/j.metop.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Background Diabetes mellitus is becoming major health challenge with continually increasing burden. High costs of conventional medicines and numerous side effects associated with them, on the other hand, easy availability and accessibility of traditional herbal medicines calls upon experimental investigations to validate their effect on lowering blood glucose level. Methods The dried fruit of Rosa abyssinica was macerated with 70 % ethanol and the extract's in vitro antidiabetic activity was investigated using dinitrosalisylic acid method for alpha amylase inhibitory activity. Furthermore, the in vivo hypoglycemic and Antihyperglycemic effects of various doses of the extract (100, 200 and 400 mg/kg) was determined on normoglycemic, glucose loaded (1500 mg/kg) and Streptozotocine (180 mg/kg)-induced diabetic mice models. Results The acute oral toxicity study revealed the plant showed no toxic effect on swiss albino mice at 2000 mg/kg. The in vitro alpha amylase inhibitory activity study showed that the extract has comparable IC50 value of 21.37 ± 4.252 μg/ml with the standard drug acarbose (IC50 value of 26.72 ± 3.59 μg/ml). On the other hand, in normal mice, none of the dose levels except at 400 mg/kg significantly reduces blood glucose level. This is in contrast to the oral glucose tolerance test, which the extract produced significant reduction at 60, 90 and 120 min following glucose challenge. The 70 % ethanolic fruit extracts of Rosa abyssinica also experienced profound antidiabetic activity in streptozotocin-induced diabetic model. In the single-dose study, both RAFE200 and RAFE400 demonstrated a significant (P˂0.05) reduction in blood glucose levels at 1, 2, 3, and 4 h. Similarly, in the repeated-dose study, RAFE200 and RAFE400 not only significantly reduced blood glucose levels but also produced a notable improvement in animal body weight. Conclusion The 70 % ethanolic fruit extracts of Rosa abyssinica have shown significant in vitro alpha amylase inhibition effect and an in vivo blood glucose level lowering effects in diabetic mice.Therefore, this study supports the traditional use of Rosa abyssinica in the management of diabetes mellitus.
Collapse
Affiliation(s)
- Mohammed Ahmed Abdul
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Ethiopia
| | - Akeberegn Gorems Ayele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Ethiopia
| | - Frehiwot Teka
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Worku Gemchu
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Workineh Shibeshi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Ethiopia
| |
Collapse
|
6
|
Zhou Y, Su J, Dong Y, He Z, Wang Y, Chen S, Lv G. Buddleoside-rich Chrysanthemum indicum L. extract modulates macrophage-mediated inflammation to prevent metabolic syndrome induced by unhealthy diet. BMC Complement Med Ther 2024; 24:315. [PMID: 39179999 PMCID: PMC11344343 DOI: 10.1186/s12906-024-04583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/09/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a precursor to the development of many diseases (atherosclerosis, diabetes, etc.). It is marked by disruptions in glucose and lipid metabolism, along with hypertension. Numerous types of risk factors contribute to the development of the MetS, inflammation and insulin resistance are present throughout the metabolic abnormalities. Chrysanthemum indicum L. is a traditional Chinese plant used for both tea and medicine, known for its high content of total flavonoids, which are important secondary metabolites. Our research led to the extraction of a Buddleoside-Rich Chrysanthemum indicum L. extract (BUDE) which has demonstrated anti-inflammatory properties. Nonetheless, the specific role and mechanism of BUDE in preventing MetS remain unclear. METHODS The study initially evaluated the role of BUDE in preventing MetS. Subsequently, it investigated the anti-inflammatory properties of BUDE in the liver and pancreas in response to unhealthy diets. It then examined the level of insulin resistance and pancreatic β-cell function induced by inflammation. Additionally, an lipopolysaccharide (LPS)-induced macrophage inflammation model was used to further investigate the ameliorative effects of BUDE in inflammation. RESULTS BUDE has hypotensive, hypoglycemic and hypolipidemic effects. It can also resolve the imbalance between macrophage subpopulations, impede the triggering of the NF-κB signaling pathway, reduce the secretion of inflammatory mediators, ameliorate insulin resistance, and safeguard organs such as the liver and pancreas from inflammatory damage. These effects collectively contribute to preventing the development of MetS. DISCUSSION BUDE has the ability to modulate macrophage-mediated inflammation, leading to improved insulin resistance. Additionally, it delivers antihypertensive, hypoglycemic, and hypolipidemic effects, offering a potential for preventing MetS.
Collapse
Affiliation(s)
- Yiqing Zhou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Yingjie Dong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Ziwen He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Yajun Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China.
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China.
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
7
|
Hemami RM, Farhangi MA, Rouzi MD, Abdi F. Dietary fatty acid pattern and its association with metabolic profile among overweight and obese adults. BMC Endocr Disord 2024; 24:141. [PMID: 39103858 DOI: 10.1186/s12902-024-01662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Numerous studies have revealed the role of dietary fatty acids in human health. However, few studies have evaluated dietary fatty acid patterns and their association with metabolic parameters. The current study aimed to explore the association between dietary fatty acid patterns and risk factors for metabolic syndrome (MetS) among overweight and obese adults. METHODS This cross-sectional study involved 340 participants who were overweight or obese. The study included assessments of body composition and anthropometric measurements. Dietary fatty acid consumption was evaluated using a validated Food Frequency Questionnaire (FFQ) containing 168 items. Additionally, biochemical parameters, including serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), fasting serum glucose (FSG), and insulin levels, were measured using enzymatic methods. Fatty acid patterns were determined by principal component analysis (PCA), and the association between these dietary FA patterns and risk factors related to MetS components was assessed using logistic regression. RESULTS Factor analysis conducted in this study explored three dietary fatty acid patterns: saturated fatty acids (SFA), polyunsaturated fatty acids (PUFA), and long-chain combined fatty acids (LC-CFA). Those at the highest tertile of the SFA pattern had lower diastolic blood pressure (DBP) (P = 0.03). Low-density lipoprotein cholesterol (LDL) was lower in the second and third tertiles (P ≤ 0.05). Also, higher fasting blood glucose (FBS) was observed in the second and third tertiles (P < 0.05), and the homeostatic model assessment of insulin resistance (HOMA-IR) was higher in the third tertile (P = 0.049). In the PUFA pattern, FBS was lower in the third tertile (P = 0.03). In the LC-CFA pattern, lower TC was achieved in higher tertiles (P = 0.04). CONCLUSION Our findings demonstrated that consuming high and moderate SFA patterns is associated with higher FBS and HOMA-IR. Also, increased consumption of SCFAs is related to lower DPB and LDL. Individuals who consumed more PUFA, especially linoleic acid, had lower FBS. These outcomes might be beneficial in managing MetS and leading to a new field of research.
Collapse
Affiliation(s)
- Reyhaneh Mokhtari Hemami
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Abbasalizad Farhangi
- Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Attar Neyshabouri street, Daneshgah Blv, Tabriz, Iran.
| | | | - Fatemeh Abdi
- Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Attar Neyshabouri street, Daneshgah Blv, Tabriz, Iran
| |
Collapse
|
8
|
Bagheri-Hosseinabadi Z, Moadab F, Abbasifard M. Prevalence and contributing factors of metabolic syndrome in rheumatoid arthritis patients. BMC Endocr Disord 2024; 24:140. [PMID: 39103813 DOI: 10.1186/s12902-024-01675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Promoting prevalence of metabolic syndrome (MetS) in Rheumatoid arthritis (RA) patients might occur secondary to RA therapy as well as sedentary life style. However, conflicting observations have been reported on the correlation between MetS and RA. This study aimed to determine the frequency of MetS and association of its components in RA. METHODS In this study, 500 RA patients and 500 age- and gender-matched healthy controls were enrolled. MetS was fulfilled through the International Diabetes Federation (IDF) criteria. A multivariate regression model was used to control for variables independently associated with the risk of MetS in RA patients. RESULTS The prevalence of MetS was 58.8% on IDF criteria in RA patients that was higher than controls (20.4%). Higher incidence of cardiovascular disease (CVD), the familial history of CVD, hypertension, type 2 diabetes mellitus (T2DM), smoking, dyslipidemia, and higher levels of body mass index (BMI), waist circumference (WC), total cholesterol level, fasting blood sugar (FBS), triglyceride (TG) level, low-density lipoprotein (LDL) level, while lower levels of high-density lipoprotein (HDL) were associated with an increased risk of MetS in RA patients. Multivariate regression analysis indicated that age, WC, dyslipidemia, LDL, and DAS28 were independent predictors of MetS in the RA patients. CONCLUSIONS The prevalence of MetS is higher in RA patients. Our findings suggest an association between cardiovascular risk factors and the increased prevalence of MetS in RA patients.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Moadab
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Faculty of Medicine, Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
9
|
Li Q, Song Y, Zhang Z, Xu J, Liu Z, Tang X, Wang X, Chen Y, Zhang Y, Zhu P, Guo X, Jiang L, Wang Z, Liu R, Wang Q, Yao Y, Feng Y, Han Y, Yuan J. The combined effect of triglyceride-glucose index and high-sensitivity C-reactive protein on cardiovascular outcomes in patients with chronic coronary syndrome: A multicenter cohort study. J Diabetes 2024; 16:e13589. [PMID: 39136595 PMCID: PMC11321053 DOI: 10.1111/1753-0407.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The triglyceride-glucose (TyG) index and high-sensitivity C-reactive protein (hsCRP) are the commonly used biomarkers for insulin resistance and systemic inflammation, respectively. We aimed to investigate the combined association of TyG and hsCRP with the major adverse cardiovascular events (MACE) in patients with chronic coronary syndrome (CCS). METHODS A total of 9421 patients with CCS were included in this study. The primary endpoint was defined as a composite of MACE covering all-cause death, nonfatal myocardial infarction, and revascularization. RESULTS During the 2-year follow-up period, 660 (7.0%) cases of MACE were recorded. Participants were divided equally into three groups according to TyG levels. Compared with the TyG T1 group, the risk of MACE was significantly higher in the TyG T3 group. It is noteworthy that among patients in the highest tertile of TyG, hsCRP >3 mg/L was significantly associated with an increased risk of MACE, whereas the results were not significant in the medium to low TyG groups. When patients were divided into six groups according to hsCRP and TyG, the Cox regression analysis showed that patients in the TyG T3 and hsCRP >3 mg/L group had a significantly higher risk of MACE than those in the TyG T1 and hsCRP ≤3 mg/L group. However, no significant interaction was found between TyG and hsCRP on the risk of MACE. CONCLUSION Our study suggests that the concurrent assessment of TyG and hsCRP may be valuable in identifying high-risk populations and guiding management strategies among CCS patients.
Collapse
Affiliation(s)
- Qinxue Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ying Song
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zheng Zhang
- Department of CardiologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Jingjing Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhenyu Liu
- Department of Cardiology, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaofang Tang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaozeng Wang
- Department of CardiologyGeneral Hospital of Northern Theater CommandShenyangChina
| | - Yan Chen
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yongzhen Zhang
- Department of CardiologyPeking University Third HospitalBeijingChina
| | - Pei Zhu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated HospitalZhejiang University School of MedicineZhejiangChina
| | - Lin Jiang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhifang Wang
- Department of CardiologyXinxiang Central HospitalXinxiangChina
| | - Ru Liu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qingsheng Wang
- Department of CardiologyThe First Hospital of QinhuangdaoQinhuangdaoChina
| | - Yi Yao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yingqing Feng
- Department of CardiologyGuangdong Provincial People's HospitalGuangdongChina
| | - Yaling Han
- Department of CardiologyGeneral Hospital of Northern Theater CommandShenyangChina
| | - Jinqing Yuan
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
10
|
Elkanawati RY, Sumiwi SA, Levita J. Impact of Lipids on Insulin Resistance: Insights from Human and Animal Studies. Drug Des Devel Ther 2024; 18:3337-3360. [PMID: 39100221 PMCID: PMC11298177 DOI: 10.2147/dddt.s468147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Insulin resistance (IR) is a complex pathological condition central to metabolic diseases such as type 2 diabetes mellitus (T2DM), cardiovascular disease, non-alcoholic fatty liver disease, and polycystic ovary syndrome (PCOS). This review evaluates the impact of lipids on insulin resistance (IR) by analyzing findings from human and animal studies. The articles were searched on the PubMed database using two keywords: (1) "Role of Lipids AND Insulin Resistance AND Humans" and (2) "Role of Lipids AND Insulin Resistance AND Animal Models". Studies in humans revealed that elevated levels of free fatty acids (FFAs) and triglycerides (TGs) are closely associated with reduced insulin sensitivity, and interventions like metformin and omega-3 fatty acids show potential benefits. In animal models, high-fat diets disrupt insulin signaling and increase inflammation, with lipid mediators such as diacylglycerol (DAG) and ceramides playing significant roles. DAG activates protein kinase C, which eventually impairs insulin signaling, while ceramides inhibit Akt/PKB, further contributing to IR. Understanding these mechanisms is crucial for developing effective prevention and treatment strategies for IR-related diseases.
Collapse
Affiliation(s)
- Rani Yulifah Elkanawati
- Master Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jawa Barat, West Java, 45363, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
11
|
Kopp W. Aging and "Age-Related" Diseases - What Is the Relation? Aging Dis 2024:AD.2024.0570. [PMID: 39012663 DOI: 10.14336/ad.2024.0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
The study explores the intricate relationship between aging and the development of noncommunicable diseases [NCDs], focusing on whether these diseases are inevitable consequences of aging or primarily driven by lifestyle factors. By examining epidemiological data, particularly from hunter-gatherer societies, the study highlights that many NCDs prevalent in modern populations are rare in these societies, suggesting a significant influence of lifestyle choices. It delves into the mechanisms through which poor diet, smoking, and other lifestyle factors contribute to systemic physiological imbalances, characterized by oxidative stress, insulin resistance and hyperinsulinemia, and dysregulation of the sympathetic nervous system, the renin-angiotensin-aldosterone system, and the immune system. The interplay between this pattern and individual factors such as genetic susceptibility, biological variability, epigenetic changes and the microbiome is proposed to play a crucial role in the development of a range of age-related NCDs. Modified biomolecules such as oxysterols and advanced glycation end products also contribute to their development. Specific diseases such as benign prostatic hyperplasia, Parkinson's disease, glaucoma and osteoarthritis are analyzed to illustrate these mechanisms. The study concludes that while aging contributes to the risk of NCDs, lifestyle factors play a crucial role, offering potential avenues for prevention and intervention through healthier living practices. One possible approach could be to try to restore the physiological balance, e.g. through dietary measures [e.g. Mediterranean diet, Okinawan diet or Paleolithic diet] in conjunction with [a combination of] pharmacological interventions and other lifestyle changes.
Collapse
|
12
|
Jeong Y, Lee BJ, Hur W, Lee M, Han SH. Associations of Insulin Resistance and High-Sensitivity C-Reactive Protein with Metabolic Abnormalities in Korean Patients with Type 2 Diabetes Mellitus: A Preliminary Study. Metabolites 2024; 14:371. [PMID: 39057694 PMCID: PMC11279201 DOI: 10.3390/metabo14070371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
We conducted this single-center, retrospective, cohort study to examine whether insulin resistance (IR) and high-sensitivity C-reactive protein (hsCRP) have a relationship with metabolic abnormalities in patients with type 2 diabetes mellitus (T2DM). In a total of 3758 patients (n = 3758) with T2DM, we analyzed medical records and thereby evaluated their baseline characteristics such as age, sex, duration of T2DM, systolic blood pressure (SBP), diastolic blood pressure (DBP), waist circumference, body mass index (BMI), visceral fat thickness (VFT), fasting plasma insulin levels, C-peptide levels, glycated hemoglobin (HbA1c), fasting plasma glucose (FPG), postprandial plasma glucose (PPG), homeostatic model assessment of insulin resistance (HOMA-IR), homeostatic model assessment of β-cell function (HOMA-β), aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), albuminuria, intima-media thickness (IMT) and hsCRP. The patients were stratified according to the tertile of the K index of the insulin tolerance test (KITT) or hsCRP. Thus, they were divided into the lowest (≥2.37), middle (1.54-2.36) and highest tertile (0-1.53) of KITT and the lowest (0.00-0.49), middle (0.50-1.21) and highest tertile (≥1.22) of hsCRP. Moreover, associations of KITT and hsCRP with metabolic abnormalities, such as steatotic liver disease (SLD), metabolic syndrome (MetS), albuminuria, diabetic retinopathy and carotid atherosclerosis, were also analyzed. There was a significant positive correlation between the prevalence of SLD, MetS, albuminuria and diabetic retinopathy and KITT (p < 0.001). Moreover, there was a significant positive association between the prevalence of SLD, MetS and albuminuria and hsCRP (p < 0.001). In conclusion, our results indicate that clinicians should consider the relationships of IR and hsCRP with metabolic abnormalities in the management of patients with T2DM. However, further large-scale, prospective, multi-center studies are warranted to confirm our results.
Collapse
Affiliation(s)
- Yuchul Jeong
- Department of Internal Medicine, Chungna Good Hospital, Incheon 22738, Republic of Korea
| | - Beom Jun Lee
- St. Mary’s Best ENT Clinic, Seoul 08849, Republic of Korea
| | - Wonjai Hur
- Department of Internal Medicine, Sejong General Hospital, Bucheon 14754, Republic of Korea
| | - Minjoon Lee
- Department of Internal Medicine, BS General Hospital, Incheon 23037, Republic of Korea
| | - Se-Hyeon Han
- Department of Companion Animal Industry, College of Health Science, Honam University, Gwangju 62399, Republic of Korea
| |
Collapse
|
13
|
Feng G, Han Y, Yang W, Shikora S, Mahawar K, Cheung TT, Targher G, Byrne CD, Hernandez-Gea V, Tilg H, Zheng MH. Recompensation in MASLD-related cirrhosis via metabolic bariatric surgery. Trends Endocrinol Metab 2024:S1043-2760(24)00159-0. [PMID: 38908982 DOI: 10.1016/j.tem.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
The prognosis of patients with decompensated cirrhosis is poor, with significantly increased liver-related mortality rates. With the rising tide of decompensated cirrhosis associated with metabolic dysfunction-associated steatotic liver disease (MASLD), the role of metabolic bariatric surgery (MBS) in achieving hepatic recompensation is garnering increasing attention. However, the complexity of preoperative assessment, the risk of postoperative disease recurrence, and the potential for patients to experience surgical complications of the MBS present challenges. In this opinion article we analyze the potential of MBS to induce recompensation in MASLD-related cirrhosis, discuss the mechanisms by which MBS may affect recompensation, and compare the characteristics of different MBS procedures; we highlight the therapeutic potential of MBS in MASLD-related cirrhosis recompensation and advocate for research in this complex area.
Collapse
Affiliation(s)
- Gong Feng
- Xi'an Medical University, Xi'an, China; The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Han
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wah Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Avenue West, Guangzhou, China
| | - Scott Shikora
- Bariatric Surgery, Brigham and Women's Hospital, 75 Francis Street, ASBII-3rd Floor, Boston, MA 02115, USA
| | - Kamal Mahawar
- Bariatric Unit, Sunderland Royal Hospital, Sunderland, SR4 7TP, UK
| | - Tan To Cheung
- Department of Surgery, the University of Hong Kong, Hong Kong, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella (VR), Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Virginia Hernandez-Gea
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, Centro de Investigación Biomédica Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
14
|
Zhou X, Xu J, Dai H. The ratio of alanine aminotransferase to high-density lipoprotein cholesterol is positively correlated with the insulin resistance in American adults: a population-based cohort study. Front Med (Lausanne) 2024; 11:1418364. [PMID: 38962742 PMCID: PMC11220187 DOI: 10.3389/fmed.2024.1418364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Previous studies have demonstrated a correlation between the ratio of alanine aminotransferase to high-density lipoprotein cholesterol (ALT/HDL-C) in the serum and the risk of diabetes. However, no existing study has investigated the association between insulin resistance (IR) and ALT/HDL-C. Therefore, this study aims to explore the association between ALT/HDL-C and IR in American adults. Methods A total of 7,599 adults selected from the National Health and Nutrition Examination Survey (NHANES) in 2013 to 2020 were studied. IR was assessed based on the homeostatic model assessment of insulin resistance (HOMA-IR). And the association between IR and ALT/HDL-C was assessed through multiple logistic regression, generalized smooth curve fitting and subgroup analyses. Results Multiple logistic regression analysis indicated a significant correlation between IR and ALT/HDL-C, with odds ratios (OR) of 1.04 (95% CI = 1.02-1.05) in males and 1.04 (95% CI = 1.02-1.07) in females. A non-linear association and saturation effect between ALT/HDL-C and IR risk were identified, with an inverted L shaped curve and an inflection point at 33.62. The area under the ROC curve (AUC) of ALT/HDL-C was significantly larger (AUC = 0.725 for males and 0.696 for females, all p < 0.01) compared with the use of ALT, HDL-C, AST and AST/ALT. Subgroup analysis showed a significantly higher independent association in obese individuals and individuals aged ≥50 years (All P interaction <0.05). Conclusion Elevated ALT/HDL-C demonstrates a significant correlation with IR, which can be used as a potential indicator of IR in American adults.
Collapse
Affiliation(s)
| | | | - Huifang Dai
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Gosslau A, Ozdogru U, Zachariah E, Li S, Ho CT. Effects of ibuprofen in the ZDF rat model of type 2 diabetes. J Food Drug Anal 2024; 32:227-238. [PMID: 38934691 PMCID: PMC11210472 DOI: 10.38212/2224-6614.3506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/09/2024] [Indexed: 06/28/2024] Open
Abstract
We aimed to investigate the therapeutic potential of ibuprofen against type 2 diabetes (T2D) using obese Zucker diabetic fatty (ZDF) rats as type 2 diabetes model. ZDF rats were hyperglycemic, dyslipidemic and expressed proinflammatory markers in contrast to lean controls, thus reflecting the relationship between obesity and chronic inflammation promoting T2D. Chronic treatment with ibuprofen (2-(4-Isobutylphenyl)propanoic acid) was used to study the impact on pathological T2D conditions as compared to metformin (1,1-dimethylbiguanide) treated ZDF as well as lean controls. Ibuprofen decreased A1c but induced a high insulin release with improved glucose tolerance only after early time points (i.g., 15 and 30 min) resulting in a non-significant decline of AUC values and translating into a high HOMA-IR. In addition, ibuprofen significantly lowered cholesterol, free fatty acids and HDL-C. Some of these effects by ibuprofen might be based on its anti-inflammatory effects through inhibition of cytokine/chemokine signaling (i.g., COX-2, ICAM-1 and TNF-α) as measured in whole blood and epididymal adipose tissue by TaqMan and/or upregulation of anti-inflammatory cytokines (i.g., IL-4 and IL-13) by ELISA analysis in blood. In conclusion, our ZDF animal study showed positive effects of ibuprofen against diabetic complications such as inflammation and dyslipidemia but also demonstrated the risk of causing insulin resistance.
Collapse
Affiliation(s)
- Alexander Gosslau
- Department of Science (Biology), City University of New York, BMCC, New York, NY 10007,
USA
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901-8520,
USA
| | - Unsal Ozdogru
- Department of Information and Decisions Sciences, University of Illinois at Chicago, Chicago, IL 60607,
USA
| | | | - Shiming Li
- Huanggang Normal University, College of Life Science, Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, Huanggang 438000, Hubei Province,
China
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901-8520,
USA
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901-8520,
USA
| |
Collapse
|
16
|
Zheng J, Yang Q, Huang J, Chen H, Shen J, Tang S. Hospital-treated infectious diseases, genetic susceptibility and risk of type 2 diabetes: A population-based longitudinal study. Diabetes Metab Syndr 2024; 18:103063. [PMID: 38917709 DOI: 10.1016/j.dsx.2024.103063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND The longitudinal association between infectious diseases and the risk of type 2 diabetes (T2D) remains unclear. METHODS Based on the UK Biobank, the prospective cohort study included a total of 396,080 participants without diabetes at baseline. We determined the types and sites of infectious diseases and incident T2D using the International Classification of Diseases 10th Revision codes (ICD-10). Time-varying Cox proportional hazard model was used to assess the association. Infection burden was defined as the number of infection episodes over time and the number of co-occurring infections. Genetic risk score (GRS) for T2D consisted of 424 single nucleotide polymorphisms. RESULTS During a median of 9.04 [IQR, 8.3-9.7] years of follow-up, hospital-treated infectious diseases were associated with a greater risk of T2D (adjusted HR [aHR] 1.54 [95 % CI 1.46-1.61]), with risk difference per 10,000 individuals equal to 154.1 [95 % CI 140.7-168.2]. The heightened risk persisted after 5 years following the index infection. Bacterial infection with sepsis had the strongest risk of T2D (aHR 2.95 [95 % CI 2.53-3.44]) among different infection types. For site-specific analysis, bloodstream infections posed the greatest risk (3.01 [95 % CI 2.60-3.48]). A dose-response association was observed between infection burden and T2D risk within each GRS tertile (p-trend <0.001). High genetic risk and infection synergistically increased the T2D risk. CONCLUSION Infectious diseases were associated with an increased risk of subsequent T2D. The risk showed specificity according to types, sites, severity of infection and the period since infection occurred. A potential accumulative effect of infection was revealed.
Collapse
Affiliation(s)
- Jiazhen Zheng
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Quan Yang
- Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jinghan Huang
- Biomedical Genetics Section, School of Medicine, Boston University, China; Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Hengying Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junchun Shen
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Shaojun Tang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China; Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
| |
Collapse
|
17
|
Jensen ASH, Ytting H, Werge MP, Rashu EB, Hetland LE, Thing M, Nabilou P, Burisch J, Bojsen-Møller KN, Junker AE, Hobolth L, Mortensen C, Tofteng F, Bendtsen F, Møller S, Vyberg M, Serizawa RR, Gluud LL, Wewer Albrechtsen NJ. Patients with autoimmune liver disease have glucose disturbances that mechanistically differ from steatotic liver disease. Am J Physiol Gastrointest Liver Physiol 2024; 326:G736-G746. [PMID: 38625142 DOI: 10.1152/ajpgi.00047.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Autoimmune liver diseases are associated with an increased risk of diabetes, yet the underlying mechanisms remain unknown. In this cross-sectional study, we investigated the glucose-regulatory disturbances in patients with autoimmune hepatitis (AIH, n = 19), primary biliary cholangitis (PBC, n = 15), and primary sclerosing cholangitis (PSC, n = 6). Healthy individuals (n = 24) and patients with metabolic dysfunction-associated steatotic liver disease (MASLD, n = 18) were included as controls. Blood samples were collected during a 120-min oral glucose tolerance test. We measured the concentrations of glucose, C-peptide, insulin, glucagon, and the two incretin hormones, glucose insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1). We calculated the homeostasis model assessment of insulin resistance (HOMA-IR), whole body insulin resistance (Matsuda index), insulin clearance, and insulinogenic index. All patient groups had increased fasting plasma glucose and impaired glucose responses compared with healthy controls. Beta-cell secretion was increased in AIH, PBC, and MASLD but not in PSC. Patients with AIH and MASLD had hyperglucagonemia and hepatic, as well as peripheral, insulin resistance and decreased insulin clearance, resulting in hyperinsulinemia. Patients with autoimmune liver disease had an increased GIP response, and those with AIH or PBC had an increased GLP-1 response. Our data demonstrate that the mechanism underlying glucose disturbances in patients with autoimmune liver disease differs from that underlying MASLD, including compensatory incretin responses in patients with autoimmune liver disease. Our results suggest that glucose disturbances are present at an early stage of the disease.NEW & NOTEWORTHY Patients with autoimmune liver disease but without overt diabetes display glucose disturbances early on in their disease course. We identified pathophysiological traits specific to these patients including altered incretin responses.
Collapse
Affiliation(s)
- Anne-Sofie H Jensen
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital-Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Ytting
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel P Werge
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Elias B Rashu
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Liv E Hetland
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Mira Thing
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Puria Nabilou
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Johan Burisch
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine N Bojsen-Møller
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Anders E Junker
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Lise Hobolth
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Christian Mortensen
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Flemming Tofteng
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Flemming Bendtsen
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Møller
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Mogens Vyberg
- Department of Pathology, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Reza R Serizawa
- Department of Pathology, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Lise L Gluud
- Gastro Unit, Copenhagen University Hospital-Amager and Hvidovre Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Shivyari FT, Pakniat H, Nooshabadi MR, Rostami S, Haghighian HK, Shiri-Shahsavari MR. Examining the oleoylethanolamide supplement effects on glycemic status, oxidative stress, inflammation, and anti-mullerian hormone in polycystic ovary syndrome. J Ovarian Res 2024; 17:111. [PMID: 38778429 PMCID: PMC11110282 DOI: 10.1186/s13048-024-01432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE This clinical trial was designed and conducted due to the anti-inflammatory potential of Oleoylethanolamide (OEA) to examine the effect of OEA supplement on glycemic status, oxidative stress, inflammatory factors, and anti-Mullerian hormone (AMH) in women with polycystic ovary syndrome (PCOS). METHOD This study was a randomized clinical trial, double-blinded, placebo-controlled that was carried out on 90 women with PCOS. Patients were divided into two groups: receiving an OEA supplement (n = 45) or a placebo (n = 45). The intervention group received 125 mg/day OEA and the placebo group received the wheat flour for 8 weeks. Demographic data were collected through questionnaires. Fasting blood sugar (FBS), insulin resistance (IR), total antioxidant capacity (TAC), malondialdehyde (MDA), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), and AMH were measured before and after the study. RESULTS Data analysis of food recall and physical activity questionnaires, showed no significant differences between the two groups (p > 0.05). Biochemical factors including glycemic status, MDA, inflammatory factors, and AMH decreased significantly (p < 0.05). TAC increased remarkably (p < 0.05) in comparison between the two groups, after the intervention. CONCLUSION OEA supplement with anti-inflammatory characteristics could be efficient independent of diet changes and physical activity in improving disrupted biochemical factors, so both supplementation or food resources of this fatty acid could be considered as a compensatory remedy in patients with PCOS. TRIAL REGISTRATION This study was retrospectively (09-01-2022) registered in the Iranian website ( www.irct.ir ) for registration of clinical trials (IRCT20141025019669N20).
Collapse
Affiliation(s)
| | - Hamideh Pakniat
- Clinical Research Development Unit, Kowsar Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Shaghayegh Rostami
- Clinical Research Development Unit, Kowsar Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Khadem Haghighian
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | | |
Collapse
|
19
|
Soleimani Damaneh M, Aryaeian N, Khajoenia S, Azadbakht L, Hosseini-Baharanchi FS. The association between dietary insulin index and dietary insulin load with rheumatoid arthritis. Br J Nutr 2024; 131:1158-1165. [PMID: 38016802 DOI: 10.1017/s0007114523002635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
This study was designed to assess the relationship between dietary insulin index (DII) and dietary insulin load (DIL) and rheumatoid arthritis (RA) risk in a case-control study. This study enrolled ninety-five newly diagnosed RA patients and 200 age- and sex-matched healthy controls. Dietary intakes were assessed using a validated 168-item semi-quantitative FFQ. DII and DIL were calculated using food insulin index values from previously published data. In the unadjusted model, individuals in the highest DIL tertile had the significantly higher odds of RA than those in the lowest tertile of the DIL scores (OR = 1·32, 95 % CI (1·15, 1·78), Pfor trend = 0·009). After adjusting for confounders, the risk of RA was 2·73 times higher for participants in the highest tertile of DIL than for those in the lowest tertile (OR = 2·73, 95 % CI (1·22, 3·95), Pfor trend < 0·001). In addition, patients in the highest DII tertile had higher risk of RA than those in the first tertile (OR = 2·22, 95 % CI (1·48, 3·95), Pfor trend = 0·008). This association persisted after adjusting for potential confounders (OR = 3·75, 95 % CI (3·18, 6·78), Pfor trend = 0·002). Our findings suggest that diets high in DII and DIL may increase the risk of developing RA, independent of other potential confounders. These findings can be verified by more research, particularly with a prospective design.
Collapse
Affiliation(s)
| | - Naheed Aryaeian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shole Khajoenia
- Department of Clinical Science, Faculty of Medicine, Medical Science University, Jiroft, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
20
|
Berbert-Gomes C, Ramos JS, Silveira-Rodrigues JG, Leite DMM, Melo BP, Soares DD. An acute bout of resistance exercise increases BDNF in hippocampus and restores the long-term memory of insulin-resistant rats. Exp Brain Res 2024; 242:901-912. [PMID: 38453752 DOI: 10.1007/s00221-024-06795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
A sedentary lifestyle, inadequate diet, and obesity are substantial risk factors for Type 2 diabetes mellitus (T2DM) development. A major picture of T2DM is insulin resistance (IR), which causes many impairments in brain physiology, such as increased proinflammatory state and decreased brain-derived neurotrophic factor (BDNF) concentration, hence reducing cognitive function. Physical exercise is a non-pharmacological tool for managing T2DM/IR and its complications. Thus, this study investigated the effects of IR induction and the acute effects of resistance exercise (RE) on memory, neurotrophic, and inflammatory responses in the hippocampus and prefrontal cortex of insulin-resistant rats. IR was induced by a high-fat diet and fructose-rich beverage. Insulin-resistant rats performed acute resistance exercise (IR.RE; vertical ladder climb at 50-100% of the maximum load) or rest (IR.REST; 20 min). Cognitive parameters were assessed by novel object recognition (NOR) tasks, and biochemical analyses were performed to assess BDNF concentrations and inflammatory profile in the hippocampus and prefrontal cortex. Insulin-resistant rats had 20% worse long-term memory (LTM) (p < 0.01) and lower BDNF concentration in the hippocampus (-14.6%; p < 0.05) when compared to non-insulin-resistant rats (CON). An acute bout of RE restored LTM (-9.7% pre vs. post; p > 0.05) and increased BDNF concentration in the hippocampus (9.1%; p < 0.05) of insulin-resistant rats compared to REST. Thus, an acute bout of RE can attenuate the adverse effects of IR on memory and neurotrophic factors in rats, representing a therapeutic tool to alleviate the IR impact on the brain.
Collapse
Affiliation(s)
- Camila Berbert-Gomes
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil
| | - Júlia S Ramos
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil
| | - João G Silveira-Rodrigues
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil
| | - Daniel M M Leite
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil
| | - Bruno P Melo
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil
| | - Danusa D Soares
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais (Universidade Federal de Minas Gerais -UFMG), Belo Horizonte, MG, 31270‑901, Brazil.
| |
Collapse
|
21
|
Zamzam S, Said S, Yaghi J, Faisal FS, Hassan D, Abdul Majeed S, Al Rajabi A, Tayyem R. Dietary Patterns Associated with Breast Cancer in the Middle East: A Scoping Review. Nutrients 2024; 16:579. [PMID: 38474708 DOI: 10.3390/nu16050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer (BC) is the most predominant malignancy in Arab women in the Middle East, and yearly increases in occurrence by 37.5 and mortality rates by 15.2 for every 100,000 in 2019. This review explores the gap in research investigating the role of dietary patterns and BC in Middle Eastern countries. Furthermore, we analyze the evidence connecting these patterns to BC prevalence in the region, discussing implications for public health and preventive strategies. PubMed, ProQuest, and Cochrane databases were searched up to November 2023. Articles published in English from 2000 to 2023 were identified. Our search included dietary patterns (DP), their association with BC and specific to Middle Eastern Regions. The majority of existing research is concentrated in Iran, with limited illustration from Saudi Arabia, Turkey, and Jordan, and a notable absence of studies from other Middle Eastern countries. We found that dietary intervention is closely related to the occurrence, development, and prognosis of BC. Most DPs such as the Dietary Approaches to Stop Hypertension, Mediterranean, Plant-based and Paleolithic diets are identified to decrease the probability of BC by being rich sources of fiber, healthy fats, and vitamins and minerals. However, there are few DPs that increase the risk of BC, because of the existence of foods such as unhealthy fats, low fiber, sugars, and fried foods in those patterns which contribute to increasing the risk factors associated with BC. This review highlights the intricate connection between DPs and the risk of BC in the Middle East, revealing potential protective effects and heightened risks linked to specific dietary elements.
Collapse
Affiliation(s)
- Syed Zamzam
- Department of Human Nutrition, College of Health Science, Qatar University, Doha P.O. Box 2713, Qatar
| | - Suad Said
- Department of Human Nutrition, College of Health Science, Qatar University, Doha P.O. Box 2713, Qatar
| | - Juman Yaghi
- Department of Human Nutrition, College of Health Science, Qatar University, Doha P.O. Box 2713, Qatar
| | - Fathima Sahar Faisal
- Department of Human Nutrition, College of Health Science, Qatar University, Doha P.O. Box 2713, Qatar
| | - Dana Hassan
- Department of Human Nutrition, College of Health Science, Qatar University, Doha P.O. Box 2713, Qatar
| | - Safa Abdul Majeed
- Department of Human Nutrition, College of Health Science, Qatar University, Doha P.O. Box 2713, Qatar
| | - Ala Al Rajabi
- Department of Human Nutrition, College of Health Science, Qatar University, Doha P.O. Box 2713, Qatar
| | - Reema Tayyem
- Department of Human Nutrition, College of Health Science, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
22
|
Gowd V, Kass JD, Sarkar N, Ramakrishnan P. Role of Sam68 as an adaptor protein in inflammatory signaling. Cell Mol Life Sci 2024; 81:89. [PMID: 38351330 PMCID: PMC10864426 DOI: 10.1007/s00018-023-05108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/25/2023] [Accepted: 12/25/2023] [Indexed: 02/16/2024]
Abstract
Sam68 is a ubiquitously expressed KH-domain containing RNA-binding protein highly studied for its involvement in regulating multiple steps of RNA metabolism. Sam68 also contains multiple protein-protein interaction regions such as proline-rich regions, tyrosine phosphorylation sites, and arginine methylation sites, all of which facilitate its participation as an adaptor protein in multiple signaling pathways, likely independent of its RNA-binding role. This review focuses on providing a comprehensive report on the adaptor roles of Sam68 in inflammatory signaling and inflammatory diseases. The insights presented here have the potential to open new avenues in inflammation research and justify targeting Sam68 to control aberrant inflammatory responses.
Collapse
Affiliation(s)
- Vemana Gowd
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Joseph D'Amato Kass
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Nandini Sarkar
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA.
- The Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
23
|
Maroudias G, Vrachnis D, Fotiou A, Loukas N, Mantzou A, Pergialiotis V, Valsamakis G, Machairiotis N, Stavros S, Panagopoulos P, Vakas P, Kanaka-Gantenbein C, Drakakis P, Vrachnis N. Measurement of Calprotectin and PTH in the Amniotic Fluid of Early Second Trimester Pregnancies and Their Impact on Fetuses with Growth Disorders: Are Their Levels Related to Oxidative Stress? J Clin Med 2024; 13:855. [PMID: 38337548 PMCID: PMC10856459 DOI: 10.3390/jcm13030855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Background: During the early stages of human fetal development, the fetal skeleton system is chiefly made up of cartilage, which is gradually replaced by bone. Fetal bone development is mainly regulated by the parathyroid hormone parathormone (PTH) and PTH-related protein, with specific calprotectin playing a substantial role in cell adhesion and chemotaxis while exhibiting antimicrobial activity during the inflammatory osteogenesis process. The aim of our study was to measure the levels of PTH and calprotectin in early second trimester amniotic fluid and to carry out a comparison between the levels observed among normal full-term pregnancies (control group) and those of the groups of embryos exhibiting impaired or enhanced growth. Methods: For the present prospective study, we collected amniotic fluid samples from pregnancies that underwent amniocentesis at 15 to 22 weeks of gestational age during the period 2021-2023. Subsequently, we followed up on all pregnancies closely until delivery. Having recorded fetal birthweights, we then divided the neonates into three groups: small for gestational age (SGA), appropriate for gestational age (AGA), and large for gestational age (LGA). Results: In total, 64 pregnancies, including 14 SGA, 10 LGA, and 40 AGA fetuses, were included in our study. Both substances were detected in early second trimester amniotic fluid in both groups. Concentrations of calprotectin differed significantly among the three groups (p = 0.033). AGA fetuses had a lower mean value of 4.195 (2.415-6.425) IU/mL, whereas LGA fetuses had a higher mean value of 6.055 (4.887-13.950) IU/mL, while SGA fetuses had a mean value of 5.475 (3.400-9.177) IU/mL. Further analysis revealed that only LGA fetuses had significantly higher calprotectin concentrations compared to AGA fetuses (p = 0.018). PTH concentration was similar between the groups, with LGA fetuses having a mean value of 13.18 (9.51-15.52) IU/mL, while SGA fetuses had a mean value of 14.18 (9.02-16.00) IU/mL, and AGA fetuses had similar concentrations of 13.35 (9.05-15.81) IU/mL. The differences in PTH concentration among the three groups were not statistically significant (p = 0.513). Conclusions: Calprotectin values in the amniotic fluid in the early second trimester were higher in LGA fetuses compared to those in the SGA and AGA categories. LGA fetuses can possibly be in a state of low-grade chronic inflammation due to excessive fat deposition, causing oxidative stress in LGA fetuses and, eventually, the release of calprotectin. Moreover, PTH concentrations in the amniotic fluid of early second trimester pregnancies were not found to be statistically correlated with fetal growth abnormalities in either LGA or SGA fetuses. However, the early time of collection and the small number of patients in our study should be taken into account.
Collapse
Affiliation(s)
- George Maroudias
- Department of Obstetrics and Gynecology, Tzaneio General Hospital, 18536 Athens, Greece
| | - Dionysios Vrachnis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.V.); (A.F.)
| | - Alexandros Fotiou
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.V.); (A.F.)
| | - Nikolaos Loukas
- Department of Obstetrics and Gynecology, Tzaneio General Hospital, 18536 Athens, Greece
| | - Aimilia Mantzou
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, 11527 Athens, Greece (C.K.-G.)
| | - Vasileiοs Pergialiotis
- First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece;
| | - George Valsamakis
- Second Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Aretaieion Hospital, 11528 Athens, Greece; (G.V.)
| | - Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Attikon Hospital, Rimini 1, 12462 Athens, Greece (P.P.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Attikon Hospital, Rimini 1, 12462 Athens, Greece (P.P.)
| | - Periklis Panagopoulos
- Third Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Attikon Hospital, Rimini 1, 12462 Athens, Greece (P.P.)
| | - Panagiotis Vakas
- Second Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Aretaieion Hospital, 11528 Athens, Greece; (G.V.)
| | - Christina Kanaka-Gantenbein
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, 11527 Athens, Greece (C.K.-G.)
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Attikon Hospital, Rimini 1, 12462 Athens, Greece (P.P.)
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Attikon Hospital, Rimini 1, 12462 Athens, Greece (P.P.)
- Vascular Biology, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17, UK
| |
Collapse
|
24
|
Gumede NAC, Khathi A. The Role of Pro-Opiomelanocortin Derivatives in the Development of Type 2 Diabetes-Associated Myocardial Infarction: Possible Links with Prediabetes. Biomedicines 2024; 12:314. [PMID: 38397916 PMCID: PMC10887103 DOI: 10.3390/biomedicines12020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Myocardial infarction is a major contributor to CVD-related mortality. T2DM is a risk factor for MI. Stress activates the HPA axis, SNS, and endogenous OPS. These POMC derivatives increase the blood glucose and cardiovascular response by inhibiting the PI3K/AkT insulin signaling pathway and increasing cardiac contraction. Opioids regulate the effect of the HPA axis and SNS and they are cardioprotective. The chronic activation of the stress response may lead to insulin resistance, cardiac dysfunction, and MI. Stress and T2DM, therefore, increase the risk of MI. T2DM is preceded by prediabetes. Studies have shown that prediabetes is associated with an increased risk of MI because of inflammation, hyperlipidemia, endothelial dysfunction, and hypertension. The HPA axis is reported to be dysregulated in prediabetes. However, the SNS and the OPS have not been explored during prediabetes. The effect of prediabetes on POMC derivatives has yet to be fully explored and understood. The impact of stress and prediabetes on the cardiovascular response needs to be investigated. This study sought to review the potential impact of prediabetes on the POMC derivatives and pathways that could lead to MI.
Collapse
Affiliation(s)
- Nompumelelo Anna-Cletta Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban X54001, South Africa;
| | | |
Collapse
|
25
|
Uchio R, Okuda-Hanafusa C, Sakaguchi H, Saji R, Muroyama K, Murosaki S, Yamamoto Y, Hirose Y. Curcuma longa extract reduces serum inflammatory markers and postprandial hyperglycemia in healthy but borderline participants with overweight and glycemia in the normal/prediabetes range: a randomized, double-blind, and placebo-controlled trial. Front Nutr 2024; 11:1324196. [PMID: 38347961 PMCID: PMC10859506 DOI: 10.3389/fnut.2024.1324196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The spice turmeric, which has the Latin name Curcuma longa (C. longa), has various physiological effects. This study evaluated the effects of a hot water mixture with supercritical carbon dioxide C. longa extracts, CLE, and the potential active components of C. longa, turmeronols A and B and bisacurone on inflammation and glucose metabolism. First, we investigated the effect of CLE and the potential active components of C. longa on lipopolysaccharide-induced inflammation in RAW264.7 macrophages. We found a significant decrease in the production of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and nitric oxide with CLE, turmeronol A, and bisacurone, Significant inhibition of each of these substances was also observed, except for TNF-α with turmeronol B. The second part of our work was a 12-week randomized, double-blind, placebo-controlled study in healthy but borderline adults aged 40 to 69 years with overweight and normal/prediabetes glycemia. We compared blood inflammatory and glycometabolic markers in the CLE (n = 55) and placebo groups (n = 55). We found significantly lower serum high-sensitivity C-reactive protein and hemoglobin A1c levels in the CLE group. This group also showed significant improvements in postprandial hyperglycemia and insulin sensitivity indices. Our findings indicate that CLE may reduce low-grade inflammation and thus improve insulin sensitivity and postprandial hyperglycemia. Clinical trial registration: https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000051492, UMIN-CTR, UMIN000045106.
Collapse
Affiliation(s)
- Ryusei Uchio
- Research & Development Institute, House Wellness Foods Corp., Itami, Hyogo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee DY, Arndt J, O’Connell JF, Egan JM, Kim Y. Red Ginseng Attenuates the Hepatic Cellular Senescence in Aged Mice. BIOLOGY 2024; 13:36. [PMID: 38248467 PMCID: PMC10813250 DOI: 10.3390/biology13010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
Cellular senescence is defined as an irreversible cell cycle arrest accompanied by morphological and physiological alterations during aging. Red ginseng (RG), processed from fresh ginseng (Panax ginseng C.A. Meyer) with a one-time steaming and drying process, is a well-known beneficial herbal medicine showing antioxidant, anti-inflammatory, and anti-aging properties. The current study aimed to investigate the benefits of RG in alleviating hepatic cellular senescence and its adverse effects in 19-month-old aged mice. We applied two different intervention methods and durations to compare RG's effects in a time-dependent manner: (1) oral gavage injection for 4 weeks and (2) ad libitum intervention for 14 weeks. We observed that 4-week RG administration was exerted to maintain insulin homeostasis against developing age-associated insulin insensitivity and suppressed cellular senescence pathway in the liver and primary hepatocytes. Moreover, with remarkable improvement of insulin homeostasis, 14-week RG supplementation downregulated the activation of c-Jun N-terminal kinase (JNK) and its downstream transcriptional factor nuclear factor-κB (NF-κB) in aged mice. Lastly, RG treatment significantly reduced the senescence-associated β-galactosidase (SA-β-gal)-positive cells in primary hepatocytes and ionizing radiation (IR)-exposed mouse embryonic fibroblasts (MEFs). Taken together, we suggest that RG can be a promising candidate for a senolytic substance by preventing hepatic cellular senescence.
Collapse
Affiliation(s)
- Da-Yeon Lee
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (D.-Y.L.); (J.A.)
| | - Juliana Arndt
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (D.-Y.L.); (J.A.)
| | - Jennifer F. O’Connell
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA; (J.F.O.); (J.M.E.)
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA; (J.F.O.); (J.M.E.)
| | - Yoo Kim
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (D.-Y.L.); (J.A.)
| |
Collapse
|
27
|
Wang J, Yang S, Zhao L. Association of High-Sensitivity C-Reactive Protein and Lipoprotein-Associated Phospholipase A2 with Metabolically Unhealthy Phenotype: A Cross Sectional Study. J Inflamm Res 2024; 17:81-90. [PMID: 38204988 PMCID: PMC10778153 DOI: 10.2147/jir.s447681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Objective Whether the combination of high-sensitivity C-reactive protein (hs-CRP) and Lipoprotein-associated Phospholipase A2 (Lp-PLA2) was an independent risk factor for metabolic unhealthy is unknown. This study aimed to evaluate the association between combining hs-CRP and Lp-PLA2 and metabolic unhealthy. Methods A total of 3198 participants who underwent routine health check-up examinations. The participants completed inflammation indicators (hs-CRP and Lp-PLA2) examination and physical assessments. Four phenotypes were determined according to obesity and metabolic health status. Meanwhile, the participants were divided into four groups according to the level of hs-CRP and Lp-PLA2. The cross-sectional association between hs-CRP, Lp-PLA2 and metabolic unhealthy was tested by logistic regression analysis. Results About 30.48%, 17.35%, 17.32% and 34.83% had MHNO, MUNO, MHO, and MUO, respectively. The combination of the hs-CRP and Lp-PLA2 levels was significantly correlated with metabolic unhealthy in non-obese subjects. However, in obese subjects, only hs-CRP level was significantly correlated with metabolic unhealthy. Conclusion The hs-CRP and Lp-PLA2 together were significantly associated with metabolic unhealthy in non-obese subjects. hs-CRP level was significantly correlated with metabolic unhealthy in obese subjects.
Collapse
Affiliation(s)
- Jiangang Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People’s Republic of China
- Health Management Research Center of Central South University, Changsha, Hunan, 410013, People’s Republic of China
| | - Saiqi Yang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People’s Republic of China
- Health Management Research Center of Central South University, Changsha, Hunan, 410013, People’s Republic of China
| | - Linlin Zhao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People’s Republic of China
- Health Management Research Center of Central South University, Changsha, Hunan, 410013, People’s Republic of China
| |
Collapse
|
28
|
Baban B, Eklund D, Tuerxun K, Alshamari M, Laviano A, Ljungqvist O, Särndahl E. Altered insulin sensitivity and immune function in patients with colorectal cancer. Clin Nutr ESPEN 2023; 58:193-200. [PMID: 38057005 DOI: 10.1016/j.clnesp.2023.09.917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND & AIMS Insulin resistance and chronic inflammation have been reported in patients with cancer. However, many of the underlying mechanisms and associations are yet to be unveiled. We examined both the level of insulin sensitivity and markers of inflammation in patients with colorectal cancer for comparison to controls. METHODS Clinical exploratory study of patients with colorectal cancer (n = 20) and matched controls (n = 10). Insulin sensitivity was quantified using the hyperinsulinemic normoglycemic clamp and blood samples were taken for quantification of several key, both intra- and extracellular, inflammatory markers. We analysed the differences in these parameters between the two groups. RESULTS Patients exhibited both insulin resistance (M-value, patients median (Mdn) 4.57 interquartile range (IQR) 3.49-5.75; controls Mdn 5.79 (IQR 5.20-6.81), p = 0.049), as well as increased plasma levels of the pro-inflammatory cytokines IL-1β (patients Mdn 0.48 (IQR 0.33-0.58); controls Mdn 0.36 (IQR 0.29-0.42), p = 0.02) and IL-6 (patients Mdn 3.21 (IQR 2.31-4.93); controls Mdn 2.16 (IQR 1.50-2.65), p = 0.02). The latter is present despite an almost two to three fold decrease (p < 0.01) in caspase-1 activity, a facilitating enzyme of IL-1β production, within circulating immune cells. CONCLUSION Patients with colorectal cancer displayed insulin resistance and higher levels of plasma IL-1β and IL-6, in comparison to matched healthy controls. The finding of a seemingly disconnect between inflammasome (caspase-1) activity and plasma levels of key pro-inflammatory cytokines in cancer patients may suggest that, in parallel to dysregulated immune cells, tumour-driven inflammatory pathways also are in effect.
Collapse
Affiliation(s)
- Bayar Baban
- Department of Surgery, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Daniel Eklund
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Kedeye Tuerxun
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Muhammed Alshamari
- School of Medical Sciences, Department of Radiology, Örebro University & Örebro University Hospital, SE-701 85 Örebro, Sweden
| | - Alessandro Laviano
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Olle Ljungqvist
- Department of Surgery, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
29
|
Carvalho GB, Brandão-Lima PN, Payolla TB, Lucena SEF, Sarti FM, Fisberg RM, Rogero MM. Circulating MiRNAs Are Associated With Low-grade Systemic Inflammation and Leptin Levels in Older Adults. Inflammation 2023; 46:2132-2146. [PMID: 37464054 DOI: 10.1007/s10753-023-01867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
Inflammaging refers to the low-grade systemic inflammation that occurs with aging present in chronic non-communicable diseases. MicroRNAs (miRNAs) are potential biomarkers for these diseases in older adults. This study aimed to assess the expression of 21 circulating miRNAs and their associations with inflammatory biomarkers in older adults. This cross-sectional study was performed with 200 individuals participating in ISA-Nutrition. The systemic low-grade inflammation score (SIS) was calculated from the plasma concentration of 10 inflammatory biomarkers. Circulating miRNA expression was assessed using the Fluidigm method. Wilcoxon-Mann-Whitney test was employed to determine differences in SIS among groups distributed according to sex and presence of MetS. Spearman's correlation was used to estimate correlations among SIS, leptin levels, miRNA expression, and variables of interest. Analyses were performed using software R version 4.2.3, with a significance level of 0.05. The final sample consisted of 193 individuals with a mean age of 69.1 (SE = 0.5) years, being 64.7% individuals with metabolic syndrome (MetS). Positive correlations were observed between leptin concentration and metabolic risk factors, and leptin concentration was higher in individuals with MetS compared to those without MetS. The expression of 15 circulating miRNAs was negatively correlated with leptin concentration. GLMs showed negative associations between miRNAs (miR-15a, miR-16, miR-223, miR-363, miR-532), leptin, and/or SIS values; and only miR-21 showed positive association with SIS values. The results suggest the presence of peripheral leptin resistance associated with low-grade inflammation and plasma expression of miRNAs in older adults. These findings suggest the potential role of miRNAs as biomarkers for cardiometabolic risk.
Collapse
Affiliation(s)
- Gabrielli B Carvalho
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP, 01246-904, Brazil
| | - Paula N Brandão-Lima
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP, 01246-904, Brazil
| | - Tanyara B Payolla
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP, 01246-904, Brazil
| | - Sadraque E F Lucena
- Department of Statistics and Actuarial Sciences, Federal University of Sergipe, Marechal Rondon Avenue, São Cristóvão, SE, 49100-000, Brazil
| | - Flávia M Sarti
- School of Arts, Sciences and Humanities, University of São Paulo, 1000 Arlindo Bettio Avenue, São Paulo, SP, 03828-000, Brazil
| | - Regina M Fisberg
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP, 01246-904, Brazil
| | - Marcelo M Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, 715 Dr. Arnaldo Avenue, São Paulo, SP, 01246-904, Brazil.
| |
Collapse
|
30
|
Gumede N, Khathi A. The role of fibrinolysis in the development of prediabetes-associated coronary heart disease: a focus on the plasminogen activator inhibitor -1 and its potential use as a predictive marker in diet-induced prediabetes. Front Nutr 2023; 10:1256427. [PMID: 38024366 PMCID: PMC10652797 DOI: 10.3389/fnut.2023.1256427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cardiovascular diseases (CVD). However, the onset of T2DM is preceded by prediabetes, which is associated with sedentary lifestyles and consumption of high-calorie diets. Studies have shown that impaired glucose homeostasis creates an environment for developing T2DM-related complications. Using a high-fat-high-carbohydrate diet-induced prediabetes animal model, this study sought to assess the risk factors of coronary heart disease (CHD) in diet-induced prediabetes and identify biomarkers that can be used for early detection of prediabetes-associated CHD. Methods Male Sprague Dawley rats were randomly grouped into two groups and were kept on different diets for 20 weeks (n = 6 in each group). One group was fed standard rat chow to serve as a non-prediabetes (NPD) control, while the other group consumed a high-fat-high-carbohydrate diet to induce prediabetes (PD). Post induction, the homeostasis model assessment- insulin resistance (HOMA-IR) and glycated haemoglobin (HbA1c) was used to test for insulin resistance. Body weight, mean arterial pressure (MAP), resting heart rate (HR), inflammatory cytokines (C-reactive protein (CRP), tumor necrosis factor (TNF-α), interleukin-6 (IL-6)), lipids (total cholesterol (TC), triglyceride (TG), lipoproteins (HDL, LDL, VLDL)), endothelial function (endothelial nitric oxide (eNOS), endothelin -1 (ET-1)), fibrinolysis (plasminogen activator inhibitor-1 (PAI-1)) were all measured to assess the risk of CHD. All data were expressed as means ± S.E.M. Statistical comparisons were performed with Graph Pad. Instat Software using Student's two-sided t-test. The Pearson correlation coefficient and linear regression were calculated to assess the association. The value of p < 0.05 was considered statistically significant. Results There was significant insulin resistance accompanied by significantly increased HbA1c and body weight in PD compared to NPD. Simultaneously, there was a significant increase in inflammatory cytokines in PD compared to NPD. This was accompanied by significantly increased TG and VLDL and endothelial dysfunction in PD. The association between HOMA-IR and PAI-1 was insignificantly positive in NPD, whereas a significantly strong positive association was observed in PD. Conclusion There is a positive correlation between insulin resistance and PAI-1 during prediabetes; therefore, suggesting that prediabetes increases the risk of developing vascular thrombosis. The current therefore study warrants further investigation on PAI-1 and other markers of fibrinolysis for the early detection of thrombosis and risk of CHD in prediabetes.
Collapse
Affiliation(s)
- Nompumelelo Gumede
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | |
Collapse
|
31
|
Sachan A, Aggarwal S, Pol MM, Singh A, Yadav R. Expression analysis of MMP14: Key enzyme action in modulating visceral adipose tissue plasticity in patients with obesity. Clin Obes 2023; 13:e12607. [PMID: 37340990 DOI: 10.1111/cob.12607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023]
Abstract
Compromised adipose tissue plasticity is a hallmark finding of obesity orchestrated by the intricate interplay between various extracellular matrix components. Collagen6 (COL6) is well characterized in obese visceral adipose tissue (VAT), not much is known about MMP14 which is hypothesized to be the key player in matrix reorganization. Subjects with obesity (BMI ≥40; n = 50) aged 18-60 years undergoing bariatric surgery and their age-matched controls (BMI < 25; n = 30) were included. MMP14, Col6A3 and Tissue inhibitor of metalloproteinase 2 (TIMP2) mRNA expression was assessed in VAT and their serum levels along with endotrophin were estimated in both groups preoperatively and post-operatively in the obese group. The results were analysed statistically and correlated with anthropometric and glycaemic parameters, namely fasting glucose and insulin, HbA1c, HOMA-IR, HOMA-β and QUICKI. Circulating levels as well as mRNA expression profiling revealed significant differences between the individuals with and without obesity (p < .05), more so in individuals with diabetes and obesity (p < .05). Follow-up serum analysis revealed significantly raised MMP14 (p < .001), with decreased Col6A3, endotrophin and TIMP2 levels (p < .01, p < .001 and p < .01, respectively). A rise in serum MMP14 protein, simultaneous with post-surgical weight loss and decreased serum levels of associated extracellular matrix (ECM) remodellers, suggests its crucial role in modulating obesity-associated ECM fibrosis and pliability of VAT.
Collapse
Affiliation(s)
- Astha Sachan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Aggarwal
- Department of Surgical Disciplines, CMET, All India Institute of Medical Sciences, New Delhi, India
| | - Manjunath Maruti Pol
- Department of Surgical Disciplines, CMET, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rakhee Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
32
|
Sharma P, Sri Swetha Victoria V, Praneeth Kumar P, Karmakar S, Swetha M, Reddy A. Cross-talk between insulin resistance and nitrogen species in hypoxia leads to deterioration of tissue and homeostasis. Int Immunopharmacol 2023; 122:110472. [PMID: 37392570 DOI: 10.1016/j.intimp.2023.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Hypoxia has been linked with insulin resistance as it produces changes in the metabolism of the cell; in which the adipocytes impede the insulin receptor tyrosine, phosphorylation, directing at decreased levels of transport of glucose. At this juncture, we are focusing on cross-talk between insulin resistance and nitrogen species in hypoxia, leading to the deterioration of tissue and homeostasis. Physiological levels of nitric oxide play a very crucial role in acting as a priority effector and signaling molecule, arbitrating the body's responses to hypoxia. Both ROS and RNS are associated with a reduction in IRS1 phosphorylation in tyrosine, which leads to reduced levels of IRS1 content and insulin response, which further leads to insulin resistance. Cellular hypoxia is a trigger to inflammatory mediators which signal tissue impairment and initiate survival requirements. But, hypoxia-mediated inflammation act as a protective role by an immune response and promotes wound healing during infection. In this review, we abridge the crosstalk between the inflammation and highlight the dysregulation in physiological consequences due to diabetes mellitus. Finally, we review various treatments available for its related physiological complications.
Collapse
Affiliation(s)
- Priyanshy Sharma
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - V Sri Swetha Victoria
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - P Praneeth Kumar
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - Sarbani Karmakar
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - Mudduluru Swetha
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - Amala Reddy
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India.
| |
Collapse
|
33
|
Petagine L, Zariwala MG, Patel VB. Non-alcoholic fatty liver disease: Immunological mechanisms and current treatments. World J Gastroenterol 2023; 29:4831-4850. [PMID: 37701135 PMCID: PMC10494768 DOI: 10.3748/wjg.v29.i32.4831] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) causes significant global disease burden and is a leading cause of mortality. NAFLD induces a myriad of aberrant changes in hepatocytes at both the cellular and molecular level. Although the disease spectrum of NAFLD is widely recognised, the precise triggers for disease progression are still to be fully elucidated. Furthermore, the propagation to cirrhosis is poorly understood. Whilst some progress in terms of treatment options have been explored, an incomplete understanding of the hepatic cellular and molecular alterations limits their clinical utility. We have therefore reviewed some of the key pathways responsible for the pathogenesis of NAFLD such as innate and adaptative immunity, lipotoxicity and fibrogenesis, and highlighted current trials and treatment options for NAFLD patients.
Collapse
Affiliation(s)
- Lucy Petagine
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Mohammed Gulrez Zariwala
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Vinood B Patel
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| |
Collapse
|
34
|
Naomi R, Teoh SH, Halim S, Embong H, Hasain Z, Bahari H, Kumar J. Unraveling Obesity: Transgenerational Inheritance, Treatment Side Effects, Flavonoids, Mechanisms, Microbiota, Redox Balance, and Bioavailability-A Narrative Review. Antioxidants (Basel) 2023; 12:1549. [PMID: 37627544 PMCID: PMC10451614 DOI: 10.3390/antiox12081549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity is known as a transgenerational vicious cycle and has become a global burden due to its unavoidable complications. Modern approaches to obesity management often involve the use of pharmaceutical drugs and surgeries that have been associated with negative side effects. In contrast, natural antioxidants, such as flavonoids, have emerged as a promising alternative due to their potential health benefits and minimal side effects. Thus, this narrative review explores the potential protective role of flavonoids as a natural antioxidant in managing obesity. To identify recent in vivo studies on the efficiency of flavonoids in managing obesity, a comprehensive search was conducted on Wiley Online Library, Scopus, Nature, and ScienceDirect. The search was limited to the past 10 years; from the search, we identified 31 articles to be further reviewed. Based on the reviewed articles, we concluded that flavonoids offer novel therapeutic strategies for preventing obesity and its associated co-morbidities. This is because the appropriate dosage of flavonoid compounds is able to reduce adipose tissue mass, the formation of intracellular free radicals, enhance endogenous antioxidant defences, modulate the redox balance, and reduce inflammatory signalling pathways. Thus, this review provides an insight into the domain of a natural product therapeutic approach for managing obesity and recapitulates the transgenerational inheritance of obesity, the current available treatments to manage obesity and its side effects, flavonoids and their sources, the molecular mechanism involved, the modulation of gut microbiota in obesity, redox balance, and the bioavailability of flavonoids. In toto, although flavonoids show promising positive outcome in managing obesity, a more comprehensive understanding of the molecular mechanisms responsible for the advantageous impacts of flavonoids-achieved through translation to clinical trials-would provide a novel approach to inculcating flavonoids in managing obesity in the future as this review is limited to animal studies.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Soo Huat Teoh
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Malaysia;
| | - Shariff Halim
- Faculty of Health Sciences, University Technology Mara (UiTM) Pulau Pinang, Bertam Campus, Kepala Batas 13200, Malaysia;
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Zubaidah Hasain
- Unit of Physiology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
35
|
Sebag SC, Qian Q, Upara C, Ding Q, Cao H, Hong L, Yang L. A Medium Chain Fatty Acid, 6-hydroxyhexanoic acid (6-HHA), Protects Against Obesity and Insulin Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549684. [PMID: 37502899 PMCID: PMC10370144 DOI: 10.1101/2023.07.19.549684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Obesity, a worldwide health problem, increases the risk for developing metabolic diseases such as insulin resistance and diabetes. It is well recognized that obesity-associated chronic inflammation plays a key role in the pathogenesis of systemic metabolic dysfunction. Previously, we revealed an anti-inflammatory role for spent culture supernatants isolated from the oral commensal bacterial species Streptococcus gordonii (Sg-SCS). Here, we identified that 6-hydroxyhexanoic acid (6-HHA), a medium chain fatty acid (MCFA), is the one of the key components of Sg-SCS . We found that treatment of 6-HHA in mice fed a high-fat diet (HFD) significantly reduced HFD-mediated weight gain which was largely attributed to a decrease in fat mass. Systemically, 6-HHA improves obesity-associated glucose intolerance and insulin resistance. Furthermore, administration of 6-HHA suppressed obesity-associated systemic inflammation and dyslipidemia. At the cellular level, treatment of 6-HHA ameliorated aberrant inflammatory and metabolic transcriptomic signatures in white adipose tissue of mice with diet-induced obesity (HFD). Mechanistically, we found that 6-HHA suppressed adipocyte-proinflammatory cytokine production and lipolysis, the latter through Gαi-mediated signaling. This work provides direct evidence for the anti-obesity effects of a novel MCFA, which could be a new therapeutic treatment for combating obesity. KEY POINTS Hydroxyhexanoic medium chain fatty acids (MCFAs) are dietary and bacterial-derived energy sources, however, the outcomes of using MCFAs in treating metabolic disorders are diverse and complex. The MCFA 6-hydroxyhexanoic acid (6-HHA) is a metabolite secreted by the oral bacterial commensal species Streptococcus gordonii; here we investigated its role in modulating high-fat diet (HFD)-induced metabolic dysfunction. In a murine model of obesity, we found 6-HHA-mediated improvement of diet-mediated adiposity, insulin resistance and inflammation were in part due to actions on white adipose tissue (WAT).6-HHA suppressed proinflammatory cytokine production and lipolysis through Gi-mediated signaling in differentiated white adipocytes.
Collapse
|
36
|
Groeger M, Matsuo K, Heidary Arash E, Pereira A, Le Guillou D, Pino C, Telles-Silva KA, Maher JJ, Hsiao EC, Willenbring H. Modeling and therapeutic targeting of inflammation-induced hepatic insulin resistance using human iPSC-derived hepatocytes and macrophages. Nat Commun 2023; 14:3902. [PMID: 37400454 PMCID: PMC10318012 DOI: 10.1038/s41467-023-39311-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/07/2023] [Indexed: 07/05/2023] Open
Abstract
Hepatic insulin resistance is recognized as a driver of type 2 diabetes and fatty liver disease but specific therapies are lacking. Here we explore the potential of human induced pluripotent stem cells (iPSCs) for modeling hepatic insulin resistance in vitro, with a focus on resolving the controversy about the impact of inflammation in the absence of steatosis. For this, we establish the complex insulin signaling cascade and the multiple inter-dependent functions constituting hepatic glucose metabolism in iPSC-derived hepatocytes (iPSC-Heps). Co-culture of these insulin-sensitive iPSC-Heps with isogenic iPSC-derived pro-inflammatory macrophages induces glucose output by preventing insulin from inhibiting gluconeogenesis and glycogenolysis and activating glycolysis. Screening identifies TNFα and IL1β as the mediators of insulin resistance in iPSC-Heps. Neutralizing these cytokines together restores insulin sensitivity in iPSC-Heps more effectively than individual inhibition, reflecting specific effects on insulin signaling and glucose metabolism mediated by NF-κB or JNK. These results show that inflammation is sufficient to induce hepatic insulin resistance and establish a human iPSC-based in vitro model to mechanistically dissect and therapeutically target this metabolic disease driver.
Collapse
Affiliation(s)
- Marko Groeger
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Koji Matsuo
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Emad Heidary Arash
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ashley Pereira
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Dounia Le Guillou
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Liver Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Cindy Pino
- Liver Center, University of California San Francisco, San Francisco, CA, 94143, USA
- Genomics CoLab, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kayque A Telles-Silva
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
- Human Genome and Stem Cell Research Center, University of Sao Paulo, 05508-090, Sao Paulo, Brazil
| | - Jacquelyn J Maher
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Liver Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Edward C Hsiao
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Holger Willenbring
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA.
- Liver Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
37
|
Rahman SO, Khan T, Iqubal A, Agarwal S, Akhtar M, Parvez S, Shah ZA, Najmi AK. Association between insulin and Nrf2 signalling pathway in Alzheimer's disease: A molecular landscape. Life Sci 2023:121899. [PMID: 37394097 DOI: 10.1016/j.lfs.2023.121899] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Insulin, a well-known hormone, has been implicated as a regulator of blood glucose levels for almost a century now. Over the past few decades, the non-glycemic actions of insulin i.e. neuronal growth and proliferation have been extensively studied. In 2005, Dr. Suzanne de La Monte and her team reported that insulin might be involved in the pathogenesis of Alzheimer's Disease (AD) and thus coined a term "Type-3 diabetes" This hypothesis was supported by several subsequent studies. The nuclear factor erythroid 2- related factor 2 (Nrf2) triggers a cascade of events under the regulation of distinct mechanisms including protein stability, phosphorylation and nuclear cytoplasmic shuttling, finally leading to the protection against oxidative damage. The Nrf2 pathway has been investigated extensively in relevance to neurodegenerative disorders, particularly AD. Many studies have indicated a strong correlation between insulin and Nrf2 signalling pathways both in the periphery and the brainbut merely few of them have focused on elucidating their inter-connective role in AD. The present review emphasizes key molecular pathways that correlate the role of insulin with Nrf2 during AD. The review has also identified key unexplored areas that could be investigated in future to further establish the insulin and Nrf2 influence in AD.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tahira Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shivani Agarwal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Suhel Parvez
- Neurobehavioral Pharmacology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Zahoor Ahmad Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
38
|
Husain KH, Sarhan SF, AlKhalifa HKAA, Buhasan A, Moin ASM, Butler AE. Dementia in Diabetes: The Role of Hypoglycemia. Int J Mol Sci 2023; 24:9846. [PMID: 37372995 DOI: 10.3390/ijms24129846] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Hypoglycemia, a common consequence of diabetes treatment, is associated with severe morbidity and mortality and has become a major barrier to intensifying antidiabetic therapy. Severe hypoglycemia, defined as abnormally low blood glucose requiring the assistance of another person, is associated with seizures and comas, but even mild hypoglycemia can cause troubling symptoms such as anxiety, palpitations, and confusion. Dementia generally refers to the loss of memory, language, problem-solving, and other cognitive functions, which can interfere with daily life, and there is growing evidence that diabetes is associated with an increased risk of both vascular and non-vascular dementia. Neuroglycopenia resulting from a hypoglycemic episode in diabetic patients can lead to the degeneration of brain cells, with a resultant cognitive decline, leading to dementia. In light of new evidence, a deeper understating of the relationship between hypoglycemia and dementia can help to inform and guide preventative strategies. In this review, we discuss the epidemiology of dementia among patients with diabetes, and the emerging mechanisms thought to underlie the association between hypoglycemia and dementia. Furthermore, we discuss the risks of various pharmacological therapies, emerging therapies to combat hypoglycemia-induced dementia, as well as risk minimization strategies.
Collapse
Affiliation(s)
- Khaled Hameed Husain
- School of Medicine, Royal College of Surgeons in Ireland, Busaiteen, Adliya 15503, Bahrain
| | - Saud Faisal Sarhan
- School of Medicine, Royal College of Surgeons in Ireland, Busaiteen, Adliya 15503, Bahrain
| | | | - Asal Buhasan
- School of Medicine, Royal College of Surgeons in Ireland, Busaiteen, Adliya 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland, Busaiteen, Adliya 15503, Bahrain
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Busaiteen, Adliya 15503, Bahrain
| |
Collapse
|
39
|
Peluso T, Nittoli V, Reale C, Porreca I, Russo F, Roberto L, Giacco A, Silvestri E, Mallardo M, De Felice M, Ambrosino C. Chronic Exposure to Chlorpyrifos Damages Thyroid Activity and Imbalances Hepatic Thyroid Hormones Signaling and Glucose Metabolism: Dependency of T3-FOXO1 Axis by Hyperglycemia. Int J Mol Sci 2023; 24:ijms24119582. [PMID: 37298533 DOI: 10.3390/ijms24119582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Early life exposure to Endocrine Disruptor Chemicals (EDCs), such as the organophosphate pesticide Chlorpyrifos (CPF), affects the thyroid activity and dependent process, including the glucose metabolism. The damage of thyroid hormones (THs) as a mechanism of action of CPF is underestimated because the studies rarely consider that TH levels and signaling are customized peripherally. Here, we investigated the impairment of metabolism/signaling of THs and lipid/glucose metabolism in the livers of 6-month-old mice, developmentally and lifelong exposed to 0.1, 1, and 10 mg/kg/die CPF (F1) and their offspring similarly exposed (F2), analyzing the levels of transcripts of the enzymes involved in the metabolism of T3 (Dio1), lipids (Fasn, Acc1), and glucose (G6pase, Pck1). Both processes were altered only in F2 males, affected by hypothyroidism and by a systemic hyperglycemia linked to the activation of gluconeogenesis in mice exposed to 1 and 10 mg/kg/die CPF. Interestingly, we observed an increase in active FOXO1 protein due to a decrease in AKT phosphorylation, despite insulin signaling activation. Experiments in vitro revealed that chronic exposure to CPF affected glucose metabolism via the direct modulation of FOXO1 activity and T3 levels in hepatic cells. In conclusion, we described different sex and intergenerational effects of CPF exposure on the hepatic homeostasis of THs, their signaling, and, finally, glucose metabolism. The data points to FOXO1-T3-glucose signaling as a target of CPF in liver.
Collapse
Affiliation(s)
- Teresa Peluso
- Department of Science and Technology, University of Sannio, Via de Sanctis, 82100 Benevento, Italy
- Biogem Scarl, Institute of Molecular Biology and Genetics Research, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Valeria Nittoli
- Biogem Scarl, Institute of Molecular Biology and Genetics Research, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Carla Reale
- Biogem Scarl, Institute of Molecular Biology and Genetics Research, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Immacolata Porreca
- Biogem Scarl, Institute of Molecular Biology and Genetics Research, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Filomena Russo
- Biogem Scarl, Institute of Molecular Biology and Genetics Research, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Luca Roberto
- Biogem Scarl, Institute of Molecular Biology and Genetics Research, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Antonia Giacco
- Department of Science and Technology, University of Sannio, Via de Sanctis, 82100 Benevento, Italy
| | - Elena Silvestri
- Department of Science and Technology, University of Sannio, Via de Sanctis, 82100 Benevento, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mario De Felice
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Via Pansini 6, 80131 Naples, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Via de Sanctis, 82100 Benevento, Italy
- Biogem Scarl, Institute of Molecular Biology and Genetics Research, Via Camporeale, 83031 Ariano Irpino, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Via Pansini 6, 80131 Naples, Italy
| |
Collapse
|
40
|
Sun J, Fang D, Wang Z, Liu Y. Sleep Deprivation and Gut Microbiota Dysbiosis: Current Understandings and Implications. Int J Mol Sci 2023; 24:ijms24119603. [PMID: 37298553 DOI: 10.3390/ijms24119603] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Gut microbiota comprises the microbial communities inhabiting our gastrointestinal (GI) tracts. Accordingly, these complex communities play a fundamental role in many host processes and are closely implicated in human health and diseases. Sleep deprivation (SD) has become increasingly common in modern society, partly owing to the rising pressure of work and the diversification of entertainment. It is well documented that sleep loss is a significant cause of various adverse outcomes on human health including immune-related and metabolic diseases. Furthermore, accumulating evidence suggests that gut microbiota dysbiosis is associated with these SD-induced human diseases. In this review, we summarize the gut microbiota dysbiosis caused by SD and the succedent diseases ranging from the immune system and metabolic system to various organs and highlight the critical roles of gut microbiota in these diseases. The implications and possible strategies to alleviate SD-related human diseases are also provided.
Collapse
Affiliation(s)
- Jingyi Sun
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Dan Fang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
41
|
Lee DY, Lee SJ, Chandrasekaran P, Lamichhane G, O'Connell JF, Egan JM, Kim Y. Dietary Curcumin Attenuates Hepatic Cellular Senescence by Suppressing the MAPK/NF-κB Signaling Pathway in Aged Mice. Antioxidants (Basel) 2023; 12:1165. [PMID: 37371895 DOI: 10.3390/antiox12061165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Dietary interventions with bioactive compounds have been found to suppress the accumulation of senescent cells and senescence-associated secretory phenotypes (SASPs). One such compound, curcumin (CUR), has beneficial health and biological effects, including antioxidant and anti-inflammatory properties, but its ability to prevent hepatic cellular senescence is unclear. The objective of this study was to investigate the effects of dietary CUR as an antioxidant on hepatic cellular senescence and determine its benefits on aged mice. We screened the hepatic transcriptome and found that CUR supplementation led to the downregulation of senescence-associated hepatic gene expressions in both usually fed and nutritionally challenged aged mice. Our results showed that CUR supplementation enhanced antioxidant properties and suppressed mitogen-activated protein kinase (MAPK) signaling cascades in the liver, particularly c-Jun N-terminal kinase (JNK) in aged mice and p38 in diet-induced obese aged mice. Furthermore, dietary CUR decreased the phosphorylation of nuclear factor-κB (NF-κB), a downstream transcription factor of JNK and p38, and inhibited the mRNA expression of proinflammatory cytokines and SASPs. The potency of CUR administration was demonstrated in aged mice via enhanced insulin homeostasis along with declined body weight. Taken together, these results suggest that CUR supplementation may be a nutritional strategy to prevent hepatic cellular senescence.
Collapse
Affiliation(s)
- Da-Yeon Lee
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Su-Jeong Lee
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Prabha Chandrasekaran
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jennifer F O'Connell
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Yoo Kim
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
42
|
Stark R, Feehan J, Mousa A, Andrews ZB, de Courten B. Liver-expressed antimicrobial peptide 2 is associated with improved pancreatic insulin secretion in adults with overweight and obesity. Diabetes Obes Metab 2023; 25:1213-1220. [PMID: 36597795 PMCID: PMC10947148 DOI: 10.1111/dom.14968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
AIMS To examine association of liver-expressed antimicrobial peptide 2 (LEAP2), an endogenous ghrelin antagonist with anorexiant effects, to key cardiometabolic risk factors in people with overweight and obesity. METHODS In this cross-sectional study, we sought to identify associations between LEAP2 levels and cardiometabolic risk factors, including body composition (dual X-ray absorptiometry), insulin and glucose metabolism (oral and intravenous glucose tolerance tests and hyperinsulinaemic-euglycaemic clamps), plasma lipids and inflammation markers (ELISA and multiplex assays). RESULTS In 65 participants with overweight or obesity (63.1% male, mean age 31.3 ± 8.5 years), LEAP2 levels were associated with total body fat, but not with body mass index or waist-hip ratio in both univariable and age- and sex-adjusted models (P < 0.05). Higher LEAP2 level was also positively associated with higher insulin secretion in univariable (P = 0.047) and multivariable models adjusted for age, sex and body fat (P = 0.03), but not with fasting glucose levels (P ≥ 0.05). Higher LEAP2 levels were associated insulin resistance (P = 0.07) after adjustment for age and sex, but the association disappeared after an additional adjustment for body fat (P = 0.2). There was an inverse association between LEAP2 levels and nuclear factor kappa-B (NFκB) activity in the peripheral blood mononuclear cells in age-, sex- and body fat-adjusted models (P = 0.04). There were no associations with cardiovascular risk factors (lipids, blood pressure) or other inflammation markers. CONCLUSIONS These results provide important insights into the association between LEAP2 and cardiometabolic health in a high-risk population of individuals with overweight and obesity. This is a first report of an association between LEAP2 and insulin secretion, insulin sensitivity and NFκB activity. LEAP2 may represent an important potential therapeutic target to promote insulin secretion in people with type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Romana Stark
- School of Clinical SciencesMonash UniversityClaytonVictoriaAustralia
| | - Jack Feehan
- Institute for Health and Sport, Victoria UniversityFootscrayVictoriaAustralia
| | - Aya Mousa
- Monash Biomedicine Discovery Institute and Department of PhysiologyMonash UniversityClaytonVictoriaAustralia
| | - Zane B. Andrews
- School of Clinical SciencesMonash UniversityClaytonVictoriaAustralia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation (MCHRI), Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVictoriaAustralia
- School of Health and Biomedical SciencesRMIT UniversityBundooraVictoriaAustralia
| |
Collapse
|
43
|
Adedeji TG, Jeje SO, Omayone TP, Dareowolabi BO. Soda intake influences phenotype, antioxidants and inflammatory status in high protein-fed wistar rats. Heliyon 2023; 9:e15781. [PMID: 37180936 PMCID: PMC10172790 DOI: 10.1016/j.heliyon.2023.e15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023] Open
Abstract
An increasing population of people, especially young adults who exercise, consume high protein diets along with carbonated drinks. While there are numerous studies on the effect of high protein diets, there is a need to understand how protein diets in combination with carbonated drinks impact physiology. In order to assess these effects on wistar rats' phenotype, antioxidants and inflammatory profiles, 64 wistar rats were divided into dietary groups of 8 male and 8 female animals each. The animals were fed standard diet as control (chow), chow and carbonated soda, a high protein diet (48.1% energy from protein) and a high protein diet with carbonated soda according to their groups. Body measurements, blood glucose levels, serum insulin levels, lipid peroxidation, antioxidant activity, adipokines and inflammatory markers concentrations were all determined. At the end of the study, body measurements, inflammatory markers and adipokine concentration were increased in animals fed the high protein diet and high protein-soda diet. There was a decrease in antioxidant and lipid peroxidation levels in protein fed male and female animals but those fed protein in combination with soda had increased lipid peroxidation levels. In conclusion, high protein diet in combination with carbonated soda impacts physiology differently from a high protein diet alone, and may stimulate weight gain, oxidative stress and HPD-related inflammation in Wistar rats.
Collapse
|
44
|
Ribeiro A, Liu F, Srebrzynski M, Rother S, Adamowicz K, Wadowska M, Steiger S, Anders HJ, Schmaderer C, Koziel J, Lech M. Uremic Toxin Indoxyl Sulfate Promotes Macrophage-Associated Low-Grade Inflammation and Epithelial Cell Senescence. Int J Mol Sci 2023; 24:ijms24098031. [PMID: 37175735 PMCID: PMC10179130 DOI: 10.3390/ijms24098031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, we investigated the impact of the uremic toxin indoxyl sulfate on macrophages and tubular epithelial cells and its role in modulating the response to lipopolysaccharide (LPS). Indoxyl sulfate accumulates in the blood of patients with chronic kidney disease (CKD) and is a predictor of overall and cardiovascular morbidity/mortality. To simulate the uremic condition, primary macrophages and tubular epithelial cells were incubated with indoxyl sulfate at low concentrations as well as concentrations found in uremic patients, both alone and upon LPS challenge. The results showed that indoxyl sulfate alone induced the release of reactive oxygen species and low-grade inflammation in macrophages. Moreover, combined with LPS (proinflammatory conditions), indoxyl sulfate significantly increased TNF-α, CCL2, and IL-10 release but did not significantly affect the polarization of macrophages. Pre-treatment with indoxyl sulfate following LPS challenge induced the expression of aryl hydrocarbon receptor (Ahr) and NADPH oxidase 4 (Nox4) which generate reactive oxygen species (ROS). Further, experiments with tubular epithelial cells revealed that indoxyl sulfate might induce senescence in parenchymal cells and therefore participate in the progression of inflammaging. In conclusion, this study provides evidence that indoxyl sulfate provokes low-grade inflammation, modulates macrophage function, and enhances the inflammatory response associated with LPS. Finally, indoxyl sulfate signaling contributes to the senescence of tubular epithelial cells during injury.
Collapse
Affiliation(s)
- Andrea Ribeiro
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- Department of Nephrology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Feiyue Liu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Matthias Srebrzynski
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Simone Rother
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Marta Wadowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Stefanie Steiger
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Maciej Lech
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Nephrologisches Zentrum, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| |
Collapse
|
45
|
Ma YH, Shen LX, Li YZ, Leng Y, Yang L, Chen SD, He XY, Zhang YR, Chen RJ, Feng JF, Tan L, Dong Q, Suckling J, David Smith A, Cheng W, Yu JT. Lung function and risk of incident dementia: A prospective cohort study of 431,834 individuals. Brain Behav Immun 2023; 109:321-330. [PMID: 36796705 DOI: 10.1016/j.bbi.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Whether lung function prospectively affects cognitive brain health independent of their overlapping factors remains largely unknown. This study aimed to investigate the longitudinal association between decreased lung function and cognitive brain health and to explore underlying biological and brain structural mechanisms. METHODS This population-based cohort included 43,1834 non-demented participants with spirometry from the UK Biobank. Cox proportional hazard models were fitted to estimate the risk of incident dementia for individuals with low lung function. Mediation models were regressed to explore the underlying mechanisms driven by inflammatory markers, oxygen-carrying indices, metabolites, and brain structures. FINDINGS During a follow-up of 3,736,181 person-years (mean follow-up 8.65 years), 5,622 participants (1.30 %) developed all-cause dementia, which consisted of 2,511 Alzheimer's dementia (AD) and 1,308 Vascular Dementia (VD) cases. Per unit decrease in lung function measure was each associated with increased risk for all-cause dementia (forced expiratory volume in 1 s [liter]: hazard ratio [HR, 95 %CI], 1.24 [1.14-1.34], P = 1.10 × 10-07; forced vital capacity [liter]: 1.16 [1.08-1.24], P = 2.04 × 10-05; peak expiratory flow [liter/min]: 1.0013 [1.0010-1.0017], P = 2.73 × 10-13). Low lung function generated similar hazard estimates for AD and VD risks. As underlying biological mechanisms, systematic inflammatory markers, oxygen-carrying indices, and specific metabolites mediated the effects of lung function on dementia risks. Besides, brain grey and white matter patterns mostly affected in dementia were substantially changed with lung function. INTERPRETATION Life-course risk for incident dementia was modulated by individual lung function. Maintaining optimal lung function is useful for healthy aging and dementia prevention.
Collapse
Affiliation(s)
- Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China; Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Ling-Xiao Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Yu-Zhu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yue Leng
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Xiao-Yu He
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Ren-Jie Chen
- School of Public Health, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, United Kingdom; School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - A David Smith
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
46
|
Xu M, Xue H, Kong L, Lin L, Zheng G. Smilax china L. Polyphenols Improves Insulin Resistance and Obesity in High-fat Diet-induced Mice Through IRS/AKT-AMPK and NF-κB Signaling Pathways. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01052-y. [PMID: 36826691 DOI: 10.1007/s11130-023-01052-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Smilax china L. is an important herb used in traditional Chinese medicine. In this study, the mechanism of Smilax china L. polyphenols (SCP) on insulin resistance and anti-obesity in mice induced by a high-fat diet (HFD) was investigated. Fifty female mice were randomly divided into five groups: control, HFD and low, medium, and high doses of SCP for 70 d. SCP significantly decreased intraperitoneal adipose tissue index, body weight gain, liver lipids, and serum inflammatory factor levels. Blood glucose and insulin concentrations, as well as insulin resistance index in SCP, were significantly lower than those in HFD. In addition, SCP markedly up-regulated the gene expression of glucose transporter 4 (GLUT4), insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), serine-threonine kinase (AKT), Acyl-CoA oxidase (ACO), and protein kinase A (PKA), and down-regulated the expression of mammalian target of rapamycin complex 1 (mTORC1), sterol-responsive element-binding protein-1c (SREBP1c), fatty acid synthase (FAS), 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR), and forkhead box protein O1 (FOXO1). SCP significantly increased the protein expression of AKT, GLUT4, AMP-activated protein kinase (AMPK), phosphorylated-AMPK (p-AMPK), phosphorylated-AKT (p-AKT), and uncoupling protein 1 (UCP-1), and decreased the expression of SREBP1c, FAS, HMGCR, phosphorylation of IKBα (p-IKBα), and nuclear factor kappa B subunit p65 (P65) in the liver. Overall, SCP effectively reduced HFD-induced insulin resistance and obesity in mice, partly through NF-κB and IRS/AKT-AMPK signaling pathways to regulate inflammatory factors. Therefore, SCP may improve lifestyle diseases.
Collapse
Affiliation(s)
- Meng Xu
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Hui Xue
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, 330047, Nanchang, China
| | - Li Kong
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Lezhen Lin
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, 330045, Nanchang, China.
| |
Collapse
|
47
|
Yudaeva AD, Stafeev IS, Michurina SS, Menshikov MY, Shestakova MV, Parfyonova YV. The interactions between inflammation and insulin resistance: molecular mechanisms in insulin-producing and insulin-dependent tissues. DIABETES MELLITUS 2023. [DOI: 10.14341/dm12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
In the modern world the prevalence of obesity and type 2 diabetes mellitus (T2DM) significantly increases. In this light the risks of obesity-associated complications also grow up. The crucial linkage between obesity and its metabolic and cardiovascular complications is inflammatory process. The mechanism of this linkage is similar in pancreas and insulin-dependent tissues both on cells, cell-to-cell communication and signaling pathway levels: the catalysts are different lipids (cholesterol, free fatty acids, triglycerides), which are able to activate Toll-like receptors of innate immunity and inflammation. Nextly, IKK- and JNK-dependent cascades activate the secretion of inflammatory cytokines TNFa, IL-1b, IL-6 and others, which act by paracrine and autocrine manner and support inflammation both in local and systemic levels. Thus, insulin-producing and insulin-dependent tissues, which are involved in T2DM pathogenesis, through the inflammatory process integrate in pathogenic and self-maintaining cycle, which leads to the suppression of insulin secretion, pancreatic β-cell failure and the development of insulin-dependent tissues insulin resistance.
Collapse
Affiliation(s)
- A. D. Yudaeva
- National Medical Research Centre of Cardiology named after academician E.I.Chazov; Pirogov Russian National Research Medical University
| | - I. S. Stafeev
- National Medical Research Centre of Cardiology named after academician E.I.Chazov; Pirogov Russian National Research Medical University
| | - S. S. Michurina
- National Medical Research Centre of Cardiology named after academician E.I.Chazov; Lomonosov Moscow State University
| | - M. Yu. Menshikov
- National Medical Research Centre of Cardiology named after academician E.I.Chazov
| | | | - Y. V. Parfyonova
- National Medical Research Centre of Cardiology named after academician E.I.Chazov; Lomonosov Moscow State University
| |
Collapse
|
48
|
Innayah AM, Hariani ENS, Khotimah H, Kusumastuty I, Yunita EP, Handayani D. β-(1,3)-D-glucan from <em>Pleurotus ostreatus</em> correlates with lower plasma IL-6, IL-1β, HOMA-IR, and higher pancreatic beta cell count in High-Fat and High-Fructose Diet (HFFD) rats. HEALTHCARE IN LOW-RESOURCE SETTINGS 2023. [DOI: 10.4081/hls.2023.11165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Introduction: The increasing consumption of high-fat and high-fructose foods contributes to the increasing prevalence of global obesity. Low-grade chronic inflammation in obesity is a significant risk factor for insulin resistance and type 2 diabetes. Therefore, this study aimed to determine the effect of β-(1,3)-D-glucan from oyster mushroom (Pleurotus ostreatus) extract on rats fed with a high-fat and high-fructose diet.
Design and Methods: This experimental study was conducted on 35 male Sprague-Dawley rats aged eight weeks. The rats were divided into groups given a normal (N) diet, a high-fat and high-fructose diet (HFFD), D1 (HFFD+125 mg/kg BW β-glucan), D2 (HFFD+250 mg/kg BW β glucan), and D3 (HFFD+375 mg/kg BW β-glucan) with an intervention of 14 weeks. IL-6 and IL-1β levels were measured by the ELISA method, while HOMA-IR (Homeostatic Model Assessment for Insulin Resistance) was calculated by the fasting insulin (ng/mL) x fasting blood glucose (mg/dL)/405 formula. Pancreatic beta-cell counts were measured by hematoxylin and eosin (H&E) staining.
Results: The results showed no differences in IL-6 and IL-1β between the treatment groups. However, there were significant differences in HOMA-IR and pancreatic beta-cell counts between groups. There were negative correlations between the dose of β-glucan and IL-6, IL-1β, and HOMA-IR levels. Also, there was a positive correlation between the dose of β-glucan and the number of pancreatic beta cells.
Conclusions: Administration of β-(1,3)-D-glucan from oyster mushroom (Pleurotus ostreatus) extract prevented hyperglycemia and insulin resistance, also reduced inflammation in rats fed with HFFD regardless of weight gain.
Collapse
|
49
|
Moyce Gruber BL, Dolinsky VW. The Role of Adiponectin during Pregnancy and Gestational Diabetes. Life (Basel) 2023; 13:301. [PMID: 36836658 PMCID: PMC9958871 DOI: 10.3390/life13020301] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Pregnancy involves a range of metabolic adaptations to supply adequate energy for fetal growth and development. Gestational diabetes (GDM) is defined as hyperglycemia with first onset during pregnancy. GDM is a recognized risk factor for both pregnancy complications and long-term maternal and offspring risk of cardiometabolic disease development. While pregnancy changes maternal metabolism, GDM can be viewed as a maladaptation by maternal systems to pregnancy, which may include mechanisms such as insufficient insulin secretion, dysregulated hepatic glucose output, mitochondrial dysfunction and lipotoxicity. Adiponectin is an adipose-tissue-derived adipokine that circulates in the body and regulates a diverse range of physiologic mechanisms including energy metabolism and insulin sensitivity. In pregnant women, circulating adiponectin levels decrease correspondingly with insulin sensitivity, and adiponectin levels are low in GDM. In this review, we summarize the current state of knowledge about metabolic adaptations to pregnancy and the role of adiponectin in these processes, with a focus on GDM. Recent studies from rodent model systems have clarified that adiponectin deficiency during pregnancy contributes to GDM development. The upregulation of adiponectin alleviates hyperglycemia in pregnant mice, although much remains to be understood for adiponectin to be utilized clinically for GDM.
Collapse
Affiliation(s)
- Brittany L. Moyce Gruber
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Vernon W. Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
50
|
Namazi N, Anjom-Shoae J, Najafi F, Ayati MH, Darbandi M, Pasdar Y. Pro-inflammatory diet, cardio-metabolic risk factors and risk of type 2 diabetes: A cross-sectional analysis using data from RaNCD cohort study. BMC Cardiovasc Disord 2023; 23:5. [PMID: 36611151 PMCID: PMC9825034 DOI: 10.1186/s12872-022-03023-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Inflammation and cardiometabolic risk factors can be involved in developing type 2 diabetes mellitus (T2DM). This study aimed to investigate and compare the association between a pro-inflammatory diet and cardiometabolic risk factors in patients with T2DM and non-T2DM cases. METHODS In this cross-sectional population-based study, considering the baseline data of the Ravansar Non-Communicable Disease (RaNCD) cohort, patients with T2DM (n = 785) and non-T2DM cases (n = 8254) were included. The dietary inflammatory index (DII) was calculated using a food frequency questionnaire (FFQ) and was classified into four groups (quartiles) with lowest to highest scores. Logistic regression analysis was conducted to determine the association between DII and cardiometabolic risk factors in both groups. RESULTS The participants were 9,039 (4140 men and 4889 women) with a mean age of 47.4 ± 8.2 years; the mean body mass index (BMI) and DII were 27.49 ± 4.63 kg/m2 and - 2.49 ± 1.59, respectively. After adjustment for confounding factors, we found that DII can increase the risk of T2DM by 61% (95% CI 1.27 to 2.05, P < 0.001). A comparison of two groups revealed that the association of DII, obesity/overweight and dyslipidemia were also significant in both diabetic (P < 0.05) and non-diabetic cases (P < 0.05). However, no significant association was found between DII, MetS, and hypertension in either of the groups. The association between DII and cardiovascular diseases (CVDs) was only significant in diabetic patients (1.65; 95%CI: 1.02 to 2.65, P = 0.04) and T2DM showed an interaction with the association between DII and CVDs. CONCLUSION Inflammatory potential of diet may increase the risk of T2DM. Although it can increase the risk of some cardiometabolic risk factors in both diabetic and non-diabetic cases, its effects were greater among patients with T2DM. However, further prospective studies are required to confirm these associations.
Collapse
Affiliation(s)
- Nazli Namazi
- grid.411705.60000 0001 0166 0922Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Anjom-Shoae
- grid.411705.60000 0001 0166 0922Faculty of Nutritional Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Najafi
- grid.412112.50000 0001 2012 5829Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hossein Ayati
- grid.411705.60000 0001 0166 0922School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran ,grid.412888.f0000 0001 2174 8913Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Darbandi
- grid.412112.50000 0001 2012 5829Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yahya Pasdar
- grid.412112.50000 0001 2012 5829Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|